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Abstract

This paper extends for the first time Schaback’s linear discretization theory
to nonlinear operator equations, relying heavily on the methods in Böhmer’s
2010 book. There is no restriction to elliptic problems or to symmetric numer-
ical methods like Galerkin techniques. Trial spaces can be arbitrary, including
spectral and meshless methods, but have to approximate the solution well, and
testing can be weak or strong. On the downside, stability is not easy to prove
for special applications, and numerical methods have to be formulated as opti-
mization problems. Results of this discretization theory cover error bounds and
convergence rates. Some numerical examples are added for illustration.

1. Overview

We start directly with a short and simple version of our discretization theory
in Section 2. Since some of its ingredients are somewhat nonstandard, a detailed
example follows in Section 3, explaining in particular how strong and weak
problems are subsumed. Section 4 contains some results that allow to reduce
part of the nonlinear theory to the linear case provided in [1]. Sections 3 and 4
strongly depend upon the nonlinear methods presented in [2]. The most critical
ingredient of our theory is proving stability, and we devote Section 5 to its
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detailed analysis. The main tool are sampling inequalities [3]. We close the
paper with some numerical experiments.

2. Nonlinear Discretization Theory

We need four essential ingredients:

1. a well–posed nonlinear operator equation,

2. a scale of trial spaces that allows to approximate the true solution well,

3. a stable testing strategy and

4. a numerical method based on minimization of residuals.

Then we shall show how these lead to error bounds and convergence results. But
in all possible applications users will have to verify that the four ingredients of
the theory are valid. We shall show in Section 4 how this follows by linearization
and in Section 6 how to do this for certain examples.

2.1. Well–Posed Problems

We assume a nonlinear operator

F : D(F ) ⊂ U → V (1)

between Banach spaces U and V , and we want to solve the nonlinear operator
equation

Fu = f (2)

for u ∈ D(F ) when some f ∈ R(F ) is given. This combines differential equa-
tions and boundary conditions into one single operator, but linear homogeneous
boundary conditions should be incorporated into U . Readers should keep in
mind that often U and V will then be Cartesian products of other Banach
spaces. Furthermore, note that physical problems will lead to different operator
equations if posed in weak or strong form. This will be illustrated in Section 3.

The nonlinear problem (1), (2) should be well–posed in the following sense:

1. There is a locally unique exact solution u∗ ∈ D(F ) with Fu∗ = f .

2. In a ball around u∗ with radius R > 0 measured w.r.t. ‖ · ‖U , s.t.

KR(u
∗) := {u ∈ U : ‖u− u∗‖U ≤ R} ⊂ D(F ),

the operator F satisfies the inequalities

c−1
F ‖u− v‖U ≤ ‖Fu− Fv‖V ≤ CF ‖u− v‖U for all u, v ∈ KR(u

∗) (3)

with certain positive constants cF , CF , cf. subsection 4.1. For linear F
replace Fu− Fv by F (u− v).

If F is Fréchet differentiable in KR(u
∗), the left inequality in (3) implies a

boundedly invertible F ′(u) for all u ∈ KR(u
∗), see Theorem 3. In [2] it is shown

that a locally unique exact solution u∗ ∈ D(F ) for Fu∗ = f usually has the
property that F ′(u∗) is boundedly invertible.
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2.2. Trial Spaces

We assume that there is a scale of linear spaces Ur ⊆ U of trial functions
which allow good approximations u∗r ∈ Ur to u∗ in the sense

‖u∗ − u∗r‖U ≤ ǫ(r, u∗) << R. (4)

Here, we use a real–valued positive discretization parameter r (for tRial) re-
placing the standard parameter h. Applications will usually provide a scale of
spaces with the properties Ur′ ⊂ Ur for r < r′ and

lim
r→0

ǫ(r, u∗) = 0. (5)

The attainable error of a numerical method for solving an operator equation
will basically depend on the attainable error ǫ(r, u∗) determined by the choice
of the trial space. If the trial space is chosen badly, there is no hope for a good
approximation of the solution. The essential difference between the convergence
rates of spectral techniques, meshless methods, the h-FEM or the p-FEMmainly
lies in the difference of the chosen trial spaces, not in the difference of their
testing strategies that we describe below in general.

To get high convergence rates, for instance with spectral methods, the solu-
tion and the trial space must usually have plenty of regularity. We model this
by requiring that the exact solution u∗ and the trial space Ur are in a regularity
subspace UR ⊂ U . The basic assumption on the trial space then is

inf
ur∈Ur

‖u− ur‖U ≤ ǫ(r, u)

for all u ∈ UR without any connection to any PDE problem. Then (4) follows
from the regularity assumption u∗ ∈ UR.

2.3. Testing

We assume that there is a scale of linear test mappings

Ts : D(Ts) ⊆ V → Vs

with values in finite–dimensional spaces Vs. Again, users should think of test
spaces Vs whose dimensions increase when s decreases to 0. We view s as a
discretization parameter for teSting, like the standard h. Note that we use
s–dependent norms ‖.‖Vs

on the finite–dimensional spaces Vs.
In many applications, V is a space like L2(Ω) while Ts performs evaluation

of functions on discrete sets Xs. This requires some care with the domain of
definition D(Ts) ⊆ V of Ts and with boundedness of Ts. We shall avoid to use
‖Ts‖ as an operator norm in L(V ,Vs) as well as using ‖TsF ′(u∗)‖ as an operator
norm in L(U ,Vs) or assuming that TsF is continuous on all of U . Instead,
we assume TsF to be continuous and Fréchet differentiable on the regularity
subspace UR that contains u∗ and the trial spaces Ur.
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The basic idea of testing is that the true solution u∗ of (1), (2) should
theoretically satisfy the discretized test equations

Ts(Fu) = Ts(f). (6)

Note that the test maps Ts are linear, but the test problems (6) are nonlinear
due to the nonlinearity of the operator F . The true solution u∗ will satisfy
all test problems, no matter which test maps are used, and testing is at this
point completely independent from the trial spaces. It writes down plenty of
necessary conditions for the exact solution to satisfy, whatever these conditions
are. Clearly, writing down more necessary conditions will improve stability, no
matter how the latter is actually defined and no matter which numerical method
is used to satisfy these conditions approximatively.

Readers should keep in mind that testing in the above setting does not
necessarily involve functions, and in particular not “test functions”, and not
necessarily require numerical integration. While strong testing uses evaluations
of functions and derivatives and is traditionally called collocation, weak testing
uses test maps working with integrals against test functions. Our framework
allows both techniques, and mixtures thereof, and permits all conceivable choices
of trial spaces.

2.4. Numerical Solution

We cannot assume that the test equations (6) are solvable on the trial space
Ur, since this is not even guaranteed in linear cases [4] where trial spaces and
testing are independent. Instead, we assume a numerical process that constructs
a function ûr ∈ Ur ∩KR(u

∗) with

‖Ts(f − F ûr)‖Vs
≤ 2‖Ts(f − Fu∗r)‖Vs

, (7)

where we used the approximation u∗r ∈ Ur of (4) to the exact solution u∗. This
can, for instance, be done by residual minimization

ûr = argmin {‖Ts(f − Fur)‖Vs
: ur ∈ Ur ∩KR(u

∗)} . (8)

The nonlinearity of the optimization reflects the nonlinearity of the problem as
a whole, and this is a potential challenge. There may be non–convex problems,
and there may be plenty of local minima. For instance, the Chladny sound
figures problem in section 6.2 has infinitely many analytic solutions anyway,
and these will, of course, also occur in the optimization, no matter how it is
implemented. But in certain cases, the final problems will be convex, e.g. if a
convex term like u2 is added to a linear elliptic operator.

In many cases, the residual f − F ûr is explicitly available, at least in a fine
discretization of graphical accuracy. If users see that it is reasonably small,
they often stop asking for a more elaborate error bound, since they know that
the given operator equation is solved in a finely discretized form up to a small
perturbation in the right–hand side. But even if Ts(f −F ûr) vanishes on a per-
fectly fine discretization, it is mathematically impossible to conclude in general
that f − F ûr is small as a function.
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2.5. Stability

The above argument requires to conclude that a function is small if cer-
tain discrete information obtained by a linear test operator is small. This can
only work in finite–dimensional subspaces, and even there it needs a thorough
analysis.

To make this work, we require a stability inequality

‖Fur − Fvr‖V ≤ CS(r, s)‖Ts(Fur − Fvr)‖Vs
(9)

for all ur, vr ∈ Ur ∩KR(u
∗), r, s→ 0. Note that the stability inequality relates

trial spaces Ur to test maps Ts and that a stability inequality allows to identify
the image Fur of a trial function ur ∈ Ur uniquely from its test data TsFur.
In some sense, stability means bounded invertibility of the test map Ts on the
range of F on the trial functions. Numerical calculations cannot work reasonably
without such an assumption. Both (6) and (9) suggest that applications gain
more stability by adding more test equations, without sacrificing the solvability
of (6) by the exact solution.

In practice, there will be a dependence between the discretization parameters
r and s for the trial space and the test strategy, respectively, because a larger
trial space will require more test conditions to identify the solution properly.
Since the scale of trial spaces should be chosen first, users will choose a test
discretization s = s(r) depending on the choice of the trial space with parameter
r.

Definition 1. A choice s(r) of a test discretization for a given trial discretiza-
tion will be called a trial/test strategy in what follows.

Definition 2. We call a trial/test strategy s(r) uniformly stable, if

CS(r, s(r)) ≤ CT (10)

uniformly for all sufficiently small trial parameters r.

By (3) and (9) we have for Fr,s = TsF
∣

∣

Ur

‖ur − vr‖U ≤ cF ‖Fur − Fvr‖V
≤ cFCS(r, s)‖Ts(Fur − Fvr)‖Vs

= cFCS(r, s)‖Fr,sur − Fr,svr‖Vr

for all ur, vr ∈ Ur ∩ KR(u
∗), r, s → 0. Thus well–posedness and our stability

inequality (9) imply the classical stability property for Fr,s provided that the
trial/test strategy s(r) yields CS(r, s(r)) ≤ CT and thus is uniformly stable in
the sense of Definition 2.

2.6. Error Bound

The previous sections on well–posedness, trial spaces, testing, stability, and
optimizing solvers allow a surprisingly simple error analysis as follows.
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Theorem 1. Under the assumptions (3),(4), (7), and (9), the approximate
solution ûr ∈ Ur of the nonlinear operator equation (2) has an error bound

‖u∗ − ûr‖U ≤ ǫ(r, u∗) + 3cFCS(r, s)δ(r, s, u
∗) (11)

with
δ(r, s, u∗) := ‖Ts(Fu∗r − Fu∗)‖Vs

. (12)

Proof. We extend the basic argument in [1] to the nonlinear situation and
apply all ingredients to get, with (4), (3), (9), (7),

‖u∗ − ûr‖U ≤ ‖u∗ − u∗r‖U + ‖u∗r − ûr‖U
≤ ǫ(r, u∗) + ‖u∗r − ûr‖U
≤ ǫ(r, u∗) + cF ‖Fu∗r − F ûr‖V
≤ ǫ(r, u∗) + cFCS(r, s)‖Ts(Fu∗r − F ûr)‖Vs

≤ ǫ(r, u∗)
+cFCS(r, s) (‖Ts(Fu∗r − Fu∗)‖Vs

+ ‖Ts(f − F ûr)‖Vs
)

≤ ǫ(r, u∗)
+cFCS(r, s) (‖Ts(Fu∗r − Fu∗)‖Vs

+ 2‖Ts(f − Fu∗r)‖Vs
)

≤ ǫ(r, u∗) + 3cFCS(r, s)‖Ts(Fu∗r − Fu∗)‖Vs

≤ ǫ(r, u∗) + 3cFCS(r, s)δ(r, s, u
∗).

In later applications, we shall use a trial/test strategy s(r) that couples the test
discretization parameter s with the trial discretization parameter r.

2.7. Ill–Posed and Inverse Problems

The nonlinear operator F might not have a boundedly invertible lineariza-
tion, and Fu = f might not have a solution at all. This is a standard situation
for ill–posed or inverse problems.

Theorem 2. Replace the assumptions in Section 2.1 by

‖Fu∗ − f‖V = δ > 0
‖Fu− Fv‖V ≤ CF ‖u− v‖U for all u, v ∈ KR(u

∗),

for some R > 0 and leave the rest of the assumptions in Theorem 1 unchanged.
Then there is an error bound

‖f − F ûr‖V ≤ δ + ǫ(r, u∗)CF + 3CS(r, s)(δ(r, s, u
∗) + δ(r, s, f))

using (12) and
δ(r, s, f) := ‖Ts(Fu∗r − f)‖Vs

.
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Proof. We proceed like in Theorem 1 to get

‖f − F ûr‖V ≤ ‖f − Fu∗r‖V + ‖Fu∗r − F ûr‖V
≤ δ + ‖Fu∗r − Fu∗‖V + ‖Fu∗r − F ûr‖V
≤ δ + ǫ(r, u∗)CF + CS(r, s)‖Ts(Fu∗r − F ûr)‖Vs

≤ δ + ǫ(r, u∗)CF + CS(r, s)
× (‖Ts(Fu∗r − f)‖Vs

+ ‖Ts(f − F ûr)‖Vs
)

≤ δ + ǫ(r, u∗)CF

+CS(r, s) (‖Ts(Fu∗r − f)‖Vs
+ 2‖Ts(f − Fu∗r)‖Vs

)
≤ δ + ǫ(r, u∗)CF + 3CS(r, s)‖Ts(Fu∗r − f)‖Vs

≤ δ + ǫ(r, u∗)CF + 3CS(r, s)‖Ts(Fu∗r − Fu∗)‖Vs

+3CS(r, s)‖Ts(Fu∗ − f)‖Vs

≤ δ + ǫ(r, u∗)CF + 3CS(r, s)(δ(r, s, u
∗) + δ(r, s, f)).

This means that under uniform stability one can reproduce f approximately
with good accuracy.

3. Example

As an illustration for the above framework we consider nonlinear elliptic
PDEs of second order in weak and strong forms with Dirichlet boundary con-
ditions on a bounded Lipschitz domain Ω ⊂ R

2. As a simple working example
we pose the problem

−∆u+ g(u) = f1 on Ω
u = f2 on ∂Ω

(13)

with a nonlinear function g. This can be considered under various regularity
assumptions on the nonlinear g, the right–hand sides, the domain Ω, and the
solution u∗.

To bring the problem into the operator equation form (1), (2), we have to
fix the regularity assumptions and the testing strategy. If we pose the problem
in strong form, we can define

Fu := (Gu := −∆u+ g(u), u|∂Ω), u ∈ U := Hm(Ω), Fu ∈ V := V1 × V2

with values in V := V1 × V2 := Hm−2(Ω) × Hm−1/2(∂Ω) and reformulate the
problem as an identity

Fu = f = (f1, f2) ∈ V = V1 × V2 (14)

of functions.
Strong testing of our example problem (13) in strong form (14) is done by

collocation. We fix point sets

Xs = {x1, . . . , xK(s)} ⊂ Ω ⊂ R
n, or Xs ⊂ Ω, Ys = {y1, . . . , yK′(s)} ⊂ ∂Ω,
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and observe that a strong solution u will satisfy the equations

T 1
s : −∆u(xk) + g (u) (xk) = f1(xk), 1 ≤ k ≤ K(s),

T 2
s : u(yk′) = f2(yk′ ), 1 ≤ k′ ≤ K ′(s).

(15)

which is (6), since the test space is Vs = V1
s × V2

s = R
K(s)+K′(s), and the test

map Ts just performs discrete function evaluations on the sets Xs and Ys. This
gives a large nonlinear system of equations, and if these are formulated “entirely
in terms of nodes” by parametrizing the trial space accordingly, we have a mesh-
less method in the sense of [5]. But collocation also works for trial spaces with
other parametrizations, e.g. those which are used in spectral or pseudospectral
techniques. It should be clear how this generalizes to other operator equations,
including systems, and to other boundary conditions. We shall explicitly formu-
late this for quasilinear and fully nonlinear equations in a forthcoming paper.
Note that collocation by point evaluation requires a regularity u∗ ∈ C2(Ω) or
u∗ ∈ C2(Ω) or u∗ ∈ Hm(Ω) of at least m− 2 > n/2 in n dimensions, i.e. m > 3
in two dimensions.

There are different ways to bring (13) into the form (1), (2), when focusing
on weak testing. All cases employ integration by parts of −∆u against a test
function v, but they differ in the way they handle the boundary integral arising
in

−
∫

Ω

v∆u =

∫

Ω

∇u · ∇v −
∫

∂Ω

v
∂u

∂n
=: Lu(v).

Anyway, the linear operator −∆ mapping functions to functions now turns into
an operator L mapping functions to linear functionals by u 7→ Lu. This will
influence the way we shall define the operator F in (1), (2).

The standard weak form uses test functions v that vanish on the boundary,
and then (u, v) := (Lu, v) is a symmetric bilinear form that is well–defined and
an inner product on the Hilbert space H1

0 (Ω) which is the H1(Ω) closure of
smooth functions on Ω vanishing on the boundary. Thus the first equation of
(13) is reformulated in weak form as

∫

Ω

(∇u · ∇v + g(u)v) =

∫

Ω

v f1 (16)

for all v ∈ H1
0 (Ω).

To use the symmetry of the bilinear form, the boundary conditions are usu-
ally made homogeneous by introducing a function u0 ∈ H1(Ω) that satisfies
the Dirichlet boundary conditions exactly. In terms of a new unknown function
w := u− u0 ∈ H1

0 (Ω) the identity (16) turns into

∫

Ω

(∇w · ∇v + g(w + u0)v) =

∫

Ω

v f1 −
∫

Ω

∇u0 · ∇v =: λ(v) (17)

for all v ∈ H1
0 (Ω).
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This defines a (weak) operator, now in the form

G = Gw : U := H1
0 (Ω) → V := H1

0 (Ω)
∗ (18)

via g̃(w) := g(w + u0) and

Gww = Gw := (v 7→
∫

Ω

(∇w · ∇v + g̃(w)v)) ∈ V

and reduces the differential equation in (1) and (2) into Gu = λ and the func-
tional λ defined in (17).

For weak testing, we fix test functions v1, . . . , vK(s) from H1
0 (Ω) instead of

the set Xs used in strong testing. The test map T 1
s on V1 = H1

0 (Ω)
∗ in (15)

acts on elements µ ∈ V1 as

µ 7→ (µ(v1), . . . , µ(vK(s)))
T ∈ V1

s = R
K(s).

The second component T 2
s of Ts in (15) remains unchanged. The solution w∗ =

u∗ − u0 ∈ H1
0 (Ω) will satisfy (6) in the form

∫

Ω

(∇w∗ · ∇vk + g̃(w∗)vk) =

∫

Ω

f1 vk −
∫

Ω

∇u0 · ∇vk, 1 ≤ k ≤ K(s).

In this context, it must be kept in mind that no numerical analyst can work in
spaces like H1

0 (Ω). Thus, certain manageable subspaces are used that require
additional regularity, at least of the approximations to the solution, and that
allow numerical integration with sufficiently small errors. Furthermore, the
construction of u0 is open in some cases.

The above treatment of weak problems in (18) makes use of the identity
U∗ = V and can identify the trial space Ur with the span of the test functions.
This technique is standard for finite element spaces and allows a rather simple
convergence analysis with a low convergence rate.

But to show that our discretization theory works much more generally, we
do not want to confine ourselves to the above special case. One way is to
use test functions from H1

0 (Ω), but to collocate the boundary data strongly,
working with a solution space U = Hm(Ω), or U = C2(Ω), and avoiding the
construction of the additional function u0 in (17). Then the first equation of
(1), (2) is reformulated as

∫

Ω

(∇u · ∇v + g(u)v) =

∫

Ω

v f1

for all v ∈ H1
0 (Ω). This defines a map

F : U := Hm(Ω) → V := H1
0 (Ω)

∗ ×H1/2(∂Ω)

via

Fu := (v 7→
∫

Ω

(∇u · ∇v + g(u)v), u|∂Ω) ∈ V
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and poses the equation (1), (2) with f = (λ1, f2) and the functional

λ1(v) :=

∫

Ω

v f1 for all v ∈ H1
0 (Ω),

where, formally, the function f1 is allowed to be in H−1(Ω). Note that, due
to strong collocation of the boundary values, this approach needs regularity
m − 1/2 > (n − 1)/2, i.e. m > 1 for n = 2. This seems to fall behind the
standard weak case, but it is unclear how to find a function u0 ∈ H1(Ω) with
the prescribed function values of some u ∈ H1(Ω) on ∂Ω, if the data function f2
on the boundary is only in H1/2 because u is only in H1(Ω). The workaround
via u0 is kind of a cheat that conceals additional regularity needed for actual
numerical calculations.

For completeness, we also want to point out how to fit a variation of the
Meshless Local Petrov–Galerkin method of Atluri and collaborators [6] into this
framework. There, degrees of freedom for testing are not only introduced by test
functions, but also by allowing plenty of small local domains Ωh of integration
on which the integration by parts is performed. Thus (13) turns into

∫

Ωh

(∇u · ∇v + g(u)v) +

∫

∂Ωh

v
∂u

∂n
=

∫

Ωh

v f1

and one can even use v = 1 to arrive at test equations
∫

Ωh

g(u) +

∫

∂Ωh

∂u

∂n
=

∫

Ωh

f1

that have to be written down for many local domains Ωh. Dirichlet boundary
conditions can be added as before by strong collocation. The map F is defined
as in the previous case, but its first component will map to a functional on the
span of characteristic functions on subdomains.

The huge variety of strong and weak formulations and their possible mix-
tures indicates that it must be a major problem to prove fairly general stability
inequalities. We shall come back to this problem in Section 5. Note also that
variations of weak formulations modify the operator of the general equation (1),
(2), i.e. they essentially change the problem itself.

For all of these techniques, one can replace u 7→ −∆u + g(u) by a general
nonlinear second order elliptic operator G with an again elliptic Fréchet deriva-
tive G′(u). However, usually the simple choice of U = Hm(Ω) has to be carefully
monitored. In fact, for a nonlinear G the G(u) is only defined in appropriate
subsets of U = Hm(Ω). This problem has to be discussed for every new prob-
lem. Analogously, one can handle the boundary conditions, but sometimes they
can nicely be shifted into the choice of the trial space. In a forthcoming paper
we shall consider quasilinear and fully nonlinear equations.

4. Linearization

We now describe how the a–priori properties of the previous sections for a
nonlinear F can be deduced from its linearized problem operator, F ′(u∗). This
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allows us to go partially back to the linear case treated in [1].

4.1. Well–Posedness

To derive the well–posedness in the sense of the previous section from lin-
earization, we invoke standard perturbation arguments to yield

Theorem 3. Let F be Fréchet–differentiable in each point u ∈ KR′(u∗) for
some u∗ ∈ U and let the Fréchet derivatives F ′(u) at u be bounded and Lipschitz
continuous, i.e.

‖F ′(v)−F ′(u)‖ := ‖F ′(v)−F ′(u)‖L(U ,V) ≤ C′′‖u− v‖U for all u, v ∈ KR′(u∗).
(19)

Finally, let F ′(u∗) have a bounded inverse. Then the assumption (3) of Section
2.1 holds for F in some ball of positive radius at most R ≤ R′ around u∗.
Furthermore, all Fréchet derivatives are uniformly bounded and have uniformly
bounded inverses in KR(u

∗).

Proof. The inequality (19) implies

‖F ′(u)‖ ≤ ‖F ′(u∗)‖ + C′′R′ for all u ∈ KR′(u∗) (20)

and, combined with the Taylor formula (here uv indicates the closed linear
segment connecting the end points u, v)

‖Fv − Fu− F ′(u)(v − u)‖ ≤ ‖v − u‖ sup
x∈uv

‖F ′(x)− F ′(u)‖, (21)

it yields, by (19), (20), (21), the inequality

‖Fu− Fv‖V ≤ ‖Fv − Fu− F ′(u)(v − u)‖V + ‖F ′(u)(v − u)‖V
≤ C′′‖u− v‖2

U
+ (‖F ′(u∗)‖+ C′′R′) ‖u− v‖U

≤ C′′R′ (2 + ‖F ′(u∗)‖) ‖u− v‖U

for all u, v ∈ KR′(u∗), hence the right hand side of inequality (3).
For the left inequality in (3), we assume the radius R ≤ R′ of KR(u

∗) to be
small enough to satisfy

R‖(F ′(u∗))−1‖C′′ ≤ 1

4
. (22)

For all u ∈ KR(u
∗), v ∈ U we get

‖v‖U ≤ ‖(F ′(u∗))−1‖‖F ′(u∗)v‖V
= ‖(F ′(u∗))−1‖ (‖F ′(u∗)v − F ′(u)v‖V + ‖F ′(u)v‖V)
≤ ‖(F ′(u∗))−1‖ (C′′‖u− u∗‖U‖v‖U + ‖F ′(u)v‖V)
≤ 1

2
‖v‖U + ‖(F ′(u∗))−1‖‖F ′(u)v‖V

by (22), even with ≤ 1/2 instead of ≤ 1/4, and via (19). This implies

‖v‖U ≤ 2‖(F ′(u∗))−1‖‖F ′(u)v‖V
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for all v ∈ U . In particular, F ′(u)v = 0 implies v = 0, so F ′(u) is injective and
thus (F ′(u))−1 : R(F ′(u)) → U exists and satisfies

‖(F ′(u))−1‖ ≤ 2‖(F ′(u∗))−1‖ (23)

for all u ∈ KR(u
∗), proving uniform bounded invertibility of all local Fréchet

derivatives. Then we get

‖v − u‖U ≤ ‖(F ′(u))−1‖‖F ′(u)(v − u)‖V
≤ ‖(F ′(u))−1‖‖F ′(u)(v − u)− Fv + Fu‖V

+‖(F ′(u))−1‖‖Fu− Fv‖V
≤ ‖(F ′(u))−1‖C′′‖u− v‖2

U
+ ‖(F ′(u))−1‖‖Fu− Fv‖V

≤ 1

2
‖u− v‖U + ‖(F ′(u))−1‖‖Fu− Fv‖V

using (19), (21), (22), now with ≤ 1/4, and finally by (23)

‖v − u‖U ≤ 2‖(F ′(u))−1‖‖Fu− Fv‖V
≤ 4‖(F ′(u∗))−1‖‖Fu− Fv‖V (24)

for all u, v ∈ KR(u
∗), hence the left hand side of inequality (3) with cF =

4‖(F ′(u∗))−1‖.

4.2. Stability

To derive stability inequalities of test maps in the sense of the previous
section from linearization, we continue using Theorem 3 with some additional
assumptions concerning testing. The basic idea is to repeat the proof of Theorem
3 for the maps Gs := Ts ◦ F.

Theorem 4. Assume the hypotheses of Theorem 3 and the existence of Lipschitz
continuous Fréchet derivatives of Gs := TsF like (19), i.e.

‖TsF ′(v)− TsF
′(u)‖L(U ,Vs) ≤ C′′(s)‖u− v‖U for all u, v ∈ KR′(u∗)∩UR (25)

with some constant C′′(s). Assume further that G′
s(u

∗) has a bounded in-
verse and the linearized problem at u∗ has a stability inequality with a constant
CS(r, s). Then on a ball KR(u

∗) ∩ UR with a radius R satisfying

RCS(r, s)C
′′(s) ≤ 1

4
(26)

the nonlinear problem satisfies a stability inequality with constant 4cFCS(r, s).

Proof. The maps G′
s(u) = TsF

′(u) restricted to Ur are linear maps between
finite–dimensional linear spaces, thus continuous. The proof structure of The-
orem 3 just needs existence of the Fréchet derivatives and (19), but no other
explicit quantitative form of Fréchet differentiability. Thus we can use it with
(25) and C′′(s). Stability of the linearized problem means

‖F ′(u∗)vr‖V ≤ CS(r, s)‖TsF ′(u∗)vr‖Vs
for all vr ∈ Ur, (27)
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and this is the boundedness of the inverse of G′
s(u

∗) on Ur. We can now follow
the proof of Theorem 3 verbatim, and the crucial condition for the radius R is
now to be posed like in (22) and using (27) as

R‖(G′
s(u

∗))−1‖C′′(s) ≤ RCS(r, s)C
′′(s) ≤ 1

4
.

Thus by the proof of Theorem 3 with F replaced by G′
s = (Ts ◦ F )′ we obtain

(29) with
c(r, s) ≤ 4CS(r, s). (28)

The inequalities (27) and (28), combined with (24), yield the updated inequality

‖ur − vr‖U ≤ c(r, s)‖TsFur − TsFvr‖Vs
(29)

on a neighborhood of u∗r in Ur ⊂ UR ⊂ U .
The stability of the nonlinear case now follows with (29) and with the right
hand side of inequality (3), which is proved in Theorem 3 for F , via

‖Fur − Fvr‖V ≤ CF ‖ur − vr‖U
≤ CF c(r, s)‖TsFur − TsFvr‖Vs

≤ 4CFCS(r, s)‖TsFur − TsFvr‖Vs

holding on a neighborhood of both u∗ and u∗r .

We then have to make r small enough to ensure that the neighborhoods of u∗

for Theorem 3 and the neighborhood of u∗r at the end of the last proof have a
nonempty intersection that is a neighborhood of both u∗ and u∗r .
The upshot is that the constant in the stability inequality just takes a factor of
4cF when going from the linear to the nonlinear case, but only on a ball with a
radius R that may dramatically depend on r and s.

Corollary 1. If the trial/test strategy s(r) is uniformly stable in the sense of
Definition 2 for the linear case, Theorem 4 yields uniform stability also in the
nonlinar case, cf (26), but on a strongly discretization–dependent neighborhood.
If C′′(r, s(r)) is bounded uniformly, the uniform stability holds in the nonlinear
case for a fixed radius R. This is correct e.g. for Lipschitz continuous F ′ and
bounded Ts.

4.3. Numerical Solution

To allow numerical solutions via linearization, we could iterate by residual
minimization

uj+1 := argmin {‖Ts(f − F ′(uj)(ur − uj))‖Vs
: ur ∈ Ur ∩KR(u

∗)}

starting from some u0 ∈ Ur sufficiently close to u∗r. But we can simply invoke
any method for minimizing the residual in (8) and leave linearization to the
optimizer. We shall demonstrate this in section 6 for two examples.
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5. Proving Stability

We now come back to the stability problem and want to formulate a conve-
nient framework (see [3]) to prove stability inequalities. We outline it here for
convenience and for application in examples like those in sections 3 and 6. By
Theorems 3 and 4 we can restrict the discussion to linear operators F = L.

Consider test maps Ts : V → Vs like in sections 2 and 3. In many cases,
testing can be analyzed independently of the underlying linear operator equation
Lu = f by applying the operator L to the trial spaces Ur to get subspaces

Wr ⊂ V defined as Wr := L Ur

on which the test maps Ts act. Thus we assume a scale of subspaces Wr ⊂ V
carrying hidden information on the linear operator and the trial space. Note that
these functions are not acting as test functions in the usual sense. They usually
are just the images of the trial functions under the operator, and consequently
their span uses the tRial scale parameter r. Note that due to Wr = LUr we
have Wr ⊂ Wr′ for r > r′.

Usually we will employ values of s = s(r) < r with dimVs > dimWr. This
prerequisite of a useful trial/test strategy s(r) fits well with the residual mini-
mization in 4.3, and we can expect that excessive testing will improve stability.
Then we go for a stability inequality, like (9) in the linearized form

‖wr‖V ≤ CS(r, s)‖Tswr‖Vs
for all wr ∈ Wr, for all r, s→ 0, (30)

which formally is not related to operator equations anymore.
These stability inequalities can be obtained by combining sampling and in-

verse inequalities, as we shall outline now. A typical sampling inequality is

‖w‖V ≤ C(ǫ(s)‖w‖W + ‖Tsw‖Vs
)∀w ∈ W , (31)

with a (smooth) subspace W of V , and Ω ⊂ R
n. A typical case is W = Hm(Ω)

m− 2 > n/2. For differential operators G of order 2, the last inequality allows
the point evaluation of (Gu)(xk) for xk ∈ Ω. Often in (31) the norm ‖w‖W is
replaced by the corresponding semi norm |w|W .

The inequality (31) should be interpreted as follows. The subspaceW has ad-
ditional smoothness and allows to bound the weaker norm ‖w‖V by the stronger
norm ‖w‖W with a small factor ǫ(s) provided that the discrete test data Tsw
are small. The basic principle is that a function is small in a weak norm, if it
has a bound in a strong norm and takes very small values at plenty of points
well–distributed in the domain. Some typical examples are in [3], and in Section
6.

Such a sampling inequality yields

‖wr‖V ≤ C(ǫ(s)‖wr‖W + ‖Tswr‖Vs
) ∀wr ∈ Wr.

The second part of the right–hand side is what we want, provided that the
assumption Wr ⊂ W is correct, which we assume from now on. In particular,
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for smooth trial spaces, like for instance, ”kernel–based” and ”spectral” spaces
we usually will get Wr ⊂ W without any problems.

To eliminate the first part, one can use an inverse inequality

‖wr‖W ≤ D(r)‖wr‖V for all wr ∈ Wr (32)

with a constant D(r) which normally increases when r decreases. Together we
have

‖wr‖V ≤ C(ǫ(s)D(r)‖wr‖V + ‖Tswr‖Vs
) for all wr ∈ Wr,

and if one can guarantee

Cǫ(s)D(r) ≤ 1

2
(33)

by a suitable choice of r and s, then

‖wr‖V ≤ 2C‖Tswr‖Vs
for all wr ∈ Wr (34)

is a stability inequality of the form (30), which leads to uniform stability (10).
To get (33) one has to pick a suitably fine test discretization (i.e. a suitably

small s) to provide a stable testing of the finite–dimensional space Vr with a
possibly rather large D(r). In ideal cases, one has

ǫ(s) ≤ C1s
β

D(r) ≤ C2r
−β (35)

with the same positive exponent β, and then uniform stability is guaranteed if
the quotient s/r is sufficiently small.

Theorem 5. Under the conditions (31), (32), (35) for a sufficiently small
quotient s/r we obtain the stability inequality (34) and uniform stability.

Note that this framework leaves open how to establish the ingredients (31)
and (32) to prove stability inequalities (30), and how to guarantee the sufficient
condition (33) for uniform stability. But this is a purely theoretical issue. In
practice, users will first specify their trial space, thus fixing r and determining
implicitly the achievable error. Then they will pick a test strategy that is fine
enough to guarantee that the numerical subproblems do not suffer from rank
loss or instability. If instabilities occur, testing must be finer. If the error is too
large, the trial space must be enlarged, possibly requiring a finer testing as well.
We give two specific examples in the next section.

6. Examples

Here, we present two numerical cases illustrating our nonlinear discretization
theory. We focus on calculations first, and then explain how to prove uniform
stability in these cases.
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Figure 1: Rod with load perpendicular to the rod

6.1. Bending rod with perpendicular load

This example was carried through with quite some help of Alois Steindl [7].
Let a vertically positioned rod of length L be clamped at the lower end and

be free at the upper end, see Figure 1. A load P at the end of the rod, originally
perpendicular to the rod, forces it to bend sidewards. The solution ϕ is written
in terms of the angle ϕ(s) at arclength s with respect to the vertical axis. It
satisfies the nonlinear boundary value problem with the differential equation

G(ϕ, λ) :=
d2ϕ

ds2
+ λ cosϕ = 0, for λ := P/α, (36)

and the boundary conditions, defined by the subspace

C2
b [0, L] := {ϕ ∈ C2[0, L]; ϕ(0) =

dϕ

ds
(L) = 0}, (37)

where α is an elasticity parameter.
We transform by s = t/

√
λ to get for ψ(t) := ϕ(t/

√
λ) the ODE

ψ′′(t) + cos(ψ(t)) = 0

with boundary conditions ψ(0) = 0 and ψ′(T ) = 0 where now

0 ≤ t ≤ T = L
√
λ.

The physically interesting solutions lie in the positive quadrant of phase space,
and we focus on the solution for T = 2 here, which could possibly be obtaind via
shooting from a suitable value of ψ′(0), but we want to apply our discretization
theory.

The solutions are clearly in C∞, and to make use of this smoothness, it
makes no sense to use a standard h–type finite element discretization. Spectral
or p–type FEM techniques are preferable. We simply use polynomials of some
degree N as a trial space, and then we can expect that we can approximate
the solution with spectral convergence like qN with some q < 1 for N → ∞,
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no matter which norm we choose to measure the error. If we have a stable test
discretization, we should see this convergence behavior, since our discretization
theory implies that the final error is roughly the approximation error, if there
is uniform stability. Thus we can expect to get away with moderate values of
N , and this should be manageable by a moderate amount of testing.

To set the problem up in MATLAB, we parametrize the trial space via
monomials in [0, 2]. To incorporate the boundary conditions, we set the low-
est coefficient to zero and calculate the highest coefficient to let the derivative
vanish at T = 2. This means that we only have N − 1 variables for degree
N . Testing is done on equidistant points of spacing h, leading to test points
xj = jh, 0 ≤ j ≤ M := 2/h ∈ N. We avoid to linearize the problem and
let the optimizing algorithm do the linearization. Therefore we simply invoke
the MATLAB routine lsqnonlin that minimizes ‖Fa‖22 for the nonlinear map
F : R

N−1 → R
M+1 with

Fj+1a = p′′a(xj) + cos(pa(xj)), 0 ≤ j ≤M

where pa is the polynomial of degree N parametrized by a satisfying the bound-
ary conditions. Of course, all of this should be implemented via the Chebyshev
basis or Nick Trefethen’s chebfun1, but we used the simple polyval routine of
MATLAB.

In view of our theory, we should make M large enough in order to ensure
stability, but it turns out numerically that M = 20 suffices for degrees N ≤ 17.
Figure 2 shows the Root Mean Square Error norm ‖.‖VM

= h1/2‖.‖ℓ2 = ‖.‖RMSE

of the residual p′′a + sin(pa) for the optimized parameter vector a ∈ R
N+1,

evaluated on 10001 points in [0, 2] as a function of N for fixed h = 0.1 and
M = 20. Note that the RMSE norm is the appropriate discrete form of the
continuous L2 norm we shall use in the stability analysis below. The spectral
convergence is clearly visible, and plots for smaller h look the same. The routine
lsqnonlin terminates at 10−8 reached for N = 15, such that larger N > 15 will
require a specially tuned–up nonlinear optimizer. The maximal problem size is
14× 21 for 10−8 accuracy at N = 15.

Since we have a nonlinear problem with a trivial solution, the start of the
optimization is important. We chose the quadratic polynomial 2x/T − x2/T 2

satisfying the boundary conditions to start for N = 3, and we used the opti-
mal coefficients of each run as a starting value for the next polynomial with
one degree higher. Though the calculations show that stability is not a major
problem in this case, we add an argument at the end of this section showing
that sufficiently small h ensures uniform stability.

1http://www2.maths.ox.ac.uk/chebfun

http://www2.maths.ox.ac.uk/chebfun
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Figure 2: Error for varying trial space degree

6.2. Chladny sound figures

This well–known phenomenon is described by the nonlinear PDE

G(u, λ) := ∆u+ λ sinu = 0 in Ω = [0, 1]× [0, 1] defined on (38)

C2
b (Ω) := {u ∈ C2(Ω);

∂u

∂n
= 0 on ∂Ω}. (39)

where u = u(x, y) is the deviation from the trivial flat position of the plate at
the point (x, y). Here ∂u/∂n is the normal derivative into the outer direction
of ∂Ω and ∆ := ∂2 /∂x2 + ∂2 /∂y2 the Laplacian operator. For arbitrary λ the
trivial flat state u(x, y) ≡ 0 represents a solution of ((38)), ((39)). This equation
has the awkward property that it has infinitely many trivial solutions for all λ,
namely the constant functions u = kπ for k ∈ Z.

The eigenvalue problem for the Laplacian, simultaneously Gu(0,−λ)v, is

Gu(0,−λ)v = ∆v − λv = 0.

It has the eigenfunctions

vm,n(x, y) = cos (mπx) cos (nπy)

and corresponding eigenvalues λm,n := −(m2 + n2)π2. A typical case is in
Figure 3 which shows v1,3 − v3,1, one of the many possible linear combinations
of eigenfunctions with specific symmetry properties.
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Figure 3: Contour lines of typical eigenfunctions

As in our first example, the solution will be infinitely differentiable, and we
should go for a method with spectral convergence. As the above discussion
shows, we have the functions vm,n, 1 ≤ m ≤M, 1 ≤ n ≤ N as ideal candidates
for trial functions approximating nontrivial solutions of the nonlinear system.
But if the PDE is discretized some way or other, it will still have the unpleasant
property that it has infinitely many solutions for each real λ, namely the con-
stants kπ for all k ∈ Z, and this will cause trouble for all algorithms minimizing
residuals.

Anyway, it makes sense to implement a trial space spanned by the vm,n

for 0 ≤ m,n ≤ N . Mind that these vm,n(x, y) are the eigenfunctions of the
Laplacian and that these trigonometric functions satisfying the boundary condi-
tions have optimal approximation properties. We parametrize the trial functions
uA(x, y) by the (N + 1)× (N + 1) matrices A and get

uA(x, y) =

N
∑

m,n=0

am,nvm,n(x, y).

These functions are evaluated on a test grid XM = Xh ×Xh of (M +1)2 points
in [0, 1]2. Note that the action of A = ∆ on such functions is represented by
the elementwise (Hadamard or Schur) product of the matrices Λ and A and can
be written as Λ. ∗ A in MATLAB notation, if Λ is the matrix of eigenvalues.
The evaluation on a grid set Xh ×Xh is just matrix multiplication, if we first
calculate a matrix Z with entries cos(hπmj), 0 ≤ m ≤ N, 0 ≤ j ≤ M . The
residual ∆uA + λ sin(uA) of uA in MATLAB lingo is one line:

Z ′ ∗ (Λ. ∗A) ∗ Z + λ ∗ sin(Z ′ ∗A ∗ Z).
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The idea is now to solve the equation

Fu := ∆u+ λ sin(u) = 0

for some fixed λ after discretization, and by minimizing ‖FuA‖22,Xh×Yh
by

lsqnonlin.
We need good starting values to avoid that the solver runs into uA = 0. If

sin(u) is linearized for small u, the equation turns into ∆u + λu = 0, and this
has solutions vm,n with positive λ = −λm,n. Thus the starting function should
be vm,n while λ is kept fixed somewhat larger than −λm,n. If we do this for
m = n = 1 and λ = 20 = ⌈−λ1,1 + 0.1⌉ on a test discretization with M = 50,
i.e. on 51 × 51 test points for varying trial degree 6 ≤ N ≤ 15, we get Figure
4. Residuals were calculated as Root Mean Square Errors h‖.‖ℓ2 = ‖.‖RMSE

for h = 0.01, i.e. on a 101× 101 grid. The exact solution has the D4-symmetry
of the square. This implies that the approximation error for the polynomial of
next higher even degree is the same as for preceding odd degree. The case for
degree 9 is in Figures 5 and 6.
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Figure 4: Error for varying trial space degree

6.3. Stability

Both examples can be written as elliptic equations

Fu := ∆u− g u = f ∈ Ω

in linearized form and with homogeneous boundary conditions on Ω = [0, T ]
or Ω = [0, 1]2 that we put into the spaces we work on. We assume f and g
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Figure 5: Approximate solution for degree 9

to be smooth, and g should appropriately be nonnegative to ensure ellipticity,
according to the boundary conditions. We have enough smoothness to assume
that the exact solution u∗ is in Hm+2

0 (Ω) := Hm+2(Ω)∩H1
0 (Ω) for some rather

largem while f is at least in Hm(Ω). Using standard norm notation for Sobolev
scales of spaces, and with generic constants that do not depend on the trial
space or the test discretization, we have the a priori inequalities (cf. (2.147)
and (2.151) in [2])

‖u‖2 ≤ C‖Fu‖0 for all u ∈ H2
0 (Ω),

‖u‖2 ≤ C‖∆u‖0 for all u ∈ H2
0 (Ω),

and we have a well–posed problem in the sense of 2.1 using U = H2
0 (Ω) and

V = L2(Ω).
Our trial spaces Ur consist of algebraic univariate or trigonometric bivariate

polynomials of some degree up to N in each variable satisfying the boundary
conditions exactly, and we should rather use UN instead of Ur now. Our ex-
act solutions are so smooth that we can expect errors ǫ(N, u∗) ≤ CN−p for
arbitrarily large p even if we measure the error in U = H2

0 (Ω).
Our testing maps are based on point evaluations on Xh with either M + 1

equidistant points in Ω = [0, T ] or (M + 1)2 gridded points in [0, 1]2, and we
can up to a factor of

√
2 use h = 1/M in what follows. The discrete test

spaces Vs = VM are normed with the root–mean–square norm, i.e. ‖.‖VM
=

hn/2‖.‖ℓ2 = ‖.‖RMSE , n = 1, 2, up to a constant. Our goal is to find a sufficient
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Figure 6: Residual for degree 9

condition on N and M to ensure uniform stability. Clearly, the test maps Ts
are defined only on sufficiently smooth functions. The subspace Ṽ ⊆ L2(Ω) can
be chosen to be H2(Ω) in order to make point evaluation possible

In H2(Ω) with n = dimΩ ≤ 2 there is a sampling inequality [8]

‖v‖0 ≤ C
(

h2‖v‖2 + hn/2‖v‖ℓ2,Xh

)

for all v ∈ H2(Ω)

for all finite sets Xh ⊂ Ω with fill distance

h := sup
x∈Ω

inf
y∈Xh

‖x− y‖2 ≤ h0 > 0.

We apply this to v = Fu to get

‖Fu‖0 ≤ C
(

h2‖Fu‖2 + hn/2‖Fu‖ℓ2,Xh

)

.

Unfortunately, F does not map polynomials into polynomials, and thus we need
a little detour via ∆ with

‖Fu‖2 = ‖∆u− gu‖2
≤ ‖∆u‖2 + ‖gu‖2
≤ ‖∆u‖2 + C‖u‖2
≤ ‖∆u‖2 + C‖∆u‖0
≤ C‖∆u‖2

and, with the inverse inequality

‖p‖2 ≤ CI(N)‖p‖0 for all p ∈ UN

and, by ellipticity,
‖p‖0 ≤ ‖p‖2 ≤ C‖Fp‖0
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also
‖Fp‖2 ≤ C‖∆p‖2

≤ CCI(N)‖∆p‖0
≤ CCI(N) (‖Fp‖0 + ‖gp‖0)
≤ CCI(N) (‖Fp‖0 + C‖p‖0)
≤ CCI(N) (‖Fp‖0 + C‖Fp‖0)
≤ CCI(N)‖Fp‖0.

Then we combine everything into

‖Fp‖0 ≤ C1

(

h2‖Fp‖2 + hn/2‖Fp‖ℓ2,Xh

)

≤ C1

(

h2C2CI(N)‖Fp‖0 + hn/2‖Fp‖ℓ2,Xh

)

where we now have named the constants, and we impose the condition

h2C1C2CI(N) < 1/2 (40)

to get
‖Fp‖0 ≤ 2hn/2‖Fp‖ℓ2,Xh

= 2‖Fp‖RMSE.

Thus any trial/test strategy s(r) satisfying (40) will lead to

C(r, s(r)) ≤ 2.

Using Bernstein–Markov inequalities ([9], p.97) the 1D case with algebraic poly-
nomials has CI(N) = N2(N − 1)2T 2, while the 2D case with trigonometric
polynomials has CI(N) = N2. Thus the sufficient condition (40) for stability is
satisfied for testing on M +1 equidistant points for M = O(N2) in the 1D case
and M = O(N) in the 2D case.

For error bounds including derivatives, we can assume

‖u∗ − u∗r‖∞ ≤ CN−p,
‖∆u∗ −∆u∗r‖∞ ≤ CN−p+2,
‖Fu∗ − Fu∗r‖∞ ≤ CN−p+2.

For the error bound (11) we need to evaluate

δ2(r, s, u∗) = ‖Ts(Fu∗r − Fu∗)‖2RMSE

= hd
∑

xj∈Xh

(Fu∗r − Fu∗)2(xj)

≤ Chd(M + 1)dN−2p+4

≤ CN−2p+4

and since C(r, s(r)) ≤ 2 we get a convergence rate of N−p+2 provided that we
use enough points for testing.

If the error of u∗r−u∗ converges geometrically like some qN for some 0 < q < 1
(this is observed, but a proof needs analyticity of the solution and a nontrivial
application of a Bernstein–type theorem for polynomial approximation), the
analogous argument ends up with a convergence like N2qN to zero.
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To guarantee that uniform stability of the linearized problem carries over to
the nonlinear problem via Theorem 4 and Corollary 1, we have to prove that in

‖TsF ′(vr)− TsF
′(ur)‖L(U ,Vs) ≤ C′′(r, s)‖ur − vr‖U

for all ur, vr in a neighborhood of u∗r in Ur ⊂ U , the constant is uniformly
bounded for our trial/test strategy s(r) as given above. We restrict ourselves
to the 2D example, because the 1D example is similar and easier.

As a warm–up, let us check (19). This is, for u, v, w ∈ H2, and by the
Cauchy-Schwarz inequality

‖(F ′(u)− F ′(v))w‖L2
= ‖λ(sin(u)− sin(v))w‖L2

≤ |λ|‖u− v‖L2
‖w‖L2

and thus C′′ = |λ| can be taken in (19) even if we take only L2 norms.
The discretized version of this on a finite test set Xs is

‖(F ′(u)− F ′(v))w‖ℓ2(Xs) = ‖λ(sin(u)− sin(v))w‖ℓ2(Xs)

≤ |λ|‖u− v‖ℓ2(Xs)‖w‖L∞

but this does not help directly since we do not have ‖w‖L2
or ‖w‖H2 in the

right–hand side. But if we use Sobolev embedding in the form

‖u‖L∞
≤ ce‖u‖H2

we get
‖u‖RMSE ≤ ce‖u‖H2 for all u ∈ H2.

Thus
‖(F ′(u)− F ′(v))w‖RMSE ≤ |λ|‖u− v‖RMSE‖w‖L∞

≤ c2e|λ|‖u− v‖H2‖w‖H2

and
‖TsF ′(u)− TsF

′(v)‖L(U ,Vs) ≤ c2e|λ|‖u− v‖H2

and we see that C′′(r, s) can be bounded uniformly by c2e|λ|.
On an exact solution u∗ with values in [−π/2, π/2] and for positive λ we

have the elliptic operator

F ′(u∗)w = ∆w − λ cos(u∗)w

which is invertible on L2, i.e.

‖w‖L2
≤ ‖w‖2 ≤ C‖F ′(u∗)w‖L2

and thus the linearization is continuously invertible.
Thus we have verified all requirements of Section 4 on linearization.
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