
Remarks on Meshless Lo
al Constru
tion ofSurfa
esRobert S
haba
kMar
h 27, 2000Abstra
tThis 
ontribution deals with te
hniques for the 
onstru
tion of surfa
esfrom N given data at irregularly distributed lo
ations. Su
h methodsshould ideally have the properties� 
omputational eÆ
ien
y,� smoothness of the resulting surfa
e, if required, and� quality of reprodu
tion,but these goals turn out to be hard to meet by a single algorithm. Methodsare split into a single 
onstru
tion or pre
al
ulation part and subsequentpointwise evaluations. Both parts are analyzed with respe
t to their 
om-plexity. It turns out that one has to expe
t the main workload on the sideof geometri
 subproblems rather than within numeri
al te
hniques. Fur-thermore, if exa
t re
onstru
tion at the data lo
ations is required, andif the user wants to avoid solving non{lo
al linear systems, there is noway around lo
alized Langrange{type interpolation formulae. Thus twoinstan
es of su
h te
hniques are studied in some detail:� interpolation by weighted lo
al Lagrangians based on radial basisfun
tions and� moving least squares.While the former is mu
h more simple than the latter, it still has somede�
ien
ies in theory and pra
ti
e. Moving least squares, if equippedwith 
ertain additional features, turn out to be widely satisfa
tory, evenin diÆ
ult 
ases.1 Introdu
tionIgnoring more general and more subtle de�nitions, we 
onsider surfa
es here assets Y of points y 2 IR3 that are either� impli
itly represented via an equation g(y) = 1 for a s
alar fun
tion g onIR3 or 1



1 INTRODUCTION 2� expli
itly represented as images y = F (x) of a fun
tion F de�ned on asubset 
 of IR2 
alled the parameter domain.Impli
it representations have the advantage that one 
an often de�ne a bodywith surfa
e Y as the set of points y with g(y) � 1, while all points with g(y) > 1are \outside". This feature is very 
onvenient for ray tra
ing algorithms, be
auseone has a qui
k test for points y on the ray for being inside or outside the body.The transition between impli
it and expli
it representations of the same surfa
eis a diÆ
ult problem that we ignore here. An expli
it representation is 
allednonparametri
, if the de�ning map F has the simple form F (x) = (x; f(x)) witha s
alar fun
tion f on 
.We fo
us on the 
onstru
tion of surfa
es from given data. These 
an 
ome indi�erent forms. The most standard 
ase is quantitative point data as� a set fy1; : : : ; yNg � IR3 of points on (or near) the surfa
e, or� a set X = fx1; : : : ; xNg � 
 � IR2 together with a set fy1; : : : ; yNg � IR3su
h that yj = F (xj) for all j; 1 � j � N , either exa
tly or approximately.Again, the nonparametri
 setting spe
ializes to the 
ase yj = (xj ; f(xj)); 1 �j � N . In general, derivative values 
an be spe
i�ed, but we skip over su
hextensions here. More serious are qualitative data like \smoothness", \goodshape" or whatever the user may pres
ribe. Here, we ignore everything ex-
ept smoothness, and we shall restri
t the latter to the 
lassi
al mathemati
alde�nition.The 
onstru
tion of expli
it representations of surfa
es from data of the formyj = F (xj) 
an 
learly be done by any multivariate ve
tor{valued s
attereddata interpolation or approximation te
hnique. This will be the main topi
of this paper. But before that, and for 
ompleteness, we want to point at thespe
i�
 problems 
oming up in the 
ase of unstru
tured data fy1; : : : ; yNg � IR3.Imagine 8 data points to be given, forming the verti
es of the unit 
ube in IR3.Whatever method is used to �nd a surfa
e 
ontaining these points, there is anintrinsi
 ambiguity, des
ribed by the following possible solutions:1. A 
losed, bounded and 
onne
ted surfa
e, e.g. a sphere,2. three solutions 
onsisting of two 
onne
ted 
omponents, ea
h pi
king upthe four points of opposite fa
ets, e.g. two parallel planes,3. twelve di�erent U{shaped solutions formed by pi
king up the verti
es ofa 
hain of three adja
ent fa
ets.This ambiguity even 
on
erns the global topologi
al stru
ture of the solution,and the arising problem is mu
h more serious than �nding a numeri
al methodthat a
tually 
onstru
ts some surfa
e 
ontaining the data points. For instan
e,given an arbitrary multivariate s
alar{valued interpolation te
hnique for s
at-tered data, one 
an easily 
onstru
t a fun
tion g on IR3 su
h that g(yj) = 1 for



2 CONSTRUCTION, EVALUATION AND COMPLEXITY 3all j. Now, ex
ept for 
ertain degenerations, the set of points y with g(y) = 1will de�ne a surfa
e that pi
ks up the given data, but it is not 
lear how themethod behaves in situations like the one above. In prin
iple, it also does nothelp to do a lo
al triangulation �rst, be
ause the same problem arises with thetriangulation. We leave this interesting area to future resear
h.2 Constru
tion, Evaluation and ComplexityFor the rest of this paper, we fo
us on 
onstru
ting expli
it representations ofsurfa
es from given data in the form yj = F (xj); 1 � j � N for some unknownfun
tion F . In many 
ases, the a
tual and �nal evaluation of surfa
e points willnot be based on the given data, but rather on some intermediate data needed forthe representation. For instan
e, many CAD pa
kages evaluate surfa
es fromBernstein{B�ezier 
ontrol nets, and then these nets form the intermediate datafor the representation. We thus split the pro
ess inInput data Constru
tion�! Representation data Evaluation�! Surfa
e points:The 
onstru
tion step 
an 
ontain some data redu
tion. Typi
al 
ases are pro-vided by the lower levels of hierar
hi
al or multilevel s
hemes for representingsurfa
es (see [35℄ for example), or by greedy methods like [32℄. We do not 
on-sider su
h methods here. There are also 
ases where the intermediate data aremu
h larger than the original data. We mentioned an example at the beginningof this se
tion.The 
onstru
tion step will often be mu
h more 
omplex than the evaluationstep, but the evaluation usually has to be performed many times. This is whyit is prohibitive to have an O(N) 
omplexity of evaluation. But if evaluation ata point x is to be done a O(1) 
ost and reasonable quality, one needs at leastsome geometri
 information about data near to x. This geometri
 part of there
onstru
tion pro
ess turns out to be mu
h more important than expe
ted, andwe 
onje
ture the following:In the development of eÆ
ient te
hniques for re
onstru
tion of multivari-ate fun
tions (or surfa
es, in parti
ular), the major 
omputational 
om-plexity lies within the geometri
 algorithms, not the numeri
al te
hniques.This fa
t should have been widely re
ognized in the past, but the s
ienti�
 fo
usstill is very mu
h on the side of Numeri
al Analysis than on ComputationalGeometry. For instan
e, in any 
ase of univariate spline interpolation, we needfor ea
h evaluation point x the smallest knot interval [xj ; xj+1℄ 
ontaining x.This is what we 
alled a \geometri
" information above. A naive way gettingthis information is to use a sorting algorithm at 
ost O(N logN) within the
onstru
tion step, followed by an O(logN) sear
h within ea
h evaluation. Thea
tual numeri
al 
onstru
tion step via solving a banded system will take O(N)operations, while the numeri
al evaluation is of O(1) 
omplexity for a �xed



3 EFFICIENT GEOMETRIC ALGORITHMS 4degree. Our statement is valid already in this simple example, but things willnaturally be worse in the multivariate 
ase. This is why we deal with geometri
issues in the next se
tion.To �x our eÆ
ien
y goals somewhat more pre
isely, let us look at the relative
omputational 
omplexity of 
onstru
tion and evaluation of surfa
es, providedthat N data are given.� We 
onsider a 
onstru
tion te
hnique to be eÆ
ient, if it produ
es O(N)intermediate data at a 
omputational 
ost of O(N) operations for a �xeda

ura
y requirement. This will rule out pre
al
ulations involving trian-gulations, sorting methods, or full{size linear systems, and it will normallyrequire some additional assumptions on the geometry of the data.� We 
onsider an evaluation te
hnique to be eÆ
ient, if it takes O(1) oper-ations to evaluate the surfa
e at a single point. This rules out all nonlo
almethods, methods based on the evaluation of sums with more than O(1)terms, or methods that require nontrivial sear
h te
hniques for ea
h eval-uation.The rest of the paper is 
on
entrating on te
hniques that at least promise tomeet these goals, together with the ability to yield surfa
es of any pres
ribedsmoothness. The reader will wonder how and why we drop the additional logN
omplexity fa
tor that already arises in univariate spline algorithms. But weshall show below that this is justi�ed for \reasonable" data geometries, and inthe univariate 
ase it turns out that this is possible whenever there is an upperbound � on the mesh ratio max1�j<N jxj+1 � xj jmin1�j<N jxj+1 � xj j :3 EÆ
ient Geometri
 AlgorithmsIf there are no additional assumptions on the data lo
ations, any geometri
algorithm with a 
omplexity of O(N logN) within the 
onstru
tion step andO(logN) for ea
h evaluation must be 
onsidered to be eÆ
ient, as we are taughtby univariate spline theory. But if the set X = fx1; : : : ; xNg � 
 � IR2 of datalo
ations is not too badly distributed, we hope to get away with O(N) andO(1), respe
tively. The �rst basi
 idea is to assume quasi{uniformity of thedata lo
ations xj ; 1 � j � N on a bounded domain 
 whi
h at least 
ontainsthe 
onvex hull of the data. This property requires that the quotient of the �lldistan
e h := h(X;
) := maxy2
 minxj2X ky � xjk2 (1)



3 EFFICIENT GEOMETRIC ALGORITHMS 5and the separation distan
eq := q(X) := 12 minxj 6=xk2X kxj � xkk2 � h(X;
)is bounded above by a 
onstant � > 1.The se
ond basi
 idea is to ignore sorting and triangulations in favour of thek nearest neighbor problem. The goal is to do some geometri
 prepro
essingat O(N) 
ost su
h that for every given evaluation point x it takes only O(k)operations to get the k nearest neigbours from the data set X .The standard folklore re
ipe, des
ribed in d dimensions here, implements a spa
ede
omposition te
hnique like those used in Computer Graphi
s. By a �rst O(N)s
an over the given N data lo
ations, a bounding box for the whole data setis 
onstru
ted, de�ned by maximal and minimal 
oordinates. Then there areseveral possible strategies for splitting the global box into O(N) smaller boxes,hopefully 
ontaining only O(1) data points ea
h.A standard grid{type de
omposition of the global bounding box does the jobfor quasi{uniform data sets. To see this, let us �rst prove that h�d; q�d, and Nhave the same asymptoti
s for N !1. In fa
t, sin
e ea
h data point has a ballof radius q around it su
h that the ball does not 
ontain any other data point,these balls are disjoint and the sum of their volumes must be bounded aboveby a 
onstant. Thus N = O(q�d). On the other hand, the union of the balls ofradius h around the data points must 
over the domain 
, and thus the sum oftheir values is bounded below by a 
onstant, proving h�d = O(N).Now let nB be the maximum number of data points in ea
h box. The balls ofradius q around these points will be disjoint and 
ontained in the box of volumeO(1=N) = O(qd) plus a surrounding volume that 
an be bounded by O(qd),too. Therefore nB is bounded above by a 
onstant.If the data distribution is not quasi{uniform, a de
omposition via median splitsinto a binary tree of boxes will work at the pri
e of O(N logN) operations. Weprefer the former 
ase and suggest to drop ex
ess points of 
lusters, keepingthe number of points in ea
h grid box at O(1) by brute for
e. The treatmentof details of surfa
es related to data 
lusters 
an always be postponed to ase
ond problem, working lo
ally at a �ner s
ale, and having the residuals of the�rst step as input data. As a byprodu
t, the above strategy provides a simple\thinning" algorithm along the lines of papers by Floater and Iske [13, 14, 15℄.Anyway, it takes O(N) or O(N logN) operations to distribute the given N datainto O(N) boxes with O(1) points in ea
h box. For any given point x, it takesO(1) operations to �nd the box 
ontaining x, if the data are quasi{uniform. Inthe general 
ase, however, one has to go down the binary tree at O(logN) 
ost.



4 LOCALIZATION AND OVERSAMPLING 6The basi
 data stru
ture will 
onsist of a list of point indi
es for ea
h box. Theimplementation of su
h a stru
ture 
an use standard te
hniques from sparsematri
es. To 
ope with allo
ation problems, we prefer to use a se
ond s
anover all data points that just 
ounts the number of points in ea
h box. Thenallo
ation 
an be done on
e and pre
isely, and the a
tual pla
ement of pointsinto the 
orre
t boxes is done by a third s
an over all data points. The overallstorage requirement is O(N).Sin
e the number of points in ea
h box is O(1), one 
an then easily use the datastru
ture to solve nearest neighbour problems for any point x with a 
omplexityof O(k) (in the quasi{uniform 
ase, or O(k logN) in general) for a �xed numberk of required neighbours of a point x. The idea is to go into the box of x �rstand then into all neighbouring boxes with in
reasing distan
e, pi
king up allthe data points in those boxes. Whenever one has �nished the boxes 
overinga full ball of radius r around x, one 
an be sure that at least all neighbours ofx at distan
e at most r are found. The pro
ess is stopped if one has found atleast k su
h points, and these are then sorted with respe
t to their distan
e tox. No more that O(kd) = O(1) boxes need to be 
he
ked in the quasi{uniform
ase, be
ause the k nearest neighbours 
annot be further away from x thanh+ 2(k � 1)q.Note that a univariate simpli�
ation of this algorithm allows to sortN real num-bers in O(N) operations, provided that they are quasi{uniformly distributed ina bounded interval. Su
h algorithms are 
alled \sorting by distribution", andtheir prototype is the well-known radix sort. Furthermore, a subsequent sear
halgorithm 
an then be implemented at O(1) 
ost.Methods for 
onstru
ting good triangulations will 
ost at least O(N logN) op-erations in the two{dimensional 
ase, but they work for general point distri-butions. Whether they 
an be redu
ed to O(N) 
omputational 
omplexity forquasi{uniform data, is beyond the knowledge of the author.4 Lo
alization and OversamplingWe now go ba
k to numeri
al te
hniques and introdu
e some more notation. Ifboth the 
al
ulation and the evaluation step are linear, one 
an writebk = NX̀=1 �k`y`; 1 � k �MF (x) = MXk=1 uk(x)bk (2)with 
ertain evaluation fun
tions uk and intermediate data bk; 1 � k � M ,starting from input data y` at x` for 1 � ` � N . The number M 
an be mu
hlarger that N , and the index k of intermediate data bk and basis fun
tions uk



4 LOCALIZATION AND OVERSAMPLING 7need not have any relation to the index ` of the data. For example, if we de�nethe uk as basis fun
tions of some �nite element spa
e or as Bernstein{B�ezieror NURBS basis fun
tions with respe
t to some representation of the surfa
eby many standard pat
hes, we require the intermediate data to be nodal datafor �nite elements or to be 
ontrol points with respe
t to the various standardsurfa
e pat
hes. In su
h a 
ase, the value of M is mu
h larger than N , and itmay be not at all obvious that the 
onstru
ted surfa
e has suÆ
ient smoothness,unless 
ertain linear equations for the 
ontrol points bk are satis�ed. We wantto ignore the \pat
hing problem" in this 
ontribution, but we shall see laterhow it arises unexpe
tedly.The resulting surfa
e mapping isF (x) = MXk=1 uk(x) NX̀=1 �k`y`= NX̀=1 y` MXk=1 uk(x)�k`= NX̀=1 y`L`(x); (3)
and the �nal form uses Lagrange{type fun
tionsL`(x) := MXk=1 uk(x)�k`; 1 � ` � Nthat have to satisfy L`(xj) = Æj` if exa
t reprodu
tion of the data is required.In prin
iple, one 
ould �x the evaluation fun
tions uk beforehand, dependingon the �nal appli
ation, and maybe even in a very 
onvenient lo
al form, via�nite elements, bi
ubi
 spline pat
hes or NURBS. The matrix B with entries�k` should then be a one{sided inverse to the matrix U with entries uk(xj).For M � N , and if U has full rank N , the determination of su
h an inverse ispossible in theory, but we already mentioned the additional 
onditions on theintermediate data that will be required to guarantee smoothness, if the uk arenot automati
ally smooth enough.At this point, the reader should have understood why we do not want to getinto serious trouble with smoothness 
onditions de�ned indire
tly via additional
onditions on the intermediate data. We restri
t ourselves to 
ases where thefun
tions uk or L` have the required smoothness, and then we are free to �nd
onvenient linear mappings to generate the intermediate data we need.But there is an important point to be noted at this stage. If we want to makeboth steps lo
al and 
arry them out as they are in (2), i.e. without reformulation



4 LOCALIZATION AND OVERSAMPLING 8of the �rst equation as a linear system for the bk, the matri
es U and B shouldbe sparse, and at the same time be one{sided inverses of ea
h other. This is avery serious obsta
le. In general, matri
es with a �xed, but irredu
ible sparsitystru
ture 
an have full inverses, if perturbations of the matrix entries are allowed([8℄, p. 271). This rules out the 
ase M = N ex
ept for the standard situationU = I that we analyze below. For M >> N the 
han
es are better, but thereare just a few results on su
h \oversampling" te
hniques. Roughly speaking,the above argument amounts to the following:If lo
ality or sparsity of both the 
onstru
tion and the evaluation pro
essfor exa
t re
onstru
tion of surfa
es from parametri
 data is required, andif both steps are 
arried out by linear formulae without solving linearsystems, one has to do oversampling or to sti
k to a variation of Lagrangeinterpolation.We refrain from 
asting this guideline into the shape of a theorem, but we shallfollow it throughout the paper.For M = N , most of the well{known U matri
es (e.g. from splines or radialbasis fun
tions) are non{sparse. Note that they are the inverses of the (possiblysparse) matri
es of the linear systems for 
al
ulating the intermediate data.The pitfall of the above prin
iple is avoided by not using the inverses as linearmappings. Instead, one solves the (possibly sparse) linear systems.Let us des
ribe a univariate example. Imagine a standard s
alar univariateinterpolation problem with data yj = f(xj); 1 � j � N for nodes x1 < x2 <: : : < xN . We already used this example for pointing at the bulk of work indu
edby generating the ne
essary geometri
 information. We now fo
us on numeri
alte
hniques for 
onstru
tion of intermediate data and evaluation. Linear splineshave a Lagrange formulation without any 
onstru
tion step. This follows theabove prin
iple via lo
al Lagrange interpolation. Splines of higher degree areusually treated via a nonlo
al 
onstru
tion step involving a sparse system witha non{sparse inverse. This follows the prin
iple by resorting to solving a system.There is no lo
al formula that allows 
ir
umvention of solving a system in 
ase ofM = N and higher{degree splines. This is what the above prin
iple enfor
es, ifneither Lagrange interpolation, nor solving a system, nor oversampling is done.But oversampling 
an possibly avoid both the nonlo
al evaluation and the linearsystem. In fa
t, if suÆ
iently many derivatives at the knots are approximatedusing the point data by any of the standard te
hniques, and if pie
ewise odd{degree Hermite interpolation is done on the oversampled data, we get awaywithout any system, using lo
al 
onstru
tion and evaluation.The general tri
k is to use oversampling in su
h a way that suÆ
iently manylo
al intermediate data are 
onstru
ted, su
h that a subsequent lo
al 
onstru
-tion step �nds all the data it needs. Finding good multivariate oversamplingstrategies is a major open problem. But note that the example also shows thatwe are ba
k to a situation that we did not want to pursue here: the introdu
tion



5 LOCAL LAGRANGE INTERPOLATION 9of the \pat
hing problem" through the ba
k door via oversampling. This is easyin the univariate 
ase, but serious in multivariate settings. We 
lose this se
tionwith the remark that there may be sparse approximate inverses. Examples arein [34℄. Transition from interpolation to approximation will thus be anotherfeasible workaround, but note that in this 
ontext approximation 
oin
ides withquasi{interpolation.5 Lo
al Lagrange InterpolationLet us go ba
k to interpolation and 
onsider the simple 
ase U = I implied byLagrange interpolation on the original data, and look at lo
alized te
hniques.In su
h a situation there are no intermediate data, and there is no prepro
essingrequired and no system to be solved. On the downside, we now need Lagrange{type evaluation fun
tions whi
h have a pres
ribed global smoothness and a
heap O(1) lo
al evaluation. Su
h fun
tions do exist, but the ra
e for pra
ti
allygood fun
tions is open. The early Shepard{type te
hniques were nonlo
al, andtheir lo
alized extensions were nonsmooth. On the other hand, any suÆ
ientlysmooth and suÆ
iently lo
alized peak fun
tion uk whi
h is one at xk will do thejob, but at the pri
e of a useless resulting surfa
e, looking like a bed of nails.The approximation quality 
omes in as a third 
riterion, besides smoothnessand 
omputational 
omplexity.But there are simple and 
heap methods that do better than lo
alized peaks. Agood 
lass of methods with limited smoothness is provided by natural neighbour
oordinates. Originally due to Sibson [36, 37℄ as a method yielding a 
ontinuoussurfa
e, there was an extension by Farin [11℄ to a 
ontinuously di�erentiableinterpolant. If implemented naively, natural neighbour 
oordinates require aprepro
essed Diri
hlet tesselation at a 
ost of at leastO(N logN), whi
h violatesour eÆ
ien
y goals. If a prepro
essing at O(N) is done for solving the k nearestneighbour problem as des
ribed in se
tion 3, one 
an possibly 
al
ulate thenatural neighbour 
oordinates lo
ally within ea
h evaluation step, getting aO(1) 
ost per evaluation. But sin
e smoothness is limited, we do not pursuenatural neighbour te
hniques in this paper.Let us des
ribe a rather general re
ipe for 
al
ulating smooth lo
al interpolants.Around any of the data points xj 2 
 we 
onsider a ball Br(xj) of some �xedradius r > 0. Then we take all points xk in this ball and 
onstru
t a lo
alLagrange fun
tion Llo
j with respe
t to these points by an arbitrary method forlo
al s
attered data interpolation, provided that the solution has the requiredsmoothness. Thus we haveLlo
j (xk) = Æjk for all xk with kxj � xkk < r; 1 � j; k � N;but we 
annot use these fun
tions globally, be
ause they fail to work on far{awaypoints. But there is an easy remedy. Take any nonnegative s
alar fun
tion w on



6 RADIAL BASIS FUNCTIONS 10IR with w(0) = 1 and support [�r; r℄ su
h that w(kx � xjk2) has the requiredsmoothness. Then Lj(x) := Llo
j (x)w(kx � xjk2) (4)will be a global Lagrange fun
tion, and the surfa
e 
onstru
tion 
an pro
eedvia (3). Note that this re
ipe allows for a wide range of possible 
ases, andthe 
ontest for good examples is open. We shall show some 
ases after we havedes
ribed how to solve the lo
al s
attered data interpolation problems.If the data distribution is quasi{uniform, the 
al
ulation of a lo
al Lagrangianfun
tion at xj will require only O(1) operations. Pre
al
ulation of all La-grangians 
an be done at O(N) 
omplexity, and lo
al evaluation at a singlepoint x will only require O(1) Lagrangians. Thus we have an eÆ
ient methodin the sense of se
tion 2, independent of the type of lo
al interpolation used.The ra
e for 
ases with good reprodu
tion qualities is open.6 Radial Basis Fun
tionsNow it is time to expli
itly des
ribe the tools we want to use for lo
al inter-polation to s
attered data. The presentation 
an be brief, be
ause there aremany survey arti
les on the subje
t (in 
hronologi
al order: [17, 16, 9, 23, 10,19, 25, 7, 30, 34℄). By a fundamental observation of Mairhuber [20℄, nontrivialspa
es for multivariate s
attered data interpolation must ne
essarily depend onthe data lo
ations. To make this dependen
e as simple as possible, one usesfun
tions of the forms(x) = NXj=1 �j�(kx� xjk2) + QXi=1 �ipi(x)0 = NXj=1 �jpi(xj); 1 � i � Q (5)with a radial basis fun
tion � on [0;1) and a basis p1; : : : ; pQ of the spa
eIPm of bivariate polynomials of degree up to m � 1, where Q = m(m + 1)=2.The fun
tion � and the number m are related by the requirement that � mustbe (stri
tly) 
onditionally positive de�nite of some order m0 � m, and thisproperty makes sure that the systemss(xk) = NXj=1 �j�(kxk � xjk2) + QXi=1 �ipi(xk) = yk; 1 � k � N0 = NXj=1 �jpi(xj); 1 � i � Q (6)arising for arbitrary s
attered data problems are uniquely solvable, if there isno nontrivial polynomial in IPm;m � m0; that vanishes at all data lo
ations



7 GLOBAL INTERPOLATION BY RADIAL BASIS FUNCTIONS 11x1; : : : ; xN . The 
oeÆ
ients �j and �i are s
alars in the 
ase of nonparamet-ri
 data, and ve
tors in the general 
ase. We shall ignore this in the sequel,restri
ting ourselves to the s
alar 
ase without loss of generality.The most prominent examples of radial basis fun
tions are�(r) = r� ; � > 0; � 62 2IN0; m0 = d�=2e�(r) = r2k log(r); k 2 IN (thin-plate splines) m0 = k + 1�(r) = (
2 + r2)� ; � < 0; (inverse multiquadri
s) m0 = 0�(r) = (
2 + r2)� ; � > 0; � 62 IN0 (multiquadri
s) m0 = d�e�(r) = e��r2 ; � > 0 (Gaussians) m0 = 0�(r) = (1� r)4+(1 + 4r) m0 = 0together with their ordersm0 of 
onditional positive de�niteness. A 
omprehen-sive presentation of these fun
tions together with full proofs of their fundamentalproperties is in [33℄.Note that in the 
ontext of se
tion 2 we have representation data 
onsisting oftwo ve
tors � 2 IRN ; � 2 IRQ, whi
h already is a weak form of oversampling in
ase of Q > 0. But, ex
ept for trivial 
hoi
es of s
aling, the system (6) has nosparse inverse, even if a 
ompa
tly supported fun
tion like (1 � r)4+(1 + 4r) isused. The latter fun
tion is C2 on R2 when written as a radial fun
tion of twovariables, and it 
an a
t as a weight fun
tion in (4). Other reasonable weightfun
tions arewÆ;k(r) =8<: 1 r � 1� ÆÆ�2k(1� r)k(r � (1� 2Æ))k 1� Æ < r � 10 r > 1 (7)for Æ 2 (0; 1) and k > 0, yielding pres
ribed degrees of smoothness.7 Global Interpolation by Radial Basis Fun
-tionsWe do not 
onsider global solutions of large{s
ale s
attered data interpolationproblems in detail here. For 
ompleteness, we only point out the two 
urrentlines of resear
h and mark their fundamental di�eren
es. The starting pointis the behaviour of radial basis fun
tion interpolants with respe
t to s
aling.It is a standard te
hnique, arising already in �nite elements and being theba
kground of the 
onvergen
e theory initiated by Strang and Fix [38℄, to s
alethe interpolants in a way that is proportional to the data density, using \narrow"basis fun
tions for dense data and \wide" basis fun
tions for 
oarse data. Forhistori
al reasons this is 
alled a stationary setting, while the nonstationary
ase uses the same radial basis fun
tion for all possible interpolation problems,irrespe
tive of the data density.



7 GLOBAL INTERPOLATION BY RADIAL BASIS FUNCTIONS 12Let us �rst look at 
omputational issues. In the stationary setting, the arisingmatri
es will have a 
ondition that is basi
ally independent of the data den-sity. For 
ompa
tly supported basis fun
tions, the sparsity stru
ture is �xedand the evaluation of approximants will be 
heap due to lo
alization. In thenonstationary setting the 
ondition will dramati
ally in
rease when the dataget dense, be
ause rows and 
olumns of the system matrix tend to be more andmore similar. Furthermore, sparse matri
es arising from 
ompa
tly supportedradial basis fun
tions get �lled up, and the 
omplexity of evaluation in
reases.But the situation is di�erent, if we look at approximation properties. In thenonstationary setting, all radial basis fun
tions have good approximation prop-erties whi
h are 
losely related to the numeri
al 
ondition: the better the ap-proximation properties, the worse the 
ondition [29℄. On the other hand, inthe stationary 
ase there is no 
onvergen
e for interpolation problems based onintegrable radial basis fun
tions [6℄, while thin{plate splines and multiquadri
sshow good approximation properties. But the latter do not share the advantageof the stationary setting with respe
t to the matrix stru
ture: the systems willalways be non{sparse.Thus there is no fully satisfying way out, if users look at problems on vary-ing s
ales. Using the stationary setting with global radial basis fun
tions likethin{plate splines, powers or multiquadri
s will 
ause no 
onvergen
e problems,but the user is for
ed to add strategies for dealing with large full matri
es anda 
ostly evaluation pro
ess. The groups around M.J.D. Powell [26, 28℄ and R.Beatson [5, 3, 4, 2℄ have made great progress in this dire
tion. A se
ond ap-proa
h uses 
ompa
tly supported radial basis fun
tions and exploits sparsity asmu
h as possible. If �ll{in is to be limited, one is bound to a stationary setting,but then there are problems getting good approximation quality, be
ause thereis no 
onvergen
e in theory. As long as the data are not too dense, the station-ary te
hnique improves with data density, but there is a small �nal error levelthat 
annot be improved by adding more data. This phenomenon was 
alledapproximate approximation my Maz�ya and S
hmidt [21℄, and it deserves furtherstudy. The approximation quality of the �nal level is mainly determined by theadmitted amount of �ll{in [31℄, but the natural way out of this is to go overto multis
ale te
hniques [12, 13, 22℄ applying the steps of a stationary settingre
ursively to residuals. This is quite su

essful, but still needs theoreti
al work.First steps are in [18℄.The method of se
tion 5, using lo
al weighted Lagrangians, avoids solving largesystems and guarantees lo
ality without using 
ompa
tly supported basis fun
-tions. Its properties will be dis
ussed in the next se
tion.
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al Weighted Interpolation by Radial BasisFun
tionsLet us now look at some spe
i�
 
ases, implementing the 
ut{o� Lagrangiante
hnique of se
tion 5 via lo
al interpolants based on radial basis fun
tions fromse
tion 6. For ease of publi
ation in printed form, we 
on�ne ourselves hereto simple 2D graphi
s and present mu
h more sophisti
ated 3D images at the
onferen
e. It is a rather 
onvenient rule{of{thumb to use about 50 lo
al dataaround ea
h evaluation point, and thus we start in Figure 1 with presentinga one{dimensional 
ross{se
tion of the Lagrangian 
al
ulated via thin{platesplines and linear polynomials for 49 lo
al neigbours on a two{dimensional grid.These 49 neighbors are within a 
ir
le of radius 0.5 on a grid with spa
ing1/8, and thus the 
ross se
tion of the Lagrange fun
tion along an axis has 8symmetri
 zeros in [�0:5; 0:5℄, being regularly distributed at distan
e 1/8, ifzero is added. To see the behaviour outside [�0:5; 0:5℄, we repla
ed the valuesinside by zero to get the se
ond plot in Figure 1. The outside peaks have amaximum height of 0.000717, and this is a 
oarse upper bound of the relativedeviation between the global and lo
al Lagrangian. This unexpe
ted behaviourof thin{plate spline Lagrangians was �rst observed by Powell [24℄. The de
ayfor arguments tending to in�nity is exponential, and thus a weighted 
uto� doesno serious harm. In our �gures, we have not yet multiplied the lo
al Lagrangianwith a weight fun
tion, but we prefer to use weights that are equal to 1 for mostof [0; 1℄, be
ause otherwise the peak of the Lagrangian gets too sharp. A goodstrategy for the Lagrangian based on 49 points was (7) for Æ = 0:1.
-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1
0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

-1 -0.5 0 0.5 1Figure 1: Lo
al Lagrange Fun
tion for Thin{plate Splines



8 LOCALWEIGHTED INTERPOLATIONBY RADIAL BASIS FUNCTIONS 14

s
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

s
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Figure 2: Contour PlotsMore sophisti
ated examples reveal that at high graphi
al resolutions the smooth
ut{o� indu
ed by the weight fun
tion shows up 
onsiderably, though it is quan-titatively of a small order of magnitude. Thus there is quite some work to bedone on methods of this kind. An example is provided by Figure 2, where 
on-tours of the reprodu
ed Franke{type surfa
e, plotted at high resolution on theright{hand side, get rough in 
omparison to the original fun
tion on the left.We now want to fo
us on the reprodu
tion quality and start with the remarkthat the 
lassi
al error bounds for radial basis fun
tion interpolation in thenonstationary setting are lo
al. This is not dire
tly stated in the literature,but 
an be read between the lines of the various proof te
hniques, e.g. [40, 27℄.In prin
iple, if the �ll distan
e h := h(X;
) of (1) is small enough, and iflo
al re
onstru
tion is to be done at some point x 2 
, one 
an 
on�ne the lo
alinterpolant to data at points xj with kx�xjk2 � 
h with a suitable 
onstant 
 >1. Thus the number of lo
ally required data points 
an be bounded independentof h for reasonably distributed data sets, but due to the nonstationary settingthe 
ondition will not be bounded above. However, the numeri
ally feasiblerange is mu
h larger than in global problems. In 
ases that are s
ale invariant(powers and thin{plate splines), there is no di�eren
e between the stationaryand nonstationary settings, and then the lo
al systems have no serious stabilityproblems.But, unfortunately, there is a subtle di�eren
e to the te
hniques of se
tion 5.In lo
al radial basis fun
tion interpolation as des
ribed by the lo
alized stan-dard 
onvergen
e analysis, the sele
tion of data points depends on a sele
tionof nearest neighbours of the evaluation point x, while in se
tion 5 we used pre-
omputed sele
tions based on neighbours of ea
h xk. The lo
al Lagrangians ofthe two 
ases will not be 
omparable, and the proof of lo
al 
onvergen
e ordersdoes not 
over the situation of se
tion 5. Furthermore, the lo
al interpolant in
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ase of radial basis fun
tions is a true linear 
ombination of the �(kx � xjk2)with kx � xjk2 � 
h, while in 
ase of se
tion 5 su
h fun
tions are multipliedwith the weight fun
tion. Thus, unfortunately, there is no easy way to 
arrystandard results on radial basis fun
tions over to this situation.9 Fully Lo
al Methods with Polynomial Repro-du
tionWe now look generally at lo
alized te
hniques in the sense of the previous se
-tion. We depart from radial basis fun
tions for a while and des
ribe a folkloreargument provingm{th order of 
onvergen
e for stable lo
al methods with lo
alreprodu
tion of polynomials of order up to m. At a point x 2 
 we want totake only a subset X(x) := fxj 2 X : kx � xjk2 � 
hg � X of the data set xwith �ll distan
e h as in (1), where 
 > 1 is a 
onstant. We simply assume thatwe have a linear lo
al pro
ess at x that is based on data X(x) and that lo
allyreprodu
es polynomials of order at most m. In parti
ular, we keep x �xed andwrite Rf (x) := Xxj2X(x) f(xj)uj(x) (8)with 
ertain real numbers uj(x) su
h thatRp(x) = p(x)holds for all polynomials p up to order m. Note that the reprodu
tion of poly-nomials is 
on�ned to the single point x. Now we assume that f has 
ontinuousderivatives up to order m around x, and thus the Taylor expansion Tx;f;m of fat x of order at most m satis�esjf(xj)� Tx;f;m(xj)j � Chmfor all xj 2 X(x), where C depends on 
 and the derivatives of f near x. Nowwe 
an bound the lo
al error viajf(x)� Rf (x)j = jTx;f;m(x) �Rf (x)j= jRTx;f;m(x) �Rf (x)j= ������ Xxj2X(x) (Tx;f;m(xj)� f(xj))uj(x)������� Chm Xxj2X(x) juj(x)j;and we see that the \Lebesgue 
onstants"L(x) := Xxj2X(x) juj(x)j



9 FULLY LOCAL METHODS WITH POLYNOMIAL REPRODUCTION16should be bounded independent of h, whi
h is the stability 
ondition we men-tioned at the outset.Let us look at simple examples �rst. For m = 1, we 
an get lo
al reprodu
tionof 
onstants by always pi
king the fun
tion value at the nearest neighbor. TheLebesgue 
onstant is 1. If f is 
ontinuously di�erentiable on 
, and be
ause anyx 2 
 has a nearest neighbour from X at distan
e at most h, we get a methodof order 1. The re
onstru
tion is pie
ewise 
onstant on the Diri
hlet tesselationindu
ed by X , though the tesselation is never a
tually 
al
ulated. For m = 2and if 
 is the 
onvex hull of X , we 
an use bary
entri
 
oordinates with respe
tto triangles 
ontaining x, taking the data at the verti
es. Any triangulation of
 via X will then lead to a pie
ewise linear and 
ontinous re
onstru
tion bylinear �nite elements. The Lebesgue 
onstant is 1 again.Natural neighbour interpolation is another 
ase �tting into this framework, Theoriginal version by Sibson [36, 37℄ is 
ontinuous and reprodu
es linear poly-nomials with Lebesgue 
onstant 1, while the C1 extension by Farin [11℄ evenreprodu
es quadrati
 polynomials.Of 
ourse, the general approa
h above 
an be 
ombined with radial basis fun
-tion te
hniques and a suÆ
iently large order m of polynomial reprodu
tion. Byan argument in [29℄, the quantity Xxj2X(x)u2j (x)
an be bounded above in all relevant 
ases, even in the nonstationary situa-tion. This is not pre
isely what we require for the above line of argumentation,but if the lo
al data sets X(x) 
onsist of O(1) points, whi
h is what we 
anassume for quasi{uniform data distributions, the Lebesgue 
onstants are uni-formly bounded. However, it always has to assume that the lo
al data do notallow a vanishing nontrivial polynomial of order m, and under this assumptionone 
an go ba
k to m{th order polynomials right away. This is why we do notpursue this setting any further.Here is a little digression. One is tempted to 
onsider the optimization problemNXj=1 juj(x)j = MinimumNXj=1 uj(x)x�j = x�; 0 � j�j < mto hope for a reasonable method with automati
 lo
alization near x. The stan-dard split of the variables uj(x) = u+j (x) � u�j (x) into nonnegative parts leads



9 FULLY LOCAL METHODS WITH POLYNOMIAL REPRODUCTION17to a linear programming problem of simple form. But due to reprodu
tion of
onstants via 1 = NXj=1(u+j (x) � u�j (x));we have NXj=1 u+j (x) � 1and the obje
tive fun
tion always satis�esMinimum = NXj=1(u+j (x) + u�j (x)) � 1:Thus for m = 2 all 
ases with interpolation via lo
al bary
entri
 
oordinatesin a triangle 
ontaining x will be optimal, irrespe
tive of the size or positionof the triangle. There is no automati
 sele
tion of lo
al neighbours via thisoptimization problem.Things are even worse when the point x is outside the 
onvex hull of the data.If the problem is solvable at all, linear programming tells us that there alwaysis an optimal solution based on three points for m = 2, and the solution mustbe determined by bary
entri
 
oordinates again, at least one of whi
h must nowbe negative. The optimum is attained for 
hoi
es of triangles where the sum ofnegative bary
entri
 
oordinates is minimal in absolute value. Closer inspe
tionreveals that those optimal triangles are geometri
ally awful, be
ause negativebary
entri
 
oordinates of a point x outside a triangle are small in absolutevalue, if the verti
es \antipodal" to x are far away from x.Similarly bad results are obtained if we repla
e the L1 obje
tive fun
tion by L2or L1, and we 
on
lude that optimal stability does not imply lo
ality, �nishingour digression.For upsampling of gridded data, there are simple and useful folklore formulaeobtainable via the arguments of this se
tion. For linear pre
ision, upsamplingat the midpoint of edges or at the 
enter of a square should use the arithmeti
mean of the data values. Again, we have Lebesgue 
onstants bounded by 1, andthe pro
ess will be of se
ond order in terms of the meshwidth. Of 
ourse, su
ha pro
ess yields the bilinear lo
al interpolant when started on four values atthe verti
es of a square and repeated inde�nitely. Note that though the orderis 2 for data from C2 fun
tions or surfa
es, the resulting fun
tion or surfa
ewill not be C2. S
hemes with quadrati
 pre
ision in two variables should use 6points in general. A simple re
ipe 
an be obtained from looking at quadrati
polynomials in Bernstein{B�ezier representation, but the result will not yield asmooth surfa
e.



10 MOVING LEAST SQUARES 1810 Moving Least SquaresThe examples above had the disadvantage that they generate surfa
es with littlesmoothness, be
ause the lo
al s
hemes depend on the evaluation point x andthe point sele
tion X(x) in a nontrivial and possibly non
ontinuous way. Wenow look at a general re
ipe that over
omes this drawba
k and allows arbitrarysmoothness and approximation order, at least in theory.For a �xed evaluation point x 2 
 we 
onsider the weighted least{squaresproblem Minimize NXj=1 (f(xj)� p(xj))2 �(kx� xjk2)over all polynomials p 2 IPm. Here, the weight fun
tion is a smooth nonnegativeradial basis fun
tion � with 
ompa
t support, and this is how the above problemturns out to be lo
alized. The resulting pro
ess, if well{de�ned, will reprodu
epolynomials up to order m, but we still have to write it in the form (8) andshow that the fun
tions uj 
ome out to be smooth.Sin
e the resulting linear system has a right{hand side that is a linear fun
tionof the data f(xj), we get (8) without further arguments, but we have to �nd arepresentation of the uj(x). To this end, we introdu
e self{explanatory matrixnotation to write the obje
tive fun
tion as kDxf � DxAak22 with a diagonalN �N matrix Dx having entries p�(kx� xjk2) and an N �Q matrix A withentries pk(xj) for a basis p1; : : : ; pQ of IPm. The solution ve
tor ax 2 IRQ withrespe
t to the data ve
tor f = (f(x1); : : : ; f(xN ))T is uniquely determined bythe system ATDxDxAax = ATDxDxf;provided that the 
oeÆ
ient matrix ATDxDxA has full rankQ � N . We assumethis for a moment, and we pro
eed to 
onstru
t a ve
tor u(x) 2 IRN su
h thatfor p(x) := (p1(x); : : : ; pQ(x))T we 
an write R(x) := aTx p(x) = u(x)T f . This iseasy, if we look at ATDxDxAv(x) = p(x)u(x) = DxDxAv(x) (9)and solve the �rst system for v(x), putting the solution into the se
ond equation.Thus we get ATu(x) = p(x) for free, whi
h is the polynomial reprodu
tionproperty at x. The entries of ATDxDxA areNXi=1 �(kx� xik2)pj(xi)pk(xi);and the matrix has full rank, if we de�neX(x) := fxj 2 X : �(kx � xik2) > 0g



10 MOVING LEAST SQUARES 19and assume that there is no nontrivial polynomial in IPm that vanishes on X(x).One 
an see 
learly how the weight fun
tion lo
alizes the least{squares problemif it is of 
ompa
t support, but the support must be large enough to host atleast a set of points near x that are in general position with respe
t to IPm.Sin
e we 
an write the re
onstru
tion in the form R(x) = uT (x)f without taking
are of the lo
alization expli
itly, we see from the system (9) that the smoothnessof the overall approximation is 
ompletely determined by the smoothness of theweight fun
tion. Thus we are left with the highly nontrivial problem of boundingthe Lebesgue 
onstants. A thorough treatment of this, giving all 
onstantsin expli
it form, is due to Wendland [39℄. Thus moving least squares are ate
hnique that satis�es all requirements: it is e�e
tive in the sense of se
tion 2,and it 
an produ
e surfa
es with any pres
ribed smoothness. However, in itsstandard form it is an approximation rather than an interpolation.One of the main 
omputational problems of moving least squares is the properdetermination of the lo
al point sele
tion X(x). In parti
ular, there may begreat variations in the data density, and these variations should be 
exiblyin
orporated into the algorithm. We propose to use all data points in a ballwith varying radius around the evaluation point x, i.e.X(x) := X \ BÆ(x)(x) := fxj 2 X : kx� xjk2 � Æ(x)gwhere Æ is a smooth fun
tion that is 
al
ulated beforehand, preferably by an-other moving least squares appproximation. For instan
e, one 
an generateO(N) regularly distributed points y1; : : : ; yN in the domain 
 and �nd a \good
al
ulation radius" Æj for X(yj) := BÆj (x) for ea
h of these points. Then Æ(x) is
onstru
ted via an intermediate moving least squares algorithm, and the resultis inserted into the a
tual surfa
e 
onstru
tion te
hnique.We �nish the paper with examples provided by R. Baule [1℄, illustrating theuse of a varying 
al
ulation radius. We pi
k the gla
ier data (N = 8345) fromR. Franke's website http://www.math.nps.navy.mil/~rfranke/, be
ause ithas a very inhomogeneous data distribution (see Figure 3). The main problemof any re
onstru
tion method is to produ
e good results where the data ares
ar
e, while keeping a good overall reprodu
tion quality of the data. Naiveand dire
t appli
ation of moving least squares 
an either result in a stair
aseor an overdose of smoothing (see Figures 4,5 and the examples from [39℄). Ifthe 
al
ulation radius varies as in Figure 6, one gets the mu
h more realisti
results of Figures 7 and 8. In fa
t, the L1 error on the data goes down from81 to 21 when variable radii are used. A further variation, not des
ribed herein detail, in
ludes interpolation via in�nite weights, and then we get the samevisual appearan
e as in Figure 8, but with zero error on the data.A
knowledgementSpe
ial thanks go to Rainer Baule and Holger Wendland for proofreading.
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