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Abstract: This paper constructs unique compactly supported functions in Sobolev

spaces that have minimal norm, maximal support, and maximal central value, un-

der certain renormalizations. They may serve as optimized basis functions in

interpolation or approximation, or as shape functions in meshless methods for

PDE solving. Their norm is useful for proving upper bounds for convergence

rates of interpolation in Sobolev spaces Hm
2 (Rd), and this paper gives the correct

rate m−d/2 that arises as convergence like hm−d/2 for interpolation at meshwidth

h → 0 or a blow-up like r−(m−d/2) for norms of compactly supported functions

with support radius r → 0. In Hilbert spaces with infinitely smooth reproducing

kernels, like Gaussians or inverse multiquadrics, there are no compactly supported

functions at all, but in spaces with limited smoothness, compactly supported func-

tions exist and can be optimized in the above way. The construction is described

in Hilbert space via projections, and analytically via trace operators. Numerical

examples are provided.
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1 Introduction

In general, a test function is a smooth compactly supported (CS) function, some-

times assumed to be of infinite smoothness, and often called a bump function.

Such functions are very useful in Analysis at various places, e.g. as mollifiers or

as trial functions.

In reproducing kernel Hilbert spaces like global Sobolev spaces, they also help to

prove certain results, e.g. the optimal rates of approximations of derivatives by

scalable stencils [6].
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But a closer look at test functions in kernel-based spaces reveals that they may not

even exist in general. Consequently, this paper focuses on test functions in kernel-

based spaces, their existence, their properties, and their applications. While writ-

ing, it emerged that there seems to be no general theory of compactly supported

functions in Sobolev spaces, and this paper tries to fill the gap in that generality.

First, the basics of kernel-based spaces are stated, for fixing notation and the con-

text. Section 3 turns to compactly supported functions, and Section 4 provides a

simple application to the error analysis of interpolation.

Then Section 5 shows that compactly supported functions may simply not exist at

all, if Fourier transforms of kernels decay exponentially. But in cases of algebraic

decay, like for the Matérn kernel generating Sobolev spaces, there exists unique

norm-minimal functions b∗r with support on the ball Br(0) of radius r around the

origin and value b∗r (0) = 1. By uniqueness, they are necessarily radial.

Other properties of these functions and their norms are proven in Section 6. When

norms are kept bounded, they have the maximal possible value at zero and the

least possible support radius. Section 7 considers the behaviour of the optimal

norm ‖b∗r‖ as a function of r, proving ‖b∗r‖ = Θ(r−m+d/2) for r → 0 in case of

Sobolev space Hm
2 (Rd). This works by scaling arguments, and it turns out that

downscaling of optimal functions to a smaller support radius loses optimality, but

still has asymptotically the same rate as above.

Then Section 8 gives a characterization in terms of Hilbert space arguments via

projections, and Section 9 applies standard Sobolev space trace arguments to get

a computable representation. Numerical examples are added in Section 10, while

Section 11 summarizes the results and raises quite a number of issues that require

further investigation.

2 Basics of Spaces and Kernels

Let K be a continuous symmetric positive definite translation-invariant real-valued

kernel on R
d ×R

d . It generates a native Hilbert space K of functions on R
d with

inner product (., .)K and the remarkable properties

K(x,y) = (K(x, ·),K(y, ·))K for all x, y ∈ R
d,

f (x) = ( f ,K(x, ·))K for all x ∈ R
d, f ∈ K ,

K(x,y) = (δx,δy)K ∗ for all x, y ∈ R
d.
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All delta functionals δx : f 7→ f (x) are continuous and have a kernel translate

K(x, ·) as their Riesz representer. The space K is the closure of all kernel trans-

lates under the above inner product. The theory of kernel-based spaces is treated

extensively in the books [3, 22, 9] and an earlier lecture note [14], but we recall

the basic facts for convenience of readers and for fixing notation, as far as needed

in this paper.

In Spatial Statistics, kernels arise as covariance functions of a mean-zero random

field R on R
d in the sense that each x ∈ R

d carries a zero-mean second-order

random variable R(x) such that K(x,y) =Cov(R(x),R(y)) for all x,y ∈ R
d .

In Real Analysis, Sobolev spaces Hm
2 (Rd) for m > d/2 are Hilbert spaces gener-

ated by Whittle-Matérn kernels

K(x,y) = ‖x− y‖m−d/2

2 Km−d/2(‖x− y‖2)

up to factors, where Kν is the modified Bessel function of second kind. This case

is very important as well in Spatial Statistics, see [12] for an overview. We use

the Hm
2 (Rd) notation instead of W m

2 (Ω), because we work on the full space and

define Sobolev spaces via Fourier transforms.

The recovery of functions f from values f (x1), . . . , f (xn) on a set Xn = {x1, . . . ,xn}⊂
R

d of data points can be uniquely done by a function sXn, f ∈ K generated by the

kernel translates K(x1, ·), . . . ,K(xn, ·), and the pointwise error bound is

| f (x)− sXn, f (x)| ≤ PXn
(x)‖ f‖K for all x ∈ R

d, f ∈ K . (1)

Here, the Power Function PX : R
d → R arises. It is the distance of δx to the span

of all δx j
, 1≤ j ≤ n in the norm of the dual K

∗. In Spatial Statistics, sX , f (x) is the

best unbiased linear predictor for f (x) given all f (x1), . . . , f (xn) under the random

field with covariance function K, and P2
Xn
(x) is the variance of this prediction. For

what follows, the Power Function has the alternative definition

PXn
(x) = sup{ f (x) : f ∈ K , ‖ f‖K ≤ 1, f (x j) = 0, 1 ≤ j ≤ n}. (2)

3 Bump Functions

We look at a special case of compactly supported functions first. General com-

pactly supported functions will come up later.
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Definition 1. A bump function of support radius r is an element of the set

Br := {b ∈ K : b(0) = 1,b(y) = 0 for all ‖y‖2 ≥ r}

of functions on K .

In spaces K consisting of analytic functions, the set B will be empty, and Corol-

lary 1 in Section 5 gives a sufficient criterion in terms of kernel smoothness. But

for most of the paper, existence of bump functions is assumed, and then they exist

for all scales, as shown in Section 5.

This calls for optimizing bump functions, and a typical application will be in Sec-

tion 4.

Definition 2. A bump function b∗r ∈ Br is norm-minimal, if

‖b∗r‖K = inf{‖b‖K : b ∈ Br}=: β (r),

and we call β : R>0 → R>0 the bump norm function.

These functions are the main topic of the paper, but many results extend to general

compactly supported functions.

4 A Simple Application

The following result is a good motivation to investigate bump functions. Its con-

sequences are elaborated in [17] concerning Trade-off Principles between errors

and stability. Let Xn = {x1, . . . ,xn} be a set of data points in R
d , and define the

distance

dist(x,Xn) = min
1≤ j≤n

‖x− x j‖2

from a point x to Xn.

Theorem 1. Then the Power Function PX satisfies

PX(x)≥
1

‖b‖K
(3)

for all bump functions b with support radius dist(x,Xn) or larger.
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Proof. Any such bump function has zero as its interpolant, and thus

1 = |b(x)| ≤ PX(x)‖b‖K

by the standard error bound (1).

Inequalities like this provide lower bounds for pointwise interpolation errors, and

these bounds are best if the norm is minimized. This is why we look at compactly

supported functions with minimal norm.

We shall see in (5) that in Sobolev spaces Hm
2 (Rd) the bump norm function β (r)

behaves like rd/2−m, and thus (3) yields a simple counterpart to the standard upper

bounds of the Power Function, proving their asymptotic optimality. An earlier but

much more complicated proof goes back to [13]. If the error is measured in K ,

all other interpolation techniques have larger errors. This proves that (3) is also a

lower bound for errors of all other interpolation processes in Sobolev spaces. The

paper [6] works in a somewhat different context, but it also uses bump functions

to prove the optimal possible convergence rate for interpolation and derivative

approximation in Sobolev spaces.

Papers using bump functions for different purposes are [11, 7, 5, 10], but there

will be many others. None of these papers look at bump functions in detail.

This calls for an investigation of bump functions and the bump norm function for

more general cases, but it turns out that this runs into serious unexpected difficul-

ties that are interesting in their own right.

5 Existence Problems

It is clear that compactly supported functions exist in all kernel–based spaces that

only require certain finite smoothness properties, like Sobolev spaces Hm
2 (Rd)

for m > d/2. Wendland functions are examples that even work with univariate

polynomials [21] of minimal degree, or with certain additional factors [15].

For other kernel-bases spaces, e.g. those based on multiquadrics and Gaussians,

the existence of compactly supported functions is a serious problem. Clearly,

there are C∞ functions with compact support, but one has to find some that lie in

the given native Hilbert space, i.e. the Fourier transform has to satisfy a specific

decay property. The following negative result uses the fact that exponential decay
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of Fourier transforms implies local analyticity around zero, contradicting compact

support when applied to compactly supported functions.

Lemma 1. Assume that the d-variate Fourier transform f̂ of some Fourier-transformable

function f on R
d has exponential decay

| f̂ (ω)| ≤C exp(−c‖ω‖2) for all ω ∈ R
d.

Then the function is analytic in a ball around zero of radius proportional to c, with

a factor depending on C and d.

Proof. The derivatives of f at zero are bounded by

|Dα f (0)| ≤ (2π)−d/2

∫

Rd
| f̂ (ω)||(iω)α |dω

≤ (2π)−d/2C

∫

Rd
exp(−c‖ω‖2)|ωα |dω

≤ (2π)−d/2C

∫

Rd
exp(−c‖ω‖1/

√
d)|ω||α|dω

≤ (2π)−d/2C
d

∏
j=1

∫

R

exp(−c|ω j|/
√

d)|ω j|α jdω j

≤ (2π)−d/2C2d

(√
d

c

)d+|α|

α!

due to
∫

R

exp(−c|t|/
√

d)|t|ndt = 2

∫ ∞

0
exp(−ct/

√
d)tndt

= 2

√
d

c

∫ ∞

0
exp(−s)

(
s
√

d

c

)n

ds

= 2

(√
d

c

)n+1 ∫ ∞

0
exp(−s)snds

= 2

(√
d

c

)n+1

n!.

This implies convergence of the Taylor series in a region

{x ∈ R
d : |xi| ≤ ri, 1 ≤ i ≤ d}
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around zero defined by a vector r = (r1, . . . ,rd) of adjoint radii of convergence, if

lim|α|→∞

∣∣∣∣
Dα f (0)

α!
rα

∣∣∣∣
1
|α |

≤ 1

holds [19]. Up to d-dependent or constant factors, we have to look at

∣∣∣∣
Dα f (0)

α!

∣∣∣∣
1/|α|

≤
(√

d

c

)1+d/|α|

to get the assertion.

Gaussians admit arbitrarily large c, while inverse multiquadrics have a fixed max-

imal c depending on the kernel parameters.

Theorem 2. The native space of the Gaussian consists of globally analytic func-

tions, i.e. the local power series expansions all exist and converge globally. The

native space of d-variate inverse multiquadrics generated by the kernel K(x,y) =
(1+‖x− y‖2

2)
−m consists of locally analytic functions, i.e. the local power series

expansions all exist and converge with at least a fixed radius of convergence.

Applying analytic continuation if necessary, we get

Corollary 1. In spaces generated by kernels with at least exponentially decaying

Fourier transform, there are no compactly supported functions.

Consequently, all argumentations using compactly supported functions fail for

such cases.

These results are not really surprising. Recall that there are no compactly func-

tions in univariate complex analysis or in spaces of harmonic functions, by the

Maximum Principle. In addition, kernels arising from the Hausdorff-Bernstein-

Widder representation are analytic and therefore never compactly supported. The

above result is slightly different, but similarly negative.

Other cases of Native Spaces without compactly supported functions are those

whose kernels have power series expansions in the domain of interest. These are

handled in [23, 24].

We now prove existence of norm-minimal bump functions, the generalization to

compactly supported functions being evident later.
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Theorem 3. If the set Br of bump functions of radius r is not empty, the bump

norm function β (r) is attained at a unique bump function b∗r ∈ Br, i.e. β (r) =
‖b∗r‖K .

Proof. This follows from a standard variational argument. We start with an ad-

missible bump function b̃r and approximate it from the closed linear subspace

B
0
r := {b ∈ K : b(0) = 0, b(y) = 0 for all ‖y‖2 ≥ r}

to get some b̃0
r ∈ B0

r with the orthogonality property

(b̃r − b̃0
r ,b

0
r )K = 0 for all b0

r ∈ B
0
r .

Then we define b∗r := b̃r − b̃0
r ∈ Br and take an arbitrary br ∈ Br to get

‖br‖2
K = ‖br −b∗r +b∗r‖2

K

= ‖br −b∗r‖2
K +2(br −b∗r ,b

∗
r )K +‖b∗r‖2

K

= ‖br −b∗r‖2
K +‖b∗r‖2

K

≥ ‖b∗r‖2
K.

The proof generalizes to any compact domain Ω ⊂ R
d and an arbitrary point x in

its interior for fixing the value 1. Uniqueness follows similarly, and implies

Corollary 2. For Radial Basis Functions (RBFs), norm-minimal centralized bump

functions on balls are radial, if they exist.

This makes it easy to deal with such functions, once the radial form is known or

calculated to sufficient precision.

6 Properties of Bump Functions

From the definition, we have

Theorem 4. Norms ‖b∗r‖K = β (r) of optimal bump functions b∗r increase with

decreasing radius.

A second optimality principle is

Theorem 5. Norm-minimal bump functions have maximal support radius under

all bump functions with norm up to one.
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Proof. Assume a bump function bρ for radius ρ < r. Then

‖bρ‖K ≥ β (ρ)≥ β (r) = ‖b∗r‖K.

The bump norm function cannot decrease to zero for large r, because there is a

positive lower bound:

Lemma 2.

β 2(r)≥ 1/K(0,0) for all r > 0.

Proof. Let b be any bump function at 0, of arbitrary radius r. Then

1 = b(0) = (b,K(0, ·))K ≤ ‖b‖K‖K(0, ·)‖K = ‖b‖K

√
K(0,0).

This is just a special case of the general embedding inequality

| f (x)|= |( f ,K(x−·)| ≤ ‖ f‖K‖K(x−·)‖K = ‖ f‖K

√
K(0,0) for all f ∈K , x∈R

d.

A third optimality is

Theorem 6. Under all bump functions with norm up to one, the maximum value

at zero is attained for b∗r/‖b∗r‖K .

Proof. The optimal value is surely not less than 1/‖b∗r‖K. If br is any bump

function with ‖br‖K ≤ 1, the function br/br(0) is admissible for norm minimality,

and thus
1

br(0)
≥ ‖br‖K

br(0)
≥ ‖b∗r‖K

proves that the optimal value is at most 1/‖b∗r‖K .

We can rewrite this as

1

‖b∗r‖K
= sup{ f (0) : ‖ f‖K ≤ 1, f (x) = 0 for all ‖x‖2 ≥ r}

and compare with (2) to get the Power Function value P
Rd\Br(0)

(0) for transfinite

interpolation on all points outside the ball Br(0). Note that this realizes the optimal

case in (3).
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7 Scaling Laws

Now we check bump functions under scaling. To avoid clashes of indices, we use a

scaling operator Sr acting on functions f on R
d as Sr( f )(x)= f (x/r) for all x∈R

d

and r > 0. If f is supported on a ball B1(0) with radius r around the origin, the

scaled function Sr( f ) is supported on the ball Br(0).

But norm-minimality does not scale that way. If the kernel K is fixed, the optimal

bump function b∗1 for radius 1 may be scaled into Srb
∗
1 to be admissible on Br(0),

but this need not be equal to b∗r . By norm-minimality,

‖b∗r‖K ≤ ‖Srb
∗
1‖K,

and this is all we know. Figure 2 below demonstrates numerically that these two

differ, because the shape of b∗r changes with r in a nontrivial way.

But scaling functions is also related to scaling kernels. Therefore we locally

change the notation b∗r to b∗r,K if the kernel K is used, and we may scale kernels

K with Sr into SrK as well. However, since ‖ f‖K = ‖Sr f‖SrK holds by [10] for

all functions in the native space of K, we can apply this to all non-optimal bump

functions of the appropriate support radii to get

‖Srb
∗
1,K‖SrK = ‖b∗1,K‖K = inf‖b1‖K = inf‖Srb1‖SrK = inf‖br‖SrK = ‖b∗r,SrK‖SrK .

Therefore the law

Srb
∗
1,K = b∗r,SrK

connects scaling of norm-minimal bump functions with scaling of the kernel.

But it is more interesting to fix the kernel and vary the radius r. We focus on

kernels K with

K̂(ω) = Θ(1+‖ω‖−β
2 ), ω ∈ R

d , ‖ω‖2 → ∞ (4)

with β > d and a positive constant C. For the Matérn kernel generating Sobolev

space Hm
2 (Rd) we have β = 2m > d.

We bound the d–variate Fourier transform of any scaled function Sr f (x) = f (x/r)

via Ŝr f (ω) = rd f̂ (rω) to get

‖Sr f‖2
K =

∫

Rd
|Ŝr f (ω)|2(1+‖ω‖β

2 )dω

= r2d
∫

Rd
| f̂ (rω)|2(1+ r−β‖rω‖β

2 )dω

= rd−β
∫

Rd
| f̂ (η)|2(rβ +‖η‖β

2 )dη.
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up to constant factors. Now for r ≤ 1 we find

‖Sr f‖2
K ≤ rd−β‖ f‖2

K,

and for lower bounds we use

‖Sr f‖2
K ≥ rd−β | f |2K

using the correspondent seminorm. When we apply all of this to bump functions,

the seminorm can be bounded below by the norm up to a factor, due to Poincaré

inequalities.

Theorem 7. In spaces generated by kernels with (4), the bump norm function

behaves like

β (r) = ‖b∗r‖K = Θ(rd/2−β/2) for r → 0. (5)

In Sobolev space Hm
2 (Rd), this holds for β = 2m.

Proof. For an upper bound we use

‖b∗r‖2
K ≤ inf‖br‖2

K = inf‖Srb1‖2
K ≤ rd−β‖b1‖2

K

inserting arbitrary bump functions b1 and br, The other direction is

‖b∗r‖2
K = ‖SrS1/rb∗r‖2

K ≥ rd−β |S1/rb
∗
r |2K

≥ rd−β |S1/rb
∗
r |2K inf |b1|2K

≥ C inf‖b1‖2
K =C‖b∗1‖2

K

We now check scaled versions of norm-minimal bump functions. Our main tool

is

Theorem 8. [10, Thm. 1]

For all f in the native space of kernels with (4) and all ε > 0,

‖S1/ε f‖2
K = ‖ f‖2

Sε K = Θ
(

εd max(1,ε−β )
)
‖ f‖2

K.

We apply this to norm-minimal bump functions and get

‖b∗r‖2
K ≤ ‖S1/rb

∗
1‖2

K = Θ
(

rd max(1,r−β )
)
‖b∗1‖2

K.

Therefore we can scale norm-minimal bump functions without asymptotic loss:
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Corollary 3. Under the assumption (4), scaled optimal bump functions satisfy

‖S1/εb∗r‖2
K = Θ

(
εd max(1,ε−β )

)
‖b∗r‖2

K,

where S1/ε b∗r is a non-optimal bump function with support radius rε .

Figure 2 shows that the true bump functions b∗r differ from scaled versions b∗1(·/r),
because their shape varies non-trivially with r.

Again, all of this will generalize to compactly supported functions on arbitrary

domains Ω with a fixed interior point x. By a shift, x can be assumed to be the

origin, and then the domain is scaled as SrΩ.

8 Characterization in Hilbert Space

To get a constructive characterization of bump functions, consider the closed sub-

space

Vr := {v ∈ K : v(x) = 0 for all ‖x‖ ≥ r}
of K , and there are bump functions iff

v(0) = 0 for all v ∈Vr (6)

is not satisfied.

Theorem 9. If there are bump functions at all, the unique norm-minimal bump

function b∗r on Br(0) has the form

b∗r := gr/gr(0) (7)

for the projection gr of K(0, ·) onto Vr. The squared norm of the solution is

‖b∗r‖2
K =

‖gr‖2
K

g2
r (0)

=
1

gr(0)
. (8)

Proof. If K(0, ·) were orthogonal to Vr, the equations

(K(0, ·),vr)K = 0 = vr(0)
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would hold for all vr ∈ Vr, implying (6) and the nonexistence of bump functions.

Let Pr be the Hilbert space projector onto Vr. Then gr := PrK(0, ·) is uniquely

defined and nonzero. Furthermore, K(0, ·)−gr is orthogonal to Vr, i.e.

(K(0, ·)−gr,vr)K = 0,
vr(0) = (gr,vr)K

(9)

for all vr ∈Vr. In particular, setting vr = gr yields

gr(0) = (gr,gr)K > 0.

Therefore (7) solves the problem and (8) holds. In fact, for any other bump func-

tion br the difference wr = b∗r −br is in Vr with wr(0) = 0, and

(b∗r ,wr) =
1

gr(0)
(gr,wr)K =

wr(0)

gr(0)
= 0

proves

‖br‖2
K = ‖b∗r −wr‖2

K = ‖b∗r‖2
K +‖wr‖2

K ≥ ‖b∗r‖2
K.

By the second identity of (9), gr is the Riesz representer of the functional δ0 on

the Hilbert space Vr. We can generalize this to gr,x := PrK(x, ·) to get the Riesz

representer of δx, and the kernel

Kr(x,y) := (gr,x,gr,y)K for all x,y ∈ Br(0) (10)

is reproducing on the Hilbert space Vr. This kernel lives on the interior of the ball

Br(0) centred at zero with radius r. Figure 1 shows the kernel translates g1,x in

Sobolev space
◦

W 1
2(−1,1)). The calculations are based on Section 8.

Theorem 10. If K = Hm
2 (Rd), the kernel Kr of (10) is the reproducing kernel of

the space
◦

Hm
2 (Br(0)).

It is easy to generalize this to smoothly bounded domains Ω ⊂ R
d instead of the

ball Br(0).

There is a connection to Power Functions on infinite point sets. We can define the

Power Function for infinite data outside the ball Br(0) as

P‖x‖≥r(x) = sup{v(x) : ‖v‖K ≤ 1,v ∈Vr}. (11)
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Figure 1: Kernel translates g1,x for the 1D exponential kernel for varying x.

Our standard criterion (6) for nonexistence of centralized bump functions now has

to be replaced by Vr = {0}, and then the Power Function is zero.

Theorem 11. In general,

P‖x‖≥r(x) = ‖gr,x‖K for all x ∈ R
d,

and if there are bump functions, the supremum in (11) is attained at gr,x(x)/‖gr,x‖K .

In particular, P‖x‖≥r(0) is attained at b∗r/‖b∗r‖K , proving

P‖x‖≥r(0) = b∗r (0)/‖b∗r‖K = ‖b∗r‖−1
K . (12)

Proof. We assume that there are bump functions. Then gr,x/‖gr,x‖K is admissible,

and

P‖x‖≥r(x)≥ gr,x(0)/‖gr,x‖K = ‖gr,x‖K.

For all v ∈Vr we have (v,gr,x)K = v(x), and therefore

|v(x)| ≤ ‖v‖K‖gr,x‖K

proves P‖x‖≥r(x) ≤ ‖gr,x‖K. In the nonexistence case, all gr,x are zero, like the

Power Function.

The relation (12) was observed already in [17] as the extremal situation of a trade-

off principle that relates small Power Functions to large norms of bump functions.
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Theorem 11 has an interpretation in Spatial Statistics. If a random field R on R
d

has observations in all x with ‖x‖2 ≥ r,

P‖x‖≥r(0)
2 = ‖b∗r‖−2

K

is the variance of the Kriging predictor, i.e. the best linear unbiased estimator

from the data. For Matérn covariances generating Hm
2 (Rd), Section 7 has shown

that the variance behaves like r2m−d . Cases with nonexistence of bump functions

are discouraged in Spatial Statistics, because information on an infinite point set

like the complement of a ball implies total information.

Again, everything works the same for general domains Ω ⊂ R
d with a fixed inte-

rior point x. One has to project K(x, ·) onto

VΩ = {v ∈ K : v(y) = 0 for all y /∈ Ω}
and renormalize the result to be 1 at x.

9 Analytic Characterization

Here, we focus on K = Hm
2 (Rd) and want to apply Real Analysis to find more

specific results on norm-minimal bump functions, including formulae ready for

computational implementation. Since the problem of constructing norm-minimal

bump functions can be written as a quadratic optimization with infinitely many

constraints in an infinite-dimensional space, there is a variational problem with

Lagrange multipliers in the background, but we proceed directly to the construc-

tive solution.

As already stated, the subspace Vr of (6) is the closure of C∞
0 (Br(0)) under the

native space norm. In case K = Hm
2 (Rd), it is

◦
Hm

2 (Br(0)) in standard Sobolev

space theory, and the boundary conditions are well-known [16]. By sources on

trace theorems, e.g. [20, Thm, 10, Thm. 11], the boundary conditions for embed-

ding
◦

Hm
2 (Br(0)) into Hm

2 (Rd) consist of the classical radial and normal derivatives

γ j,r =
∂ j

∂ν j
|∂Br(0), 0 ≤ j < m−1/2

whose extensions map W m
2 (Br(0)) to W

m− j−1/2

2 (∂Br(0)), 0 ≤ j < m− d/2. We

integrate these over the boundary to define the functionals

λ j,r( f ) =

∫

∂Br(0)
γ j,r( f )|xdx, , 0 ≤ j < m−1/2



9 ANALYTIC CHARACTERIZATION 16

and the functions

g j,r(x) := λ y
j,rK(x,y),

where λ j,r acts on the variable y, as indicated by the superscript. These are radial,

i.e. rotationally invariant, because the traces of K(x, ·) on the boundary just rotate

with the direction of x, but the integral over the boundary stays the same.

Next, we need the positive definite kernel matrix with entries

λ x
k,rλ

y
j,rK(x,y) = λ x

k,rg j,r(x), 0 ≤ j,k < m−1/2

and solve the r-dependent linear system

gk,r(0) = λ
y
k,rK(y,0) =

j<m−1/2

∑
j=0

c j(r)λ
x
k,rλ

y
j,rK(x,y), 0 ≤ k < m−1/2 (13)

for functions c j(r), 0 ≤ j < m−1/2.

Theorem 12. Norm-minimal compactly supported functions b∗r for Sobolev spaces

Hm
2 (Rd) can be calculated via the radial function

gr(y) := K(0,y)−
j<m−1/2

∑
j=0

c j(r)g j,r(y) (14)

in the above way, finally using (7).

Proof. By Theorem 9 of Section 8, we need the projection P◦
Hm

2 (Br(0))
in Hm

2 (Rd)

onto
◦

Hm
2 (Br(0)) and the function

gr(·) = P◦
Hm

2 (Br(0))
K(0, ·)

which is b∗r up to a factor by b∗r (x) = gr(x)/gr(0). Due to (9), the necessary and

sufficient optimality conditions are gr ∈
◦

Hm
2 (Br(0)) and

(K(0, ·)−gr,vr)Hm
2 (Rd) = 0
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for all r ∈Vr =
◦

Hm
2 (Br(0)). But (14) implies

(K(0, ·)−gr,vr)Hm
2 (Rd) =

(
j<m−1/2

∑
j=0

c j(r)g j,r,vr

)

Hm
2 (Rd)

=
j<m−1/2

∑
j=0

c j(r)(g j,r,vr)Hm
2 (Rd)

=
j<m−1/2

∑
j=0

c j(r)(λ
y
j,rK(·,y),vr)Hm

2 (Rd)

=
j<m−1/2

∑
j=0

c j(r)λ
y
j,rvr(y)

= 0 for all vr ∈Vr.

The system (13) is the same as

λ
y
k,rgr(y) = 0, 0 ≤ k < m−1/2,

but since gr is radial, the boundary values and radial derivatives are constant and

therefore zero.

This seems to be the first case handling infinitely many data with infinitely many

kernel translates, in this case placed on the r-sphere and treated in a rotationally

symmetric way. The definition of the functions g j,r cares for orthogonality to Vr

and involves all of these translates fairly. The linear system (13) has a different

purpose: it cares for the correct smoothness of the result on the boundary. If the

g j,r and their derivatives are calculated on the boundary with sufficient accuracy,

the system can be set up and solved like any other Hermite interpolation.

For domains Ω with a fixed interior point, the proof logic stays the same, but the

radiality arguments fail. Everything works as long as the trace theorems are valid,

but this fails for pathological subdomains.

We add a remark on the background, connected to the old theory of L-splines [18].

The inner product ( f ,g)K can be written as (L f ,Lg)L2(Rd) for a pseudo-differential

operator L : K → L2(R
d) defined by

L̂ f (ω) = f̂ (ω)

√
K̂(ω).
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Then the reproduction equation f (x) = ( f ,K(x, ·))K = (L f ,LK(·,x))L2(Ω) is a way

to define that (L∗L)yK(y,x) = δx holds for all x ∈ R
d , i.e. the kernel is a funda-

mental solution. In the Sobolev case Hm
2 (Rd) for integer m, the operator L∗L is the

classical elliptic differential operator (Id −∆)m. Compactly supported functions

on a smooth domain Ω must then obey the boundary conditions for the Dirichlet

problem for L∗L on Ω with zero boundary conditions. Consequently, bump func-

tions may already be present in the literature on elliptic PDE problems. Anyway,

they are possibly useful in the Method of Fundamental Solutions [2, 4].

For all translation-invariant kernels, we can shift the norm-minimal bump func-

tions to get functions b∗r,z(x) := b∗r (x− z) for all x ∈ R
d that should be useful for

numerical calculations.

Theorem 13. Two shifted bump functions b∗r,y and b∗r,z are orthonormal in the

Hilbert space K , if ‖y− z‖2 ≥ 2r.

Proof. Clearly,

(b∗r,y,K(·,x))K = b∗r,y(x) = 0 for all ‖x− y‖2 ≥ r,

but since b∗r,z is based on kernel translates on z and all u with ‖u− z‖ = r by the

above characterizations, the assertion follows.

Kernel matrices based on norm-minimal compactly supported functions will be

sparse because entries vanish whenever points have distance 2r or more. But

except for a simple case handled in Theorem 14, the positive definiteness is an

open problem.

10 Examples

We first consider the simplest Sobolev space Hm
2 (Rd) for m= 1= d with the radial

exponential kernel K(x,y) = exp(−|x− y|). Then the functional

λ0,r(v) = v(−r)+ v(r) for all v ∈W 1
2 (R

1)
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Figure 2: Bump functions for the 1D exponential kernel for varying r. Left: r =
1, 1.5, 2, 2.5, 3, right: r = 1, . . . ,50. The red line is the kernel K(0,y) = exp(−|y|)
occurring numerically in the limit.

“integrates” over the trace operator T (v) = (v(r),v(−r))∈R
2. With some explicit

calculations omitted,

g0,r(x) = exp(−|r− x|)+ exp(−|− r− x|)
gr(x) = exp(−|x|)− c0(exp(−|r− x|)+ exp(−|− r− x|)
c0(r) =

1

cosh(r)

gr(x) =
sinh(r−|x|)

cosh(r)

where the equation for c0 follows somewhat easier from setting gr(x) = 0 for

x =±r. The final result is

b∗r (x) =
gr(x)

gr(0)
=

sinh(r−|x|)
sinh(r)

. (15)

This is the situation of Figure 2. The corresponding general kernel translates in the

sense of (10) are in Figure 1, obtained via projection of K(x, ·) instead of K(0, ·).

Theorem 14. The norm-minimal compactly supported function (15) is positive

definite.
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Proof. With a little help from MAPLE, the Fourier transform of this is the positive

function

b̂∗r (ω) =
1+ exp(2r)−2exp(r)cos(rω)

(exp(2r)−1)(1+ω2)

=
(1− exp(r)cos(rω))2 + exp(2r)(1− cos2(rω))

(exp(2r)−1)(1+ω2)

up to positive constants. Conversely, the above formula provides a positive defi-

nite band-limited kernel.

The same kernel works for all cases with 2m−d = 1, but things get much more

difficult for d > 1, because we now have to integrate over circles, using

λ0,r( f ) =

∫ 2π

0
f (r cosϕ + r sin(ϕ))dϕ.

The resulting function g0,r is an infinite linear combination of kernel translates

centred at zero and the sphere of radius r, while in 1D we only need translates at

−r,0, and r. To keep things simpler, we shall use radiality whenever possible in

what follows.

We first consider d = 2, m = 3/2 and set x = r(cos(ϕ),sin(ϕ)) and z = (1,0) to

get

‖x− tz‖2 = (r cos(ϕ)− t)2+(r sin(ϕ))2 (16)

and

g0,r(tz) =
∫ 2π

0
exp

(
−
√

(r cos(ϕ)− t)2+(r sin(ϕ))2

)
dϕ

=

∫ 2π

0
exp

(
−
√

r2 + t2−2r|t|cos(ϕ)

)
dϕ

(17)

because the cases t and −t have the same trace on the circle. The ingredients for

(13) are g0,r(0) = 2π exp(−r) and

λ x
0,rλ

y
0,rK(x,y) = λ x

0,rg0,r(x) = 2πg0,r(rz)

because g0,r is constant on the boundary and equal to g0,r(rz). Therefore

c0(r) =
exp(−r)

g0,r(rz)
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and we get

gr(x) = exp(−‖x‖2)−
exp(−r)g0,r(x)

g0,r(rz)
.

Figure 3 shows the norm-minimal bump functions (solid) in the 1D (blue) and

2D case (red). The 2D case has a vanishing derivative at zero, visible by zoom-

ing in, but still just continuity at r. But note that functions in W
3/2

2 (R2) are only

continuous, not continuously differentiable. For comparison, the Wendland func-

tions are added as dashed lines. It is remarkable that in the 2D case the Wendland

functions have derivative discontinuities at zero, while the optimal bump func-

tions have them at r. In case r = 10, the exponential decay of bump functions is

apparent, while Wendland functions decay polynomially. Smaller r behave much

like scaled versions of the case r = 1.
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Figure 3: Bump functions (solid) for the exponential kernel, r = 1 (left) and r =

10 (right). The red curves are for W
3/2

2 (R2), the blue curves for W 1
2 (R

1). The

corresponding Wendland functions are dashed.

Staying in the bivariate setting with larger m just uses different kernels, but now

we get the linear system (13) to solve. If we want a derivative condition in R
2,

we can take m = 2.5 or m = 2. When examining the case m = 2, the function

g1,r has a singularity at the boundary, due to nonexistence of second derivatives

in W 2
2 (R

2). For m = 2.5, results are in Figure 4. The corresponding Wendland

function φ3,1(t) = (1− t/r)4
+(1+ 4t/r) is in C2 and vanishes of third order at r,



11 SUMMARY, CONCLUSIONS, AND OPEN PROBLEMS 22

0 1 2 3 4 5 6 7 8
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Bump functions in 2D for m=5/2 with varying r

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Bump function in 2D for m=5/2 with r=1

Figure 4: Left: optimal bump functions for the 2D exponential kernel for

W
5/2
2 (R2) with varying r. The red line is the normalized kernel occurring in the

limit. Right: the case r = 1 with the Wendland function φ3,1 in cyan and dashed,

while the exponential spline is blue and dashed.

see the cyan dashed line. The norm-minimal compactly supported function seems

to have the same smoothness at zero and at the boundary.

Readers may be tempted to take the span of exp(x), x exp(x), exp(−x), x exp(−x)
and determine an exponential spline with the four appropriate conditions at zero

and r. The result is the dashed blue line in the right-hand plot of Figure 4. With

the help of MAPLE, it is easy to show numerically that this cheaply computable

compactly supported radial basis function is not positive definite in dimensions

d = 1,2, and 3. Unfortunately, MAPLE cannot handle integrals like (17) well,

preventing an easy proof or disproof of positive definiteness of the norm-minimal

bump function in R
2. It was computed numerically using MATLAB.

11 Summary, Conclusions, and Open Problems

For a given support radius r, each Sobolev space Hm
2 (Rd) with m > d/2 has a

unique “bump” function with minimal norm, value 1 at the origin and vanishing

outside the interior of the ball Br(0) with radius r around the origin. Under all

compactly supported functions with norm up to one and value one at the origin, it
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has smallest support. And under all functions with support in Br(0) with norm up

to one, they attain the maximum value at zero, up to a factor.

Such functions are an intrinsic and characteristic feature of the Sobolev space and

could be called S-splines.

They are radial, and their radial univariate profile can be precalculated to high ac-

curacy by the construction of Section 9. By the results on scaling in Section 7, they

can be downscaled to smaller support radii, at asymptotically no loss. There are

connections to upper bounds of convergence rates of kernel-based interpolation,

because they are Power Functions for data outside a given ball. In Spatial Statis-

tics using random fields with Matérn kernels, they give the variance for Kriging

estimation at zero provided that there is full information outside the r-ball.

In Hilbert space terms, these functions are obtainable by renormalization of the

projection of the reproducing kernel in Hm
2 (Rd) onto

◦
Hm

2 (Br(0)). In terms of Real

Analysis, they are computable by applying the trace operator to the reproducing

kernel under radial symmetry.

For interpolation or approximation in Sobolev spaces, their translates provide a

compactly supported radial basis, leading to sparse matrices. Except for Theorem

14 for the simplest case, there are no results yet on linear independence or pos-

itive definiteness. In particular, their Fourier transforms are not yet known, but

they must have an optimality property as well. The functions seem to be bell-

shaped [8] and pointwise increasing at all x ∈R
d for increasing r with upper limit

φ(‖x‖2), but this is still open. For use in meshless methods for PDE solving, they

are shape functions [1] that deserve further investigation. Finally, they may lead

to new multivariate wavelet constructions, like many other compactly supported

functions.

To make the numerical application of optimal compactly supported functions eas-

ier, a follow-up paper should publish the radial profiles in full computational ac-

curacy. This opens the way to various sparse meshless methods for interpolation,

approximation, and PDE solving. Then it is interesting to see how much band-

width is needed to let them work at maximal possible convergence rate.

The results of this paper should generalize to any kernel-based Hilbert space with

limited smoothness, and hopefully also to Beppo-Levi spaces generated by con-

ditionally positive definite kernels. Also, the restriction to balls centred around
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the origin is easy to overcome, losing radiality arguments. Then it is interesting

to construct them on tilings of the space, like finite elements. Their superposition

will stay in Sobolev space because of zero boundary conditions.

Final Remarks

There was no funding except the standard retirement program for professors in

the state of Lower Saxony, Germany.

This work would not have been possible without the long-term friendship with

Elisabeth Larsson (Uppsala) and Oleg Davydov (Gießen), leading to publications

[10, 6]. Bump functions were a central tool in these papers.
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