
Native Hilbert Spa
es for Radial Basis Fun
tions IIRobert S
haba
k, G�ottingenAbstra
t. This 
ontribution 
ontinues an earlier survey [20℄ over thenative spa
es asso
iated to (not ne
essarily radial) basis fun
tions. Afterre
alling the basi
s, the relation to L2 spa
es is studied. This leads toa new formulation of the theory of radial basis fun
tions in the 
ontextof integral operators. Instead of Fourier transforms, the most importanttools now are expansions into eigenfun
tions. This uni�es the theory ofradial basis fun
tions in IRd with the theory of zonal fun
tions on thesphere Sd�1 and the theory of kernel fun
tions on Riemannian manifolds.New 
hara
terizations of native spa
es and positive de�nite fun
tions areprovided within this 
ontext.x0. Introdu
tionSin
e this paper is an extension of [20℄, we �rst re
all the introdu
tion to[20℄ with slight modi�
ations. The �nal three paragraphs will go over to the
urrent paper.For the numeri
al treatment of fun
tions of many variables, radial basisfun
tions are useful tools. They have the form �(kx�yk2) for ve
tors x; y 2 IRdwith a univariate fun
tion � de�ned on [0;1) and the Eu
lidean norm k � k2on IRd. This allows to work eÆ
iently for large dimensions d, be
ause thefun
tion boils the multivariate setting down to a univariate setting. Usually,the multivariate 
ontext 
omes ba
k into play by pi
king a large number Mof points x1; : : : ; xM in IRd and working with linear 
ombinationss(x) := MXj=1 �j�(kxj � xk2):In 
ertain 
ases, low{degree polynomials have to be added, and these 
ompli-
ations are dealt with in se
tion 5 of [20℄, while se
tion 6 shows how to get ridof these. However, in the de�nitions and in the notation we still keep a spa
eP whi
h plays the role of polynomials.Approximation Theory IX 1Charles K. Chui and Larry L. S
humaker (eds.), pp. 1{3.Copyright o
 1998 by Vanderbilt University Press, Nashville, TN.ISBN 1-xxxxx-xxx-x.All rights of reprodu
tion in any form reserved.



2 S
haba
k, R.Besides the 
lassi
al radial basis fun
tions on the whole spa
e IRd, thesurvey [20℄ also 
overs zonal fun
tions on the (d � 1){dimensional sphereSd�1 � IRd. These have the form �(xT y) = �(
os(�(x; y))) for points x; yon the sphere spanning an angle of �(x; y) 2 [0; �℄ at the origin. Here, thesymbol T denotes ve
tor transposition, and the fun
tion � should be de�nedon [�1; 1℄. Periodi
 multivariate fun
tions 
an also be treated, e.g. by re-du
ing them to produ
ts of univariate periodi
 fun
tions. Another very im-portant 
ase are basis fun
tions on Riemannian manifolds, as introdu
ed byNar
owi
h [13℄ and investigated by Dyn, Nar
owi
h, and Ward [2℄. Here, we
onsider symmetri
 fun
tions � : 
 � 
 ! IR on some domain 
 � IRd,
overing the above situations.All of these 
ases of basis fun
tions share a 
ommon theoreti
al foun-dation. The fun
tions all have a unique asso
iated \native" Hilbert spa
eN�;P(
) of fun
tions in whi
h they a
t as a generalized reprodu
ing kernel.The di�erent spe
ial 
ases (radiality, zonality) are naturally related to geomet-ri
 invariants of the native spa
es. The �rst part of the survey [20℄ thus startsin se
tion 2 with reprodu
ing kernel Hilbert spa
es and looks at geometri
invariants later in se
tion 3.But most basis fun
tions are 
onstru
ted dire
tly and do not easily pro-vide information on their underlying native spa
e. Their main propertiesare symmetry and (stri
t) positive de�niteness (SPD) or 
onditionally pos-itive de�niteness (CPD). These notions are de�ned without any relation toa Hilbert spa
e, and one then has to 
onstru
t the native spa
e, prove itsuniqueness, and �nd its basi
 features. The survey [20℄ does this for SPDfun
tions in se
tion 4 and for CPD fun
tions in se
tion 5. The results mostlydate ba
k to 
lassi
al work on reprodu
ing kernel Hilbert spa
es and positivede�nite fun
tions (see e.g. [12,17℄). We �nished [20℄ with a short a

ount ofoptimal re
overy of fun
tions in native spa
es from given data, and providedthe 
orresponding error bounds based on power fun
tions.There are di�erent ways to de�ne native spa
es (see [10℄ for 
omparisons),but in the �rst part [20℄ of the survey we wanted to provide just one te
hniquethat is general enough to unify di�erent 
onstru
tions (e.g. on the sphere [3℄ oron Riemannian manifolds [2,13℄). But we avoided advan
ed tools like Fouriertransforms or expansions into series of spheri
al harmoni
s or eigenfun
tionsof the Lapla
e{Beltrami operator.In this 
ontinuation of [20℄, we start with embedding of native spa
es intoL2(
). This provides a very useful link to the theory of integral operators andtheir eigenfun
tion expansions. We use these expansions as a repla
ement fortransforms in the 
lassi
al variations of the theory. Consequently, we get new
hara
terizations of native spa
es via su
h expansions, and new 
onstru
tionte
hniques for positive de�nite fun
tions.The notation and numbering will simply extend from [20℄ in a straightfor-ward way. We strongly advise the reader to have a 
opy of [20℄ available, sin
ewe 
annot re
all all de�nitions and results here. The referen
es, however, arerepeated for 
onvenien
e of the reader.



Native Hilbert Spa
es 3x12. Conne
tion to L2 spa
es: OverviewThis se
tion starts an analysis of native spa
es dire
ted towards the well{known representation of the \energy inner produ
t" of 
lassi
al splines in theform (f; g)� := (Lf; Lg)L2(
) =: (Lf; Lg) (12:1)with some linear di�erential operator L. Natural univariate splines of odddegree 2n � 1 are related to L = dm=dxm on 
 = [a; b℄ � IR. Furthermore,the fundamental work of Du
hon [1℄ on thin{plate and polyharmoni
 splines isbased strongly on the use of L = �m. For general (not ne
essarily radial) basisfun
tions �, there is no obvious analogue of su
h an operator. However, wewant to take advantage of (12.1) and thus pro
eed to work our way towards aproper de�nition of L, starting from the bilinear form (:; :)� that we de�ned in[20℄, and whi
h led us to the notion of the native spa
eN�;P(
) = F�;P(
)+Pof a 
onditionally positive de�nite fun
tion � on a domain 
 � IRd withrespe
t to a �nite{dimensional spa
e P.Sin
e the pro
edure is somewhat 
ompli
ated, we give an overview here,and point out the reasons for 
ertain arguments that may look like unne
essarydetours. We �rst have to relate the native spa
e somehow to L2(
). Toa
hieve this, we simply imbed the major part F�;P(
) of the native spa
eN�;P(
) = F�;P(
) + P into L2(
). Then we study the adjoint C of theembedding, whi
h turns out to be a 
onvolution{type integral operator withkernel � that �nally will be equal to (L�L)�1. We thus have to form the\square root" of the operator C and invert it to get L. Taking the squareroot requires nonnegativity of C in the sense of integral operators. This is aproperty that is intimately related to (stri
t) positive de�niteness of the kernel�, and thus in se
tion 16 we take a 
loser look at the relation of these twonotions. In between, se
tion 15 will provide a �rst appli
ation of the te
hniquewe develop here: we 
an generalize a proof of an in
reased 
onvergen
e order,repla
ing Fourier transforms by eigenfun
tion expansions. Finally, we give a
hara
terization of the native spa
e and of positive de�nite fun
tions. In thenotation we shall always use (�; �) to denote the inner produ
t in L2(
).x13. Embedding into L2There is an easy way to imbed a native spa
e into an L2 spa
e.Lemma 13.1. Let � be symmetri
 and 
onditionally positive de�nite (CPD)with respe
t to P on 
, and let 	 be the normalized kernel with respe
t to �as de�ned in se
tion 6. AssumeC22 := Z
	(x; x)dx <1: (13:1)Then the Hilbert spa
e F�;P(
) � N�;P(
) for � has a 
ontinuous linearembedding into L2(
) with norm at most C2.Proof: Conditional positive de�niteness 
learly implies that the integrand	(x; x) = (Æ(x); Æ(x))� = kÆ(x)k2�



4 S
haba
k, R.is positive when forming (13.1).Now for all f 2 F�;P(
) and all x 2 
 we 
an use the reprodu
tionproperty (5.11) to get f(x)2 = (f;	(x; �))2�� kfk2�k	(x; �)k2�= kfk2�	(x; x);where we used �Pf = 0 for the fun
tions f 2 F�;P(
). Then the assertionfollows by integration over 
.By the way, the above inequality shows in general how upper bounds forfun
tions in the native spa
e 
an be derived from the behaviour of 	 on thediagonal of 
� 
. And, sometimes, the related geometri
 mean inequality	(x; y)2 � 	(x; x)	(y; y)is useful, following dire
tly from (6.1) or via f(x) := 	(x; y) from the aboveargument.x14. The 
onvolution mapping from L2 into F�;P(
)We now go the other way round and map L2(
) into the native spa
e.Theorem 14.1. Assume (13.1) to hold for a CPD fun
tion � on 
. Thenthe integral operator C(v)(x) := Z
 v(t)	(x; t)dt (14:1)of generalized 
onvolution type maps L2(
) 
ontinuously into the Hilbertspa
e F�;P(
) � N�;P(
). It has norm at most C2 and satis�es(f; v) = (f; C(v))� for all f 2 F�;P(
); v 2 L2(
); (14:2)i.e. it is the adjoint of the embedding of the Hilbert subspa
e F�;P(
) of thenative spa
e N�;P(
) into L2(
).Proof: We use the de�nition of M�;P(
) in Theorem 8.1 and pi
k some�nitely supported fun
tional � 2 LP(
) to get�(C(v)) = Z
 v(t)�x	(x; t)dt� kvkk�x	(x; �)k� C2kvkk�k�for all v 2 L2(
). In 
ase of f(t) := 	(x; t) with arbitrary x 2 
, equation(14.2) follows from the de�nition of the operator C and from the reprodu
tionproperty. The general 
ase is obtained by 
ontinuous extension.Of 
ourse, equation (14.2) generalizes to(f��Pf; v) = (f��Pf; C(v))� = (f; C(v))	 for all f 2 N�;P(
); v 2 L2(
)on the whole native spa
e N�;P(
). We add two observations following fromgeneral properties of adjoint mappings:



Native Hilbert Spa
es 5Corollary 14.2. The range of the 
onvolution map C is dense in the Hilbertspa
e F�;P(
). The latter is dense in L2(
) i� C is inje
tive.To prove 
riteria for inje
tivity of C or, equivalently, for density of theHilbert spa
e F�;P(
) in L2(
), is an open problem, at least in the generalsituation. For SPD fun
tions �(x; y) = �(x � y) on 
 = IRd with a stri
tlypositive d{variate Fourier transform �̂ there is a neat argument due to A.L.Brown that does the job. In fa
t, if there is some v 2 L2(
) su
h that(v;�(x; �))L2(
) = 0 for all x 2 
, then v̂ � �̂ = 0 must hold on IRd, and thenv = 0 in L2(
).We �nally remark that the above problem is related to the spe
i�
 way ofde�ning an SPD or CPD fun
tion via �nitely supported fun
tionals. Se
tion16 will shed some light on another feasible de�nition, and we 
an revisit theproblem in se
tion 20 after we have repla
ed Fourier transforms by eigenfun
-tion expansions. x15. Improved 
onvergen
e resultsThe spa
e C(L2(
)) allows an improvement of the standard error estimates forre
onstru
tion pro
esses of fun
tions from native spa
es. Roughly speaking,the error bound 
an be \squared".Theorem 15.1. If an interpolatory re
overy pro
ess in the sense of Theorem11.1 is given, then there is a boundjf(x)� s�f (x)j � P �(x)kP �kkvkfor all f � �Pf = C(v) 2 N�;P(
); x 2 
; v 2 L2(
). Here, we denote theoptimized power fun
tion for the spe
ial situation in Theorem 11.1 by P �.Proof: Taking the L2 norm of the standard error bound in Theorem 10.3, weget kf � s�fk � kP �kkf � s�fk	:Now we use (14.2) and the orthogonality relation from Theorem 11.3:kf � s�fk2	 = (f � s�f ; f � s�f )	= (f � s�f ; f)	= (f � s�f ; C(v))	= (f � s�f ; v)� kf � s�fkkvk� kP �kkf � s�fk�kvk:Can
elling kf�s�fk� and inserting the result into the error bound of Theorem10.3 proves the assertion.An earlier version of this result, based on Fourier transforms and re-stri
ted to fun
tions on 
 = IRd was given in [21℄. Note that Theorem 15.1



6 S
haba
k, R.holds only for fun
tions in the range of the 
onvolution map C, i.e. in a sub-spa
e of the native spa
e. The study of the range of C is a 
hallenging task,be
ause there are numeri
al reasons to suggest that 
ertain boundary e�e
tsare involved. We shall 
ome ba
k to this issue in se
tion 19.x16. Positive integral operatorsWe now look at the operator C from the point of view of integral equations.The 
ompa
tness of C as an operator on L2(
) will be delayed somewhat,be
ause we �rst want to relate our de�nition of a positive de�nite fun
tionto that of a positive integral operator. The latter property will be 
ru
ial inlater se
tions.De�nition 16.1. An operator C of the form (14.1) is positive (nonnega-tive), if the bilinear form (w;C(v)); v; w 2 L2(
)is symmetri
 and positive (nonnegative) de�nite on L2(
).In our spe
ial situation we 
an write(w;C(v)) = (C(w); C(v))�; v; w 2 L2(
)and getTheorem 16.2. If a symmetri
 and positive semide�nite fun
tion � on 
satis�es (13.1), then the asso
iated integral operator C is nonnegative. If thisholds, positivity is equivalent to inje
tivity.Theorem 16.3. Conversely, if C is a nonnegative integral operator of theform (13.1) with a symmetri
 and 
ontinuous fun
tion � : 
�
! IR, then� is positive semide�nite on 
.Proof: We simply approximate point evaluation fun
tionals Æx by fun
tionalson L2(
) that take a lo
al mean. Similarly, we approximate �nitely supportedfun
tionals by linear 
ombinations of the above form. The rest is standard,but requires 
ontinuity of �.Unfortunately, the above observations do not allow to 
on
lude positivede�niteness of 	 from positivity of the integral operator C. It seems to bean open problem to bridge this gap. However, due to the symmetry of 	, theintegral operator C is always self{adjoint.>From here on, we will restri
t ourselves to the stri
tly positive de�nite(SPD) 
ase. The main reason is to keep the presentation te
hni
ally simple.The general 
ase 
an be treated either by going over to the regularized kernelgiven by (6.6) or by 
arefully rewriting the material of the following se
tions.



Native Hilbert Spa
es 7x17. Compa
t nonnegative self{adjoint integral operatorsTo apply strong results from the theory of integral equations, we still needthat C is 
ompa
t on L2(
). This is implied by the additional 
onditionZ
 Z
 �(x; y)2dxdy <1 (17:1)whi
h is automati
ally satis�ed if our SPD fun
tion � is 
ontinuous and 
is 
ompa
t. Note the di�eren
e to (13.1), whi
h is just enough to ensureembedding of the native spa
e into L2(
). Note further that (17.1) rulesout 
ertain familiar 
ases like the Gaussian on IRd. It is an open problem tohandle this situation, and here may be a subtle di�eren
e between working onbounded or unbounded domains.>From now on, we assume � to be an SPD kernel satisfying (13.1) and(17.1). Then C is a 
ompa
t self{adjoint nonnegative integral operator. Nowspe
tral theory and the theorem of Mer
er [18℄ imply the following fa
ts:1. There is a �nite or 
ountable set of positive real eigenvalues�1 � �2 � : : : > 0 and eigenfun
tions '1; '2; : : : 2 L2(
) su
h thatC('n) = �n'n; n = 1; 2; : : : :2. The eigenvalues �n 
onverge to zero for n ! 1, if there are in�nitelymany.3. There is an absolutely and uniformly 
onvergent representation�(x; y) =Xn �n'n(x)'n(y); x; y 2 
: (17:2)4. The fun
tions 'n are orthonormal in L2(
).5. Together with an orthonormal basis of the kernel of C, the fun
tions 'nform a 
omplete orthonormal system in L2(
).6. There is a nonnegative self{adjoint operator �pC su
h that C = �pC �pCand with an absolutely and uniformly 
onvergent kernel representation�p�(x; y) :=Xn p�n'n(x)'n(y); x; y 2 
; (17:3)where �pC(v)(x) := Z
 v(t) �p�(x; t)dt; x 2 
; v 2 L2(
):We use the symbol �p� to denote the \
onvolution square{root", be
ause�(x; y) = Z
 �p�(x; t) �p�(t; y)dt (17:4)is a generalized 
onvolution. We remark that this equation 
an be used for
onstru
tion of new positive de�nite fun
tions by 
onvolution, and we providedetails in se
tion 20.The situation of �nitely many eigenvalues 
annot o

ur for the standard
ase of 
ontinuous SPD kernels on bounded domains with in�nitely manypoints and linearly independent point evaluations. Otherwise, the rank ofmatri
es of the form (�(xj; xk))1�j;k�N would have a global upper bound.



8 S
haba
k, R.x18. The native spa
e revisitedThe a
tion of C on a general fun
tion v 2 L2(
) 
an now be rephrased asC(v) =Xn �n(v; 'n)'n;and it is reasonable to de�ne an operator L su
h that (L�L)�1 = C formallyby L(v) =Xn (�n)�1=2(v; 'n)'n: (18:1)We want to show that this operator ni
ely maps the native spa
e into L2(
),but for this we have to 
hara
terize fun
tions from the native spa
e in termsof expansions with respe
t to the fun
tions 'n.Theorem 18.1. The native spa
e for an SPD fun
tion � whi
h generates anonnegative 
ompa
t integral operator on L2(
) 
an be 
hara
terized as thespa
e of fun
tions f 2 L2(
) with L2(
){expansionsf =Xn (f; 'n)'nsu
h that the additional summability 
onditionXn (f; 'n)2�n <1holds.Proof: We �rst show that on the subspa
e C(L2(
)) of the native spa
eN�(
) we 
an rewrite the inner produ
t as(C(v); C(w))� = (v; C(w))=Xn (v; 'n)(C(w); 'n)=Xn (C(v); 'n)(C(w); 'n)�nBut this follows from (C(v); 'n) = �n(v; 'n) for all v 2 L2(
). Sin
e C(L2(
))is dense in N�(
) due to Corollary 14.2, and sin
e N�(
) is embedded intoL2(
), we 
an rewrite the inner produ
t on the whole native spa
e as(f; g)� =Xn (f; 'n)(g; 'n)�n for all f; g 2 N�(
): (18:2)The rest is standard.



Native Hilbert Spa
es 9Corollary 18.2. The fun
tions p�n'n are a 
omplete orthonormal systemin the native spa
e N�(
).Proof: Orthonormality immediately follows from (18.2), and Theorem 18.1allows to rewrite all fun
tions from the native spa
e in the form of an or-thonormal expansion f =Xn (f;p�n'n)�p�n'nwith respe
t to the inner produ
t of the native spa
e.Corollary 18.3. The operator L de�ned in (18.1) maps the native spa
eN�(
) into L2(
) su
h that (12.1) holds. It is an isometry between its domainN�(
) and its range L2(
)=ker C = 
los( span f'ngn).Corollary 18.4. The operator �pC de�ned in (17.3) maps L2(
) onto thenative spa
e N�(
). Its inverse on N�(
) is L. Any fun
tion f in the nativespa
e has the integral representationf = Z
 v(t) �pC(�; t)dt (18:3)with a fun
tion v 2 L2(
).Corollary 18.5. The range of the mapping C 
onsists of the fun
tions f inL2(
) su
h that the summability 
onditionXn (f; 'n)2�2n <1holds. It is an interesting open problem to generalize results for the radial
ase on 
 = IRd to this setting, repla
ing Fourier transforms by eigenfun
tionexpansions. x19. Impli
ations for numeri
al te
hniquesThe re
onstru
tion of a fun
tion f on 
 from fun
tion values f(xk) on 
entersfx1; : : : ; xMg via a fun
tions(x) := MXj=1 �j�(xj ; x)is a re
overy problem in the sense of se
tion 10, whose optimal solution in thesense of se
tion 11 for fun
tions f 2 N�(
) is provided by interpolation, i.e.by a solution of the systemf(xk) = MXj=1 �j�(xj ; xk) (19:1)
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haba
k, R.for the 
oeÆ
ients �j . We now look at this numeri
al problem from theviewpoint of integral operators, and our goal is to show that we get some newhints for further resear
h.In view of Corollary 18.4 and (18.3) we 
an writeZ
 v(t) �pC(xk; t)dt = Z
 �pC(xk; t) MXj=1 �j �pC(xj ; t)dtto see that we are re
overing v from the fun
tions �pC(xj ; t) via best approx-imation in L2(
). The 
oeÆ
ients �j in the system (19.1) have a naturalinterpretation via the approximationv(t) � MXj=1 �j �pC(xj ; t):The above argument is a simple impli
ation of the fa
t that all fun
tions ffrom the native spa
e are solutions of the operator equationf = �pC(v); v 2 L2(
):Sin
e this is (under 
ertain assumptions) an integral equation of the �rst kind,numeri
al problems will automati
ally arise whenever the fun
tion f is not inthe range of the operator �pC, i.e. if f is not in the native spa
e. But wesee what a
tually happens: the numeri
al pro
ess is a best approximationin L2(
) with respe
t to the fun
tions �pC(xj; t) and thus always numeri-
ally exe
utable. The above argument also sheds some light on why in [19℄the treatment of fun
tions f outside the native spa
e a
tually worked aftertrun
ation of the Fourier transform. The applied te
hnique suitably regular-izes the ill{posed integral equation problem, and it still guarantees optimalapproximation orders for given smoothness of f .We now make things worse and turn to the operator equationf = C(v); v 2 L2(
):Again, this is an integral equation of the �rst kind, and its solvability requiresthat f be in the range of C. This is pre
isely the situation of Theorem15.1, and we get some explanation for the improved 
onvergen
e rate. Theinterpretation of the 
oeÆ
ients �j in the system (19.1) now is somewhatdi�erent: f(xk) = Z
 v(t)�(xk; t)dt = MXj=1 �j�(xj ; xk)makes it reasonable to 
ompare with a quadrature formulaZ
 g(t)dt � MXj=1 �jg(xj)



Native Hilbert Spa
es 11to arrive at �j � �jv(xj):This implies that for smooth f and fairly regular 
on�gurations the 
oeÆ-
ients at nearby points should be similar, and it provides a �rst te
hnique toprolong values of 
oarse approximations to 
oeÆ
ients regarding �ner 
enterdistributions. This observation (in a somewhat di�erent form) was made byJ�org Wenz [23℄.Another possible progress from here is the investigation of multilevel te
h-niques, taking the eigensystem of C into a

ount. Resear
h in this dire
tionis 
urrently going on.x20. Constru
tion of positive de�nite fun
tionsWe now know that many stri
tly positive de�nite fun
tions � on a domain 
indu
e a positive integral operator in L2(
) and have a representation (17.2).But we 
an turn things upside down and de�ne � by (17.2), starting witha 
omplete orthonormal system f'ngn in L2(
) and a sequen
e f�ngn ofnonnegative numbers, 
onverging to zero. In some sense, this approa
h ismore general than the original one, be
ause dis
ontinuous or singular fun
-tions may result, depending on the de
ay of �n for n ! 1. Furthermore,the orthonormal systems arising from eigenfun
tion expansions are somewhatspe
ial, be
ause they are smoother than general L2 fun
tions. We thus haveto expe
t a wider 
lass of fun
tions � when starting from (17.2).To a
tually 
arry out the 
onstru
tion, we �rst observe that � de�ned by(17.2) is a generalized positive semide�nite fun
tion in the sense that(�; �)� :=Xn �n�('n)�('n) (20:1)is a 
ontinuous bilinear form on the dual of L2(
). We 
annot use the standardde�nition, be
ause point evaluations are not 
ontinuous. Note here that forany fun
tional � in the dual of L2(
) we havek�k2 =Xn �('n)2 <1and thus 
an bound the bilinear form by(�; �)2� �  Xn p�n�('n)2! Xn p�n�('n)2! :The bilinear form is an inner produ
t, if all �n are positive. Now we 
an de�nethe future native spa
e via Theorem 18.1 and provide it with the bilinear form(18.2). The Riesz map R�;
 
omes out to beR�;
(�) = �x�(x; �) =Xn �n�('n)'n
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haba
k, R.as expe
ted, and the dual of the native spa
e will be the 
losure of all fun
-tionals � in the dual of L2(
) under the inner produ
t (20.1). Naturally, thedual of the native spa
e will be larger than the dual of L2(
), i.e. L2(
) itself.If some of the �n are zero, we see that we get something like a generalized
onditionally positive de�nite 
ase, and regularization of the kernel along thelines of se
tion 6 just does the right thing. Finally, it now is somewhat more
lear why 
onditions for inje
tivity of C are nontrivial: one may be in asituation where some of the �n are zero, and then everything has to be donemodulo the kernel of C or, equivalently, the span of the 'n with �n = 0.A look at (17.4) reveals another te
hnique to 
onstru
t positive semidef-inite fun
tions. In fa
t, if some fun
tion P : 
 � 
 ! IR has the propertyP (x; �) 2 L2(
) for all x 2 
, we 
an form the generalized 
onvolution�(x; y) := Z
 P (x; t)P (y; t)dt:The two 
onstru
tion te
hniques of this se
tion have not yet been exploitedto generate new and interesting basis fun
tions. For the radial 
ase, a toolboxwas provided by [22℄, but there is no generalization so far.A
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