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Abstract—The problem of recovering translates and corre-
sponding amplitudes of sparse sums of Gaussians out of sampling
values as well as reconstructing sparse sums of exponentials are
nonlinear inverse problems that can be solved for example by
Prony’s method. Here, we want to demonstrate a new extension
to multivariate input data.

I. INTRODUCTION

Assume we only know equidistant measurements f(k), k =
0, . . . , N of the signal

f(x) =

M∑
j=1

cje
2πitjx, tj ∈ [0, 1], cj ∈ C. (1)

The task is to recover the parameters tj and the corresponding
coefficients cj . Methods that accomplish this include Super-
Resolution [1], Prony’s Method [4], ESPRIT [9], MUSIC [10],
Matrix-Pencil-Method [2] or the Annihilating Filter Method
for signals with finite rate of innovation [11], where all but
the first method can be seen as Prony-like methods [7].
The Prony method in one dimension works as follows. We
define a Prony polynomial

P (z) =

M∏
j=1

(z − e2πitj ) =

M∑
k=0

pkz
k

and observe

M∑
k=0

pkf(k +m) =

M∑
j=1

cje
2πitjm

M∑
k=0

pk(e2πitj )k (2)

=

M∑
j=1

cje
2πitjm P (e2πitj )︸ ︷︷ ︸

=0

= 0

for arbitrary shifts m. Thus, we have to solve the linear
problem Hp = (f(k + m))Mm,k=0(pk)Mk=0 = 0 in order to
find the coefficients pk of the monomial representation of the
Prony polynomial P (z). The roots e2πitj , j = 1, . . . ,M of this
polynomial carry the knowledge of the unknown parameters
tj . After extracting the parameters tj of the found roots, we

determine the coefficients cj as least square solution of the
Vandermonde-type system(

e2πitj(k+m)
)2M+1,M

`=0,j=1
(cj)

M
j=1 = (f(`))2M+1

`=0 .

If the 1-dimensional kernel K1,b(x) := e−bx
2

, b > 0 is
known beforehand, all above mentioned algorithms can also
be used to recover translates tj and corresponding coefficients
cj of a signal s(x), x ∈ R of the form

s(x) =

M∑
j=1

cje
−b(x−tj)2 =

M∑
j=1

cjK1,b(x− tj), (3)

x ∈ R, tj ∈ [0, 1], cj ∈ C,

from sufficiently many sampling values s(k), k = 0, . . . , N ,
if the data is transferred to the Fourier-domain [5].

In [1], it is demonstrated that Super-Resolution is also
applicable for multivariate signals, whereas for Prony-like
methods this can be done by reducing the problem to a number
of one-dimensional problems [8]. Thus, sums of multivariate
translates of a given function φ(x) can be recovered from
sampling points in the Fourier domain. By suitable projections
to lines through the origin this reconstruction problem can
be transferred to several separated one-dimensional recon-
struction problems of the form (1), see [8], [6]. In contrast,
we established a new, fully multidimensional Prony method
that operates completely in the spatial domain for recovering
multivariate translates tj ∈ [0, 1]d of

s(x) =

M∑
j=1

cje
−b(x−tj)T(x−tj), x ∈ Rd, tj ∈ [0, 1]d, cj ∈ C

=

M∑
j=1

cjKd,b(x− tj), Kd,b := e−bx
Tx

for the multivariate analogon of (3). Note that this approach
is restriction to Gaussians Kd,b(x), but this new approach
circumvents inherent problems of established multivariate
Prony methods that are caused by data-projections to one-
dimensional subspaces.



II. RECONSTRUCTION OF TRANSLATIONS OF
MULTIVARIATE GAUSSIANS

We define a multivariate Prony polynomial

P : Cd → R,

P (z) :=

N∑
k=0

pkz
nk , nk ∈ Ω ⊂ Nd. (4)

with roots e2btj , i.e. P (e2btj ) = 0, j = 1, ...,M . The set
Ω := {nk | k = 0, . . . , N} contains all exponents nk of the
multivariate monomials znk,1

1 · · · znk,d

d that are active in P (z).
For α(m,nk) := e2bn

T
km and qk := pkebn

T
k nk = Kd,b(nk),

with nk ∈ Ω ⊂ Nd and shifts m ∈ Nd we get
N∑
k=0

qks(nk +m)α(m,nk)

=

M∑
j=1

cj e−b(m−tj)
T(m−tj)︸ ︷︷ ︸

=Kd,b(m−tj)

·

·
N∑
k=0

qke−bn
T
k nk︸ ︷︷ ︸

=pk

e−2b(n
T
km−n

T
k tj) e2bn

T
km︸ ︷︷ ︸

=α(m,nk)

=

M∑
j=1

cjKd,b(m− tj)P (e2btj )︸ ︷︷ ︸
=0

= 0.

in analogy to the calculation in (2). Choosing the number of
sampling points N , the exponents nk in the Prony polynomial
and sampling point shifts m`, ` = 0, . . . , N suitably, we have
to compute the kernel

Hq = 0(
s(nk +m`)e

2bmT
` nk

)N
`,k=0

(pkKd,b(nk)−1︸ ︷︷ ︸
=qk

)Nk=0 = 0.

Once, we calculated the coefficients qk, we can evaluate the
coefficients pk of the Prony polynomial P (z). By construction,
the translates tj are contained in the (d− 1)-dimensional zero
set of P (z). Thus, we need to ensure by increasing N that the
dimension of the kernel of H is large enough, such that we
have sufficiently many different polynomials P (z) in order
to uniquely determine tj , j = 1, . . . ,M by intersecting the
corresponding zero sets.
Afterwards, the coefficients cj can be determined as a least
square solution of

(Kd,b(nk − tj))N,Mk=0,j=1(cj)
M
j=1 = (s(nk))Nk=0.

III. RECONSTRUCTION OF SUMS OF MULTIVARIATE
EXPONENTIALS

The method for translations of Gaussians applies directly
to sparse sums of multivariate exponentials, too. We now
consider a sparse sum of d-variate exponentials

f(x) =

M∑
j=1

cje
〈x,tj〉, x, tj ∈ Cd, cj ∈ C

and redefine the d-variate Prony polynomial P in (4) such that
P (etj ) = 0 for j = 1, . . . ,M with

P (etj ) :=

N∑
k=0

pk

d∏
`=1

(etj,`)nk,` =

N∑
k=0

pke〈nk,tj〉.

Applying the ideas of the previous section we observe that the
coefficients of the Prony polynomial satisfy the relation

N∑
k=0

pkf(nk +mk) =

M∑
j=1

cje
〈mk,tj〉

N∑
k=0

pke〈nk,tj〉

︸ ︷︷ ︸
=P (etj )=0

= 0.

Again, we have to choose N and nk,mk ∈ Cd properly and
compute the kernel Hp = 0, where

H := (f(nk +m`))
N
`,k=0, p := (pk)Nk=0.

Afterwards we construct the intersection of the zero-sets of
all polynomials P , whose coefficient vectors p are elements
of the kernel of H . When the parameters tj , j = 1, . . .M , are
known, we calculate the corresponding coefficients as a least
square solution of(

e〈nk,tj〉
)N,M
k=0,j=1

(cj)
M
j=1 = (f(nk))

N
k=0 .

Note that nk defines the sampling pattern. This is also the
case in the one-dimensional setting, although it is less obvious
there. In the one-dimensional case we expand the Prony
polynomial in the (full) monomial basis with exponents k =
0, . . . , N , which leads to equidistant sampling points f(k), as
we have seen at the one dimensional case in the introduction.
The set {nk | k = 0, . . . N} defines the active monomials in
the multivariate setting and therefor the sampling points here.
The same holds for the shifts mk ∈ Cd. In the one-
dimensional case these are numbers m = 0, . . . , N , so that
we can reuse some sampling points for the m-th row of H .
The more involved variant of reusing sampling points in the
multidimensional case is addressed in [3].

IV. ALGORITHMIC CONSIDERATIONS

Here, we have assumed that a multivariate polynomial
P (z) in (4) can be constructed if sampling points of the
above mentioned form are given. In [3], the authors establish
sufficient and necessary conditions for the number of input
data in order to ensure enough linearly independent polyno-
mial defining vectors in the kernel of H for recovering the
translates tj , j = 1, . . . ,M uniquely. Note that we have some
freedom in choosing the monomial exponents nk and the shifts
m`. For the purpose of understanding we give the following
example in the two-dimensional case d = 2, were we choose
nk = (bk/Nc, k mod N), mk = (0, k), k = 0, . . . ,M .

Algorithm for multivariate exponentials
Input: f(nk +m`), nk,m`, k, ` = 0, . . . , 2N

1) Calculate all vectors p in the kernel of H = (f(m` +
nk))N`,k=0 and construct the Polynomials P (z) =∑N
k=0 pkz

nk .



2) Find the common zeroes etj , j = 1, . . . ,M , of at least
d+ 1 Polynomials P (z).

3) Find a least square solution of the linear system
(e〈nk,tj〉)N,Mk=0,j=1(cj)

M
j=1 = (f(nk))Nk=0.

Output: M , tj , cj .

Algorithm for multivariate Gaussians
Input: s(nk +m`), nk,m`, k, ` = 0, . . . , 2N , b > 0

1) Calculate all vectors q in the kernel of H =
(s(nk +ml)e

2bmT
` nk)N`,k=0 and construct the polynomi-

als P (z) =
∑N
k=0(qke−bn

T
k nk)znk .

2) Find the common zeroes tj , j = 1, . . . ,M , of at least
d+ 1 polynomials P (z).

3) Find a least square solution of the linear system
(e−b(nk−tj)T(nk−tj))N,Mk=0,j=1(cj)

M
j=1 = (s(nk))Nk=0.

Output: M , tj , cj .

V. NUMERICAL EXAMPLE FOR TRANSLATES OF
GAUSSIANS

We set d = 2, M = 3, b = c1 = c2 = c3 = 1, and

t1 = e(1,0)
T

≈ (2.718, 1)T,

t2 = e(1,2)
T

≈ (2.718, 7.389)T,

t3 = e(−1,3)
T

≈ (0.368, 20.09)T,

and consider the function

s(x) =

3∑
j=1

e−(x−tj)
T(x−tj) =

3∑
j=1

K2,1(x− tj)

Let the Prony polynomial be defined via the exponents n0 =
(0, 0)T, n1 = (0, 1)T, n2 = (0, 2)T, n3 = (1, 0)T, n4 =
(1, 1)T, n0 = (2, 0)T and m` = (`, 0)T, ` = 0, . . . , 5. Now,
we construct the matrix

H =
(
s(nk +m`)e

2mT
` nk

)5
`,k=0

and find three linearly independent vectors q1, q2, q3 in the
kernel of H . In figure 1 we see the zeros sets of the Prony poly-
nomials whose coefficients are given by the vectors q1, q2, q3
depicted in blue, green, and black. We observe, that the zero
sets intersect just at the desired points t1, t2, t3, depicted as
red circles.

VI. CONCLUSION

For a linear combination of translates of a multivariate
Gaussian, we have presented a new algorithm that can recover
the multivariate translates tj ∈ [0, 1]d and the corresponding
coefficients cj ∈ C out of d-dimensional sampling points.
With a second algorithm we are able to recover parameters
tj ∈ Cd and corresponding coefficients cj ∈ C of a
multivariate exponentials sum. In contrast to already existing
multivariate Prony algorithms we present here an approach
that resolves the issue of required equally signed coefficients
(cj ∈ R+). Furthermore, this new approach is capable of re-
covering all parameters for an arbitrary (satisfying a minimal-
separation-condition) set of translates, whereas the methods in
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Fig. 1. The absolute values of the roots of three different two dimensional
Prony polynomials depicted in blue, green and black. The red circles indicate
the location of the shifts t1, t2, t3.

[8], [6] need adaptive further sampling after a preprocessing
step, based on an initial sampling process. These advantages
come at the price of calculating common zeros of multivariate
polynomials, which is a challenging task itself.
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