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Abstract: With a suitable modification at the endpoints of the range, quasi-interpolation
with univariate multiquadrics ¢(x) = V¢ + 22 is shown to preserve convexity and monotonic-
ity. If h is the maximum distance of centres, convergence of the quasi—interpolant is of order
O(R*|log h]) if ¢ = O(h). The log term can not be removed by introducing different boundary
conditions or special placements of the centres.
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1 Introduction
Quasi-interpolation of a function f : [a,b] — IR with multiquadrics on the scattered points

a=r9<x1<...<x,=0b h:= max(x; —xi_1) (1.1)
1<i<n

has the form

(Mp)(w) = ) Flw;)i(w), (12)

where 1;(x) are linear combinations of the multiquadrics

0j(x) =y + (& —2))* (1.3)

These functions were proposed by Hardy (1971), and they performed well in many calcalcula-
tions including the numerical experiments that were reported by Franke (1980). The existence
of the solution of the associated interpolation problem was shown by Micchelli (1986), while
Buhmann (1988) discussed the accuracy of quasi-interpolation for infinite regular grid data.

Error estimates for the interpolation of scattered data in IR¥ were proven by Madych and
Nelson (1990) and Wu and Schaback (1990) for a restricted class of interpolated functions f,
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while Beatson and Powell (1990) derived general error bounds of type O(h*logh) for quasi-
interpolation to univariate scattered data from C? functions.

Since v¢? 4+ 22 tends to || as ¢ tends to zero, and radial basis interpolation (as well as quasi—
interpolation) based on || is piecewise linear interpolation, the shape—preserving properties
of piecewise linear interpolation can be expected to hold for quasi-interpolation with multi-
quadrics, too. In the next section we show that the quasi—interpolation operator £¢ of Beatson
and Powell (1990) is indeed convexity preserving. It requires the derivatives of the function f
at the endpoints. In section 3 we give a quasi—interpolation (denoted as Lp) based on the data
{f(2%)}"_, only, and show that Lp preserves convexity, linearity, and monotonicity. Beatson
and Powell (1990) proved that the accuracy of L¢ is O(h?logh) if ¢ varies as ¢ = O(h). In

section 4 we shall show a similar error bound for £p, employing a different proof technique.

2 The convexity preserving property of L,

For f € C'[zg, z,] the quasi-interpolation operator L¢ of Beatson and Powell (1990) is defined
as

(Lef) (@) = foro(x) + folo(x +Zfﬂ/)] )+ fuBu(@) + frym(2) (2.1)

where ¢; are defined in (1.3) and
¢i1(z) — ¢i(z)  ¢i(x) — ¢jmi(a)

2241 — ;) 2w — )

i) = 1<j<n-—1, (2.2)

Bolx) = % n ¢12((221_—i00()x)’ Ba(z) = % + —(57{; — f:f)) (2.3)
Bo(e) = 5 (2 20) = & ofa), ule) = 5 bule) = 5 (2 — ) (2.4

fi=Ffla;), 0<j<n, fi=f(x),i=0,n.

Theorem 1: If the data {f(2)} =g, f'(x0), f'(%,) stem from a convex (concave, linear)
function f € C*wo,z,], then L¢ f(z) is a convex (concave, linear) function.

Proof. Using

oi(x) = >0 (2.5)

and (2.1) to (2.4) we can write (Lcf)" (z) as
(Lef)'(x) = forg(e)+ foby(x) +

bo(@) ) L ¢y () —

M

Fi (2) + fuB(2) + firn (@)

—0ile) | g dale) ) o

~— .
Il

+ Jo

= fO + fa

2 2(21 — o) 2(xn — Tn1)
L Z ()= 6r  bi(x) = o) (a)
2 e Tjt1 — T, Tj— Tjo1



L[ fi—fo ] . VS fi—f fi—fia]
1 Ee RO R D Il o
Lo j=1 Latt Ty a7t (2.6)
o[- 2t

If the data {f(x;)}i_o, f(@0), f'(x,) stem from a convex function f, all the terms in square
brackets of (2.6) are nonnegative. The other cases are similar. O

The quasi-interpolation operators L4 and Lz by Beatson and Powell (1990) do not contain
linear functions, and therefore they cannot preserve both linearity and convexity.
3 The shape preserving properties of Lp

The quasi—interpolation operator L¢ of (2.1) requires derivatives of f at endpoints. It is not
very convenient for practical purposes. Therefore we define a new quasi-interpolation operator
Lp as

(Lo f)(x) = foao(x) + fron(w +Zfﬂ/h )+ focran-a(z) + fran(z) (3.1)

where
_ 1 (@) — (2 — w) _ ¢2(x) —¢i(x)  dilx) — (¢ — @)
ao(x) = 2 + 20y —xo) () = 2(xy — x1) B 2(x1 — x0)
_ (0 —7) = dui(x)  Pui(x) — du2(®) Po1(z) — (x4 — 7)
an-1() = 2(xn — Tpo1) B 2xp1 — Tpoz) n(w) = 2 + 2(xn — po1)
(3.2)
Then
(Lof)'(z) = foag(x)+ fay(x) + Zf] )+ famrag,_ (@) + fuag (2)
= (3.3)
"1 [fiii_xi—iiiiiﬂ o
proves

Theorem 2: If the data {f(z;) "_o stem from a convex (concave, linear) function, then the

quasi—interpolant Lp f(x) as defined by (3.1) and (3.2) is a convex (concave, linear) function.
O

The first order derivative of ¢(x) is x- (02+:1:2)_1/2. [t is monotonic because of (2.5) and satisfies

lim ¢'(z) = +1. (3.4)

r—too

Thus, for all x € IR,
C1<e) < d (o) < 1. (3.5)



The derivative of (Lp f)(x) can be calculated as

$1(z) =1 ¢h(x) — ¢i(x)  di(a) —
2(x1 — x0) Jot [ 2(xy — 1) 2(xy — :1;0)} h

(Lpf)(z)

_I_Z [ (@ (/5;‘(“’) ~ 9i(@) = ¢l (@) ] I

Tjt1 — Tj— Tj-1

+[_21(;¢—n;ﬁ)) - 2_(;(35_)1_—3; 2() )] froa [%] fr 50

_ (2( 41 )> (fy — fo) +Z ( ‘7;1() )>(fj+1—fj)

T4 — o) 2(2 41

s (21(”5_—”)) (o= for)

If the data {f;}7_, satisfy f; < f;jy1 then all the terms are nonnegative. This proves
Theorem 3: The quasi-interpolation Lp is monotonicity preserving. O

Remark. Comparison of (2.6) and (3.3) shows that Lc is just a Hermite-Birkhoff variation
of ,CD. O

4 The accuracy of the quasi—interpolation Lp

The results of Beatson and Powell (1990) suggest a O(h?|logh|) behaviour of the error of
quasi—interpolation by multiquadrics, if ¢(h) = O(h). Their proof technique, however, can
not be directly generalized to the case considered here, because the basis functions of Lp are
not generally positive (consider xog — x1 for ¢ > 0 in aq(x) of (3.2)). A rather simple direct
technique will be applied to get, as can be expected,

Theorem 4. For f € C?[a,b] the quasi-interpolant Lp f defined by (3.1) on the points (1.1)
satiesfies an error estimate of type

1f = Lpflloo < Kih*+ Kych + Ksc*log h
for h — 0 with suitable positive constants Ky, K5, and K3, independent of h and c.

Proof. The quasi-interpolation operator L£p can be rearranged as

n—1

(’CDf Z ¢] $]+1 R 1)A2($]‘_1, Ly, xj-l-l)f + fO + fn—l'

=1

v = wo) AN (w0, 21) f — (wn — w)ANnor, ) f

with divided differences A' and A? of first and second order, respectively. The difference to
the piecewise linear interpolant L[ of f then is

)_l

n—

2Lpf — L) =) (di(x) = o — 2 )i — 2jm) A (@)1, 25, 2540) f. (4.1)

7=1



and we want to bound the function

—

0<ple) = S (65(x) — o — ;)@ — 2jo)

(Ve + o=z = |z =2 (@i —zj)

1

n—
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Splitting the sum in one part with |z — a;| < h and the rest, the two estimates

\/C2+y2_|y| S c, & Z 07 Yy Z 0
c
Vel+y—ly < =—, ¢ >0, y > 0

2ly|’
are applied to get
n—1 02 n—1 r r
o il e i
S‘Q(x) < ¢ 21: (l']-l—l x]—l) + 9 21: |$ _ $j|
J= J=
lz—zj|<h lz—z5|>A

1
< 80h—l—02</ 7dt—|—(’)(h)>,
e—ti>n 12— 1]

because at most four of the x; remain in the first sum and the second sum is a O(h) approxi-
mation to the integral. Consequently,

o(x) < 8ch + (’)(02 log h) + (’)(czh),
and this proves the assertion. a

Corollary. The quasi-interpolant L£pf can have an O(h?) error only if at least ¢2|log ¢| =
O(R?).

Proof. Due to (4.1) and the O(h?) convergence of Lf, it suffices to bound ¢(z) from below
for small ¢ tending to zero for A — 0. For this we use
y v
1—|—y—12§—zf0r|y|§y0>0

and keep only the terms of ¢(z) with |z — x;| > cys'. Then

n—1
1 c? 1 ct
ple) = (wsss =500 )

v—a| 2 |r—a,?

and this sum has the behaviour

9 1 ct 1
c dr— < L w) it omy
|1’—t|2cy0—1 |$ - t| 2 |1’—t|2cy0—1 |$ - t|




which is dominated by ¢*|log c| as a function of ¢. If ¢ > ¢y > 0, the function ¢ will asymptot-
ically have the lower bound

b
2/( A4 (x—1)? — |z —t])dt > 0. 0

Remark. The technique of this paper clearly shows that no improvement towards O(h?)
convergence is possible just by changes of end conditions or knot placements, provided that the
p;(x) are used in the interior of the domain.

5 References

R.K. Beatson and M.J.D. Powell (1990). Univariate multiquadric approximation: quasi—
interpolation to scattered data. DAMTP 1990 / NAT7, University of Cambridge

M.D. Buhmann (1988). Multivariate interpolation with radial basis functions. Report DAMTP
1988/NAS8. University of Cambridge

R. Franke (1982). Scattered data interpolation: tests of some methods. Math. Comp., Vol.
38, pp. 181-200

R.L. Hardy (1971). Multiquadric equations of topography and other irregular surfaces. J.
Geophysical Res., Vol. 76, pp. 1905-1915

Madych, W.R.; and Nelson, S.A., Error Bounds for Multiquadric Interpolation, in: C.K. Chui,
L.L. Schumaker, and J.D. Ward (eds.), Approximation Theory VI, Vol. 2, 413-416

C.A. Micchelli (1986). Interpolation of scattered data: distance matrices and conditionally
positive definite functions. Constr. App., Vol. 2, pp 11-22

Z. Wu and R. Schaback: Local Errror Estimates for Radial Basis Function Interpolation of
Scattered Data, Preprint

Author’s addresses:
Zong-min Wu, Dept. of Mathematics
Fudan University, Shanghai, China

Robert Schaback, Institut fiir Numerische
und Angewandte Mathematik

Universitat Gottingen

Lotzestr. 16-18

D - 3400 Gottingen



