On the Expected Sublinearity
of the Boyer-Moore Algorithm

R. Schaback

The author gratefully dedicates this paper to the memory of his academic teach-
er, Prof. Dr. H. Werner.

Abstract. This paper analyzes the expected performance of a simplified version BM’
of the Boyer—Moore string matching algorithm. A probabilistic automaton A is set up
which models the expected behavior of BM' under the assumption that both text and
pattern are generated by a source which emits independent and uncorrelated symbols with
an arbitrary distribution of probabilities. Formal developments lead then to the conclusion
that A takes expected sublinear time in a variety of situations. The sublinear behavior
can be quantitatively predicted by simple formulae involving the pattern length m and
the alphabet’s probabilistic properties. Finally, empirical evidence is provided which is in
satisfactory accordance with the theory.

Keywords : String searching, Pattern malching, Average case analysis of algorithms. 1

1 The problem
Let A be a finite alphabet, |A| =: n, and suppose strings
T =t...tn, t;EA, 1<i<N (the “text”)

S = 81.08m, €A, 1<i<m<N (the “pattern”)

are given. To avoid formal difficulties in later discussions, we assume S to be expanded to
the left by “jokers”, i.e. characters that match any other character from A.

To determine the leftmost occurrence of S as a substring of T' means then:
Find the smallest 3, m < j < N, such that s,,_; =1;_; for 0 <¢<m—1,

or output that no such j exists.

!The formulation of this paper was significantly improved by the constructive criticism of one of the
referees.

To solve this problem, Boyer and Moore [2] defined an algorithm of the following form:

Ji=m; k:=0;
REPEAT
{At this stage, k characters match :tj_; = sy, 0 < < k—1}
Ir t]‘_k = Sm—k
THEN k:=k+1
ELSE BEGIN
J =7+ MOVE(m,kti_y);
k=0
END
UNTIL (k=m) OR (j > N);
IF E=mTHEN output (Pattern is found at position j)
ELSE output (No occurrence of pattern in text);

Variations of this algorithm depend on the function

MOVE (m,k: INTEGER;t: CHARACTER) : INTEGER

which determines how many positions S may be moved forward along T' to the next position
where S can occur as a substring of T'. In case £ = 0, i.e. if the text character { = ¢; does
not match the last pattern character s,,, the pattern can be moved along the text as long as
t does not occur within the pattern:

MOV E(m,0,t):=min{p |1 <p<m, s, =1}. (1)

For k£ > 0 there are k matching characters s,,_j41...5, = t;_p41...1; and we know that
Sm—k 7 ti—x. The simplest way to shift the pattern is to ignore most of this information and
to match ¢;_541 = S;,_k41 with the next possible occurrence in the pattern:

MOV E(m,k,-):= MOVEO,m — k4 1,8m-k+1) (1 <k<m). (2)

We use the notation BM’ for the Boyer—-Moore algorithm using (1) and (2) and consider the
j—increment given by the MOV FE function as the progress of the algorithm.

The original Boyer—Moore algorithm BM tries to match the whole subpattern s, 11 ... 5,
with its rightmost reoccurrence in the pattern; an additional condition makes sure that the
unsuccessful subpattern s,,_j ... s, does not occur again:

1§p§m7 Sm—izsm—p—ivoéiék_l

MOVE (m7k7) -= min {p Sm—k ;é Sm_p—k Zf p—l_ k <m

}(1§k<m).

These definitions of MOV E formally require the pattern s to be expanded to the left by
max(1,m — 1) jokers.

Since more progress may be possible when matching the rightmost occurrence of ¢t = t,_;
in the subpattern sy...s,_x, BM finally takes the maximum of MOV E*(m,k,-) and
MOV E(m — k,0,t) to define MOV E(m, k,t). The effective construction of lookup tables
for the implementation of MOV F is treated in the cited literature (e.g. [6]).

2

The worst—case performance of BM increases linearly with N, measured by the number of
pairwise character comparisons. Knuth, Morris, and Pratt [6] first proved the bound 7N in
case that the pattern does not occur in the text. This bound has later been improved to
4N by Guibas and Odlyzko [5], while the lower bound N —m + 1 for any algorithm was
established by Rivest [7]. The case of r occurrences of the pattern in the text led to the
bound TN + 8rm — 14r in [6] (see also [4]), and Galil [4] introduced a variation of BM to
get the bound 14N for any r. Finally, Apostolico and Giancarlo [1] proved the bound 2N
for their variation of BM.

In this paper we neglect the problem of multiple occurrences of the pattern in the text and
do not incorporate the corresponding variations of [4] and [1]. These are extensions for
handling multiple occurrences and could be added on, if necessary. Since the occurrence of
a large random pattern in a large random text is a highly improbable event, a study of the
expected behavior of BM for large patterns can neglect multiple occurrences altogether.

The expected behavior of BM was studied only for the very special case of equally probable
characters. The sublinearity (i.e. the expected number of character comparisons is less than
N) was proved in the original paper [2] by Boyer and Moore, while Knuth, Morris, and
Pratt [6] gave a variation with expected O(;) character comparisons. This behavior is

optimal due to results of Yao [8].

This paper tries to eliminate the assumption of equally probable characters and to bridge
the gap between theory and applications. For patterns and texts from natural languages the
observed average behavior of BM and BM' is clearly sublinear, and we give useful formulae
that predict this behavior.

In addition, the (’)(mljovgm) result of [6] is carried over to the general case of arbitrary character

probabilities, while a blocked variation of the simplified algorithm BM’ will need O(—25—)

. mlog® m
comparisons.

2 Probabilistic assumptions

In the sequel, we consider an alphabet A with characters ¢ having probabilities

0 < ple) <1, Z plc) = 1. (3)

ceA

We use ¢ to denote the probability »° ., p*(¢) that two randomly chosen characters match.

We switch now from BM’ to a completely randomized model algorithm by assuming that

1. any reference to some character of the text or the pattern will produce a (possibly
new) random character;

2. the MOV E(m, k,t) function is replaced by its expected value M(m, k) for all charac-
ters ¢ and patterns S € A™.

The first assumption means that each reference to some ¢;_j or s,,_j acts like a procedure
call that generates a random character independent of 5, T, k, and j.

This seems to be quite restrictive and unrealistic at first glance, but we shall see later that
the progress of the algorithm is so large that multiple references to text characters are
rare events under a variety of circumstances. Therefore, the randomized algorithm can be
expected to perform on its random data sources in the same way as the deterministic version
of BM' performs on an input that is randomly chosen before execution. Furthermore, later
results will show that for alphabets with the probabilistic properties of natural languages,
the algorithm BM’ spends most of the time comparing the last pattern character s,, with
text characters ¢; for values of ¢ that are far away from each other. Then the randomized
algorithm will model the behavior of the deterministic algorithm quite well even for natural
languages, since natural language characters sampled over large intervals can be considered
as random characters with fixed probabilities.

Our randomized algorithm replaces the comparison of ¢;_; with s,_; with a random de-
cision between two alternatives with probabilites ¢ and 1 — ¢, respectively. Moreover, the
terminating conditions of BM’ (including detection of the pattern and exhaustion of the
text) are completely ignored in order to simplify the following discussion. Thus we get the
following algorithm A:

Ji=m; k:=0;
REPEAT
With probability q @ k:=k+1
ELSE (with probability 1 — q)
BEGIN
Ji=7+M(m, k)
k=0
END
UNTIL FALSE;

The variable k in the algorithm A denotes a “state”, corresponding to the situation of k
matches in BM and BM’. In this sense A is a probabilistic automaton with an unbounded
number of states. Transitions from state k& to state & + 1 occur with the probability ¢ of
a match, yielding no progress in j. With the probability 1 — ¢ of a mismatch, transitions
from state k to state zero with progress M(m, k) occur. Reaching state m corresponds to an
occurrence of the pattern in the text; higher states of A are purely formal. Each REPEAT-
cycle will be called a step, and since BM has one character comparison for each step, we
have one unit of “cost” per step in A. Expected sublinearity means then that the expected
progress per step is larger than one.

3 Theoretical Considerations

The expected behavior of A is described by the following

Lemma 3.1 The probability . that A is in state k after r steps is
o = ¢5(1 —¢q) for all r>k>0.

The expected progress counted in states up to m — 1 is

after at least m steps.

Proof: Algorithm A starts in state 0 with probability one. Then the probability u,; of A
being in state k after r steps is

Hrk = qk(l - Q)v 0< kE<r
Hrr q,
e = 0, k>,

as is easily seen by induction. After k steps, transitions from state k to state 0 occur with
probabilities (1 — ¢)?¢*, and these lead to the progress M (m, k). Summing up gives (4). ®

The lemma implies that

o the transient start phase of algorithm A to reach a step—independent probability for
states 0...m — 1 is short (m steps),

e the finiteness of the number m + 1 of actual states of BM and BM' as opposite to the
infinite number of states of A, does not matter much because choosing small values of
g ensures that higher states of A are very improbable.

We now evaluate M(m, k).

Lemma 3.2 [f S is a random string of length m (with a joker sy added) and ¢ is a random
character, the random function

fml(e,S)=min{k | 1 <k <m, sy =c}

has the expected value

B = Al = 301 = ple))™. (5)

cEA
Furthermore,
M(m,0) = F,
M(m,k) = Foppn (1<k<m) (6)
M(m,k) = 0 otherwise.

Proof: Clearly, f,, has the expected value

Fo= 30 S0 = p(@) e+ SO0 = ple) o),

=1 ceA ceA

because the progress 7, 1 < i < m, implies (¢ — 1) mismatches and one match, while ¢ = m
implies m — 1 mismatches (note that we ignore s,,). A little calculation gives (5), and (1),

(2) imply (6). m

We now can write (4) as

E, = (1—q) (Fm + mz_: qum—k—I—l) (7)

k=1

where the values Fj are available from (5).

For small values of m one can use (7) and (5) directly to estimate the efficiency of the
algorithm A. Using the probability distributions of characters of natural languages one can
tabulate (7) and (5) via (3). For example, Table 1 exhibits the corresponding values for the
distribution of the 26 characters of the English language (data from [3]).

Fy E. || m Fy E,
1.0000 0.8728 || 21 | 12.1401 11.3402
1.9342 1.7992 || 22 | 12.4420 11.6224
2.8081 2.6193 || 23 | 12.7304 11.8918
3.6263 3.3842 || 24 | 13.0059 12.1493
4.3935 4.1012 || 25 | 13.2695 12.3956
5.1136 4.7741 || 26 | 13.5218 12.6314
5.7902 5.4065 || 27 | 13.7636 12.8573
6.4268 6.0013 || 28 | 13.9954 13.0739
7.0263 6.5616 || 29 | 14.2178 13.2817
10 | 7.5915 7.0898 || 30 | 14.4313 13.4812
11] 81250 7.5883 || 31 | 14.6366 13.6730
12] 8.6291 8.0594 || 32 | 14.8339 13.8574
13| 9.1059 8.5049 || 33 | 15.0238 14.0349
14 1 95573 8.9267 || 34 | 15.2067 14.2057
15 1 9.9851 9.3265 || 35 | 15.3829 14.3704
16 | 10.3911 9.7058 || 36 | 15.5528 14.5292
17 1 10.7765 10.0661 || 37 | 15.7168 14.6823
18 | 11.1429 10.4084 || 38 | 15.8750 14.8302
19 | 11.4916 10.7342 || 39 | 16.0279 14.9730
20 | 11.8236 11.0445 || 40 | 16.1756 15.1111

@OO\ICTJOT»POJ[\DP—‘S

Table 1: F,, and F,, for the English alphabet, ¢ = 0.0658,n = |A| = 26

Since later examples will show that A closely resembles BM and BM’ even for natural
languages, the user can easily estimate the expectable progress of BM and BM’ by looking

6

at such a table. Average patterns S of length 20 will for instance be moved forward about
11 characters per single-character comparison, when searched for in average English texts.

We now prove some lower bounds of F),. First we concentrate on the case of small patterns:

Lemma 3.3 Form < 1/q,
Fo > m—m?q[2 > m/2. (8)

Proof: For any real number z > 0 we have
12
1—(1—1’)k21—6_kx2k2}—?$2

and (8) follows from (5). m

The progress of A for small patterns from large alphabets with small values of ¢ (this occurs
for natural languages) can be predicted by a useful rule of thumb:

Theorem 3.1 The algorithm A has expected progress
By > (1= ¢)(1—¢*)(m—m?q/2) = (1 — q)(1 — ¢*)m/2,
E,, ~m/2 for small ¢
per character comparison, provided that 2 < m < 1/q.
Proof: Combine the two major terms of (7) with (8). m

In Table 1, 1/¢ ~ 15.2, so Theorem 3.1 is applicable for pattern lengths up to 15, when
the probability distribution of characters in English texts is assumed. Within this range,
expected progress is at least about m/2. This observation for a series of practical cases was
the starting point for our investigation.

We now treat the case of large m but still keep the alphabet fixed. Our main result in this
direction is

Theorem 3.2 A distribution of n character probabilities p; leads to sublinearity of A for
sufficiently large pattern lengths m, if ¢ = > | p} satisfies

n(l—q)>1.

Ehls 18 the case, Zf
q Qn . n'

The proof will be a consequence of the lemma following below, if m is large enough. If we
sort the characters of A in the form

1>p1 ZpZZan>07 n:|~’4|7
then there is some v satisfying
g<v<l, 1-p.<7, (10)

and we get

Lemma 3.4

E, > n(l—q) (1—qm— 7m+1>. (11)

T 4q

Proof: Equation (5) implies

Fo n(l— (1= p)™) 2 n(l —1"). (12)
Using this in (7) gives
E, > (1-49?*>25 el o
> (L= df (=97
(13)
_gm m1l—g™ /4™
= (1P (n -y 5
m+1
> n(l—q)(l—q qu>.

Expected sublinearity of A means that the expected progress F,, per character comparison
is greater than one. Equation (11) shows that for large patterns the product n(1 — ¢) occurs
as the maximal expected progress; this proves Theorem 3.2. m

Remarks

1.

The model and the algorithm are in state 0 with probability circa 1 — ¢g. Higher states
k have probability ¢*(1 — ¢) and are very improbable indeed for small values of ¢.

In state 0 the algorithms BM and BM’ coincide. If A models BM' in state 0, then it
models BM in that state, too.

. In state 0 the last character s, of S is responsible for the progress. In case of sublinear-

ity this character is tested against different characters from 7" in the major part of the
character comparisons. Then the probabilistic assumptions are not very restrictive; the
model A will closely resemble BM’ (and BM) in state 0 (and in general, because other
states are improbable). Furthermore, the behavior of the model A and the algorithm
BM’ then is independent of the probability of pairs of characters; the single-character
probabilities are sufficient to describe the situation, even for natural language strings.

A value of ¢ & 1 spoils the performance of A and the quality of A as a model of BM’,
while a large alphabet size n = |A| and a large pattern size m act favorably.

Inequality (11) shows that the size of the alphabet times the probability of a mismatch
is the limiting factor for the efficiency of A for large patterns. This indicates that
further speed—up requires large alphabets or blocking strategies that let A increase
with m.

6. The case ¢ ~ 1 would imply that a single character must have a probability close to one.
Since always g > % in an n—character alphabet, the case of a binary alphabet can not
lead to an efficiency larger than one and attains efficiency one only if both characters
have equal probabilities. In this case, blocking will improve the performance of the

algorithm (see below).

7. Uniformly distributed character probabilities lead to ¢ = 1/n and the conditions m < n
and n > 2 in Theorems 3.1 and 3.2, respectively.

8. For states k > 1 the efficiency of BM will exceed that of BM' (and A) locally, because
it makes at least the progress of BM' after any single specific comparison. However,
BM is not superior for every text and pattern, because it may run into unfavorable
regions of the text which the simplified version may happen to avoid.

To get a further speed—up of the pattern—matching process, large alphabets with small
values of ¢ are needed. Therefore, we consider a b—fold blocking of the alphabet A, |A| = n,
1 < b< m and study first the blocked BM version proposed by Knuth, Morris and Pratt
([6], p- 341). Their result (and proof technique) can be generalized as follows.

Theorem 3.3 There is an algorithm for pattern matching that inspects (’)(Nlogl%m) char-
acters in a random text with arbitrarily distributed characters.

Proof: We follow [6] to combine steps of BM with an arbitrary linear worst—case algorithm.
Each iteration shifts the pattern at least m — b positions to the right and consists of the
following elementary steps:

1. The last b characters of the pattern are compared with a block B of b text characters.

2. In case of match, proceed to 4.

In case of mismatch, a function similar to (1) can be used to decide whether B occurs
in the pattern at all.

If this is not the case, the pattern can be moved m — b positions along the text and
the next iteration can be started.

Otherwise proceed to 3.

3. In this case two blocks of pattern and text match somewhere; we ignore the possible
shift given by step 2 and proceed to 4.

4. Use a linear worst—case algorithm to move the pattern at least m — b positions to the
right (including the determination of possible occurrences of the pattern in the text)
and perform another iteration. This step ignores the fact that there is some match of
certain blocks of the pattern and the text.

Note that 1. and 2. are the BM part of the algorithm; they are equivalent to a state zero
step of A on the blocked alphabet. Steps 3 and 4 use no more than 2m characters of the
text and therefore require an amount ¢ - m of work.

For small b and large m there will be no overlap of text blocks sampled in step 1 of the
iteration. We therefore can assume that these parts of text and pattern are stochastically
independent.

Lemma 3.5 The probability to match a random block B of b characters with an arbitrary
block of b characters in a random pattern of m > b characters does not exceed (m —b+1)¢".

Proof: There are m — b+ 1 possible positions for B to occur as a block within the pattern.
The probability to occur at a fixed position is ¢°. The product of these numbers is a crude
upper bound for the situation in the assertion. m

The expected progress of the algorithm in each iteration cycle is at least m — b, and the
expected number of character comparisons is at most

(m—b—l—l)-qb-cm—l—l-b

where we simply took the upper bound 1 for the probability of a mismatch of a random
block. Now we use

b:= [2log,,,m]
to get ¢ ~ m™?, and the expected efficiency will be

m—b
m = O(m/ logl/q m).l

We do not lose too much if we simply apply a blocked version of A:

Theorem 3.4 If A works on b—fold blocks in b parallel versions with b =~ logy;,m, the

expected number of single character comparisons is O(%logf/q m).

Proof: We apply former results for the alphabet A" and first use (8) to get

2
’

Fo>r— —¢

2 2q

for r blocks of b characters. We ignore the higher—order terms in F, and find the lower
bound

E, > <l—qb>2FTZr<1—qb>2 <1— gqb>.

over A and a blocking factor b with

Now consider a string of length m < ¢=™

m < Le. b> Uogl/qmw , 1 <b<m.

?7
For simplicity, we then can define r > 1 by

rb <m < (r+1)b

10

and consider r blocked steps in our efficiency measure, since the efficiency is monotonic with
respect to pattern length. Then

using

is a lower bound of our efficiency measure progress/cost in both block—by-block or character—
by—character units. Since we need b versions of the algorithm, one for each block alignment,

the total efficiency E,,; will be at least
11 1\°
- — — 1 ——1 . 14
G) () 1

For b* = Uogl/qmw we have 0" < 1+ log;/,m and get

m 1 1 1 1\°
Em b* Z o - — 1 ——
' 2 14+ logl/qm 1+ logl/qm m m

=0 7271 for m — oo,
logl/qm

without any restrictions on n,m, and ¢ except m < ¢~™, which is always satisfied for large
m. i

The blocking strategy depends on m and ¢; for instance, equal probabilities for 0 and 1 in
the binary alphabet give ¢ = 1 and b* = [logym]. One can use (14) for the usual blocking
factors b = 4,8, 16, 32, provided that m < ¢~° holds.

4 Empirical Observations

To check the validity of our model algorithm A we tested A, BM, and BM’ on a variety
of inputs. For a fixed alphabet A with a specified character distribution we generated
large samples of random strings S and T' for values of m between 2 and 40. For each m
we plotted the expected efficiency (4) of A versus the means of the observed efficiencies
of BM and BM’ (see figures 1-3). For a binary alphabet (see fig. 1) BM exceeds BM’
and A in efficiency. This is due to the fact that the efficiency of BM may well exceed the
value of (1 — ¢) - |A| = 0.49374 - 2 = 0.98748, which essentially bounds the efficiency of
its competitors. But our theoretical results indicate that blocking should be used to avoid
m > | A|, and therefore this example is of minor significance.

For larger alphabets (|.A| = 8 in figure 2, | A| = 26 in figure 3) the efficiency as modeled by
A does resemble the actual efficiency of both versions of the Boyer—Moore algorithm quite
well (the vertical lines denote confidence intervals at the 1 % error level), but there is a small

11

systematic overestimation of the efficiency of the simplified version that may be credited to
multiple evaluations.

For the comparison on natural language strings we used a text of 4785 ASCII characters
from a IATEX source of part of a chapter of a course in computer science, written in German.
We chose a random sample of patterns occurring in the text (fig. 4) and in a different
chapter of the same course (fig. 5). Then we plotted the expected efficiency of A against
the observed efficiencies of BM and BM' as before. The results indicate once again that
A closely describes the behavior of BM and BM’. Of course the examples with occurring
patterns (fig. 4) show an overestimation of the efficiency of A, because unexpectedly high
states occur.

References

[1] A. AposTOLICO AND R. GIANCARLO, The Boyer-Moore-Galil String Searching S-
trategies Revisited, SIAM J. Comput., 15 (1986), 98-105

2] R. S. BOYER AND J. S. MOORE, A fast string searching algorithm, Comm. ACM, 20
(1977), pp. 323-350.

[3] C. C. FOSTER, Cryptanalysis for Microcomputers, Hayden Book Company 1982

[4] Z. GALIL, On improving the worst case running time of the Boyer—Moore string search-
ing algorithm, Comm. ACM, 22 (1979), 505-508

[5] L. J. GuiBAs, AND A. M. ODLYZKO, A new proof of the linearity of the Boyer—Moore
string searching algorithm, STAM J. Comput., 9 (1980), 672-682.

6] D. E. KNuTH, J. H. MORRIS AND V. R. PRATT, Fast pattern matching in strings,
STAM J. Comput., 6 (1977), pp. 323-350.

[7] R. L. RIVEST, On the worst—case behavior of string-searching algorithms, SIAM J.
Comput., 6 (1977), 669674

8] A. C.—C. Yao, The Complezity of Pattern Matching for a Random String, STAM J.
Comput., 8 (1979), 368-387

Prof. Dr. R. Schaback

Institut fir Numerische und Angewandte Mathematik
der Universitat Gottingen

Lotzestrafle 16-18

D-3400-GOTTINGEN

Federal Republic of Germany

12

