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2 R. Schaback / Z. Wux2. Fourier transformsHere we de�ne the multivariate Fourier transform symmetrically asĝ(!) := (2�)�d=2 ZIRd g(x)e�i!T xdxand �g(x) := (2�)�d=2 ZIRd g(!)e+i!T xd!for g 2 L1(IRd), where T stands for vector transposition. Now if g(x) =f(kxk2=2) is a radial function, then the d{variate Fourier transform is (seeStein and Weiss [5], p. 155 with a slightly di�erent normalization of theFourier transform)ĝ(!) = k!k� d�222 Z 10 f(s2=2)sd=2J d�22 (s � k!k2)ds= Z 10 f � s22 �� s22 �d�22 � s � k!k22 �� d�22 J d�22 (s � k!k2)s ds= Z 10 f � s22 �� s22 �d�22 H d�22 � s22 � k!k222 � s dswith the functions J� and H� de�ned by� z2 ��� J�(z) = H�(z2=4) = 1Xk=0 (�z2=4)kk!�(k + � + 1) = F1(� + 1;�z2=4)�(� + 1)for � > �1. If we substitute t = s2=2, we �ndĝ(!) = Z 10 f(t)t d�22 H d�22 �t � k!k22 � dt=: �F d�22 f� (k!k2=2)with the general operator(F�f)(r) := Z 10 f(t)t�H� (tr)dtfor � > �1 de�ned on all f : IR>0 ! IR such thatf(t) � t�+ 12 2 L1(IR>0): (2:1)



Operators on Radial Functions 3Note that both F� and H� generalize to arbitrary � 2 IR, provided thatrestrictions like (2.1) hold. Furthermore, by symmetry of radial functionsand our de�nition of Fourier transforms we haveF�1d�22 = F d�22 for d 2 IN:We shall see later that this generalizes to F�1� = F� for all � 2 IR, whereverboth operators are de�ned.In analogy to the classical space of tempered test functions we shalloften use the space S of all functions on IR�0 that are in�nitely di�eren-tiable such that any derivative vanishes faster than polynomially at in�n-ity. We call such functions tempered radial test functions and remark thatf(r) = e�r is in S but not in Schwartz' space. We can easily consider F�as an operator on S for all � 2 IR, and we shall prove F 2� = Id there.However, we postpone the extension of F� for � � �1 somewhat, becausethere will be a more handy de�nition. For convenience, we shall mainlywork on the function space S, but particular results will be extendable bycontinuity to much more general radial functions, including some with asingularity at zero.Our basic tool will be the following lemma which provides a formulafor the action of F� on the special function H� :Lemma 2.1. For � > � > �1 and all r; s > 0 we have(F�H� (s�))(r) = s��(s � r)����1+�(� � �)with the usual de�nition of the truncated power function.Proof: The assertion is a consequence of the Weber{Schafheitlin integral(see Abramowitz and Stegun [1], p. 487, 11.4.41) after substitutions of the



4 R. Schaback / Z. Wutype t = s2=2. In detail, we have�F�H� � u22 ���� r22 �=Z 10 t�H�� r22 t�H� � u22 t� dt=Z 10 � s22 �� � s �H�� r22 � s22 �H� � u22 � s22 � ds=Z 10 2��s2�+1 � rs2 ��� � us2 ��� J�(us)ds=2�r��r��Z 10 s���+1J�(rs)J� (us)ds= 2�r��u��2���+1r�(u2 � r2)����1+u��(� � �)= 1�(� � �) � u22 ��� � u22 � r22 � ����1+ :Theorem 2.2. Let � > � > �1. Then for all functions f : IR>0 ! IR withf(t) � t����1=2 2 L1(IR>0) (2:2)it follows that F� � F� = I��� (2:3)where the integral operator I� is given by(I�f)(r) = Z 10 f(s) (s � r)��1+�(�) ds; r > 0; � > 0:Proof of Theorem 2.2: For any tempered radial test function f 2 S weevaluate (F� � F�)f(r) by means of Lemma 2.1 to obtainZ 10 H�(tr)t� Z 10 H� (st)s�f(s)ds dt=Z 10 s�f(s)Z 10 t�H�(tr)H� (ts)dt ds=Z 10 s�f(s) � F�(H� (s�))(r)ds=Z 10 f(s) (s � r)����1+�(� � �) ds = (I���f)(r):



Operators on Radial Functions 5By standard continuity arguments this proof extends to any f with (2.2).As a step towards proving F�1� = F� in general, we needLemma 2.3. For � > � > �1 and all s; r > 0 we haveF� s��(s � �)����1+�(� � �) ! (r) = F 2�(H�(s�))(r)= H�(rs):Proof: We directly calculate the assertion and use Lemma 4.13 of Steinand Weiss (p. 170). In detail,F� s�� (s� �)����1+�(� � �) ! (r)=Z 10 t� s��(s � t)����1+�(� � �) H�(tr)dt= s���(� � �) Z s0 t�(s� t)����1H�(tr)dt= s���(� � �) Z s0 t�(s� t)����1J�(2prt)(rt)��=2dt;and by substitution t = su2, we get= s���(� � �) Z 10 s�u2�s����1(1 � u2)����1J�(2prsu)(rsu2)��=22su du= 2(rs)��=2�(� � �) Z 10 u�+1(1� u2)����1J�(2prsu)du= 2(rs)��=2�(� � �) 2����1�(� � �)(2prs)���� J�(2prs)=(prs)��J�(2prs)=H�(rs):Corollary 2.4. For all � > � > �1 and all s; r > 0F 2�  s��(s � �)����1+�(� � �) ! (r)=F�(H� (s�))(r)= s��(s � r)����1+�(� � �) :



6 R. Schaback / Z. WuTheorem 2.5. F 2�f = f holds for all � > �1 and on all tempered orcompactly supported C1 test functions, and on all continuous and locallyL1 functions f for which F 2�f is well{de�ned.Proof: The proof follows by density of truncated power functions and bycontinuity arguments.x3. Properties of integral operatorsWe now generalize (2.2) for all �; � 2 IR>�1. To do this, we de�ne(I0f)(r) := f(r); f 2 C(IR>0)(I�1f)(r) := �f 0(r); f 2 C1(IR>0)I�n := In�1; n > 0I�� := In�� � I�n; 0 < � � n = d�eand getTheorem 3.1. The operators I� for � 2 IR form an Abelian group isomor-phic to (IR;+) via � 7! I�, if the operators are restricted to functions inS. Furthermore, they preserve compact supports for all �, and they aremonotonic in the sense (I�f)(r) � 0 for all r > 0if f(r) � 0 for all r > 0;provided that � � 0.Proof: For �; �; 
 � 0 we haveI� � I� = F
F 
+�F 
+�F 
+�+�= F
F 
+�+� = I�+�= I� � I�because of F�1
 = F
 for 
 > �1. For n 2 IN and 0 � n � � it is easy tosee by explicit di�erentiation thatI� � I�n = I��n = I�n � I�holds. The de�nition I�� := In�� � I�n for 0 < � � n 2 IN is independentof n, since for any k 2 IN�0 we have(In�� � I�n)(f) = (�1)nIn��f (n)= (�1)n+kIn��Ikf (n+k)= In+k��I�n�kf:



Operators on Radial Functions 7Thus the identity I�� = In�� � I�n = I�n � In��is valid for all 0 < � < n, andI� � I�� = I� � In�� � I�n = In � I�n = I0:Likewise, I�� � I� = In�� � I�n � I� = In�� � I� � I�n = I0for all 0 < � < n. If �; � 2 IR are general, take k � ��; n � �� to �ndI�+� = I�+�+n+k � I�n�k = I�+k � I�+n � I�n � I�k= I�+k � I�k � I�+n � I�n = I� � I�and similarly I�+� = I� � I�. The remaining properties of I� follow fromthe de�nition.Note that the operator group fI�g�2IR nicely interpolates between allclassical derivatives and integrals, which occur as special cases In for n 2 ZZ.Writing a radial function in the form (1.1) instead of g(x) = f(kxk2) payso� by getting nice forms of I1 and I0. The identity f = (In � I�n)f isf(r) = (�1)n Z 1r f (n)(s) (s � r)n�1(n� 1)! ds; r > 0for functions f 2 Cn(IR>0) with f (n)(t) � tn+12 2 L1(IR>0). This is Taylor'sformula at in�nity, and for this reason the group fI�g�2IR should be calledTaylor's group.Theorem 3.2. On test functions in S the identityI��� = F� � F� (3:1)holds for all �; � > �1.Proof: We only have to treat the case � > � > �1, whereI��� = (I��� )�1 = (F� � F�)�1= F�1� � F�1� = F� � F�:



8 R. Schaback / Z. WuDe�nition 3.3. The operators F� may be de�ned for all � 2 IR and on Sby F� := I��� � F� (3:2)where some � > �1 is taken.Theorem 3.4. With the above de�nition,I��� = F� � F� (3:3)holds for all �; � 2 IR. Another useful identity isF� � I� = I�� � F� (3:4)for all �; � 2 IR.Proof: We �rst assert that (3.3) holds for all � > �1, � 2 IR. It followsfrom (3.2) for � + � > �1 or � > 0. The case � < 0 is then implied byI�� � F� � I�� = I�� � I� � F� = F� :The independence of (3.4) from the choice of � > �1 is easily implied by(3.2). Thus F� for � � �1 is well{de�ned by (3.4) and (3.1) now holds for� 2 IR, � > �1. For �; � 2 IR we de�neF� := I��� � F�; F� := I!�� � F!for �; ! > �1 and getF� � F� = I��� � F� � I!�� � F!= I��� � F� � F! � I��!= I���:Finally, for � 2 IR and F� = I��� � F� with � > �1 we �ndF� � I� = I��� � F� � I�= I��� � I�� � F�= I�� � I��� � F�= I�� � F�:For � > 0 we can use the de�nition of �(�) to see thatI�(e�r) = e�r



Operators on Radial Functions 9holds, and this easily generalizes to all � 2 IR, since also I�1e�r =�(e�r)0 = e�r . By direct calculation we getF�(e�r) = e�rfor all � > �1 and this also generalizes to all � 2 IR. Thus the exponentialfunction e�r acts as a universal nontrivial �xed point for the two operatorfamilies fI�g�2IR and fF�g�2IR which deserve further study as actions onS. For each function f 2 S the orbits� 7! f� := I�f (\Taylor orbit")� 7! g� := F�f (\Fourier orbit")de�ne curves on S. They degenerate into single points for f(r) = 0 andf(r) = e�r , and these two points are the only cases where the curvesff�g�2IR and fg�g�2IR can intersect at all:Theorem 3.5. If for some tempered test function f : IR�0 ! IR and some�; � 2 IR the identity I�f = F�fis valid, then it holds for all � and �, while f necessarily coincides withe�r or the zero function.Proof: We consider F�I�f = F�I���I�f= F�I���F�f= F�F�I���f= I���+���fand get F�I�f = I�f whenever ���+� = 2�. Thus for � = 12 �� + �+ 12 �and � = �1=2 we have that I�f is a �xed point of the univariate symmetric\radial" Fourier transform in the sense of Section 2. Since e�r2=2 is theonly nontrivial �xed point of the univariate classical Fourier transform, theassertion follows.x4. Recursion of Fourier transformsWe can use (3.3) in the formF� = I���F� = F�I���



10 R. Schaback / Z. Wuto express Fourier transforms via other Fourier transforms. With Fd :=F d�22 , the d{variate Fourier transform written as a univariate operator onradial functions, we �ndFn = I(m�n)=2Fm = FmI(n�m)=2for all space dimensions m;n � 1. Recursion through dimensions can bedone in steps of two via Fm+2 = I�1Fm = FmI1and in steps of one by Fm+1 = I�1=2Fm = FmI1=2:Note that the operators I1; I�1, and I1=2 are much easier to handle thanthe Hankel transforms F� and Fm. This allows simpli�ed computations ofFourier transforms of multivariate radial functions, if the univariate Fouriertransforms are known. Furthermore, these operators map compactly sup-ported functions to compactly supported functions, and the I� operatorsfor � � 0 are monotone, i.e. they map nonnegative functions to nonnega-tive functions. This was successfully used by Wu [8] to construct piecewisepolynomial compactly supported radial functions with nonnegative Fouriertransforms and to characterize all radial functions with nonnegative mul-tivariate Fourier transforms [9].To be somewhat more explicit, consider odd-dimensional Fourier trans-forms F2m+1 = I�1F2m�1 = Im�1F1:Thus, if g is a univariate function that describes the univariate Fouriertransform of a radial function f after substitution t 7! t2=2, thenIm�1g = (�1)mg(m)is the radial Fourier transform of f in 2m+ 1 dimensions. This very sim-ple fact should be mentioned in all standard tables of Fourier transforms.Note that Fourier transforms in even dimensions also nicely boil down tobivariate transforms, but the transition between bivariate and univariatetransforms does not use a plain derivative, but instead the semi{derivative(I�1=2f)(r) = (I1=2I�1f)(r) = �Z 1r f 0(s) (s� r)�1=2�(1=2) ds (4:1)



Operators on Radial Functions 11x5. ConvolutionsTwo functions g; h 2 L1(IRd) can be convolved in IRd via(g �d h)(x) = Zy2IRd g(y)h(x � y)dy:If g and h are radial, the result is again a radial function, whose d{variateFourier transform is the product of the d{variate Fourier transforms of gand h.De�nition 5.1. The operatorC� : S � S ! Sde�ned by C�(f; g) = F�((F�f) � (F�g))is a generalized convolution operator on radial functions. For � = d� 22it coincides with the operator that takes d{variate convolutions of radialfunctions and rewrites the result in radial form.We can now use Theorem 3.2 to describe transforms between two con-volutions:Theorem 5.2. For �; � 2 IR we haveC�(f; g) = I���C�(I���f; I���g) (5:1)for all f; g 2 S.Proof: By de�nition and (3.1) we �ndF�C�(f; g) = F�f � F�g= F�I���C�(f; g) = (F�I���f) � (F�I���g)= F�C�(I���f; I���g)and get I���C�(f; g) = C�(I���f; I���g)and C�(f; g) = I���C�(I���f; I���g):



12 R. Schaback / Z. WuThe main application of Theorem 5.2 consists in the reduction of multivari-ate convolutions to univariate convolutions. In fact, for dimensions d � 1we have C d�22 (f; g) = I 1�d2 C� 12 �I d�12 f; I d�12 g� :If d is odd, the d{variate convolution of radial functions �nally just boilsdown to a derivative of a univariate convolution of integrals of f and g.For instance, f �3 g = I�1((I1f) �1 (I1g))= � ddr ��Z 1r f� �1 �Z 1r g�� :Since those transformations preserve compactly supported piecewise poly-nomials, one can very easily calculate multivariate convolutions of com-pactly supported piecewise polynomial radial functions on odd{dimensionalspaces. The same properties hold for transitions between even{dimensionalspaces.To reduce a bivariate convolution to a univariate convolution, oneneeds the operations(I1=2f)(r) = Z 1r f(s) (s � r)�1=2�(1=2) dsand (4.1) corresponding to integration and di�erentiation of order 1=2. Ifapplied to compactly supported piecewise polynomials, these operationswill generate unpleasant inverse trigonometric functions.x6. Special functionsWe now study the action of the operators I� and F� on certain �xed func-tions f . Starting with some test function f0, we can de�nef� := I�f0 (� 2 IR)and get a variety of integral or di�erential equations from application ofthe I� operators via the identitiesf�+� = I�f� = I�f� :Furthermore, we can set g� := F�f0 and get another series of equationsI�g� = I�F�f0 = F ���f0 = g���F�g� = F�F�f0 = I���f0 = f���F�f� = F�I�f0 = F�+�f0 = g�+� (6:1)



Operators on Radial Functions 13that describe the action of F� or I� operators on the f� or g� functions.Form 2 IN�0 �xed we can start with f0(r) = rme�r and get for � > 0f�(r) = e�r � mXj=0�mj � �(�+ j)�(�) rm�j =: e�rP�(r)and for � > �1 by 11.4.28 of [1], p. 486g�(r) := (F�f0)(r) = �(m+ � + 1)�(� + 1) M(m + � + 1; � + 1;�r)with the con
uent hypergeometric function. The other cases can be con-structed by taking derivatives or integrals, e.g.f�(r) = (�1)n dndrn (e�rP�+n(r)) = (I�nf�+n)(r)for n > 0. Or, for � 2 IR and n > 0 with n+ � > �1, we haveg�(r) = F�f0(r) = (In � Fn+�)f0(r) = (Ingn+�)(r)taking integrals of the M function. For n 2 ZZ<0 this describes the di�er-entiation rules for M .Now the equations (6.1) yield other relations between the f� and g�,for instance(F�g�)(r) = �(m+ � + 1)�(� + 1) Z 10 M(m + � + 1; � + 1;�s)s�J�(rs)ds= f���(r) = e�rP ���(r);which is not in [1]. Since the P ��� polynomials are positive for r � 0,this application establishes the con
uent hypergeometric functions g�(r) asnew examples of positive de�nite functions, i.e. as functions with a positiveFourier transform when radialized in each IRd.Another case that is relevant for applications stems from inverse mul-tiquadrics or Bessel potentials(c2 + kxk22)�=2; c > 0; x 2 IRdfor � < 0. Here, we leave the restricted domain of test functions, butwe shall only treat cases that can be handled via approximation by testfunctions. The function f0 now will bef0(r) = (
 + r)�=2



14 R. Schaback / Z. Wuwith 
 = c2=2, and we can apply I� for 0 < � < ��=2 to get anothermultiquadricf�(r) = Z 1r (
 + s)�=2 (s � r)d�1�(�) ds= 1
(�) Z 10 (
 + r + t)�=2+��1� tt+ r + 
 ���1dt= (
 + r)�=2+��(�) Z 10 u��1(1� u)����=2�1du= (
 + r)�=2+� �(�� � �=2)�(��=2) :Taking derivatives, this extends to � in the range �1 < � < ��=2, butI� is not applicable to f0 for � � �=2.Fourier transforms will now need Bessel or MacDonald functions K�via g�(r) := (F�f0)(r) = Z 10 (
 + t)�=2t�H�(tr)dt= 21+�=2�(��=2) � up
 ����1��=2K�+1+�=2(up
)for r = u2=2 and �1 < � < � 12 � � (see Abramowitz and Stegun [1],p.488, 11.4.44). Other values can be obtained by(F�f0)(x) = (I���(F�f0))(r)where � � �� � 1 � � is possible. Further cases can be handled by (6.1)for various ranges of �; � and �. The identities I�g� = g��� generalizethe di�erentiation rules for functions of the form z��K� (z) =: L�(z2=2),namely L0� = L�+1 (see Abramowitz and Stegun [1] p. 376, 9.6.28).x7. Compactly supported functionsWe now take the characteristic function f0(r) = �[0;1](r) and get the trun-cated power function(I�f0)(r) = Z 10 (s � r)�+1+�(�) ds = (1� r)�+�(�+ 1) = f�(r); � > 0:Now Lemma 2.1 yields f� = F�H�



Operators on Radial Functions 15for � � � = �+ 1; � > � > �1 andF�f� = H�+�+1for � > 0; � > �1. If h� = f� � f� is the univariate radial convolution oftwo instances of f� in the senseh�(s2=2) = Z +1�1 f�(r2=s) � f�((s � r)2=2)dr; (6:2)then F1(h�) = (F1(f�))2 = (F�1=2f�)2 = H2�+1=2:We now �x 0 � k �m � � and getF2k+1I�mh� = ImF k�1=2h�= Im�kIkF k�1=2h� = Im�kF�1=2h�= Im�kH2�+1=2 � 0;proving that the function I�mh� is positive de�nite on all IRd with d �2m+1, and the corresponding radial Fourier transform is explicitly known.This generalizes the construction in [8] and provides Fourier transforms ofWu's functions in the form ��;m = I�mh�.Now we apply the above technique to calculate inner products(I�mh�(k � �xk22=2); I�mh�(k � �yk22=2))L2(IR2k+1)=Ck�1=2(I�mh�; I�mh�)(kx � yk22=2)that arise when the functions I�mh� are used for L2 approximation onIR2k+1; 0 � k �m � �. Theorem 5.2 turns the above quantities intoI�kC�1=2(Ik�mh�; Ik�mh�) (6:3)such that one only has to� calculate the univariate convolution of Ik�mh� with itself in thesense of (6.2)� take the k{th derivative.Formoderate integer values of � the explicit determination of h�; Ik�m(h�),and (6.3) can be easily done by any program for symbolic calculation. Thishas been done to provide the examples in [4].If we use the convolution recursion again, we �nd the representationI�mh� = I�mC�1=2(f�; f�)= I�mC�1=2(I�f0; I�f0)= I��mC��1=2(f0; f0)



16 R. Schaback / Z. Wuof Wu's functions as integrals of (2�+1){variate convolutionsC��1=2(f0; f0)of the characteristic function f0 of the unit ball in IR2�+1. These positivede�nite compactly supported functions can be called \Euclids Hats". Anexplicit construction based on results of H. Wendland is in [4], while theabove argument is from Wendland [7].Another nice construction due to H. Wendland starts with Askey'sfunctions A�(x) := (1� kxk2)�+; x 2 IRdwhich are compactly supported and positive de�nite on IRd for � � bd=2c+1(see Askey [2]). If they are rewritten as radial functionsa�(r) = (1�p2r)�+in our sense, then the functions Ika� for k 2 IN are positive de�nite andcompactly supported in IRd for � � bd=2c + k + 1 because ofF d�22 Ika� = F d+2k�22 a� :When written as functions  �;k of kxk2 again, the functions Ika� are in C2kand consist of a single polynomial piece of degree � + 2k on their support.Fixing d and k to ensure C2k and positive de�niteness on IRd, thelowest possible value of � is bd=2c+k+1, yielding a degree of bd=2c+3k+1.Under the above restrictions on d and k, H. Wendland shows [7] that thisdegree is minimal.Further examples along the lines of (6.1) and (4.1) are left to thereader. It should be clear by now that the operator families fF�g and fI�gtogether with their intrinsic relations form a useful toolbox for handlingradial functions. References1. Abramowitz, M. and Stegun, I.A., Handbook of Mathematical Func-tions, Dover, New York, 1970.2. Askey, R., Radial characteristic functions, MRC Technical Sum: Re-port no. 1262, University of Wisconsin, 1973.3. Pinsky, M.A. and Stanton, N.K. and Trapa, P.E., Fourier series ofradial functions in several variables, J. Funct. Anal.116 (1993), 111{132.4. Schaback, R., Creating Surfaces from Scattered Data Using Radial Ba-sis Functions, in: Mathematical Methods for Curves and Surfaces, M.Daehlen, T. Lyche and L.L. Schumaker (eds.), Vanderbilt UniversityPress, Nashville, TN, 1995, 477{496.
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