Remarks on High Accuracy Geometric Hermite Interpolation

Robert Schaback

Abstract. In a recent paper deBoor, Hollig, and Sabin proposed a method for local sixth—
order interpolation of convex planar curves by geometrically C? piecewise cubic curves,
using positional, directional, and curvature data at breakpoints. This note extends their
results to curves with simple zeros of curvature and gives some hints to stabilize the
numerical construction.
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1 Hermite Interpolation

This paper follows the work [1] of deBoor, Héllig, and Sabin concerning Hermite interpo-
lation of smooth curves f : IR — IR?. Their piecewise cubic geometrically C? interpolants
use positional, directional, and curvature data. They are approximations of order O(h°)
with respect to the maximum distance h of two adjoining interpolation points, provided
that the curvature sy of f does not vanish. The approximation order can drop to four in
presence of double zeros of curvature, as is shown in [1] by an example.

However, numerical experience strongly suggests that the approximation order still is six
when simple zeros of curvature are allowed, provided that the numerical solution of the
problem is carried out with some care. More precisely,

Theorem 1.1 Let f be a smooth planar curve, parametrized by arclength around a point
f(0) where the curvature k¢ of f has a simple zero. Then there is a neighborhood of zero
in which Hermite interpolation with piecewise cubics in the sense of deBoor, Hollig, and
Sabin [1] has a solution with approzimation order six for sufficiently dense data.

Proof: Following [1] the angle 8(h) between tangents at f(0) and f(h) can be written as

0(h) =Y 0:;h' + O(h°). (1)

=1
Then the curvature of f at fis xy(h) = 0'(h), and k(0) = 01, £;(0) = 20;. Now assume
the data f(—h), f(h), f'(=h), f'(h), kf(—=h), &s(h) to be given. A cubic polynomi-

al in Bernstein—Bézier form is constructed, whose control points are f(—h), f(—h)+
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So(R)f'(=h), f(h)—=061(R)f'(R), f(h), and where positive scalars do(h) and 61(h) have to
be found such that the given curvature values ks(—h) and k¢(h) are attained. With the
same notation as in [1], but explicitly stating the symmetry with respect to the substitu-
tion h — —h, the data

a(h) = f(h) = f(=h) = —a(=h)
do(h) = ['(=h) = di(—Ph) di(h) = f'(h) = do(—h)
c(h) = do(h)x di(h) = —c(—h) (2)
co(h) = do(h) x a(h) = ci(—h) ci(h) = a(h) x di(h) = co(—h)
wolh) = mp(—h)=ma(—h)  m(h) = ws(h) = o).
are calculated, where the cross—product is defined by (g, uy) X (Vz,vy) 1= Ugvy — UyV,.
Then the unknowns é6g and 6; have to satisfy the system
0 =c(h)bo(h) — ci(h) + 2r1(h)61(h)? (3)
0 = c(h)ér(h) — co(h) + Fro(h)éo(h)?,

which may have up to four solutions in general. The paper [1] of deBoor, Hdllig, and
Sabin handles all positive solutions, while here a specific solution branch as a function of
h is selected.

Because of the symmetry of the problem all solutions should have rotational symmetry
do(—h) = —é1(h) (4)

around zero. Thus there is a single functional equation of the form
3
F(&l, h) = —C(h)51(—h) — Cl(h) + §Kl(h)51(h)2 =0 (5)

for the function 61(h) around h = 0. To investigate this equation, a good approximate
solution of the special form

-~ 2
51(h) — gh —|— d2h2 —|— d3h3 (6)

is constructed to satisfy (5) up to terms of order six in h. The expansion (6) is motivated
by a result of [1]: there are up to three positive solutions of (3) of the form é;(h) =
2h/3 + (—1)%(/1)/12 + (’)(hS) with bounded €(h) if k; does not vanish.

Using REDUCE (up to terms of order ten, for safety) equation (6) is put into (5) to get

o~

F(&l, h) == h4C4 + h505 + O(h6),
leading to

Cq 1= —(4 0%-27 Gld% — 72 01d3—72 (92d2 — 24 03)/18 =0
(20 63dy + 12 02 0 + 45 0, dyds+ (7)

Cg .
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These equations are now solved for ds, d3. In case 6 # 0 it is convenient to solve ¢4 = 0
for d3 and ¢; = 0 for dy. However, in the situation of this paper it is reasonable to solve
first for ds from ¢5 = 0, because in the case §; = 0 # 6, the equation ¢4 = 0 completely
determines d,. This leads to

ds = —(20 03y + 12 02 0, + 45 052 + 60 Osdy + 16 04)(15(3 Oydy + 4 65))™"
ca = —(540 04dy + 368 03 05 — 405 62d3 — 540 0y Ood% + 10830 6y O5dy+ (8)
384 0y 04 — 1440 02dy — 480 0, 05)(90(3 O1dy + 4 6))

with denominators that will not vanish when 6; &~ 0 # 65, and provided that there finally
is a bounded solution d; of ¢4 = 0. The numerator of ¢4 now is a cubic polynomial in d,,
and essentially the same polynomial results if ¢4 = 0 is solved for ds first, inserting the
result into ¢5 = 0. Of this cubic equation REDUCE gives three roots ry, ry, and r3, where
r3 does not explicitly contain ¢ = v/—1. The roots are complicated fractions containing
square roots and involving 6y, ...,68,. A simplified description is

z = —2025012 — 121500905 + 140760502 + 345605050, — 243000502
FA536005 0205 — 248800202 + 51840262 — 25920030,050, — 162000363
+1536002030, + 86400020202 — 984000, 0405 + 3360005

2y = 3 \/71 4 12040, + 216020, — 5400 0205 + 32003

Z3 1= 25/3

24 1= 23

zs = 5230 4+ 18 - 0,05 — 20 - 62)

26:= 953250,

2= 4513250,

ryi= (—za(1 4+ Z\/?;) + z5(1 — Z\/?;) — z7)/ 26
ry = (—z4(1 —i\/?;)—|—25(1—|—i\/§) — z7)/ 26
rs = (2z4 —2z5 — z7)/z6.

Now the behaviour of r3 in case §; &~ 0 # 65 is studied. The denominator of r3 has the
form

180105(5(15v/21 + 40))Y/° + O(0?)

for #; — 0, and the numerator has the value
8 02((15v/21 +40)%/% — (1521 + 40)'/351/3 — 55/3)

at 81 = 0, as calculated by REDUCE. This result is disappointing, because it suggests a
singularity of r3 at §; = 0. However, the complicated numerical factor in the numerator
can be shown to be zero, since the solution x = (51/3(1 + \/2_1))/2 of 22 — 533 = 55/3
satisfies 2% = 15v/21 + 40.

Taking derivatives with REDUCE, the rule of de I’'Hospital yields

10
rs = —gé —|— 0(01)

for 6; — 0. If the root r3 is chosen to define dy and if ds is calculated from (8), there is
a bounded solution of ¢4 = ¢5 = 0 with respect to §; — 0, if 8, # 0.
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The construction up to here yields F((g\l, k) = O(h®) for small h. To compare this approx-
imate solution with an exact solution, the system (3) is rescaled as

= c(h)eg(h)h™ — ¢y (R)R™2 + %/il(h)él(h)z ()
= c(h)er(h)h™ — co(h)h™2 + §/€0(h)60(h)2.
)

in new unknowns ¢;(h) := 6;(h)/h for : = 0, 1. If this system is written as
Tn(co(h),e1(h)) =0, Ty : IR* — IR?,
the approximate solution satisfies

Ti(=81(=h)/h, ba(h) [ ) = O(1").
The derivative T} of T}, is uniformly Lipschitz continous for ~ — 0. Using REDUCE
again, one gets the determinant as

det T} = 16h*(05 + O(61)) + O(h*)
and ||(77)7Y| < O(h™?) for 6 =~ 0 # 6, and h — 0.

Now a Newton—Kantorovitch—type theorem (see e.g. [3], p. 421) yields the existence of
an exact solution €y(h), €1(h) of the system (9) satisfying the inequality

[ei(h) — &i(h)/h] < O(R?), i =0, 15 do(h) 1= —é1(—h),
when h is sufficiently small. This means there is a solution of the form
8i(h) = &i(h) + O(h%), i =0, 1
to the system (3). The rest follows as in [1]. =

Remark : The proof in [1] for the case 6; # 0 allowed all of the three possible solution
branches of type (6) of the system (3) to be chosen. These solution branches of (3) are
approximated by the solution branches of (5) for the approximation (6), and there is a
useless fourth branch of (3) with the behaviour (i(h) = —2h+dyh?+d3h®. In the general
case one has to make sure that the solution branch defined by rs is taken whenever 6,
becomes small with respect to #,. Therefore the overall approximation order of the cubic
Hermite interpolation method is six, provided that there are no double zeros of curvature
and that the correct solution branch near inflection points is chosen. The next section
will give an easy recipe to choose the proper solution branch.

2 Choosing the Solution Branch

Since the numerical treatment of the method of deBoor, Héllig, and Sabin [1] appears to
be rather hazardous, some hints for the implementation seem to be necessary.

The coefficients of the system (3) are explicitly calculated from given data via (2), and
the chordlength d = || f(h) — f(—=h)||2 = |[|a(h)]|2 can be used as an approximation of the
arclength h. Then the system (3) should have solutions &g, 61 near 2h/3.
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Theorem 2.1 To get O(h®) convergence for interpolation of any smooth curve without
double zeros of curvature it suffices to choose any positive solution (6o,61) of (3) which

is not too far away from (2h/3,2h/3).

Proof : Since (3) is equivalent to a fourth—order algebraic equation, there are at most
four complex—valued solution branches. Constructing expansions with respect to h with
REDUCE, one can find a single branch with the behaviour (—2h, —2h) + O(h?). This
branch yields (useless) negative values of 6y, 61 and is automatically discarded, because
there are up to three branches of the type (2h/3,2h/3)+ O(h?*), which were already found
in [1] under the assumption of nonvanishing curvature. Fach of the branches is useful in
case of data with curvature bounded away from zero, and it then does not matter which
branch is chosen.

In case 61 ~ 0 # 05 the construction of the first section can be carried out. This gives
three solution branches (two of which may be complex) of the system (7), and the
Newton—Kantorovitch argument shows that for each of the three approximate solutions
of type (6) there exists a neighbouring solution of (3) with the same local behaviour.
Thus all interesting solutions of (3) are covered by this approach, but REDUCE yields
two complex solution branches of (3) via the solutions

"
ri = (0.5103 + 1 - 1.728)0—3 + O(6y)

2

ry = (0.5103 — 7 - 1.728)2—3 + O(61)
2

of (7) for 6; — 0 with 85 # 0. Thus there is only one solution of the required type, if 6, is
small and 65, 03 are bounded away from zero. This was already observed in [1] for cases
without sign change of curvature, if curvature is sufficiently small. If in the situation of
this paper also 3 is small, the three roots tend to coalesce stably for #;3 — 0, and in the
limit A3 = 0 all roots satisfy dy = 0, d3 = —%04/02. The suggested rule for the choice
of solutions of (3) will thus work in all cases except when curvature and its derivative
vanish simultaneously. m

In the latter case the equations (7) can be satisfied only if 65 = 8, = 0, i.e.: the zeros
of curvature of the given curve must be either simple or at least of order four to make
the approach of section 1 possible. It is conjectured that (at least generically) the local
convergence order of the method of deBoor, Hollig, and Sabin is six if and only if the
zeros of curvature of the interpolated curve are either simple or of order at least four.

3 Solving the Local System

Since the system (3) normally has multiple solutions which may coalesce, standard ap-
proaches like Newton’s method or direct evaluation of the roots of the fourth—degree
polynomial behind (3) are not stably applicable. As a compromise between efficiency,
reliability, and simplicity it is suggested to write (3) as a single equation ¢(x) = 0 which
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is solved by a straightforward bisection technique T' that starts from a given point xg and
finds the nearest zero @ = T'(xq, ) of ¢. This can be done with linear convergence. In a
large number of cases the constants

3 K1 [co\? 3 Ko fc1\?

(), o 2 ()

2¢ \c 2c \c
can be calculated and lie in some interval [0,~] C IR with a fixed ¥ > 1. Then the method
T is applied to the function ¢(z) := x — 1 + Ry(1 — Roa?)* with respect to the variable
& = cbo/c1, where 0 and 1 are possibly swapped to ensure |Ry| > |Ry|. This works in most
cases where curvature is bounded away from zero, because R; = % + O(h*) for h — 0 and

0, 0.

If curvature tends to zero, a term of type #205*h~' in the R; for §; = 0 spoils this
approach, and R;(h) goes to infinity for ~ — 0 in case #; = 0. Since data from smooth
curves satisfy k1c; = 207h* + O(h?) for 0; # 0 or kic; = %03/@4 + O(h®) for 6, = 0, the R;
will be asymptotically positive. Furthermore, Ro(h)/Ry(h) always tends to 1 for h — 0.
Thus degeneration of ¢ will occur only in the form of R; tending simultaneously to +oo,
if there are no multiple zeros of curvature.

But then a different choice of ¢ automatically becomes feasible and stable:

o(x) = 2® — So + To/S1e — T,

where @ = 6g/ko and

20 _2q T_Zcm _ 2cko

3Ky 1_3%;:137 0_3/13’ 1_3%;:13'

Here S; = (603)™" + O(h) and T; = O(h) for h — 0 in case of §; = 0. This function does

not degenerate for curvature tending to zero, if there is no double zero of curvature.

So

It both methods are not applicable or give negative results, the starting value 69 = 6; =
2h/3 (which still yields fourth order of convergence and fairly good pictures) is kept and
a warning message is given. This can only happen for large h or for data from functions
that are either nonsmooth or have multiple zeros of curvature.

The bisection method will always use 69 = 2h/3 as a starting point and therefore it will
automatically pick a solution 6 of (3) near to 2h/3. The other component é; will also be
of this size in case of dense data from a smooth curve without multiple zeros of curvature,
because then all solution branches satisfy the symmetry property (4) for small A. Thus
the solution should simply be rejected if it is in some sense too far away from (2h/3,2h/3).

Explicit numerical examples are suppressed here, since they will not lead much beyond
the examples of [1] and will always reproduce smooth curves with graphically invisible
errors.

The paper [4] contains a method to estimate curvature data to high accuracy. This can be
applied to make the method of deBoor, Hollig, and Sabin work for positional and tangent
data only. High—accuracy Hermite interpolation of nonplanar curves by piecewise cubic
rationals is treated in [2].
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