
On the Expected Sublinearityof the Boyer{Moore AlgorithmR. SchabackThe author gratefully dedicates this paper to the memory of his academic teach-er, Prof. Dr. H. Werner.Abstract. This paper analyzes the expected performance of a simpli�ed version BM 0of the Boyer{Moore string matching algorithm. A probabilistic automaton A is set upwhich models the expected behavior of BM 0 under the assumption that both text andpattern are generated by a source which emits independent and uncorrelated symbols withan arbitrary distribution of probabilities. Formal developments lead then to the conclusionthat A takes expected sublinear time in a variety of situations. The sublinear behaviorcan be quantitatively predicted by simple formulae involving the pattern length m andthe alphabet's probabilistic properties. Finally, empirical evidence is provided which is insatisfactory accordance with the theory.Keywords : String searching, Pattern matching, Average case analysis of algorithms. 11 The problemLet A be a �nite alphabet, jAj =: n, and suppose stringsT = t1:::tN; ti2A; 1�i�N (the \text00)S = s1:::sm; si2A; 1�i�m�N (the \pattern00)are given. To avoid formal di�culties in later discussions, we assume S to be expanded tothe left by \jokers", i.e. characters that match any other character from A.To determine the leftmost occurrence of S as a substring of T means then:Find the smallest j; m � j � N; such that sm�i = tj�i for 0 � i � m� 1;or output that no such j exists:1The formulation of this paper was signi�cantly improved by the constructive criticism of one of thereferees. 1



To solve this problem, Boyer and Moore [2] de�ned an algorithm of the following form:j := m; k := 0;REPEATfAt this stage; k characters match : tj�i = sm�i; 0 � i � k � 1gIF tj�k = sm�kTHEN k := k + 1ELSE BEGINj := j +MOV E(m;k; tj�k);k := 0ENDUNTIL (k = m) OR (j > N);IF k = m THEN output (Pattern is found at position j)ELSE output (No occurrence of pattern in text);Variations of this algorithm depend on the functionMOV E (m;k : INTEGER; t : CHARACTER) : INTEGERwhich determines how many positions S may be moved forward along T to the next positionwhere S can occur as a substring of T . In case k = 0, i.e. if the text character t = tj doesnot match the last pattern character sm, the pattern can be moved along the text as long ast does not occur within the pattern:MOV E(m; 0; t) := minfp j 1 � p � m; sm�p = tg : (1)For k > 0 there are k matching characters sm�k+1 . . . sm = tj�k+1 . . . tj and we know thatsm�k 6= tj�k. The simplest way to shift the pattern is to ignore most of this information andto match tj�k+1 = sm�k+1 with the next possible occurrence in the pattern:MOV E(m;k; �) :=MOV E(0;m� k + 1; sm�k+1) (1 � k < m): (2)We use the notation BM 0 for the Boyer{Moore algorithm using (1) and (2) and consider thej{increment given by the MOV E function as the progress of the algorithm.The original Boyer{Moore algorithm BM tries to match the whole subpattern sm�k+1 . . . smwith its rightmost reoccurrence in the pattern; an additional condition makes sure that theunsuccessful subpattern sm�k . . . sm does not occur again:MOV E�(m;k; �) := min�p ���� 1 � p � m; sm�i = sm�p�i; 0 � i � k � 1sm�k 6= sm�p�k if p+ k < m � (1 � k < m):These de�nitions of MOV E formally require the pattern s to be expanded to the left bymax(1;m� 1) jokers.Since more progress may be possible when matching the rightmost occurrence of t = tj�kin the subpattern s1 . . . sm�k, BM �nally takes the maximum of MOV E�(m;k; �) andMOV E(m � k; 0; t) to de�ne MOV E(m;k; t). The e�ective construction of lookup tablesfor the implementation of MOV E is treated in the cited literature (e.g. [6]).2



The worst{case performance of BM increases linearly with N , measured by the number ofpairwise character comparisons. Knuth, Morris, and Pratt [6] �rst proved the bound 7N incase that the pattern does not occur in the text. This bound has later been improved to4N by Guibas and Odlyzko [5], while the lower bound N � m + 1 for any algorithm wasestablished by Rivest [7]. The case of r occurrences of the pattern in the text led to thebound 7N + 8rm � 14r in [6] (see also [4]), and Galil [4] introduced a variation of BM toget the bound 14N for any r. Finally, Apostolico and Giancarlo [1] proved the bound 2Nfor their variation of BM .In this paper we neglect the problem of multiple occurrences of the pattern in the text anddo not incorporate the corresponding variations of [4] and [1]. These are extensions forhandling multiple occurrences and could be added on, if necessary. Since the occurrence ofa large random pattern in a large random text is a highly improbable event, a study of theexpected behavior of BM for large patterns can neglect multiple occurrences altogether.The expected behavior of BM was studied only for the very special case of equally probablecharacters. The sublinearity (i.e. the expected number of character comparisons is less thanN) was proved in the original paper [2] by Boyer and Moore, while Knuth, Morris, andPratt [6] gave a variation with expected O( Nm logm ) character comparisons. This behavior isoptimal due to results of Yao [8].This paper tries to eliminate the assumption of equally probable characters and to bridgethe gap between theory and applications. For patterns and texts from natural languages theobserved average behavior of BM and BM 0 is clearly sublinear, and we give useful formulaethat predict this behavior.In addition, theO( Nm logm) result of [6] is carried over to the general case of arbitrary characterprobabilities, while a blocked variation of the simpli�ed algorithm BM 0 will need O( Nm log2 m)comparisons.2 Probabilistic assumptionsIn the sequel, we consider an alphabet A with characters c having probabilities0 < p(c) < 1; Xc2A p(c) = 1: (3)We use q to denote the probabilityPc2A p2(c) that two randomly chosen characters match.We switch now fromBM 0 to a completely randomizedmodel algorithm by assuming that1. any reference to some character of the text or the pattern will produce a (possiblynew) random character;2. the MOV E(m;k; t) function is replaced by its expected value M(m;k) for all charac-ters t and patterns S 2 Am. 3



The �rst assumption means that each reference to some tj�k or sm�k acts like a procedurecall that generates a random character independent of S, T , k, and j.This seems to be quite restrictive and unrealistic at �rst glance, but we shall see later thatthe progress of the algorithm is so large that multiple references to text characters arerare events under a variety of circumstances. Therefore, the randomized algorithm can beexpected to perform on its random data sources in the same way as the deterministic versionof BM 0 performs on an input that is randomly chosen before execution. Furthermore, laterresults will show that for alphabets with the probabilistic properties of natural languages,the algorithm BM 0 spends most of the time comparing the last pattern character sm withtext characters ti for values of i that are far away from each other. Then the randomizedalgorithm will model the behavior of the deterministic algorithm quite well even for naturallanguages, since natural language characters sampled over large intervals can be consideredas random characters with �xed probabilities.Our randomized algorithm replaces the comparison of tj�k with sm�k with a random de-cision between two alternatives with probabilites q and 1� q, respectively. Moreover, theterminating conditions of BM 0 (including detection of the pattern and exhaustion of thetext) are completely ignored in order to simplify the following discussion. Thus we get thefollowing algorithm A: j := m; k := 0;REPEATWith probability q : k := k + 1ELSE (with probability 1 � q)BEGINj := j +M(m;k)k := 0ENDUNTIL FALSE;The variable k in the algorithm A denotes a \state", corresponding to the situation of kmatches in BM and BM 0. In this sense A is a probabilistic automaton with an unboundednumber of states. Transitions from state k to state k + 1 occur with the probability q ofa match, yielding no progress in j. With the probability 1 � q of a mismatch, transitionsfrom state k to state zero with progress M(m;k) occur. Reaching state m corresponds to anoccurrence of the pattern in the text; higher states of A are purely formal. Each REPEAT{cycle will be called a step, and since BM has one character comparison for each step, wehave one unit of \cost" per step in A. Expected sublinearity means then that the expectedprogress per step is larger than one.3 Theoretical ConsiderationsThe expected behavior of A is described by the following4



Lemma 3.1 The probability �rk that A is in state k after r steps is�rk = qk(1� q) for all r > k � 0:The expected progress counted in states up to m� 1 isEm = (1� q)2 m�1Xk=0 qkM(m;k) (4)after at least m steps.Proof: Algorithm A starts in state 0 with probability one. Then the probability �rk of Abeing in state k after r steps is�rk = qk(1� q); 0 � k < r�rr = qr;�rk = 0; k > r;as is easily seen by induction. After k steps, transitions from state k to state 0 occur withprobabilities (1 � q)2qk, and these lead to the progress M(m;k). Summing up gives (4).The lemma implies that� the transient start phase of algorithm A to reach a step{independent probability forstates 0 . . .m� 1 is short (m steps),� the �niteness of the number m+1 of actual states of BM and BM 0 as opposite to thein�nite number of states of A, does not matter much because choosing small values ofq ensures that higher states of A are very improbable.We now evaluate M(m;k).Lemma 3.2 If S is a random string of length m (with a joker s0 added) and c is a randomcharacter, the random functionfm(c; S) = minfk j 1 � k � m; sm�k = cghas the expected value Fm = jAj �Xc2A(1� p(c))m: (5)Furthermore, M(m; 0) = FmM(m;k) = Fm�k+1 (1 � k < m)M(m;k) = 0 otherwise: (6)5



Proof: Clearly, fm has the expected valueFm = m�1Xi=1 i �Xc2A(1 � p(c))i�1 � p2(c) +m �Xc2A(1� p(c))m�1p(c);because the progress i, 1 � i < m; implies (i � 1) mismatches and one match, while i = mimplies m� 1 mismatches (note that we ignore sm). A little calculation gives (5), and (1),(2) imply (6).We now can write (4) as Em = (1� q)2 Fm + m�1Xk=1 qkFm�k+1! (7)where the values Fk are available from (5).For small values of m one can use (7) and (5) directly to estimate the e�ciency of thealgorithm A. Using the probability distributions of characters of natural languages one cantabulate (7) and (5) via (3). For example, Table 1 exhibits the corresponding values for thedistribution of the 26 characters of the English language (data from [3]).m Fm Em m Fm Em1 1.0000 0.8728 21 12.1401 11.34022 1.9342 1.7992 22 12.4420 11.62243 2.8081 2.6193 23 12.7304 11.89184 3.6263 3.3842 24 13.0059 12.14935 4.3935 4.1012 25 13.2695 12.39566 5.1136 4.7741 26 13.5218 12.63147 5.7902 5.4065 27 13.7636 12.85738 6.4268 6.0013 28 13.9954 13.07399 7.0263 6.5616 29 14.2178 13.281710 7.5915 7.0898 30 14.4313 13.481211 8.1250 7.5883 31 14.6366 13.673012 8.6291 8.0594 32 14.8339 13.857413 9.1059 8.5049 33 15.0238 14.034914 9.5573 8.9267 34 15.2067 14.205715 9.9851 9.3265 35 15.3829 14.370416 10.3911 9.7058 36 15.5528 14.529217 10.7765 10.0661 37 15.7168 14.682318 11.1429 10.4084 38 15.8750 14.830219 11.4916 10.7342 39 16.0279 14.973020 11.8236 11.0445 40 16.1756 15.1111Table 1: Fm and Em for the English alphabet, q = 0:0658; n = jAj = 26Since later examples will show that A closely resembles BM and BM 0 even for naturallanguages, the user can easily estimate the expectable progress of BM and BM 0 by looking6



at such a table. Average patterns S of length 20 will for instance be moved forward about11 characters per single-character comparison, when searched for in average English texts.We now prove some lower bounds of Fm. First we concentrate on the case of small patterns:Lemma 3.3 For m � 1=q, Fm � m�m2q=2 � m=2: (8)Proof: For any real number x � 0 we have1 � (1 � x)k � 1� e�kx � kx� k22 x2and (8) follows from (5).The progress of A for small patterns from large alphabets with small values of q (this occursfor natural languages) can be predicted by a useful rule of thumb:Theorem 3.1 The algorithm A has expected progressEm � (1� q)(1� q2)(m�m2q=2) � (1� q)(1� q2)m=2;Em � m=2 for small qper character comparison, provided that 2 � m � 1=q.Proof: Combine the two major terms of (7) with (8).In Table 1, 1=q � 15:2, so Theorem 3.1 is applicable for pattern lengths up to 15, whenthe probability distribution of characters in English texts is assumed. Within this range,expected progress is at least about m=2. This observation for a series of practical cases wasthe starting point for our investigation.We now treat the case of large m but still keep the alphabet �xed. Our main result in thisdirection isTheorem 3.2 A distribution of n character probabilities pi leads to sublinearity of A forsu�ciently large pattern lengths m, if q =Pni=1 p2i satis�esn(1� q) > 1:This is the case, if q < q̂n := 1 � 1n: (9)The proof will be a consequence of the lemma following below, if m is large enough. If wesort the characters of A in the form1 > p1 � p2 � ::: � pn > 0; n = jAj;then there is some 
 satisfying q < 
 < 1; 1 � pn � 
; (10)and we get 7



Lemma 3.4 Em � n(1 � q)�1� qm � 
m+1
 � q� : (11)Proof: Equation (5) impliesFm � n(1� (1 � pn)m) � n(1 � 
m): (12)Using this in (7) gives Em � (1 � q)2Pm�1k=0 qkFm�k� (1 � q)2nPm�1k=0 qk(1� 
m�k)= (1 � q)2 �n1�qm1�q � n
m 1�qm=
m1�q=
 �� n(1 � q)�1� qm � 
m+1
�q � : (13)Expected sublinearity of A means that the expected progress Em per character comparisonis greater than one. Equation (11) shows that for large patterns the product n(1� q) occursas the maximal expected progress; this proves Theorem 3.2.Remarks1. The model and the algorithm are in state 0 with probability circa 1� q. Higher statesk have probability qk(1� q) and are very improbable indeed for small values of q.2. In state 0 the algorithms BM and BM 0 coincide. If A models BM 0 in state 0, then itmodels BM in that state, too.3. In state 0 the last character sm of S is responsible for the progress. In case of sublinear-ity this character is tested against di�erent characters from T in the major part of thecharacter comparisons. Then the probabilistic assumptions are not very restrictive; themodel A will closely resembleBM 0 (and BM) in state 0 (and in general, because otherstates are improbable). Furthermore, the behavior of the model A and the algorithmBM 0 then is independent of the probability of pairs of characters; the single{characterprobabilities are su�cient to describe the situation, even for natural language strings.4. A value of q � 1 spoils the performance of A and the quality of A as a model of BM 0,while a large alphabet size n = jAj and a large pattern size m act favorably.5. Inequality (11) shows that the size of the alphabet times the probability of a mismatchis the limiting factor for the e�ciency of A for large patterns. This indicates thatfurther speed{up requires large alphabets or blocking strategies that let A increasewith m. 8



6. The case q � 1 would imply that a single character must have a probability close to one.Since always q � 1n in an n{character alphabet, the case of a binary alphabet can notlead to an e�ciency larger than one and attains e�ciency one only if both charactershave equal probabilities. In this case, blocking will improve the performance of thealgorithm (see below).7. Uniformly distributed character probabilities lead to q = 1=n and the conditionsm � nand n > 2 in Theorems 3.1 and 3.2, respectively.8. For states k � 1 the e�ciency of BM will exceed that of BM 0 (and A) locally, becauseit makes at least the progress of BM 0 after any single speci�c comparison. However,BM is not superior for every text and pattern, because it may run into unfavorableregions of the text which the simpli�ed version may happen to avoid.To get a further speed{up of the pattern{matching process, large alphabets with smallvalues of q are needed. Therefore, we consider a b{fold blocking of the alphabet A; jAj = n;1 � b < m and study �rst the blocked BM version proposed by Knuth, Morris and Pratt([6], p. 341). Their result (and proof technique) can be generalized as follows.Theorem 3.3 There is an algorithm for pattern matching that inspects O(N log1=qmm ) char-acters in a random text with arbitrarily distributed characters.Proof: We follow [6] to combine steps of BM with an arbitrary linear worst{case algorithm.Each iteration shifts the pattern at least m � b positions to the right and consists of thefollowing elementary steps:1. The last b characters of the pattern are compared with a block B of b text characters.2. In case of match, proceed to 4.In case of mismatch, a function similar to (1) can be used to decide whether B occursin the pattern at all.If this is not the case, the pattern can be moved m � b positions along the text andthe next iteration can be started.Otherwise proceed to 3.3. In this case two blocks of pattern and text match somewhere; we ignore the possibleshift given by step 2 and proceed to 4.4. Use a linear worst{case algorithm to move the pattern at least m� b positions to theright (including the determination of possible occurrences of the pattern in the text)and perform another iteration. This step ignores the fact that there is some match ofcertain blocks of the pattern and the text.Note that 1. and 2. are the BM part of the algorithm; they are equivalent to a state zerostep of A on the blocked alphabet. Steps 3 and 4 use no more than 2m characters of thetext and therefore require an amount c �m of work.9



For small b and large m there will be no overlap of text blocks sampled in step 1 of theiteration. We therefore can assume that these parts of text and pattern are stochasticallyindependent.Lemma 3.5 The probability to match a random block B of b characters with an arbitraryblock of b characters in a random pattern of m � b characters does not exceed (m� b+1)qb.Proof: There are m� b+ 1 possible positions for B to occur as a block within the pattern.The probability to occur at a �xed position is qb. The product of these numbers is a crudeupper bound for the situation in the assertion.The expected progress of the algorithm in each iteration cycle is at least m � b, and theexpected number of character comparisons is at most(m� b+ 1) � qb � cm+ 1 � bwhere we simply took the upper bound 1 for the probability of a mismatch of a randomblock. Now we use b := b2 log1=qmcto get qb � m�2, and the expected e�ciency will bem� bconst:+ b = O(m= log1=qm):We do not lose too much if we simply apply a blocked version of A:Theorem 3.4 If A works on b{fold blocks in b parallel versions with b � log1=qm, theexpected number of single character comparisons is O(Nm log21=qm).Proof: We apply former results for the alphabet Ab and �rst use (8) to getFr � r � r22 qbfor r blocks of b characters. We ignore the higher{order terms in Er and �nd the lowerbound Er � �1� qb�2 Fr � r �1� qb�2 �1 � r2 qb� :Now consider a string of length m < q�m over A and a blocking factor b withm < 1qb ; i:e: b � �log1=qm� ; 1 � b � m:For simplicity, we then can de�ne r � 1 byrb � m < (r + 1)b10



and consider r blocked steps in our e�ciency measure, since the e�ciency is monotonic withrespect to pattern length. ThenEr � 12 �mb � 1��1 � 1m�2 ;using rqb < rm � 1b � 1;is a lower bound of our e�ciency measure progress/cost in both block{by{block or character{by{character units. Since we need b versions of the algorithm, one for each block alignment,the total e�ciency Em;b will be at leastEm;b � m2 1b �1b � 1m��1 � 1m�2 : (14)For b� = �log1=qm� we have b� � 1 + log1=qm and getEm;b� � m2 11 + log1=qm � 11 + log1=qm � 1m��1� 1m�2= O mlog21=qm! for m!1;without any restrictions on n;m, and q except m < q�m, which is always satis�ed for largem.The blocking strategy depends on m and q; for instance, equal probabilities for 0 and 1 inthe binary alphabet give q = 12 and b� = dlog2me. One can use (14) for the usual blockingfactors b = 4; 8; 16; 32, provided that m < q�b holds.4 Empirical ObservationsTo check the validity of our model algorithm A we tested A, BM , and BM 0 on a varietyof inputs. For a �xed alphabet A with a speci�ed character distribution we generatedlarge samples of random strings S and T for values of m between 2 and 40. For each mwe plotted the expected e�ciency (4) of A versus the means of the observed e�cienciesof BM and BM 0 (see �gures 1{3). For a binary alphabet (see �g. 1) BM exceeds BM 0and A in e�ciency. This is due to the fact that the e�ciency of BM may well exceed thevalue of (1 � q) � jAj = 0:49374 � 2 = 0:98748, which essentially bounds the e�ciency ofits competitors. But our theoretical results indicate that blocking should be used to avoidm� jAj, and therefore this example is of minor signi�cance.For larger alphabets (jAj = 8 in �gure 2, jAj = 26 in �gure 3) the e�ciency as modeled byA does resemble the actual e�ciency of both versions of the Boyer{Moore algorithm quitewell (the vertical lines denote con�dence intervals at the 1 % error level), but there is a small11



systematic overestimation of the e�ciency of the simpli�ed version that may be credited tomultiple evaluations.For the comparison on natural language strings we used a text of 4785 ASCII charactersfrom a LaTEX source of part of a chapter of a course in computer science, written in German.We chose a random sample of patterns occurring in the text (�g. 4) and in a di�erentchapter of the same course (�g. 5). Then we plotted the expected e�ciency of A againstthe observed e�ciencies of BM and BM 0 as before. The results indicate once again thatA closely describes the behavior of BM and BM 0. Of course the examples with occurringpatterns (�g. 4) show an overestimation of the e�ciency of A, because unexpectedly highstates occur.References[1] A. Apostolico and R. Giancarlo, The Boyer{Moore{Galil String Searching S-trategies Revisited, SIAM J. Comput., 15 (1986), 98{105[2] R. S. Boyer and J. S. Moore, A fast string searching algorithm, Comm. ACM, 20(1977), pp. 323{350.[3] C. C. Foster, Cryptanalysis for Microcomputers, Hayden Book Company 1982[4] Z. Galil, On improving the worst case running time of the Boyer{Moore string search-ing algorithm, Comm. ACM, 22 (1979), 505{508[5] L. J. Guibas, and A. M. Odlyzko, A new proof of the linearity of the Boyer{Moorestring searching algorithm, SIAM J. Comput., 9 (1980), 672{682.[6] D. E. Knuth, J. H. Morris and V. R. Pratt, Fast pattern matching in strings,SIAM J. Comput., 6 (1977), pp. 323{350.[7] R. L. Rivest, On the worst{case behavior of string{searching algorithms, SIAM J.Comput., 6 (1977), 669{674[8] A. C.{C. Yao, The Complexity of Pattern Matching for a Random String, SIAM J.Comput., 8 (1979), 368{387Prof. Dr. R. SchabackInstitut f�ur Numerische und Angewandte Mathematikder Universit�at G�ottingenLotzestra�e 16{18D{3400{G�ottingenFederal Republic of Germany 12


