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Abstract

This contribution deals with techniques for the construction of surfaces
from N given data at irregularly distributed locations. Such methods
should ideally have the properties

e computational efficiency,
e smoothness of the resulting surface, if required, and
e quality of reproduction,

but these goals turn out to be hard to meet by a single algorithm. Methods
are split into a single construction or precalculation part and subsequent
pointwise evaluations. Both parts are analyzed with respect to their com-
plexity. It turns out that one has to expect the main workload on the side
of geometric subproblems rather than within numerical techniques. Fur-
thermore, if exact reconstruction at the data locations is required, and
if the user wants to avoid solving non—local linear systems, there is no
way around localized Langrange—type interpolation formulae. Thus two
instances of such techniques are studied in some detail:

e interpolation by weighted local Lagrangians based on radial basis
functions and

e moving least squares.

While the former is much more simple than the latter, it still has some
deficiencies in theory and practice. Moving least squares, if equipped
with certain additional features, turn out to be widely satisfactory, even
in difficult cases.

1 Introduction

Ignoring more general and more subtle definitions, we consider surfaces here as
sets Y of points y € IR? that are either

o implicitly represented via an equation g(y) = 1 for a scalar function g on
IR? or
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e cxplicitly represented as images y = F(x) of a function F' defined on a
subset  of IR? called the parameter domain.

Implicit representations have the advantage that one can often define a body
with surface Y as the set of points y with ¢g(y) < 1, while all points with g(y) > 1
are “outside”. This feature is very convenient for ray tracing algorithms, because
one has a quick test for points y on the ray for being inside or outside the body.
The transition between implicit and explicit representations of the same surface
is a difficult problem that we ignore here. An explicit representation is called
nonparametric, if the defining map F' has the simple form F'(z) = (z, f(z)) with
a scalar function f on Q.

We focus on the construction of surfaces from given data. These can come in
different forms. The most standard case is quantitative point data as

e aset {yi,...,yn} C IR? of points on (or near) the surface, or

e aset X ={zy,...,on} C Q C IR? together with a set {yi,...,yn} C IR?
such that y; = F(z;) for all j, 1 < j < N, either exactly or approximately.

Again, the nonparametric setting specializes to the case y; = (z;, f(z;)), 1 <
j < N. In general, derivative values can be specified, but we skip over such
extensions here. More serious are qualitative data like “smoothness”, “good
shape” or whatever the user may prescribe. Here, we ignore everything ex-
cept smoothness, and we shall restrict the latter to the classical mathematical
definition.

The construction of explicit representations of surfaces from data of the form
y; = F(x;) can clearly be done by any multivariate vector-valued scattered
data interpolation or approximation technique. This will be the main topic
of this paper. But before that, and for completeness, we want to point at the
specific problems coming up in the case of unstructured data {y1,...,yn} C IR3.
Imagine 8 data points to be given, forming the vertices of the unit cube in IR3.
Whatever method is used to find a surface containing these points, there is an
intrinsic ambiguity, described by the following possible solutions:

1. A closed, bounded and connected surface, e.g. a sphere,

2. three solutions consisting of two connected components, each picking up
the four points of opposite facets, e.g. two parallel planes,

3. twelve different U-shaped solutions formed by picking up the vertices of
a chain of three adjacent facets.

This ambiguity even concerns the global topological structure of the solution,
and the arising problem is much more serious than finding a numerical method
that actually constructs some surface containing the data points. For instance,
given an arbitrary multivariate scalar—valued interpolation technique for scat-
tered data, one can easily construct a function g on IR3 such that g(y;) = 1 for
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all j. Now, except for certain degenerations, the set of points y with g(y) =1
will define a surface that picks up the given data, but it is not clear how the
method behaves in situations like the one above. In principle, it also does not
help to do a local triangulation first, because the same problem arises with the
triangulation. We leave this interesting area to future research.

2 Construction, Evaluation and Complexity

For the rest of this paper, we focus on constructing explicit representations of
surfaces from given data in the form y; = F(z;), 1 < j < N for some unknown
function F'. In many cases, the actual and final evaluation of surface points will
not be based on the given data, but rather on some intermediate data needed for
the representation. For instance, many CAD packages evaluate surfaces from
Bernstein—Bézier control nets, and then these nets form the intermediate data
for the representation. We thus split the process in

Construyction FEvaluation
— —

Input data Representation data Surface points.

The construction step can contain some data reduction. Typical cases are pro-
vided by the lower levels of hierarchical or multilevel schemes for representing
surfaces (see [35] for example), or by greedy methods like [32]. We do not con-
sider such methods here. There are also cases where the intermediate data are
much larger than the original data. We mentioned an example at the beginning
of this section.

The construction step will often be much more complex than the evaluation
step, but the evaluation usually has to be performed many times. This is why
it is prohibitive to have an O(N) complexity of evaluation. But if evaluation at
a point z is to be done a O(1) cost and reasonable quality, one needs at least
some geometric information about data near to z. This geometric part of the
reconstruction process turns out to be much more important than expected, and
we conjecture the following:

In the development of efficient techniques for reconstruction of multivari-
ate functions (or surfaces, in particular), the major computational com-
plexity lies within the geometric algorithms, not the numerical techniques.

This fact should have been widely recognized in the past, but the scientific focus
still is very much on the side of Numerical Analysis than on Computational
Geometry. For instance, in any case of univariate spline interpolation, we need
for each evaluation point z the smallest knot interval [2;,2;41] containing x.
This is what we called a “geometric” information above. A naive way getting
this information is to use a sorting algorithm at cost O(N log N) within the
construction step, followed by an O(log N) search within each evaluation. The
actual numerical construction step via solving a banded system will take O(N)
operations, while the numerical evaluation is of O(1) complexity for a fixed
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degree. Our statement is valid already in this simple example, but things will
naturally be worse in the multivariate case. This is why we deal with geometric
issues in the next section.

To fix our efficiency goals somewhat more precisely, let us look at the relative
computational complexity of construction and evaluation of surfaces, provided
that N data are given.

e We consider a construction technique to be efficient, if it produces O(N)
intermediate data at a computational cost of O(NN) operations for a fixed
accuracy requirement. This will rule out precalculations involving trian-
gulations, sorting methods, or full-size linear systems, and it will normally
require some additional assumptions on the geometry of the data.

e We consider an evaluation technique to be efficient, if it takes O(1) oper-
ations to evaluate the surface at a single point. This rules out all nonlocal
methods, methods based on the evaluation of sums with more than O(1)
terms, or methods that require nontrivial search techniques for each eval-
uation.

The rest of the paper is concentrating on techniques that at least promise to
meet these goals, together with the ability to yield surfaces of any prescribed
smoothness. The reader will wonder how and why we drop the additional log N
complexity factor that already arises in univariate spline algorithms. But we
shall show below that this is justified for “reasonable” data geometries, and in
the univariate case it turns out that this is possible whenever there is an upper
bound p on the mesh ratio
B [ — il

\infej = o]

3 Efficient Geometric Algorithms

If there are no additional assumptions on the data locations, any geometric
algorithm with a complexity of O(N log N) within the construction step and
O(log N) for each evaluation must be considered to be efficient, as we are taught
by univariate spline theory. But if the set X = {z1,...,2x} C Q C IR? of data
locations is not too badly distributed, we hope to get away with O(N) and
O(1), respectively. The first basic idea is to assume quasi—uniformity of the
data locations z;, 1 < j < N on a bounded domain Q which at least contains
the convex hull of the data. This property requires that the quotient of the fill
distance

hii=h(X, Q) := max min |ly — 2] (1)
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and the separation distance

1
=q(X):=< i P— < h(X,2
¢:=q(X) =g min ;- 2kl <X, Q)

is bounded above by a constant p > 1.

The second basic idea is to ignore sorting and triangulations in favour of the
k nearest neighbor problem. The goal is to do some geometric preprocessing
at O(N) cost such that for every given evaluation point z it takes only O(k)
operations to get the k nearest neigbours from the data set X.

The standard folklore recipe, described in d dimensions here, implements a space
decomposition technique like those used in Computer Graphics. By a first O(NV)
scan over the given N data locations, a bounding box for the whole data set
is constructed, defined by maximal and minimal coordinates. Then there are
several possible strategies for splitting the global box into @(NN) smaller boxes,
hopefully containing only O(1) data points each.

A standard grid—type decomposition of the global bounding box does the job
for quasi-uniform data sets. To see this, let us first prove that A=, ¢~¢, and N
have the same asymptotics for N — oco. In fact, since each data point has a ball
of radius ¢ around it such that the ball does not contain any other data point,
these balls are disjoint and the sum of their volumes must be bounded above
by a constant. Thus N = O(¢g~?). On the other hand, the union of the balls of
radius h around the data points must cover the domain 2, and thus the sum of
their values is bounded below by a constant, proving h~=% = O(N).

Now let np be the maximum number of data points in each box. The balls of
radius ¢ around these points will be disjoint and contained in the box of volume
O(1/N) = O(¢q?) plus a surrounding volume that can be bounded by O(q?),
too. Therefore np is bounded above by a constant.

If the data distribution is not quasi—uniform, a decomposition via median splits
into a binary tree of boxes will work at the price of O(N log N) operations. We
prefer the former case and suggest to drop excess points of clusters, keeping
the number of points in each grid box at O(1) by brute force. The treatment
of details of surfaces related to data clusters can always be postponed to a
second problem, working locally at a finer scale, and having the residuals of the
first step as input data. As a byproduct, the above strategy provides a simple
“thinning” algorithm along the lines of papers by Floater and Iske [13, 14, 15].

Anyway, it takes O(N) or O(N log N) operations to distribute the given N data
into O(N) boxes with O(1) points in each box. For any given point z, it takes
O(1) operations to find the box containing z, if the data are quasi—uniform. In
the general case, however, one has to go down the binary tree at O(log N) cost.
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The basic data structure will consist of a list of point indices for each box. The
implementation of such a structure can use standard techniques from sparse
matrices. To cope with allocation problems, we prefer to use a second scan
over all data points that just counts the number of points in each box. Then
allocation can be done once and precisely, and the actual placement of points
into the correct boxes is done by a third scan over all data points. The overall
storage requirement is O(N).

Since the number of points in each box is O(1), one can then easily use the data
structure to solve nearest neighbour problems for any point = with a complexity
of O(k) (in the quasi—uniform case, or O(klog N) in general) for a fixed number
k of required neighbours of a point z. The idea is to go into the box of z first
and then into all neighbouring boxes with increasing distance, picking up all
the data points in those boxes. Whenever one has finished the boxes covering
a full ball of radius r around z, one can be sure that at least all neighbours of
z at distance at most r are found. The process is stopped if one has found at
least k such points, and these are then sorted with respect to their distance to
z. No more that O(k?) = O(1) boxes need to be checked in the quasi-uniform
case, because the k nearest neighbours cannot be further away from z than
h+2(k—1)q.

Note that a univariate simplification of this algorithm allows to sort N real num-
bers in O(N) operations, provided that they are quasi—uniformly distributed in
a bounded interval. Such algorithms are called “sorting by distribution”, and
their prototype is the well-known radiz sort. Furthermore, a subsequent search
algorithm can then be implemented at O(1) cost.

Methods for constructing good triangulations will cost at least O(N log N') op-
erations in the two—dimensional case, but they work for general point distri-
butions. Whether they can be reduced to O(N) computational complexity for
quasi—uniform data, is beyond the knowledge of the author.

4 Localization and Oversampling

We now go back to numerical techniques and introduce some more notation. If
both the calculation and the evaluation step are linear, one can write

N
b = > By 1<k<M
o (2)

M
> un ()b
k=1

with certain evaluation functions u; and intermediate data by, 1 < k < M,
starting from input data y, at xy for 1 < £ < N. The number M can be much
larger that NV, and the index k of intermediate data by and basis functions wuy

F(x)
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need not have any relation to the index £ of the data. For example, if we define
the u; as basis functions of some finite element space or as Bernstein—-Bézier
or NURBS basis functions with respect to some representation of the surface
by many standard patches, we require the intermediate data to be nodal data
for finite elements or to be control points with respect to the various standard
surface patches. In such a case, the value of M is much larger than N, and it
may be not at all obvious that the constructed surface has sufficient smoothness,
unless certain linear equations for the control points by, are satisfied. We want
to ignore the “patching problem” in this contribution, but we shall see later
how it arises unexpectedly.

The resulting surface mapping is

M N
F(z) = Y () Breye
k=1 =1

N M
>y > uk(@)Bre (3)

{=1 k=

N
Z nyf(w)a
(=1

and the final form uses Lagrange—type functions

M=

Ly(z) := ) up(x)Bre, 1< LN

k

Il
-

that have to satisfy Ly(z;) = d;¢ if exact reproduction of the data is required.

In principle, one could fix the evaluation functions u; beforehand, depending
on the final application, and maybe even in a very convenient local form, via
finite elements, bicubic spline patches or NURBS. The matrix B with entries
Bre should then be a one-sided inverse to the matrix U with entries ug(z;).
For M > N, and if U has full rank N, the determination of such an inverse is
possible in theory, but we already mentioned the additional conditions on the
intermediate data that will be required to guarantee smoothness, if the uy are
not automatically smooth enough.

At this point, the reader should have understood why we do not want to get
into serious trouble with smoothness conditions defined indirectly via additional
conditions on the intermediate data. We restrict ourselves to cases where the
functions uy or Ly have the required smoothness, and then we are free to find
convenient linear mappings to generate the intermediate data we need.

But there is an important point to be noted at this stage. If we want to make
both steps local and carry them out as they are in (2), i.e. without reformulation
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of the first equation as a linear system for the by, the matrices U and B should
be sparse, and at the same time be one—sided inverses of each other. This is a
very serious obstacle. In general, matrices with a fixed, but irreducible sparsity
structure can have full inverses, if perturbations of the matrix entries are allowed
([8], p- 271). This rules out the case M = N except for the standard situation
U = I that we analyze below. For M >> N the chances are better, but there
are just a few results on such “oversampling” techniques. Roughly speaking,
the above argument amounts to the following:

If locality or sparsity of both the construction and the evaluation process
for exact reconstruction of surfaces from parametric data is required, and
if both steps are carried out by linear formulae without solving linear
systems, one has to do oversampling or to stick to a variation of Lagrange
interpolation.

We refrain from casting this guideline into the shape of a theorem, but we shall
follow it throughout the paper.

For M = N, most of the well-known U matrices (e.g. from splines or radial
basis functions) are non—sparse. Note that they are the inverses of the (possibly
sparse) matrices of the linear systems for calculating the intermediate data.
The pitfall of the above principle is avoided by not using the inverses as linear
mappings. Instead, one solves the (possibly sparse) linear systems.

Let us describe a univariate example. Imagine a standard scalar univariate
interpolation problem with data y; = f(z;), 1 < j < N for nodes z; < 2 <
... < zn. We already used this example for pointing at the bulk of work induced
by generating the necessary geometric information. We now focus on numerical
techniques for construction of intermediate data and evaluation. Linear splines
have a Lagrange formulation without any construction step. This follows the
above principle via local Lagrange interpolation. Splines of higher degree are
usually treated via a nonlocal construction step involving a sparse system with
a non—sparse inverse. This follows the principle by resorting to solving a system.
There is no local formula that allows circumvention of solving a system in case of
M = N and higher—degree splines. This is what the above principle enforces, if
neither Lagrange interpolation, nor solving a system, nor oversampling is done.
But oversampling can possibly avoid both the nonlocal evaluation and the linear
system. In fact, if sufficiently many derivatives at the knots are approximated
using the point data by any of the standard techniques, and if piecewise odd—
degree Hermite interpolation is done on the oversampled data, we get away
without any system, using local construction and evaluation.

The general trick is to use oversampling in such a way that sufficiently many
local intermediate data are constructed, such that a subsequent local construc-
tion step finds all the data it needs. Finding good multivariate oversampling
strategies is a major open problem. But note that the example also shows that
we are back to a situation that we did not want to pursue here: the introduction
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of the “patching problem” through the back door via oversampling. This is easy
in the univariate case, but serious in multivariate settings. We close this section
with the remark that there may be sparse approzimate inverses. Examples are
in [34]. Transition from interpolation to approximation will thus be another
feasible workaround, but note that in this context approximation coincides with
quasi—interpolation.

5 Local Lagrange Interpolation

Let us go back to interpolation and consider the simple case U = I implied by
Lagrange interpolation on the original data, and look at localized techniques.
In such a situation there are no intermediate data, and there is no preprocessing
required and no system to be solved. On the downside, we now need Lagrange—
type evaluation functions which have a prescribed global smoothness and a
cheap O(1) local evaluation. Such functions do exist, but the race for practically
good functions is open. The early Shepard—type techniques were nonlocal, and
their localized extensions were nonsmooth. On the other hand, any sufficiently
smooth and sufficiently localized peak function u; which is one at x;, will do the
job, but at the price of a useless resulting surface, looking like a bed of nails.
The approximation quality comes in as a third criterion, besides smoothness
and computational complexity.

But there are simple and cheap methods that do better than localized peaks. A
good class of methods with limited smoothness is provided by natural neighbour
coordinates. Originally due to Sibson [36, 37] as a method yielding a continuous
surface, there was an extension by Farin [11] to a continuously differentiable
interpolant. If implemented naively, natural neighbour coordinates require a
preprocessed Dirichlet tesselation at a cost of at least O(N log N), which violates
our efficiency goals. If a preprocessing at O(N) is done for solving the k nearest
neighbour problem as described in section 3, one can possibly calculate the
natural neighbour coordinates locally within each evaluation step, getting a
O(1) cost per evaluation. But since smoothness is limited, we do not pursue
natural neighbour techniques in this paper.

Let us describe a rather general recipe for calculating smooth local interpolants.
Around any of the data points z; € Q we consider a ball B,(z;) of some fixed
radius » > 0. Then we take all points z in this ball and construct a local
Lagrange function Lé."c with respect to these points by an arbitrary method for
local scattered data interpolation, provided that the solution has the required
smoothness. Thus we have

Lé-oc(xk) =i for all zy with ||z; — x| <r, 1 < j,k <N,

but we cannot use these functions globally, because they fail to work on far-away
points. But there is an easy remedy. Take any nonnegative scalar function w on
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IR with w(0) = 1 and support [—r,r| such that w(||z — z;|2) has the required
smoothness. Then
Lj(z) = L (@)w(llz — z;l1») (4)

will be a global Lagrange function, and the surface construction can proceed
via (3). Note that this recipe allows for a wide range of possible cases, and
the contest for good examples is open. We shall show some cases after we have
described how to solve the local scattered data interpolation problems.

If the data distribution is quasi—uniform, the calculation of a local Lagrangian
function at z; will require only O(1) operations. Precalculation of all La-
grangians can be done at O(N) complexity, and local evaluation at a single
point z will only require O(1) Lagrangians. Thus we have an efficient method
in the sense of section 2, independent of the type of local interpolation used.
The race for cases with good reproduction qualities is open.

6 Radial Basis Functions

Now it is time to explicitly describe the tools we want to use for local inter-
polation to scattered data. The presentation can be brief, because there are
many survey articles on the subject (in chronological order: [17, 16, 9, 23, 10,
19, 25, 7, 30, 34]). By a fundamental observation of Mairhuber [20], nontrivial
spaces for multivariate scattered data interpolation must necessarily depend on
the data locations. To make this dependence as simple as possible, one uses
functions of the form

N Q
s@) = Y oidllz —zill2) + Y Bipi(x)
N = (5)
0 = > ajpile;), 1<i<Q

=1

with a radial basis function ¢ on [0,00) and a basis pi,...,pg of the space
IP,,, of bivariate polynomials of degree up to m — 1, where Q = m(m + 1)/2.
The function ¢ and the number m are related by the requirement that ¢ must
be (strictly) conditionally positive definite of some order mgo < m, and this
property makes sure that the systems

N Q
ste) = Y aidler —zjll2) + Y Bipi(ws) = yu, L<E SN
j=1 i=1
N (6)
0 = Y apilz;), 1<i<Q
j=1

arising for arbitrary scattered data problems are uniquely solvable, if there is
no nontrivial polynomial in IP,,,m > myg, that vanishes at all data locations
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Z1,...,xNn. The coeflicients a; and j3; are scalars in the case of nonparamet-
ric data, and vectors in the general case. We shall ignore this in the sequel,
restricting ourselves to the scalar case without loss of generality.

The most prominent examples of radial basis functions are

¢(T) = 7‘67 ﬂ > Oaﬂ € 21]V0: mo = |—ﬂ/2—|
#(r) = r*log(r), ke IN (thin-plate splines) mo=k+1
d(r) = (2+r%)5 B<0, (inverse multiquadrics) mo =0
d(ry = (2+r)5, B>0,8¢INy (multiquadrics) mgo = [3]
o(r) = e—M2, a >0 (Gaussians) mo =0
p(r) = (1—r)i(1+4r) mo =0

together with their orders mg of conditional positive definiteness. A comprehen-
sive presentation of these functions together with full proofs of their fundamental
properties is in [33].

Note that in the context of section 2 we have representation data consisting of
two vectors a € IRY, 8 € IR?, which already is a weak form of oversampling in
case of ) > 0. But, except for trivial choices of scaling, the system (6) has no
sparse inverse, even if a compactly supported function like (1 —r)% (1 + 4r) is
used. The latter function is C? on R? when written as a radial function of two
variables, and it can act as a weight function in (4). Other reasonable weight
functions are

1 r <1-9§
wsp(r) =4 %A -r)fr—(1-20)F 1-6<r <1 (7)
0 r >1

for § € (0,1) and k > 0, yielding prescribed degrees of smoothness.

7 Global Interpolation by Radial Basis Func-
tions

We do not consider global solutions of large—scale scattered data interpolation
problems in detail here. For completeness, we only point out the two current
lines of research and mark their fundamental differences. The starting point
is the behaviour of radial basis function interpolants with respect to scaling.
It is a standard technique, arising already in finite elements and being the
background of the convergence theory initiated by Strang and Fix [38], to scale
the interpolants in a way that is proportional to the data density, using “narrow”
basis functions for dense data and “wide” basis functions for coarse data. For
historical reasons this is called a stationary setting, while the nonstationary
case uses the same radial basis function for all possible interpolation problems,
irrespective of the data density.
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Let us first look at computational issues. In the stationary setting, the arising
matrices will have a condition that is basically independent of the data den-
sity. For compactly supported basis functions, the sparsity structure is fixed
and the evaluation of approximants will be cheap due to localization. In the
nonstationary setting the condition will dramatically increase when the data
get, dense, because rows and columns of the system matrix tend to be more and
more similar. Furthermore, sparse matrices arising from compactly supported
radial basis functions get filled up, and the complexity of evaluation increases.

But the situation is different, if we look at approximation properties. In the
nonstationary setting, all radial basis functions have good approximation prop-
erties which are closely related to the numerical condition: the better the ap-
proximation properties, the worse the condition [29]. On the other hand, in
the stationary case there is no convergence for interpolation problems based on
integrable radial basis functions [6], while thin—plate splines and multiquadrics
show good approximation properties. But the latter do not share the advantage
of the stationary setting with respect to the matrix structure: the systems will
always be non—sparse.

Thus there is no fully satisfying way out, if users look at problems on vary-
ing scales. Using the stationary setting with global radial basis functions like
thin—plate splines, powers or multiquadrics will cause no convergence problems,
but the user is forced to add strategies for dealing with large full matrices and
a costly evaluation process. The groups around M.J.D. Powell [26, 28] and R.
Beatson [5, 3, 4, 2] have made great progress in this direction. A second ap-
proach uses compactly supported radial basis functions and exploits sparsity as
much as possible. If fill-in is to be limited, one is bound to a stationary setting,
but then there are problems getting good approximation quality, because there
is no convergence in theory. As long as the data are not too dense, the station-
ary technique improves with data density, but there is a small final error level
that cannot be improved by adding more data. This phenomenon was called
approzimate approzimation my Mazya and Schmidt [21], and it deserves further
study. The approximation quality of the final level is mainly determined by the
admitted amount of fill-in [31], but the natural way out of this is to go over
to multiscale techniques [12, 13, 22] applying the steps of a stationary setting
recursively to residuals. This is quite successful, but still needs theoretical work.
First steps are in [18].

The method of section 5, using local weighted Lagrangians, avoids solving large
systems and guarantees locality without using compactly supported basis func-
tions. Its properties will be discussed in the next section.
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8 Local Weighted Interpolation by Radial Basis
Functions

Let us now look at some specific cases, implementing the cut—off Lagrangian
technique of section 5 via local interpolants based on radial basis functions from
section 6. For ease of publication in printed form, we confine ourselves here
to simple 2D graphics and present much more sophisticated 3D images at the
conference. It is a rather convenient rule—of-thumb to use about 50 local data
around each evaluation point, and thus we start in Figure 1 with presenting
a one—dimensional cross—section of the Lagrangian calculated via thin—plate
splines and linear polynomials for 49 local neigbours on a two—dimensional grid.
These 49 neighbors are within a circle of radius 0.5 on a grid with spacing
1/8, and thus the cross section of the Lagrange function along an axis has 8
symmetric zeros in [—0.5,0.5], being regularly distributed at distance 1/8, if
zero is added. To see the behaviour outside [—0.5,0.5], we replaced the values
inside by zero to get the second plot in Figure 1. The outside peaks have a
maximum height of 0.000717, and this is a coarse upper bound of the relative
deviation between the global and local Lagrangian. This unexpected behaviour
of thin—plate spline Lagrangians was first observed by Powell [24]. The decay
for arguments tending to infinity is exponential, and thus a weighted cutoff does
no serious harm. In our figures, we have not yet multiplied the local Lagrangian
with a weight function, but we prefer to use weights that are equal to 1 for most
of [0,1], because otherwise the peak of the Lagrangian gets too sharp. A good
strategy for the Lagrangian based on 49 points was (7) for § = 0.1.

1 0.0008
0.0007
0.8
0.0006
0.6
0.0005
0.4 0.0004
0.0003
0.2
0.0002

0.0001

-0.2 0

Figure 1: Local Lagrange Function for Thin—plate Splines
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Figure 2: Contour Plots

More sophisticated examples reveal that at high graphical resolutions the smooth
cut—off induced by the weight function shows up considerably, though it is quan-
titatively of a small order of magnitude. Thus there is quite some work to be
done on methods of this kind. An example is provided by Figure 2, where con-
tours of the reproduced Franke—type surface, plotted at high resolution on the
right-hand side, get rough in comparison to the original function on the left.

We now want to focus on the reproduction quality and start with the remark
that the classical error bounds for radial basis function interpolation in the
nonstationary setting are local. This is not directly stated in the literature,
but can be read between the lines of the various proof techniques, e.g. [40, 27].
In principle, if the fill distance h := h(X,Q) of (1) is small enough, and if
local reconstruction is to be done at some point = € €2, one can confine the local
interpolant to data at points z; with ||z —x;||» < ch with a suitable constant ¢ >
1. Thus the number of locally required data points can be bounded independent
of h for reasonably distributed data sets, but due to the nonstationary setting
the condition will not be bounded above. However, the numerically feasible
range is much larger than in global problems. In cases that are scale invariant
(powers and thin—plate splines), there is no difference between the stationary
and nonstationary settings, and then the local systems have no serious stability
problems.

But, unfortunately, there is a subtle difference to the techniques of section 5.
In local radial basis function interpolation as described by the localized stan-
dard convergence analysis, the selection of data points depends on a selection
of nearest neighbours of the evaluation point z, while in section 5 we used pre-
computed selections based on neighbours of each z. The local Lagrangians of
the two cases will not be comparable, and the proof of local convergence orders
does not cover the situation of section 5. Furthermore, the local interpolant in
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case of radial basis functions is a true linear combination of the ¢(||z — z;]|2)
with ||z — 2;|]2 < ch, while in case of section 5 such functions are multiplied
with the weight function. Thus, unfortunately, there is no easy way to carry
standard results on radial basis functions over to this situation.

9 Fully Local Methods with Polynomial Repro-
duction

We now look generally at localized techniques in the sense of the previous sec-
tion. We depart from radial basis functions for a while and describe a folklore
argument proving m—th order of convergence for stable local methods with local
reproduction of polynomials of order up to m. At a point z € Q we want to
take only a subset X (z) := {z; € X : ||z —z;||» < ch} C X of the data set z
with fill distance h as in (1), where ¢ > 1 is a constant. We simply assume that
we have a linear local process at x that is based on data X (z) and that locally
reproduces polynomials of order at most m. In particular, we keep z fixed and

write
Rp(z):= Y flxj)u;(z) (8)

z;€X ()

with certain real numbers u;(z) such that

holds for all polynomials p up to order m. Note that the reproduction of poly-
nomials is confined to the single point 2. Now we assume that f has continuous
derivatives up to order m around z, and thus the Taylor expansion T;, ¢, of f
at x of order at most m satisfies

|f (%) = T, pom ()| < CA™

for all z; € X (z), where C' depends on ¢ and the derivatives of f near x. Now
we can bound the local error via

|f(x) = Rp(x)| = |Tuf.m(x) — Ryp(z)|
|Rr, ;.. (¥) — Ry(z)]

Y (Togam(y) = f(27) uy(2)

z;€X ()

Ch™ Y Juy(@),

z;€X ()

IN

and we see that the “Lebesgue constants”

Li@):= Y |uj(2)]

z;€X(x)
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should be bounded independent of h, which is the stability condition we men-
tioned at the outset.

Let us look at simple examples first. For m = 1, we can get local reproduction
of constants by always picking the function value at the nearest neighbor. The
Lebesgue constant is 1. If f is continuously differentiable on 2, and because any
x € ) has a nearest neighbour from X at distance at most h, we get a method
of order 1. The reconstruction is piecewise constant on the Dirichlet tesselation
induced by X, though the tesselation is never actually calculated. For m = 2
and if  is the convex hull of X, we can use barycentric coordinates with respect
to triangles containing z, taking the data at the vertices. Any triangulation of
Q via X will then lead to a piecewise linear and continous reconstruction by
linear finite elements. The Lebesgue constant is 1 again.

Natural neighbour interpolation is another case fitting into this framework, The
original version by Sibson [36, 37] is continuous and reproduces linear poly-
nomials with Lebesgue constant 1, while the C'' extension by Farin [11] even
reproduces quadratic polynomials.

Of course, the general approach above can be combined with radial basis func-
tion techniques and a sufficiently large order m of polynomial reproduction. By
an argument in [29], the quantity

z;€X(z)

can be bounded above in all relevant cases, even in the nonstationary situa-
tion. This is not precisely what we require for the above line of argumentation,
but if the local data sets X (x) consist of O(1) points, which is what we can
assume for quasi—uniform data distributions, the Lebesgue constants are uni-
formly bounded. However, it always has to assume that the local data do not
allow a vanishing nontrivial polynomial of order m, and under this assumption
one can go back to m—th order polynomials right away. This is why we do not
pursue this setting any further.

Here is a little digression. One is tempted to consider the optimization problem
N
Z luj(z)] = Minimum
=1

N

Z uj(r)z§

to hope for a reasonable method with automatic localization near . The stan-

dard split of the variables u;(x) = uj(w) — uj () into nonnegative parts leads

z% 0 <|al<m
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to a linear programming problem of simple form. But due to reproduction of
constants via

N
L= 3w @) —u; (@),
we have
N
Zuj(:n) >1

and the objective function always satisfies

N
Minimum = Z(uj(m) +u; (7)) > 1.

=1

Thus for m = 2 all cases with interpolation via local barycentric coordinates
in a triangle containing x will be optimal, irrespective of the size or position
of the triangle. There is no automatic selection of local neighbours via this
optimization problem.

Things are even worse when the point z is outside the convex hull of the data.
If the problem is solvable at all, linear programming tells us that there always
is an optimal solution based on three points for m = 2, and the solution must
be determined by barycentric coordinates again, at least one of which must now
be negative. The optimum is attained for choices of triangles where the sum of
negative barycentric coordinates is minimal in absolute value. Closer inspection
reveals that those optimal triangles are geometrically awful, because negative
barycentric coordinates of a point z outside a triangle are small in absolute
value, if the vertices “antipodal” to = are far away from z.

Similarly bad results are obtained if we replace the L; objective function by Lo
or L, and we conclude that optimal stability does not imply locality, finishing
our digression.

For upsampling of gridded data, there are simple and useful folklore formulae
obtainable via the arguments of this section. For linear precision, upsampling
at the midpoint of edges or at the center of a square should use the arithmetic
mean of the data values. Again, we have Lebesgue constants bounded by 1, and
the process will be of second order in terms of the meshwidth. Of course, such
a process yields the bilinear local interpolant when started on four values at
the vertices of a square and repeated indefinitely. Note that though the order
is 2 for data from C? functions or surfaces, the resulting function or surface
will not be C2. Schemes with quadratic precision in two variables should use 6
points in general. A simple recipe can be obtained from looking at quadratic
polynomials in Bernstein—Bézier representation, but the result will not yield a
smooth surface.



10 MOVING LEAST SQUARES 18

10 Moving Least Squares

The examples above had the disadvantage that they generate surfaces with little
smoothness, because the local schemes depend on the evaluation point z and
the point selection X () in a nontrivial and possibly noncontinuous way. We
now look at a general recipe that overcomes this drawback and allows arbitrary
smoothness and approximation order, at least in theory.

For a fixed evaluation point x € () we consider the weighted least—squares
problem

N
Minimize Z (f (z5) = p(x;))” d(l|z = wj]l2)

over all polynomials p € IP,,. Here, the weight function is a smooth nonnegative
radial basis function ¢ with compact support, and this is how the above problem
turns out to be localized. The resulting process, if well-defined, will reproduce
polynomials up to order m, but we still have to write it in the form (8) and
show that the functions u; come out to be smooth.

Since the resulting linear system has a right—hand side that is a linear function
of the data f(z;), we get (8) without further arguments, but we have to find a
representation of the u;(z). To this end, we introduce self-explanatory matrix
notation to write the objective function as ||D,f — D,Aa||? with a diagonal
N x N matrix D, having entries 1/¢(||z — 2;||2) and an N x () matrix A with
entries py,(z;) for a basis p1,...,pg of IPy,. The solution vector a, € IR? with
respect to the data vector f = (f(z1),..., f(zn))7T is uniquely determined by
the system
A'D,D,Aa, = ATD,D, f,

provided that the coefficient matrix A7 D, D, A has full rank Q < N. We assume
this for a moment, and we proceed to construct a vector u(z) € IR such that
for p(z) := (p1(2),...,po(z))T we can write R(z) := alp(z) = u(z)? f. This is
easy, if we look at

ATD,D,Av(z) = p(z)
u(z) = D,D,Av(z) )

and solve the first system for v(z), putting the solution into the second equation.
Thus we get ATu(z) = p(z) for free, which is the polynomial reproduction
property at x. The entries of ATD,D, A are

N

> 6llz — will)p; (:)pr (),

i=1
and the matrix has full rank, if we define

X(z) :={z; € X : ¢l —zill2) > 0}
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and assume that there is no nontrivial polynomial in IP,, that vanishes on X ().
One can see clearly how the weight function localizes the least—squares problem
if it is of compact support, but the support must be large enough to host at
least a set of points near z that are in general position with respect to IP,,.

Since we can write the reconstruction in the form R(z) = u” (z) f without taking
care of the localization explicitly, we see from the system (9) that the smoothness
of the overall approximation is completely determined by the smoothness of the
weight function. Thus we are left with the highly nontrivial problem of bounding
the Lebesgue constants. A thorough treatment of this, giving all constants
in explicit form, is due to Wendland [39]. Thus moving least squares are a
technique that satisfies all requirements: it is effective in the sense of section 2,
and it can produce surfaces with any prescribed smoothness. However, in its
standard form it is an approximation rather than an interpolation.

One of the main computational problems of moving least squares is the proper
determination of the local point selection X (z). In particular, there may be
great variations in the data density, and these variations should be flexibly
incorporated into the algorithm. We propose to use all data points in a ball
with varying radius around the evaluation point z, i.e.

X(z) := X N Bspy(z) :={z; € X : [z —zj]l2 < ()}

where 0 is a smooth function that is calculated beforehand, preferably by an-
other moving least squares appproximation. For instance, one can generate
O(N) regularly distributed points y1, ..., yn in the domain  and find a “good
calculation radius” §; for X (y;) := Bs; () for each of these points. Then §(z) is
constructed via an intermediate moving least squares algorithm, and the result
is inserted into the actual surface construction technique.

We finish the paper with examples provided by R. Baule [1], illustrating the
use of a varying calculation radius. We pick the glacier data (N = 8345) from
R. Franke’s website http://www.math.nps.navy.mil/~“rfranke/, because it
has a very inhomogeneous data distribution (see Figure 3). The main problem
of any reconstruction method is to produce good results where the data are
scarce, while keeping a good overall reproduction quality of the data. Naive
and direct application of moving least squares can either result in a staircase
or an overdose of smoothing (see Figures 4,5 and the examples from [39]). If
the calculation radius varies as in Figure 6, one gets the much more realistic
results of Figures 7 and 8. In fact, the Lo, error on the data goes down from
81 to 21 when variable radii are used. A further variation, not described here
in detail, includes interpolation via infinite weights, and then we get the same
visual appearance as in Figure 8, but with zero error on the data.
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