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Abstract

In this paper, we are interested in some convergent formulations for

the unsymmetric collocation method or the so-called Kansa’s method. We

review some newly developed theories on solvability and convergence. The

rates of convergence of these variations of Kansa’s method are examined and

verified in arbitrary–precision computations. Numerical examples confirm

with the theories that the modified Kansa’s method converges faster than

the interpolant to the solution; that is, exponential convergence for the

multiquadric and Gaussian RBFs. Some numerical algorithms are proposed

for efficiency and accuracy in practical applications of Kansa’s method. In

double–precision, even for very large RBF shape parameters, we show that

the modified Kansa’s method, through a subspace selection using a greedy

algorithm, can produce acceptable approximate solutions. A benchmark

algorithm is used to verify the optimality of the selection process.
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1 Introduction

Many successful applications of recently developed mesh-free methods can be found

in different Mathematics, Physics and Engineering journals; for example, see [1, 2,

3, 4, 5, 6, 7, 8, 9, 10]. In this paper, we are interested in the radial basis function

(RBF) method for solving partial differential equations (PDE) in strong form.

We consider PDE in the general form of

Lu = f, L : U → F , (1)

where L is a linear operator between two normed linear spaces U and F . The

PDE (1) can be solved by a sufficiently smooth solution u∗ ∈ U that generates the

data f := Lu∗ ∈ F . Equivalently, we write (1) as an uncountably infinite set of

simultaneous scalar equations

λ[u] = fλ ∈ R, for all λ ∈ Λ. (2)

In general, a single set Λ of functionals contains several types of differential or

boundary operators. Discretization consists of replacing the infinite set Λ by some

finite unstructured subsets Λm := {λ1, . . . , λm}. The space spanned by these

functionals can be called the test space, and Λ is the infinite test set.

In order to obtain a numerical approximation u, we assume that there exists

an approximation to u∗ in the trial space given by the span of {u1, . . . , un} such

that

u :=
n∑

j=1

αjuj ∈ Un := span{u1, . . . , un}. (3)

Again, we assume sufficient smoothness in u∗. In case of nonsmooth or singular

solutions, suitable singular functions should be added to the trial space [11, 12].

The discretized problem then reads as

λi[u] =
n∑

j=1

αjλi[uj] = fλi
=: λi(u

∗), 1 ≤ i ≤ m, (4)

when written as linear equations for a function u of the trial space U . Note that

2



(2)–(4) are general enough for different classical methods and for both strong and

weak formulations.

The unsymmetric RBF collocation method was first proposed by Kansa [13, 14].

In the original formulation, the trial and test spaces were closely related. Let Φ :

R
d × R

d → R be a symmetric positive definite kernel and Xn = (x1, . . . , xn) ⊂ R
d

be a set of centers. Usually, these centers are irregularly placed in the domain Ω

in which the PDE is defined. The trial function in (3) is given by uj := Φ(·, xj)

for 1 ≤ j ≤ n and the test functional λi (1 ≤ i ≤ n) in (4) is defined by applying

the differential (or boundary) operator followed by a point evaluation at xi ∈ Xn.

The resulting unsymmetric collocation matrix has the ij-entries

λi[uj ] = λ
y
i Φ(y, xj), 1 ≤ i, j ≤ n,

where the superscript y of λ
y
i indicates the variable of Φ on which the functional

operates. Although the method is relatively easy for implementation, there are

some open questions that need to be answered.

From the theoretical point of view, the original formulation has neither error

bounds nor convergence proofs because the method may result in singular systems

in some specially constructed situations [15]. In order to carry out some mathe-

matical analysis, it is necessary to make further assumptions and modify the for-

mulation. In some of our earlier works [16, 17, 18], Kansa’s method was modified

in such a way that solvability is guaranteed. Later, we proposed in [19, 20] an-

other variant of the method so that error bounds become possible. The solvability

and convergence theorems of the modified formulations are reviewed in Section 2.

The first goal of this paper is to numerically compare among a few formulations

of the unsymmetric meshless collocation methods. We use the arbitrary–precision

computations capability of Mathematica c© to numerically verify the proven theory:

the numerical solution of our modified unsymmetric collocation method converges

faster than the interpolant with respect to the residual norm.

It is well-known that the standard use of shifted radial basis functions forms a

terrible basis of a space which is extremely useful for approximation [21, 22, 23].

When built upon the standard RBF basis, ill-conditioning will thus naturally occur

for any RBF technique, including Kansa’s method [24, 25]. For practical purposes,
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appropriate implementations of Kansa’s method must therefore be able to circum-

vent this and provide reasonably stable approximations of the PDE solutions.

Using a greedy algorithm [17], our algorithms begin with a subspace selection that

adaptively selects a trial space that keeps the condition number moderate and

prevents numerical breakdown. The greedy algorithm is highly efficient because

its column-selection process is carried out by a fast formula. In order to study

the optimality of this selection process, we couple the subspace selection technique

with the idea of effective condition number. Despite of its high complexity, this

coupling is used as benchmark for the sake of comparison. Details are given in

Section 3.

After identifying a suitable trial space (or RBF centers), the next phase is

to solve the resultant system based on the modified Kansa’s formulations. In

Section 4, two approaches are considered:

• Linear optimization has a simple and solid mathematical foundation in cases

where the maximum principle holds, but is more complicated to implement.

• Least squares optimization is much easier to implement, but it has a much

more complicated mathematical background [26, 27].

Lastly, some numerical examples solved by Matlab c© are given to conclude the

paper.

2 Solvability and convergence

We overview the solvability and convergence results of the modified Kansa’s for-

mulation. Readers are referred to the original articles [17, 18, 19, 20] and an

extension [27] to weak problems for details. As mentioned before, Kansa’s original

formulation may fail in certain cases even though it is unlikely to happen. The

method is widely used by many researchers. The following theorem addresses that

solvability is guaranteed if the trial functions or equivalently the RBF centers are

correctly chosen.

Theorem 1 (see [17]). Assume the kernel Φ to be smooth enough to guarantee

that the functions uλ := λy Φ(y, ·) for λ ∈ Λ are continuous. Furthermore, let the
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m functionals λ1, . . . , λm of Λm be linearly independent over U . Then the set of

functions {uλ} for λ ∈ Λm constructed above is linearly independent, and hence the

unsymmetric collocation matrix is nonsingular for properly chosen trial centers.

Suppose (2) is well-posed in a Hilbert space H. Assume that

‖u‖Λ := sup
λ∈Λ

|λ(u)| ≤ ‖u‖U for all u ∈ U (5)

is a norm on U and is weaker than the norm in U . Moreover, let Uǫ be a subspace

of U such that for all u ∈ U there is some approximation vu,ǫ ∈ Uǫ with

‖u − vu,ǫ‖Λ ≤ ǫ‖u‖U for all u ∈ U (6)

for any small number ǫ > 0. We would like to construct a function vǫ ∈ Uǫ that

solves

vǫ = arg min
v∈Uǫ

‖v − u∗‖Λ.

We do not know whether the minimum is attained and how it can be obtained,

but due to (6) we can assume that there is a function v∗
ǫ ∈ Uǫ with

‖v∗
ǫ − u∗‖Λ ≤ 2‖vu∗,ǫ − u∗‖Λ ≤ 2ǫ‖u∗‖U (7)

which is sufficient for our purpose.

Theorem 2. [18, 19, 20] Let U be a normed linear space with norm ‖.‖U , dual

space U∗ and dual unit sphere U∗
1 := {λ ∈ U∗ : ‖λ‖U∗ = 1}. Let a test set Λ ⊂ U∗

1

be given such that ‖.‖Λ is defined on U with (5). Assume further that the general

interpolation problem (2) is well-posed. Let {Uǫ}ǫ be a scale of subspaces of U for

ǫ → 0 such that for all u ∈ U there is a vu,ǫ ∈ Uǫ with (6). For all ǫ → 0, take a

function v∗
ǫ satisfying (7). Then the error bound (7) holds and there is convergence

‖v∗
ǫ − u∗‖Λ → 0. �

Trial spaces generated by spans of RBFs with sufficiently dense centers form a

sequence of subspaces getting dense in U . We know the RBF interpolant satisfies

(6) for all ǫ > 0. Hence, the convergence rate of the unsymmetric collocation

5



method is faster than that of the interpolant in the trial space Uǫ to the exact

solution in U with respect to the norm ‖.‖Λ.

In the next section, we will put all these abstract ideas into numerical algo-

rithms for double–precision computations.

3 Selecting Trial Functions Adaptively

This section is devoted to numerical algorithms for applying the modified Kansa’s

formulation under double–precision. We gave answers to the questions of solvabil-

ity and convergence in Theorem 1 and Theorem 2, respectively. According to these

theorems, the selections of trial and test spaces for the unsymmetric collocation

method need special attention from both theoretical and numerical points of view.

First, the trial and test spaces are no longer generated by a single set of centers.

Consider some discretizations Λm ∈ Λ and Un ∈ U with m < n. Theorem 1 guar-

antees that the m × n full matrix is of full rank for sufficiently large m. Hence,

there must exist a nonsingular m×m submatrix within the full matrix that allows

us to perform the unsymmetric collocation method.

As mentioned in the introduction, the unknown solution is expanded in terms

of an unstable basis in Kansa’s method. To achieve some stabilization, we rely on

a subspace selection process to choose a set of suitable basis functions for well-

conditioned computations in the sense of the condition number of the resultant

Kansa’s matrix. In [17], an adaptive algorithm is proposed to properly select a

trial space. The algorithm is called matrix–free since the a–priori evaluation of

the full m × n matrix is unnecessary. Instead, the algorithm builds small k × k

matrices starting with k = 1, 2, 3, . . . iteratively which are updated by calculations

of complexity O(k2) and it usually stops at rather small values of k. If the algo-

rithm runs up to a maximal n̂, the total storage requirement is O(n̂(n + m + n̂))

instead of m · n for a full-size matrix algorithm. Its computational complexity is

O(n̂2(n + m + n̂)). Note that if trial functions and test functionals are not cho-

sen adaptively and if m and n are moderate in size, a QR-factorization can be

employed with some trade-off of efficiency.
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3.1 Adaptive Greedy algorithm

Here is the numerical procedure of the adaptive greedy algorithm. After the k-th

iteration, k test functionals λ1, . . . , λk (i.e. collocation points) and k trial centers

x1, . . . , xk (i.e. RBF centers in case of a Kansa’s method) are chosen, leading to

trial functions ui := Φ(·, xi), 1 ≤ i ≤ k. Instead of a huge unsymmetric m × n

system of unknown rank, we have a small nonsingular k × k subsystem

AΛk,Uk
αk = fΛk

,

corresponding to an approximate solution

sk :=

k∑

i=1

αk
i ui.

The adaptive algorithm automatically searches for a suitable new test/trial pair

(λk+1, xk+1) at each iteration, consisting of a test functional λk+1 and a trial center

xk+1.

First, we pick from Λm a functional λk+1 such that the residual |λk+1(sk − u)|
is the largest. At the same time, this process selects a new row and we define

Λk+1 := Λk ∪ {λk+1}.

Next, we select a column in order to complete the (k + 1)-st selection process.

If we consider the new column as a free and variable function w ∈ Un, then the

determinant of AΛk+1,Uk+1
is a function v(w). A fast computation formula for

computing such determinants can be found in [17], namely

v(w) := |det(AΛk+1,Uk∪{w})| = |det(AΛk,Uk
)| ·
∣∣∣∣∣

k∑

i=1

γiλiw + (−1)k+1λk+1w

∣∣∣∣∣ , (8)

where γ1, . . . , γk are independent of w and are given by the solution of

AT
Λk,Uk

γ = (λk+1u1, . . . , λk+1uk)
T .
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This is easy to calculate since the algorithm keeps A−1

Λk,Uk
in storage and updates

it for increasing k. Then, the (k + 1)-st column is picked such that the new

determinant is closest to 1. We iterate until one of the stopping criteria is met.

Figure 1 and Figure 2 show the selections of the greedy algorithm for a Laplace

equation in [17]. All settings are identical except the values of c are different: c = 1

and c = 5, respectively, in these figures. Trial centers placed in [−6, 6]2 are input to

the greedy algorithm for the subspace selection process. The underneath coefficient

matrix for c = 1 is relatively well-conditioned compared to that for c = 5. Hence,

we observe that there are more trial centers in Figure 1 than in Figure 2. This

reflects the fact that double precision computations cannot handle as many trial

centers when c increases. Since the far-field of the multiquadric RBF is behaving

like a linear function, it is not preferred by the greedy algorithm. Note that trial

centers closer to the domain are more likely to be selected for smaller values of c.

3.2 Benchmark algorithm

The greedy algorithm relies on the determinant function to locate the “best” RBF

center in each iteration. However, the determinant function can be misleading.

Consider

A =

(
δ 0

δ δ−1

)
.

The determinant of A is 1 for all δ while the condition number is

κ(A) =
σ1

σn

=
1

2δ2

(
1 + 2δ4 +

√
4δ8 + 1

)
,

where σ1 and σn are the maximal and the minimal singular values of A, respectively.

Note that κ(A) → ∞ as δ → ∞. Moreover, if we solve a system Aα = b with a

fixed b, the condition number may not be a good estimation either. The condition

number is used to provide a bound of relative errors from the perturbation of the

matrix A and all vectors b. The bound is tight only for the worst situation.

The effective condition number was introduced and studied in Chan and Foulser

[28]. Subsequently, it was applied to boundary value problems in Christiansen and

Hansen [29], and to the boundary integral equation in Christiansen and Saranen
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Figure 1: Loci of trial centers chosen by the greedy algorithm for c = 1.
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Figure 2: Loci of trial centers chosen by the greedy algorithm for c = 5.
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[30]. Other kinds of effective condition numbers are given in Banoczi et al. [31],

where they are applied to the Gaussian elimination and the QR factorization.

More recent references for the effective condition number can be found in [32, 33].

Consider a full-rank matrix A ∈ R
m×n with m ≥ n with SVD decomposition

A = UΣV ∗. With β = U∗b the effective condition number for Aα = b is given by

κeff(A, b) := ‖b‖
/

σn

√(
β1

σ1

)2

+ . . . +

(
βn

σn

)2

≤ κ(A) for all b ∈ R
n.

It is possible to make the column selections dependent on the right-hand vectors

by replacing the determinant function (8) with the effective condition number (as

a function of w ∈ Un)

ṽ(w) :=
∣∣κeff(AΛk+1,Uk∪{w}, bk+1)

∣∣ .

Within each iteration of the adaptive algorithm, the vector bk+1 := {λi(sk−u)}k+1
i=1

remains fixed for all w ∈ Un. Hence, ṽ(w) only takes one input argument.

Such modification is persuasive, but the drawback is the lack of a fast formula.

At the k-th iteration, we need n computations of SVDs with matrices of size

(k + 1) by (k + 1). For our numerical examples in Section 5, we treat this κeff -

based algorithm as a benchmark and we keep using the determinant function as

our column-selection criteria which is both efficient and close-to-benchmark.

4 Global Testing

Besides of solvability in theory, we showed how the adaptive greedy algorithm se-

lects proper subspaces of the full trial space to guarantee well-condition in double–

precision subsystems for practical computations. In this section, we take care of

the global error and the ways of obtaining the unknown RBF coefficients α. Sup-

pose m test functionals and n trial centers are input to the greedy algorithm. We

assume that the greedy algorithm terminates after n̂ steps with n̂ ≤ min(m, n).

This results in n̂ test functionals and n̂ trial centers being selected.

The next step is to obtain a numerical solution based on the selected n̂–
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dimensional trial space Un̂ = span{u1, . . . , un̂} or RBF centers Xn̂. The original

algorithm in [17] performs an exact interpolation by solving the n̂× n̂ subsystem.

However, this simple computational technique does not have a theoretical founda-

tion or a convergence analysis. To apply the convergent modified Kansa’s method,

we are only interested in the n̂ trial centers.

Theorem 2 gives an error estimation based on the infinite dimensional test space

Λ. Following the same idea as in [19], we get a similar estimation on the discretized

finite dimensional test space Λm̂ (m̂ ≥ m ≥ n̂). Consider m̂ = m̂(Xn̂) collocation

conditions, depending also on the selected RBF centers Xn̂, whose density is dense

enough for the convergence theory. In particular, we required that a bound on the

PDE residual to hold,

‖vu∗,ǫ − u∗‖Λ ≤ 2‖vu∗,ǫ − u∗‖Λm̂
.

After discretizing Λ by Λm̂, we rewrite the problem on Λm̂ and this has become a

standard finite–dimensional linear optimization problem. Its convergence rate is

only off by a constant factor from the solution of the infinite problem on Λ. Such

discretization does not affect the convergence analysis. An adaptive algorithm for

the linear optimization process can be found in [19].

We are required to solve an m̂ × n̂ overdetermined system by using linear

optimization. The convergence rates of the interpolant in the Un̂ spaces carry

over to convergence rates of the PDE solutions, precisely as in the FEM case.

However, linear optimization is computationally much more difficult than linear

system solving.

It is well-known that the least squares optimization is linear and numerically

efficient. We prefer to use a least–squares solver instead of linear optimization.

Furthermore, we can obtain an iterative scheme by iterating the greedy algorithm

on the residual function to select a larger set of trial functions. Lastly, we solve

the overdetermined system with all selected trial functions by a full least squares

optimization. Our proposed iterative least squares scheme, in fact, has very good

efficiency and accuracy. In the next section, we demonstrate some promising close-

to-benchmark results in double–precision computations.
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5 Numerical examples

5.1 Examples with arbitrary-precision

First of all, we demonstrate some convergence results of the modified Kansa’s

formulations in arbitrary–precision computation. Here, RBF interpolations are

tested against RBF-PDE with the original Kansa’s method. The test problem is

a two-dimensional Poisson equation found in [34, 35]. The exact solution is given

as

u∗(x, y) = sin
πx

6
sin

7πx

4
cos

3πy

4
cos

5πy

4
.

Data points are uniformly spaced with mesh norm h between 1

5
to 1

25
. For each

tested h, trial spaces are identical for all methods.

In Figure 3, all multiquadric shape parameters are fixed at c = 1. All tested

formulations demonstrate exponential rate of convergence. As h decreases, the

accuracies among all methods become similar. Although the original Kansa’s

method may appear to be superior over our algorithm for large h, its convergence

rate seems to be slower than the others as h → 0.

To see a clear demonstration of the superior convergence rates of the modified

Kansa’s methods, the shape parameters are chosen to be the PDE–optimal ones

c = c∗(h) reported in [35] in the second example. We again observe that the

modified Kansa’s formulations PDE-LS and PDE-LO show faster convergence rates

as h → 0 in Figure 4. As h decreases, c∗(h) increases from 2.074 to 6.637. This is

a situation to which our theories cannot be currently applied, because we fix the

scale of our radial basis function Φ throughout. Furthermore, it is very unusual

to increase the scaling c with decreasing h, because as the number of centers

increases, one should reduce the value of c in order to circumvent the problem of ill-

conditioning in double–precision computations. However, in [35], the authors argue

that by using high-precision computation with less centers, computation time can

be saved enormously. This is perfectly in line with the findings of several authors

[36, 37, 38] concerning the “flat limit” c → ∞: interpolants using analytic radial

basis functions will often converge towards multivariate polynomial interpolants

with good approximation properties. However, a thorough error analysis of the

“flat limit” is missing. We leave this as an open question for future study.

12



0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Mesh norm

M
ax

im
um

 e
rr

or
 

 

 

Interpolation
PDE−Kansa
PDE−LS
PDE−LO

Figure 3: Arbitrary–precision computations: Error profiles for various un-
symmetric meshless formulations with a fixed shape parameter c = 1.
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13



5.2 Examples with double-precision

In this section, we show some numerical examples that demonstrate the efficiency

and stability of our proposed algorithms in double–precision. In all examples, we

have used the multiquadric kernel

Φc(x, y) =

√
1 +

||x − y||2
c2

,

where x, y ∈ R
2 and c > 0.As a test equation, we solve the Poisson problem with

Dirichlet boundary conditions on Ω = [−1, 1]2, i.e.

△u(x) = f(x) for x ∈ Ω ⊂ R
d,

u(x) = g(x) for x ∈ ∂Ω.
(9)

The functions f and g in (9) are generated by the exact solution

u∗(x, y) =
1

2
log
(
(x − 2)2 + (y − 2)2

)
.

All computations are carried out in Matlab c© with double–precision. Under

the assumption that the solution is sufficiently smooth, we allow RBF centers to

located outside of Ω by placing n trial centers in [−4, 4]2. The numbers of input

test functionals are m ≈ 1

5
n. The tested n ranges from 643 to 53351. Reported

errors are measured by the standard root-mean-square (RMS). Five algorithms are

tested:

Original greedy (OG) is the algorithm proposed in [17]. Once the greedy algo-

rithm terminates after n̂ steps, an n̂ × n̂ matrix system is solved in order to

obtain the desired numerical solution.

Linear optimization (LO) is the algorithm proposed in [19]. Instead of solving

a square subsystem, this algorithm will take all test functionals (i.e. m̂ = m)

into account and solve an overdetermined system for the desired numeri-

cal solution. By the RBF interpolation theory [39], this algorithm enjoys

exponential convergence for certain class of RBF.

LS–1 loop (LS1) is a simplified version of LO. We simply replace the LO solver
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by the least squares solver for the overdetermined system using Matlab c©

built-in backslash function (e.g. QR-decomposition). Despite the lack of a

convergence theory for strong problems, this algorithm is completely linear

and hence efficient. Note that [27] allows discrete least–squares solvers for

weak problems, and chances are good that the results carry over to strong

cases.

LS–2 loops (LS2) applies the greedy algorithm to the residual function of LS1

in order to collect a larger set trial centers. This often results in a small

increment of the number of trial centers. However, the extra trial centers

could greatly improve the accuracy upon LS1.

LS–3 loops (LS3) follows the idea of LS2 and applies one more iteration based

on the residual function of LS2.

Effective (Eff) is based on the greedy algorithm, but replaces the determinant

function by the effective condition number function in order to locate the

best trial center for each iteration. We have a strong motivation for making

such a modification, but we have not developed a fast formulation to make

it practical yet. We treat this as the benchmark algorithm for accuracy and

stability.

In Figure 5, the error profiles of different algorithms against various shape

parameters c are shown. We tested up to c = 10 that is a considerably large

value in double-precision computations. The numbers of selected trial centers n̂

are shown in Figure 6 for each method. Since OG, LO, and LS1 are built upon

the output of the greedy algorithm, their corresponding n̂ are identical.

Note, from Figure 5, that the OG algorithm proposed in [17] is somehow un-

stable. For certain values of c, the RMS error of the numerical solution could be

much larger comparing to the nearby values. Next, the exactly determined sys-

tem in OG is replaced by some overdetermined approximations. We observe that

the LO has slightly better accuracy and gives a more stable error profile. After

we replace the linear optimization by the least square minimization, LS1 shows

a significant improvement in accuracy comparing to the two previously proposed

methods. However, if we compare the LS1 with the benchmark curve Eff, the Eff
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Figure 5: Double–precision computations: Error profiles of different greedy
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Figure 7: Double–precision computations: Error profiles of different greedy
algorithms against the mesh norms of the input trial centers.
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curve shows a rather dramatic improvement in accuracy. In Figure 6, we observe

that Eff with c ≈ 1 are running on a smaller subspace, but has better accuracy.

This suggests that the determinant based greedy algorithm is not making the

best possible decision in picking trial centers. We overcome this by the iterative

approach.

As mentioned in the previous sections, the effective condition number based

strategy of trial centers selection is extremely slow. To overcome this problem, we

iterate on the residual of LS1 and collect a larger set of trial functions. This gives

the curve LS2. In the same way, we have LS3 if we iterate one more time based on

the residual of LS2. The three error curves of Eff, LS2 and LS3 are very close to

each other. Moreover, the number of selected trial centers are similar in size when

c is large. We believe that the iterative least squares approach provides a fast and

efficient way to obtain a close-to-benchmark unsymmetric collocation solution.

In Figure 7, the shape parameter is fixed at c = 1 and we want to observe

the behaviour as the number of input trial centers and test functionals increase.

The dimensions of the selected subspaces are shown in Figure 8; again, the curves

of OG, LO and LS1 are overlapped. In Figure 7, the mesh norm denotes that

of the trial centers input to the greedy algorithm. Since the input trial centers

are placed in [−4, 4]2, the underneath matrix is of very large-scale. Due to the

ill-conditioning problem of the underneath matrix system, decreasing the mesh

norm of the input trial centers does not imply that of the selected ones. Instead of

convergence, Figure 7 should be viewed as a demonstration of numerical stability

of our algorithms.

From Figure 7, we observe instability in the curve OG once again. For (input)

mesh norms down to around 0.13, all curves show the similar tendencies of con-

vergence. As the density of input trial centers decreases, the algorithms begin to

show different performances. Among all single loop algorithms, Eff shows the best

accuracy. However, its RMS error appears to stay flat and convergence ceases for

mesh norm smaller than 0.08 (with an error around 10−9). On the other hand, we

can clearly observe that LS1 is better than OG and LO in accuracy. Note that

the curve LO terminates earlier than the other curves due to the “out-of-memory”

problem. In Figure 9, we show the computation times1 of OG, LS1 and LS2 for

1Matlab c© Version R2007a running on a Dell Precision WorkStation 670–Intel(R) Xeon(TM)
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Figure 9: Computation times corresponding to Figure 7.

completeness.

As we shift our focus to LS2 and LS3, they both show better accuracy than

Eff. Moreover, LS2 and LS3 are running on large subspaces in all tested cases

in comparison to all single-loop algorithms. Overall, LS3 shows slightly better

accuracy than LS2. While LS2 flats out at the last two data points, LS3 remains

converging. One reason for the success of LS2 and LS3 is their large number of

“good” trial functions. Suppose a fast formulation is available for Eff, it is of no

doubt that iterating the effective condition number based greedy algorithm will

give us an even better algorithm. We leave this to our future study.

6 Conclusions

In this paper, a new class of convergent formulations is proposed for solving PDEs

via an unsymmetric radial basis function collocation method. Some results ob-

tained by arbitrary–precision computations are given as a numerical verification

CPU 3.00GHz (2CPUs) with 3.00GB of RAM.
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of our theories and new formulations of Kansa’s method. For practical purposes,

we compare the same formulations by applying some numerical algorithms with

subspace selection in double–precision. Our proposed algorithms show signifi-

cant improvement in different aspects. The trial function selection criteria based

on effective condition numbers demonstrates the approximation power of a good

greedy algorithm. Numerical efficiency is greatly improved by replacing the lin-

ear optimization by least–squares. Despite the lack of a full convergence theory,

the least–squares approach demonstrates better accuracy. Furthermore, its cor-

responding iterative schemes are fast and show accuracies as good as that of the

benchmark algorithm based on effective condition numbers.
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