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Abstract
For sequences of planar data points whose piecewise linear in-
terpolant has the property that two successive direction changes add
up to at most an acute angle, there is a unique global GC? inter-
polant consisting of convex quadratic polynomial pieces where the
data allow a convex interpolant. Cubic pieces are used where the
data require inflection points. Collinear data points are interpolated
by straight lines embedded on both sides by cubic pieces. Not—a—

knot-boundary conditions are possible.

61. Global parametric spline interpolation

In the nonparametric case the standard construction of a polynomial
spline function s(x) interpolating planar data

bi = (24,vi), 1<i<n, #;<aqppforl <e<n-—1

is carried out by taking tha data points as “knots” or “breakpoints”. The
degree of the polynomial pieces between the knots then is determined by
continuity requirements for s and its derivatives. For C? continuity of s this
leads to cubic polynomials, but two additional boundary conditions must be
specified to yield a fully determined solution.

In the parametric case an anologous “standard” interpolant to a given
sequence of data points

b €R?, 1<i<n, bj# b for1<i<n-—1 (1)

should also have “breakpoints” at the data points b;, and the degree of the
parametric polynomial curve between b; and b;41 should also be determined
by the continuity requirements. For “visual” or “geometric” C? continuity
two scalar conditions at each inner breakpoint have to be satisfied (continuity
of tangent direction and curvature) and therefore the parametric interpolating
piece should have only two additional degrees of freedom between the specified
endpoints b; and b; 1. This implies that the interpolant should be a piecewise
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quadratic Bezier polynomial defined by triplets of control points b;, Z;vi, bit1
for 1 < ¢ < n—1. As in the nonparametric case, two remaining degrees
of freedom have to be fixed by certain boundary conditions. For example,
tangent directions at by and b,, can be prescribed by two additional points by #
by and by, 41 # by, with the requirement that the lines L(bg, b1 ) and L(by,, by11)
through by, by and b,,, b, +1, respectively, are tangents to the solution at b, and

by.

Y2

71

bo b5
Fig. 1. Data set (n = 4) with prescribed tangent directions.
The following facts about the interpolant were proven in [3]:

1. A solution of the interpolation problem can not have an inflection point,
and therefore the chord angles

vi = L(bix1 — bi, by — bi—1), 1 <1 < n,

measured by arc length values in (—7, 7], must necessarily be all in (0, )
or all in (—=,0). That is, the piecewise linear interpolant of the data
always “turns left” or always “turns right” in the sense of an observator
moving along the curve. This is a necessary condition depending on the
data only. For the rest of this section, we restrict ourselves to the case
vi € (07 7T)‘

2. The interpolation problem is solvable, if

Vit virr <wmfor1 <:<n-—1. (2)

There are unsolvable cases where (2) is not satisfied.
3. The interpolation problem is uniquely solvable, if

Vit vipr < 7/2for 1 <i<n-—1. (3)

There are cases with multiple solutions where (3) is not satisfied.



On Global GC* Convezity Preserving Interpolation 3
This paper extends [3] by dealing with

1. cubic pieces to be inserted where the data require inflection points;

2. straight lines interpolating sections of collinear data, with cubic pieces at
ends;

3. not—a—knot boundary conditions.

The interpolation problem can be written as a system of equations in-
volving the tangent angles

a; = angle between chord b;41; — b; and tangent at b,

and chord lengths h; = ||bj41 — b;]|2. Equating curvature at both sides of b;
(see [3]) yields the tridiagonal system

sin(y; — «;) sin? (vi —oi + 1) sina; sin? (Yit1 — i1 + @) ()

. 2 2
2h;_1sin” o;_q 2h; sin®(vi41 — qig1)

for 2 < < n — 1. The tangent angles «; are variables for 2 < < n —1
satisfying 0 < |e«;| < |7:|, while the boundary conditions fix ay = vy, a, = 0.
An equivalent formulation of the interpolation problem can be given by fixing
bi,...,b, as interpolation points and using two angles vy = «; and 7, to
describe directions of boundary tangents, leaving «as, ..., a,_1 as variables in
the system (4) with a,, = 0.

If (4) is solved, the interior control point b; of a quadratic piece defined
by control points b;, Z;vi, bi+1 simply is constructed as the intersection of the
tangents at b; and b;, defined by the corresponding tangent angles. However,
(4) was not used in [3] to prove existence and uniqueness of a solution; certain
geometrical arguments (“shooting strategy”) proved to be more powerful.

§2. Cubic pieces at inflection points

Definition 2.1. A section b;_1b;, 3 < ¢ < n —1, of a data set (1) is called
an inflection piece, if the chord angles satisfy ~;_1 - v; < 0.

We intend to use a cubic Bezier polynomial to interpolate in an inflection
piece, but we want to retain the standard construction for the rest of the
interpolation. This will automatically yield a convexity preserving interpolant.
In view of (2) and (3) we tacitly assume all chord angles +; at inflection pieces
to be acute.

Algorithm 2.2.
Step 1. Let b;_1b; be an inflection piece for the data set (1). Fix angles
af =7ihi/(hj +hj-1), j=i—-11 (5)

for boundary tangents at b;_1 and b;. This defines two subproblems by
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a) interpolation points by,...,b;,_1 and tangent directions af,al_q,

b) interpolation points b;, ..., b, and tangent directions o, y,.

Step 2. Assume |af| < |af_|. If the condition

3 . . s *
ZIbi=bia [ sin® [af ] sin(|:] —[af]) (6)

105 =big1 || sin o] sin® (Ja_y |—[a}]) <
is satisfied, solve both subproblems and proceed to Step 3. Otherwise replace
«’_, by a value that satisfies both restrictions, e.g. o_, := —a;, and proceed
as before.

Step 3. Find a cubic Bezier polynomial that interpolates data points,
tangent directions and curvature values of the two partial solutions of Step
2 at b;—1; and b;. This can be done by solving a system of two quadratic
equations, as will be shown later.

Remark : Asymptotically,
aj =75k /(hj + hj—1) + O(h?)

tana; = 1/2- h; - k(b;) + (’)(hz)

hold for sufficiently dense data samples from smooth curves, where h :=
max; h; tends to zero and where x(b;) is the curvature of the curve at the data
point b;. This makes the choice (5) of tangent angles in Step 1 reasonable
and implies that (6) is automatically satisfied for large data sets sampled with
bounded mesh ratio hj/hj+q from a smooth curve.

Step 3 requires the solution of a Hermite-type interpolation problem
by a cubic Bezier polynomial, where function values, tangent directions, and
curvature values at two points A and D have to be reproduced. As was already
pointed out by deBoor, Héllig, and Sabin in [1], a solution must not necessarily
exist. Unfortunately, the approach of [1] does not carry over directly to this
situation (in their terminology we would need pg-p; < 0), but we use a similar
method to prove

Theorem 2.3. Under the conditions of Step 2, a unique solution of Step 3
exists.

Proof: Let A, B.C.,D be the control points of the required cubic Bezier
polynomial that interpolates at A and D and has tangent angles w4 and ap
defined as in Fig. 2.
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Fig. 2. Local insertion of a cubic piece with an inflection point.

Curvature values k4 and kp at A and D are expressed by two points B’
and C’ on the tangents T4 and Tp at A and D such that the quadratic Bezier
polynomials with control points A, B', D and A,C’, D attain k4 and xp at A
and D, respectively. That is,

a] = |A — D| sinaa hp| = |A — D||sinap
T A P T b=

Now the curvature of the cubic piece must be

2 dist(C, Tx)
3|A—-B|*

2 dist(B, Tp)

kDl = -
31D — ¢

[kal =

Introducing the variables
vi=||A=B||/||A=- B, y:=|D-C|/|D -]

and the constants

_||D = C'||sin(aa —ap) b |A — B'||sin(aa — ap)
N |A — D| sinaa T |A — D| sinap

a little calculation produces the system

3 3
1:1;2 —1=—uy, Zyz — 1=z (7)

In case of a4 = ap we have u = v = 0 and find * = y = 2/\/?_) as unique
positive solutions.
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If we assume aq4 > ap, a straightforward discussion of the parabolae (7)
yields existence of a unique positive solution whenever u < v/3/2. Since

,  sinap sin?(aa — ap)
~||JA = D||sin® wa - 2|k D]

depends on kp, we try to express kp by angles. If D, F, E are the control
points of the next quadratic piece (see Fig. 2), we have

B |D — E||sin(y —ap) sin(y — ap)
|/€D| — 2 Z 9
2||D — Fl 2||D — El

because (3) makes the angle at the control point F' obtuse. Then

9 ||D—E||sinapsin2(aA—aD)

I|A — D| sin? ay sin(y — ap) ’

and u < v/3/2 is satisfied if (6) holds in the form

3
|D — E||sinap sinz(ozA —ap) < ZHA — D] sin? oy sin(y —ap).

When an inflection point is enforced by a boundary condition (i.e. ¢ = 2
or ¢ = n in Definition 2.1) a similar strategy is possible.

63. Straight sections

Definition 3.1. If a data set (1) contains collinear points
bi,bi+1,...,bi+k,k22,1§i§n—k, (8)

we call b;,... b4 a straight section of the data set.

Straight sections should be interpolated by straight lines. Each straight
section splits the interpolation problem and requires “patching” to a neigh-
boring standard solution.

Algorithm 3.2. Assume ¢ > 1 for a straight section (8) and the solvability
of the piecewise quadratic interpolation problem in by, ..., b; with prescribed
tangent direction b;11 — b; at b;.

First, solve this problem. The last piece of the solution has control points

bi—1,b;—1,b;. Then, with

— 3
bi—l + Zblv

—— 1

bi_q = Z
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replace the last section of the solution by the cubic Bezier polynomial defined

by control points b;_1, Z;: ,bi—1, b;.

Theorem 3.3. The algorithm produces a geometrically C* patch between
the first © — 2 pieces of the interpolant of by, ..., b; and the linear interpolant
of biy..., bitk.

b; bit1 bitrk

0 bi_y
Fig. 3. Local insertion of a cubic piece near a straight section.

Proof: If T is the tangent at b;_1, i.e. the line through b;_; and Z;_/l, the
absolute value k of the curvature at b;_; can be expressed as

em—

1 dist(b;, T') 2 dist(b;—1,T)
2 lbic = bica |2 3 ||bimt — by |2

K =

using a quadratic and a cubic piece. The algorithm’s choice of the additional
control point b;_1 for the cubic piece on the line through b;, ..., b;+; guaran-
tees

em—

dist(by 1, T) = Zdist(bi,T),

as required for reproduction of « at b,—;. W

84. Not—a—knot boundary conditions

If no tangent direction in the first point of a data set (1) is available,
one can try to interpolate by, by, b3 by a single quadratic Bezier polynomial,
placing the first breakpoint at b3. We do not prescribe the parameter t at
which by is to be interpolated.

Theorem 4.1. Let by, by, by be three different and non—collinear points, and
let by, B,bs be the control points of a quadratic Bezier polynomial () that
interpolates by, by, by successively. Then B lies on the hyperbola

bz—|—u(bl—bz)—|—v(b3—bz), U,UER,U'U:1/4,U<0. (9)
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Conversely, Q(t) = by holds for t € (0,1), if B is taken as

1—-t t
B(t):bz—T(bl —bz)—m

Proof: Write the condition (t) = by in the barycentric coordinates used in

(9).

(bs — ba). (10)

Theorem 4.2. For a data set satisfving (3) the usual boundary conditions
may be replaced by not—a—knot—conditions, and there will still be a unique
solution.

Proof: We use the “shooting” technique of [3] and consider the image F(B(t))
of the hyperbola (10) under the mapping F' defined by the property that the
quadratic Bezier polynomials with control points by, B, by and bs, F(B), by
are geometrically O continuous at b3. Some simple monotonicity arguments
imply that F(B(t)) is a (radially) monotonic transversal curve in the sense
of [3] contained in the cone Cy (see Fig. 4). This proves feasibility of the
not—a—knot—condition at one end of the data set.

by

Fig. 4. Local behavior of the shooting method.

If a shooting strategy is carried out from the other end, a curve starting
from b3 results, extending monotonically (in the sense of [3]) into the cone C5,
and reaching the line through b3, 5, asymptotically. Such a curve uniquely

intersects B(t), proving feasibility of the not—a—knot—condition at both ends.
|

Since the “shooting” strategy is numerically unstable, we have to refor-
mulate the not—a—knot boundary condition in terms of the system (4). For
i = 3 the left-hand-side of (4) has to be replaced by the curvature k3 at bs
of the quadratic piece interpolating by, by, and b3. Then t has to be expressed
by the variable as. Introducing the angle 6 = v3 — a3 in Fig. 5, we want to
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write B(t) as a function B(t(6)) of 6. Then the left-hand side of (4) for ¢ = 3

becomes

o Bs = baf[sin(5 + 3 — a3)
P 2Blt(ys —as)) — b2

where we used the notations defined in Fig. 5.

e ag

Fig. 5.

We drop the arguments ¢ and ¢ for simplicity and first use the fact that
B, b3, and the projection P of b; to the tangent are collinear:

B — b3 = AP —b3). (11)
The we express B and P in barycentric coordinates
B =by +up(by —b2)+vp(bs —b2), P=0by+up(by —by)+ vp(bs — by),

eliminate A from (11) as

/\:u_B_l—vB

up 1—uvp

and use upg-vp = 1/4 to express up and vp as functions of up and vp. With
wp:=up/(l—vp)=up/(l—vp) <0 we get

1 _ 1 _
ug = §wp(1 +14/1 —wpl), 1—vg = 5(1 +14/1 —wpl).

Having eliminated B we are left with P, and some trigonometric reason-
ing gives the result

—sind ||b3 — bz”
cos(m/2 —a — [ —0)|[br — b2

wp =

This can be used to express B — b3 via up and vp as functions of 6. W
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