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Abstract

For radial basis function interpolation of scattered data in IR,
the approximative reproduction of high-degree polynomials is stud-
ied. Results include uniform error bounds and convergence orders on
compact sets.

§1. Introduction

We consider interpolation of real-valued functions f defined on a set
Q CR? d > 1. These functions are interpolated on a set X := {z1,...,aN }
of Nx > 1 pairwise distinct points x1,...,xn, 1n 2. Interpolation is done by
linear combinations of translates ®(z — x;) of a single continuous real-valued
function ® defined on IR?. For various reasons it is sometimes necessary to
add the space IPgl of d—variate polynomials of order not exceeding m to the
interpolating functions. Interpolation is uniquely possible under the require-
ment

If p € PY satisfies p(x;) = 0 for all 2; € X then p = 0, (1)
and if @ is conditionally positive definite of order m (see e.g. [8]):
Definition 1. A function ® : R® — R with ®(—x) = ®(x) is conditionally

positive definite of order m on IR?, if for all sets X = {z1,...,an} C R?
with Nx distinct points and all vectors « := (a1, ..., Ny ) € RN with
Nx
Zajp(xj):() for all p € P?, (2)
j=1

the quadratic form Ej\’f,le ajar®(x; — xp) attains nonnegative values and
vanishes only if a = 0.

We list a few examples where ®(x) := ¢(||z]|2) is truly radial:

Multiquadrics ¢(r) = (2 4+ 1r2)3/2 for 3 € Rs_q \ 2Z and 2m > 3,
Thin-plate splines ¢(r) = r® for 3 € R \ 2Z and 2m > 3,
Thin-plate splines é(r) = (—=1)/2*1+Flogr for B € 2IN, 2m > 3,
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Sobolew splines ¢(r) = %K,@_d/z(r)(r/Z)k_d/z for k > d/2 and m > 0,
using the Macdonalds (or modified spherical Bessel) function K,

Gaussians ¢(r) = e for ¢ > 0 and m > 0.

There has been some discussion concerning the relative merits of these
radial basis functions. Gaussians and other integrable radial basis functions
were said to have “a severe disadvantage”, because they are not exact on
constant functions [1, p. 93]. The other choices, especially multiquadrics, were
said to be “far superior”.

On the other hand, Gaussians have an even better convergence behavior
than multiquadrics, when used on scattered data (Madych/Nelson [6]) for ¢
fixed. Thus it is questionable whether the advantage of a method must be
necessarily tied to its polynomial reproduction properties. The link between
convergence orders and polynomial reproduction properties is clearly visible
in theories on grids that make use of Strang and Fix conditions (see the review
by W. Light [3]), but it is not at all evident for interpolation of scattered data
on irregular domains. Exact reproduction may well be replaced by high-order
approximation without any loss in theory and numerical practice.

Numerical results indicate that radial basis function interpolation behaves
very well indeed on data from polynomials, provided that the centers are dense
enough in and around the domain where the interpolant is evaluated. To
add further support to this statement, this paper investigates the polynomial
reproduction properties of radial basis function interpolation in the scattered
data case.

62. Spaces for Radial Basis Functions

Each conditionally positive definite function ® allows two constructions
of an inner-product space of functions. Both constructions are based on ideas
of Madych and Nelson [4, 5], but we adopt the terminology of [8] here and
omit details.

The algebraic approach introduces a space Fg by direct reference to the
conditional positive definiteness of ® of order m. Functions of the form

N
folz) =) a;j®(x —xy), (3)
j=1
with (2) are in Fg and have a norm ||fo]|3 = ka:l ajor®(x; — ). The
Fourier transform approach makes use of the fact that all of the radial basis
functions given in the introduction have a generalized Fourier transform in
the sense of tempered distributions, and the latter coincides with a positive
and continuous function » on R?\ {0} in the sense of Jones [2]. In this paper
we assume the function ¢ to be continuous and positive on R*\ {0}, and to
satisfy the conditions

lp(w)] > C - w]| =4 w e,
lp(w)] > c-e Ml e T, (4)
lp(w)] < e [lwl|797= w ¢ U.
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on a neighborhood U = Kg(0) = {z | ||z|2 < R, = # 0} of the origin
in R\ {0}. Examples are compiled conveniently in [1] and [8], and we add
elw) = (1 4+ ||w||§)_k for Sobolew radial basis functions of order k. This
function, for instance, satisfies (4) for s9 = —d, s = 2k —d, and an arbitrary
~ > 0 related to the radius R of the ball U.

The Fourier transform approach introduces the scalar product

i [ H
R

and the space
Foi= {f:RdHR‘JEELl(Rd)a | fllo < oo}, (3)

that occurs in [9] and dates back to a similar but different space defined by
Madych and Nelson [5], using a nonstandard theory of generalized functions.
Functions of the form (3) with (2) for some m > s¢/2 are also in F, and have
a norm

~

Il = 2my? [y,

We finally note that the Fourier transform approach adds IPZ to F, to
perform interpolation, where ¢ > s¢/2 holds for the smallest possible sq in
(4). Reasons for this will become apparent later.

§3. Approximation of Polynomials

We shall now approximate polynomials by functions in the space F,
of (5). First we represent the delta functional 6 by the sequence of good

d/2 5
k > o=kl

functions vi(w) = in the sense of Jones [2]. Then the gen-

eralized derivative D?¢ for a multi-index « is represented by the sequence
D%, and the generalized Fourier transform of this sequence represents the

.

polynomial D¥é(x) = (+ix)®. We now fix z and consider the test function
fra:(2) == (e(x 4+ 2))*k(x + z) = Dyi(x + z) that satisfies 6(fra,.) =
fr,a,-(0) = (22)*k(2) = (iz)ae_||z||2/4k and converge to (1z)® for k — oo,
proving that the 6 functional is bounded on these functions when k£ — co. We

shall make use of this fact later. The functions fj o .(z) converge uniformly

to the polynomial (i(z 4+ 2))® on compact sets @ C R?, if k tends to infinity.

This is due to
[lu]”

4k

=

Sulu) = e-Ili?ak =g [l

iy +16k2 4> 1—

for all u € RY. More precisely, for each a and each compact set @ € IR? there
is a constant ¢y, independent of £ € IN and x € (2, such that

]

()" ~ frap(@)] < 1] (©)
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holds for all z € Q and all ¥ € IN. In what follows, we shall use the symbols
¢,¢o,C1,... to denote generic constants which may differ by certain factors,
and we just state the variables that the constants do not depend on. Such
“constants” may, however, depend on other variables that occur in the context,
and these are mainly «, ®, and 2.

Now we assert that all the functions fi  .(x) are in the spaces F for
all radial basis functions that satisfy the basic assumptions (4).

Lemma. Let the given radial basis function satisfy (4). Then there are pos-
itive constants ¢y and cs, independent of k and z, such that

2 2
|fk,a,z|fo = / % dw < ¢ - klol=s0/2 (7)

holds for all z € R? and all k > ¢5.

Proof: By elementary calculations,
f;,;,z(w) = (27r)dei<Z,W>Da,yk(w)
4 d/

= (27T)de’<z’w> <§ >

and we have to check these derivatives for & — oo. Using Hermite polyno-
K 2 2

mials H,(x) defined here as H,(z) = (—1)"e" /2D"e=*" /2 we first treat the

univariate case by

2 2
Do klll

dci—n" e—x2/2 — (_1)an(x)e—I2/2 — (\/ﬂ)—n ch:n e—kw2
with © = wV2k, giving
D" e k" = (V) (—1)" Hp(wV/2k)e ¥

The multivariate case is a product of univariate cases, because

_ 2 O g2
Do e—kllel” 8aj o ke
W .
=1 J

= TL(V2R) (=1)% Ho, (0;v2R)e™
= (—V2k)lele=FIl® B (wv/2E),

where we defined a multivariate Hermite polynomial H,(z) = Hle Hq, (z5)
for z € R, o € Zéo- Using (4), the integral of (7) on U is bounded by

kd+|a|/ ][50+ =200 B (0o/2R) 2o
U
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up to constants which are independent of k£ and z. By transformation u =
wV2k we get the bound

kd+|a|k—d—80/2/ ||u||d+806_”u”2|Ha(u)|2du S c- k|a|—80/2‘
[l <RV2K

On the complement of U and for 2k > ~ we can use the bound |H,(z)| <
e(n) - |z|™ for Hermite polynomials H,(x) for large arguments, and we find

oo

2 Cop2

k2|a|kd/ pd=177 r2|a|e 2kr dr
R

k2lelgd /Oo d—142|a| —s"
<ec- s “le™% ds
(2k — 2D Jp iy

which vanishes exponentially for & — oo. Thus we finally have (7) with con-
stants that depend only on «, 2., d, ¢, and R, but not on z or k. B

The above argument proves that for s > 0 the delta functional is not
continuous on F, because one can pick any a with 0 < |a| < s0/2 to get

|6(fk,oz,2)|

lim

= oo
k—oo [[fhaz
for all z € R"\ {0}. More generally,
Theorem 1. A functional of the form
N
eof = fla) =Y uja)fla;) (8)
j=1

is bounded on F, iff it vanishes on all polynomials of degree less than s /2.

Proof: The functional is continuous if it vanishes on qu (see [5], [9]). To prove
the converse, assume €, to be bounded on F,. Then

T Jerfin o] < o) i [ Fr oo =0
for all |a| < s9/2 and all z. On the other hand, by the mollification and (6),

B € e = (e +2)° = Y uie)ile; +2)°
j
for all |a| < s9/2 and all z. But this means that €, must vanish on all poly-

nomials of degree < s/2 if it should be continuous on F . H

Theorem 1 throws some light on the admissible values of ¢. It is possible
to define the space F, of (5) with values of ¢ that do not satisfy ¢ > s¢/2, but
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this inequality is required to let the usual radial basis function interpolants
be contained in F,. At the same time ¢ > s¢/2 ensures that functionals of
the form (8) are continuous on F, if they are exact on qu, and Theorem
1 proves a partial result for the converse assertion, making reproduction of
low-degree polynomials a necessary condition for boundedness of the error
functional. The consequence is that one cannot use values of ¢ that do not
satisfy ¢ > so/2 without throwing the interpolants out of F, or making the
error functional discontinuous on this space.

Due to Theorem 1, there are two situations:

1. For sy ¢ 2IN, continuity of the error functional is equivalent to exactness
on qu for the smallest ¢ > s¢/2. This value of ¢ yields the smallest
possible error bound.

2. For sg = 2k € 2IN the necessary and sufficient conditions differ. Exactness
on qu for any ¢ > k is sufficient for continuity, and exactness on qu for all

q < k is necessary. This gap occurs for thin—plate splines ¢(r) = % log r.

Furthermore the proof of Theorem 1 now implies that interpolants from
multiquadrics ®(||z||) = v/ + ||||? without addition of constant polynomials
will not lead to a bounded error functional on the space F,.

On the space F,, defined for thin-plate splines ®(x) = ||z||*, interpolation
by multiquadrics will have an unbounded error, if linear polynomials are not
added to the multiquadrics.

However, there can possibly exist larger and more interesting spaces than
F, that still contain the interpolants and may lead to error estimates in
weaker norms. These spaces could possibly allow smaller values of ¢, but they
are still to be found.

64. Approximative Polynomial Reproduction

We use results concerning the approximation order of radial basis function
interpolants [4, 5, 8]. For a given radial basis function ® with a generalized
Fourier transform coinciding with ¢ on R\ {0} satisfying (4), a given compact
set  C R? and a given constant p > 0 there are positive constants cs and ¢4
such that for all finite sets X = {ay1,..., 2y} C R? of centers and all points
x € ) with

hx plx) : ||y_sﬁ||p291§?§?vx||y zjll2 < cs (9)

the interpolation error of x is bounded by ¢y - ||f||¢h§(°°p/2(:1;), where s, is deter-

mined by ¢ at infinity via (4). Here, the constants ¢z and ¢4 are independent

of v, X, and hx ,(x). With this (7) yields

[Fras(@) = Y ui(@)fras(a)P < e Rl i (a) (10)

J

for all z € IR?, where u}‘(:z;) are optimal for ®, and where ¢ is independent
of k,z, X, and z. This estimate interests us for |a| > s¢/2, in order to prove
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something about the behaviour of optimal interpolation processes on high—
degree polynomials. Defining sx y o(z) 1= EjV:Xl u;f(:zj)fk,a,o(xj) as a quasi-
interpolant that is an interpolant to a mollification of the polynomial (¢2)®,
we get

[ra0(@) = sxka(@)]? < eskl®lmso/2 5 ()

and add (6) to yield
I Le) C o —S0 Soo
2% = (=)l x pa(@)] < 5+ erblel/2m ol 2 )

with constants that are independent of k, X, and hx ,(X).

This bounds the approximation error of a polynomial in the space of
radial basis function interpolants. Special approximations of the monomial
are obtained here via interpolation of the test functions fi o0 that uniformly
converge to ® on compact sets at the rate O(k~!) for & — oo. The error
depends on the centers X and their local density hx ,(z) at x, of course, but
also on the free parameter k that controls the mollification.

We now tie k to hy ,(z) by making the two terms in the error bound
approximately equal, and we are interested in the convergence rate of the error
for centers X with densities hx ,(z) tending to zero. This is done by choosing
ko~ hx p(x) % /2+lal=50/2) wwhich tends to infinity for hx ,(x) tending to
zero, whenever the inequalities |a| > s0/2 — 2, so > 0 hold. Under these
conditions, we finally have

o = (=)lsx pa(@)] < erllix pa)) =/ EHlalmee/2 (11)

for all sets X of centers and all points © € Q satisfying (9), and with a
constant ¢; that is independent of z, X, and hx ,(z). From (11) we can read
off a number of statements:

Theorem 2. In the space F, generated by any of the usual radial basis
functions ®, polynomials are dense with respect to uniform convergence on
compact sets. Polynomials of degree less than sy/2 must necessarily be ex-
actly reproduced to make error functionals of the form (8) continuous on F .
Polynomials of degree n > s¢/2 can be approximated on compact sets by
interpolants of certain mollifications of themselves with a guaranteed uniform
convergence rate that depends on the radial basis function and on the local
density hx, , of the set X of centers. For hx ,(x) — 0 the convergence order
in terms of hx , 1S Soo /(2 + 1 — 59 /2) with the following special implications:

1. For multiquadrics, inverse multiquadrics, and Gaussians with fixed pa-
rameters ¢, the convergence order is arbitrarily large.

2. For thin-plate splines with parameter (3, the order is at least 3/(2 +n —
3/2).

3. For splines in Sobolew spaces of order k, the approximation order is at

least k/(24+n —k/2).

Proof: For the last three statements we simply use the appropriate values of
so and so.. 1
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