Operators On Radial Functions

Robert Schaback and Z. Wu

Abstract. A general theory is provided that allows to write multi-
variate Fourier transforms or convolutions of radial functions as very
simple univariate operations. As a byproduct, an interesting group of
operators {I, }aem with Io4g = Io0lg = Igol, is defined. Tt contains
the classical derivatives as I_1 = = and is intimately connected to
the Fourier transform. Applications to the construction of new positive
definite radial functions and to new identities for special functions are
included.

§1. Radial functions

Among all functions ¢ : IR?\ {0} — IR we consider those which can be
written as a univariate function of the Euclidean norm ||z||2 on R%.

Definition 1.1. A function ¢ : IR\ {0} — IR is radial if there is a function
f:IR>9 — IR such that

g(x) = f(l«l3/2), =€ R"\{0}. (1.1)

Remark 1.2. Functions defined on all of IR? are treated similarly. Note
that we do not use g(x) = f(||x||2) for reasons that will soon be apparent.
Any univariate function f : IR~¢ — IR will induce a radial function on each
R\ {0} via (1.1), and we shall always assume (1.1) when going over from
f to a radial function g on IR? \ {0}.

Our major goal is to provide a toolbox of univariate operators that
allows to calculate multivariate transforms of radial functions effectively,
including multivariate Fourier transforms and convolutions. The results are
somewhat related to the work of S.E. Trione [6] based on Laplace trans-
forms, and of M.A. Pinsky et al. [3] on Fourier series of radial functions.
They were applied in several papers that constructed compactly supported
positive definite functions [7], [8], [9].
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§2. Fourier transforms

Here we define the multivariate Fourier transform symmetrically as

g(w) = (27r)_d/2/ g(:z;)e_inxdx

Rd

and
g(x) = (27r)_d/2/ g(w)e""inxdw

Rd

for ¢ € Li(IR?), where T stands for vector transposition. Now if g(z) =
f(|l=]|?/2) is a radial function, then the d-variate Fourier transform is (see

Stein and Weiss [5], p. 155 with a slightly different normalization of the
Fourier transform)

d—2

Jw)=lwlly ™ [ F(s7/2)s Taza (s - [|w]|2)ds
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with the functions J, and H, defined by

2\ N A R+ -4
<§> Tulz) = Hilz /4)_; FO(k+v+1)  T(v+1)

for v > —1. If we substitute t = s?/2, we find

)= [ T B (t- -] )dt

= (Faz2 £) (J]?/2)

with the general operator

(F,f)(r) ::/ f(e)t" Hy (tr)dt
0
for v > —1 defined on all f: IR~y — IR such that

f(t)- t+s e Li(Ro). (2.1)
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Note that both F, and H, generalize to arbitrary v € IR, provided that
restrictions like (2.1) hold. Furthermore, by symmetry of radial functions
and our definition of Fourier transforms we have

We shall see later that this generalizes to F;! = F, for all v € IR, wherever
both operators are defined.

In analogy to the classical space of tempered test functions we shall
often use the space § of all functions on IR that are infinitely differen-
tiable such that any derivative vanishes faster than polynomially at infin-
ity. We call such functions tempered radial test functions and remark that
f(r) =€ " isin § but not in Schwartz’ space. We can easily consider F),
as an operator on § for all v € IR, and we shall prove F? = Id there.
However, we postpone the extension of F}, for v < —1 somewhat, because
there will be a more handy definition. For convenience, we shall mainly
work on the function space §, but particular results will be extendable by
continuity to much more general radial functions, including some with a
singularity at zero.

Our basic tool will be the following lemma which provides a formula
for the action of F), on the special function H,:

Lemma 2.1. For v > 1 > —1 and all r,s > 0 we have

s7V(s — r)_”i__“_l

I(v —p)

(FuHy(s))(r) =

with the usual definition of the truncated power function.

Proof: The assertion is a consequence of the Weber—Schatheitlin integral
(see Abramowitz and Stegun [1], p. 487, 11.4.41) after substitutions of the
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type t = s%/2. In detail, we have

(2 (5)) (%)

v,—p, —veopu—v+1_us 2 2\v—p—1
e HRuTY2 ri(u” — o)L

u’'T'(v—p)

D S (T W (TS Sl R
T T(v—p) \ 2 2 2 )t

Theorem 2.2. Let v > p > —1. Then for all functions f : IR~g — IR with

F(t) -t 7FY2 € Li(Rs)

it follows that
F,oF,=1,_,

where the integral operator I, is given by

:/0 f(s)%ds, r>0, a>0.

(2.2)

(2.3)

Proof of Theorem 2.2: For any tempered radial test function f € S we

evaluate (F), - F,,)f(r) by means of Lemma 2.1 to obtain

/ H,(tr)t / H,(st)s" f(s)ds dt

_/0 s”f(s)/o tH (#)H, (ts)dt ds
— [ B s

1

- [ s 3‘”“) ds = (I_u F)(1).
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By standard continuity arguments this proof extends to any f with (2.2).
|

As a step towards proving F;l = F, in general, we need

Lemma 2.3. For v > 1 > —1 and all s,r > 0 we have

S_V(S_'):—_N_l _ 2 s N(r
fu( — )(ﬂ—FMHA)X)

= H,(rs).

Proof: We directly calculate the assertion and use Lemma 4.13 of Stein
and Weiss (p. 170). In detail,

=Y
F“( T(v —p) )( )

o —v ¢ v—pu—1
:/ g (s~ 1)+ H,(tr)dt
0

(v —p)
-t /0 P (s — 1PV H (#r) b
_L ’ Big — )v—r—1 ) ()2
~ o | e v

and by substitution t = su?, we get

—v 1
— (8 )/3“u2“3”_“_1(1—uz)”_’“‘_lJu(Q rsu)(rsuz)_“/zzsu du
v —

T
_ 2(”) w/2 ! pt1 2\p—p—1
= T(V 0 /0 uf (1 — u”) Ju(24/rsu)du

B 2(rs)” wiz ou—p— 1T(V— () o
BN S
(Vrs) ™" T, (24/rs)

=H,(rs).

Corollary 2.4. For allv > u > —1 and all s,7 >0

9 S_V(s — .):__“_1 .
i ( (v —p) )( )

=Fu(Hy(s))(r)
sV (s — r)_”i__“_l

I(v —p)
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Theorem 2.5. Fif = f holds for all p > —1 and on all tempered or
compactly supported C'™ test functions, and on all continuous and locally

Ly functions f for which Fif is well-defined.

Proof: The proof follows by density of truncated power functions and by
continuity arguments. H

63. Properties of integral operators

We now generalize (2.2) for all v, 4 € IR~_1. To do this, we define

(Lo f)(r) == f(r), f e C(R>o)
(L1 f)(r) := = f'(r), f e CH{Rxyp)
I, =1",, n>0
I_o:=1,_g0l ,,0<a<n=]«

and get

Theorem 3.1. The operators I, for « € IR form an Abelian group isomor-
phic to (IR,+) via a — I, if the operators are restricted to functions in
S. Furthermore, they preserve compact supports for all o, and they are
monotonic in the sense

(Lo
if f(r
provided that o > 0.

f)r)>0foralr >0
) >0 for all r > 0,

Proof: For «, 3,7 > 0 we have

Ia o] Iﬁ = F7F7+QF7+QF7+a+ﬁ
= FyFotats = Lats
= Iﬁ 0 Ia

because of F;l =F, for v > —1. Forn € IN and 0 < n < « it is easy to
see by explicit differentiation that

Iool =1, ,=1_,01,

holds. The definition I_, := I,_q0l_, for 0 < o < n € IN is independent
of n, since for any k € IN>¢ we have
(Inma 0 I-)(f) = (—1)" Tnea f™
— (_1)n+kIn—aka(n+k)
= In—l—k—ozI—n—kf-
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Thus the identity
I w=1h qol =101, 4,
is valid for all 0 < & < n, and
Inol =1I,01, qol ,=1,01_,=1I.
Likewise,
I_qoly=1I,qol_poly=1,_qolyol_, =1
forall 0 < @ < n. If o, f € IR are general, take k > —«a, n > —f to find

Ioz—l—ﬂ = Ioz—l—ﬁ—l—n—l—kof—n—k = Ioz—l—k oIﬁ—l—n oI—n oI—k
=Igqpol_polgypol_p,=1,01g

and similarly Io43 = Ig o I,. The remaining properties of I, follow from
the definition. W

Note that the operator group {1, }ner nicely interpolates between all
classical derivatives and integrals, which occur as special cases I, forn € Z.
Writing a radial function in the form (1.1) instead of g(x) = f(||z||2) pays
off by getting nice forms of I; and Iy. The identity f = (I, 0I_,)f is

/f(n) S_T)l) ds, r>0
(n —

for functions f € C"(R¢) with (™) (¢)- tnts ¢ Li(R~y). This is Taylor’s
formula at infinity, and for this reason the group {I, }aer should be called
Taylor’s group.

Theorem 3.2. On test functions in § the identity
I,_,=F, F, (3.1)
holds for all v, > —1.

Proof: We only have to treat the case u > v > —1, where

Iy = (Iu—u)_l = (F, o Fu)_l
=F,'oF,' =F,0F,.
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Definition 3.8. The operators F}, may be defined for all p € IR and on S
by
F,.=1,_,0F, (3.2)

where some v > —1 is taken.

Theorem 3.4. With the above definition,
I,_,=F,0F, (3.3)
holds for all p,v € IR. Another useful identity is
F,ol,=1_,0F, (3.4)
for all a,v € IR.

Proof: We first assert that (3.3) holds for all v > —1, o € IR. It follows
from (3.2) for v + @ > —1 or & > 0. The case o < 0 is then implied by

I_,oF,0ol ,=1I_,0l,0F,=F,.

The independence of (3.4) from the choice of v > —1 is easily implied by
(3.2). Thus F}, for p < —1 is well-defined by (3.4) and (3.1) now holds for
€ IR, v>—1. For p,v € IR we define

F,=1,_,0F, F,:=1,_,0F,
for p,w > —1 and get

F,oF, =1, ,0F,0l,_,0F,
=1, ,oF,0F,0l,_,

=1,_,.
Finally, for p € R and F,, =I,_, o F},, with v > —1 we find

Fooly=1,_,0F,0l,
=I,_ o0l _4oF,
=I_,0l,_,0F,
=I_,0oF,.

For o > 0 we can use the definition of I'(«) to see that

In(e7")=¢e"
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holds, and this easily generalizes to all & € IR, since also I_1e™" =
—(e™")" = e77. By direct calculation we get

F,e7")=¢e"

for all v > —1 and this also generalizes to all v € IR. Thus the exponential
" acts as a universal nontrivial fixed point for the two operator
families {1 }aer and {F,},cr which deserve further study as actions on
S. For each function f € § the orbits

function e~

a foi=1I.f (“Taylor orbit”)
vis g, =F,f (“Fourier orbit”)

define curves on §. They degenerate into single points for f(r) = 0 and
f(r) = €77, and these two points are the only cases where the curves
{fa}taemr and {g, },emr can intersect at all:

Theorem 3.5. If for some tempered test function f : IR>¢ — IR and some
a,v € IR the identity

I.f=F,f

is valid, then it holds for all o and v, while f necessarily coincides with

e~ " or the zero function.

Proof: We consider

FuIsf = Fuls_olaf
= F,I5_oF,f
= F,F,Ia_sf
= Iu—u—l—a—ﬁf

and get Fj,Igf = I3f whenever v—pu+a = 23. Thusfor 3 = % <1/ + o+ %
and p = —1/2 we have that I3 f is a fixed point of the univariate symmetric

“radial” Fourier transform in the sense of Section 2. Since e~ /2 is the
only nontrivial fixed point of the univariate classical Fourier transform, the
assertion follows. W

64. Recursion of Fourier transforms
We can use (3.3) in the form

F,=I, ,F,=F,1I,_,
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to express Fourier transforms via other Fourier transforms. With Fy :=
Fa_», the d-variate Fourier transform written as a univariate operator on

radial functions, we find
Fn = Lm-n)2Fm = Fmnl(n—m)/2

for all space dimensions m,n > 1. Recursion through dimensions can be
done in steps of two via

Fm—I—Z == I—lfm :le—l
and in steps of one by
Fomt1r =1 10Fm =Fnliys.

Note that the operators I1,I_1, and I, are much easier to handle than
the Hankel transforms F), and F,,. This allows simplified computations of
Fourier transforms of multivariate radial functions, if the univariate Fourier
transforms are known. Furthermore, these operators map compactly sup-
ported functions to compactly supported functions, and the I, operators
for &« > 0 are monotone, i.e. they map nonnegative functions to nonnega-
tive functions. This was successfully used by Wu [8] to construct piecewise
polynomial compactly supported radial functions with nonnegative Fourier
transforms and to characterize all radial functions with nonnegative mul-
tivariate Fourier transforms [9].

To be somewhat more explicit, consider odd-dimensional Fourier trans-
forms

FZm—I—l == I—1F2m—1 == ITlfl-

Thus, if ¢ is a univariate function that describes the univariate Fourier
transform of a radial function f after substitution ¢ — #?/2, then

ITlg = (_1)m9(m)

is the radial Fourier transform of f in 2m + 1 dimensions. This very sim-
ple fact should be mentioned in all standard tables of Fourier transforms.
Note that Fourier transforms in even dimensions also nicely boil down to
bivariate transforms, but the transition between bivariate and univariate
transforms does not use a plain derivative, but instead the semi-derivative

(s—r 1/2
(T2 f)(r) = Ly I-a f)(r /f 1;2) ds (4.1)
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§5. Convolutions

Two functions g, h € Li(IR?) can be convolved in IR? via

(g )(z) = / a(y)h(z — y)dy.

yeR?

If ¢ and h are radial, the result is again a radial function, whose d—variate
Fourier transform is the product of the d-variate Fourier transforms of ¢

and h.

Definition 5.1. The operator
C,:8§x8—S

defined by

Cu(fvg) = FV((F,,f) ) (FVg))
is a generalized convolution operator on radial functions. For v = d_2
it coincides with the operator that takes d-variate convolutions of radial
functions and rewrites the result in radial form.

We can now use Theorem 3.2 to describe transforms between two con-
volutions:

Theorem 5.2. For v, € IR we have
CV(fvg) :Iu—ucu(Iu—u.ﬁIV—ug) (51)
for all f,g € S.

Proof: By definition and (3.1) we find

FI/CV(fag) :FI/fFI/g
= Fqu—uCV(fag) = (FNIV—Nf) ) (FNIV—Ng)
= F.Cp(Ly—pf, Iv—p9)

and get
Iu—ucu(fvg) = CN(IV_Nf7 I”_Ng)

and

Co(fy9) =T Cu(lv—pfi Lu—pg).
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The main application of Theorem 5.2 consists in the reduction of multivari-
ate convolutions to univariate convolutions. In fact, for dimensions d > 1
we have

Cas(f.g) = TiaC_, <I%f,fd_71g>.

2

If d is odd, the d-variate convolution of radial functions finally just boils
down to a derivative of a univariate convolution of integrals of f and g.
For instance,

frsg=1I_1((Li f)* (1))

i (L) ()

Since those transformations preserve compactly supported piecewise poly-
nomials, one can very easily calculate multivariate convolutions of com-
pactly supported piecewise polynomial radial functions on odd—dimensional
spaces. The same properties hold for transitions between even—dimensional
spaces.

To reduce a bivariate convolution to a univariate convolution, one
needs the operations

s—r) 1/2
D) = [ 16 S s

and (4.1) corresponding to integration and differentiation of order 1/2. If
applied to compactly supported piecewise polynomials, these operations
will generate unpleasant inverse trigonometric functions.

§6. Special functions

We now study the action of the operators I, and F,, on certain fixed func-
tions f. Starting with some test function fy, we can define

foi=I.fo (a€R)

and get a variety of integral or differential equations from application of
the I, operators via the identities

fa—i-ﬁ - Iﬁfa - Iafﬂ-

Furthermore, we can set ¢, := F, fy and get another series of equations

Iozgu - IozFufO - Fu—osz =0fv—o
Fugu = FuFufO = IV—ufO - fl/—u (61)
Fufoz = Fqusz = Fu—l—afO =Juta
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that describe the action of F), or I, operators on the f, or g, functions.
For m € IN> fixed we can start with fo(r) = r™e™" and get for a > 0

fa@g::e—r-j§:<’7> Ilgéggl7m*ﬂ‘::e—rpg@q

=0
and for v > —1 by 11.4.28 of [1], p. 486

Fm+v+1)

g,,(?“) = (FVfO)(T) = P(l/ n 1)

Mm+4+v+1lv+1,—r)

with the confluent hypergeometric function. The other cases can be con-
structed by taking derivatives or integrals, e.g.

Falr) = () o (e Par) = (Lo )

for n > 0. Or, for 4 € IR and n > 0 with n 4+ ¢ > —1, we have

gu(r) = Fufo(r) = (In 0 Fay ) fo(r) = (Ingn+u)(7)

taking integrals of the M function. For n € Z . this describes the differ-
entiation rules for M.

Now the equations (6.1) yield other relations between the f, and g,,
for instance

(Fugy)(r) = % /OOO Mm+v+1lv+1,—s)s"J,(rs)ds

= fV—u(r) = e_rP,,_u(r),

which is not in [1]. Since the P,_, polynomials are positive for r > 0,
this application establishes the confluent hypergeometric functions ¢,(r) as
new examples of positive definite functions, i.e. as functions with a positive
Fourier transform when radialized in each IR?.

Another case that is relevant for applications stems from inverse mul-
tiquadrics or Bessel potentials

(24 [|z)|2)??, ¢>0, z€ R

for # < 0. Here, we leave the restricted domain of test functions, but
we shall only treat cases that can be handled via approximation by test
functions. The function fy now will be

folr) = (v +1)°"2
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with v = ¢?/2, and we can apply I, for 0 < o < —3/2 to get another
multiquadric

T)d_l

)= [T sy

@)

1 o t
= —/ (7+r+t)ﬁ/2+a—1<7>a—1dt
0

ds

(@) t+r+y
— (7 _I_Pr()ﬁ)/Z-i-Ol /1 ua—l(l . u)—a—ﬁ/Z—ldu
@ 0
— (7 + T)ﬂ/Z—l—a P(—Oz — 6/2) )

I(=5/2)

Taking derivatives, this extends to a in the range —oco < a < —f3/2, but
I, is not applicable to fy for a > /2.

Fourier transforms will now need Bessel or MacDonald functions I,
via

0u(r) = (F fo)(r) = / Ty PP H, ()

91+8/2 u i i
( ﬁ) IPE g a(uy/A)

I(=p/2)
for r = u?/2 and -1 < v < — % — 3 (see Abramowitz and Stegun [1],p.

488, 11.4.44). Other values can be obtained by

(Fyufo)(e) = (Ly—p(Ey fo))(r)

where 4 < —f — 1 — v is possible. Further cases can be handled by (6.1)
for various ranges of «,p and v. The identities 1,9, = ¢,—_ generalize
the differentiation rules for functions of the form 27" K,(z) =: L,(z?/2),
namely L/V = L,4+1 (see Abramowitz and Stegun [1] p. 376, 9.6.28).

§7. Compactly supported functions

We now take the characteristic function fo(r) = x[o,17(7) and get the trun-
cated power function

s—r3tt (-

_ [ _ _
L = [ O de= G R0 e
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forv—p=a+1, v>p>-1and

Fufoz == Hu—l—a—l—l

for o > 0,0 > —1. If hy = fo * fo 1s the univariate radial convolution of
two instances of f, in the sense

+oco
hals? 2= [ Falr?/) - fulls = 025 (6:2)

then
Filha) = (fl(fa))z = (F—l/zfa)2 = H§+1/2-
We now fix 0 <k <m < « and get

FZk—I—II—mhoz = Ika—l/Zhoz
- Im—kaFk—l/Zhoz = Im—kF—l/Zhoz
- Im—kHzH_l/z Z 07

proving that the function I_,,h, is positive definite on all R? with d <
2m+1, and the corresponding radial Fourier transform is explicitly known.
This generalizes the construction in [8] and provides Fourier transforms of
Wu’s functions in the form ¢4 nm = I—pha.

Now we apply the above technique to calculate inner products

(ool — 1372 Lo —13/2)) oo
:Ck—l/Z(I—mhom I_imho)(]|z — yHg/Q)

that arise when the functions I_,,h, are used for L, approximation on
R***!' 0 <k <m < «a. Theorem 5.2 turns the above quantities into

I—kC—1/2(Ik—mhoz7Ik—mhoz) (63)

such that one only has to
e calculate the univariate convolution of I;_,,h, with itself in the

sense of (6.2)

o take the k—th derivative.

For moderate integer values of « the explicit determination of ko, Tt—m(ha),
and (6.3) can be easily done by any program for symbolic calculation. This
has been done to provide the examples in [4].

If we use the convolution recursion again, we find the representation

I he =10 C_q/5(fa, fa)
= I_mC_l/z(IafoafafO)
— Ia_mCa_l/z(foafO)
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of Wu'’s functions as integrals of (2a+1)-variate convolutions C_q /2( fo, fo)
of the characteristic function fy of the unit ball in IR?®T!. These positive
definite compactly supported functions can be called “Euclids Hats”. An
explicit construction based on results of H. Wendland is in [4], while the
above argument is from Wendland [7].

Another nice construction due to H. Wendland starts with Askey’s
functions

A(@) = (1= |oll)%, @€ R

which are compactly supported and positive definite on IR? for v > |d/2]+1
(see Askey [2]). If they are rewritten as radial functions

an(r) = (1 - Var),

in our sense, then the functions Iya, for k € IN are positive definite and
compactly supported in IR? for v > [d/2] + k + 1 because of

Fa» Ika,, = Fd+2k—2 dy.
2 2

When written as functions v, j of ||z||; again, the functions Ia, arein C%k
and consist of a single polynomial piece of degree v + 2k on their support.

Fixing d and k to ensure C** and positive definiteness on IR?, the
lowest possible value of v is |d/2|+k+1, yielding a degree of |d/2| +3k+1.
Under the above restrictions on d and k, H. Wendland shows [7] that this
degree is minimal.

Further examples along the lines of (6.1) and (4.1) are left to the
reader. It should be clear by now that the operator families {F, } and {I,}
together with their intrinsic relations form a useful toolbox for handling
radial functions.
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