
Radial Basis Functions

Viewed From Cubic Splines

Robert Schaback

Abstract. In the context of radial basis function interpolation, the construc-

tion of native spaces and the techniques for proving error bounds deserve some

further clari�cation and improvement. This can be described by applying the

general theory to the special case of cubic splines. It shows the prevailing gaps

in the general theory and yields a simple approach to local error bounds for

cubic spline interpolation.

1. Optimal Recovery

The theoretical starting point for both cubic splines and radial basis functions

is provided by optimal recovery of functions f from scattered data in a set X =

fx

1

; x

2

; : : : ; x

M

g of centers or knots. The functions must be in some space F of real{

valued functions on some domain 
 � IR

d

containing X = fx

1

; x

2

; : : : ; x

M

g. The

space carries a semi{inner product (:; :)

F

that has a �nite{dimensional nullspace

P � F such that F=P is a Hilbert space. Once the space F and its semi{inner

product (:; :)

F

are �xed, the recovery problem consists in �nding a function s 2 F

that minimizes jsj

2

F

= (s; s)

F

under the constraints s(x

j

) = f(x

j

); 1 � j � M .

For cubic splines, the space F is known beforehand as Sobolev space

F =W

2

2

[a; b] =

n

f : f

00

2 L

2

[a; b]

o

; (f; g)

F

= (f

00

; g

00

)

L

2

[a;b]

(1)

while the case of radial basis functions usually requires a fairly abstract construc-

tion of the space F from some given radial basis function � (see e.g.: [5,6,9] for

details). We shall mainly consider the special function �(x) = jxj

3

on IR

1

here and

show how this construction works to recover the theory of natural cubic splines.

We note in passing that it is possible (see [8] for a simple presentation) to go

the other way round, i.e.: to construct � from F , but this is not the standard

procedure.
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2. Native Spaces

The radial basis function setting starts out with the space IP

d

m

of d-variate m-th

order polynomials, a subset 
 of IR

d

, and de�nes the linear space (IP

d

m

)

?




of all

linear functionals

f 7! �

X;M;�

(f) :=

M

X

j=1

�

j

f(x

j

)

that vanish on IP

d

m

and are �nitely supported in 
 � IR

d

. The functionals �

X;M;�

depend each on a �nite support set X = fx

1

; x

2

; : : : ; x

M

g � 
 and a vector

� 2 IR

M

, where M is unrestricted, but where � and X are subject to the condition

�

X;M;�

(IP

d

m

) = f0g. We shall write �

x

f(x) to indicate the action of a functional �

with respect to the variable x on a function f .

De�nition 1. An even continuous function � on IR

d

is conditionally positive

de�nite of order m on 
 � IR

d

, i� the symmetric bilinear form

(�; �)

�

:= �

x

�

y

�(x� y) (2)

is positive de�nite on (IP

d

m

)

?




.

De�nition 2. With

s

�

:= �

y

�(� � y) (3)

the native space associated to the conditionally positive de�nite function � of order

m on IR

d

is

F := IP

d

m

+ clos

(�;�)

�

n

s

�

: � 2 (IP

d

m

)

?




o

(4)

The above de�nition of the native space involves an abstract closure with

respect to a somewhat unusual inner product. At this point it is not even clear

that it consists of well{de�ned functions on 
 or IR

d

(see [9] for a discussion).

Altogether, it is a major problem to characterize the native space as a space of

functions with one of the usual di�erentiability properties. This seems to be the

major obstacle for understanding the theory of radial basis functions.

Though quite abstractly de�ned, the native space carries a useful Hilbert

space structure that is induced via continuity arguments by

(s

�

; s

�

)

�

:= (�; �)

�

= �(s

�

) = �(s

�

);

which is an inner product on the second summand of F . There are several ways

to de�ne an inner product on all of F , but for most purposes it su�ces to extend

the above bilinear form to F by setting it to zero on IP

d

m

, and to work in the

Hilbert space F=IP

d

m

instead of F . The Hilbert space structure is the major tool

for analysis of the native space.

These things will be somewhat more transparent if we specialize to the cubic

spline case. Here we have d = 1; �(x) = jxj

3

and we will see soon that � is

conditionally positive de�nite of order 2 on IR, which is not immediately clear. We

�rst connect the two bilinear forms in
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Theorem 3. For �(x) = jxj

3

; d = 1; 
 = [a; b] � IR; and m = 2 we have

(�; �)

�

= (s

�

; s

�

)

�

=

1

12

(s

00

�

; s

00

�

)

L

2

[a;b]

for all �; � 2 (IP

d

m

)

?




.

Proof: We can assume X = fx

1

; x

2

; : : : ; x

M

g � 
 = [a; b] � IR to be ordered as

a � x

1

< x

2

< : : : < x

M

� b: For any �

X;M;�

2 (IP

d

m

)

?




we have

s

�

X;M;�

(x) =

M

X

j=1

�

j

jx� x

j

j

3

due to (3), and with jxj

3

= 2x

3

+

� x

3

we �nd

s

�

X;M;�

(x) = 2

M

X

j=1

�

j

(x� x

j

)

3

+

+

M

X

j=1

�

j

(x

3

j

� 3xx

2

j

) + 0

because �

X;M;�

annihilates linear polynomials. Then

s

00

�

X;M;�

(x) = 12

M

X

j=1

�

j

(x� x

j

)

1

+

(5)

is a piecewise linear function. Its support lies in [x

1

; x

M

], again because �

X;M;�

annihilates linear polynomials. If two functionals

�

X;M;�

(f) =

M

X

j=1

�

j

f(x

j

); �

Y;N;�

(f) =

N

X

k=1

�

k

f(y

k

)

from (IP

d

m

)

?




are given, then

(�

X;M;�

; �

Y;N;�

)

�

=

M

X

j=1

N

X

k=1

�

j

�

k

jx

j

� y

k

j

3

(6)

by (2), and we want to compare this to

(s

00

�

X;M;�

(x); s

00

�

Y;N;�

(x))

L

2

(IR)

:=

Z

1

�1

s

00

�

X;M;�

(x)s

00

�

Y;N;�

(x)dx:

=

Z

b

a

s

00

�

X;M;�

(x)s

00

�

Y;N;�

(x)dx:
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Using x

1

+

= (�x)

1

+

+ x we rewrite s

00

�

X;M;�

as

s

00

�

X;M;�

(x) = 12

M

X

j=1

�

j

(x

j

� x)

1

+

+ 12

M

X

j=1

�

j

(x� x

j

)

= 12

M

X

j=1

�

j

(x

j

� x)

1

+

:

with a remarkable swap of x with x

j

when compared to (5). We now use Taylor's

formula

f(x) = f(a) + (x� a)f

0

(a) +

Z

b

a

f

00

(u)(x� u)

1

+

du

for functions f 2 C

2

[a; b] and a � x � b. Fixing y 2 [a; b], we insert f

y

(x) :=

(y � x)

3

+

=3! and get

(y � x)

3

+

3!

=

(y � a)

3

3!

� (x� a)

(y � a)

2

2!

+

Z

b

a

(y � u)

1

+

(x� u)

1

+

du

=

1

2 � 3!

(jy � xj

3

+ (y � x)

3

):

To the two right{hand sides of this identity we now apply functionals �

X;M;�

and

�

Y;N;�

. This yields

M

X

j=1

N

X

k=1

�

j

�

k

jx

j

� y

k

j

3

+

M

X

j=1

N

X

k=1

�

j

�

k

(y

k

� x

j

)

3

=

M

X

j=1

N

X

k=1

�

j

�

k

jx

j

� y

k

j

3

+ 0

= 2

M

X

j=1

N

X

k=1

�

j

�

k

(y

k

� a)

3

� 6

M

X

j=1

N

X

k=1

�

j

�

k

(x

j

� a)(y

k

� a)

2

+ 12

M

X

j=1

N

X

k=1

�

j

�

k

Z

b

a

(y

k

� u)

1

+

(x

j

� u)

1

+

du

= 0� 0 + 12

Z

b

a

M

X

j=1

�

j

(x

j

� u)

1

+

N

X

k=1

�

k

(y

k

� u)

1

+

du

=

1

12

�

s

00

�

X;M;�

; s

00

�

Y;N;�

�

L

2

(IR)

;

where the functions s

00

�

X;M;�

and s

00

�

Y;N;�

are supported in [x

1

; x

M

] and [y

1

; y

M

],

respectively, such that the L

2

integral can be restricted to [a; b].
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Corollary 4. The function �(x) := jxj

3

is conditionally positive de�nite of order

2 on IR.

Proof: Theorem 3 yields that the quadratic form (2) is positive semide�nite for

�(x) = jxj

3

. If k�

X;M;�

k

�

vanishes, then s

00

�

X;M;�

= 0 holds, and the representation

(5) as a piecewise linear function implies that all coe�cients �

j

must vanish.

Theorem 5. The spaces F of (1) and (4) coincide for �(x) = jxj

3

.

Proof: By standard arguments, taking the L

2

closure of the space of piecewise

linear continuous functions.

We have cut the above proof short because we want to illustrate the use of

the abstract space

G




= ff : 
! IR : j�(f)j � C

f

k�k

�

for all � 2 (IP

d

m

)

?




g (7)

that occurs in the fundamental papers of Madych and Nelson [5,6] and provides

another possibility to de�ne a native space for �.

Theorem 6. The spaces F of (1) and (4) coincide with G

[a;b]

of (7) for�(x) = jxj

3

.

Proof: We shall be somewhat more explicit this time, and start with

Lemma 7. We have the inclusion W

2

2

[a; b] � G

[a;b]

:

Proof: Generalizing Taylor's formula for f 2W

2

2

[a; b], we �nd the identity

�

X;M;�

(f) =

M

X

j=1

�

j

f(x

j

) = 0 +

Z

b

a

f

00

(u)

M

X

j=1

�

j

(x

j

� u)

1

+

du

=

1

12

(f

00

; s

00

�

X;M;�

)

L

2

[a;b]

�

1

12

kf

00

k

L

2

[a;b]

� ks

00

�

X;M;�

k

L

2

[a;b]

�

1

p

12

kf

00

k

L

2

[a;b]

� k�

X;M;�

k

�

:

for all �

X;M;�

2 (IP

d

m

)

?




.

Lemma 8. The other inclusion is G

[a;b]

�W

2

2

[a; b]:

Proof: De�ne the subspace F

0

:= fs

00

�

: � 2 (IP

d

m

)

?




g of L

2

[a; b]. It carries an inner

product (s

00

�

; s

00

�

)

L

2

[a;b]

= 12(�; �)

�

constructed from the inner product (�; �)

�

, and

we de�ne F := F

0

to be the L

2

closure of F

0

with respect to (�; �)

L

2

[a;b]

. Any

g 2 G

[a;b]

de�nes a linear functional on F

0

by

s

00

�

7! �(g); � 2 (IP

d

m

)

?




:
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Here, we used that the map � 7! s

00

�

is one{to{one. The above functional is continu-

ous on F

0

by de�nition of G

[a;b]

. Thus there is some h

g

2 F

[a;b]

= F

0

� L

2

[a; b] such

that �(g) = (h

00

g

; s

00

�

)

L

2

[a;b]

for all � 2 (IP

d

m

)

?




, and we can assume h

g

2 W

2

2

[a; b]

because we can start with h

00

g

= f

g

2 L

2

[a; b] and do integration. Now Taylor's

formula for h

g

yields

�(h

g

) = 0 +

1

12

(h

00

g

; s

00

�

)

L

2

[a;b]

= �(g)

for all � 2 (IP

d

m

)

?




. By considering a �xed IP

d

m

{unisolvent set X = fx

1

; x

2

; : : : ; x

M

g

and functionals supported on fx; x

1

; : : : ; x

M

g de�ned by interpolation in Lagrange

form

�(p) := p(x)�

M

X

j=1

u

j

(x)p(x

j

) = 0 for all p 2 IP

d

m

;

we can form the interpolating polynomial

p

g

(x) :=

M

X

j=1

u

j

(x)(g � h

g

)(x

j

)

to g � h

g

and use �(g � h

g

) = 0 to see that g = h

g

+ p

g

holds.

Thus we have proven G

[a;b]

= W

2

2

[a; b] in detail. A full proof of Theorem 5 can

be given by similar techniques. Furthermore, the abstractly de�ned spaces G

[a;b]

and F can be proven to coincide using abstract Hilbert space arguments.

This �nishes the proof of Theorem 6, and we can reconstruct functions from

G

[a;b]

= W

2

2

[a; b] from data at locations a � x

1

< x

2

< : : : < x

M

� b uniquely by

cubic splines of the form

s(x) =

M

X

j=1

�

j

jx� x

j

j

3

+

1

X

k=0

�

k

x

k

(8)

under the two additional conditions

M

X

j=1

�

j

x

k

j

= 0; k = 0; 1: (9)

The representation (5) shows that these conditions imply linearity of s outside of

[x

1

; x

M

]. Thus the solution is a natural cubic spline, de�ned on all of IR.
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3. Working Equations

Note that the standard approach of radial basis functions cannot use the piecewise

polynomial structure of the underlying basis function. Thus it has to start with

the linear system

0

B

B

B

B

B

B

@

0 jx

1

� x

2

j

3

: : : jx

1

� x

M

j

3

1 x

1

jx

2

� x

1

j

3

0 : : : jx

2

� x

M

j

3

1 x

2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

jx

M

� x

1

j

3

jx

M

� x

2

j

3

: : : 0 1 x

M

1 1 : : : 1 0 0

x

1

x

2

: : : x

M

0 0

1

C

C

C

C

C

C

A

0

B

B

B

B

B

B

@

�

1

�

2

.

.

.

�

M

�

0

�

1

1

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

@

f(x

1

)

f(x

2

)

.

.

.

f(x

M

)

0

0

1

C

C

C

C

C

C

A

when interpolating a function f inX = fx

1

; x

2

; : : : ; x

M

g by a function represented

as in (8) with the conditions (9). This is a non-sparse system with entries increas-

ing when moving away from the diagonal. The usual systems for cubic splines,

however, are tridiagonal and diagonally dominant, allowing a solution at O(M )

computational cost. By going over to a new basis of second divided di�erences of

j : j

3

, and by taking second divided di�erences of the above equations, one can bring

them down to tridiagonal form. This was already pointed out in the early paper

[7]. In modern terminology this is a preconditioning process, and it was thoroughly

investigated for general radial basis functions by Jetter and St�ockler [3].

4. Power Functions

We now want to explain the technique of error analysis for radial basis functions in

terms of cubic splines; the results will yield explicit local error bounds that seem

to be new.

De�nition 9. For any general quasi{interpolant of the form

s

u;f

(x) :=

M

X

j=1

u

j

(x)f(x

j

) (10)

reproducing IP

d

m

the power function

P

u

(x) := sup

jf j

�

6=0

jf(x)� s

u;f

(x)j

jf j

�

:

is the pointwise norm of the error functional in (IP

d

m

)

?




.

Introducing the Lagrange formulation

s

u

�

;f

(x) :=

M

X

j=1

u

�

j

(x)f(x

j

)

of the radial basis function interpolant on X = fx

1

; x

2

; : : : ; x

M

g to some function

f , we have u

�

j

(x

k

) = �

jk

; 1 � j; k � M by interpolation, but the functions u

j

in (10) need not satisfy these conditions. The crucial fact for error analysis is the

optimality principle
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Theorem 10. [5,11] For all x, the power function for radial basis function inter-

polation minimizes

P

u

�

(x) = inf

u

P

u

(x);

where all quasi{interpolants (10) are admitted, provided that they reproduce IP

d

m

.

This allows to insert piecewise polynomial quasi{interpolation processes in

order to get explicit error bounds. It is a major problem to do this for scattered

multivariate data. If we consider the univariate cubic spline case, things are much

easier. We have to assume reproduction of linear polynomials and can apply Tay-

lor's formula to the error:

f(x) � s

u;f

(x) = f(x) �

M

X

j=1

u

j

(x)f(x

j

)

=

Z

b

a

f

00

(t)

0

@

(x� t)

1

+

�

M

X

j=1

u

j

(x)(x

j

� t)

1

+

1

A

dt

� kf

00

k

L

2

[a;b]

k(x� �)

1

+

�

M

X

j=1

u

j

(x)(x

j

� �)

1

+

k

L

2

[a;b]

:

Since the Cauchy{Schwarz inequality is sharp, we have

P

u

(x)

2

= k(x� �)

1

+

�

M

X

j=1

u

j

(x)(x

j

� �)

1

+

k

2

L

2

[a;b]

=

Z

b

a

0

@

(x� t)

1

+

�

M

X

j=1

u

j

(x)(x

j

� t)

1

+

1

A

2

dt

as an explicit representation of any upper bound of the power function. We now

�x an index k such that x 2 [x

k�1

; x

k

] and use the piecewise linear interpolant

de�ned by

u

k�1

(x) =

x

k

� x

x

k

� x

k�1

u

k

(x) =

x� x

k�1

x

k

� x

k�1

u

j

(x) = 0; j 6= k; j 6= k � 1:

This simpli�es the integral to

P

u

(x)

2

=

Z

x

k

x

k�1

�

(x� t)

1

+

�

(x

k

� x)(x

k�1

� t)

1

+

+ (x� x

k�1

)(x

k

� t)

1

+

x

k

� x

k�1

�

2

dt;
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because the integrand vanishes outside [x

k�1

; x

k

]. Furthermore, the bracketed

function is a piecewise linear B{spline with knots x

k�1

; x; x

k

and absolute value

(x� x

k�1

)(x

k

� x)=(x

k

� x

k�1

) at t = x. This su�ces to evaluate the integral as

P

2

u

(x) =

1

3

(x

k

� x)

3

�

x� x

k�1

x

k

� x

k�1

�

2

+

1

3

(x� x

k�1

)

3

�

x

k

� x

x

k

� x

k�1

�

2

;

P

u

(x) =

1

p

3

(x

k

� x)(x� x

k�1

)

p

x

k

� x

k�1

to get

Theorem 11. The natural cubic spline s

f

interpolating a function f with f

00

2 L

2

has the local error bound

jf(x) � s

f

(x)j �

1

p

3

(x

k

� x)(x� x

k�1

)

p

x

k

� x

k�1

kf

00

k

L

2

[x

k�1

;x

k

]

(11)

for all x between two adjacent knots x

k�1

< x

k

.

If we de�ne the local meshwidth h

k

:= x

k

�x

k�1

, we thus get local convergence

of order 3=2 by

jf(x) � s

f

(x)j �

h

3=2

k

4

p

3

kf

00

k

L

2

[x

k�1

;x

k

]

;

and 3/2 is known to be the optimal approximation order for functions with smooth-

ness at most of the type f

00

2 L

2

. Taking the Chebyshev norm of f

00

instead of

the L

2

norm we similarly get

jf(x) � s

f

(x)j �

1

2

(x

k

� x)(x� x

k�1

)kf

00

k

L

1

[x

k�1

;x

k

]

proving that natural cubic splines satisfy the standard error bound for piecewise

linear interpolation.

Note that these bounds have the advantage to be local and of optimal order,

but the disadvantage to be no better than those for piecewise linear interpolation.

This is due to their derivation via local linear interpolation. To improve the bounds

one must add more regularity to the function f , and this is the topic of the next

section. Piecewise linear interpolation is optimal in its native space of functions f

with f

0

2 L

2

and has optimal order 1/2 there, but at the same time it is used to

provide bounds of the optimal order 3/2 for cubic spline interpolation of functions

with f

00

2 L

2

[a; b], forming the native space of cubic splines.

5. Improved Error Bounds

For interpolation of su�ciently smooth functions by cubic splines, the following

facts about improved approximation orders in the L

1

norm are well{known [1]:
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a) The approximation order can reach four, but

b) order four is a saturation order in the sense that any higher order can only

occur for the trivial case of f 2 IP

1

4

.

c) For orders greater than 2 on all of [a; b] one needs additional boundary con-

ditions. These can be imposed in several ways:

c1) Conditions that force f to be linear outside of [a; b] while keeping splines

natural (i.e.: with linearity outside of [a; b]), or

c2) additional interpolation conditions for derivatives at the boundary, or

c3) periodicity requirements for both f and the interpolant.

d) General Hilbert space techniques including boundary conditions lead to orders

up to 7=2 for functions with f

(4)

2 L

2

, but

e) techniques for order four (as known so far) require additional stability ar-

guments (diagonal dominance of the interpolation matrix or bounds on el-

ements of the inverse matrix providing exponential o�-diagonal decay) and

need f 2 C

4

[a; b].

In this area the theory of radial basis functions still lags behind the theory of

cubic splines, as far as interpolation of �nitely may scattered data on a compact

set is concerned (see [2] for better results in case of data on in�nite grids). In

particular, when specializing to cubic splines,

a) current convergence orders reach only 7=2 at most, and

b) there is no saturation result at all.

c) For orders greater than 2 on all of [a; b] one needs additional boundary con-

ditions which still deserve clari�cation in the general setting.

d) There is no proper theory for C

k

functions.

Let us look at these problems from the classical cubic spline point of view.

There, the standard technique [1] uses the orthogonality relation following from

the minimum{norm property and applies integration by parts for functions with

f

(4)

2 L

2

[a; b]. This yields

kf

00

� s

00

f

k

2

2

= (f

00

� s

00

f

; f

00

� s

00

f

)

2

= (f

00

� s

00

f

; f

00

)

2

= (f � s

f

; f

(4)

)

2

+ f

00

� (f

0

� s

0

f

)j

b

a

and now it is clear that the various possibilities of imposing additional boundary

conditions are just boiling down to the condition f

00

� (f

0

� s

0

f

)j

b

a

= 0 that we

assume from now on. Then by Cauchy-Schwarz

kf

00

� s

00

f

k

2

2

� kf � s

f

k

2

kf

(4)

k

2
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and one has to evaluate the L

2

norm of the error. This is done by summing up the

bound provided by Theorem 11 in a proper way:

kf � s

f

k

2

2

�

M

X

k=2

kf

00

k

2

L

2

[x

k�1

;x

k

]

3(x

k

� x

k�1

)

Z

x

k

x

k�1

(x

k

� x)

2

(x� x

k�1

)

2

dx

�

M

X

k=2

kf

00

k

2

L

2

[x

k�1

;x

k

]

3h

k

h

5

k

30

�

h

4

90

kf

00

k

2

L

2

[x

1

;x

M

]

with

h := max

2�k�M

h

k

= max

2�k�M

(x

k

� x

k�1

):

This step used that the right{hand side of (11) has a localized norm, and this fact is

missing in general radial basis function cases. The technique works for norms that

can be localized properly, and this was clearly pointed out in the recent paper [4].

In particular, it works for spaces that are norm{equivalent to Sobolev spaces, and

this covers the case of Wendland's compactly supported unconditionally positive

de�nite functions [10].

Using s

f�s

f

= 0; one can replace kf

00

k

2

by kf

00

� s

00

f

k

2

in the right{hand side

and combine the above inequalities into

kf

00

� s

00

f

k

2

2

�

h

2

p

90

kf

00

� s

00

f

k

2

kf

(4)

k

2

kf

00

� s

00

f

k

2

�

h

2

p

90

kf

(4)

k

2

kf � s

f

k

2

�

h

4

90

kf

(4)

k

2

kf � s

f

k

1

�

h

7=2

12

p

30

kf

(4)

k

2

:

This is how far we can get by Hilbert space techniques for cubic splines.

To see the problems occurring for general radial basis functions, we try to

repeat the above argument, starting from the necessary and su�cient variational

equation

(s

f

; v)

�

= 0 for all v 2 F ; v(X) = f0g (12)

for any minimum{norm interpolant s

f

based on data in X = fx

1

; x

2

; : : : ; x

M

g.

We want to apply this to v := f � s

f

and use integration by parts in some way or

other. In view of Theorem 3 it is reasonable to impose the condition

(f; g)

�

= (Lf; Lg)

2

for all f; g 2 F
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with a linear operator L that maps F into some L

2

space, which we would prefer

to be L

2

(
), not L

2

(IR

d

). But both the de�nition of L and the \localization" of the

space are by no means trivial, since section 2 made use of very special properties

of � that are not available in general. Looking back at cubic splines, we see that

the variational equation (12) in its special form

(s

00

f

; v

00

)

L

2

(IR)

= 0 for all v

00

2 L

2

(IR

d

); v(x

j

) = 0

contains a lot of information:

1) the function s

f

must be a cubic polynomial in all real intervals containing no

knot (i.e. also in (�1; x

1

) and (x

M

;1)), and

2) because of v

00

2 L

2

(IR

d

), the outer cubic pieces must be linear.

This follows from standard arguments in the calculus of variations, but it does

not easily generalize, because the general form (12) of the variational equation does

not admit the same analytic tools as in the cubic case.

If (generalized) direct and inverse Fourier transforms are properly introduced,

the radial basis function literature [6,9,11] uses the operator

Lf :=

�

f

^

p

�

^

�

_

that (up to a constant factor) is a second derivative operator in the cubic case,

as expected. This is due to the fact that �

^

= k : k

�4

2

for � = k : k

3

2

in one di-

mension, and up to a constant factor. Unconditionally positive de�nite smooth

functions � like Gaussians �(x) = exp(�kxk

2

2

) or Wendland's function �(x) =

(1 � kxk

2

)

4

+

(1 + 4kxk

2

) have classical Fourier transforms with proper decay at

in�nity, and then the above operator L is well{de�ned even without resorting to

generalized Fourier transforms. However, it does not represent a classical di�er-

ential operator, but rather an awkward pseudodi�erential operator, making the

analysis of the variational equation (12) and the corresponding boundary condi-

tions a hard task. It would be nice to conclude from (12) that a weak boundary

condition of the form

L

�

Ls

f

= 0 outside of 


holds, or even a strong boundary condition

Ls

f

= 0 outside of 


as in the cubic spline case, where L

�

is the L

2

adjoint of L. So far, the proper

characterization of necessary boundary conditions following from (12) seems to

be an open question whose answer would improve our understanding of the error

behavior of radial basis functions considerably.

The paper [9] avoids these problems by simply assuming that the function f

satis�es the conditions

L

�

Lf :=

f

^

�

^

2 L

2

(IR

d

); suppL

�

Lf = supp (

f

^

�

^

) � 
 � IR

d

:
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This allows to mimic part of the cubic spline argument in the form

jf � s

f

j

2

�

= (f � s

f

; f � s

f

)

�

= (f � s

f

; f)

�

= (L(f � s

f

); Lf)

L

2

(IR

d

)

= (f � s

f

; L

�

Lf)

L

2

(IR

d

)

= (f � s

f

; L

�

Lf)

L

2

(
)

� kf � s

f

k

L

2

(
)

kL

�

Lfk

L

2

(
)

;

and we are left with the summation argument to form the L

2

norm of the error

over 
. But in general we cannot use the localization property of the right{hand

side of (11), since we are stuck with

jf(x)� s

f

(x)j � P (x)jf � s

f

j

�

for all x 2 
. This only yields

kf � s

f

k

L

2

(
)

� kPk

L

2

(
)

jf � s

f

j

�

and is o� by a factor

p

h if written down in the cubic spline setting, ignoring the

additional information. Still, this technique allows to prove error bounds of the

form

jf(x)� s

f

(x)j � P (x)kPk

L

2

(
)

kL

�

Lfk

L

2

(
)

kf � s

f

k

L

2

(
)

� kPk

2

L

2

(
)

kL

�

Lfk

L

2

(
)

that roughly double the previously available orders, but still are o� from the opti-

mal orders in the cubic case by 1=2 or 1, respectively, because P , being optimally

bounded as in (11), has only O(h

3=2

) behavior. It it reasonable to conjecture that

the above inequalities are o� from optimality by orders d=2 and d in a d-variate

setting, respectively. We hope that this presentation helps to clarify the arising

problems and to encourage further research in this direction.

Acknowledgements. Help in proofreading was provided by H. Wendland.
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