Native Hilbert Spaces for Radial Basis Functions II

Robert Schaback, Gottingen

Abstract. This contribution continues an earlier survey [20] over the
native spaces associated to (not necessarily radial) basis functions. After
recalling the basics, the relation to Lo spaces is studied. This leads to
a new formulation of the theory of radial basis functions in the context
of integral operators. Instead of Fourier transforms, the most important
tools now are expansions into eigenfunctions. This unifies the theory of

radial basis functions in R? with the theory of zonal functions on the

sphere S%~1 and the theory of kernel functions on Riemannian manifolds.
New characterizations of native spaces and positive definite functions are
provided within this context.

§0. Introduction

Since this paper is an extension of [20], we first recall the introduction to
[20] with slight modifications. The final three paragraphs will go over to the
current paper.

For the numerical treatment of functions of many variables, radial basis
functions are useful tools. They have the form ¢(||z—y||2) for vectors z,y € R%
with a univariate function ¢ defined on [0, 00) and the Euclidean norm || - ||2
on R%. This allows to work efficiently for large dimensions d, because the
function boils the multivariate setting down to a univariate setting. Usually,
the multivariate context comes back into play by picking a large number M
of points z1, ...,z in R? and working with linear combinations

s(r) = Z Ajd([lzj — xl2).

In certain cases, low—degree polynomials have to be added, and these compli-
cations are dealt with in section 5 of [20], while section 6 shows how to get rid

of these. However, in the definitions and in the notation we still keep a space
P which plays the role of polynomials.
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Besides the classical radial basis functions on the whole space ]Rd, the
survey [20] also covers zonal functions on the (d — 1)—dimensional sphere
S4=1 c R% These have the form ¢(zTy) = ¢(cos(a(z,y))) for points =,y
on the sphere spanning an angle of a(z,y) € [0,7] at the origin. Here, the
symbol T denotes vector transposition, and the function ¢ should be defined
on [—1,1]. Periodic multivariate functions can also be treated, e.g. by re-
ducing them to products of univariate periodic functions. Another very im-
portant case are basis functions on Riemannian manifolds, as introduced by
Narcowich [13] and investigated by Dyn, Narcowich, and Ward [2]. Here, we
consider symmetric functions ® : Q x Q@ — R on some domain Q C RY,
covering the above situations.

All of these cases of basis functions share a common theoretical foun-
dation. The functions all have a unique associated “native” Hilbert space
Na p(2) of functions in which they act as a generalized reproducing kernel.
The different special cases (radiality, zonality) are naturally related to geomet-
ric invariants of the native spaces. The first part of the survey [20] thus starts
in section 2 with reproducing kernel Hilbert spaces and looks at geometric
invariants later in section 3.

But most basis functions are constructed directly and do not easily pro-
vide information on their underlying native space. Their main properties
are symmetry and (strict) positive definiteness (SPD) or conditionally pos-
itive definiteness (CPD). These notions are defined without any relation to
a Hilbert space, and one then has to construct the native space, prove its
uniqueness, and find its basic features. The survey [20] does this for SPD
functions in section 4 and for CPD functions in section 5. The results mostly
date back to classical work on reproducing kernel Hilbert spaces and positive
definite functions (see e.g. [12,17]). We finished [20] with a short account of
optimal recovery of functions in native spaces from given data, and provided
the corresponding error bounds based on power functions.

There are different ways to define native spaces (see [10] for comparisons),
but in the first part [20] of the survey we wanted to provide just one technique
that is general enough to unify different constructions (e.g. on the sphere [3] or
on Riemannian manifolds [2,13]). But we avoided advanced tools like Fourier
transforms or expansions into series of spherical harmonics or eigenfunctions
of the Laplace—Beltrami operator.

In this continuation of [20], we start with embedding of native spaces into
L2(Q2). This provides a very useful link to the theory of integral operators and
their eigenfunction expansions. We use these expansions as a replacement for
transforms in the classical variations of the theory. Consequently, we get new
characterizations of native spaces via such expansions, and new construction
techniques for positive definite functions.

The notation and numbering will simply extend from [20] in a straightfor-
ward way. We strongly advise the reader to have a copy of [20] available, since
we cannot recall all definitions and results here. The references, however, are
repeated for convenience of the reader.
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§12. Connection to L, spaces: Overview

This section starts an analysis of native spaces directed towards the well-
known representation of the “energy inner product” of classical splines in the
form

(f',g)@ = (Lf7Lg)L2(Q) = (Lf7Lg) (121)
with some linear differential operator L. Natural univariate splines of odd
degree 2n — 1 are related to L = d™/dz™ on Q = [a,b] C IR. Furthermore,
the fundamental work of Duchon [1] on thin—plate and polyharmonic splines is
based strongly on the use of L = A™. For general (not necessarily radial) basis
functions @, there is no obvious analogue of such an operator. However, we
want to take advantage of (12.1) and thus proceed to work our way towards a
proper definition of L, starting from the bilinear form (.,.)s that we defined in
[20], and which led us to the notion of the native space Ng p(Q2) = Fg »(Q)+P
of a conditionally positive definite function ® on a domain Q@ C R? with
respect to a finite-dimensional space P.

Since the procedure is somewhat complicated, we give an overview here,
and point out the reasons for certain arguments that may look like unnecessary
detours. We first have to relate the native space somehow to Lo(€2). To
achieve this, we simply imbed the major part Fg p(€2) of the native space
No p(Q) = Fo,p(Q) + P into Ly(2). Then we study the adjoint C' of the
embedding, which turns out to be a convolution—type integral operator with
kernel ® that finally will be equal to (L*L)~'. We thus have to form the
“square root” of the operator C' and invert it to get L. Taking the square
root requires nonnegativity of C' in the sense of integral operators. This is a
property that is intimately related to (strict) positive definiteness of the kernel
®, and thus in section 16 we take a closer look at the relation of these two
notions. In between, section 15 will provide a first application of the technique
we develop here: we can generalize a proof of an increased convergence order,
replacing Fourier transforms by eigenfunction expansions. Finally, we give a
characterization of the native space and of positive definite functions. In the
notation we shall always use (-, -) to denote the inner product in Lo(€2).

§13. Embedding into L,
There is an easy way to imbed a native space into an Lo space.

Lemma 13.1. Let ® be symmetric and conditionally positive definite (CPD)
with respect to P on €2, and let U be the normalized kernel with respect to ®
as defined in section 6. Assume

C? ::/ U(z,z)dr < 0. (13.1)
Q

Then the Hilbert space Fg p(Q) C Ng p(Q) for & has a continuous linear
embedding into Lo () with norm at most Cs.

Proof: Conditional positive definiteness clearly implies that the integrand

(2, ) = (821, 0(x))o = 160 |3
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is positive when forming (13.1). O
Now for all f € Fg p(Q2) and all z € Q we can use the reproduction
property (5.11) to get
f@)? = (f,9(z,)3
< 1A a2 (=, )3
= f39(z,2),

where we used IIpf = 0 for the functions f € Fg p(2). Then the assertion
follows by integration over (2. O

By the way, the above inequality shows in general how upper bounds for
functions in the native space can be derived from the behaviour of ¥ on the
diagonal of 2 x €). And, sometimes, the related geometric mean inequality

U(z,y)* < U(z,2)T(y,y)

is useful, following directly from (6.1) or via f(x) := ¥U(z,y) from the above
argument.

§14. The convolution mapping from L, into Fg »(Q2)
We now go the other way round and map L2(€2) into the native space.

Theorem 14.1. Assume (13.1) to hold for a CPD function ® on Q. Then
the integral operator

C(v)(x) ::/Qv(t)‘lf(a:,t)dt (14.1)

of generalized convolution type maps Ls()) continuously into the Hilbert
space Fo p(2) C No p(2). It has norm at most Cy and satisfies

(f,v)=(f,C(v))s for all f € Fop(Q), v e Ly(£2), (14.2)

i.e. it is the adjoint of the embedding of the Hilbert subspace Fg p(2) of the
native space Ng p(2) into Lo(2).

Proof: We use the definition of Mg »(€2) in Theorem 8.1 and pick some
finitely supported functional A € Lp(Q) to get

)\(C’(v)):/gv(t))\m\ﬁ(x,t)dt

< [Joll|A"E (=, )|

< Coljol[[[Alle
for all v € Lo(Q2). In case of f(t) := ¥(x,t) with arbitrary z € €, equation
(14.2) follows from the definition of the operator C' and from the reproduction

property. The general case is obtained by continuous extension. O
Of course, equation (14.2) generalizes to

(f=TIpf,0) = (f~Tlpf, C(v))e = (f,C(v))g for all f € Np.p(Q), v € Ly(Q)

on the whole native space Ng p(Q2). We add two observations following from
general properties of adjoint mappings:
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Corollary 14.2. The range of the convolution map C' is dense in the Hilbert
space Fg p(S2). The latter is dense in Lo(Q) iff C is injective. O

To prove criteria for injectivity of C' or, equivalently, for density of the
Hilbert space Fa p(€2) in Lo(2), is an open problem, at least in the general
situation. For SPD functions ®(z,y) = ¢(z — y) on Q = R with a strictly
positive d—variate Fourier transform (ﬁ there is a neat argument due to A.L.
Brown that does the job. In fact, if there is some v € Ly(€2) such that
(v, ®(z,))1,(0) = 0 for all z € Q, then ¥ - ¢ = 0 must hold on R?, and then
v =0 1in Ly(Q).

We finally remark that the above problem is related to the specific way of
defining an SPD or CPD function via finitely supported functionals. Section
16 will shed some light on another feasible definition, and we can revisit the
problem in section 20 after we have replaced Fourier transforms by eigenfunc-
tion expansions.

§15. Improved convergence results

The space C(L2(2)) allows an improvement of the standard error estimates for
reconstruction processes of functions from native spaces. Roughly speaking,
the error bound can be “squared”.

Theorem 15.1. If an interpolatory recovery process in the sense of Theorem
11.1 is given, then there is a bound

(@) = s¢(x)] < P*(2)||P*||[|v]]

for all f —Tlpf = C(v) € Nop(Q), x € Q, v € Ly(Q). Here, we denote the
optimized power function for the special situation in Theorem 11.1 by P*.

Proof: Taking the Lo norm of the standard error bound in Theorem 10.3, we
get
1f = s3I < WP = sFlw.

Now we use (14.2) and the orthogonality relation from Theorem 11.3:

If = s5lla = (f = s}.f = s})w

= (-5
=(f—57.C(v))w
= (f = s}, v)

< |If = s3]l

<

|
1P = sFllalv]l-

Cancelling || f — s%||e and inserting the result into the error bound of Theorem
10.3 proves the assertion. O

An earlier version of this result, based on Fourier transforms and re-
stricted to functions on Q = IR? was given in [21]. Note that Theorem 15.1
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holds only for functions in the range of the convolution map C, i.e. in a sub-
space of the native space. The study of the range of C is a challenging task,
because there are numerical reasons to suggest that certain boundary effects
are involved. We shall come back to this issue in section 19.

§16. Positive integral operators

We now look at the operator C' from the point of view of integral equations.
The compactness of C' as an operator on Ls(€2) will be delayed somewhat,
because we first want to relate our definition of a positive definite function
to that of a positive integral operator. The latter property will be crucial in
later sections.

Definition 16.1. An operator C of the form (14.1) is positive (nonnega-
tive), if the bilinear form

(w,C(v)), v,w € La(Q)

is symmetric and positive (nonnegative) definite on L(€).

In our special situation we can write
(w, C(v)) = (C(w),C(v))s, v,w € Ly(£)

and get

Theorem 16.2. If a symmetric and positive semidefinite function ® on (2
satisfies (13.1), then the associated integral operator C' is nonnegative. If this
holds, positivity is equivalent to injectivity. O

Theorem 16.3. Conversely, if C' is a nonnegative integral operator of the
form (13.1) with a symmetric and continuous function ® : Q x Q — IR, then
® is positive semidefinite on €2.

Proof: We simply approximate point evaluation functionals d, by functionals
on Lo(Q2) that take a local mean. Similarly, we approximate finitely supported
functionals by linear combinations of the above form. The rest is standard,
but requires continuity of ®. O

Unfortunately, the above observations do not allow to conclude positive
definiteness of ¥ from positivity of the integral operator C'. It seems to be
an open problem to bridge this gap. However, due to the symmetry of ¥, the
integral operator C' is always self-adjoint.

i,From here on, we will restrict ourselves to the strictly positive definite
(SPD) case. The main reason is to keep the presentation technically simple.
The general case can be treated either by going over to the regularized kernel
given by (6.6) or by carefully rewriting the material of the following sections.
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§17. Compact nonnegative self-adjoint integral operators

To apply strong results from the theory of integral equations, we still need
that C is compact on Lo (€2). This is implied by the additional condition

/ / z,y)*drdy < oo (17.1)

which is automatically satisfied if our SPD function ® is continuous and 2
is compact. Note the difference to (13.1), which is just enough to ensure
embedding of the native space into Lo(£2). Note further that (17.1) rules
out certain familiar cases like the Gaussian on R®. Tt is an open problem to
handle this situation, and here may be a subtle difference between working on
bounded or unbounded domains.

JFrom now on, we assume ® to be an SPD kernel satisfying (13.1) and
(17.1). Then C' is a compact self-adjoint nonnegative integral operator. Now
spectral theory and the theorem of Mercer [18] imply the following facts:

1. There is a finite or countable set of positive real eigenvalues
p1 > p2 > ... > 0 and eigenfunctions @1, s, ... € Ly(Q2) such that
C(on) = pnpn, n=1,2,....
2. The eigenvalues p, converge to zero for n — oc, if there are infinitely
many.

3. There is an absolutely and uniformly convergent representation

anwn T)on(y), T,y € Q. (17.2)

4. The functions ¢,, are orthonormal in Ly(£2).

5. Together with an orthonormal basis of the kernel of C, the functions ¢,
form a complete orthonormal system in Ly (£2).

6. There is a nonnegative self-adjoint operator v/C such that C = v/C~/C
and with an absolutely and uniformly convergent kernel representation

Vo(z Z\/ﬂ_nson Jen(y), @,y € €, (17.3)

where

VC(v)(z) := /Qv(t) V(xz,t)dt, z € Q, v e LyQ).

We use the symbol v/® to denote the “convolution square root”, because
®(z,y) = / VO (2, t) VO (t, y)dt (17.4)
Q

is a generalized convolution. We remark that this equation can be used for
construction of new positive definite functions by convolution, and we provide
details in section 20.

The situation of finitely many eigenvalues cannot occur for the standard
case of continuous SPD kernels on bounded domains with infinitely many
points and linearly independent point evaluations. Otherwise, the rank of
matrices of the form (®(z;, zy))1<; k<~ would have a global upper bound.
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§18. The native space revisited

The action of C on a general function v € Lo(2) can now be rephrased as

C(’U) = Z pn(v, Qon)@n-,

and it is reasonable to define an operator L such that (L*L)~! = C formally
by

L(v) =Y (pn) "2 (v, 00)n- (18.1)

n

We want to show that this operator nicely maps the native space into Ly(£2),
but for this we have to characterize functions from the native space in terms
of expansions with respect to the functions ¢,,.

Theorem 18.1. The native space for an SPD function ® which generates a
nonnegative compact integral operator on Ls()) can be characterized as the
space of functions f € Ly(Q2) with Lo(Q2)-expansions

= Z(f/ @n)@on

n

such that the additional summability condition

Z(f:@n)g < 50

Pn

n

holds.

Proof: We first show that on the subspace C(Ly(€2)) of the native space
N3 () we can rewrite the inner product as

(C(v),C(w))s = (v, C(w))
= Z(U, ©n)(C(w), pn)

C(v), n)(C(w), o,
:Z(()wl(()w)

n

But this follows from (C(v), ¢n) = pn(v, @n) forallv € Ly(2). Since C'(Ly(R2))
is dense in N3 (Q2) due to Corollary 14.2, and since N3 (2) is embedded into
Ly(2), we can rewrite the inner product on the whole native space as

(f.9)s = Z M for all f,g € Na(9). (18.2)

n

The rest is standard. O
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Corollary 18.2. The functions \/pnpn are a complete orthonormal system
in the native space Ng(Q).

Proof: Orthonormality immediately follows from (18.2), and Theorem 18.1
allows to rewrite all functions from the native space in the form of an or-
thonormal expansion

F =Y (f,/Pnpn)e/Pnpn

n

with respect to the inner product of the native space. O

Corollary 18.3. The operator L defined in (18.1) maps the native space
N3 (Q) into La(Q2) such that (12.1) holds. It is an isometry between its domain
N3 (Q) and its range Ly (Q2)/ker C' = clos(span {¢, }n)-

Corollary 18.4. The operator v/C defined in (17.3) maps L2(2) onto the
native space Ng (). Its inverse on Ng(Q2) is L. Any function f in the native
space has the integral representation

f= [ o0 VO (183)
Q

with a function v € Ly().

Corollary 18.5. The range of the mapping C consists of the functions f in
Lo(QY) such that the summability condition

Z(fa@n)z < 00

P2

n

holds. It is an interesting open problem to generalize results for the radial
case on Q = R? to this setting, replacing Fourier transforms by eigenfunction
expansions.

§19. Implications for numerical techniques

The reconstruction of a function f on € from function values f(zy) on centers
{z1,...,2p} via a function

s(x) = Z A @(x;,x)

is a recovery problem in the sense of section 10, whose optimal solution in the
sense of section 11 for functions f € Ng(Q) is provided by interpolation, i.e.
by a solution of the system

f(.’l?k) = Z)\j@(.’lﬁj,xk) (19.1)
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for the coefficients A;. We now look at this numerical problem from the
viewpoint of integral operators, and our goal is to show that we get some new
hints for further research.

In view of Corollary 18.4 and (18.3) we can write

/Qv(t)\*/a(xk,t)dt:/ﬂ{‘/E(xk,t);Aj{‘/E(xj,t)dt

to see that we are recovering v from the functions {“/a(xj, t) via best approx-
imation in Ly(€2). The coefficients A; in the system (19.1) have a natural
interpretation via the approximation

v(t) = > M\VC(xj,1).

The above argument is a simple implication of the fact that all functions f
from the native space are solutions of the operator equation

f=VCWw), ve LyQ).

Since this is (under certain assumptions) an integral equation of the first kind,
numerical problems will automatically arise whenever the function f is not in
the range of the operator v/C, i.e. if f is not in the native space. But we
see what actually happens: the numerical process is a best approximation
in Ly(Q) with respect to the functions v/C(x;,¢) and thus always numeri-
cally executable. The above argument also sheds some light on why in [19]
the treatment of functions f outside the native space actually worked after
truncation of the Fourier transform. The applied technique suitably regular-
izes the ill-posed integral equation problem, and it still guarantees optimal
approximation orders for given smoothness of f.
We now make things worse and turn to the operator equation

f=C(v), v e Ly(Q).

Again, this is an integral equation of the first kind, and its solvability requires
that f be in the range of C'. This is precisely the situation of Theorem
15.1, and we get some explanation for the improved convergence rate. The
interpretation of the coefficients A; in the system (19.1) now is somewhat
different:

f(a:k):/Qv(t)cb(xk,t)dt:Z)\j@(aﬁj,xk)

makes it reasonable to compare with a quadrature formula

[ o= Y piata)
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to arrive at
Aj ~ Bjv(x;).

This implies that for smooth f and fairly regular configurations the coeffi-
cients at nearby points should be similar, and it provides a first technique to
prolong values of coarse approximations to coefficients regarding finer center
distributions. This observation (in a somewhat different form) was made by
Jorg Wenz [23].

Another possible progress from here is the investigation of multilevel tech-
niques, taking the eigensystem of C' into account. Research in this direction
is currently going on.

§20. Construction of positive definite functions

We now know that many strictly positive definite functions ® on a domain 2
induce a positive integral operator in L2(€2) and have a representation (17.2).
But we can turn things upside down and define ® by (17.2), starting with
a complete orthonormal system {¢p}, in La(Q2) and a sequence {p,}, of
nonnegative numbers, converging to zero. In some sense, this approach is
more general than the original one, because discontinuous or singular func-
tions may result, depending on the decay of p, for n — oo. Furthermore,
the orthonormal systems arising from eigenfunction expansions are somewhat
special, because they are smoother than general Lo functions. We thus have
to expect a wider class of functions ® when starting from (17.2).

To actually carry out the construction, we first observe that ® defined by
(17.2) is a generalized positive semidefinite function in the sense that

(A e = anA(QOn):u(@n) (20.1)

is a continuous bilinear form on the dual of L2(€2). We cannot use the standard
definition, because point evaluations are not continuous. Note here that for
any functional A in the dual of Ly(€2) we have

IMI? = Mpn)® < o0

and thus can bound the bilinear form by

(A )3 < (Z \/p_nk(son)Q) (Z \/p_nu(wn)2> :

The bilinear form is an inner product, if all p,, are positive. Now we can define
the future native space via Theorem 18.1 and provide it with the bilinear form
(18.2). The Riesz map Rg o comes out to be

Rp0(X) = X®(z,-) = Y puA(pn)pn
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as expected, and the dual of the native space will be the closure of all func-
tionals A in the dual of Lo(2) under the inner product (20.1). Naturally, the
dual of the native space will be larger than the dual of Ly(€), i.e. Lo(€) itself.

If some of the p,, are zero, we see that we get something like a generalized
conditionally positive definite case, and regularization of the kernel along the
lines of section 6 just does the right thing. Finally, it now is somewhat more
clear why conditions for injectivity of C' are nontrivial: one may be in a
situation where some of the p,, are zero, and then everything has to be done
modulo the kernel of C' or, equivalently, the span of the ¢,, with p,, = 0.

A look at (17.4) reveals another technique to construct positive semidef-
inite functions. In fact, if some function P : Q x €2 — IR has the property
P(z,-) € Ly(Q) for all z € Q, we can form the generalized convolution

(3, ) ::/QP(a:,t)P(y,t)dt.

The two construction techniques of this section have not yet been exploited
to generate new and interesting basis functions. For the radial case, a toolbox
was provided by [22], but there is no generalization so far.

Acknowledgments. Special thanks go to Holger Wendland for careful proof-
reading and various improvements.
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