Numerical Techniques Based

on Radial Basis Functions

Robert Schaback and Holger Wendland

Abstract. Radial basis functions are tools for reconstruction of mul-
tivariate functions from scattered data. This includes, for instance, re-
construction of surfaces from large sets of measurements, and solving par-
tial differential equations by collocation. The resulting very large linear
N x N systems require efficient techniques for their solution, preferably
of O(N) or O(N log N) computational complexity. This contribution de-
scribes some special lines of research towards this future goal. Theoretical
results are accompanied by numerical examples, and various open prob-
lems are pointed out.

§1. Introduction

Many problems of numerical analysis take the form of a generalized interpo-
lation in spaces of multivariate functions [21]. Due to the Mairhuber-Curtis
theorem [12], such spaces cannot be fixed beforehand but must necessarily
depend on the given data. For a plain multivariate interpolation problem on
a finite set X = {xy,...,zn} of pairwise different points in a domain Q C R,
there is an easy possibility to generate a data-dependent space via linear com-
binations of something that depends on a free variable = € @ C R and the
data locations x;, namely

Sx e := span {®(z,z;) : 1 <j <N} (1)

with a fixed function ® :  x £ — IR. The numerical generation of the space
can be simplified considerably in the special situations

1) ®(x,y) = ¢(x —y) with ¢ : R? - R (translation invariance)
2) @(x,y) = ¢(|lv — yll2) with ¢ : [0,00) — R (radiality),
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and this is how the notion of a radial basis function came up. To assure that
the interpolation in the points of X = {zy,..., 2} is uniquely defined, the
matrix

ACI),X = (q)($]7$k))1§]’k§N (2)

must be nonsingular. By definition, positive definite functions ® even make
this matrix symmetric and positive definite, and the positive definite radial
functions

o(r) = exp(—r?) on R? for all d (Gaussian)
o(r)=(1- r)i(l +4r) on R? d < 3, see [25]

are typical examples. See the review articles [4,15,18,16] for details. Though
the above functions are scalar, the positive definiteness property of the second
depends on the dimension d of the space containing = and y when forming the
scalar argument r = ||a — y||2.

These two examples already show that the matrix Ag x in (2) can be
sparse or have a strong off-diagonal decay. It will be very large if we consider
real-world problems with many data, arising e.g. from inverse engineering or
terrain modelling. If the data points are rather densely scattered over the
domain 2, the approximation power of the space (1) will be very good, but
the matrix in (2) will have lots of similar rows and columns, yielding a bad
condition number. The connection between these phenomena is described in
some detail in [17].

This paper concentrates on the numerical solution of large symmetric pos-
itive definite systems with matrices of the form (2). There are some additional
goals:

1) O(N) complexity of solving the N x N system,

2) O(1) complexity of evaluating an element of (1) with N terms and

3) getting away with n << N terms at a tolerable loss of accuracy, when
interpolating N data.

We shall describe greedy algorithms as recently studied by deVore [5] and
Temlyakov [24], but we shall omit multiple scales as proposed by Floater and
Iske [9] and continued later in [13] and [6]. The techniques will be partially
based on Krylov subspaces as recently and independently studied by Faul and
Powell [8].

§2. Splitting the Native Space Energy

Dropping @ in the notation, we can write functions from (1) in the form

Se,X 1= Z%‘D('al‘j) (3)
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with ¢ € RY, X = {z1,...,2n5} C Q C R? and arbitrary N. Our main tool
will be the natural inner product

(Se,x, 54,y )o = Zqu)(-,xj),deCI)(-,yk) = ZZdekCI)(xj,yk)
(4)

J P
introduced by a positive definite function ® on the union of spaces (1) for
arbitrary data sets X. We note in passing that one can form the corresponding
Hilbert space closure to get the native Hilbert space of ®, but we refer the
reader to [11] and [19] for details. If we fix the set X = {x1,...,2n} and the
corresponding positive definite matrix Ag x, we get an inner product

(C, d)A<1>,X = CTA‘I>,Xd (5)

on RY which is familiar from the theory of the conjugate gradient method
based on Krylov subspaces.

Note that the inner product (4) is zero if the function s. y vanishes on Y’
or if 54y vanishes on X. If we assume ¥ C X and make sure that sqy agrees
with s. x on Y (e.g. by interpolation on Y'), then

(Sd,v,Se,x —Sa,y)e =0
(6)

Isayllo + llsex = savlle = llse xlla-

The second identity can be viewed as a split of the energy of the function s. x
into the energy of its interpolant s4y on a subset ¥ of X and the residual
5¢,x — 84,y. We shall use this energy split over and over again.

§3. Interpolation in Native Spaces

At this point, we digress a little and study the interpolation of an arbitrary
real-valued function f on a domain @ C IR?. On each fixed finite subset
X C Q we can interpolate the values of f by a function s x from (1). Due to
(6), the energy ||ss,x||% is a monotonic function of X with respect to addition
of points, and it can be easily evaluated using (4). The energy is bounded
independent of f if and only if [22] the function f lies in the native space of
®, and in this case we have ||f|le = supy ||sf x||-

This observation has some consequences for applications. If the user does
not have any a-priori information on f, the proper choice of ® is a problem.
But if the behaviour of ||sf x||3 with respect to X is monitored for larger and
larger sets X, the user can switch to a less smooth @ if the energy values
grow dramatically with X. By (6) the behaviour of ||sf x||3 is related to the
energy || f — sy x||3 of the residual, and further study of this as a function of
X is needed, especially for f with additional smoothness properties. Current
starting points are in [20] and [10], and readers are encouraged to proceed
from there.
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§4. Iteration on Residuals

We now fix a positive definite function ¢ and a function fy from the native
space of ® or, at least, from some space of the form (1) for a rather large finite
set X. Our goal is to reconstruct fy by an iterative process. Note that this
solves a large system with the matrix from (2), if we start from fy := sf x
interpolating some given function f on X. In this case, we do not reconstruct
f but rather its interpolant. In both cases we need not worry about the
existence of || folle.

If we pick some numerically manageable finite set Yy and interpolate f
on Yy, we can define f; := fo — sy, v, and proceed iteratively by

f]‘_|_1::fj—8fj’yj, Y}‘CQ, j:(),l,... (7)

using finite sets Y} that we shall have to deal with later. Anyway, the energy
splitting (6) yields

lsg; vills +1F5— s v 118 = 11£ills
1fi = firills + 1 fi+1ll3 = 11F15

and by summation we get the telescoping sum

(8)

k k
S sy yills =Y NF = Fealls = 1folls = lfeealls <llfolls (9
j=0 j=0

which must necessarily converge for & — oo even if the choice of Y; is bad,
e.g. Y; =Y, for all j. By standard Hilbert space argumentation via Cauchy
sequences, the functions

k k
Jht1 i= ZSfj,ifj = Z(fj — fi+1) = fo— frr1
J=0 J=0
must converge in the norm ||.||¢ to some element ¢ in the native space, but
we do not want to use this fact. Our goal is to prove that the residuals fi
converge to zero, and this would imply that the functions g5 converge to fy,
yielding the desired reconstruction.

Of course we shall need some additional assumptions on the sets Y; to
be successful. Equations (8) and (9) suggest that we should let sy, v, take
up as much energy from f; as possible, and this will be our guideline for the
convergence analysis in the following sections.

§5. Conditions for Linear Convergence

For simplicity, let us first assume that sy, y; picks up at least a fixed percentage
of the energy of f;, i.e.

Isg;v; e = 211 £ills (10)
with some fixed vy € (0,1]. This is a disguised hypothesis on the proper choice
of Y;, and we have to prove later how to satisfy this assumption. From (8) and
(10) we conclude linear convergence of f; to zero via || fi41]% < (1 —7)|fl3-
This proves
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Theorem 1. If the choice of sets Y; satisfies (10), the residual iteration (7)
converges linearly in the native space norm, and there is an error bound

1fo = gulls = 1fells < (1 ="l folls.

Assumption (10) is not easy to handle, because the norm involves &
and the value of the right hand side is not explicitly known. But in case of
fo 1= sy x for some large finite set X C Q C R¢ we can restrict ourselves to
sets Y; C X, and all functions f; will stay in the finite-dimensional space (1).
On this space, we can pick any norm ||.||x, for instance any discrete L, norm
of functions on X, and make use of the norm equivalence

cllsllx < lislle < Cllsllx (11)

for all functions s from the space (1), where the constants satisfy 0 < ¢ < C.
Then we can try to get away with

sy v % = 8l 5115 (12)

with some 6 € (0,1] instead of (10). But since this equation implies (10) with
v > 6t /C? > 0, we get

Theorem 2. If the choice of sets Y; satisfies (12) for some norm ||.||x of
functions on X, the residual iteration (7) for reconstruction of fy := s¢ x
converges linearly in ||.||x and there is an error bound

C 2\ /2
I —anls < S (1-555) " Il

§6. Maximizing Energy of Interpolants

Our argument at the end of Section 4 leads to the problem of finding a finite
set Y such that the energy ||sfy]|3 of the interpolant of some function (or
residual) f is large. If fy € R is the vector of values of f on Y, the
interpolant sy y solves a system with a matrix A y defined as in (2), and the
energy is given by the quadratic form

Iseyvlls = fy Aoy~ fy = 1y [BAmin (Aoy ™) = 1[5/ Amae (Aa,y)

as a function of f and Y. The maximal eigenvalue Ap,qq (A y ) is hard to
discuss in general (see Narcowich and Ward [14] for results), and we simply
view this quantity as a factor that depends on the geometry of Y and the
number |Y| of points in Y. It is an interesting open problem to design some
Remes-type algorithm based on exchanges of points to arrive at the best choice
of a set Y with a prescribed number of points.
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In the special case |Y| =1, ¥ = {y} things are easy. We get

lsgy e = f(u)* ®(y,y) = f(y)* min B(z, 2)

and the maximum of f? will be the best choice, especially if ® is translation-
invariant or radial.

If we have YV C X for a large finite set X, we can invoke Courant’s
minimum-maximum principle to get Apae (Asy ) < Amaz (Ao, x) as an upper
bound that does not depend on the choice of Y. A reasonable strategy for
maximizing ||ss,y||3 then is to pick the |Y| points of X where f takes its
largest absolute values.

In the general situation, we have to face the fact that coalescing points
are not allowed. A reasonable strategy is to mimic the previous situation, i.e.
to take some large set X of well-distributed points and pick the points of X
where f is largest in absolute value.

Another possible strategy is the iterative greedy collection of more and
more points, forming a recursive Cholesky factorization. Since this possibility
does not seem to be familiar to researchers in this area, we outline the process
here. Assume that an interpolant to f on Y is available together with the
inverse B of Agy. We now want to add another point z € Q\Y to Y,
thus enlarging the energy of the interpolant. A naive choice of z is via the
maximum of the absolute value of f — sy y, but since we have

lsryvoralld = lspvlls +2F() D f9)@(z,9) + £2(2)®(z, 2), (13)

yeY

the best choice of z for fixed Y is obtained by maximizing the right-hand side
of this equation. Having found z, one has to update B in a suitable way.
First, calculate the vector v € R with components ®(z,y), y € Y and form
w := Bv. The number

1a:=8(z,2)—vTw=>&(z2) —v Bo

can be shown to be positive, because @ is positive definite and z does not
belong to Y. Then form v := —aw and C' := B + uTu/a. The matrix

(&)

then is the inverse of Ag y (.} needed for the interpolation on Y U {z}. Un-
fortunately, there is no numerical experience in this direction so far, especially
for the maximization of (13). A more careful calculation of the numerlcal com-
plexity reveals that we have nothing else here than a special formulation of
the partial Cholesky algorithm with pivoting. The choice of pivots, however,
is adapted to the setup of the problem as an interpolation.

Altogether, this section was intended to motivate readers to look at the
problem of finding good finite sets Y for improvement of interpolants.
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§7. A Simple Greedy Algorithm

Among other things, the previous section showed how to work on subsets
Y consisting of a single point y each. The best possible choice is to take
the point where f takes its maximum absolute value, and the interpolant is
seyy = F(W)@(y, )/ ®(y,y). We now do this iteratively in the sense of (7) by
picking Y := {y; } with |f;(v;)| = || fi||cc- In the “discrete” case fy := s5 x we
take the Chebyshev norm on X, while in the “continuous” case fy := f € C(Q)
with € being a compact subset of R?, we take the Chebyshev norm on €.

Due to Theorem 2, the discrete case leads to linear convergence towards
fo := 55 x, because (12) is satisfied with 6 = 1. From a theoretical viewpoint,
this 1s much better than the non-quantitative convergence result of Faul and
Powell in [7]. On the other hand, there always is the conjugate gradient
method as a competitor, and it has linear convergence, too. But it needs to
form matrix-vector products, while our greedy algorithm does not even store
the matrix. It simply needs two arrays of length |X| for the residuals and the
coefficients, and in each cycle it updates one cofficient and runs once over the
residuals to update them and find the maximum for the next iteration. This
extreme numerical simplicity must come at a price, and the price is very slow
convergence after some good progress in the first few iterations. We report
on numerical experiments and adaptive multiscale improvements in [23], but
at this point we want to direct the reader’s attention to extend the above
strategy, e.g. via some suitable preconditioning.

Before we look more closely at the greedy algorithm in the discrete case,
let us digress a little into the continuous case.

Theorem 3. If ® is a continuous translation-invariant positive definite func-
tion on a compact domain @ C R, the greedy algorithm for interpolation of
a function f from the native space of ® converges uniformly.

Proof: We have

s,y 1 = £7(y;)0(0) = || f;1|2.4(0)

and (9) shows that the quantities ||f;]|2, are summable. Consequently, the
residuals f; converge uniformly to zero on the compact set (2. O

Corollary 4. Under the assumptions on ® as in Theorem 3, the native space
norm is expressible via a series

1£13 = 600D £ () = 6(0) 3 I fill%

where

fo = F 1 fiyi)l = I filloo, fit1 :=f; — Fily;)o(- —y;)/6(0).

This result may look complicated at first sight, but it should be compared
to other definitions of the native space norm, e.g. via Fourier transforms, by
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abstract completion of a pre-Hilbert space, or by the supremum of the action
of certain functionals.

We do not want to go into details here (see [11], for instance), but prefer
to give an illustrative example. If specialized to Sobolev space WF(§2) with

k > d/2, one has to take ¢(x) = ||:1;||k d/zka_d/2(||:1;||2) in order to recover
Sobolev space as a native space for ®(x,y) = ¢(||x — yl||2). Now by Corollary
4 one gets the Sobolev norm of a function as a series containing just function
values on the domain in a numerically accessible way, using neither derivatives
nor integration (but, of course, maximization). It should be pointed out that
this technique provides some means to assess the Sobolev smoothness of a
given function numerically. Readers are encouraged to proceed from here.

§8. Dual Techniques

Another possible approach to solving a large N x N system with a large
symmetric and positive definite coefficient matrix Ag x via smaller finite sub-
problems is to define certain finite-dimensional subspaces S; of the native
space and to approximate the exact solution on X = {zy,...,zn} by approx-
imation in the native space norm. More precisely, the iteration starts like in
section 4 with some function fy and j := 0, and iterates like (7) according to

1fi —sille == Siélgj 1f; — slle (1)

Jit1 = fj — 5.

By standard arguments, this iteration also satisfies (8) and the rest of Section
4, including the summability condition (9). Note that if a space S; = Sy; ¢
has the form (1) for some finite set Y, then the best approximation solution
s; in (14) coincides with sy, y; and we are back to the method in Section 4.
This observation follows from Theorem 7 in Section 9.

But there are other possible choices for the spaces S;. In particular, Faul
and Powell [7] pick certain one-dimensional spaces S; = span{u;} for all j >
0. Then s; := aju; with o = (uj, fj)e/(u;,uj)e solves the approximation
problem, and we have the summability condition

Z Is;lls = Z lujllgaf = Z(” ” Fide = 1folls = Ifsralle < [lfolls-
(13)

§9. Cyclic and Greedy Dual Strategies

In [7], Faul and Powell fix N such functions u; by a certain precalculation that
we shall discuss later. These functions are used periodically, i.e. u; is used in
step 7 + kN for all £ > 0. The periodic reuse has the advantage that one can
precalculate and store the uj, if their construction is somewhat involved. We
start with a generalized and simplified version of the convergence result in [7]:
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Theorem 5. If f, is in the span of the functions u; for 1 < j < N, then the
cyclic dual method of Faul and Powell converges to fy.

Proof: Since everything takes place in a finite-dimensional space, and since
the technique involves an energy split, the functions ¢; = fo — f; converge to
some function ¢ in the span of the u;, and the f; converge to fy — ¢. But as
(15) implies

Uy Uy

lim ( Uy
Jujlle’

k—oo ||lujle

fo— g)cb

Jfiven)e =0 =

for all y, the functions fy and ¢ must coincide. O

There are lots of choices of u; that satisfy the hypothesis of Theorem 5.
Conjugate directions and u; := ®(-, ;) would do the job. The latter strategy
coincides with the greedy method, if the cyclic choice is given up in favour of
picking the point where the residual is maximal in absolute value. A linear
convergence result is possible, if such a modification is made in general:

Theorem 6. If f, is in the span of the functions u; for 1 < j < N, then the
iteration (14) with
(fjvukj)?b 1= max(fj,ur)p
‘ (16)
S; 1= span{ug,; }
converges linearly to fy.

Proof: We can proceed as in Section 5, using

JulF = man ;)

for all functions u in the span U of all «;. The assumption (12) is satisfied for
sj instead of sy, y; due to

6 = (fisur;)a -
’ (ukj7ukj )<I> !

Isillx = (sj0uk; Ja = (firury)e = 1 fillx
and the rest follows easily. O

The inner products in (16) can be evaluated explicitly, if we work in the
space (1) and use (4) and (5) in the form

(Se.x,5d,x )b = ZCde,X(SI?k)- (17)

k

This is particularly efficient if the functions u; have only a small number of
nonzero coefficients in their representation of the form u; = s, x. Another
possibility, exploiting the dual nature of the algorithm, is to store and update
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the inner products (f;,ux)e instead of the values fj(xy). So far, there is no
numerical experience with dual greedy algorithms, unfortunately.

One has a lot of leeway for picking suitable functions u;, especially when
preconditioning arguments come into play. Faul and Powell use local Lagrange
functions u; based on relatively small subsets Y; of X that contain z;. In
particular, u; € Sy; ¢ is defined by the interpolation conditions

uj(z;) =1
uj(xg) =0for all 2 €Y, k # 7,

and is expressible in the form u; = s.i y; = sgi x with at most |Y;| nonzero
coefficients. The precalculation involves the solution of N systems with |Y;| x
|Y;| matrices A y; and it can be kept at O(N), if the values |Y;| are bounded
independent of N. Our arguments in Section 10 will show how this technique
can be interpreted as preconditioning the matrix Ag x. For a fixed accuracy
to be obtained, and for their special choice of the sets Y;, Faul and Powell
then observe that they need only a small fixed number of cycles of the dual
algorithm. FEach cycle has N one-dimensional subproblems, but there are
techniques to keep each subproblem at a reasonable complexity, provided that
techniques like multipole expansions [1] or compactly supported radial basis
functions [26, 25] are used.

The selection of functions v is particularly good if there are orthogonality
or conjugacy relations among them. Let us look at an inner product (u;, ug)e
in case of (18), using (17) and u; = s.; x. We get

(ujv uk)‘l’ = Z cinuk(xm)v
m:z., €Y;
and this quantity vanishes if ¥; C Yy \ {a}.
This can be seen as a motivation for choosing

l’jEY}‘g{l’j,l’j+1,...,$N} (19)
as done by Faul and Powell. Even if the functions v are in general not mutu-
ally orthogonal they are at least linear independent as needed for Theorems
5 and 6. To see this note that the matrix C' = (¢]) which describes the tran-
sition from the basis (®(-,z;),1 < j < N) to (u;,1 < j < N) is an upper
triangle matrix and thus invertible if cg # 0 for 1 <¢ < N. This is indeed the

case because of ‘ ‘ ‘
0£ il = S cui(em) = c

m:z., €Y;

(18)

We finish this section by pointing out how to make optimal use of solving
N systems with |Y;| x |Y;| matrices Ag y; for subsets Y; in a precalculation.
If the full inverses of the Ag y; are stored instead of the coefficients of uj,
one can use the cyclic dual algorithm with S; := Sy; ¢. The energy split at
each step of the algorithm will then be better or equal to the split obtained
by the dual cyclic algorithm using a single u; € Sy; ¢ like the one used by
Faul and Powell. This is clear from (14), and the following theorem, which
is well known since the advent of splines, shows that we end up with a cyclic
interpolatory method of the form (7).
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Theorem 7. If'Y is a finite subset of §2, the approximation problem

el
A Nf = slle

for any f in the native space of ® is solved by the interpolant sy y .

Proof: Equations (6) generalize via continuous transition to the Hilbert space
completion to

(sry, f—spy)e =0
eyl + 1 —sevls =713

for all f in the native space, and the assertion follows. O

Consequently, algorithms using interpolants on finite subsets make opti-
mal use of the information contained in the space Sy ¢. This links the dual
techniques back to the interpolatory methods in Section 4. Numerical results
concerning the above cyclic interpolatory method, e.g. using the sets Y; of
Faul and Powell, are still missing. The progress must be better due to The-
orem 7, but at the expense of much more storage. And, an incorporation
of greedy selections using the good preconditioning power of the Faul-Powell
approach seems worth investigating.

§10. Quasi-Interpolation

There is a hidden link between the Faul-Powell technique, preconditioning of
Ag x, and certain quasi-interpolation methods using local Lagrange functions,
as investigated by Beatson, Powell and their coworkers (see for example [2]).
If we write the interpolant s; x to some function f in Lagrange representation

SpX = Z fl@j)v; (20)

with NV Lagrange basis functions v, € Sx ¢ satisfying v;(zr) = 65, we can
relax (20) to a quasi-interpolation formula

N
spux = flaju (21)
j=1

for any other choice of functions u; that approximate the global Lagrange
basis functions v;. The choice (18) for certain subsets Y; is quite natural,
because one can often [3] observe that local Lagrange functions based on a set
Y; of neighbouring points to z; € Y; decay quickly away from ;. Assuming
(18) (but not (19)) from now on, the representation (21) can be rewritten in
terms of u; = s, x and (3) as

spax =) f@) D0 ef®om) =) ®(oar) Y, fley)e

k:xr €Y; k=1 J:xRp €Y;
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The coefficients of the second representation can be evaluated locally, and
the computational advantage is particularly evident in case of compactly sup-
ported radial basis functions.

We now want to look at the quality of such quasi-interpolants on the
discrete set X itself. The operator that maps the vector

f|X = (f(xl)v"'vf(l'N))T EIRN

to S, X | € RY can be written as the matrix product Ag x - C, where

C = (c}) is the nonsymmetric N x N matrix with row index & and column
index j containing the coefficients C‘]i of the u; columnwise. The operator that
generates the residuals on X then is En — Ag x - € with the N X N identity
matrix Exn. In case of Y; = X for all j we have €' = Aq)’X_l, and there
are good reasons to expect that there are numerically interesting cases where
some matrix norm of Enxy — Ag x - C is smaller than one. In such cases one
can solve the problem on X by successive quasi-interpolation via a Neumann
series. In terms of vectors f/ and s/ containing the values of residuals f; and
quasi-interpolants to f; on X, we have the linearly convergent iteration

fO = f0|X
sl = Ao x - C'fj
Ftli=fl -5/ = (Exy — Ag.x - C)yt1f0

calculating the interpolant to the data of fy on X as the sum over the s/. Note
that we cannot use the energy split here, because we have left the context of
interpolation and approximation. Note further that C acts as a (nonsymmet-
ric!) preconditioner or an approximate inverse to Ag x.

§11. Experiments Concerning Quasi-Interpolation

To calculate the norm of Exy — Ag x - C' numerically, we observe that the
matrix Ag x - C has the entries uj(:zji), where 7 1s the row index. Thus the
entry at (¢,7) of Eny — Ag x - C vanishes for 2; € Y}, and the column-sum
norm of Enx — Ag x - C can be written as

max > ful(@i)l. (22)

Again it turns out that the decay of local Lagrange functions is essential.

In case of data on the uniform grid (RZZ)?, a radial basis function ¢.
with support in [0,c], and sets V; := {y € (hZ)* : |z; — y|2 < R} of
neighbours to z; within a radius R, the norm in (22) can be evaluated by
looking at the local Lagrange function uy with respect to the origin and the
set Yy := {y € (RZZ)? : |ly||]2 < R} of local interpolation points. Since both
Yy and the support of ¢ are bounded, the function wuy is zero on integer grid
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Fig. 1. C =4, R = 6, norm = 0.48, and ' =5, R = 8, norm =0.29.

Tab. 1. Point numbers M, required for norm < p and N points in support of ¢.

N‘ 5 9 13 21 25 29 37 45 49 o7 61

Myog| 5 5 5 9 29 49 69 81 97 145 145
Mo+ 5 5 21 29 109 137 149

points outside the disk around zero with radius R 4 ¢. Omitting the value
1 at the origin for scaling reasons, Figure 1 shows the behaviour of uy on
integer gridpoints around the origin. We picked two cases for the C? function
¢o(r) == (1 —r/c)iL(1 + 4r/c) from [25] where the norm of Ex — Ag x - ¢ is
smaller than one, and the corresponding numbers of local interpolation points
in Yy are 113 and 197, respectively.

For applications, it is necessary to know how large R must be for fixed
¢ and h in order to make the norm of Exy — As x - ¢ smaller than 0.9 or
0.1, say. Since R and ¢ scale with &, the numbers M and N of points in Yj
and the support of ¢ depend on R/h and C/h, respectively. Given a support
radius ¢ and a maximal meshwidth A such that the support of ¢. contains
N =1,5,9,13,... points, we provide in Table 1 the minimal number M, of
points in Yy that are necessary to keep the norm of Enx — Ag x - ¢ below p.
Another way of reading Table 1 is that if the matrix As x for interpolation
by ®(z,y) := ¢.(||x — y||2) on a regular grid has bandwidth N, then it has
an approximate inverse with bandwidth M, that leads to a residual matrix
of norm p. The quasi-interpolant is to be calculated via subproblems with
M, x M, matrices. It is an interesting challenge to provide sparse approximate
inverses for sparse symmetric positive definite matrices, because normally the



14 R. Schaback and H. Wendland

exact inverses will not be sparse.

§12. Conclusions

At first sight, our results on linear convergence look promising, but they still
are too weak to provide a convergence rate that is independent of IV, since
no preconditioning techniques are involved. Improvements should thus focus
on preconditioning, e.g. along the lines of Faul and Powell. Greedy methods
for fixed ® are limited to quick-and-dirty approximations with few nonzero
coefficients and need extension to multiscale techniques. The adaptive greedy
method in [23] is a first step, but the results shown there imply that it has to be
stopped before it runs into scales that are too small. A possible continuation at
small scales is provided by quasi-interpolation as outlined here. A combination
of both techniques generates approximations which consist first of K << N
global terms obtained by an adaptive greedy method, followed by N local
terms constructed by quasi-interpolation. The overall complexity can thus be

kept at O(N).

Acknowledgments. The authors are grateful to Fabien Hinault for detecting
an error in the first version of the paper.
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