Planar Curve Interpolation

by Piecewise Conics of Arbitrary Type
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Abstract: Five points in general position in IR? always lie on a unique conic, and three
points plus two tangents also have a unique interpolating conic, the type of which depends on
the data. These well-known facts from projective geometry are generalized: an odd number
2n+1 > 5 of points in IR?, if they can be interpolated at all by a smooth curve with nonvanishing
curvature, will have a unique GC? interpolant consisting of pieces of conics of varying type.
This interpolation process reproduces conics of arbitrary type and preserves strict convexity.
Under weak additional assumptions its approximation order is O(h®), where h is the maximal
distance of adjacent data points f(#;) sampled from a smooth and regular planar curve f with
nonvanishing curvature. Two algorithms for the construction of the interpolant are suggested,
and some examples are presented.
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1 Introduction

Geometric two-point Hermite interpolation of planar curve data by a GC? piecewise cubic
polynomial interpolant was considered by deBoor, Héllig, and Sabin [2]. The approximation
order of their interpolation process is O(h®) for h — 0 with respect to the maximal distance h
of adjacent data points, but the interpolant does not always exist. The method of Goodman,
Ong, and Unsworth ([4], [5], [6]) avoids this drawback by using rational cubics and is tailored
to reproduce arcs of circles. However, its approximation order is not known but does not
exceed 4, as can be shown by looking at special cases. For planar Lagrange data, a G(C*
and O(h*) interpolant to convex data, using piecewise quadratic polynomials, was given in
[9] with extensions in [10] and [11]. The paper [12] contains GC*~! methods of order O(h?*)
at the price of using piecewise polynomials of degree 2k 4+ 1. Because the high degree causes
unwanted wiggles in curvature plots, one should keep the degree of interpolating curves as small
as possible. Furthermore, these high-order methods are not generally convexity-preserving.
Therefore one should try to achieve the highest possible approximation order using local pieces
of low degree without sacrificing shape-preserving properties. An overview of rational geometric
interpolation schemes is provided by [13], while non-interpolating rational spline construction
methods are given by Boehm [1] and Farin [3]. A cubic rational GC? spline interpolant for
space curves was designed by Hollig [7].
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The goal of this paper is to provide a convexity-preserving method for curves in IR* that uses
piecewise quadratic rational functions, reproduces arbitrary conics and has approximation order
O(h®). Specifically, we assume an odd number 2n + 1 > 3 of data points yo, y1,-. .., y2, in IR?
to be given. Then we want to interpolate the data by a geometrically C'* curve, consisting of
pieces
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of rational quadratic curves in Bernstein—Bézier representation (see e.g.: [3], [8]), where

ri(t) := , t€]0,1,0<;<n—-1 (1.1)

s = (5)a -0 =0

are the quadratic Bernstein polynomials and

w¢j>0, 0§i§2,0§j§n—1

are weights. The control points b; for ¢ = 0,1,...,2n are to be constructed such that r;
interpolates the data ya;, y2;41,y2j42 on [0,1] and a geometrically C'* continuous curve results,
when rg,...,r,_1 are joined together at the data points y2,%4,...,y2,—2. This immediately
implies
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and leaves the construction of the “interior” control points byj4q for 0 < j < n —1 open. In the
sequel we avoid certain degeneracies by assuming that for each j the data points ya;, Y2511, Y2542
are mutually different. A somewhat stronger assumption will be made in section 3.

Because y2;41 € IR? can be interpolated at an arbitrary parameter value, there is only one
additional scalar condition in each piece r;(t) to be satisfied. Geometric C'* continuity imposes
two scalar conditions at each junction. There are three degrees of freedom per interval, because
by;11 € IR* and (up to normalization) essentially one weight parameter can be chosen (see [3],
[8]). This leaves two degrees of freedom for additional boundary conditions. These are imposed
by prescribing tangents at yo and y3,. We later comment on construction methods for these
tangents, if they are not given right from the start.

Necessarily, our GC? interpolant, it it exists, must have a curvature which vanishes everywhere
or nowhere, because each rational piece has this property. Thus our interpolation problem can
be solvable only if the data either lie on a straight line or are “strictly convex” in the sense
that there is some smooth and regular interpolant to the data with nonvanishing curvature.
We shall assume the latter, and then our interpolation process will preserve “strict convexity”,
because the curvature of our interpolant will not vanish.

2 Local GC' Hermite interpolation

This section serves as a preparation for later investigations and treats the much simpler
problem of local GC"' two-point Hermite interpolation. Here, an additional tangent direction
is prescribed at every even-numbered data point. It is a repeated instance of the special case
n = 1 of the problem posed in the previous section, and can be interpreted as a geometric
three-point Hermite-Birkhoff interpolation scheme.



To interpolate three data points yo,y1,y2 in IR* and two tangent directions ro and ry at yo
and s, respectively, by a nondegenerate conic, we again have to assume that the data can be
interpolated by a smooth and regular curve with nonvanishing curvature. Thus y; should lie
inside the triangle defined by yo, vy, and the tangents at yo, yo with intersection point () = b;.
Note that by will be the interior control point of (1.1) for n =1 (see Figure 1).

©=b

5]

Yo = bo Y2 = by \

Figure 1: Basic triangle for GC' interpolation

It is well known from projective geometry that this problem is uniquely solvable: three points
and two tangents uniquely define a conic. The classical construction of an additional point of
the conic proceeds as follows:

Take an arbitrary line L emanating from yo and intersecting QQy,. Let R be the intersection of
lines L and vy, and construct S as the intersection of )R with yoy;. Then the intersection P
of lines Sy, and L is the unique intersection point of L and the conic within the triangle.

Figure 2: Interpolation for 3 points and two tangents

To derive a direct formula for the solution we observe that there are unique positive real numbers
g, g With

y1 — by = ag(by — by) + as(by — by),



provided by barycentric coordinates of y; with respect to bg, b, and b;. From the standard
representation by Bernstein polynomials we can write any value r(¢) of a rational quadratic as

Bo(t)(bo — by) + B2(t)(by — by)
Bo(t) + Bi(t)wr + Bao(t) 7

where we used wy = we = 1 without loss of generality (see [8]). If r interpolates y; at the
parameter t; we get the system

r(t) —b =

Bo(ty)

Bo(tr) + Bi(t)wy + Ba(th)’
B2 (t1)

Bo(ty) + Bi(t)wr + Ba(th)

t = (14 ao/ay)™ (2.1)

Qo =

Qo =
which is uniquely solved by

and
1-— Qg — Qg

N (2.2)
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This yields a local GC' Hermite interpolation method for piecewise conics of arbitrary type
which is convexity preserving and reproduces all conics. Its complexity grows linearly with the
number of data points.

3 Basic Equations for GC? Interpolation

For a general rational quadratic curve in Bernstein—Bézier representation with control points
bo, by, by and weights wg, wy,wy, we consider arbitrary partitions {7, 7, k} of {0,1,2} and let
hi, = ||b; — b;||2 be the distance between points b; and b;, while ¢ is the distance of by to the
line Ly through b; and b;. Then the curvature at by is ([1], p.71)
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Let » = r(t) be an arbitrary point on the conic. The areas A; of the triangles r, b;, by satisfy

Wwolz AoAs
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(see [8], p. 10). If ¢; is the distance of r to the line L;, then A; = % ¢; - h; and

Wy qohog2hs

dwi o gih]
This gives
. _22 qohoqzhs oy — ‘o qohoqz iz
B A TR AT



bo L, hq by

Figure 3: Data for curvature calculation

Figure 4: Local angles

for the curvatures ko at by and ko at by. If bo,r, and by are fixed, everything can be expressed
by the angles ¢q, 89 and 2, 63 in Figure 4. We introduce a; = ||r — b;||2 and find

42
Go
9
Go
6]
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sin @g 2—0 = siny
2
sin &g 2—1 = sin 6y
2
. Co 6] . Co
sin(po + do) = b sin(ps + 62) = =
1 0 1

the last two equations following from Figure 3. This implies

Ko

2sin(@o + 60)  hosin s sin g
hg hl sin 50 sin 52

2sin(@o + o) sin e singy  sin(po + do)

- : (3.1)

sin &g sin Oy hy sin(@a + 62)

2in g - sin gy sin®(wg + &)
hysindg - sin &y sin(py + 62)
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and similarly
2 . X . . 2 5
gy = 2 S0 sings sin’(g2+6;) (3.2)
hy sinégsinédy  sin(wo + o)

s = Ko (W)S (3.3)

Before we proceed, we remark that it is not generally possible to prescribe three points and
two curvature values to define a conic, in spite of the analogous fact that three points with two
tangent directions uniquely determine a conic. In fact, if kg and ko were prescribed together
with bg,r, and by, there are two equations (3.2) and (3.3) for the two unknowns ¢ and ;.

Furthermore,

However, these equations are not necessarily solvable, as can be seen in the special symmetric
case K = Ko = Kg, 0 = 89 = 63, where (3.3) implies ¢o = @2 and (3.2) requires
2 sin?
K= B sin(p + 6),

- hy sin?$é

which is an unsolvable equation in case
k hysin® 6 > 2,
for example. Note that this negative result corresponds to the similar one in [2].

We now proceed to use (3.1) and (3.2) to express curvature continuity around a point ys; for the
(GGC* interpolation problem posed in the introduction. In order to let the geometric construction
of Fig. 5 be well-defined, we assume the restrictions

0 < &, 0 < 67, 1<i<n,

0 < & +467 < Vi < 7 1<i<n-—-1

0 < of < et4+6 < (34)
0 < ©n < @, +0o, < m,

on the given data, where 7; is the angle between the chords y2;_2y9; and y2;y9;12. Furthermore,
the varying angles ¢; and ¢} should satisfy

e 0f >0, of ol +67 +6F =7, 1<i<n-—L

Note that these restrictions are always satisfied if the data form a sufficiently dense sample
from a smooth regular curve with nonvanishing curvature.

Curvature continuity x; = ki at gy in Fig. 5 implies

2 sin c,o;»"_l sin ;. sinz(c,oi_ +67)

K =
! hi—y  sinél siné;  sin(pi + 65 ,)
2 sin o sin @7 in(pt + 6F
:/{Z—»I— - = ¥; S‘Qz—l—l SIH(QOZ—FZ) 1§Z§n—1

. ¥ - _ . _ _ 9
i sin 6, sin 0; 4 Sm(%’ﬂ —|—5H_1)



Y2i42 = b?i—l—?

Figure 5: Local angles around ys;

and, with ] + 867 + o7 +67 =7, v == pf we get

2 sing;_q sin(% —0; — 5;'_ — 992') ‘ SiﬂZ(%’ - Pi— 52+)

hi_y sin 6 sin & sin(@i_1 +6; )
2 sing; sin(yip1 — 04 — 5;:_1 — ©it1) ‘ sin®(; + 6;7) (3.5)
Ry sin & sin 0itq sin(Yig1 — Pit1 — 5;:_1)'
This is a nonlinear system of equations in unknowns ¢1,...,¢,_1. Two boundary tangents

must be prescribed by fixing ¢f and o, and to make the system (3.5) formally valid for i = 1
and ¢ = n — 1, we define

o =6 =0, ¢ =8"=0, 9o=pf+6. =0, +0,.

The Jacobian of the system is tridiagonal.

4 Existence of a GC? interpolant

Our main result of this section will be
Theorem 4.1 Under the conditions (3.4) there is a solution to the interpolation problem.

For uniqueness we require in addition that
T .
%<y, 1<i<n (4.1)
to get

Theorem 4.2 The conditions (3.4) and (4.1) imply uniqueness of the interpolant.

The rest of this section is devoted to the proof of Theorems 4.1 and 4.2. As a preparation, we
state the monotonicity of

sin ¢ - sin’(¢ + a)

in both variables o, « within

l<p<  0<ca<s, O<opta<.
p< g 0<a<y, pta<y.
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Furthermore,
sin sin &

falw) = sin(p + a) with  fl(p) =

sin2(<,o + «)

is monotonic in ¢ for all @ with 0 < o < &, and covers (0,00) when ¢ varies over (0,7 — «).

The simultaneous proof of Theorems 4.1 and 4.2 proceeds by inductively checking the range
of the nonlinear mapping (@;_1,¢;) — @i+1 given by (3.5) when interpreted as an implicit
definition of ;41 for given values of ¢; and ¢;—y. Uniqueness will be a consequence of strict
monotonicity.

We start with a fixed value of ¢ (given as a boundary condition) and satisfying the assumptions
(3.4). The equation x; = & is
_ 2 singd sinpy sin?(p] +6;)

Ky =

ho sin 56" sin 67 sin(c,oa' + 58_)

3 sin c,oi’ sin gy Siﬂ?(@j— + 5?) — ot
Iy sin(Si" sindy  sin(p; + 65) B

and x] varies in an interval of the form (0, #;) when ] varies in (0,7 — &; —&;). Because of
01 +of =1 — 6 — &, the variable o] varies also in (0,7, — & — §;7), but in the opposite
direction to ¢]. As a function of ¢] and ¢f = v — & — 6 — o], the left-hand-side of the
expression

hi sin §F siné; sin ¢ singp;  sin®(p] +6;) _ singy
ho sin St sindy sin(pf +6F) singl sin?(ef +67)  sin(py 4+ 65)

— Ji-(e3) (42)

covers all of (0,00). Thus, (4.2) is solvable for 5, and ¢ covers (0,7 — 65 ) when ¢] varies in
(0,71 —6F —67 ). Note that all variations are strictly monotonic under the additional assumption

(4.1).

Now we have to discard all values of o, in the interval [y, — &, — &5, 7 — &, ), but surely there
is an interval of the form (0,e;) with 0 < &; < 7 — 6] — 6, such that ¢, varies over all of
(0,72 — 65 — &;) when ¢ varies over (0,¢;). Furthermore, ¢, = O(p]) for ¢; — 0.

We now proceed inductively for ¢ > 2 and assume the existence of an interval (0,¢;_1) such
that when ] varies in (0,&,_1), the variable ; varies over all of (0,7, — 67 — 6;) and all
of the ¢ vary in subintervals (0, p;) with p; < v; — 5]7" — ¢;, while all equations r; = /i;l—
for 1 < j < ¢ —1 are satisfied. Furthermore, all ¢; for 2 < j < 4 are supposed to satisfy

p; = O(py) for g — 0.
The equation &F = ] is equivalent to

h; sind; sin 01 sin o, sinp;  sin®(p; +6;) B sin @

= f&i__l_l (992'_4-1)7

(4.3)

and again the left-hand side will cover all of (0,00) when ¢; and ] = v — & — 67 — 7
Vary over (0,7 — &6 — 67) in opposite direction. This allows @i1q to solve (4.3) while varying
n (0,7 — &74), and we have to discard the values of ¢, in [yip1 — 84 — 84,7 — &) by

1+

hi_l sin (5{"_1 siné; ' sin(c,o;"_l + 5;"_1) " sin c,o;»" ' sin2(<p;" + 5;") N sin(c,oi__l_l + 5;_1)

8



restricting ¢ to some interval (0, p;) with 0 < p; < v, — & — 87, If we denote the left-hand
side of (4.3) by gi(p; ), we can take the value

pio=int{p | 0<p<n—6" =67, glp)= [z (vt — 651 — 64}

for this purpose, making use of g;(¢;") = O(¢y) = Olpy) for oy — Oand fi- (i) = Olpiiy)
for ¢y — 0. This, in turn, will require some positive ¢; < €,_; to restrict ¢, to an interval
(0,¢&). Furthermore, ¢\, = O(¢; ) = O(p; ) for ¢ — 0, and the induction step is complete.

For i +1 = n we find that ¢, covers all of (0,7 — ¢, ) when ] varies over (0,£,-1). Therefore,
any boundary tangent at the other end of the data set can be prescribed, and there always is
a solution.

The assumptions (4.1) guarantee strict monotonicity in each step of the proof. This proves
uniqueness of the solution. a

5 Boundary Conditions

As is well known from projective geometry, five given points in general position in a plane will
lie on a unique conic. This immediately yields simple and efficient strategies for determining
end tangents, which, in addition, will preserve reproduction of conics.

For completeness we include the simple recipe here. If points yo,91,...,y4 € IR* are given, we
suggest to program a function

F:IR* x IR? x IR* x IR*> — IR?

such that F(a,b,c,d) is the intersection point of the lines through a, b, and ¢, d, respectively.
Then the function calls

a = F(y07y27y17314)
b = F(yo,y1.Y2,Y4)
c = F(y07y27y37y4)
d = F(yo,¥ys Y2, Y1)

s = Fla,b,c,d)

generate a point s such that yo, s, y4 are the control points of the interpolating conic in Bernstein-
Bézier representation. This immediately yields the tangents to the conic at yo and yy. If
the weight w; or the parameters of y;,y,,ys are required, use the GC' two-point Hermite
construction of section 2. Note that the above construction, when naively programmed in IR?
as described here, will fail whenever the given points are not in general position. Going over
to projective geometry will remedy the situation somewhat and will produce tangents at yq
and yy4, even if some of the lines are parallel. However, for sufficiently dense data samples from
smooth planar curves with nonvanishing curvature there will be no problems.

This basic construction can be easily adapted to generate convexity-preserving boundary tan-
gents at yo and ya, from yo, ..., 94 and yau_4. ..., %2,. Then we have a GC? Lagrange interpola-
tion method which preserves convexity and all conics. If we use the local five—point construction
for estimation of tangents in the GC' case, we end up with the same properties.



A given boundary tangent at yo can be viewed as a twofold data point; thus it seems reasonable
to look for a method that replaces tangent data at yo, by an additional data point y_;.
This strategy is similar to the “not-a-knot” boundary condition for nonparametric spline
interpolation. For all conics through y_1,yo, 91, y2 the control point P of the rational Bézier
representation in terms of y_y, P, and y, must lie on the upper part of the line AB of Figure 6
(compare with Figure 2).

This can be used to relate the angles ¢, and T, which in turn makes it possible to write the
curvature k; at ys as a complicated function of ¢ alone. But then the system (3.5) does not
require a boundary condition for ¢F. An existence proof for the solution can be given by the
topological techniques of [9], but we omit the details here, because it is much simpler to apply
the previously proposed five-point method.

Figure 6: not-a-knot condition

We conclude this section by pointing out that the five—point method can also be used to generate
an additional data point that fits in with conic precision, making it possible to assume that the
number of data points always is odd, provided that it is at least 5.

6 Convergence

Numerical experiments suggest O(h®) accuracy of the interpolation process as described above,
if the data y; = f(¢;), 0 < ¢ < 2n are sampled from a smooth and regular curve f : [a,b] C
IR — IR? with nonvanishing curvature, where

tends to zero. The technique of the O(h*) convergence proof of [9] for piecewise quadratic poly-
nomial GC? interpolation can be carried over to this situation. It requires a thorough analysis
of a scaled version of the underlying nonlinear system and applies a Newton-Kantorovitch type
theorem with the following main ingredients:
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e The system must behave like O(h®) for exact data from f to get O(h®) accuracy of the
interpolant.

e The original variables should be scaled by a factor with behavior O(h™1).

The scaled system must have a uniform bound for the inverse of its Jacobian, and

o its second derivatives must be uniformly bounded for A — 0.
The final result will be

Theorem 6.1 For sufficiently dense samples of data y; = f(t;) from a regular and sufficiently
smooth curve f with nonvanishing curvature, and for uniformly bounded ratios

_ ftta0) = Fltaa)|
= 117(ta0) = Fltaisa)|

with a fired value of v € (0,1), the inlerpolation process of the preceding sections has O(h®)

0<~ <l—v,1<e<n—1 (6.1)

accuracy.

Proof: Asin [9], there are some complicated expansions to be calculated. So let f: [a,b] —
IR? be a smooth planar curve with positive curvature, parametrized by arclength. We can
follow [2] and [9] to assume a local two—dimensional representation of f around a single point

by
0 , cos (1)
H0) = ( 0 ) » Ft) = ( sin (1) )
0(t) = i&ti + Ot (6.2)

without loss of generality. Here 0() is the angle between tangents of f at f(0) and f(¢), while

the curvature at f(?) is
k-1

k(1) =0(t) =Y 0"+ O@*),

=1
The angle a(t) between the chord f(t) — f(0) and the tangent to f at f(0) can be expanded

as

+O(t%) (6.3)

1 1 1 720, — 020, . 12005 — 40,02 — 3020,
1) = 01t + —01% + ~ 0512 17244 2 L2245
a(t) = 50+ 30+ 07+ ——o + 720

for t — 0 by a straightforward REDUCE program based on the expansion (6.2) of 6(¢). Here
and in the sequel the expansions will be truncated for simplicity of typesetting and reading; it
is no major problem to extend them by appropriate calculations with any software system for
symbolic computation.

Further analysis of the system (3.5) along the lines of [9] requires the angle
p(tyu) = 20:(t+u) + 205(¢% + ut + u?) + 105(¢° + 2u + tu® + u®)+

720, — 020 180 0%0 1260, — 6%9
4360 1 2(t4—|—u4)—|— 49"(‘) 1 2(t3u+tu3)+ 4 1 2t2u2—|—
12005 — 46,02 — 30205 . . 4005 + 46,6% + 36%05 s
("4 u”)+ (tPu + tu™)+
6005 — 4971%(2‘3 — 3620, Y

(u® 4+ u®) + O(t%) + O(u)

360
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between the tangent at f(0) and the chord through f(¢) and f(u). Note that

a(t) u=20
pt,u) =< a(u) t=0 ,, (6.4)
(1) u=-1

and we shall assume 0 < u < ¢ throughout. The second part of the system (3.5) can now be
rewritten in a simpler form: the correspondences are

yai = f(0), Yaiyr = [flu)
‘P;'I— = afu), ot = a(t) — a(u), 99;."-|-52T" -

|
—

t)?
t)?

Yoiy2 =

(
(

e

S‘Qi_-l—l = e(t) - p(tv u)v 52_—|—1 = p(tv u) - Oé(t), S‘Qi_-|—1 + 5i_-|—1 = e(t) - Oé(t),
hi = ¢(t), |y2i1 — yaillz = c(u),
where ) . )
o) = 1 0 o 0a0y 0, 301 = 432010 — 25605
03%4 013 0,0 7760
9 — 320104 — 400,05 4 7
t t
+ 150 + O(t")

is the chordlength || f(t) — f(0)]|2 as a function of arclength t. After inserting the expansions
of the angles in Taylor series of sines, and after expansion of denominators by application of
Neumann’s series there is a representation

kT(t,bu) = 0+ tz(ﬁ;mu + (’)(uQ)) + u(’)(t?’) + (’)(t4)

for the right-hand part of the curvature in (3.5). Therefore (3.5) vanishes like O(A?) for data
from a smooth and regular curve. Note that the corresponding system in [9] had a system that
vanished like O(h?), giving overall O(h*) accuracy of the interpolation. No dramatic effect of
u being near to 0 or to ¢ arises at this point, because the ratios

c,o;" _ a(u) B uby /2 + u*y/3 + (’)(uS)
0i1 N p(t,u) — aft) N ubr/2 + u(t + u)fz/3 + uO(1?)
P _ 00) —pltiu)

&F a(t) = a(u)

(t—u)01/2 + (t — ) (2t + u)ba/3 + (t — u)O(1?)
(t—u)01/2 + (t —u)(t +u)by/3 + (1 —u)O(1?)

tend to 1 even if the denominators vanish (see (6.4) for the other cases). The remaining terms
of k*(t,u) are functions of ¢ alone.

We now proceed to analyze partial derivatives of a properly scaled version of the system (3.5).
Expansion (6.5) shows that (3.5) will vanish cubically with ¢ — 0, yielding degenerate Jacobians
in the limit. To care for this, we scale the variables in a suitable way, using v, := ¢;/u; instead
of ; = ¢, where

_|_

ui = |lyaict — vaill, wf = lye — yaigal], wi = min(ul, uy).
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Note that these numbers are fixed within a single interpolation problem; they can be treated
as constants when taking derivatives. Then we have

okt w;  OkT

b u  dgr
and N N N
Ok _ Ui (= Ok _ Uin (1 —u) 6/4;_ ‘
Oy t—u 00it1 L—u a‘Pi+1
The latter derivatives can be expanded into
0 +
u S = 244 Ou) + Ot
84,92' t
okt u
(t—u) — = 2— + O(u).
a‘Pi+1 t
Due to (6.1) and
Us; Ui41
— < 140 < 14+0(t
Ycarom, M < aon,

2% < 2yt 244y —c < 2+4%

for any given £ > 0 and sufficiently small ¢ > u > 0, the Jacobian J of (3.5) will be strictly
diagonally dominant and satisty

1

oo <16, [[J oo < ——
71 <16, 1177l < 5

for t — 0. The second derivatives can be shown to be bounded for ¢ — 0, using a similar
expansion together with the proposed scaling. The rest of the proof, applying a Kantorovich
type convergence theorem for Newton’s method, precisely follows the lines of [9]. O

7 Numerical treatment

Asin [9], the asymptotic considerations of the convergence analysis suggest a modified Newton-—
Raphson method with stepsize control for solving the nonlinear system (3.5). The same
paper provides convexity-preserving starting values of order O(h?), and the technique of [12]
yields derivative estimates of arbitrarily high order. The latter are not necessarily convexity—
preserving in all cases, but due to their high order they will preserve convexity for sufficiently
small h. So there will be no major problems when solving (3.5) with a safeguarded Newton-
Raphson technique.

The — + — sign distribution and the strict diagonal dominance of the tridiagonal Jacobian
makes a simple Gauss-Seidel iteration applicable around the solution. This worked rather well
in practice, especially when combined with starting values from tangents which were estimated
using the five-point method of section 5. The difference between this GC" interpolant and the
final GC? interpolant often is graphically invisible, but of course the curvature plots show the
difference. In anticipation of possible numerical problems with the various sines occurring in
(3.5), a simple univariate zero—finding procedure with linear convergence was employed to solve
(3.5) for ¢;. Repeating this process cyclically over ¢ proved to be efficient enough.
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8 Examples

To illustrate the O(h®) convergence, we sampled 2n + 1 = 28! 41 points (plus two boundary
tangents) of a 90 degree arc of a logarithmic spiral f with exponent —0.25 at equidistant (non-
arclength) parameter values. The rational interpolants to these data were sampled at 513 points
at equidistant parameter values of their piecewise rational Bernstein-Bézier representation,
giving 287% — 1 interior points in each of the n — 1 = 28 — 1 pieces. To each of these points
of the interpolant, the nearest point of f was calculated by a simple minimization routine,
yielding the discrete L., errors given in Table 1. In spite of the rather crude technique of error
measurement, the results clearly show an error reduction of about 1/32 when doubling the
number of data points.

n H L., error

21221210 —5
41 8.739 — 7
81 2.68919 — 8

16 || 8.49410 — 10
32 | 2.66019 — 11

Table 1: Errors of interpolation to logarithmic spiral

Due to the high approximation order, plots of interpolants practically always reproduce the
interpolated curve within plot precision, if the data are sampled from a smooth curve. In such
cases, curvature plots give much more information; a number of examples of this type can be
found in [13], comparing this method with other rational interpolants.

Here we provide results for some coarse data sets which were manually entered without smooth-
ing. Boundary tangents were estimated by the five-point formula of section 5. Of course, data
sets with four or less points cannot be handled by our method, and data sets with five points
will automatically yield the unique conic that fits through these five points. Thus, at least
seven points are needed for nontrivial examples.

Figure 7 contains a plot of the GC? interpolant to seven data points in convex position, while
the corresponding curvature plot is given in Figure 8. Note that the interpolant consists of only
three pieces, as shown in the curvature plot.

The last example, given in Figures 9 and 10, has 19 points in the shape of an @ letter. Here,
the curve takes a left turn, making the right part of the curvature plot correspond to the lower
part of the curve.
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Figure 7: Seven data points with GC? interpolant

Figure 8: Curvature of GC? interpolant

Figure 9: Nineteen data points with GC? interpolant

Figure 10: Curvature of GC? interpolant
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