
Reproduction of Polynomials by Radial Basis FunctionsRobert SchabackAbstractFor radial basis function interpolation of scattered data in IRd,the approximative reproduction of high-degree polynomials is stud-ied. Results include uniform error bounds and convergence orders oncompact sets. x1. IntroductionWe consider interpolation of real-valued functions f de�ned on a set
 � IRd; d � 1. These functions are interpolated on a set X := fx1; : : : ; xNXgof NX � 1 pairwise distinct points x1; : : : ; xNX in 
. Interpolation is done bylinear combinations of translates �(x� xj ) of a single continuous real-valuedfunction � de�ned on IRd. For various reasons it is sometimes necessary toadd the space IPdm of d{variate polynomials of order not exceeding m to theinterpolating functions. Interpolation is uniquely possible under the require-ment If p 2 P dm satis�es p(xi) = 0 for all xi 2 X then p = 0; (1)and if � is conditionally positive de�nite of order m (see e.g. [8]):De�nition 1. A function � : IRd ! IR with �(�x) = �(x) is conditionallypositive de�nite of order m on IRd, if for all sets X = fx1; : : : ; xNXg � IRdwith NX distinct points and all vectors � := (�1; : : : ; �NX ) 2 IRNX withNXXj=1 �jp(xj ) = 0 for all p 2 IPdm (2)the quadratic form PNXj;k=1 �j�k�(xj � xk) attains nonnegative values andvanishes only if � = 0.We list a few examples where �(x) := �(kxk2) is truly radial:Multiquadrics �(r) = (c2 + r2)�=2 for � 2 IR>�d n 2ZZ and 2m > �,Thin-plate splines �(r) = r� for � 2 IR>0 n 2ZZ and 2m > �,Thin-plate splines �(r) = (�1)�=2+1r� log r for � 2 2IN, 2m > �,



2 Robert SchabackSobolew splines �(r) = 2�d=2�(k) Kk�d=2(r)(r=2)k�d=2 for k > d=2 andm � 0,using the Macdonalds (or modi�ed spherical Bessel) function K� ,Gaussians �(r) = e�cr2 for c > 0 and m � 0.There has been some discussion concerning the relative merits of theseradial basis functions. Gaussians and other integrable radial basis functionswere said to have \a severe disadvantage", because they are not exact onconstant functions [1, p. 93]. The other choices, especially multiquadrics, weresaid to be \far superior".On the other hand, Gaussians have an even better convergence behaviorthan multiquadrics, when used on scattered data (Madych/Nelson [6]) for c�xed. Thus it is questionable whether the advantage of a method must benecessarily tied to its polynomial reproduction properties. The link betweenconvergence orders and polynomial reproduction properties is clearly visiblein theories on grids that make use of Strang and Fix conditions (see the reviewby W. Light [3]), but it is not at all evident for interpolation of scattered dataon irregular domains. Exact reproduction may well be replaced by high-orderapproximation without any loss in theory and numerical practice.Numerical results indicate that radial basis function interpolation behavesvery well indeed on data from polynomials, provided that the centers are denseenough in and around the domain where the interpolant is evaluated. Toadd further support to this statement, this paper investigates the polynomialreproduction properties of radial basis function interpolation in the scattereddata case. x2. Spaces for Radial Basis FunctionsEach conditionally positive de�nite function � allows two constructionsof an inner-product space of functions. Both constructions are based on ideasof Madych and Nelson [4, 5], but we adopt the terminology of [8] here andomit details.The algebraic approach introduces a space F� by direct reference to theconditional positive de�niteness of � of order m. Functions of the formf�(x) = NXj=1 �j�(x � xj); (3)with (2) are in F� and have a norm kf�k2� = PNj;k=1 �j�k�(xj � xk). TheFourier transform approach makes use of the fact that all of the radial basisfunctions given in the introduction have a generalized Fourier transform inthe sense of tempered distributions, and the latter coincides with a positiveand continuous function ' on IRd n f0g in the sense of Jones [2]. In this paperwe assume the function ' to be continuous and positive on IRd n f0g, and tosatisfy the conditions j'(!)j � C � k!k�d�s0 ; ! 2 U;j'(!)j � c � e�
k!k2 ; ! =2 U;j'(!)j � c � k!k�d�s1 ; ! =2 U: (4)



Radial Basis Functions 3on a neighborhood U = KR(0) = fx j kxk2 < R; x 6= 0g of the originin IRd n f0g. Examples are compiled conveniently in [1] and [8], and we add'(!) = (1 + k!k22)�k for Sobolew radial basis functions of order k. Thisfunction, for instance, satis�es (4) for s0 = �d, s1 = 2k�d, and an arbitrary
 > 0 related to the radius R of the ball U .The Fourier transform approach introduces the scalar product(f; g)' := (2�)�d ZIRd f̂ (!)ĝ(!)'(!) d!and the space F' := ff : IRd ! IR �� f̂ 2 L1(IRd); kfk' <1g; (5)that occurs in [9] and dates back to a similar but di�erent space de�ned byMadych and Nelson [5], using a nonstandard theory of generalized functions.Functions of the form (3) with (2) for some m > s0=2 are also in F' and havea norm kf�k2' = (2�)�d ZIRd jf̂�(!)j2'(!) d! = kf�k2�:We �nally note that the Fourier transform approach adds IPdq to F' toperform interpolation, where q > s0=2 holds for the smallest possible s0 in(4). Reasons for this will become apparent later.x3. Approximation of PolynomialsWe shall now approximate polynomials by functions in the space F'of (5). First we represent the delta functional � by the sequence of goodfunctions 
k(!) = �k� �d=2 e�kk!k2 in the sense of Jones [2]. Then the gen-eralized derivative D�� for a multi-index � is represented by the sequenceD�
k, and the generalized Fourier transform of this sequence represents thepolynomial dD��(x) = (+ix)�. We now �x z and consider the test functionfk;�;z(x) := (i(x + z))�
̂k(x + z) = dD�
k(x + z) that satis�es �(fk;�;z) =fk;�;z(0) = (iz)�
̂k(z) = (iz)�e�kzk2=4k and converge to (iz)� for k ! 1,proving that the � functional is bounded on these functions when k !1. Weshall make use of this fact later. The functions fk;�;z(x) converge uniformlyto the polynomial (i(x + z))� on compact sets 
 � IRd, if k tends to in�nity.This is due to
̂k(u) = e�kuk2=4k = 1� kuk24k + kuk416k2 � � � � � 1� kuk24kfor all u 2 IRd. More precisely, for each � and each compact set 
 � IRd thereis a constant c0, independent of k 2 IN and x 2 
, such thatj(ix)� � fk;�;0(x)j � kxk24k (6)



4 Robert Schabackholds for all x 2 
 and all k 2 IN. In what follows, we shall use the symbolsc; c0; c1; : : : to denote generic constants which may di�er by certain factors,and we just state the variables that the constants do not depend on. Such\constants" may, however, depend on other variables that occur in the context,and these are mainly �, �, and 
.Now we assert that all the functions fk;�;z(x) are in the spaces F' forall radial basis functions that satisfy the basic assumptions (4).Lemma. Let the given radial basis function satisfy (4). Then there are pos-itive constants c1 and c2, independent of k and z, such thatjfk;�;zj2' = Z j dfk;�;z(!)j2'(!) d! � c1 � kj�j�s0=2 (7)holds for all z 2 IRd and all k � c2.Proof: By elementary calculations,dfk;�;z(!) = (2�)deihz;!iD�
k(!)= (2�)deihz;!i �k� �d=2D�e�kk!k2and we have to check these derivatives for k ! 1. Using Hermite polyno-mials Hn(x) de�ned here as Hn(x) = (�1)nex2=2Dne�x2=2, we �rst treat theunivariate case bydndxn e�x2=2 = (�1)nHn(x)e�x2=2 = (p2k)�n dnd!n e�k!2with x = !p2k, givingDne�k!2 = (p2k)n(�1)nHn(!p2k)e�k!2 :The multivariate case is a product of univariate cases, becauseD�e�kk!k2 = dYj=1 @�j@!�jj e�k!2j= dYj=1(p2k)�j (�1)�jH�j (!jp2k)e�k!2j= (�p2k)j�je�kk!k2H�(!p2k);where we de�ned a multivariate Hermite polynomial H�(z) = Qdj=1H�j (zj)for z 2 IRd; � 2 ZZd�0. Using (4), the integral of (7) on U is bounded bykd+j�j ZU k!kd+s0 � e�2kk!k2 � jH�(!p2k)j2d!



Radial Basis Functions 5up to constants which are independent of k and z. By transformation u =!p2k we get the boundkd+j�jk�d�s0=2 Zkuk�Rp2k kukd+s0e�kuk2 jH�(u)j2du � c � kj�j�s0=2:On the complement of U and for 2k > 
 we can use the bound jHn(x)j �c(n) � jxjn for Hermite polynomials Hn(x) for large arguments, and we �ndk2j�jkd Z 1R rd�1e
r2r2j�je�2kr2dr� c � k2j�jkd(2k � 
)(d+2j�j)=2 Z 1Rp2k�
 sd�1+2j�je�s2dswhich vanishes exponentially for k !1. Thus we �nally have (7) with con-stants that depend only on �, 
, d, ', and R, but not on z or k.The above argument proves that for s0 > 0 the delta functional is notcontinuous on F', because one can pick any � with 0 � j�j < s0=2 to getlimk!1 j�(fk;�;z)jkfk;�;zk' =1for all z 2 IRd n f0g. More generally,Theorem 1. A functional of the form�xf = f(x) � NXj=1 uj(x)f(xj ) (8)is bounded on F', i� it vanishes on all polynomials of degree less than s0=2.Proof: The functional is continuous if it vanishes on P dq (see [5], [9]). To provethe converse, assume �x to be bounded on F'. Thenlimk!1 j�xfk;�;zj � c(x) � limk!1 kfk;�;zk' = 0for all j�j < s0=2 and all z. On the other hand, by the molli�cation and (6),limk!1 �xfk;�;z = (i(x + z))� �Xj uj(x)(i(xj + z))�for all j�j < s0=2 and all z. But this means that �x must vanish on all poly-nomials of degree < s0=2 if it should be continuous on F'.Theorem 1 throws some light on the admissible values of q. It is possibleto de�ne the space F' of (5) with values of q that do not satisfy q > s0=2, but



6 Robert Schabackthis inequality is required to let the usual radial basis function interpolantsbe contained in F'. At the same time q > s0=2 ensures that functionals ofthe form (8) are continuous on F' if they are exact on P dq , and Theorem1 proves a partial result for the converse assertion, making reproduction oflow-degree polynomials a necessary condition for boundedness of the errorfunctional. The consequence is that one cannot use values of q that do notsatisfy q > s0=2 without throwing the interpolants out of F' or making theerror functional discontinuous on this space.Due to Theorem 1, there are two situations:1. For s0 =2 2IN, continuity of the error functional is equivalent to exactnesson IP dq for the smallest q > s0=2. This value of q yields the smallestpossible error bound.2. For s0 = 2k 2 2IN the necessary and su�cient conditions di�er. Exactnesson IP dq for any q > k is su�cient for continuity, and exactness on IP dq for allq � k is necessary. This gap occurs for thin{plate splines �(r) = r2k log r.Furthermore the proof of Theorem 1 now implies that interpolants frommultiquadrics �(kxk) =pc2 + kxk2 without addition of constant polynomialswill not lead to a bounded error functional on the space F'.On the space F' de�ned for thin-plate splines �(x) = kxk3, interpolationby multiquadrics will have an unbounded error, if linear polynomials are notadded to the multiquadrics.However, there can possibly exist larger and more interesting spaces thanF' that still contain the interpolants and may lead to error estimates inweaker norms. These spaces could possibly allow smaller values of q, but theyare still to be found.x4. Approximative Polynomial ReproductionWe use results concerning the approximation order of radial basis functioninterpolants [4, 5, 8]. For a given radial basis function � with a generalizedFourier transform coinciding with ' on IRdnf0g satisfying (4), a given compactset 
 � IRd and a given constant � > 0 there are positive constants c3 and c4such that for all �nite sets X = fx1; : : : ; xNXg � IRd of centers and all pointsx 2 
 with hX;�(x) := supky�xk2�� min1�j�NXky � xjk2 � c3 (9)the interpolation error of x is bounded by c4�kfk'hs1=2X;� (x), where s1 is deter-mined by ' at in�nity via (4). Here, the constants c3 and c4 are independentof x, X, and hX;�(x). With this (7) yieldsjfk;�;z(x) �Xj u�j (x)fk;�;z (xj )j2 � c � kj�j�s0=2 � hs1X;�(x) (10)for all z 2 IRd, where u�j (x) are optimal for �, and where c is independentof k; z;X, and x. This estimate interests us for j�j � s0=2, in order to prove



Radial Basis Functions 7something about the behaviour of optimal interpolation processes on high{degree polynomials. De�ning sX;k;�(x) := PNXj=1 u�j (x)fk;�;0(xj ) as a quasi-interpolant that is an interpolant to a molli�cation of the polynomial (ix)�,we get jfk;�;0(x) � sX;k;�(x)j2 � c5kj�j�s0=2 � hs1X;�(x)and add (6) to yieldjx� � (�i)j�jsX;k;�(x)j � c6k + c7kj�j=2�s0=4hs1=2X;� (x)with constants that are independent of k, X, and hX;�(X).This bounds the approximation error of a polynomial in the space ofradial basis function interpolants. Special approximations of the monomial x�are obtained here via interpolation of the test functions fk;�;0 that uniformlyconverge to x� on compact sets at the rate O(k�1) for k ! 1. The errordepends on the centers X and their local density hX;�(x) at x, of course, butalso on the free parameter k that controls the molli�cation.We now tie k to hX;�(x) by making the two terms in the error boundapproximately equal, and we are interested in the convergence rate of the errorfor centers X with densities hX;�(x) tending to zero. This is done by choosingk � hX;�(x)�s1=(2+j�j�s0=2) which tends to in�nity for hX;�(x) tending tozero, whenever the inequalities j�j > s0=2 � 2; s1 > 0 hold. Under theseconditions, we �nally havejx� � (�i)j�jsX;k;�(x)j � c7(hX;�(x))s1=(2+j�j�s0=2) (11)for all sets X of centers and all points x 2 
 satisfying (9), and with aconstant c7 that is independent of x, X, and hX;�(x). From (11) we can reado� a number of statements:Theorem 2. In the space F' generated by any of the usual radial basisfunctions �, polynomials are dense with respect to uniform convergence oncompact sets. Polynomials of degree less than s0=2 must necessarily be ex-actly reproduced to make error functionals of the form (8) continuous on F'.Polynomials of degree n � s0=2 can be approximated on compact sets byinterpolants of certain molli�cations of themselves with a guaranteed uniformconvergence rate that depends on the radial basis function and on the localdensity hX;� of the set X of centers. For hX;�(x) ! 0 the convergence orderin terms of hX;� is s1=(2 + n� s0=2) with the following special implications:1. For multiquadrics, inverse multiquadrics, and Gaussians with �xed pa-rameters c, the convergence order is arbitrarily large.2. For thin-plate splines with parameter �, the order is at least �=(2 + n��=2).3. For splines in Sobolew spaces of order k, the approximation order is atleast k=(2 + n� k=2).Proof: For the last three statements we simply use the appropriate values ofs0 and s1.
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