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Special Techniques for Kernel-Based Reconstruction of
Functions from Meshless Data

R. Schaback(1)

Abstract: Here are three short stories on meshless methods using kernel techniques:

• Any well–posed linear problem in the native spaceNΦ of a symmetric (strictly)
positive definite kernelΦ can be successfully solved by symmetric meshless collo-
cation. This applies to a large variety of standard linear PDE problems.

• Relaxing interpolation conditions by allowing some small absolute error can signif-
icantly reduce the complexity of meshless techniques, in particular in conjunction
with greedy methods and learning algorithms.

• The instability phenomena of badly scaled meshless techniques for smooth kernels
can be overcome by an unexpected link to multivariate polynomial interpolation. In
particular, there is a preconditioning technique that completely removes the insta-
bility in the limit and has a surprisingly simple form, separating the scale informa-
tion from the geometric information.

Since the readers can be assumed to be familiar with basic notions of meshless meth-
ods, and since detailed presentations are given in the references, it suffices to give a com-
mented overview and suggestions for future research.

1 Short Story on Meshless Kernel Collocation

We assert here that all reasonable analytic problems can in principle be solved numerically
by meshless symmetric collocation using smooth positive definite kernels.
Assume that a user has to find a functionu that solves a very general analytic problem of
the form

Li(u) = fi on some setΩi ⊂ IRd, 1≤ i ≤ K (1)

where the linear operatorsLi may be of any type. Note that the Poisson problem and many,
many others take this form for a mixed choice of operators within (parts of) domains and
(parts of) boundaries. Assume further that there is a (strictly) positive definite [11, 13, 10]
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kernelΦ(x,y) onIRd which is smooth enough such that all kernelsΦLi (x,y) := Lx
i L

y
i Φ(x,y)

are continuous onΩi and such that all linear functionalsδxLi are in the dualN ∗
Φ of the

native [4, 5] spaceNΦ of Φ. In notations likeLx
i L

y
i Φ(x,y) we use the upper index to

denote the variable on which the operator acts. Observe that the GaussianΦ(x,y) =
exp(−‖x− y‖22) is a radial basis function that satisfies these assumptions for almost all
reasonable linear operators.
If we put all data of (1) simultaneously into a single problem, we have to reconstruct a
functionu from its given data

λ(u) ∈ IR, λ ∈ Λ⊆N ∗
Φ . (2)

whereλ varies over an uncountably infinite setΛ ⊂ N ∗
Φ of linear functionals. The sym-

metric collocation technique of Z.M. Wu [14] then approximatesu by linear combinations
of functionsλxΦ(x, ·) whereλ varies over a finite subset ofΛ. Note that we distinguish
this technique from the unsymmetric collocation method of Ed Kansa [3].

Theorem. [8] If there is some function u∈ NΦ that satisfies (1), and if symmetric
collocation is performed on finite and asymptotically dense subsets of theΩi , then the
collocation solutions converge inNΦ to a functionũ ∈ NΦ which satisfies (1). If the
analytic problem (1) is uniquely solvable (i.e. if the homogeneous problem has only the
trivial solution), then symmetric collocation recovers u in the limit.
The proof technique of [8] uses the minimal norm interpolation property to handle count-
able setsΛ first. The transition to uncountably many data via density is then reduced to
the continuity of kernelsLx

i L
y
i Φ(x,y).

Summarizing, any well–posed linear problem in the native spaceNΦ of a symmetric
(strictly) positive definite kernelΦ can be successfully solved by symmetric meshless col-
location. However, it may be a serious drawback that the data must be provided by some
unknown functionu from NΦ. Indeed, many of the successful applications of meshelss
kernel methods use data coming from very smooth functions. Since the native spaces of
smooth kernels are very small, the above assumption may ask for far too much regularity
of the problem.
But in many cases one can replace the original dataλ(u) of a nonsmooth functionu by
data coming from a smooth close approximation ofu. This replaces the given problem by
a slightly perturbed problem that satisfies the assumptions of this section. In other words,
meshless symmetric collocation will in practice solve a nearby problem with smooth data.
But it will require some future research to make the above statement precise.

2 Short Story on Reduction Techniques

To continue the above story in another direction, let us again assume that we have to re-
cover a functionu from the native spaceNΦ of some (strictly) positive definite kernel
Φ(x,y) from possibly infinite given data (2). In principle, any approximate solution ob-
tained by symmetric collocation will be a linear combination of very many functions of
the formλxΦ(x, ·) for λ ∈ Λ. But this is not desirable, if the number of required function-
als is large and if the result has to be evaluated in very many points.
Borrowing an idea from the theory of learning algorithms and support vector machines
[12] and relying on the minimal–norm property of generalized interpolation in native
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spaces, we fix someε> 0 and consider the relaxed problem

min{‖v‖Φ : |λ(u−v)| ≤ ε for all λ ∈ Λ} .

It takes the form of a linearly constrained quadratic optimization problem

min‖v‖2Φ for all v∈NΦ with
λ(u)− ε≤ λ(v)≤ λ(u)+ ε for all λ ∈ Λ. (3)

By Kuhn–Tucker theory, the solution is based on a subset of “active” constraints. In this
context, the solution of the relaxed problem is in the span of a subset of functionsλxΦ(x, ·)
that are provided by functionalsλ ∈ Λ for which one of the constraints is active [6]. The
rest of the functionals, infinite or not, is irrelevant. The “active” functionals correspond to
the “support vectors” of learning machines. Numerical techniques can focus on iterations
using only the currently “active” functionals, and this can be done by sequential quadratic
programming. Some performance results, theoretical and numerical, will be presented at
the conference, if time permits.
The introduced tolerance can reduce the complexity of the approximation of the solution
dramatically. Examples will be given at the conference. But the effect seems to be hard to
analyze theoretically, because it depends very much on the functionu to be reconstructed.
Here is a lot of leeway for future research, as the conference talk will point out.
Greedy algorithms [9, 2] provide a way to get around the sequential quadratic program-
ming. When working on an approximationuN based on exact interpolation of data
λ1(u), . . . ,λN(u), they select a functionalλN+1∈Λ for which the error|λ(u−v)| is largest
and add it to the current set, refining the calculation via a fast Cholesky update step. It
turns out that such algorithms, even if compared to the true iterative solution of (3) on
active sets, can be quite effective in some cases, but are slow in others. Maybe that future
research on preconditioning, as treated in the next short story, will help.

3 Short Story on Scaling and Preconditioning

By a surprising empirical observation of Driscoll and Fornberg [1] smooth radial ba-
sis function interpolants tend to converge towards polynomials, when the scaling gets
wide, i.e. when the systems get more and more ill–conditioned. A thorough analysis
of this limit behaviour [7] should provide some information that helps to counteract the
ill–conditioning. Note that even for the case of plain interpolation by Gaussians or multi-
quadrics there are no results so far that help to understand the limit for wide scales.
Unfortunately, this story cannot avoid some technical details, and it must currently be
confined to scales of (strictly) positive definite and analytic radial basis functions of the
form

Φc(x,y) = φ(c‖x−y‖2) = f (c2‖x−y‖22) =
∞

∑̀
=0

f`c
2`‖x−y‖2`2 (4)

with functions f that are analytic around zero. Inverse multiquadrics and Gaussians are
the predominant examples, but note that the scaling adopted here is such thatc→ 0 means
that the bell–shaped functionφ(cr) gets wider and wider.
Let us forget about scaling for a moment and focus on given scattered pointsx1, . . . ,xM

for interpolation. Their geometry is now related to multivariate polynomials in a specific
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way. DefinePd
m as the space ofd–variate polynomials of order (=degree-1) at mostm

and consider a basisp1, . . . , pq with q =
(m−1+d

d

)
. Then form theq×M matricesPm with

entriesp j(xk), 1≤ j ≤ q, 1≤ k≤M and look at the nested subspacesDm := kerPm⊆ IRM

which satisfy

IRM = D0⊇ D1⊇ ·· · ⊇ Dµ 6= {0}= Dµ+1 (5)

with a uniquely defined numberµ that depends on the data points and the space dimension.
With this space decomposition one can form bases ofDµ, Dµ−1, . . . until a full basis
α1, . . . ,αM of vectors inIRM with

α j ∈ Dt j \Dt j+1 for 0 = t0≤ t1≤ ·· · ≤ tM = µ

is reached. These vectors act like divided differences. In fact, they have [7] the properties

M

∑
k=1

α j
kp(xk) = 0 for all p∈ Pt j

deg

(
M

∑
k=1

α j
k‖x−xk‖2`2

)
≤ 2`− t j .

TheM×M matrix A formed by theseM vectors accounts for the geometry of the points
x1, . . . ,xM. The scaling of the radial basis function interpolating on these points is inde-
pendently treated via diagonal matricesBc with entriesc−t j , 1≤ j ≤M on the diagonal.
The scaled interpolation system has the matrixCc with entriesφ(c‖x j − xk‖2), and we
form the symmetric matrixBcACcATBc which turns out to have a well–defined limit, be-
cause its(r,s)–element is

M

∑
j=1

c−tr αr
j

M

∑
k=1

c−tsαs
kφ(c‖x j −xk‖2)

=
∞

∑̀
=0

f`c
2`

M

∑
j=1

M

∑
k=1

c−tr αr
jc
−tsαs

k‖x j −xk‖2`2

=
∞

∑
2`≥tr+ts

f`c
2`−tr−ts

M

∑
j=1

M

∑
k=1

αr
jα

s
k‖x j −xk‖2`2

→ f(tr+ts)/2

M

∑
j=1

M

∑
k=1

αr
jα

s
k‖x j −xk‖tr+ts

2 for tr + ts even

→ 0 for tr + ts odd

in the limit c→ 0. Here we used the second property of the penultimate display twice to
kill all terms with 2̀ < tr + ts, and by an additional argument [7] one can prove that the
resulting matrix is positive definite. The checkerboard structure is somewhat surprising,
and so is the form of the preconditioning matricesBcA. They consist of a product of the
fixed matrixA depending on the geometry of the data, but not on the scaling, while the
scaling is done by the diagonal matricesBc with the strange powersc−t j that are depending
on the geometry again. As a final surprise, the preconditioning matrices are independent
of the radial basis functionφ, while the resulting matrix is not.
During the conference, some examples will be shown. Current work extends this to gen-
eral functionals and conditionally positive definite radial basis functions. But there are
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other interesting things to be deduced from the above technique, e.g. the fact that for in-
terpolation onx1, . . . ,xM with µ as in (5) one can work with the terms of (4) up to degree
2µ and generate a polynomial interpolant. Preconditioning a large system by this tech-
nique is surely not intended here. The emphasis lies in understanding the basic principles
of the limit process. We see that a stabilization requires a suitable scaled projection to a
space of polynomials that occurs in the limit. And it will probably be this space that oc-
curs when researchers report the fact that plain truncation of the Cholesky decomposition
gives reasonable results.
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[12] B. Scḧolkopf and A. J. Smola.Learning with Kernels. MIT Press, 2002.



6 R. Schaback

[13] J. Stewart. Positive definite functions and generalizations, an historical survey.
Rocky Mountain J. Math., 6:409–434, 1976.

[14] Z. Wu. Hermite–Birkhoff interpolation of scattered data by radial basis functions.
Approximation Theory and its Applications, 8/2:1–10, 1992.


