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Abstract. Paths and their properties (e.g., regularity) have a fundamental im-

portance to many theoretical and applied disciplines. Yet, there is a pitfall in

the same definition of paths that has been accepted by the literature with no

major criticism, nor an attempt to fix it. The commonly accepted definition of

paths starts from a random field but ignores the problem of setting joint distri-

butions of infinitely many random variables for defining paths properly after-

wards. This paper provides a turnaround that starts with a given covariance

function, then defines paths and finally a random field. We show how this

approach retains essentially the same properties for Gaussian fields while al-

lowing to construct random fields whose finite dimensional distributions are

not Gaussian. Specifically, we start with a kernel C and the associated Repro-

ducing Kernel Hilbert Space H (C), and then assign standardized random

values to a deterministic orthonormal expansion in H (C). This yields paths

as random functions with an explicit representation formula. Using Loéve

isometry, we prove that pointwise regularity notions like continuity or dif-

ferentiability hold on functions of H (C), paths, and the random field RC in

precisely the same way. Yet, norms of paths as functions behave differently,

as we prove that paths are a.e. not in H (C), but in certain larger spaces that

can partially be characterized. In case of Matérn kernels generating Sobolev

space W m
2 (Rd), paths lie almost surely in all W

p
2 (R

d) for p < m− d/2, but

almost surely not in W
m−d/2

2 . This regularity gap between function and paths

is explained easily by square summability of expansion coefficients of func-

tions, not of paths. The required orthonormal expansions, well-known in the

probabilistic and the deterministic literature, are analyzed and compared with

respect to convergence rates.

Key words and phrases: Kernel, Loève Isometry, Regularity, RKHS, Sobolev

Spaces, Smoothness.

1. INTRODUCTION

1.1 The Problem

The literature about paths of random fields is ubiqui-

tous. Reconstruction of the plethora of contributions from

mathematics, statistics, machine learning and numerical

analysis is beyond the scope of this paper. Nonetheless,

this paper is about paths, their definition and their regu-
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larity properties.

To define paths, it is customary to start with a stochastic

process or random field R on a set Ω, as a mapping that

assigns a random variable R(x) to each x ∈ Ω. The ran-

dom variables have finite variance, with zero mean, and

we stick to these assumptions throughout the paper. The

set Ω will here be a bounded domain in R
d .

The fact that the random field has finite variance en-

sures the covariance function C : Ω×Ω →R being equal

to

(1) C(x,y) := cov(R(x),R(y)) = E(R(x) ·R(y)),
for all x,y∈Ω, to be well defined. Yet, it is hardly ever ex-

plained how the expectation E above is to be taken - see

the attempt in Chapter I of Christakos (2013). In proba-

bility theory, such an expectation is taken over the joint

probability space for the pair (R(x),R(y)), but in case of
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a random field over Ω it should be the marginalization of

a joint probability space for the full set {R(x) : x ∈ Ω}.

In general, the above covariance can depend on all other

R(z), z ∈ Ω, and then (1) does not make sense, notation-

ally. This is where problems start for the general situation.

Things get even worse when paths are to be defined.

By general consent, they are simultaneous realizations of

all R(x) at the same instant, but how does this work? Na-

ture is able to provide a temperature or wind velocity field

simultaneously at all points of Earth and all given times,

but what is the mathematical technology to simulate that?

How can one throw uncountably many strongly depen-

dent dice at the same time?

Here, the general consent is to say that the map x 7→
R(x,ξ ) is a path, where ξ is a real value from the state

space R of the identical probability space of all R(x).
This would mean that paths are functions on Ω×R and

conceals that there is a draw from the joint probabil-

ity space in the background that yields itself a func-

tion of x. This notational nonsense even made it into

the wikipedia (Wikipedia contributors, 2024b), following

plenty of books and papers that are not cited here. For

each fixed realization ξ , now from the joint probabil-

ity space, whatever it may be, the deterministic function

x 7→ R(x,ξ (x)) should be called a path Rξ of R. This

should be the base to study, e.g., the regularity properties

of sample paths. To make an example, imagine to take

derivatives of it with respect to x.

Because standard probability distributions do not ex-

ist on infinite dimensional spaces (Oxtoby, 1946), both

steps work directly on finite sets Ω only, and require a

workaround for infinite sets. This is the main goal of this

paper.

1.2 The Turnaround

To define paths, the standard approach performs the steps

Random Field R ⇒ Covariance C ⇒ Paths p

where the first two steps require a nonexisting joint distri-

bution. In contrast to this, our turnaround is

Covariance C ⇒ Paths p ⇒ Random Field R

with two intermediate steps to be described below. It

will avoid joint distributions, and it models Nature bet-

ter, because it starts from the global picture. It should

be the standard modelling technique. Before details of

the Turnaround are provided in Section 2, the standard

workaround should be presented.

1.3 The Gaussian Workaround

Gaussian processes are extremely popular in all disci-

plines, including approximation theory, statistics, and in

particular machine learning (Seeger, 2004, Williams and Rasmussen

1995, 2006). Their main feature is that the joint distri-

bution of finitely many random variables is multivariate

Gaussian, and all marginal and conditional distributions

are Gaussian again.

This leads to a standard workaround, exploiting the

fact that when the Gaussian process is restricted to a fi-

nite point set X ⊂ Ω, the covariance function is restricted

to X × X and inserted as a matrix into the multivariate

Gaussian distribution. If x and y are elements of X , the

covariance of R(x) and R(y) is then given by C(x,y) and

is independent of X . Therefore, one can work bottom-

up on large finite sets in the Gaussian case (Billingsley,

1995). The smart trick is to define paths through limits

on countable dense subsets of Ω, avoiding the notion of

a joint Gaussian distribution on Ω. Hence, certain prop-

erties of paths can be defined through continuation to Ω.

The strategy now is

Covariance C ⇒ joint distribution

⇒ Random Field R

⇒ Paths p

but restricted to finite sets for the first two steps and a

continuity argument for the last.

Now the definition of paths needs a transition from fi-

nite to infinite point sets. And since regularity properties

are based on limits, this transition needs special care be-

cause it involves a double limit. However, the Gaussian

workaround is successful and presented widely in the lit-

erature.

In the course of the paper, it will be shown that the

Turnaround is fully compatible with the Gaussian work-

around, while simplifying all arguments considerably. In

particular, our path definition leads to an explicit for-

mula (3), and Theorem 6 will handle the path continuation

problem.

There is a highly technical and abstract workaround to-

wards abstract Wiener space that we do not follow here.

It is well described in Stroock (2023).

1.4 Roadmap

The next section will provide the details of the pro-

posed Turnaround. In particular, two intervening steps are

needed: the Hilbert space H (C) where the covariance

kernel C is reproducing, and the orthonormal expansions

therein, which will be the basis for defining paths first and

then the random field RC.
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Based on this, pointwise regularity theorems for ran-

dom fields RC and functions from the native space H (C)
are treated simultaneously in Section 5. A basic tool is

the Loéve isometry from Section 5.1 that comfortably

relates the deterministic Hilbert space H (C) to an iso-

metric Hilbert space H (RC) of second-order zero-mean

random functions. Deterministic and probabilistic results

turn out to be in total agreement, if interpreted appropri-

ately, but they do not address paths.

Then Section 6 turns to paths, pointwise, as functions,

and with norms of paths in function spaces as random

variables. Pointwise regularity of paths follows the pre-

vious section and is proven to agree with pointwise regu-

larity of functions in H (C) and regularity of the random

field RC. Yet, a gap appears between regularity of paths

as functions and functions, generated by the same covari-

ance kernel C. The crucial point is that the coefficients of

paths (3) are not square summable almost surely, while

the corresponding expansions for functions in H (C) are.

Exploiting convergence results for orthonormal expan-

sions, this allows to characterise the larger spaces in

which the paths live.

As an interlude, Section 3.3 recalls the standard or-

thonormal expansions in Hilbert spaces and of random

fields. They come either eigensystem-based as Mercer or

Karhunen-Loéve expansions, or point-based as Newton

expansions or Cholesky decompositions of kernel ma-

trices. The former have optimal convergence properties,

while the latter depend on how well points are chosen. But

if points are chosen by the P-greedy strategy known from

Müller and Schaback (2009), Pazouki and Schaback (2011),

the Newton/Cholesky decompositions have an asymptot-

ically equivalent convergence rate (Santin and Haasdonk,

2017, Santin and Schaback, 2016).

2. THE TURNAROUND

Our Turnaround consists of the following steps:

Deterministic Phase: D1 We start with a continuous,

symmetric and positive definite kernel C :

Ω×Ω → R. This is done in Section 3.1;

D2 Kernels are reproducing in a Hilbert space of

functions on Ω, denoted H (C) throughout.

This is explained through Section 3.2;

D3 We consider orthonormal systems (ONS) W =
{wn}n∈N in H (C) in Section 3.3. They have

an explicit connection with C and H (C) in

points 1 and 2 through

(2) ∑
n∈N

w2
n(x) =C(x,x), x ∈ Ω.

Transition to Randomness: The second phase will al-

low for a proper definition of paths that covers a

central role in this manuscript. Specifically,

R1 In Section 4, we select a univariate standard

probability space over R with Lebesgue mea-

sure. We then take independent samples, de-

noted S throughout, and being sequences S =
{sn}n∈N in R

N where each component is an

independent realization of a random variable

following a zero-mean variance-one distribu-

tion R.

R2 This allows to define (S,W,R)-Expansion

Paths, denoted pS,W,R , and specified through

the identity

(3) pS,W,R = ∑
n∈N

snwn.

R3 This implies, for every x, the existence of a

random variable RC(x) whose samples are

(4) RC,W,R(x) = pS,W,R(x) = ∑
n∈N

snwn(x),

and it will turn out that

cov(RC,W,R(x),RC,W,R(y)) =C(x,y)

holds for all x,y ∈ Ω.

Note that this proceeds from C to paths first, and then to

random fields. In more detail:

C
D2⇒ H (C)

D3⇒ W
R1⇒ S

R2⇒ pS,W,R
R3⇒ RC(x)

repro ONS sample path RV

It works in general because (2) implies that pS,W,R(x) is

finite almost surely. In contrast to the standard approach,

the realizations of the random variables RC(x) are exactly

the path values at x. Expansions are used widely in the

literature, but not as starting points for defining paths and

random variables.

The special case of a Gaussian random field is attained

by setting R =N (0,1) without needing a detour via lim-

its of point sets. These are hidden in the construction of

the orthonormal system, when applying either the stan-

dard Cholesky-based sampling procedure or a Mercer ex-

pansion of the kernel, see Section 3.3. In the latter case,

the result is a Karhunen-Loéve expansion of the random

field.

Expansions are abundantly used in the literature when

it comes to investigate path properties, e.g. in Steinwart

(2019), but they are not used for the definition of paths.

When starting from a random field R, expansions lead to

a random field R̃ that has to be related to R, e.g. by being

called a “modification”. Starting from C and expansions

eliminates this problem.

The turnaround will be shown to work flawlessly, lose

nothing compared to the standard workaround via Gaus-

sian Processes, but allowing more general distributions

and an easy access to regularization results concerning

paths.
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3. DETERMINISTIC PHASE IN THE WAY TO

PATHS

As announced above, we proceed here from covariance

functions C as kernels to the Hilbert spaces H (C) they

generate, including their orthonormal expansions. In Sec-

tion 4, randomness comes into play and leads to paths and

random fields.

3.1 D1: Kernels

Covariance functions are called kernels in the deter-

ministic literature (Aronszajn, 1950, Buhmann, 2003,

Fasshauer and McCourt, 2015, Wendland, 2004) and are

real-valued mappings

C : Ω×Ω →R.

They are symmetric, i.e. C(x,y) = C(y,x), x,y ∈ Ω and

in most cases positive definite. This means that for each

finite subset Xn = {x1, . . . ,xn} of Ω the symmetric n× n

kernel matrix CXn,Xn with entries C(x j,xk), 1 ≤ j,k ≤ n

is positive definite. A kernel C on Ω is called stationary

or translation-invariant if it is a function of the lag x− y.

We shall be sloppy for writing C again for a kernel that is

translation invariant, and we always assume positive def-

initeness.

A very common additionally assumption for stationary

kernels is radial symmetry or isotropy:

(5) C(x− y) = σ2ϕ(‖x− y‖),
for x,y ∈ R

d and ‖ · ‖2 denoting the Euclidean distance.

For convenience, the function ϕ is continuous and nor-

malized, so that ϕ(0) = 1. The parameter σ2 then is the

constant variance of R. In many cases, the scalar r =
‖x−y‖ is used for the shortcut C(r) = σ2ϕ(r). Whenever

no confusion can arise, the word isotropy will be omit-

ted whenever it is apparent from the context. We use the

words covariance function or covariance kernel if there is

a probabilistic background, and kernel elsewhere, keeping

the notation C.

We now describe the rôle of kernels as covariance

functions, ignoring their importance for machine learn-

ing (Schölkopf and Smola, 2002, Sutton et al., 2012) and

meshless methods for solving partial differential equa-

tions (Schaback and Wendland, 2006).

Any isotropic covariance in R
d has a representation as a

nonnegative mixture of the type (Schoenberg, 1938, The-

orem 1):

ϕ(r) = 2
d
2 −1Γ

(
d

2

)
r1− d

2

∫ ∞

0
z1− d

2 J d
2 −1

(zr)dFd(z),

r > 0, where Fd is a nondecreasing bounded measure on

(0,+∞). We follow Daley and Porcu (2014) to call Fd a

d-Schoenberg measure throughout. When ϕ is absolutely

integrable, then Fd is absolutely continuous with respect

to the Lebesgue measure, with radial spectral density ϕ̂
that is attained through

ϕ̂(z) =
1

(2π)
d
2

z1− d
2

∫ +∞

0
r

d
2 J d

2 −1
(zr)ϕ(r)dr, z > 0.

An very important special case of random fields has

isotropic Matérn covariance functions

(6) Mν ,α(r) =
21−ν

Γ(ν)

( r

α

)ν
Kν

( r

α

)
, r ≥ 0,

where α > 0 is a scale parameter, ν > 0 is called the

smoothness parameter, and Kν is a modified Bessel

function of the second kind of order ν . The isotropic

Matérn spectral density or radial Fourier transform is

(Abramowitz and Stegun, 1970, 11.4.44)

(7) M̂ν ,α(z) =
Γ(ν +d/2)

πd/2Γ(ν)

αd

(1+α2z2)ν+d/2
, z ≥ 0,

where z = ‖ω‖ is the scalar variable in Fourier space cor-

responding to r. See Porcu et al. (2023) for an overview of

random fields with Matérn covariance functions, among

other cases with similar spectral behaviour.

The Generalized Wendland (Gneiting, 2002, Zastavnyi,

2006) kernel is defined for κ ,β > 0, as

(8)

Wµ ,κ ,β(r) :=
1

B(2κ ,µ +1)

∫ 1

r/β
u(u2−(r/β )2)κ−1(1−u)µ du,

when r/β < 1, and 0 otherwise. with B denoting the beta

function. The univariate kernel Wµ ,κ ,β(r) is positive def-

inite in R
d if and only if µ ≥ (d + 1)/2+κ (Zastavnyi,

2006). The special case κ = 0 is known as the Askey fam-

ily (Askey, 1973)

Aµ ,β (r) :=

{
(1− r/β )µ , 0 ≤ r/β < 1,

0, r/β ≥ 1.

We define Wµ ,0,β := Aµ ,β .

Algebraically closed form solutions for (8) are avail-

able when κ = k, a positive integer. We have Wµ ,k,β (r) =
Aµ+k,β (r)Pk(r), with Pk a polynomial of order k. Such

a case is termed original Wendland functions after the

tour de force by Wendland (1995). Then Schaback

(2011) proved that other closed form solutions can be

obtained when κ = k + 0.5. These were called miss-

ing Wendland functions. Arguments in Theorem 1(3) of

Bevilacqua et al. (2019) prove that the Fourier transform

of the generalized Wendland function, Ŵµ ,κ ,β is not as

simple as (7), but has a similar asymptotic order of z−2λ

for z → ∞ provided µ ≥ λ := (d +1)/2+κ .

Matérn and Generalized Wendland spectral densities

can be parameterized in such a way that their tails behave

similarly. Specifically, Theorem 1 in Bevilacqua et al.

(2019) shows that 2ν = 2κ + 1 is needed. The scale fac-

tors α and β in the two models have no influence on the
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spectral asymptotics. Yet, they play a key role, in con-

cert with smoothness and variance, to determine condi-

tions for equivalence of Gaussian measures associated to

random fields with these classes of covariance functions

(Bevilacqua et al., 2019). In turn, such conditions are the

crux to provide sufficient condition for best optimal lin-

ear prediction under a misspecified covariance function

(Stein, 1999).

3.2 D2: Hilbert Spaces

We now come back to general kernels and state their

main properties as needed for the paper. The space

H (C) spanned by all kernel translates C(x, ·), x ∈ Ω is a

Hilbert space of functions on Ω that has an inner product

(., .)H (C) with the properties

(9)
f (x) = ( f ,C(x, ·))H (C), f ∈ H (C), x ∈ Ω,

C(x,y) = (C(x, ·),C(y, ·))H (C), x,y ∈ Ω,

λ xµyC(x,y) = (λ ,µ)H (C)∗ , λ ,µ ∈ H (C)∗

where H (C)∗ denotes the (topological) dual of H (C)
containing all continuous (i.e. bounded) linear functionals

on H (C) and λ x means evaluation of λ with respect to

the variable x. In particular, all point evaluation function-

als δx : f 7→ f (x) are continuous with norm
√

C(x,x).
Details are in monographs by Abdelaziz and Hamouine

(2008), Fasshauer and McCourt (2015), Schaback (1997),

Wendland (2004).

For Sobolev spaces, we work on R
d and use the defini-

tion

W m
2 (Rd) :=

{
f : R

d → R,
∫

Rd
| f̂ (ω)|2(1+‖ω‖2)

mdω < ∞

}

as subspaces of L2(R
d) = W 0

2 (R
d). They are separable

Hilbert spaces under the inner product

( f ,g)W m
2 (Rd) =

∫

Rd
f̂ (ω)ĝ(ω)(1+‖ω‖2)

mdω,

for f ,g ∈W m
2 (Rd), and there is a reproduction formula

f (x) = ( f ,Mm−d/2,1(‖x−·‖2)W m
2 (Rd),

for f ∈ W m
2 (Rd), x ∈ R

d , by using a special version of

the general isotropic Matérn kernel from (6). This links

the most important function spaces of Real Analysis and

Partial Differential Equations to the most important co-

variance functions in Spatial Statistics.

In turn, Theorem 5 in Bevilacqua et al. (2019) ensures

that the above reproducing property is guaranteed pro-

vided m−d/2= κ+1/2, that is when κ =m−(d−1)/2.

Summarizing, each positive definite covariance func-

tion C is a kernel that leads to a native Hilbert space

H (C) of deterministic functions on Ω, and Sobolev

spaces arise from Matérn kernels.

3.3 D3: Orthonormal Expansions

Like in all separable Hilbert spaces, there are orthonor-

mal systems {wn}n∈N in H (C) that allow each function

f ∈ H (C) to be written as a series

f = ∑
n∈N

( f ,wn)H (C)wn

with

‖ f‖2
H (C) = ∑

n∈N
( f ,wn)

2
H (C)

and convergence in norm. In particular,

C(x,y) = ∑
n∈N

wn(x)wn(y)

holds for all x,y ∈ Ω, and there is a pointwise bound

(10) ∑
n∈N

wn(x)
2 =C(x,x) for all x ∈ Ω

for the functions wn that ensures wn(x) → 0 for n → ∞
and

∑
n∈N

‖wn‖2
L2(Ω) =

∫

Ω
C(x,x)dx.

We now devote some attention to two special cases of or-

thonormal expansions.

The standard way of generating path approximations

for random fields is by a stepwise Cholesky decompo-

sition of kernel matrices. We show here that it yields a

special case of an orthonormal expansion.

Consider a countable dense set X∞ of points in Ω. Then

the Cholesky decomposition procedure for infinite kernel

matrices CX∞,X∞ can be written as

C(x j,xk) =
∞

∑
n=1

wn, jwn,k, 1 ≤ j,k < ∞

with an infinite triangular matrix W with entries wn, j that

satisfy wn, j = 0, 1 ≤ j ≤ n−1 and wnn =: σn > 0, n ≥ 1.

The standard stepwise Cholesky procedure generates ex-

actly those matrices for n → ∞, and the result is CX∞,X∞ =
WT W.

From a more general viewpoint, this is an expansion

(11) C(x,y) =
∞

∑
n=1

wn(x)wn(y) for all x,y ∈ R
d

of the kernel itself into functions wn, n ≥ 1. The functions

wn have the properties

wn(x j) = 0, 1 ≤ j < n

wn(xn) =: σn > 0,
wn ∈ span{C(x1, ·), . . . ,C(xn, ·)}, n ≥ 1.

In the deterministic literature (Müller and Schaback, 2009,

Pazouki and Schaback, 2011) this is the well-known ex-

pansion into a Newton basis, and it is orthonormal in
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H (C). The recursion formulas in terms of full functions

are

(12)

w2
j(x j) =C(x j,x j)−

j−1

∑
m=1

wm(x
2
j),

w j(x)w j(x j) =C(x j,x)−
j−1

∑
m=1

wm(x j)wm(x).

Note that expansions (11) replace a stationary kernel by

a sum of products, and stationarity of is lost for partial

sums.

This ends the deterministic phase. We now have all

tools needed for paths (3) and random variables (4).

4. THE STOCHASTIC PHASE: EXPANSION

PATHS AND RANDOM FIELDS

After starting from kernels C and providing their deter-

ministic properties, it is now time to introduce random-

ness. This will turn the kernel into a covariance function

for a random field, without using a joint distribution. We

shall use the orthonormal expansions of Section 3.3 for

this purpose.

Step R1 introduces a zero mean and unit variance dis-

tribution, R, from which an independent and identically

distributed sequence, S= {sn}n is drawn. The background

is a completely different random field, now on N and de-

noted by N
R , with a trivial joint distribution induced by

independent R-distributed random variables S(n) for all

n ∈ N. Its paths S = {sn}n are well-defined due to the in-

dependence, and are the sequences S used here.

Step R2 couples the sample S = {sn}n with an orthonor-

mal expansion W in H (C) to arrive at (3). There, we

called the function pS,W,R an (S,W,R)-expansion path.

Finally, step R3 looks locally at (3) on x, to get a ran-

dom variable RC,W,R(x) whose realizations are in (4) with

realizations S from N
R . Note that these random variables

cannot be sampled individually. A sample S from N
R pro-

vides samples for all RC,W,R(x) simultaneously. As long

as we keep C,W, and R fixed, we shall reduce the nota-

tion to RC(x) for reasons to be apparent below.

4.1 Properties of Paths and Random Variables

Because we first defined paths and then pointwise ran-

dom variables, both RC(x) and RC(y) have to use the same

samples S, and then

(13)

cov(RC(x),RC(y)) = E

(
∑

n∈N
snwn(x)

)(
∑

m∈N
smwm(y)

)

= ∑
n∈N

wn(x)wn(y)

=C(x,y)

for all x,y ∈ Ω.

The above approach makes it easy to construct non-

Gaussian random fields with a prescribed covariance

function, C. Users still have the orthonormal system W

and the standardized probability distribution R at their

disposal.

It is interesting to study the set of all paths (3) for fixed

C,W , and R. By the following theorem, it is indepen-

dent of W as a set, but different W and R will prefer cer-

tain subsets of paths over others when producing repeated

paths.

THEOREM 1. The set of all possible expansion paths

(3) is independent of the orthonormal expansion W , if C

and R are fixed.

PROOF. If there are two orthonormal systems W and U

with

wn = ∑
m∈N

dnmum, n ∈ N,

the infinite transformation matrix D is orthogonal, i.e.

DDT = DT D = Id,

letting the series be absolutely convergent. Now path rep-

resentations pS,W,R and pT,U,R can be related by

tm = ∑
n∈N

sndnm, m ∈ N

to show that

pS,W,R = ∑
n∈N

snwn

= ∑
n∈N

sn ∑
m∈N

dnmum

= ∑
m∈N

um ∑
n∈N

sndnm

= pT,U,R.

4.2 Statistical Equivalence

Assume two orthonormal systems v = {vn} and w =
{wn} and keep the same univariate distribution R and the

same covariance function C. The two systems could be

called statistically equivalent, if for all measurable sets

M ⊂ Ω×R of finite Lebesgue measure, the probability of

paths based on v and w to have their graphs in M should

be the same.

A simplification replaces M by cylinder sets

C (Xn,a,b) := { f : Ω→R : a j ≤ f (x j)≤ b j, 1≤ j ≤ n}
for a < b ∈ R

n, and this defines a probability

Prob

(
a j ≤ ∑

m∈N
smwm(x j)≤ b j, 1 ≤ j ≤ n

)

that a path based on w hits C (Xn,a,b). This is

(14) Prob(a j ≤ RC(x j)≤ b j, 1 ≤ j ≤ n)

and is independent of the expansion whenever the joint

distribution of all RC(x j),1 ≤ j ≤ n is.
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THEOREM 2. Under Gaussianity, there is statistical

equivalence of all expansion paths on all cylinder sets.

Probabilities (14) on cylinder sets are well-defined in

case of Gaussianity, and the probability stays the same if

Xn is contained in a point-based expansion for an infinite

dense set X∞. This why users can consider the standard

constructions of Gaussian paths using point sets X∞ to

be reliable and independent of expansions. Cylinder sets

arise in Billingsley (1995) and various approaches to ab-

stract Wiener spaces, used to define so-called cylinder set

measures (Wikipedia contributors, 2024a) which usually

are no measures.

4.3 Paths for Point-Based Expansions

If the standard Cholesky decomposition of the kernel

matrix with entries C(x j,xk), 1 ≤ j,k ≤ N is executed

only for a finite point set XN , the path approximations

are the partial sums of (3)treated in Theorem 6 below, but

usually only calculated on XN . The recursion formula (12)

extends the result to be a function on all of Ω, and it can

easily be proven that the extension is the Kriging inter-

polant using the finite path vector on XN . Theorem 6 will

show how far this is from a calculation on Ω itself. The

residual kernel

(15) CN+1(x,y) :=C(x,y)−
N

∑
n=1

wn(x)wn(y)

is the kernel C conditioned to XN , and CN+1(x,x) is the

variance for Kriging on x given values on XN , because

it coincides with the Power Function that has this prop-

erty, (see, e.g., Fasshauer and McCourt, 2015, p. 98). The

early paper (Wu and Schaback, 1993) called it Kriging

function. This is the probabilistic interpretation of such a

point-based expansion. The presentation here is in terms

of functions, not finite path vectors. The limit N → ∞
causes no problems if points are reasonably selected to

become dense in the limit. (Müller and Schaback, 2009).

4.4 Paths for Mercer Expansions

For a Mercer (Mercer, 1909) expansion of the kernel,

the basic equations are

(16)

∫

Ω
C(x,y)vn(x)dx = λnvn(x), x ∈ Ω

with positive λn decaying to zero and orthonormality of

the vn in L2(Ω) paired with orthogonality (vn,vm)H (C) =

δnmλ−1
n , n,m ≥ 1 in the native space H (C). Then

C(x,y) =
∞

∑
n=1

λnvn(x)vn(y)

is an expansion in L2(Ω). We get (11) and orthonormality

in H (C) by setting wn =
√

λnvn. In the probabilistic con-

text, this turns into a Karhunen-Loève expansion. Paths

have the form (3), in particular

pS,W,R = ∑
n∈N

snwn = ∑
n∈N

sn

√
λnvn

with norm

‖pS,W,R‖2
L2(Ω) = ∑

n∈N
s2

nλn.

A Mercer/Karhunen-Loève expansion is not point-based,

and therefore it lacks the above probabilistic interpreta-

tion. But it is optimal in the sense that the decay of the λn

cannot be improved given C and the space H (C), leading

to optimal convergence of Mercer/Karhunen-Loève paths

(Santin and Schaback, 2015).

If points in a point-based expansion are chosen by the

P-greedy method (Müller and Schaback, 2009), picking

xN+1 as

xN+1 = argmax{CN+1(x,x), x ∈ Ω},
the convergence of path approximations is asymptotically

optimal as well (Santin and Haasdonk, 2017). This is

computationally much cheaper than a Mercer/Karhunen-

Loève expansion.

5. REGULARITY OF RANDOM FIELDS AFTER

THE TURNAROUND

5.1 A tool: the Loève Isometry

By (13), the linear space

(17) S (RC) = span{RC(x) : x ∈ Ω}.
of zero-mean random variables is isometrically isomor-

phic to the span of kernel translates C(x, ·) by the Loéve

map

LC(RC(x)) :=C(x, ·) for all x ∈ Ω

on the generators. We denote the completion of S (RC)
by H (RC) to distinguish it from its isometric counterpart

H (C). If one does not start from C, and without Gaus-

sianity, the definition of the Loéve map is problematic due

to the definition of the covariance via marginalization of

the joint distribution of all R(·) to the joint distribution of

pairs (R(x),R(y)).
We know the Hilbert space completion H (C) of the

translates C(x, ·), x∈Ω, and then each deterministic func-

tion f ∈H (C) defines a zero-mean second-order random

variable S f = L
−1

C ∈ H (RC). It has the property

cov(S f ,RC(x)) = f (x), x ∈ Ω

that can be called the random reproduction formula that

complements the standard deterministic reproduction for-

mula from (9), obtained by applying the Loéve isometry.
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But more important are the duals of the two Hilbert

spaces. Let H (C)∗ and H (RC)
∗

denote the dual spaces

associated with, respectively, H (C) and H (RC). In view

of the Loève isometry, we have that functionals on the na-

tive space H (C) should now correspond to functionals

on H (RC). If we start from λ ∈ H (C)∗, we can define a

functional λ ∗ ∈ H (RC)
∗

on H (RC) by

λ (LC(S)) =: λ ∗(S) for all S ∈ H (RC).

This is the standard duality map L ∗
C from H (C)∗ to

H (RC)
∗
. By the Riesz representer theorem, there is a

second-order zero-mean random variable Sλ with

E(Sλ S) = λ (LC(S)) =: λ ∗(S) for all S ∈ S (RC),

and in particular

(18)
E(Sλ RC(x)) = λ (C(x, ·)) for all x ∈ Ω,

E(Sλ Sµ) = (λ ,µ)H ∗(C) = λ xµyC(x,y)

for all λ , µ ∈ H ∗(C).Here, the superscript x on a func-

tional λ denotes action with respect to the variable x.

The consequence is that all functionals λ ∈ H ∗(C)
on H (C) lead to valid second-order mean-zero random

variables Sλ ∈ H (RC). Under Gaussianity, all second-

order random variables Sλ of this type will be Gaussian

again. And the admissible and bounded functionals on

both Hilbert spaces are comparable via the dual of the

Loéve map. This argument will be crucial when investi-

gating pointwise regularity notions for both functions in

H (C) and random fields RC in the next section.

In particular, a classical pointwise derivative is a func-

tional λ on H (C), and then Sλ is a random variable with

the same norm that describes the corresponding derivative

of the random field RC in the mean-square sense. We shall

describe this in more detail.

5.2 Pointwise differentiability

Pointwise derivative functionals δ α
x ( f ) := (Dα f )(x)

that are admissible in the native space H (C) are those

having a finite norm ‖δ α
x ‖2

H ∗(C) that is defined through

(19) ‖δ α
x ‖2

H ∗(C) = δ α ,u
x δ α ,v

x C(u,v)< ∞,

where the upper indices u and v indicate the variables the

functionals use. This induces derivative kernels

Cα ,α(x,y) : (x,y) 7→ δ α ,u
x δ α ,v

y C(u,v) for all x,y ∈ Ω

that are symmetric and positive semidefinite. Bounded-

ness of pointwise derivative functionals is reduced to ex-

istence of “twin” derivatives of the kernel.

For each admissible derivative order α ∈ N
d there is

a second-order zero-mean random variable Sδα
x

with the

variance in (19), and the map x 7→ Sδα
x

is a zero-mean

second order random field with covariance function Cα ,α .

Starting from x 7→ Sδx
= R(x) for δx = δ

(0)
x we can ap-

proximate all higher pointwise derivatives by linear com-

binations of point evaluations, and then the random field

x 7→ Sδα
x
=: Dα

x (R) coincides with the pointwise mean-

square derivative of the random field R. In this sense we

have

THEOREM 3. Pointwise mean-square differentiability

properties of the random field RC coincide with pointwise

differentiability properties of functions in the native space

H (RC) of the covariance kernel C.

A simple illustration follows. We take d = 1 for sake

of simplicity. A random variable R′
x is the mean-square

derivative of R at x, if

E(R′
x − (R(x+h)−R(x))/h)2 → 0 for h → 0.

The above approach defines R′
x via E(R′

xR(z))=D
1,u
x C(u,z),

for all z and E(R′
xR′

x) = D
1,u
x D

1,v
x C(u,v). Then the above

expression is

E(R′
x − (R(x+h)−R(x))/h)2

= ‖δ 1
x − 1

h
(δx+h −δx)‖2

H (C)∗

and this converges to zero if and only if 1
h
(δx+h−δx) con-

verges to δ ′
x in norm in H (C)∗.

5.3 Continuity

Like continuity of functions, this is not a notion that

works with a single point or a single functional. One way

to define it for a random field R is to say that R is point-

wise mean-square continuous at x if

(20) lim
h→0∈Rd

E(R(x+h)−R(x))2 = 0,

and because this is (Stein, 1999)

(21)

lim
h→0∈Rd

(C(x+h,x+h)+C(x.x)−2C(x+h,x))= 0,

it is satisfied if C is continuous. When combined with the

previous section, we get

THEOREM 4. Assume a kernel C has continuous

derivatives Cα ,α(x,y)=D
α ,u
x D

α ,v
y C(u,v). Then the second-

order zero mean random field DαRC is pointwise mean-

square continuous almost surely and has the above co-

variance function.

Again, the slight difference between regularity of ran-

dom fields and functions from their their native spaces

lies in the difference of the two regularity notions, here

for continuity.

6. POINTWISE CONVERGENCE OF PATHS

We now consider pointwise regularity of paths, using

our explicit representation (3). We have by definition
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THEOREM 5. The value of expansion paths pS,W,R

at a point x is a random variable RC(x) that has mean

zero and variance ∑∞
n=1 wn(x)

2 = C(x,x). It is finite al-

most surely.

The proof uses the fact that series of second-order zero-

mean random variables converge almost surely, if the

variances are summable (Durrett, 2019, Theorem 2.5.6,

page 84).

A simple argument allows us to control the error that

is committed when taking only partial sums in (3) up to

some N .

THEOREM 6. Path approximations pN,S,W,R by trun-

cated sums

pN,S,W,R(x) =
N

∑
n=1

wn(x)sn

always lie in the native Hilbert space generated by the

covariance kernel, and the error pS,W,R(x)− pN,S,W,R(x)
is a random variable with variance

(22) C(x,x)−
N

∑
n=1

wn(x)
2 =

∞

∑
n=N+1

wn(x)
2

for all x ∈ Ω. Going from N to N + 1 decreases the vari-

ance by wN+1(x)
2 for all x.

In a nutshell, this is what allows to go over to infi-

nite point sets in the Gaussian case to get paths on all of

Ω. Limits of point sets as a bottom-up or local-to-global

process are replaced here by series truncations as a top-

down or global-to-local process. Nothing is lost, because

the standard finite-to-infinite path construction for Gaus-

sian processes goes via an orthonormal system anyway,

by Section 3.3.

The random variable Dα(pS,W,R)(x) on expansion

paths pS,W,R from (3) has the representation

Dα(pS,W,R)(x) =
∞

∑
n=1

Dα(wn)(x)sn.

It is a random variable with variance zero and variance
∞

∑
n=1

(Dα(wn)(x))
2 =Dα ,αC(x,x)= ‖δ α‖2

H (C)∗ for all x∈Ω.

Therefore Theorem 3 on almost sure mean-square point-

wise differentiability also holds for pointwise values of

expansion paths, in the sense that pointwise derivatives

have finite values almost surely.

Similarly, we examine pointwise mean-square continu-

ity via (20) and get the condition

lim
h→0∈Rd

E

(
∞

∑
n=1

sn(wn(x+h)−wn(x))

)2

= 0,

which coincides with (21). Then Theorem 4 on almost

sure pointwise mean-square continuity extends to expan-

sion paths.

THEOREM 7. Pointwise regularity and smoothness

notions for paths of a random field and functions in

the native space of its covariance function coincide. The

former are to be understood as random variables with

bounded variance.

7. NORM CONVERGENCE OF PATHS

We recall Section 4 for (S,W,R)-expansion paths (3).

Once sampled, these are functions like any other deter-

ministic function, and we can investigate their regularity

with deterministic techniques.

Each partial sum of (3) is a function in the native space

whose squared norm is the sum of squares of the coeffi-

cients. For n → ∞, the problem requires instruments from

probability theory. When S in (3) is an independent se-

quence, then S2 := {S2
n}n is an independent sequence as

well. Hence, we can invoke the celebrated Kolmogorov’s

Three series theorem, for which the series ∑n s2
n converges

if and only if

Prob
(
S2

n > K
)
< ∞ and ∑

n

ES2
n < ∞,

where the third condition is not needed in our case be-

cause we are working with zero-mean random variables.

This provides an immediate implication for the case of

IID (independently and identically distributed) sequences,

which is largely used in machine learning as explained by

Schölkopf (2022). Although the implication is straight-

forward, we formalize it below for the convenience of the

reader.

THEOREM 8. Let the sequence S in (3) be IID. Then,

expansion paths (3) do not lie, almost surely, in the native

Hilbert space of the covariance kernel.

Some commments are in order. The assumption of ID

can be relaxed to provide situations where the expansion

paths (3) lie, almost surely, in their Native space. Yet,

these are more mathematical artifacts rather than real sit-

uations. For example, one might set S2
n ∼N (0,1/n2) and

retrieve Sn by backwards transformation. Yet, this has no

sense for practical applications. Hence, the general mes-

sage is that expansion paths based on independent se-

quences fall almost surely outside their original Native

space.

We note that the assumption of independence as per Kol-

mogorov can be relaxed at the price of very technical con-

ditions (Brown, 1971). Yet, this case does not apply to our

context.

Note this serious difference between paths of random

fields and functions from their native spaces. Further-

more, we now consider the random norm of a random

function, not random values at certain single points. This

is the difference to Section 5.

By Theorem 8, native space norm convergence in (3)

will fail in general, but there may be weaker norms like
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L2(Ω) that admit convergence of paths in norm. We post-

pone this to the next section.

By Theorem 8 we know that IID paths do not lie in the

native space almost surely, but are they almost surely in

larger spaces? The answer requires a scale of spaces with

different regularity properties. The easiest and more gen-

eral approach to scaled spaces is via weighted expansions,

and we use it for the scale of Sobolev spaces later.

To stay close to Fourier series and Mercer/Karhunen-

Loève expansions, we build a scale of Sobolev-type func-

tions over L2(Ω) using a fixed basis of orthonormal func-

tions vn in L2(Ω). We penalize the expansion coefficients

by positive sequences ρρρ = {ρn}n and define inner prod-

ucts

( f ,g)L2,ρρρ (Ω) =
∞

∑
n=1

( f ,vn)L2(Ω)(g,vn)L2(Ω)ρ
−1
n .

We mimic the Mercer/Karhunen-Loève case by assum-

ing wn =
√

λnvn being orthonormal in H (C) for a co-

variance function C on Ω, see Section 3.3 for details.

By comparison of expansions, this implies ( f ,vn)L2(Ω) =√
λn( f ,wn)H (C), and the native Hilbert space for C then

consists of all functions f ∈ L2(Ω) with

∞

∑
n=1

( f ,wn)
2
H (Ω) =

∞

∑
n=1

λ−1
n ( f ,vn)

2
L2(Ω) < ∞.

i.e. it is L2,λλλ (Ω). If p is a path in that space, it is in L2,ρρρ(Ω)
iff

∞

∑
n=1

( f ,vn)
2
L2(Ω)ρ

−1
n =

∞

∑
n=1

ω2
n λnρ−1

n < ∞.

THEOREM 9. For a scale of spaces based on weighted

expansions in L2(Ω) under the above assumptions, the

native space L2,λλλ (Ω) lies in L2,ρρρ if ∑∞
n=1 λnρ−1

n < ∞.

We now connect this to the scale of Sobolev spaces

W m
2 (Ω) on compact domains Ω ⊂ R

d . The variances λ 2
n

for Mercer/Karhunen-Loève expansions (16) behave like

n−2m/d (Santin and Schaback, 2016) for n → ∞. To sim-

plify notation, we define an ID path the expansion path

(3) for which S is additionally ID. Hence, we have

THEOREM 10. If a covariance function generates the

native space W m
2 (Rd), and if all other Sobolev spaces

are defined via scaling, its ID paths lie almost surely in

all Sobolev spaces W
p

2 (R
d) for p < m− d/2, but almost

surely not in W
m−d/2

2 (Rd).

On the Sobolev scale, there is a smoothness gap of or-

der d/2 between functions in the native space and paths.

This goes back to Scheuerer (2009), but we provided

an explicit and constructive proof for expansion paths,

based on (3) and a revised definition of paths, but lim-

ited to Mercer/Karhunen-Loève expansions. Roughly, if

W m
2 (Rd) is the native space for a covariance kernel, the

borderline space for paths is W
m−d/2

2 (Rd) in the above

sense.

Expansion paths via infinite point sets do not work in

the proof, because we used that the vn are independent of

the smoothness order.

It should be explained why Theorems 5, 8 and 10 are

not contradictory. Imagine a random function generator

that produces large numbers of random paths. When con-

sidering only a single point x, one gets a random variable

over these paths that has bounded variance. But some-

thing like the L2(Ω) norm of single paths is another ran-

dom variable over paths that needs a proof for guarantee-

ing bounded variance.

Theorem 10 has a positive computational aspect. If

users want to produce cheap random sample paths from

W m
2 (Ω) without any excessive smoothness, they should

not run anything for n → ∞ using that kernel. For

roughly the same effect, one can take cases for finite n

in W
m−d/2

2 (Ω).
The paper (Steinwart, 2019) draws much more detailed

conclusions for expansion paths (3) with respect to vari-

ous function spaces, but it still starts in the standard way

from Random Fields.

Remarks

The regularity differences between deterministic inter-

polation, non-deterministic Kriging, and path construc-

tion for random fields should be explained in some more

detail, illustrating the above results.

1. Deterministic interpolation

There is an apparent philosophical discrepancy be-

tween the statistics and the numerical analysis ap-

proach. For the former, data are realizations from

something random, while for the latter data are the

ground truth modulo some additive noise. We start

by focusing on the latter: in this case, data are the

true values of a function f from the native space

of C. For finitely many observations from f , the

smoothness of the (Kriging) interpolant is double

with respect to the smoothness of functions in the

native space, because the interpolant is generated

from kernel translates. These have the smoothness

of the kernel C, but native space functions only have

the smoothness of the kernel C0 with C = C0 ∗C0,

i.e., Ĉ = (Ĉ0)
2. When the number of observations

of f tends to infinity, the double smoothness is lost

by going to the limit in the native space. This well-

known smoothness gap is deterministic and arises

when going from translates of C to their Hilbert

space limits in H (C).
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2. Kriging

The variance of BLUP (Kriging) prediction at some

target point x is the square of the Power Function,

and the latter is the kernel conditioned to the data

locations. So far, this is only point-dependent, not

data-dependent. The Kriging functions, when ex-

tended to all x, using data of some f at the nodes,

coincide with deterministic interpolation. Yet, the

assumption that ground truth means that data come

from a function in the native space is a question-

able addition. The "escape scenario" (Karvonen,

2023) results of Numerical Analysis show that if

data come from a function in a larger Sobolev

space, the Kriging solution is still convergent to

the data function, albeit in the weaker Sobolev

norm (Narcowich et al., 2005, 2006). This is often

called “misspecification” (Stein, 1999), because the

C model is different from the f model. For a finite

number of observations, the Kriging solution has

the smoothness of C-translates. It is roughly twice

the H (C) smoothness, as pointed out above.

3. Paths of Random Fields

Here, there is no given function f and no given

values at points. Using, e.g., the Cholesky decom-

position of the kernel matrix and a partial sum of

(3), one can generate n random data values at each

point x of the domain. By (22), the variance for

random selection of a new value will get smaller

when increasing n. After n steps, one has n ran-

dom data values that will be the final path val-

ues. If these values are taken as “ground truth”

like Interpolation or Kriging, they have a Kriging

interpolant that lies in the native space and even

has the excess smoothness of kernel translates. But

there is no f that supplied them, and the “noise-

generating” process of adding new random sample

values, though using smaller variances from step to

step, induces more smoothness loss than the deter-

ministic loss described above. It is exactly this ad-

ditional smoothness loss by randomness that forms

the “gap” described by Theorem 10.

4. Summarizing, it can be seen as a miracle that the

randomness of the new samples is limited by C in

such a way (namely by (22)) that one safely arrives

in larger Sobolev spaces instead of at what Numer-

ical Analysts would call noise, i.e. a function with

hardly any regularity. Yet, the exact Sobolev limit

space cannot be reached, by Theorem 10.

8. DISCUSSION AND OPEN PROBLEMS

This section serves both as a rejoinder as well as an

introduction to open problems. We sketch them below.

• Turning the standard approach to paths upside

down avoids all problems with joint probability

spaces on infinite sets, and it is closer to Nature

because it goes from global to local.

• We consider the approach proposed in this paper

more transparent with respect to earlier literature:

the random variables RC(x) defined via C are just

the values of the paths at points x. This is possible

because paths are defined before random variables

are defined.

• It simplifies the analysis of paths by the explicit

form (3) and the detour via the Hilbert space

H (C).
• Since the bottom-up path construction in the Gaus-

sian case is a special case, nothing is lost in that

case.

• There is a substantial novelty in that now other

choices for introducing randomness after picking a

covariance kernel are possible.

• The standard sampling algorithms based on infinite

dense point sets are fast if C is smooth, because

the residual variance CN+1(x,x) from (15) decays

quickly, leading to a fast convergence in L2(Ω) of

partial sums (3) of paths. These are in the native

space, i.e. somewhat too smooth, unless a kernel

for a larger native space is used.

Therefore the literature has various techniques with

better numerical complexity for low smoothness,

A widely used method based on (Lindgren et al.,

2011) uses weak solutions of stochastic differ-

ential equations. Another strategy, starting from

Vecchia (1988) exploits that inverses of kernel ma-

trices have good approximations by sparse matri-

ces. These techniques calculate approximations to

paths, but not paths themselves, and it should be

checked if our approach to paths makes the error

analysis easier.

• It needs further work to study the statistical dif-

ferences of path calculations with different univari-

ate probability distributions R. Similarly, the afore-

mentioned methods for calculating path approxi-

mations should be compared.

• Since this paper proceeds via the Hilbert space

H (C), an extension to the vector-valued case

should be possible using the approach to paths used

here.
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