
Numerical Techniques Basedon Radial Basis FunctionsRobert Schaback and Holger WendlandAbstract. Radial basis functions are tools for reconstruction of mul-tivariate functions from scattered data. This includes, for instance, re-construction of surfaces from large sets of measurements, and solving par-tial di�erential equations by collocation. The resulting very large linearN � N systems require e�cient techniques for their solution, preferablyof O(N) or O(N logN) computational complexity. This contribution de-scribes some special lines of research towards this future goal. Theoreticalresults are accompanied by numerical examples, and various open prob-lems are pointed out. x1. IntroductionMany problems of numerical analysis take the form of a generalized interpo-lation in spaces of multivariate functions [21]. Due to the Mairhuber-Curtistheorem [12], such spaces cannot be �xed beforehand but must necessarilydepend on the given data. For a plain multivariate interpolation problem ona �nite set X = fx1; : : : ; xNg of pairwise di�erent points in a domain 
 � IRd,there is an easy possibility to generate a data-dependent space via linear com-binations of something that depends on a free variable x 2 
 � IRd and thedata locations xj , namelySX;� := span f�(x; xj ) : 1 � j � Ng (1)with a �xed function � : 
�
! IR. The numerical generation of the spacecan be simpli�ed considerably in the special situations1) �(x; y) = �(x� y) with � : IRd ! IR (translation invariance)2) �(x; y) = �(kx� yk2) with � : [0;1)! IR (radiality),Curve and Surface Fitting: Saint-Malo 1999 1Albert Cohen, Christophe Rabut, and Larry L. Schumaker (eds.), pp. 1{16.Copyright oc 2000 by Vanderbilt University Press, Nashville, TN.ISBN 0-8265-1357-3.All rights of reproduction in any form reserved.



2 R. Schaback and H. Wendlandand this is how the notion of a radial basis function came up. To assure thatthe interpolation in the points of X = fx1; : : : ; xNg is uniquely de�ned, thematrix A�;X := (�(xj ; xk))1�j;k�N (2)must be nonsingular. By de�nition, positive de�nite functions � even makethis matrix symmetric and positive de�nite, and the positive de�nite radialfunctions �(r) = exp(�r2) on IRd for all d (Gaussian)�(r) = (1� r)4+(1 + 4r) on IRd; d � 3; see [25]are typical examples. See the review articles [4,15,18,16] for details. Thoughthe above functions are scalar, the positive de�niteness property of the seconddepends on the dimension d of the space containing x and y when forming thescalar argument r = kx� yk2.These two examples already show that the matrix A�;X in (2) can besparse or have a strong o�-diagonal decay. It will be very large if we considerreal-world problems with many data, arising e.g. from inverse engineering orterrain modelling. If the data points are rather densely scattered over thedomain 
, the approximation power of the space (1) will be very good, butthe matrix in (2) will have lots of similar rows and columns, yielding a badcondition number. The connection between these phenomena is described insome detail in [17].This paper concentrates on the numerical solution of large symmetric pos-itive de�nite systems with matrices of the form (2). There are some additionalgoals:1) O(N) complexity of solving the N �N system,2) O(1) complexity of evaluating an element of (1) with N terms and3) getting away with n << N terms at a tolerable loss of accuracy, wheninterpolating N data.We shall describe greedy algorithms as recently studied by deVore [5] andTemlyakov [24], but we shall omit multiple scales as proposed by Floater andIske [9] and continued later in [13] and [6]. The techniques will be partiallybased on Krylov subspaces as recently and independently studied by Faul andPowell [8]. x2. Splitting the Native Space EnergyDropping � in the notation, we can write functions from (1) in the formsc;X := NXj=1 cj�(�; xj) (3)



Numerical Techniques for RBF 3with c 2 IRN ; X = fx1; : : : ; xNg � 
 � IRd and arbitrary N . Our main toolwill be the natural inner product(sc;X ; sd;Y )� =0@Xj cj�(�; xj);Xk dk�(�; yk)1A� :=Xj Xk cjdk�(xj ; yk)(4)introduced by a positive de�nite function � on the union of spaces (1) forarbitrary data setsX. We note in passing that one can form the correspondingHilbert space closure to get the native Hilbert space of �, but we refer thereader to [11] and [19] for details. If we �x the set X = fx1; : : : ; xNg and thecorresponding positive de�nite matrix A�;X , we get an inner product(c; d)A�;X := cTA�;Xd (5)on IRN which is familiar from the theory of the conjugate gradient methodbased on Krylov subspaces.Note that the inner product (4) is zero if the function sc;X vanishes on Yor if sd;Y vanishes on X. If we assume Y � X and make sure that sd;Y agreeswith sc;X on Y (e.g. by interpolation on Y ), then(sd;Y ; sc;X � sd;Y )� = 0ksd;Y k2� + ksc;X � sd;Y k2� = ksc;Xk2�: (6)The second identity can be viewed as a split of the energy of the function sc;Xinto the energy of its interpolant sd;Y on a subset Y of X and the residualsc;X � sd;Y . We shall use this energy split over and over again.x3. Interpolation in Native SpacesAt this point, we digress a little and study the interpolation of an arbitraryreal-valued function f on a domain 
 � IRd. On each �xed �nite subsetX � 
 we can interpolate the values of f by a function sf;X from (1). Due to(6), the energy ksf;Xk2� is a monotonic function of X with respect to additionof points, and it can be easily evaluated using (4). The energy is boundedindependent of f if and only if [22] the function f lies in the native space of�, and in this case we have kfk� = supX ksf;Xk�.This observation has some consequences for applications. If the user doesnot have any a-priori information on f , the proper choice of � is a problem.But if the behaviour of ksf;Xk2� with respect to X is monitored for larger andlarger sets X, the user can switch to a less smooth � if the energy valuesgrow dramatically with X. By (6) the behaviour of ksf;Xk2� is related to theenergy kf � sf;Xk2� of the residual, and further study of this as a function ofX is needed, especially for f with additional smoothness properties. Currentstarting points are in [20] and [10], and readers are encouraged to proceedfrom there.



4 R. Schaback and H. Wendlandx4. Iteration on ResidualsWe now �x a positive de�nite function � and a function f0 from the nativespace of � or, at least, from some space of the form (1) for a rather large �niteset X. Our goal is to reconstruct f0 by an iterative process. Note that thissolves a large system with the matrix from (2), if we start from f0 := sf;Xinterpolating some given function f on X. In this case, we do not reconstructf but rather its interpolant. In both cases we need not worry about theexistence of kf0k�.If we pick some numerically manageable �nite set Y0 and interpolate f0on Y0, we can de�ne f1 := f0 � sf0;Y0 and proceed iteratively byfj+1 := fj � sfj ;Yj ; Yj � 
; j = 0; 1; : : : (7)using �nite sets Yj that we shall have to deal with later. Anyway, the energysplitting (6) yields ksfj ;Yjk2� + kfj � sfj ;Yjk2� = kfjk2�kfj � fj+1k2� + kfj+1k2� = kfjk2�; (8)and by summation we get the telescoping sumkXj=0 ksfj ;Yjk2� = kXj=0 kfj � fj+1k2� = kf0k2� � kfk+1k2� � kf0k2� (9)which must necessarily converge for k ! 1 even if the choice of Yj is bad,e.g. Yj = Y0 for all j. By standard Hilbert space argumentation via Cauchysequences, the functionsgk+1 := kXj=0 sfj ;Yj = kXj=0(fj � fj+1) = f0 � fk+1must converge in the norm k:k� to some element g in the native space, butwe do not want to use this fact. Our goal is to prove that the residuals fkconverge to zero, and this would imply that the functions gk converge to f0,yielding the desired reconstruction.Of course we shall need some additional assumptions on the sets Yj tobe successful. Equations (8) and (9) suggest that we should let sfj ;Yj takeup as much energy from fj as possible, and this will be our guideline for theconvergence analysis in the following sections.x5. Conditions for Linear ConvergenceFor simplicity, let us �rst assume that sfj ;Yj picks up at least a �xed percentageof the energy of fj , i.e. ksfj ;Yjk2� � 
kfjk2� (10)with some �xed 
 2 (0; 1]. This is a disguised hypothesis on the proper choiceof Yj , and we have to prove later how to satisfy this assumption. From (8) and(10) we conclude linear convergence of fj to zero via kfj+1k2� � (1� 
)kfjk2�.This proves



Numerical Techniques for RBF 5Theorem 1. If the choice of sets Yj satis�es (10), the residual iteration (7)converges linearly in the native space norm, and there is an error boundkf0 � gkk2� = kfkk2� � (1� 
)kkf0k2�:Assumption (10) is not easy to handle, because the norm involves �and the value of the right hand side is not explicitly known. But in case off0 := sf;X for some large �nite set X � 
 � IRd we can restrict ourselves tosets Yj � X, and all functions fj will stay in the �nite-dimensional space (1).On this space, we can pick any norm k:kX , for instance any discrete Lp normof functions on X, and make use of the norm equivalenceckskX � ksk� � CkskX (11)for all functions s from the space (1), where the constants satisfy 0 < c � C.Then we can try to get away withksfj ;Yjk2X � �kfjk2X (12)with some � 2 (0; 1] instead of (10). But since this equation implies (10) with
 � �c2=C2 > 0, we getTheorem 2. If the choice of sets Yj satis�es (12) for some norm k:kX offunctions on X, the residual iteration (7) for reconstruction of f0 := sf;Xconverges linearly in k:kX and there is an error boundkf � gkkX � Cc �1� � c2C2�k=2 kfkX :x6. Maximizing Energy of InterpolantsOur argument at the end of Section 4 leads to the problem of �nding a �niteset Y such that the energy ksf;Y k2� of the interpolant of some function (orresidual) f is large. If fY 2 IRjY j is the vector of values of f on Y , theinterpolant sf;Y solves a system with a matrix A�;Y de�ned as in (2), and theenergy is given by the quadratic formksf;Y k2� = fTY A�;Y �1fY � kfY k22�min �A�;Y �1� = kfY k22=�max (A�;Y )as a function of f and Y . The maximal eigenvalue �max (A�;Y ) is hard todiscuss in general (see Narcowich and Ward [14] for results), and we simplyview this quantity as a factor that depends on the geometry of Y and thenumber jY j of points in Y . It is an interesting open problem to design someRemes-type algorithm based on exchanges of points to arrive at the best choiceof a set Y with a prescribed number of points.



6 R. Schaback and H. WendlandIn the special case jY j = 1; Y = fyg things are easy. We getksf;Y k2� = f(y)2�(y; y) � f(y)2minz2
 �(z; z)and the maximum of f2 will be the best choice, especially if � is translation-invariant or radial.If we have Y � X for a large �nite set X, we can invoke Courant'sminimum-maximum principle to get �max (A�;Y ) � �max (A�;X) as an upperbound that does not depend on the choice of Y . A reasonable strategy formaximizing ksf;Y k2� then is to pick the jY j points of X where f takes itslargest absolute values.In the general situation, we have to face the fact that coalescing pointsare not allowed. A reasonable strategy is to mimic the previous situation, i.e.to take some large set X of well-distributed points and pick the points of Xwhere f is largest in absolute value.Another possible strategy is the iterative greedy collection of more andmore points, forming a recursive Cholesky factorization. Since this possibilitydoes not seem to be familiar to researchers in this area, we outline the processhere. Assume that an interpolant to f on Y is available together with theinverse B of A�;Y . We now want to add another point z 2 
 n Y to Y ,thus enlarging the energy of the interpolant. A naive choice of z is via themaximum of the absolute value of f � sf;Y , but since we haveksf;Y [fzgk2� = ksf;Y k2� + 2f(z)Xy2Y f(y)�(z; y) + f2(z)�(z; z); (13)the best choice of z for �xed Y is obtained by maximizing the right-hand sideof this equation. Having found z, one has to update B in a suitable way.First, calculate the vector v 2 IRjY j with components �(z; y); y 2 Y and formw := Bv. The number1=� := �(z; z) � vTw = �(z; z) � vTBvcan be shown to be positive, because � is positive de�nite and z does notbelong to Y . Then form u := ��w and C := B + uTu=�. The matrix� C uuT ��then is the inverse of A�;Y [fzg needed for the interpolation on Y [ fzg. Un-fortunately, there is no numerical experience in this direction so far, especiallyfor the maximization of (13). A more careful calculation of the numerical com-plexity reveals that we have nothing else here than a special formulation ofthe partial Cholesky algorithm with pivoting. The choice of pivots, however,is adapted to the setup of the problem as an interpolation.Altogether, this section was intended to motivate readers to look at theproblem of �nding good �nite sets Y for improvement of interpolants.



Numerical Techniques for RBF 7x7. A Simple Greedy AlgorithmAmong other things, the previous section showed how to work on subsetsY consisting of a single point y each. The best possible choice is to takethe point where f takes its maximum absolute value, and the interpolant issf;fyg = f(y)�(y; �)=�(y; y). We now do this iteratively in the sense of (7) bypicking Yj := fyjg with jfj(yj )j = kfjk1. In the \discrete" case f0 := sf;X wetake the Chebyshev norm onX, while in the \continuous" case f0 := f 2 C(
)with 
 being a compact subset of IRd, we take the Chebyshev norm on 
.Due to Theorem 2, the discrete case leads to linear convergence towardsf0 := sf;X , because (12) is satis�ed with � = 1. From a theoretical viewpoint,this is much better than the non-quantitative convergence result of Faul andPowell in [7]. On the other hand, there always is the conjugate gradientmethod as a competitor, and it has linear convergence, too. But it needs toform matrix-vector products, while our greedy algorithm does not even storethe matrix. It simply needs two arrays of length jXj for the residuals and thecoe�cients, and in each cycle it updates one co�cient and runs once over theresiduals to update them and �nd the maximum for the next iteration. Thisextreme numerical simplicity must come at a price, and the price is very slowconvergence after some good progress in the �rst few iterations. We reporton numerical experiments and adaptive multiscale improvements in [23], butat this point we want to direct the reader's attention to extend the abovestrategy, e.g. via some suitable preconditioning.Before we look more closely at the greedy algorithm in the discrete case,let us digress a little into the continuous case.Theorem 3. If � is a continuous translation-invariant positive de�nite func-tion on a compact domain 
 � IRd, the greedy algorithm for interpolation ofa function f from the native space of � converges uniformly.Proof: We have ksfj ;Yjk2� = f2j (yj )�(0) = kfjk21�(0)and (9) shows that the quantities kfjk21 are summable. Consequently, theresiduals fj converge uniformly to zero on the compact set 
.Corollary 4. Under the assumptions on � as in Theorem 3, the native spacenorm is expressible via a serieskfk2� = �(0) 1Xj=0 f2j (yj ) = �(0) 1Xj=0 kfjk21where f0 := f; jfj(yj )j = kfjk1; fj+1 := fj � fj (yj )�(� � yj)=�(0):This result may look complicated at �rst sight, but it should be comparedto other de�nitions of the native space norm, e.g. via Fourier transforms, by



8 R. Schaback and H. Wendlandabstract completion of a pre-Hilbert space, or by the supremum of the actionof certain functionals.We do not want to go into details here (see [11], for instance), but preferto give an illustrative example. If specialized to Sobolev space W k2 (
) withk > d=2, one has to take �(x) = kxkk�d=22 Kk�d=2(kxk2) in order to recoverSobolev space as a native space for �(x; y) = �(kx� yk2). Now by Corollary4 one gets the Sobolev norm of a function as a series containing just functionvalues on the domain in a numerically accessible way, using neither derivativesnor integration (but, of course, maximization). It should be pointed out thatthis technique provides some means to assess the Sobolev smoothness of agiven function numerically. Readers are encouraged to proceed from here.x8. Dual TechniquesAnother possible approach to solving a large N � N system with a largesymmetric and positive de�nite coe�cient matrix A�;X via smaller �nite sub-problems is to de�ne certain �nite-dimensional subspaces Sj of the nativespace and to approximate the exact solution on X = fx1; : : : ; xNg by approx-imation in the native space norm. More precisely, the iteration starts like insection 4 with some function f0 and j := 0, and iterates like (7) according tokfj � sjk� := infs2Sj kfj � sk�fj+1 := fj � sj : (14)By standard arguments, this iteration also satis�es (8) and the rest of Section4, including the summability condition (9). Note that if a space Sj = SYj ;�has the form (1) for some �nite set Yj , then the best approximation solutionsj in (14) coincides with sfj ;Yj and we are back to the method in Section 4.This observation follows from Theorem 7 in Section 9.But there are other possible choices for the spaces Sj . In particular, Fauland Powell [7] pick certain one-dimensional spaces Sj = spanfujg for all j �0. Then sj := �juj with �j := (uj ; fj)�=(uj; uj)� solves the approximationproblem, and we have the summability conditionkXj=0 ksjk2� = kXj=0 kujk2��2j = kXj=0( ujkujk� ; fj)2� = kf0k2� � kfk+1k2� � kf0k2�:(15)x9. Cyclic and Greedy Dual StrategiesIn [7], Faul and Powell �x N such functions uj by a certain precalculation thatwe shall discuss later. These functions are used periodically, i.e. uj is used instep j + kN for all k � 0. The periodic reuse has the advantage that one canprecalculate and store the uj , if their construction is somewhat involved. Westart with a generalized and simpli�ed version of the convergence result in [7]:



Numerical Techniques for RBF 9Theorem 5. If f0 is in the span of the functions uj for 1 � j � N , then thecyclic dual method of Faul and Powell converges to f0.Proof: Since everything takes place in a �nite-dimensional space, and sincethe technique involves an energy split, the functions gj = f0 � fj converge tosome function g in the span of the uj , and the fj converge to f0 � g. But as(15) implies limk!1( ujkujk� ; fj+kN )� = 0 = ( ujkujk� ; f0 � g)�for all j, the functions f0 and g must coincide.There are lots of choices of uj that satisfy the hypothesis of Theorem 5.Conjugate directions and uj := �(�; xj ) would do the job. The latter strategycoincides with the greedy method, if the cyclic choice is given up in favour ofpicking the point where the residual is maximal in absolute value. A linearconvergence result is possible, if such a modi�cation is made in general:Theorem 6. If f0 is in the span of the functions uj for 1 � j � N , then theiteration (14) with (fj ; ukj )2� := maxk (fj ; uk)2�Sj := spanfukjg (16)converges linearly to f0.Proof: We can proceed as in Section 5, usingkuk2X := maxj (u; uj)2�for all functions u in the span U of all uj. The assumption (12) is satis�ed forsj instead of sfj ;Yj due tosj = (fj ; ukj )�(ukj ; ukj )� ukjksjk2X � (sj ; ukj )2� = (fj ; ukj )2� = kfjk2X ;and the rest follows easily.The inner products in (16) can be evaluated explicitly, if we work in thespace (1) and use (4) and (5) in the form(sc;X ; sd;X)� =Xk cksd;X(xk): (17)This is particularly e�cient if the functions uj have only a small number ofnonzero coe�cients in their representation of the form uj = scj ;X. Anotherpossibility, exploiting the dual nature of the algorithm, is to store and update



10 R. Schaback and H. Wendlandthe inner products (fj ; uk)� instead of the values fj(xk). So far, there is nonumerical experience with dual greedy algorithms, unfortunately.One has a lot of leeway for picking suitable functions uj, especially whenpreconditioning arguments come into play. Faul and Powell use local Lagrangefunctions uj based on relatively small subsets Yj of X that contain xj . Inparticular, uj 2 SYj ;� is de�ned by the interpolation conditionsuj(xj ) = 1uj(xk) = 0 for all xk 2 Yj ; k 6= j; (18)and is expressible in the form uj = scj ;Yj = sdj ;X with at most jYjj nonzerocoe�cients. The precalculation involves the solution of N systems with jYj j�jYj j matrices A�;Yj ,and it can be kept at O(N), if the values jYjj are boundedindependent of N . Our arguments in Section 10 will show how this techniquecan be interpreted as preconditioning the matrix A�;X . For a �xed accuracyto be obtained, and for their special choice of the sets Yj , Faul and Powellthen observe that they need only a small �xed number of cycles of the dualalgorithm. Each cycle has N one-dimensional subproblems, but there aretechniques to keep each subproblem at a reasonable complexity, provided thattechniques like multipole expansions [1] or compactly supported radial basisfunctions [26, 25] are used.The selection of functions uj is particularly good if there are orthogonalityor conjugacy relations among them. Let us look at an inner product (uj ; uk)�in case of (18), using (17) and uj = scj;X . We get(uj ; uk)� = Xm:xm2Yj cjmuk(xm);and this quantity vanishes if Yj � Yk n fxkg.This can be seen as a motivation for choosingxj 2 Yj � fxj ; xj+1; : : : ; xNg (19)as done by Faul and Powell. Even if the functions uj are in general not mutu-ally orthogonal they are at least linear independent as needed for Theorems5 and 6. To see this note that the matrix C = (cji ) which describes the tran-sition from the basis (�(�; xj ); 1 � j � N) to (uj ; 1 � j � N) is an uppertriangle matrix and thus invertible if cii 6= 0 for 1 � i � N . This is indeed thecase because of 0 6= kuiik2� = Xm:xm2Yj cimui(xm) = cii:We �nish this section by pointing out how to make optimal use of solvingN systems with jYjj � jYj j matrices A�;Yj for subsets Yj in a precalculation.If the full inverses of the A�;Yj are stored instead of the coe�cients of uj ,one can use the cyclic dual algorithm with Sj := SYj ;�. The energy split ateach step of the algorithm will then be better or equal to the split obtainedby the dual cyclic algorithm using a single uj 2 SYj ;� like the one used byFaul and Powell. This is clear from (14), and the following theorem, whichis well known since the advent of splines, shows that we end up with a cyclicinterpolatory method of the form (7).



Numerical Techniques for RBF 11Theorem 7. If Y is a �nite subset of 
, the approximation probleminfs2SY;� kf � sk�for any f in the native space of � is solved by the interpolant sf;Y .Proof: Equations (6) generalize via continuous transition to the Hilbert spacecompletion to (sf;Y ; f � sf;Y )� = 0ksf;Y k2� + kf � sf;Y k2� = kfk2�for all f in the native space, and the assertion follows.Consequently, algorithms using interpolants on �nite subsets make opti-mal use of the information contained in the space SY;�. This links the dualtechniques back to the interpolatory methods in Section 4. Numerical resultsconcerning the above cyclic interpolatory method, e.g. using the sets Yj ofFaul and Powell, are still missing. The progress must be better due to The-orem 7, but at the expense of much more storage. And, an incorporationof greedy selections using the good preconditioning power of the Faul-Powellapproach seems worth investigating.x10. Quasi-InterpolationThere is a hidden link between the Faul-Powell technique, preconditioning ofA�;X , and certain quasi-interpolation methods using local Lagrange functions,as investigated by Beatson, Powell and their coworkers (see for example [2]).If we write the interpolant sf;X to some function f in Lagrange representationsf;X = NXj=1 f(xj )vj (20)with N Lagrange basis functions vk 2 SX;� satisfying vj(xk) = �jk, we canrelax (20) to a quasi-interpolation formulasf;u;X := NXj=1 f(xj )uj (21)for any other choice of functions uj that approximate the global Lagrangebasis functions vj . The choice (18) for certain subsets Yj is quite natural,because one can often [3] observe that local Lagrange functions based on a setYj of neighbouring points to xj 2 Yj decay quickly away from xj . Assuming(18) (but not (19)) from now on, the representation (21) can be rewritten interms of uj = scj ;X and (3) assf;u;X = NXj=1 f(xj ) Xk:xk2Yj cjk�(�; xk) = NXk=1�(�; xk) Xj:xk2Yj f(xj )cjk:



12 R. Schaback and H. WendlandThe coe�cients of the second representation can be evaluated locally, andthe computational advantage is particularly evident in case of compactly sup-ported radial basis functions.We now want to look at the quality of such quasi-interpolants on thediscrete set X itself. The operator that maps the vectorfjX := (f(x1); : : : ; f(xN ))T 2 IRNto sf;u;X jX 2 IRN can be written as the matrix product A�;X � C, whereC = (cjk) is the nonsymmetric N � N matrix with row index k and columnindex j containing the coe�cients cjk of the uj columnwise. The operator thatgenerates the residuals on X then is EN �A�;X �C with the N �N identitymatrix EN . In case of Yj = X for all j we have C = A�;X�1, and thereare good reasons to expect that there are numerically interesting cases wheresome matrix norm of EN � A�;X � C is smaller than one. In such cases onecan solve the problem on X by successive quasi-interpolation via a Neumannseries. In terms of vectors f j and sj containing the values of residuals fj andquasi-interpolants to fj on X, we have the linearly convergent iterationf0 := f0jXsj := A�;X � Cf jf j+1 := f j � sj = (EN �A�;X � C)j+1f0calculating the interpolant to the data of f0 onX as the sum over the sj . Notethat we cannot use the energy split here, because we have left the context ofinterpolation and approximation. Note further that C acts as a (nonsymmet-ric!) preconditioner or an approximate inverse to A�;X .x11. Experiments Concerning Quasi-InterpolationTo calculate the norm of EN � A�;X � C numerically, we observe that thematrix A�;X � C has the entries uj(xi), where i is the row index. Thus theentry at (i; j) of EN � A�;X � C vanishes for xi 2 Yj , and the column-sumnorm of EN �A�;X � C can be written asmaxj Xi:xi =2Yj juj(xi)j: (22)Again it turns out that the decay of local Lagrange functions is essential.In case of data on the uniform grid (hZZ)2, a radial basis function �cwith support in [0; c], and sets Yj := fy 2 (hZZ)2 : kxj � yk2 � Rg ofneighbours to xj within a radius R, the norm in (22) can be evaluated bylooking at the local Lagrange function u0 with respect to the origin and theset Y0 := fy 2 (hZZ)2 : kyk2 � Rg of local interpolation points. Since bothY0 and the support of � are bounded, the function u0 is zero on integer grid
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Fig. 1. C = 4; R = 6, norm = 0:48, and C = 5;R = 8, norm =0.29.Tab. 1. Point numbers Mp required for norm � p and N points in support of �.N 5 9 13 21 25 29 37 45 49 57 61M0:9 5 5 5 9 29 49 69 81 97 145 145M0:1 5 5 21 29 109 137 149points outside the disk around zero with radius R + c. Omitting the value1 at the origin for scaling reasons, Figure 1 shows the behaviour of u0 oninteger gridpoints around the origin. We picked two cases for the C2 function�c(r) := (1 � r=c)4+(1 + 4r=c) from [25] where the norm of EN � A�;X � c issmaller than one, and the corresponding numbers of local interpolation pointsin Y0 are 113 and 197, respectively.For applications, it is necessary to know how large R must be for �xedc and h in order to make the norm of EN � A�;X � c smaller than 0.9 or0.1, say. Since R and c scale with h, the numbers M and N of points in Y0and the support of � depend on R=h and C=h, respectively. Given a supportradius c and a maximal meshwidth h such that the support of �c containsN = 1; 5; 9; 13; : : : points, we provide in Table 1 the minimal number Mp ofpoints in Y0 that are necessary to keep the norm of EN � A�;X � c below p.Another way of reading Table 1 is that if the matrix A�;X for interpolationby �(x; y) := �c(kx � yk2) on a regular grid has bandwidth N , then it hasan approximate inverse with bandwidth Mp that leads to a residual matrixof norm p. The quasi-interpolant is to be calculated via subproblems withMp�Mp matrices. It is an interesting challenge to provide sparse approximateinverses for sparse symmetric positive de�nite matrices, because normally the
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