
MATLAB Programming for Kernel–Based Methods

Maryam Mohammadia,∗, Robert Schabackb

aFaculty of Mathematical Sciences and Computer, Kharazmi University, Tehran, Iran
bInstitut für Numerische und Angewandte Mathematik, Georg-August-Universität Göttingen, Germany

Abstract

This paper presents an implementation of kernel–based methods using MATLAB, a powerful tool for
numerical computation and data analysis. Kernel methods are pivotal in various fields of Numerical
Analysis, including approximation, interpolation, meshless methods for solving partial differential equa-
tions (PDEs), neural networks, and Machine Learning. Due to the connection of kernels to Hilbert spaces
of functions, kernel-based methods often have optimality properties. The package allows to switch be-
tween different kernels and different scales without changing programs, just by changing parameters.
In addition, it enables applications to partial differential equations to handle derivatives of kernels effi-
ciently, without re-programming the derivatives if the kernel is changed. Special emphasis is placed on
practical implementation, showcasing MATLAB code snippets and functions that facilitate the applica-
tion of these algorithms to function approximation and numerical solution of PDEs.

Keywords: Kernel, MATLAB programming, Function approximation

1. Introduction

This paper addresses researchers and practitioners seeking to leverage kernel techniques in their
computational tasks. The focus is on radial kernels (radial basis functions, RBFs)

K(x,y) = ϕ(∥x− y∥), x,y ∈ Rd ,

where ∥ · ∥ is the Euclidean norm. The kernels covered are

• Gaussian ϕ(r) = exp(−r2)

• Multiquadrics ϕβ (r) = (1+ r2)β with β ∈ R\N0

• Powers ϕβ = rβ , 0 < β /∈ 2N

• Thin-plate splines ϕn(r) = r2n log(r), n ∈ N [12]

• Matérn kernels ϕν(r) = rνKν(r), ν > d/2 [39]

• Wendland C2m kernels ϕ3,m(r), m ≥ 1 [55]

• Hyperbolic secant ϕ(r) = sech(r) [9, 16]

∗Corresponding author
Email addresses: m.mohammadi@khu.ac.ir (Maryam Mohammadi), schaback@math.uni-goettingen.de (Robert

Schaback)

2 POINT SETS AND DISTANCE MATRICES 2

• “rtanh” kernel ϕ(r) = r · tanh(r/β) [19, 20]

Its basic idea comes from a rather informal technical note [45] dating back to 2009 and intended for the
second author’s students. For a wider audience, this paper provides a thorough revision and completion.
It also was the foundation of the package mFDlab on meshless finite differences by Oleg Davydov [4],
and this paper will serve to explain its basics as well.

A standard amount of MATLAB knowledge is assumed everywhere, but there is no attempt to use ad-
vanced concepts or to combine the routines into a larger system with a GUI, in order to make the routines
usable in a context-free way. Also, we do not even try to reach Nick Trefethen’s mastership of MATLAB
as in his chebfun system (see http://www.chebfun.org/). Note that the books [13, 14] by Greg
Fasshauer and Michael McCourt contain a very good and competitive collection of MATLAB programs.
Mathematical background information on kernels can be obtained from books [2, 13, 14, 57] and from
lecture notes like [43]. Applications are surveyed in [50], and many useful references can be obtained
from the authors’ research papers at
https://num.math.uni-goettingen.de/schaback/research/group.html
and
https://khu.ac.ir/cv/222/Maryam-Mohammadi
with many references cited therein.

Technically, the MATLAB m-files are in a zipfile obtainable from the URL
https://num.math.uni-goettingen.de/schaback/research/MPfKBM.zip.
An included routine dothemall.m generates the figures of this text right from running the programs.

The paper is organized as follows. Section 2 first treats point sets and distance matrices, before kernels
appear in Section 3. The basic kernel routine frbf.m is described in Section 3.3, but it needs to write
radial kernels in f -form, described in Section 3.2 to facilitate taking derivatives of all possible orders
using just a single routine. The mathematics behind this is treated in detail in Section 3.5. Then Section
4 provides first examples, specialized to interpolation and approximation. It includes Lagrange and
Newton bases and uses the latter for adaptive matrix-free implementations of P-greedy and f -greedy
methods. So far, this does not take derivatives. Section 5 explains various prefabricated routines that
apply differential operators to kernels, acting directly on “S-matrices” that implement the f -form from
Section 3.2. Finally, Section 6 demonstrates how to use these routines for solving partial differential
equations. It covers collocation in symmetric and unsymmetric form, the Method of Lines, and shows
how to calculate finite-difference approximations for use in RBF-FD and similar methods.

2. Point Sets and Distance Matrices

Before we come to kernels, we describe how the package handles geometry.

2.1. Point Sets

Sets of M points from Rd are stored in MATLAB/FORTRAN–style M as rows of matrices with d
columns, e.g. x1, . . . ,xM ∈ Rd as rows of a matrix X ∈ RM×d . Note that MATLAB runs through arrays
in a columnwise (“column-major”, “first down, then across”) way, like FORTRAN. Thus dramatically
unsymmetric arrays should always be stored such that there are more rows than columns, to support lo-
calized memory access. For univariate cases, note that the MATLAB command t=-1:0.01:1 generates
a row, not a column.

http://www.chebfun.org/
https://num.math.uni-goettingen.de/schaback/research/group.html
https://khu.ac.ir/cv/222/Maryam-Mohammadi
https://num.math.uni-goettingen.de/schaback/research/MPfKBM.zip

2 POINT SETS AND DISTANCE MATRICES 3

Uniformly distributed random sets of M points in d dimensions within [0,1]d are generated via X=rand(M,d).
To produce uniformly distributed random points in [a,b]d , use X=a+(b-a)*rand(M,d). The result is a
matrix X ∈ RM×d .

Regular grids are generated by the meshgrid command. The standard 2D case is

[X Y]=meshgrid(a:h:b,a:h:b);

for generating points in [a,b]2 with spacing h > 0. To let the spacing precisely fit, one should use
something like h=(b-a)/(n-1) to get an n× n grid. But these arrays X and Y are not points in our
matrix convention. Both X and Y are matrices of the same shape, with identical columns or rows. If the
grid has a total of n2 points, both X and Y are n×n matrices, storing the x and y coordinates, respectively.
Use

P=[X(:) Y(:)];

to get a point matrix P of n2 points and rows with two columns. The inverse operation is

X=reshape(P(:,1),size(X));
Y=reshape(P(:,2),size(Y));

to bring the point coordinates back into the correct order. In particular, if Z is a column vector of values
at the points P, one often needs to reshape it by

ZR=reshape(Z,size(X));

to the shape of X or Y.

2.2. Distance Matrices
Kernels are often applied to point distances arranged into distance matrices. In standard MATLAB,

it is a crime to use avoidable loops, and thus we aim at kernel evaluation on distance matrices, not on
single point distances.

If there are M points for the x argument and N points for the y argument of a radial kernel K(x,y) =
ϕ(∥x− y∥), we have two input point matrices X ∈ RM×d and Y ∈ RN×d and we want to calculate the
M×N kernel matrix A with entries

Ai j = ϕ (∥xi − y j∥) , 1 ≤ i ≤ M, 1 ≤ j ≤ N,

based on the distance matrix D with entries

Di j := ∥xi − y j∥, 1 ≤ i ≤ M, 1 ≤ j ≤ N.

MATLAB offers the command dmat=pdist2(X,Y) to calculate a distance matrix. For good reasons to
be explained below, we shall mostly work with matrices consisting of

Si j := ∥xi − y j∥2/2, 1 ≤ i ≤ M, 1 ≤ j ≤ N

called S-matrices from now on. Later routines will nearly always act on S-matrices. They can be cal-
culated via smat=(dmat.2)/2. But distance matrices contain a square root, and therefore going to an
S-matrix via these commands takes a square root and a square. To avoid this, one can use the formula

∥xi − y j∥2/2 = ∥xi∥2/2+∥y j∥2/2− xT
i y j, 1 ≤ i ≤ M, 1 ≤ j ≤ N.

3 KERNELS 4

To work directly on the point matrices X ∈ RM×d and Y ∈ RN×d , we see that the third summand is the
matrix −XY T , and the first two summands are just vectors that we have to repeat either columnwise or
row-wise to get a matrix.

Here is an m-file distsqh.m (memo for distance squared and halved) implementing the above formula,
without any loops and with complexity O(MNd):

function smat=distsqh(X, Y)
% calculates an M*N S-matrix smat
% of halved squares of point distances
% between two point matrices X and Y of M and N points each.
[M Xdim]=size(X);
[N Ydim]=size(Y);
if Xdim~=Ydim

error(’Point sets in distsqh are of unequal dimension’)
end
% the one-dimensional case gets a simpler treatment
if Xdim==1

smat=(repmat(X,1,N)-repmat(Y’,M,1)).^2/2;
else

smat=X*Y’;
cX=sum((X.*X)’)/2; % squared norms of X points, row
cY=sum((Y.*Y)’)/2; % squared norms of Y points, row
smat=repmat(cX’,1,N)+repmat(cY,M,1)-smat;

end
% Finally, protect against numerical violation
% of the Cauchy Schwarz inequality,
% because later routines may take square roots again:
smat=max(smat,zeros(size(smat)));

3. Kernels

After dealing with points and matrices, we now turn to kernels.

3.1. Kernel Scaling

Scaled radial kernels are of the form

Kc(x,y) = ϕ (∥x− y∥/c) , for all x, y ∈ Rd ,

with a constant c > 0. This lets c act like a support radius, in particular when we generate compactly
supported radial kernels Kc from scalar functions ϕ with support in [0,1]. Then c is the support radius
of Kc. Often, c is called a shape parameter, and there is a huge literature concerning good choices of c.
Mathematical results on scaling are in [25], while practical guidelines are in [50].

3.2. Kernels in f –form

For good reasons to be explained below, we write unscaled radial kernels ϕ in f -form via the trans-
formation

f (s) = ϕ(
√

2s),
ϕ(r) = f (r2/2).

3 KERNELS 5

The biggest advantage of the f -form will show up below in section 3.5. A simple case is the Gaussian
kernel ϕ(r) = exp(−r2) with f (s) = −exp(2s). The derivatives of ϕ are much more complicated than
those of f . In addition, Cartesian derivatives of radial functions tend to have singularities that may cancel
or not. For ϕ(r) = f (r2/2) and r = ∥x− y∥ for x,y ∈ Rd , consider

∂
∂xi

ϕ(r) = ϕ ′(r)
∂ r
∂xi

= ϕ ′(r)
xi

r
,

∂
∂xi

f (s) = f ′(s)
∂ s
∂xi

= f ′(s)xi.

The second line looks nice at first sight, much better than the first, but we shall see that the f -derivatives
themselves may contain singularities, because they take s-derivatives of functions of

√
2s. However, in

the last line we also see that these derivatives get factors that vanish at zero, hopefully cancelling the
singularities of f ′(s). We shall have a closer look at this phenomenon later, but users must keep in mind
that such cancellations must be cared for.

Scaling enters into the f -form via

Kc(x,y) := f (∥x− y∥2/(2c2)) = K(x/c,y/c), (1)

such that ϕc(r) = ϕ(r/c) = fc(s) := f
(
r2/(2c2)

)
.

3.3. The Basic Kernel Routine

Our standard way to calculate with kernels is to use them in unscaled f –form and to call a MATLAB
m-file frbf.m as

resmat=frbf(smat,k)

which evaluates the k–th (k ∈ N0) derivative of the kernel f (s) with respect to s, using a scaled S-matrix
smat with elements ∥xi − y j∥2/(2c2) in what follows. All other routines, e.g. for evaluating Laplacians
of kernels on kernel matrices, are based exclusively on frbf.m. The kernel scaling is done within the
input S-matrix. Users are strongly advised not to use these routines for single points. They are tailored
for middle-size matrices. Furthermore, there are no precautions so far against evaluation of kernels for
illegal parameter choices.

The use of a simple interface like frbf.m makes all routines independent of the chosen kernel, together
with all existing derivatives. But it requires to move the control of kernel parameters into global variables.
These currently are

RBFtype

RBFpar

RBFscale

to be explained in what follows. The scale c of the kernel in the sense of (1) is RBFscale. The type
of kernel is selected by setting RBFtype to a MATLAB string like ’g’ for the Gaussian. An additional
real-valued parameter is defined by RBFpar depending on the type of kernel.

The list of current options for RBFtype is

3 KERNELS 6

g Gaussian ϕ(r) = exp
(
−r2

)
with f (s) = exp(−2s), no RBFpar.

mq Multiquadric ϕ(r) = (1+ r2)β with f (s) = (1+2s)β , with RBFpar=β ∈ R\N0 to avoid a polyno-
mial kernel. Inverse multiquadrics can be treated by choosing RBFpar=β negative. For β > 0, the
sign (−1)⌈β⌉ guaranteeing conditional positive definiteness of order ⌈β⌉ is applied.

p Powers ϕ(r) = rβ with f (s) = (
√

2s)β , with RBFpar=β , 0 < β ̸∈ 2N. The correct sign for condi-
tional positive definiteness of order ⌈β

2 ⌉ is (−1)⌈
β
2 ⌉.

ms Matern/Sobolev [39] ϕ(r) = rνKν (r), with f (s) = (
√

2s)νKν
(√

2s
)
, with RBFpar=ν > 0.

w all C2m Wendland functions ϕ3,m for m =RBFpar≥ 0, see [55]. These have support in [0,1], are
positive definite kernels in dimensions d ≤ 3 and radial polynomials of minimal possible degree.

tp Thin–plate splines [12] ϕ(r) = r2m logr with f (s) = (2s)m 1
2 log(2s), for RBFpar=m ∈N, with sign

(−1)m+1 for conditional positive definiteness of order m+1.

sech Hyperbolic secant [9, 16] ϕ(r) = sechr, with f (s) = sech(
√

2s), no RBFpar.

rth RTH kernel [19, 20] ϕ(r) = r tanh(r/β), with f (s) =
√

2s tanh(
√

2s/β), for RBFpar=β > 0.

The newborn kernel RTH is a new transcendental RBF of the form ϕ(r) = r tanh(r/β) introduced for
the first time by Heidari et al. [19, 20]. It is a smooth approximant to r by considering β → 0+, with
higher accuracy and better convergence properties than the multiquadric with β = 1/2. It can serve to
get shape-preserving univariate approximations [19].

Note that frbf.m does not care for addition of polynomials in case of conditional positive definiteness of
positive order. Section 3.6 will deal with multivariate polynomials, and Section 4.1 with interpolation in
the conditionally positive definite case. Furthermore, the Wendland function class is currently restricted
to kernels working in dimensions up to 3.

3.4. Full Listing
To demonstrate how the f -form facilitates taking derivatives of kernels, and to show how the mathe-

matics in Section 5 is implemented, we provide a full program listing here.

function y=frbf(s,k)
% k-th derivative of scaled RBF kernel in f form, i.e.
% as a function of s=(r^2)/2. There is NO scaling here.
global RBFtype;
global RBFpar;
switch lower(RBFtype)

case (’g’) % ’g’=Gaussian, exp(-r^2)=exp(-2s)
y=(-2)^k*exp(-2*s);

case (’mq’) % ’mq’ = multiquadric, inverse or not...
% (1+r^2)^beta=(1+2*s)^beta

y=2^k*prod(RBFpar-k+1:RBFpar)*(1+2*s).^(RBFpar-k);
if RBFpar>0

y=y*(-1)^(ceil(RBFpar));
end

case (’p’) % ’p’=powers, r^beta=(2s)^(beta/2)

3 KERNELS 7

y=2^k*prod((RBFpar/2)-k+1:RBFpar/2)*(2*s+eps).^((RBFpar-2*k)/2);
if RBFpar>0

y=y*(-1)^(ceil(RBFpar/2));
end

case (’tp’) % ’tp’=thin-plate splines,
% r^(2n).ln(r)=(1/2).(2s)^n.ln(2s)

ord=1;
su=0;
while ord<=k

su=su*(RBFpar-ord+1)+prod(RBFpar-ord+2:RBFpar);
ord=ord+1;

end
su=2^(k-1)*su.*(2*s+eps).^(RBFpar-k);
y=2^k*prod(RBFpar-k+1:RBFpar)*(2*s+eps).^(RBFpar-k).*log(2*s+eps)/2+su;
y=y*(-1)^(RBFpar+1);

case (’ms’) % ’ms’=Matern/Sobolev,
% r^\nu.K_\nu(r)=(\sqrt(2s))^\nu.K_\nu(\sqrt(2s))

y=(-1)^k*besselk(RBFpar-k,sqrt(2*s+eps)).*(sqrt(2*s+eps)).^(RBFpar-k);
case (’sech’) % Sech, sech(r)=sech(sqrt(2s))

u=cellfun(@(j) gsech(s,j,k),num2cell(0:k),’UniformOutput’,false);
totalSum=sum(cat(3,u{:}),3);
y=2^k*totalSum;

case (’rth’) % ’rth’=rtanh, rtanh(r/beta)=sqrt(2s).tanh(sqrt(2s)/beta)
u=cellfun(@(j) grth(s,j,k,RBFpar),num2cell(0:k),’UniformOutput’,false);
totalSum=sum(cat(3,u{:}),3);
y=totalSum;

case (’w’) % ’w’=Wendland functions.
% we use only those which are pos. def.
% in dimension at most d=3.
r=sqrt(2*s);
u=zeros(size(s));
if k<=RBFpar

[coeff,expon]=wendcoeff(3+2*k,RBFpar-k);
flag=max(zeros(size(r)),1-r).^expon;
for i=1:length(coeff)

R=r;
R(r<=1)=(r(r<=1)).^(i-1);
u=u+coeff(i)*R;

end
u=u.*flag;
y=(-1)^k*u;
return

end
% this new part cares for high-order derivatives
if k<=2*RBFpar

[coeff,expon]=qcoeff(k-RBFpar,RBFpar+2);
p=RBFpar+2;

3 KERNELS 8

for i=1:p
R=r;
R(r<=1)=(r(r<=1)).^(i-1);
u=u+coeff(i)*R;

end
y=(-1)^(RBFpar)*u./(r+eps).^expon;
return

end
error(’Unimplemented s-derivative of Wendland function’)

otherwise
error(’RBF type not implemented’)

end
end

Here, we point out some technical features of the code.

3.4.1. Avoiding Singularities
The polyharmonic and certain kernels involving Bessel functions have singularities at the origin, as

well as the derivatives of functions in f –form. A fast and often also sufficient trick is to add a small
positive constant like the MATLAB eps to the endangered argument. A more sophisticated approach
would be to calculate the local Taylor polynomial around zero and implement it locally, which is not
considered here.

3.4.2. Truncated Powers
For compactly supported radial kernels, one often needs truncated powers

sk
+ :=

{
sk s > 0
0 s ≤ 0

}
elementwise on matrices. The standard trick in MATLAB is to use

max(zeros(size(s)),s).^k

in order to avoid pitfalls and loops.

3.4.3. Factorials
The falling factorial

x(n) = x(x−1) . . .(x−n+1),

and the Pochhammer symbol (rising factorial)

(x)n = x(x+1) . . .(x+n−1),

can be computed by prod(x-n+1:n) and pochhammer(x,n), respectively.

3.4.4. Finite sum of a function of the S-matrix
In order to evaluate

k

∑
j=0

g(s, j,k), (2)

we call the following MATLAB commands
u=cellfun(@(j) g(s,j,k),num2cell(0:k),’UniformOutput’,false);
out=sum(cat(3,u{:}),3);

3 KERNELS 9

3.5. Recursive Scalar Radial Derivatives
This section describes the mathematical background of how the derivatives of scaled radial kernels

in f form can be calculated. Thus it is an explanation of how frbf(s,k) works for positive derivative
orders k. If interested in programs only, readers can skip this section.

3.5.1. Gaussian
The Gaussian ϕ(r) = exp(−r2) uses f (s) = exp(−2s) with simplest possible derivatives f (k)(s) =

(−2)k exp(−2s).

3.5.2. Multiquadrics
The multiquadric ϕβ (r) = (1+ r2)β with β ∈ R\N0 leads to the easy recursion

fβ (s) = (1+2s)β

f ′β (s) = 2β (1+2s)β−1 = 2β fβ−1(s)

f (k)β (s) = 2kβ (β −1) . . .(β − k+1)(1+2s)β−k = 2kβ (k) fβ−k(s).

Note that this includes inverse multiquadrics.

3.5.3. Power Kernels
For the powers ϕβ (r) = rβ with 0 < β ̸∈ 2N we get

fβ (s) = (2s)β/2

f ′β (s) = 2(β/2)(2s)β/2−1 = 2(β/2) fβ−2(s)

f (k)β (s) = 2k(β/2)(k) fβ−2k(s).

3.5.4. Thin-Plate Splines
Also for the thin–plate splines ϕn(r) = r2n log(r/c) with n ∈ N we find

fn(s) = (2s)n 1
2 log(2s)

f ′n(s) = n(2s)n−1 log(2s)+(2s)n−1 = 2n fn−1(s)+(2s)n−1 = 2n fn−1(s)+A1(2s)n−1

f ′′n (s) = 22n(n−1) fn−2(s)+2((n−1)+n)(2s)n−2 = 22n(n−1) fn−2(s)+2A2(2s)n−2

f (3)n (s) = 23n(n−1)(n−2) fn−3(s)+22(((n−1)+n)(n−2)+n(n−1))(2s)n−3

= 23n(n−1)(n−2) fn−3(s)+22A3(2s)n−3

f (k)n (s) = 2kn(k) fn−k(s)+2k−1Ak(2s)n−k,

where A0 = 0 and A j = A j−1(n− j+1)+n(j−1). Note that the second term is a polynomial in s.

3.5.5. Matern/Sobolev kernels
These are the most important case in Spatial Statistics [39]. The kernels are

ϕν(r) = rνKν(r),

with the modified Bessel function Kν of second kind. It has the property

K′
ν(z) =−Kν+1(z)+

ν
z

Kν(z) =−Kν−1(z)−
ν
z

Kν(z)

and we need
fν(s) = (

√
2s)νKν(

√
2s).

3 KERNELS 10

Then
f ′ν(s) = ν(

√
2s)ν−1 1√

2s
Kν(

√
2s)+(

√
2s)ν 1√

2s
K′

ν(
√

2s)

= νKν(
√

2s)(
√

2s)ν−2 +(
√

2s)ν−1K′
ν(
√

2s)

= νKν(
√

2s)(
√

2s)ν−2 +(
√

2s)ν−1
(
−Kν−1(

√
2s)− ν√

2s
Kν(

√
2s)
)

= −(
√

2s)ν−1Kν−1(
√

2s)
= − fν−1(s)

f (k)ν (s) = (−1)k fν−k(s).

3.5.6. Hyperbolic secant
For the Hyperbolic secant ϕ(r) = sech(r) we get f (s) = sech(

√
2s). Then according to [54] we have

f (k)(s) = 2k
k

∑
j=0

(−1)k− j(j)2(k− j)

(k− j)!
(
2
√

2s
)2k− j sech(j)(

√
2s), (3)

where the derivatives of the sech function are computed by the following relations [59]

sech(2 j)(t) =
j

∑
i=0

(−1) j−iw2(j−i)+1,i (2(j− i))!(sech(t))2(j−i)+1 ,

sech(2 j+1)(t) = −tanh(t)
j

∑
i=0

(−1) j−iw2(j−i)+1,i (2(j− i)+1)!(sech(t))2(j−i)+1 ,

where

w2 j+1,0 = 1,

w2 j+1,1 =
j

∑
m=0

(2m+1)2,

w1,i = 1,

w2 j+1,i = (2 j+1)2w2 j+1,i−1 +w2 j−1,i.

In order to compute (3), we use (2) with the following routine

function out=gsech(s,j,k)
out=diffsech(sqrt(2*s),j).*(((-1)^(k-j)*pochhammer(j,2*(k-j)))...

./(factorial(k-j)*((2*sqrt(2*s)+eps).^(2*k-j))));
function out=diffsech(s,j)

u=cellfun(@(i) hsech(s,j,i),num2cell(0:floor(j/2)),’UniformOutput’,false);
totalSum=sum(cat(3,u{:}),3);
if mod(j,2)

out=-tanh(s).*totalSum;
else

out=totalSum;
end

end
function out=hsech(s,j,i)

p=floor(j/2);

3 KERNELS 11

out=((-1)^(p-i)*Wsec(2*(p-i)+1,i)*factorial(2*(p-i)+mod(j,2)))...
.*(sech(s).^(2*(p-i)+1));

end
function out=Wsec(j,i)

p=(j-1)/2;
if i==0

out=1;
elseif i==1

out=sum((2*(0:p)+1).^2);
elseif j==1

out=1;
else

out=j^2*Wsec(j,i-1)+Wsec(2*p-1,i);
end

end
end

3.5.7. RTH RBF
For the RTH RBF ϕ(r) = r tanh(r/β) we get f (s) =

√
2s tanh(

√
2s/β).

Then according to [32] we have

f (k)(s) =
k

∑
j=0

bk j

(√
2s
)−(k+ j−1)

tanh(k− j)(
√

2s/β), (4)

where the coefficients bk j are given by the recursion
bk0 = 1/β k, k = 0,1, . . .
b11 = 1,
bk j = (−k− j+3)b(k−1)(j−1)+(1/β)b(k−1) j, j = 1, . . . ,k−1, k ≥ 2,
bkk = (−2k+3)b(k−1)(k−1),

and the derivatives of tanh function is computed by the following relations [59]

tanh(2 j)(t) = tanh(t)
j

∑
i=0

(−1) j−iw2(j−i),i (2(j− i))!(sech(t))2(j−i) ,

tanh(2 j+1)(t) =
j

∑
i=0

(−1) j−iw2(j−i+1),i (2(j− i)+1)!(sech(t))2(j−i+1) ,

where

w2 j,0 = 1,

w2 j,1 =
j

∑
m=0

(2m)2,

w0,i = 0,

w2,i = = 22i,

w4,i =
i

∑
m=0

22(i+m),

w2 j,i = (2 j)2w2 j,i−1 +w2(j−1),i.

3 KERNELS 12

In order to compute (4), we use (2) with the following routine

function out=grth(s,j,k,RBFpar)
out=diffrth(sqrt(2*s)/RBFpar,k-j).*((b(k,j,RBFpar)*(sqrt(2*s)+eps).^(-(k+j-1))));

function out=b(k,j,RBFpar)
if j==0

out=1/RBFpar^k;
elseif k==1 && j==1

out=1;
elseif ismember(j,1:k-1) && k>=2

out=(-k-j+3)*b(k-1,j-1,RBFpar)+(1/RBFpar)*(b(k-1,j,RBFpar));
else

out=(-2*k+3)*b(k-1,k-1,RBFpar);
end

end
function out=diffrth(s,j)

u=cellfun(@(i) hrth(s,j,i),num2cell(0:floor(j/2)),’UniformOutput’,false);
totalSum=sum(cat(3,u{:}),3);
if mod(j,2)

out=totalSum;
else

out=tanh(s).*totalSum;
end

end
function out=hrth(s,j,i)

p=floor(j/2);
out=((-1)^(p-i)*Wrth(2*(p-i+mod(j,2)),i)*factorial(2*(p-i)+mod(j,2)))...

.*(sech(s).^(2*(p-i+mod(j,2))));
end
function out=Wrth(j,i)

p=j/2;
if i==0

out=1;
elseif i==1

out=sum((2*(0:p)).^2);
elseif j==0

out=0;
elseif j==2

out=2^(2*i);
elseif j==4

out=sum(2.^(2*(i+0:i)));
else

out=j^2*Wrth(j,i-1)+Wrth(2*(p-1),i);
end

end
end

3 KERNELS 13

3.5.8. Wendland functions
We now handle the Wendland [55, 57] kernels, but note that we now have to be careful with constant

factors. First, we rewrite the dimension walk operator [57]

I(ϕ)(r) =
∫ ∞

r
tϕ(t)dt (5)

=
∫ ∞

r2/2
ϕ(

√
2s)︸ ︷︷ ︸

= f (s)

ds

= Ĩ(f)(t), t = r2/2,

I(ϕ)(
√

2t) = Ĩ(f)(t) =
∫ ∞

t
f (s)ds

Ĩ′ = −Id,

where Id is the identity operator. The Wendland functions are defined via

ϕd,m = Imϕ⌊d/2⌋+m+1, ϕℓ(r) = (1− r)ℓ+

for m ≥ 0 and ℓ≥ 1, and we rewrite them in the form

ϕ̃d,m(s) = ϕd,m(
√

2s), ϕ̃ℓ(s) = ϕℓ(
√

2s) = (1−
√

2s)ℓ+.

This definition also works for negative m because of I−1ϕ(r) =−ϕ ′(r)/r. Then

ϕ̃d,m(s) = ϕd,m(
√

2s)

= (Imϕ⌊d/2⌋+m+1)(
√

2s)

= Ĩmϕ̃⌊d/2⌋+m+1(s)

ϕ̃ ′
d,m(s) = −Ĩm−1ϕ̃⌊d/2⌋+m+1(s)

= −Ĩm−1ϕ̃⌊(d+2)/2⌋+m−1+1(s)

= −ϕ̃d+2,m−1(s)

ϕ̃ (k)
d,m(s) = (−1)kϕ̃d+2k,m−k(s).

is a derivative recursion which is easy to implement if the standard basis functions ϕd,m are available. We
shall describe below how those can be calculated in general.

Note that the scalar factors are different from what is usually seen in tables of Wendland functions. Here
is an example with correct factors when starting with the topmost one:

ϕ3,3(r) = (1− r)8
+(32r3 +25r2 +8r+1)

ϕ5,2(r) = 22(1− r)7
+(16r2 +7r+1)

ϕ7,1(r) = 528(1− r)6
+(6r+1)

ϕ9,0(r) = 22176(1− r)5
+

An easy way to get high–degree Wendland functions ϕd,m with correct constants for derivatives is to start
with some polynomial wℓ(r) := (1− r)ℓ, ℓ = ⌊d/2⌋+m+ 1 and then to apply Im for integer m. For
m > 0, the result is C2m and positive definite in dimensions up to d. The following MAPLE procedure
generates all Wendland functions ϕd,k for integer k:

3 KERNELS 14

phidk:=proc(d,k)
> local L, wL, j;
> L:=floor(d/2)+k+1;
> wL:=(1-r)^L;
> if k>=0
> then
> for j from 1 to k do

wL:=-int(r*wL,r);wL:=factor(wL-subs(r=1,wL)); end do;
> return(simplify(wL));
> else
> for j from 1 to -k do wL:=-diff(wL,r)/r; end do;
> return(simplify(wL));
> end if;
> end proc:

Here are a few examples for ϕd,−m(r) calculated via MAPLE, up to the cutoff at r = 1:

1
r
, d = 3, m = 1,

2(1− r)
r

, d = 5, m = 1,

1
r3 , d = 5, m = 2,

3(1− r)2

r
, d = 7, m = 1,

2
r3 , d = 7, m = 2,

3
r5 , d = 7, m = 3

and up to scalar factors like in the standard case. These functions get singular at the origin, but the
singularity cancels out later, see the discussion at the end of Section 3.2.

We now have to derive recursive formulae for the coefficients of Wendland functions as polynomials in
r on [0,1]. If we start from wℓ(r) := (1− r)ℓ and let the operator I act m times, one can see the above
process as starting from the polynomial p0 = 1 and proceeding inductively via∫ 1

r
t(1− t)ℓ+n pn(t)dt = (1− r)ℓ+n+1 pn+1(r) (6)

for n = 0, . . . ,m−1. Then

ϕd,m(r) = (1− r)ℓ+m
+ pm(r). (7)

Moreover, (6) yields

d
dr

(
(1− r)ℓ+n+1 pn+1(r)

)
= −r(1− r)ℓ+n pn(r)

and if we set

pn(r) =
n

∑
j=0

a j,nr j

3 KERNELS 15

there is a simple recursion for the coefficients via

−r(1− r)ℓ+n pn(r) = −(ℓ+n+1)(1− r)ℓ+n pn+1(r)+(1− r)ℓ+n+1 p′n+1(r)
−rpn(r) = −(ℓ+n+1)pn+1(r)+(1− r)p′n+1(r)

−r ∑n
j=0 a j,nr j = −(ℓ+n+1)∑n+1

j=0 a j,n+1r j +(1− r)∑n
j=1 ja j,n+1r j−1

−a j−1,n = −(ℓ+n+1)a j,n+1 +(j+1)a j+1,n+1 − ja j,n+1
−a j−1,n = −(ℓ+n+1+ j)a j,n+1 +(j+1)a j+1,n+1

a j,n+1 =
1

ℓ+n+1+ j
((j+1)a j+1,n+1 +a j−1,n)

backwards for j = n+ 1, . . . ,0. If the basis functions are evaluated on large matrices, the above O(m2)
snippet does not contribute significantly to the program complexity. The following MATLAB code
generates the necessary polynomial coefficients in ascending order by applying the above recursion.

function [coeff,expon]=wendcoeff(d,m)
% calculate coefficients and exponent
% for polynomial part p_{m} of Wendland’s functions.
% phi_{d,m}(r)=p_{m}(r)*(1-r)^expon
% The array coeff contains the values a_{j,n} of the text.
% Since n increases and j decreases, no matrix is needed.
L=floor(d/2)+m+1;
expon=L+m;
coeff=zeros(m+1,1);
coeff(1)=1; % p_0=1
for n=0:m-1

coeff(n+2)=coeff(n+1)/(L+n+1+n+1);
for j=n+1:-1:2

coeff(j)=(j*coeff(j+1)+coeff(j-1))/(L+n+j);
end
coeff(1)=coeff(2)/(L+n+1);

end

The final evaluation is a part in frbf.m when called for the k-th derivative and on a matrix in s form
(see the above listing of frbf.m). In general, the routine wendcoeff(d,m) calculates the coeffi-
cients of the polynomial pm for the purely polynomial Wendland function (7), and therefore accord-
ing to (6) frbf(s,k) calls wendcoeff(3+2*k,RBFpar-k) which is correct for derivatives of order
k ≤ m =RBFpar. Note that the calculation of Wendland kernels acts only on points in the support, once
they are found.

But there is a problem hidden here. Recall that we have the restriction m ≥ 0 for all of this, and we know
that ϕd,m is in C2m. Then it is tempting to take 2m derivatives of ϕd,m this way, leading formally to

ϕ̃ (2m)
d,m = ϕ̃d+4m,−m,

if the standard recursion and the right-hand side would be valid also for negative second indices. But
this does not fall into the range of coefficients we considered so far, and standard application of the
wendcoeff routine will fail.

3 KERNELS 16

Let us now look at Wendland functions for negative second indices. If D is the s-derivative operator on
functions in f –form, then (Ĩ)−1 =−D, and for all m ≥ 0 we get

ϕ̃d,−m = (−1)mDmϕ̃d−2m,0 = (−1)mDmϕ̃⌊ d
2 ⌋−m+1 = (−1)mDm(1−

√
2s)⌊

d
2 ⌋−m+1

+

if we stick to the dimension walk, and for 0 ≤ m ≤ ⌊d
2⌋. Derivatives of ϕd,m up to order m can still be

handled by the wendcoeff routine, but for higher derivatives we get

ϕ̃ (m+n)
d,m = (−1)m+nϕ̃d+2m+2n,−n

= (−1)m+n(−1)nDn(1−
√

2s)⌊
d
2 ⌋+m+n+1

+

= (−1)mDn(1−
√

2s)⌊
d
2 ⌋+m+1

+

= Dnϕ̃ (m)
d,m .

To get the recursion behind this, we define

gn,p(
√

2s) := Dn(1−
√

2s)p

for integers n ≥ 0 and p > 0 to get

gn+1,p(
√

2s) = D(gn,p(
√

2s))

=
g′n,p(

√
2s)

√
2s

tgn+1,p(t) = g′n,p(t)
g0,p(t) = (1− t)p

proving that

gn,p(t) =
qn,p(t)
t2n−1

holds for n ≥ 1 with a polynomial qn,p of degree at most p−1 that has a recursion

qn+1,p = tq′n,p(t)+(−2n+1)qn,p(t).

for n ≥ 1 starting with q1,p(t) =−p(1− t)p−1. The argument proceeds via

g′n,p(t) =
q′n,p(t)
t2n−1 +(−2n+1)

qn,p(t)
t2n

gn+1,p(t) =
g′n,p(t)

t
=

tq′n,p(t)+(−2n+1)qn,p(t)
t2n+1 .

To apply this to ϕd,−m, we set p = ⌊d
2⌋−m+1 and n = m and arrive at

ϕd,−m(r) = (−1)m
qm,⌊ d

2 ⌋−m+1(r)

r2m−1

for m ≥ 1 and a numerator of degree at most p−1 = ⌊d
2⌋−m ≥ 0. In the monomial representations

qn,p(t) =
p−1

∑
j=0

a(n,p)j t j

3 KERNELS 17

we get the recursion

a(n+1,p)
j = (1−2n+ j)a(n,p)j , 0 ≤ j ≤ p−1,n ≥ 1, p ≥ 1

with the starting values

a(1,p)j =−p(−1) j
(

p−1
j

)
, 0 ≤ j ≤ p−1, p ≥ 1.

The coefficients with odd indices simplify to

a(n,p)2m−1 = 0 for all n > m, p ≥ 1,

because for fixed odd j the recursion for a(n,p)j runs into zero beyond 2n−1 = j when increasing n and
stays at zero.

Therefore, for m < k ≤ 2m we have to go to (−1)kϕ3+2k,m−k as well, but now we have the rational form

ϕ3+2k,m−k(r) = (−1)k−m qk−m,2+m(r)
r2k−2m−1

and get the coefficients by a call to qcoeff(k-RBFpar,2+RBFpar) while the routine qcoeff(n,p)
proceeds like above, providing the coefficients of qn,p. We add the code:

function [coeff, expon]=qcoeff(n,p)
% gets q_{n,p} coefficients in increasing sequence
expon=2*n-1;
for j=1:p

coeff(j)=-p*(-1)^(j-1)*nchoosek(p-1,j-1);
end
for k=2:n

for j=1:p
coeff(j)=coeff(j)*(1-2*(k-1)+(j-1));

end
end

3.5.9. Remark
It seems to be a strange fact that many classes of radial kernels are closed unter integration and

differentiation, provided that they are written in f form. But this is no miracle. The basic reason is that
these classes are closed under radial Fourier transforms in f form taken in different dimensions, and
these radial Fourier transforms commute with differentiation and integration of the f form. Details are
in [51], but it turned out later that this goes back to Matheron [28].

3.6. Multivariate Polynomials
In various cases, in particular for dealing with conditionally positive definite kernels, we need the

M × Q matrix polvalues of values of multivariate polynomials of some order order evaluated on
a M × d matrix points of M points in d dimensions. Note that order means degree +1 here, and the
dimension Q of the polynomials is dependent on the order m and the space dimension d via Q=

(m+d−1
d

)
.

Our simplest implementation is via unscaled monomials, i.e. we form the matrix of values xα
j for all

j, 1 ≤ j ≤ M and all multiindices α ∈ Zd
0 with 0 ≤ |α| := ∥α∥1 < m where m is the order. Again, the

row index will run over points, i.e. from 1 to M = |X|. Users should work with the following routine only
near the origin, and they should possibly apply some scaling.

3 KERNELS 18

function polvalues=polynomials(points,order)
% generates all polynomials on points up to order
% The order MUST be increasing from left to right.
[numpoints,dim]=size(points); % handle trivial cases first
if order==0

polvalues=[];
return

end
if order==1

polvalues=ones(numpoints,1);
return

end
if order==2

polvalues=[ones(numpoints,1) points];
return

end
if dim==1

polvalues=zeros(numpoints,order);
polvalues(:,1)=ones(numpoints,1);
polvalues(:,2)=points(:,1);
for i=3:order

polvalues(:,i)=polvalues(:,i-1).*points(:,1);
end
return

end % general case done recursively
polvalues=[polynomials(points,order-1)...

polynomials_exact_order(points,order)];

The recursion in the above program uses

function polvalues=polynomials_exact_order(points,order)
% generates all polynomials of exact order on points
[numpoints,dim]=size(points); % first some trivial cases
if order==1

polvalues=ones(numpoints,1);
return

end
if order==2

polvalues=points;
return

end
if dim==1

polvalues=points(:,1).^(order-1);
return

end
% What follows is a crude recursive scheme over the DIMENSION.
% Somebody MUST write a better one....

4 INTERPOLATION AND EVALUATION 19

% We start with the multiindices that focus on the last component
polvalues= points(:,dim).^(order-1); % the x_{i,d}^{p-1}
for k=1:order-2

pe=polynomials_exact_order(points(:,1:dim-1),order-k);
% this contains all values (x_{i,1:d-1}.^{\alpha(:,1:d-1)})_{i,\alpha}
pp=points(:,dim).^k;
[rpes cpes]=size(pe);
% pps=size(points(:,dim).^(order-i));
for j=1:cpes

polvalues=[polvalues pe(:,j).*pp];
end

end
polvalues=[polvalues ...

polynomials_exact_order(points(:,1:dim-1),order)];

4. Interpolation and Evaluation

A standard square kernel–based interpolation system

M

∑
j=1

a jϕ(∥xk − x j∥) = yk, 1 ≤ k ≤ M

for unconditionally positive definite radial kernels needs the M ×M kernel matrix with entries ϕ(∥xk −
x j∥, 1 ≤ k, j ≤ M. We provide a standard MATLAB routine kermat.m for this, hiding the scaling and
the formation of the scaled S matrix, and allowing two point sets X and Y .

function mat=kermat(X, Y)
% creates kernel matrix
% for two point sets X and Y
global RBFscale
mat=frbf(distsqh(X,Y)/RBFscale^2,0);

Then the kernel matrix for interpolation is

intmat=kermat(X,X).

The solution vector a follows from the data vector y via

a=intmat\y;

Note that these two commands work for all kernels and scalings. It is always a good idea to check the
condition by preceding this with

condition=condest(intmat)

to avoid problems.

After finding the coefficient vector, one would usually want to evaluate the solution, e.g. for subsequent
plotting. This will often need a much finer point set than X, and we assume that it is called Y here. The
resulting values at these points are obtained from

4 INTERPOLATION AND EVALUATION 20

evalmat=kermat(Y,X);
values=evalmat*a;

For fine–grained evaluation, this will take longer than the actual solution of the linear system, because a
large unsymmetric kernel matrix has to be formed. Note that the resulting values have to be reshaped, if
the points in Y are derived from a meshgrid command. The standard evaluation sequence in 2D thus is
something like

[xe ye]=meshgrid(....);
Y=[xe(:) ye(:)];
evalmat=kermat(Y,X);
values=evalmat*a;
figure
surfc(xe,ye,reshape(values,size(xe)));

Figure 1 shows an example for interpolation of the MATLAB peaks function in [−3,3]2 on 21× 21 =
441 random points, using the Hyperbolic secant kernel with RBFscale=1. The corresponding m-file in
the package is testint.m, using the above snippet.

4.1. Interpolation with Conditionally Positive Definite Kernels

For conditionally positive definite kernels of order m, a set X = {x1, . . . ,xM} of M interpolation points
must be Pd

m−1–unisolvent. This means that only the zero polynomial in Pd
m−1 vanishes on X . Then one

needs an extended (M+Q)× (M+Q) matrix(
AX ,X PX

PT
X 0Q×Q

)
with matrices

AX ,X = (K(x j,xk)), 1 ≤ j,k ≤ M
PX = (pi(x j)), 1 ≤ j ≤ M, 1 ≤ i ≤ Q

and Q being the dimension of the polynomials on Rd up to order m, using a basis p1, . . . , pQ. The
interpolation data y1, . . . ,yM have to be extended to a vector (yT ,0Q)

T forming the right–hand side for
the above system. The coefficients are then a vector (aT ,bT)T ∈ RM+Q, and evaluation on a fine point
set Y needs the matrix–vector product

(AY,X PY)

(
a
b

)
to generate the interpolant’s values on Y . A corresponding program is testintCPD.m in the program
package, with the result in Figure 2. It was executed on the same 441 points as Figure 1 using thin-plate
splines of order 2.

The basic code snippet for npp points in a matrix X and conditional positive definiteness of order is

AXX=kermat(X,X); % kernel matrix on interpolation points
PX=polynomials(X,order); % polynomial values
[npp q]=size(PX) % q = dimension of polynomial space
intmat=[AXX PX; PX zeros(q,q)]; % full CPD interpolation matrix
condint=condest(intmat) % condition of full matrix

4 INTERPOLATION AND EVALUATION 21

Figure 1: Numerical results for interpolation of the MATLAB peaks function with testint.m using the Hyperbolic secant
kernel with RBFscale=1.

ZXe=[ZX; zeros(q,1)]; % right-hand side for CPD case
a=intmat\ZXe; % coefficients
evalkermat=kermat(Y,X); % evaluation kernel matrix
evalpolmat=polynomials(Y,order); % evaluation polynomial matrix
values=[evalkermat evalpolmat]*a; % resulting values

See how the snippet for the unconditional case was slightly modified to work in the conditionally positive
definite case.

4.2. Lagrange Bases

For a positive definite kernel K and a point matrix X of M points, the Lagrange basis functions
u1(x), . . . ,uM(x) solve the system

M

∑
j=1

K(xk,x j)u j(x) = K(x,xk), 1 ≤ k ≤ M.

4 INTERPOLATION AND EVALUATION 22

Figure 2: Error distribution for interpolation of the MATLAB peaks function with testintCPD.m using thin-plate splines of
order 2.

To visualize these functions on a fine set of N points yi given by a matrix Y , one should look at

M

∑
j=1

u j(yi)K(xk,x j) = K(yi,xk), 1 ≤ k ≤ M.

This is a matrix multiplication of the form U ∗A = B, and thus one gets the matrix

U = (u j(yi)) 1≤i≤N, 1≤ j≤M = B∗A−1

by solving ATUT = AUT = BT via

umat=(intmat\evalmat’)’;

if the matrices intmat and evalmat are already calculated and stored as above. They are needed anyway
for interpolation and evaluation, as we saw in the previous section. Now the columns of umat yield the
values of the Lagrange basis functions. For 2D applications and surf plotting on meshgrid data, they
must be reshaped. An example follows below.

Lagrange bases are special cases of data–dependent bases in [31, 38], like the Newton basis [36] de-
scribed in Figure 3 below.

4.3. Power Functions
Once the Lagrange basis is at hand, one can calculate the square of the optimal Power Function [57]

(eqpowSPD)

P2(x) = K(x,x)−
M

∑
j=1

u j(x)K(x j,x) (8)

at the points yi via

P2(yi) = K(yi,yi)−
M

∑
j=1

u j(yi)K(x j,yi)

= f (0)−
M

∑
j=1

u j(yi)K(x j,yi).

4 INTERPOLATION AND EVALUATION 23

This function is a crucial ingredient of error bounds [43], and in the stochastic setting [52] it describes
the variance of the prediction error at x from a Kriging predictor (i.e. the kernel interpolant) using the
available data at the x j.

With the matrices derived above, one can form umat.*evalmat to get the N ×M matrix of all products
u j(yi)K(x j,yi). We need the sum over rows, but the sum operator of MATLAB sums over columns and
generates a row. Thus

powval=frbf(0,0)-sum((umat.*evalmat)’)’;

yields the column vector of values of the optimal Power Function at the evaluation points. An equivalent
command is

powval=frbf(0,0)-dot(umat’,evalmat’)’;

For 2D applications and surf plotting on meshgrid data, they must be reshaped. The evaluation of
the Power Function is essential for certain greedy methods, see e.g. [11] and Section 4.5 below.

The package contains a program testlag.m for Lagrange bases and Power Functions in the uncondi-
tionally positive definite case, and its output is in Figure 3. The Lagrange function for the central point is
displayed, together with the squared Power Function. The kernel is the Gaussian at scale 0.7, and there
are 121 = 11×11 regular interpolation points. Note that if the functions u j are not the standard Lagrange

Figure 3: The Lagrange function for the central point and the squared Power Function with testlag.m using the Gaussian
kernel with RBFscale=0.7.

basis using K, one has to use the formula (eqpowgen)

P2(x) = K(x,x)−2
M

∑
j=1

u j(x)K(x j,x)

+
M

∑
j,k=1

u j(x)uk(x)K(x j,xk)

(9)

for the non–optimal Power Function. This is useful for evaluation effects of badly chosen kernels, e.g.
if a Lagrange basis u j coming from a different kernel is inserted. These programs were used to prepare
examples in [10].

4 INTERPOLATION AND EVALUATION 24

In the conditionally positive definite case, the Lagrange basis u1, . . . ,uM has to be extended by additional
functions v1, . . . ,vQ and is to be solved for by the system(

AX ,X PX

PT
X 0Q×Q

)(
u(x)
v(x)

)
=

(
KX(x)

p(x)

)
with

KX(x) = (K(x1,x), . . . ,K(xM,x))T ,
p(x) = (p1(x), . . . , pQ(x))T .

On an evaluation set Y , we get (
AX ,X PX

PT
X 0Q×Q

)(
UY

VY

)
=

(
AX ,Y

PT
Y

)
and the rows of UY are now the Lagrange basis functions evaluated on Y . The square of the Power
Function is 9. In the unconditionally positive definite case, the quadratic term cancels with one of the
linear terms, thus simplifying to 8. In matrix form,

P2
X(x) = f (0)−2uT (x)KX(x)−uT (x)AX ,X u(x)

= f (0)−uT (x)KX(x)−uT (x)PX v(x),

to avoid work on M×M matrices. If we use N points for evaluation on a set Y and prepare matrices

U = (u j(yk)) = UT
Y , 1 ≤ k ≤ N, 1 ≤ j ≤ M

V = (vi(yk)) = V T
Y , 1 ≤ k ≤ N, 1 ≤ i ≤ Q

AXY = (K(yk,x j)) = AY,X , 1 ≤ k ≤ N, 1 ≤ j ≤ M

with the row index mentioned first, then the column vector of values P2
X(Y) can be calculated in MATLAB

notation via
f (0)−uT (x)KX(x)−uT (x)PX v(x)
= frbf(0,0)-sum((U.*(AXY+V*PX)));

The package contains a program testlagCPD.m for the conditionally positive definite case, and its
output is in Figure 4. Like for Figure 2, we used the thin-plate spline, and the data are like for Figure
3. Note that the square of the Power Function is one decimal smaller now, and the Lagrangian has less
additional wiggles.

4.4. Newton Basis Functions
For points x1,x2, . . . , the Newton basis recursion [36, 38] is (eqNNNKKK)

N j(x j)
2 = K(x j,x j)−

j−1

∑
m=1

Nm(x j)
2, j ≥ 1,

N j(x)N j(x j) = K(x,x j)−
j−1

∑
m=1

Nm(x)Nm(x j), j ≥ 1, x ∈ Ω.

(10)

This generates functions N j on Ω with properties

N j(x) ∈ span{K(x,x1), . . . ,K(x,x j)}
N j(xk) = 0, 1 ≤ k < j

P2
{x1,...,x j}(x) = K(x,x)−

j

∑
m=1

Nm(x)2, j ≥ 1, x ∈ Ω

4 INTERPOLATION AND EVALUATION 25

Figure 4: The Lagrange function for the central point and the squared Power Function with testlagCPD.m using thin-plate
splines of order 2.

that explain their names when compared to the Newton basis for polynomials. The recursive algorithm
implemented below works on a large point set XN of N different points and stores up to step j only the
j vectors with N entries Ni(xk), 1 ≤ i ≤ j, 1 ≤ k ≤ N. If a new point x j+1 is chosen, a call of the form
kermat(X,x j+1) provides new kernel values without using a full kernel matrix. This basis has various
stability advantages, in particular

j

∑
m=1

N2
m(x) = K(x,x)−P2

{x1,...,x j}(x)≤ K(x,x), x ∈ Ω.

For choosing new points, a vector of N values K(xk,xk), 1 ≤ k ≤ N is allocated at startup and updated
at step j by subtraction of N2

j (xk), 1 ≤ k ≤ N. Then x j+1 is picked as the xk where this vector attains
its maximum, and by the above formulas it is the point where the Power Function P2

{x1,...,x j}(x) attains its
maximum on XN . If given N points and performing j steps, the storage is O(N j) and the computational
complexity is O(N j2). The algorithm can be viewed as a matrix-free updating version of a Cholesky
decomposition or a Hilbert-Schmidt orthogonalization. When run on all N points, the recursion (10)
yields the Cholesky decomposition

K(x j,xk) =
N

∑
m=1

Nm(x j)Nm(xk), 1 ≤ j,k ≤ N

of the full kernel matrix.

4.5. Adaptive Matrix–Free Routines

The package contains a function PFAdapCalcNewtonBasis with the interface

function [ind, NBasis]=PFAdapCalcNewtonBasis(points, npmax, tol)

that implements the above method based on the Newton basis, avoiding to form a full kernel matrix. The
input point matrix points should contain a large number of points, of which up to npmax are chosen.

4 INTERPOLATION AND EVALUATION 26

Figure 5: Selected points, the last Newton basis function, and the final squared Power Function with
testPFAdapCalcNewtonBasis.m using the Matèrn kernel with RBFpar= 3.5, RBFscale=1.

The indices in points of the selected points are in ind, and Nbasis is an array holding the Newton basis
on all points, columnwise. The final output of the calling routine testPFAdapCalcNewtonBasis.m is
in Figure 5. When called on 963 points using the Matèrn kernel with RBFpar= 3.5, RBFscale=1, the
routine picks 64 points at a tolerance of tol= 10−6. The figure shows the selected points, the last Newton
basis function, and the final squared Power Function.

The adaptivity can also be made dependent of the values of a function to be interpolated. The update rule
does not use the Power Function. Instead, the new point x j+1 is picked where the interpolant to f using
only x1, . . . ,x j has maximal error. It is called f -greedy in contrast to P-greedy in [35]. A convergence
theory is in [58]. The P-greedy method dates back to [11] and has surprising optimality features [58].

The package implements the f -greedy method as

function [ind,errfct,NBasis]=...
AdapCalcNewtonBasisForFunction(X, fval, maxN, FunErrTol)

for a large point matrix X and function values fval there. Up to maxN points are picked, and the resulting
point indices are in ind. The Newton basis values on X are in NBasis, and errfct contains the resulting
error on X. The driver testAdapCalcNewtonBasisForFunction.m in the package is applied to the
function f (x,y) = exp(|x− y|)− 1 which has a derivative singularity for x = y. The output is in Figure
6, where the selected 120 interpolation points nicely gather along the singularity line. The kernel was
Matèrn with RBFpar= 1.5 and RBFscale=1.
The basic routine is as follows:

function [ind, errfct, NBasis]=...
AdapCalcNewtonBasisForFunction(X, fval, maxN, FunErrTol)

% The greedy f-adaptive Newton-based method,
% close to the 2011 paper Pazouki/Schaback.
% X : points to work on
% fval: function values on X
% maxN : maximal number of points of X to be used
% FunErrTol: stop if L_infty norm of residual is smaller than this
% ind: indices of selected points pf X
% errfct : final error on X

5 ROUTINES FOR MULTIVARIATE DERIVATIVES 27

% NBasis: values of Newton basis on X
sk=zeros(maxN,1); % vector of coefficients in the Newton basis
[N pd]=size(X); % get info on points
V=zeros(N,maxN); % Newton basis columnwise
indselect=zeros(maxN,1); % selected poin t indices
P2=frbf(0.0,0)*ones(N,1); % squared Power Function on all points
% fval is now interpreted as the error of the actual approximation
for iter=1:maxN % main loop

[fmax indfmax]=max(abs(fval)); % The maximum of the actual approsimation
if fmax<FunErrTol % stopping criterion

iter=iter-1; % reset step counter
break;

end
% kernel values on the chosen point
V(:,iter)=kermat(X,X(indfmax,:));
for i=1:iter-1 % recursion

V(:,iter)=V(:,iter)-V(:,i)*V(indfmax,i);
end
Pval=sqrt(P2(indfmax));
V(:,iter)=V(:,iter)/Pval; % renormalization
indselect(iter,1)=indfmax; % store new point index
sk(iter)=fval(indfmax)/Pval; % the new cefficient in Newton basis
for i=1:N

fval(i)=fval(i)-V(i,iter)*sk(iter);
end
P2=max(0, P2-V(:,iter).^2); % update Power Function, keep nonnegative
% and store our new point index:
indselect(iter,1)=indfmax;

end
ind=indselect(1:iter);
errfct=fval;
NBasis=V(:,1:iter);

5. Routines for Multivariate Derivatives

This section is of quite some importance when radial basis functions are used for solving partial
differential equations. One needs various derivatives of radial kernels, and one has to care for scaling
and geometry. But like in kermat(X,Y) we just work on point sets and hide S-matrices and scaling. The
routines are of the form ***kermat(X,Y) and just differ by the differential operators applied to X or Y.
The naming scheme is as follows:

If the operator L acts on X , and M acts on Y , then the routine is LXMYkermat.m.

Internally, they all boil down to calls of frbf(S,k) for various matrices S and derivative orders k. Like
in kermat(X,Y), the S matrices will contain values ϕ(∥xi−y j∥2/(2c2)), 1 ≤ i ≤ m, 1 ≤ j ≤ n. If several
of the following routines are used in the same project, there may be multiple calls for exactly the same

5 ROUTINES FOR MULTIVARIATE DERIVATIVES 28

Figure 6: Selected points, input function, and the final function error with testAdapCalcNewtonBasisForFunction.m using
the Matèrn kernel with RBFpar= 1.5, RBFscale=1.

S and k in different routines. When optimizing for speed, users should check this, execute the required
calls outside of the routines, store the results into global variables, and avoid all recalculations.

5.1. First Derivatives

The s derivatives in scalar form are

∂ s
∂xi

= +
xi − yi

c2

∂ s
∂yi

= −xi − yi

c2

and they occur all over again, e.g. in

∂
∂x j

Kc(x,y) = f ′(s)
∂ s
∂x j

=
f ′(s)
c2 (x j − y j)

∂
∂yk

Kc(x,y) = f ′(s)
∂ s
∂yk

= − f ′(s)
c2 (xk − yk).

In matrix form for 1 ≤ i ≤ M, 1 ≤ j ≤ N, 1 ≤ k ≤ d this is(
∂

∂xk
Kc(x,y)

)
i j

=
f ′(Si j)

c2 (Xik −Yjk)

(
∂

∂yk
Kc(x,y)

)
i j

= −
f ′(Si j)

c2 (Xik −Yjk)

We provide a standard MATLAB routine for implementing the first formula:

5 ROUTINES FOR MULTIVARIATE DERIVATIVES 29

function mat=gradXkermat(X, Y)
% creates kernel matrices
% for two point sets X and Y of dimnsions dx=dy
% corresponding to the full gradient wrt. the X variable.
% The result is a 3-dimensional matrix of size nx times ny times dx=dy,
global RBFscale
[nx dx]=size(X);
[ny dy]=size(Y);
fmat=frbf(distsqh(X,Y)/RBFscale^2,1)/RBFscale^2;
mat=zeros(nx,ny,dx);
for dim=1:dx

mat(:,:,dim)=fmat.*(repmat(X(:,dim),1,ny)-repmat(Y(:,dim)’,nx,1));
end

The second formula then is implemented by function mat=gradYkermat(X, Y)
via mat=-gradXkermat(X,Y), but in many applications one would prefer to call only one of these
routines.

There also is a function mat=gradXgradYkermat(X, Y) that implements taking gradients with re-
spect to both X and Y.

From here on, we omit the standard preamble in such routines and just show the implementation of the
derivative formulae.

5.2. Normals

(SecSubNormal) Scalar normal or directional derivatives are prescribed via an additional matrix N
of normals or directions as rows, with d columns. The pointwise case for the j-th component of the
normal is

∂
∂ν j

:=
d

∑
k=1

N jk
∂

∂xk

∂
∂ν j

x

Kc(x,y) =
d

∑
k=1

N jk
∂

∂xk
Kc(x,y)

=
f ′(s)
c2

d

∑
k=1

N jk(xk − yk)

∂
∂ν j

y

Kc(x,y) =
d

∑
k=1

N jk
∂

∂yk
Kc(x,y)

= − f ′(s)
c2

d

∑
k=1

N jk(xk − yk)

and now for full matrices with 1 ≤ i ≤ M, 1 ≤ j ≤ N:(
∂

∂ν

x

Kc(x,y)
)

i j
=

f ′(Si j)

c2

d

∑
k=1

Nik(Xik −Yjk)

=
f ′(Si j)

c2 ((NXT)ii − (NY T)i j)

5 ROUTINES FOR MULTIVARIATE DERIVATIVES 30

(
∂

∂ν

y

Kc(x,y)
)

i j
= −

f ′(Si j)

c2

d

∑
k=1

N jk(Xik −Yjk)

= −
f ′(Si j)

c2 ((XNT)i j − (NY T) j j)

The MATLAB routine implementing the first formula is

mat=normalXkermat(X, NX, Y)

for the normals wrt. the X variable. The basic statements there are

fmat=frbf(distsqh(X,Y)/RBFscale^2,1)/RBFscale^2;
mat=fmat.*(repmat(diag(NX*X),1,ny)-(NX*Y));

The second formula then is implemented by function mat=-normalYkermat(X, Y, NY) via
mat=normalXkermat(Y, NY, X). There also is a
function mat=normalXnormalYkermat(X, NX, Y, NY)
that calculates normals for both variables. See Section 5.5.

5.3. Second derivatives
We start with the necessary full-length calculations:

∂
∂xr

∂
∂xp

Kc(x,y) =
∂

∂xr

(
f ′(s)
c2 (xp − yp)

)
=

f ′(s)
c2

∂
∂xr

(xp − yp)+(xp − yp)
∂

∂xr

(
f ′(s)
c2

)
=

f ′(s)
c2 δrp +

xp − yp

c2 f ′′(s)
∂ s
∂xr

=
f ′(s)
c2 δrp + f ′′(s)

xr − yr

c2
xp − yp

c2(
∂

∂xr

∂
∂xp

Kc(x,y)
)

i j
=

f ′(Si j)

c2 δrp +
f ′′(Si j)

c4 (Xir −Yjr)(Xip −Yjp)

∂
∂ys

∂
∂yk

Kc(x,y) =
∂

∂ys

(
− f ′(s)

c2 (xk − yk)

)
= − f ′(s)

c2
∂

∂ys
(xk − yk)− (xk − yk)

∂
∂ys

(
f ′(s)
c2

)
=

f ′(s)
c2 δsk −

xk − yk

c2 f ′′(s)
∂ s
∂ys

=
f ′(s)
c2 δsk + f ′′(s)

xs − ys

c2
xk − yk

c2(
∂

∂ys

∂
∂yk

Kc(x,y)
)

i j
=

f ′(Si j)

c2 δsk +
f ′′(Si j)

c4 (Xis −Yjs)(Xik −Yjk)

∂
∂yk

∂
∂xp

Kc(x,y) =
∂

∂yk

(
f ′(s)
c2 (xp − yp)

)
=

f ′(s)
c2

∂
∂yk

(xp − yp)+(xp − yp)
∂

∂yk

(
f ′(s)
c2

)
= − f ′(s)

c2 δkp +
xp − yp

c2 f ′′(s)
∂ s
∂yk

= − f ′(s)
c2 δkp − f ′′(s)

xp − yp

c2
xk − yk

c2

5 ROUTINES FOR MULTIVARIATE DERIVATIVES 31

(
∂

∂yk

∂
∂xp

Kc(x,y)
)

i j
= −

f ′(Si j)

c2 δkp −
f ′′(Si j)

c4 (Xip −Yjp)(Xik −Yjk)

These formulas are not yet implemented in full generality in the package, since there was no application
for them, so far. Instead, we shall focus on special cases below.

5.4. Laplace operators

(SecSubLaplacian) From the previous section, we get

∆xKc(x,y) =
d f ′(s)

c2 +
f ′′(s)

c4 ∥x− y∥2

=
d f ′(s)

c2 +
2s f ′′(s)

c2

∆yKc(x,y) =
d f ′(s)

c2 +
f ′′(s)

c4 ∥x− y∥2

=
d f ′(s)

c2 +
2s f ′′(s)

c2

=: g(s),

and g(s) can be considered like a new kernel generated by g instead of f .

In matrix form:
(∆xKc(x,y))i j = g(Si j) = (∆xyKc(x,y))i j

g(Si j) =
d f ′(Si j)

c2 +
2Si j f ′′(Si j)

c2

with a rather trivial implementation mat=(dx*frbf(s,1)+2*s.*frbf(s,2))/RBFscale^2+ in

function mat=laplacekermat(X, Y).

To keep the naming conventions, there are also routines laplaceXkermat.m and laplaceYkermat.m.
For later use, we collect derivatives of g:

g′(s) =
d f ′′(s)

c2 +
2(s f ′′(s))′

c2

=
d f ′′(s)

c2 +
2 f ′′(s)

c2 +
2s f ′′′(s)

c2

=
(d +2) f ′′(s)

c2 +
2s f ′′′(s)

c2 ,

g′′(s) =
(d +2) f ′′′(s)

c2 +
2(s f ′′′(s))′

c2

=
(d +2) f ′′′(s)

c2 +
2 f ′′′(s)

c2 +
2s f (4)(s)

c2

=
(d +4) f ′′′(s)

c2 +
2s f (4)(s)

c2 .

5.5. Mixed Derivatives

Here, we look at cases where different operators act on the x and y arguments of a kernel.

5 ROUTINES FOR MULTIVARIATE DERIVATIVES 32

5.5.1. Mixed Normals or Directional Derivatives
(SecSubMixedNormals) For mixed normal or directional derivatives we assume two matrices NX

and NY of normals or directions wrt. the points in X and Y . The pointwise case is

∂
∂νi

x ∂
∂νp

y

Kc(x,y) =
d

∑
j=1

NX
i j

∂
∂x j

(
d

∑
k=1

NY
pk

∂
∂yk

Kc(x,y)

)
=

d

∑
j=1

NX
i j

d

∑
k=1

NY
pk

∂
∂x j

∂
∂yk

Kc(x,y)

=
d

∑
j=1

NX
i j

d

∑
k=1

NY
pk

(
− f ′(s)

c2 δk j − f ′′(s)
x j − y j

c2
xk − yk

c2

)
= − f ′(s)

c2

d

∑
j=1

NX
i j N

Y
p j

− f ′′(s)
c4

(
d

∑
j=1

NX
i j (x j − y j)

)(
d

∑
k=1

NY
pk(xk − yk)

)
and for matrices we get (

∂
∂ν

x ∂
∂ν

y

Kc(x,y)
)

i j

= −
f ′(Si j)

c2

d

∑
k=1

NX
ik NY

jk

−
f ′′(Si j)

c4

(
d

∑
k=1

NX
ik (Xik −Yjk)

)(
d

∑
k=1

NY
jk(Xik −Yjk)

)
= −

f ′(Si j)

c2 (NX(NY)T)i j

−
f ′′(Si j)

c4

(
(NX XT)ii − (NXY T)i j

)(
(X(NY)T)i j − (NYY T) j j

)
Our MATLAB program

function mat=normalXnormalYkermat(X, NX, Y, NY)

implements this as

mat=-frbf(s,1).*(NX*NY)/RBFscale^2-...
frbf(s,2)/RBFscale^4.*...
(repmat(diag(NX*X),1,ny)-NX*Y).*(X*NY-repmat(diag(NY*Y),nx,1));

5.5.2. Mixed Laplacians
Mixed scalar Laplacian values are

∆x∆yKc(x,y)

=
d
c2 g′(s)+

2s
c2 g′′(s)

=
d
c2

(
(d +2) f ′′(s)

c2 +
2s f ′′′(s)

c2

)
+

2s
c2

(
(d +4) f ′′′(s)

c2 +
2s f (4)(s)

c2

)
=

1
c4

(
d(d +2) f ′′(s)+4s(d +2) f ′′′(s)+4s2 f (4)(s)

)
.

Our MATLAB program

6 APPLICATIONS 33

function mat=laplaceXYkermat(X, Y)

implements this as

mat=(dx*(dx+2)*frbf(s,2)+4*(dx+2)*s.*frbf(s,3)+4*s.^2.*frbf(s,4))/RBFscale^4;

5.6. Other Mixed Derivatives
The package also contains functions laplaceXnormalYkermat.m and laplaceYnormalXkermat.m

for mixing normal and Laplace derivatives, but we skip over them here, for brevity.

6. Applications

This section provides brief sketches of a few applications of the routines of the previous sections.

6.1. Collocation
For an integral or differential equation problem on a domain, collocation methods write the equations

down in a pointwise fashion. A typical example is the Poisson problem to find a smooth function u on a
domain Ω satisfying the equations

∆u = f Ω in Ω ⊂ Rd

u = f D in D ⊆ Γ := ∂Ω ⊂ Rd

for given functions f Ω in the interior and f D on the boundary. Collocation would take

1. points x j, 1 ≤ j ≤ J in Ω∪∂Ω for values of ∆u,
2. points yk, 1 ≤ k ≤ K on the boundary ∂Ω for values of u

to replace the problem by the J+K equations

∆u(x j) = f Ω(x j), 1 ≤ j ≤ J,
u(yk) = f D(yk), 1 ≤ k ≤ K.

When composing approximate solutions u from kernel translates, there are two popular methods to pro-
ceed.

6.1.1. Kansa’s Method
This goes back to [23] and uses points z1, . . . ,zM in Ω∪ ∂Ω to form the trial space UM of linear

combinations of all kernel translates um(x) := ϕ(∥zm−x∥), x ∈ Ω, 1 ≤ m ≤ M. It then poses the problem
in the subspace UM. This is easy to set up using routines of the previous sections. With point matrices
X , Y, Z, the linear (J+K)×M system for a coefficient vector cZ ∈ RM is simply(

laplaceXkermat(X,Z)
kermat(Y,Z)

)(
cZ
)
=

(
f Ω
X

f D
Y

)
where the lower subscripts indicate the sets to which the data vectors correspond.

Of course, one needs J+K ≤ M and would like to get away with a square matrix in case J+K = M. This
works fine in nearly every case [34], and users should use condest to check for instability. However,
it can be proven [21] that there is no guarantee for solvability in the square case. Convergence proofs
and error estimates are available [44, 27, 46] in case of oversampling, i.e. M sufficiently larger than
J +K with proper point selection. It should be clear how to add Neumann boundary conditions via
normalYkermat.

6 APPLICATIONS 34

6.1.2. Symmetric Collocation
This enforces symmetric positive definite (J +K)× (J +K) matrices by changing the trial space to

consist of linear combinations of kernel translates v j(x) := ∆ϕ(∥x j −x∥), x ∈ Ω, 1 ≤ j ≤ J and wk(x) :=
ϕ(∥yk − x∥), x ∈ Ω, 1 ≤ k ≤ K. The linear system now is (eqKansasys)(

laplaceXlaplaceYkermat(X,X) laplaceXkermat(X,Y)
laplaceXkermat(X,Y)T kermat(Y,Y)

)(
cX

cY

)
=

(
f Ω
X

f D
Y

)
(11)

for the coefficient vectors cX for the v j and cY for the wk. This setting [18, 17] reduces to generalized
“Hermite” interpolation [61] and inherits the optimality principles of kernel-based interpolation. In par-
ticular, in the native Hilbert space of the kernel used, it realizes the smallest error norm under all linear
numerical methods that use the same data [47]. On the downside, it takes derivatives of order four in
laplaceXYkermat(X,X).
The distribution of points, the true solution 1− x2 − y2, and the error for unsymmetric and symmetric
collocation on 61 boundary and 301 interior points by using the multiquadric kernel with RBFpar=1/2
and RBFscale=1 are given in the Figure 7. The corresponding m-file in the package is testcoll.m.

Figure 7: Points, true solution 1− x2 − y2, and error for unsymmetric and symmetric collocation on 61 boundary and 301
interior points by using the multiquadric kernel with RBFpar=1/2 and RBFscale=1. The corresponding m-file in the package
is testcoll.m.

6 APPLICATIONS 35

6.1.3. Method of Lines
This is closely related to collocation and reduces time-dependent partial differential equations to

large ordinary differential equation systems. As an example, we take the heat equation

∆xu(x, t) =
d
dt

u(x, t) x ∈ Ω ⊂ Rd , t ≥ 0,

u(x, t) = 0 x ∈ ∂Ω, t ≥ 0,
u(x,0) = f S(x) x ∈ Ω, f S(x) = 0, x ∈ ∂Ω

for a given function f Ω in the interior and a starting function f S in the domain.

The method takes a trial space UM = span{u1, . . . ,uM} of smooth functions on Ω that vanish on the
boundary. Then the system is approximated by

m

∑
m=1

∆xum(x)cm(t) =
m

∑
m=1

um(x)c′m(t)

m

∑
m=1

um(x)cm(0) = f S(x).

In the simplest case, the basis functions um are a chosen as a Lagrange basis for a set of J points in the
interior of Ω forming a point matrix X . Then the starting coefficient vector is c(0) = f S(X), and the
differential equation system is

c′j(t) =
m

∑
m=1

∆xum(x j)cm(t), 1 ≤ j ≤ M.

MATLAB has various functions to solve such systems, provided that the M × J matrix ∆XUM with el-
ements ∆xum(x j) is precalculated. From section 4.2 we know that the vector u(x) of Lagrange basis
functions solves the system

kermat(X,X)u(x) = kermat(X,x),

and the Laplacian of this is

kermat(X,X)∆u(x) = laplaceXkermat(X,x).

Therefore the required matrix ∆XUM solves

kermat(X,X)∆XUM = laplaceXkermat(X,X).

This technique has an easy error analysis and generalizes to more general equations [22, 30]

Figure 8 provides a simple example on Ω = [−1,+1] with starting function f S(x) = 1− x2 showing the
exponential decay by using the RTH kernel with RBFpar=RBFscale=0.1. The program in the package
is testheat.m.

6.1.4. Local Kernel-Based Methods
So far, the primary emphasis has been on the global approach for RBFs, i.e. working on a large point

set XN := {xi}N
i=1 in Rd as a whole.

But in numerous cases, working on small subsets of the full point set can achieve accuracy comparable
to global methods.

6 APPLICATIONS 36

Figure 8: A solution of the heat equation with the Method of Lines by using the RTH kernel with RBFpar=RBFscale=0.1. The
corresponding m-file in the package is testheat.m.

We first sketch the interpolation case and assume data f (x1), . . . , f (xN) on the full set XN . If X(y)⊆ XN is
a subset of points close to y, a local interpolant at y can be calculated like the global one, but using only
the local data. We denote it by sX(y), f but evaluate it only at y or nearby. Since the standard error bounds
for kernel-based interpolation are local anyway, this upsampling strategy can be comparable to the global
case, at much lower computational effort, but the local pieces will not lead to a smooth global interpolant.
This drawback can be overcome by Partition-of-Unity methods [3, 8, 26, 56, 57], but we ignore them
here. The selection of good sets X(y) is treated in [49] by a recursive greedy method minimizing the
Power Function Px1,...,xn(y) with respect to xn.

In most cases, it is adequate to write the solution not in terms of coefficients for a basis representation,
but in terms of the given data values. The result will then be basis-independent and written in stencil
form

sX(y), f = ∑
xi∈X(y)

αi f (xi).

If L is a linear differential operator, the recovery of L(f)(y) from values at neighbouring points can take
the same stencil form, namely

L(f)(y)≈ ∑
xi∈X(y)

αL
i f (xi). (12)

A simple example using the package for approximation ∆ f (y) from values on a set Xy is solved for a
coefficient vector a by

a=kermat(Xy,Xy)\laplaceYkermat(Xy,y).

This generalizes finite differences and has a vast literature, with [6, 7] as kernel-based examples. The
above straightforward MATLAB approach uses the standard basis of kernel translates, but one can do
better using the Newton basis [33, 37, 41, 42, 40] or special techniques adapted to Gaussians [24].

Optimality principles for kernel-based stencils are in [6, 7], and error bounds in [5]. The connection of
stencils with Moving Least Squares is treated in [29].

REFERENCES 37

The main application of stencils as finite differences arises in the discretization of partial differential
equations via the RBF-FD method. It can be seen as a localized collocation [33, 37, 41, 42, 40] written
in terms of function values and has a long history [15, 53, 60, 62] and is a meshfree nodal method
[1, 48]. The values u(x1), . . . ,u(xn) of the unknown solution of Lu = f on a set Xn = {x1, . . . ,xn} are
the simultaneous input to stencils on a set Ym = {y1, . . . ,ym} based on (12). The stencil coefficients then
form the rows of a linear system

L(u)(y j)≈ ∑
xi∈X(y j)

αL
j,iu(xi), 1 ≤ j ≤ m.

The program system mFDlab by Oleg Davydov [4] extends this package towards kernel-based finite
differences.

The method can also be used within the Method of Lines to solve time-dependent PDEs. The unknowns
are functions u(x j, t), and the spatial differential operators are discretized via stencils to get a system of
Ordinary Differential Equations. This has a long history as well [33, 37, 41, 42, 62]

References

[1] T. Belytschko, Y. Krongauz, D.J. Organ, M. Fleming, and P. Krysl. Meshless methods: an overview
and recent developments. Computer Methods in Applied Mechanics and Engineering, special issue,
139:3–47, 1996.

[2] M.D. Buhmann. Radial Basis Functions, Theory and Implementations. Cambridge University
Press, Cambridge,UK, 2003.

[3] R. Cavoretto, S. De Marchi, A. De Rossi, E. Perracchione, and G. Santin. Partition of unity interpo-
lation using stable kernel-based techniques. Applied Numerical Mathematics, 116:95–107, 2017.
New Trends in Numerical Analysis: Theory, Methods, Algorithms and Applications (NETNA
2015).

[4] O. Davydov. Program package mFDlab, 2020. https://bitbucket.org/meshlessFD/mfdlab/src/master/.

[5] O. Davydov and R. Schaback. Error bounds for kernel-based numerical differentiation. Numerische
Mathematik, 132:243–269, 2016.

[6] O. Davydov and R. Schaback. Minimal numerical differentiation formulas. Numerische Mathe-
matik, 140:555–592, 2018.

[7] O. Davydov and R. Schaback. Optimal stencils in Sobolev spaces. IMA Journal of Numerical
Analysis, 39:398–422, 2019.

[8] S. De Marchi, A. MartÃ nez, and E. Perracchione. Fast and stable rational rbf-based partition of
unity interpolation. Journal of Computational and Applied Mathematics, 349:331–343, 2019.

[9] St. De Marchi and R. Schaback. Nonstandard kernels and their applications. Dolomites Research
Notes on Approximations, 2:16–43, 2009.

[10] St. De Marchi and R. Schaback. Stability of kernel-based interpolation. Adv. in Comp. Math.,
32:155–161, 2010.

REFERENCES 38

[11] St. De Marchi, R. Schaback, and H. Wendland. Near-optimal data-independent point locations for
radial basis function interpolation. Adv. Comput. Math., 23(3):317–330, 2005.

[12] J. Duchon. Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques
minces. Rev. Francaise Automat. Informat. Rech. Opér. Anal. Numer., 10:5–12, 1976.

[13] G. Fasshauer and M. McCourt. Kernel-based Approximation Methods using MATLAB, volume 19
of Interdisciplinary Mathematical Sciences. World Scientific, Singapore, 2015.

[14] G. F. Fasshauer. Meshfree Approximation Methods with MATLAB, volume 6 of Interdisciplinary
Mathematical Sciences. World Scientific Publishers, Singapore, 2007.

[15] Natasha Flyer, Grady B. Wright, and Bengt Fornberg. Radial Basis Function-Generated Finite
Differences: A Mesh-Free Method for Computational Geosciences, pages 2635–2669. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2015.

[16] Bengt Fornberg and Natasha Flyer. A primer on radial basis functions with applications to the
geosciences. SIAM, 2015.

[17] C. Franke and R. Schaback. Convergence order estimates of meshless collocation methods using
radial basis functions. Advances in Computational Mathematics, 8:381–399, 1998.

[18] C. Franke and R. Schaback. Solving partial differential equations by collocation using radial basis
functions. Appl. Math. Comp., 93:73–82, 1998.

[19] Mohammad Heidari, Maryam Mohammadi, and Stefano De Marchi. A shape preserving quasi-
interpolation operator based on a new transcendental RBF. Dolomites Research Notes on Approxi-
mation, 14:56–73, 2021.

[20] Mohammad Heidari, Maryam Mohammadi, Stefano De Marchi, et al. Curvature-based characteri-
zation of radial basis functions: application to interpolation. Mathematical Modelling and Analysis,
28(3):415–433, 2023.

[21] Y.C. Hon and R. Schaback. Solvability of partial differential equations by meshless kernel methods.
Advances in Computational Mathematics, 28:283–299, 2008.

[22] Y.C. Hon, R. Schaback, and M. Zhong. The meshless kernel-based method of lines for parabolic
equations. Computers and Mathematics with Applications, 68(12, Part A):2057–2067, 2014.

[23] E. J. Kansa. Application of Hardy’s multiquadric interpolation to hydrodynamics. In Proc. 1986
Simul. Conf., Vol. 4, pages 111–117, 1986.

[24] E. Larsson, E. Lehto, A. Heryodono, and B. Fornberg. Stable computation of differentiation ma-
trices and scattered node stencils based on Gaussian radial basis functions. SIAM J. Sci. Comput.,
35:A2096–A2119, 2013.

[25] E. Larsson and R. Schaback. Scaling of radial basis functions. IMA Journal of Numerical Analysis,
2023.

[26] Elisabeth Larsson, Victor Shcherbakov, and Alfa Heryudono. A least squares radial basis function
partition of unity method for solving PDEs. SIAM Journal on Scientific Computing, 39(6):A2538–
A2563, 2017.

REFERENCES 39

[27] L. Ling and R. Schaback. Stable and convergent unsymmetric meshless collocation methods. SIAM
J. Numer. Anal., 46:1097–1115, 2008.

[28] G. Matheron. Les variables régionaliseés et leur estimation. Masson, Paris, 1965.

[29] D. Mirzaei, R. Schaback, and M. Dehghan. On generalized moving least squares and diffuse deriva-
tives. IMA J. Numer. Anal., 32, No. 3:983–1000, 2012.

[30] M. Mohammadi, R. Mokhtari, and R. Schaback. A meshless method for solving the 2D Brusselator
reaction-diffusion system. Computer Modeling in Engineering & Sciences, 101(2):113–138, 2014.

[31] Maryam Mohammadi, Stefano De Marchi, and Mohammad Karimnejad Esfahani. Full-rank or-
thonormal bases for conditionally positive definite kernel-based spaces. Journal of Computational
and Applied Mathematics, 444:115761, 2024.

[32] Maryam Mohammadi, Mohammad Heidari, and Stefano De Marchi. Non-oscillatory solutions
of the 2d coupled burgers’ equations using the rth rbf method. In American Institute of Physics
Conference Series, volume 3094, page 320006, 2024.

[33] Maryam Mohammadi, Fahimeh Saberi Zafarghandi, Esmail Babolian, and Shahnam Javadi. A
local reproducing kernel method accompanied by some different edge improvement techniques:
application to the burgers equation. Iranian Journal of Science and Technology, Transactions A:
Science, 42:857–871, 2018.

[34] Maryam Mohammadi, Alvise Sommariva, and Marco Vianello. Unisolvence of Kansa collocation
for elliptic equations by polyharmonic splines with random fictitious centers, 2024.

[35] St. Müller. Komplexität und Stabilität von kernbasierten Rekonstruktionsmethoden. PhD thesis,
University of Göttingen, 2009. https://ediss.uni-goettingen.de/handle/11858/00-1735-0000-0006-
B3BA-E.

[36] St. Müller and R. Schaback. A Newton basis for kernel spaces. Journal of Approximation Theory,
161:645–655, 2009.

[37] Hananeh Nojavan, Saeid Abbasbandy, and Maryam Mohammadi. Local variably scaled newton
basis functions collocation method for solving burgers equation. Applied Mathematics and Com-
putation, 330:23–41, 2018.

[38] M. Pazouki and R. Schaback. Bases for kernel-based spaces. Computational and Applied Mathe-
matics, 236:575–588, 2011.

[39] E. Porcu, M. Bevilacqua, A.A. Alegria, C. Oates, and R. Schaback. The Matérn model: A journey
through statistics, numerical analysis and machine learning. Statist. Sci., 39(3):469–492, 2024.

[40] H Rafieayanzadeh, M Mohammadi, and E Babolian. Solving a class of pdes by a local reproducing
kernel method with an adaptive residual subsampling technique. CMES-COMPUTER MODELING
IN ENGINEERING & SCIENCES, 108(6):375–395, 2015.

[41] Hossein Rafieayanzadeh, Maryam Mohammadi, Esmail Babolian, et al. Numerical solution of
sigularly perturbed parabolic problems by a local kernel-based method with an adaptive algorithm.
Journal of Mathematical Modeling, 7(3):319–336, 2019.

REFERENCES 40

[42] Fahimeh Saberi Zafarghandi, Maryam Mohammadi, Esmail Babolian, and Shahnam Javadi. A
localized newton basis functions meshless method for the numerical solution of the 2d nonlinear
coupled burgers equations. International Journal of Numerical Methods for Heat & Fluid Flow,
27(11):2582–2602, 2017.

[43] R. Schaback. Reconstruction of multivariate functions from scattered data. Manuscript, available
via http://webvm.num.math.uni-goettingen.de/schaback/teaching/rbfbook_2.pdf, 1997.

[44] R. Schaback. Convergence of unsymmetric kernel-based meshless collocation methods. SIAM J.
Numer. Anal., 45(1):333–351 (electronic), 2007.

[45] R. Schaback. Matlab programming for kernel-based methods. Technical report, Insti-
tut für Numerische und Angewandte Mathematik Göttingen, 2009. Preprint, available via
http://num.math.uni-goettingen.de/schaback/research/papers/MPfKBM.pdf.

[46] R. Schaback. Unsymmetric meshless methods for operator equations. Numerische Mathematik,
114:629–651, 2010.

[47] R. Schaback. A computational tool for comparing all linear PDE solvers. Advances in Computa-
tional Mathematics, 41:333–355, 2015.

[48] R. Schaback. Error analysis of nodal meshless methods. In M. Griebel and M.A. Schweitzer,
editors, Meshfree Methods for Partial Differential Equations VIII, volume 115 of Lecture Notes in
Computational Science and Engineering, pages 117–143. Springer, 2017.

[49] R. Schaback. Greedy adaptive local recovery of functions in Sobolev spaces, 2024.
https://arxiv.org/abs/2407.19864.

[50] R. Schaback and H. Wendland. Kernel techniques: from machine learning to meshless methods.
Acta Numerica, 15:543–639, 2006.

[51] R. Schaback and Z. Wu. Operators on radial basis functions. J. Comp. Appl. Math., 73:257–270,
1996.

[52] M. Scheuerer, M. Schlather, and R. Schaback. Interpolation of spatial data - a stochastic or a
deterministic problem? European Journal of Applied Mathematics, 24:601–629, 2013.

[53] A.I. Tolstykh. On using radial basis functions in a “finite difference mode” with applications to
elasticity problems. Comput. Mech., 33:68–79, 2003.

[54] EW Weisstein. General identities: Differentiation. from mathworld–a wolfram web resource.

[55] H. Wendland. Piecewise polynomial, positive definite and compactly supported radial functions of
minimal degree. Advances in Computational Mathematics, 4:389–396, 1995.

[56] H. Wendland. Fast evaluation of radial basis functions: Methods based on partition of unity. In
C. K. Chui, L. L. Schumaker, and J. Stöckler, editors, Approximation Theory X: Wavelets, Splines,
and Applications, pages 473–483. Vanderbilt University Press, 2002.

[57] H. Wendland. Scattered Data Approximation. Cambridge University Press, Cambridge,UK, 2005.

[58] T. Wenzel, G. Santin, and B. Haasdonk. Analysis of target data-dependent greedy kernel algorithms:
Convergence rates for f -, f · p, and f/p -greedy. Constructive Approximation, 57:45–74, 2023.

REFERENCES 41

[59] Edwin G Wintucky. Formulas for nth order derivatives of hyperbolic and trigonometric functions.
National Aeronautics and Space Administration, 1971.

[60] G.B. Wright and B. Fornberg. Scattered node compact finite difference-type formulas generated
from radial basis functions. J. Comput. Phys., 212(1):99–123, 2006.

[61] Z. Wu. Hermite–Birkhoff interpolation of scattered data by radial basis functions. Approximation
Theory and its Applications, 8/2:1–10, 1992.

[62] G.M. Yao, B. Šarler, and C. S. Chen. A comparison of three explicit local meshless methods using
radial basis functions. Eng. Anal. Bound. Elem., 35(3):600–609, 2011.

	Introduction
	Point Sets and Distance Matrices
	Point Sets
	Distance Matrices

	Kernels
	Kernel Scaling
	Kernels in f–form
	The Basic Kernel Routine
	Full Listing
	Recursive Scalar Radial Derivatives
	Multivariate Polynomials

	Interpolation and Evaluation
	Interpolation with Conditionally Positive Definite Kernels
	Lagrange Bases
	Power Functions
	Newton Basis Functions
	Adaptive Matrix–Free Routines

	Routines for Multivariate Derivatives
	First Derivatives
	Normals
	Second derivatives
	Laplace operators
	Mixed Derivatives
	Other Mixed Derivatives

	Applications
	Collocation

