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Abstract. In Numerical Analysis one often has to conclude that

an error function is small everywhere if it is small on a large discrete

point set and if there is a bound on a derivative. Sampling inequalities

put this onto a solid mathematical basis.

A stability inequality is similar, but holds only on a finite–dimensional

space of trial functions. It allows to bound a trial function by a

norm on a sufficiently fine data sample, without any bound on a high

derivative.

This survey first describes these two types of inequalities in general

and shows how to derive a stability inequality from a sampling in-

equality plus an inverse inequality on a finite–dimensional trial space.

Then the state–of–the–art in sampling inequalities is reviewed, and

new extensions involving functions of infinite smoothness and sam-

pling operators using weak data are presented.

Finally, typical applications of sampling and stability inequalities for

recovery of functions from scattered weak or strong data are surveyed.

These include Support Vector Machines and unsymmetric methods

for solving partial differential equations.

§1. Introduction

In many practical applications it is necessary to approximate or recon-
struct a function as a formula from given strong or weak scattered data.
Important examples are domain modeling, surface reconstruction, machine
learning or the numerical solution of partial differential equations.

If the strong or weak data used for reconstruction are seen as a sampling

S(f) ∈ R
N of an unknown function f , and if a trial function u satisfying

S(u) ≈ S(f) is calculated in order to recover f , then S(f − u) is small
and one has to conclude that f − u is small. Of course, such a conclusion
requires additional assumptions, e.g., a bound on derivatives of f − u.

The sampling inequalities surveyed here quantify the observation that a
differentiable function cannot attain large values anywhere if its derivatives
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are bounded, and if it produces small data on a sufficiently dense discrete
set. Along the lines of the above argument, such inequalities are extremely
useful to derive a priori error estimates for very general approximation
processes [30].

In the univariate setting, sampling inequalities are quite easy to obtain.

We assume a sufficiently smooth function f on an interval [a, b] and a
discrete ordered set of centers X = {x1, . . . , xN} ⊂ [a, b] with

a = x1 < x2 < · · · < xN−1 < xN = b

and the fill distance

h := hX,[a,b] :=
1

2
max

2≤j≤N
|xj − xj−1| ,

i.e., the largest possible distance any point x ∈ [a, b] has from the set X .
With this notation we consider an arbitrary point x ∈ [a, b] and its closest
point xj ∈ X to get

f (x) = f (xj) +

∫ x

xj

f ′ (t) dt,

|f (x)| ≤ |f (xj)| +
√

|x − xj |
√

∫ x

xj

|f ′ (t)|2 dt,

which yields a first instance of a sampling inequality

‖f‖L∞([a,b]) ≤
√

h|f |W 1
2
[a,b] + ‖SX(f)‖ℓ∞(RN )

for the sampling operator

SX : W 1
2 [a, b] → R

N with SX(f) := (f(x1), . . . , f(xN ))
T

. (1)

This easy example already reveals the basic phenomenon, i.e., it bounds
a function in a weak continuous norm in terms of the sampled data on a
discrete set X and a strong continuous norm weighted by a power of the
fill distance of X . We shall explain this in general in the next section,
while we postpone specific applications to sections 3 and 4.

§2. Sampling and Stability

Here, we shall exhibit general features of sampling and stability inequalities
and their connections. We admit general spaces of multivariate functions
and general sampling operators. Specific cases will follow in section 3.
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2.1. Sampling Inequalities

We consider a linear space F of real–valued functions on some domain
Ω ⊂ R

d, and assume F to carry norms ‖·‖
S

and ‖·‖W , where ‖·‖
S

is
stronger than ‖·‖W , i.e.,

‖f‖W ≤ C ‖f‖
S

for all f ∈ F . (2)

Here and in the following, C denotes a generic positive constant which is
independent of the terms in the following for all statement, but some-
times we add dependencies of constants on certain problem parameters by
adding argument lists. For example, we could have written C(F , S, W )
in the inequality (2).

Furthermore, we consider classes L of finite sets Λ = {λ1, . . . , λN} of
linearly independent functionals from the dual space F∗ with respect to
‖·‖

S
. These functionals are used to sample a function from F via the

continuous and linear sampling operator

SΛ : F → R
N ,

f 7→ (λ1 (f) , . . . , λN (f))
T

,

generalizing (1). The term hΛ denotes some discretization parameter

which should be small, i.e., hΛ
N→∞−→ 0. Then an abstract form of a

sampling inequality is

‖f‖W ≤ C (hσ
Λ ‖f‖

S
+ C (hΛ) ‖SΛ (f)‖

RN ) for all f ∈ F , Λ ∈ L. (3)

Sometimes such an inequality holds even if ‖·‖
S

is replaced by a semi-
norm | · |S with finite dimensional kernel PS, and then we rewrite this
as

‖f‖W ≤ C (hσ
Λ |f |

S
+ C (hΛ) ‖SΛ (f)‖

RN ) for all f ∈ F , Λ ∈ L. (4)

The exponent σ > 0 is called sampling order. Hence there is a small factor
in front of the term with the strong continuous norm and a possibly large
term in front of the term with the discrete norm. Furthermore, in most
cases the class L of admissible samplings must be “sufficiently fine” in the
sense that hΛ ≤ h0 holds for some positive constant h0.

If the sampling operator contains only point evaluations based on a
finite point set X = {x1, . . . , xN} ⊂ Ω, we write it as

SX := (δx1
, . . . , δxN

)T (5)

like in (1), and the discretization parameter is then given by the fill dis-

tance

hX,Ω := sup
y∈Ω

max
x∈X

‖x − y‖2 (6)
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of the discrete set X with respect to the domain Ω. Geometrically, the fill
distance hX,Ω can be interpreted as the radius of the largest open ball with
center in the closure Ω that does not contain any of the points from X . It
is a useful quantity for the deterministic error analysis in Sobolev spaces,
i.e., if there are no further structural assumptions on the approximated
functions. On the other hand, the separation distance qX defined by

qX :=
1

2
min
j 6=k

‖xj − xk‖2 (7)

is the largest radius of balls with centers in X that do not contain any
other of the points from X , and it is crucial for stability questions.

If the sampling operators of the class L consist of evaluations of f
and its derivatives on certain finite point sets X ⊂ Ω, we speak of strong

sampling inequalities. If some other functionals are involved, which may
be well defined even if point evaluation is not continuous, we speak of weak

sampling inequalities. We shall treat strong and weak sampling separately
from section 3 on.

2.2. Special Stability Inequalities

Continuing the notation of (4), we denote the kernel of the semi-norm
| · |S by PS ⊂ F . If we insert an element p ∈ PS from this kernel into the
sampling inequality (4), we obtain

‖p‖W ≤ C (hσ
Λ|p|S + C (hΛ) ‖SΛ (p)‖

RN ) = C (hΛ) ‖SΛ (p)‖
RN (8)

for all p ∈ PS and Λ ∈ L. This means that we can bound a continu-
ous norm by a discrete norm on the data. Bounds of this kind will be
called stability inequalities. They follow from sampling inequalities and
hold on the kernel PS of the strong semi–norm involved, if it is finite-
dimensional. If PS is a space of polynomials, and if SΛ = SX is a strong
pointwise sampling operator (5) on a finite set X , these estimates imply
Markov-Bernstein inequalities [13]. Let us explain this in some more de-
tail. Assume that |·|W = | · |W 1

∞
(Ω), and that |·|

S
= | · |W k

∞
(Ω) for k > 1

are classical Sobolev semi-norms. This yields for all 1 ≤ ℓ ≤ d

‖∂ℓp‖L∞(Ω) ≤ C (hΛ) ‖SX (p)‖ℓ∞(RN )

≤ C (hΛ) ‖p‖L∞(Ω) for all p ∈ πk−1 (Ω) ,
(9)

where ∂ℓ denotes the partial derivative in direction of the ℓ-th coordinate.
This is a special case of classical Markov-Bernstein-inequalities [13]. Thus
it is not surprising that the proofs for sampling inequalities use those clas-
sical estimates. The stability inequality (8) implies that the data SΛ (p)
contains already enough information about p ∈ PS. This is connected to
the general concept of norming sets [20]. We shall briefly explain this con-
cept, since it is a direct way for proving stability inequalities under certain
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circumstances. A finite set Λ of linear functionals is called a norming set

for PS if the sampling operator

SΛ|PS
: PS → SΛ|PS

(PS) ⊂ R
N

v 7→ SΛ|PS
(v) = (λ (v))λ∈Λ

is injective. Then we can introduce another norm on PS by ‖SΛ|PS
(·)‖

RN

and we immediately get a stability inequality (8). This explains the termi-
nology norming set. We shall explain below why norming sets are crucial
in the proofs of sampling inequalities.

2.3. Inverse Inequalities and General Stability Inequalities

Stability inequalities like (8) are limited to the kernel PS of the strong
semi-norm in (4). But they should generalize to finite–dimensional trial
spaces R in the sense

‖u‖W ≤ Cstab(Λ,R, W )‖SΛu‖RN for all u ∈ R (10)

bounding a weak continuous norm by a discrete norm. This is obvious due
to the fact that all norms on finite–dimensional spaces are equivalent, but
it is hard to determine the constants C(Λ,R, W ). Clearly, (10) implies
that the sampling operator SΛ|R : R → R

N is injective, i.e., that Λ is a
norming set for R.

To let a sampling inequality produce such a stability inequality, we
could use (4) on R to get

‖u‖W ≤ C (hσ
Λ |u|

S
+ C (hΛ) ‖SΛ (u)‖

RN ) for all u ∈ R. (11)

The second part of the right–hand side is what we want, but the first part
should go away, preferably by moving it to the left–hand side. Thus we
want to bound a strong semi-norm by a weaker norm on the trial space
like

|u|S ≤ Cinv (R, W, S) ‖u‖W for all u ∈ R, (12)

and this is called an inverse inequality. We point out, that such an in-
equality can hold only if the constant Cinv (R, W, S) grows to infinity if
the trial discretization becomes finer and finer. This inequality, however,
is independent of the sampling, and together with our sampling inequality
(11) it provides the stability inequality (10) with

Cstab (Λ,R, W ) = 2CC (hΛ)

provided that we have the stability condition

Chσ
ΛCinv (R, W, S) <

1

2
, (13)
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which can always be satisfied if hΛ is sufficiently small, i.e., the sampling
is “fine enough”. This means that in general

Sampling Inequality
+

Inverse Inequality







⇒ Stability Inequality.

2.4. Connection to Lebesgue Constants

Sampling and stability inequalities are closely related to Lebesgue con-
stants. To see this, assume a trial space R that allows unique generalized
interpolation for N linearly independent functionals λ1, . . . , λN defining
a sampling operator SΛ with values in R

N . Then we can build the gen-
eralized cardinal interpolants uλi

from R with λj (uλi
) = δi,j , where δi,j

denotes the Kronecker symbol, and the interpolant to a function f is
IΛ (f) (·) =

∑N
j=1 λj (f)uλj

(·). This yields a stability estimate of the
form

‖IΛ (f)‖W =

∥

∥

∥

∥

∥

∥

N
∑

j=1

λj (f)uλj

∥

∥

∥

∥

∥

∥

W

≤
N

∑

j=1

|λj (f)|
∥

∥uλj

∥

∥

W

≤ max
1≤j≤N

|λj (f)|
N

∑

j=1

∥

∥uλj

∥

∥

W
= ‖SΛ (f)‖ℓ∞(RN ) L(R, Λ, W )

for all f ∈ F , where the Lebesgue constant is defined by

L(R, Λ, W ) :=

N
∑

j=1

∥

∥uλj

∥

∥

W
.

Now we explain how sampling inequalities can lead to bounds on Lebesgue
constants under suitable conditions. If we measure the discrete term in
the ℓ∞

(

R
N

)

norm, i.e.,

‖SΛ (u)‖ℓ∞(RN ) = max
1≤i≤N

|λi (u) |,

we immediately get ‖SΛ (uλi
)‖ℓ∞(RN ) = 1 for all 1 ≤ i ≤ N . Applying the

sampling inequality (4) yields

‖uλi
‖W ≤ C1

(

hσ
Λ|uλi

|S + C2 (hΛ) ‖SΛ (uλi
)‖ℓ∞(RN )

)

≤ C1 (hσ
Λ|uλi

|S + C2 (hΛ)) .

Since we have just one sampling operator, we cannot make sure that a
stability condition like (13) holds, but in certain situations (see [17] for
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the case of pointwise interpolation by translates of positive definite kernels)
there may be bounds of the form

|uλi
|S ≤ Ch−σ

Λ for all i, 1 ≤ i ≤ N

and one has C2 (hλ) = 1. This leads to boundedness of the norms ‖uλi
‖W ,

and consequently, by the Cauchy-Schwarz inequality, the Lebesgue con-

stant is bounded above by O
(√

N
)

.

§3. Variations of Sampling Inequalities

After describing sampling inequalities in general together with their close
connection to stability, we now turn to special cases involving spaces of
multivariate functions. We review the first sampling inequalities dating
back to 2005 to 2007 and give a proof sketch. Then we turn to recent
extensions to functions with unlimited smoothness and weak sampling
operators.

Throughout this survey we shall deal with a variety of Sobolev spaces
defined as in [14] and based on a bounded Lipschitz domain Ω satisfying
an interior cone condition.

3.1. Strong Sampling Inequalities: Finite Smoothness

Using the notation of the previous sections in the special case ‖·‖
S

=
‖·‖W k

p (Ω) and ‖·‖W = ‖·‖W m
q (Ω), the condition (2) reduces to

W k
q (Ω) →֒ Wm

p (Ω) ,

i.e., by Sobolev’s embedding theorem k ≥ m and k − d
q ≥ m − d

p . Since

2005, several strong sampling inequalities for functions u ∈ W k
p (Ω) from

Sobolev spaces W k
p (Ω) with 1 < p < ∞ and k > d/p, or with p = 1

and k ≥ d on domains Ω ⊂ R
d have been obtained. As a first step in this

direction, Narcowich, Ward and Wendland considered the case of functions
with scattered zeros [24]. They proved the existence of positive constants
C and h0 such that the inequality

|u|W m
q (Ω) ≤ Ch

k−m−d( 1
p
− 1

q )
+ |u|W k

p (Ω)

holds for all functions u ∈ W k
p (Ω) with k − m > d/p and SX (u) = 0 on

arbitrary discrete sets X whose fill distance h in the sense of (6) satisfies
h ≤ h0. The constants C, h0 may depend on q, m, p, k, Ω, and d, but
not on X , h or u. In [37] this result was generalized to functions with
arbitrary values on scattered locations:
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Theorem 1. We assume 1 ≤ q ≤ ∞, α ∈ N
d
0, k ∈ N, and 1 ≤ p < ∞

with k > |α| + d/p if p > 1, or with k ≥ |α| + d if p = 1. Then there are
constants C, h0 > 0 such that

‖Dαu‖Lq(Ω) ≤ C

(

h
k−|α|−d( 1

p
− 1

q )
+ |u|W k

p (Ω) + h−|α|‖SXu‖ℓ∞(RN )

)

holds for all u ∈ W k
p (Ω) and all discrete sets X ⊂ Ω with sampling

operators SX from (5) and fill distance h := hX,Ω ≤ h0.

A similar result was established by Madych [22] in 2006, namely

‖u‖Lp(Ω) ≤ C
(

hk|u|W k
p (Ω) + hd/p‖SXu‖ℓp

)

(14)

for all u ∈ W k
p (Ω) and all X with hX,Ω < h0. Arcangéli et al. [11]

generalized these sampling inequalities by greatly extending the range of
parameters:

Theorem 2. [11, Thm. 4.1] Let p, q, κ ∈ [1,∞], and let r ∈ R such that
r ≥ n if p = 1, r > n/p if 1 < p < ∞, or r ∈ N ∗ if p = ∞. Likewise, let

i0 = r−n
(

1
p − 1

q

)

+
and γ = max {p, q, κ}. Then, there exist two positive

constants h0 and C satisfying the following property: for any finite set
X ⊂ Ω̄ (or X ⊂ Ω if p = 1 and n = r) with fill distance h := hX,Ω ≤ h0,
for any u ∈ W r

p (Ω) and for any l = 0, . . . , ⌈lo⌉ − 1, we have

|u|W l
q(Ω) ≤ C

(

h
r−l−n( 1

p
− 1

q )
+ |u|W r

p (Ω) + h
n
γ
−l ‖u|X‖ℓ∞(X)

)

.

If r ∈ N
∗ this bound also holds with l = l0 if either p < q < ∞ and l0 ∈ N,

or (p, q) = (1,∞), or p ≥ q.

There are several variations, extensions and applications of such sampling
inequalities, including derivative data, inequalities on unbounded domains
and applications to spline interpolation and smoothing, see e.g., [22, 11,
12, 37, 15]. In all cases the sampling order depends only on the smoothness
difference of the two continuous (semi–)norms involved.

3.2. Proof Sketch

A standard way to prove such sampling inequalities follows the lines of
[24] and [37]. For some domain D star-shaped with respect to a ball,

let
{

a
(α)
j : j = 1, . . . , N

}

be a polynomial reproduction of degree k with

respect to a discrete set X = {x1, . . . , xN} ⊂ D, i.e.,

Dαq (x) =

N
∑

j=1

a
(α)
j (x) q (xj)
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holds for every α ∈ N
d
0 with |α| ≤ k, all x ∈ D and all q ∈ πd

k (D) where
πd

k denotes the space of all d-variate polynomials of degree not exceeding
k. Then we have

|Dαu (x)|
≤ |Dαu (x) − Dαp (x)| + |Dαp (x)|

≤ ‖Dαu − Dαp‖L∞(D) +
∑N

j=1

∣

∣

∣a
(α)
j (x)

∣

∣

∣ |p (xj)|

≤ ‖Dαu − Dαp‖L∞(D) +
∑N

j=1

∣

∣

∣a
(α)
j (x)

∣

∣

∣ ‖SX (p) ‖ℓ∞(RN )

≤ ‖Dαu − Dαp‖L∞(D) +

+
∑N

j=1

∣

∣

∣
a
(α)
j (x)

∣

∣

∣

(

‖u − p‖L∞(D) + ‖SXu‖ℓ∞(RN )

)

for arbitrary u ∈ W k
p (D) and any polynomial p ∈ πd

k (D). Using a poly-
nomial reproduction argument based on norming sets [21], the Lebesgue

constant can be bounded by
∑N

j=1

∣

∣

∣
a
(α)
j

∣

∣

∣
≤ 2, if some moderate over-

sampling is allowed which is controlled via a Markov inequality. As a
polynomial approximation we choose the averaged Taylor polynomial of
degree k ([14, Section 2]). This leads to a sampling inequality of the form

‖Dαu‖L∞(D) ≤ C

(k − |α|)!δ
k−d/p
D

(

δ
−|α|
D + h−|α|

)

|u|W k
p (D)

+2h−|α|‖SXu‖ℓ∞(RN )

where δD denotes the diameter of D. To derive sampling inequalities on
a Lipschitz domain Ω satisfying an interior cone condition, we cover Ω
by domains D which are star-shaped with respect to a ball, satisfying
δD ≈ h (see Duchon [18] for details on such coverings). Global estimates
are obtained by summation or maximization over the local estimates.

3.3. Strong Sampling Inequalities: Infinite Smoothness

We now consider strong sampling inequalities for infinitely smooth func-
tions in the sense of [27] where the sampling orders turn out to vary expo-
nentially with the fill distance h. When applied to errors of discretization
processes involving analytic functions, such sampling inequalities yield
convergence results of exponential order, like those of spectral methods.

Following the above proof sketch, these exponential orders are achieved
by appropriately coupling the parameter k, controlling the order of smooth-
ness and the order of polynomial reproduction, to the fill distance h. The
key point for relations between k and h is the existence of polynomial re-
productions of order k on samplings of fill distance O(h). Following [27],
we handle infinitely smooth functions on a domain Ω by normed linear
function spaces H (Ω) that can for some fixed 1 ≤ p < ∞ be continuously
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embedded into every classical Sobolev space W k
p (Ω). More precisely, for

some p ∈ [1,∞) and all k ∈ N we assume that there are embedding oper-

ators I
(p)
k and constants E (k) such that

I
(p)
k : H (Ω) → W k

p (Ω) with
∥

∥

∥
I
(p)
k

∥

∥

∥{H→W k
p (Ω)}

≤ E (k) for all k ∈ N0.

There are various examples of spaces with this property, e.g., Sobolev
spaces of infinite order as they occur in the study of partial differential
equations of infinite order [10], or reproducing kernel Hilbert spaces of
Gaussians and inverse multiquadrics.

In the case of infinitely smooth functions, the sampling order is mainly
determined by the asymptotic behaviour of the embedding constants E (k)
for k → ∞. Typical examples are E (k) = 1 for W∞

p (Ω), or E (k) ≤
Ckkk/2 for the reproducing kernel Hilbert space of Gaussians [27]. A
typical result is the following theorem [27]:

Theorem 3. Suppose that Ω ⊂ R
d is bounded, has a Lipschitz boundary,

and satisfies an interior cone condition. If there are constants 0 < ǫ ≤ 1
and CE > 0 such that the embedding constants are bounded by E (k) ≤
Ck

Ek(1−ǫ)k for all k ∈ N, then, for all 1 ≤ q ≤ ∞ there are constants C,
C1 and h0 > 0 such that for all data sets X ⊂ Ω with fill distance h ≤ h0

and sampling operators SX from (5) the inequality

‖Dαu‖Lq(Ω) ≤ eC log(h)/
√

h‖u‖H(Ω) + C1h
−|α|‖SXu‖ℓ∞(RN )

holds for all u ∈ H (Ω). Here, the constant C does not depend on the
space dimension d.

Similar results for different classes of infinitely smooth functions are ob-
tained in [39].

3.4. Weak Sampling Inequalities

Now we focus on weak sampling operators. We consider a set of arbitrary
functionals

Λ = {λ1, . . . , λN} ⊂
(

W k
2 (Ω)

)∗
.

These functionals define a weak sampling operator

SΛ := (λ1, . . . , λN )
T

and we expect a sampling inequality of the form

‖u‖L2(Ω) ≤ Chk
Λ |u|W k

2
(Ω) + C ‖SΛu‖ℓ∞(RN ) .
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Such an estimate can hold true only if the functionals Λ are a norming set
[21] for the polynomials of degree less than k (see section 2.2). We will
present two examples of such functionals which are of current research
interest.

3.4.1. Weak Convolution-Type Data

Like in [28], we shall use convolution-type data of the form

λj (u) =
∫

Ω
K (x − xj)u (x) dx (15)

to build a sampling operator for weak data. Here X = {x1, . . . , xN} ⊂ Ω
is a discrete set of points, and K : R

d → R is called a test kernel. We shall
consider only convolution-type data generated by translation invariant test
kernels. These weak data are closely related to Finite Volume Methods.
In the usual Finite Volume Method, one simply chooses K (· − xj) ≡ 1
on supp K (· − xj). There is a theoretical consideration of this case in
[35]. In [28], this situation is generalized to non-stationary convolution
type data of the form (15), where the kernel K is of some fixed scale for
all translates. In [25], the case of stationary data is considered, where
the support of the test kernel K (· − ·) is scaled with the mesh-norm of X
in Ω. This implies that λj (f) is some weighted local mean of f . To be
precise we shall impose the following conditions on K:

Definition 1. A kernel K : R
d → R is called a stationary test kernel if it

satisfies

1.
∫

Ω
K (x − xj) dx = 1 for all xj ∈ X ,

2. supp(K (· − xj)) =: Vj ⊂ Ω ,

3. c1hX,Ω ≤ diam (Vj) ≤ c2hX,Ω, and

4. ‖K (· − xj)‖Lp(Ω) ≤ Ch
−d/q
X,Ω , 1

p + 1
q = 1 .

Under these conditions there is the following theorem from [25].

Theorem 4. For weak sampling functionals (15) using a stationary test
kernel, there is a sampling inequality

‖u‖L2(Ω) ≤ C
(

hk
X,Ω ‖u‖W k

2
(Ω) + ‖SΛ (u)‖ℓ∞(RN )

)

(16)

for all u ∈ W k
2 (Ω) , k ≥ 0 and all sets X of centers with sufficiently small

fill distance hX,Ω.

Such a sampling inequality will be very useful in the error analysis of nu-
merical methods for weak solutions of partial differential equations, since
it yields error estimates for functions in W 1

2 (Ω). These estimates are not
covered by the well–established theory since W 1

2 (Ω) is not continuously
embedded in C (Ω) for Ω ⊂ R

d with d ≥ 2.
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3.4.2. Galerkin Methods

Another kind of weak data, which arises naturally in the study of partial
differential equations, is Galerkin data. Namely, we consider a partial
differential equation in its weak formulation

find u ∈ H : a (u, v) = F (v) for all v ∈ X, (17)

where H = W τ
2 (Ω) is typically a Sobolev space and a : H × H → R is a

bilinear form while F ∈ H∗ is a linear functional. Usually, the solution to
(17) lies actually in a subspace W σ

2 (Ω) ⊂ W = W τ
2 (Ω) of order σ > τ .

This difference in smoothness leads to some sampling order. To solve
the problem (17) approximatively we use a Ritz-Galerkin approach [14,
(2.5.7)] and consider the finite dimensional problem

find u ∈ VK,X : a (u, v) = F (v) for all v ∈ VK,X ,

where

VK,X := span {K (· − xj) : xj ∈ X}

with a translation invariant kernel K. To simplify the constants in our
sampling inequality, it is convenient to consider an orthonormal basis
{φj}j=1,...,N of VK,X with respect to the bilinear form a (·, ·). We define

a sampling operator SΛ := (λ1, . . . , λN )T by

λj (u) := a (u, φj) .

If there the unique solution u∗ to (17) satisfies u∗ ∈ W k
2 (see, e.g., [14]

for a formulation of this condition in terms of a and F ), then there is a
sampling inequality of the form (11) with σ = k − τ (see [25, Thm. 8.3.1]
for details).

§4. Sampling and Stability in Reconstruction Processes

The previous sections dealt with sampling and stability inequalities in
general and in particular, but now we turn to applications of both. These
can be described as general reconstruction problems, where one tries to
recover a function f from a weak or strong data provided by a sampling
SΛ (f).

4.1. Testing Trial Functions

Starting from a set

ΛE = {λ1, . . . , λNE
} ⊂ F∗
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of linear functionals, we define a sampling operator via

SΛE
:= (λ1, . . . , λNE

)
T

.

Then we consider given data SΛE
(f) generated by application of the sam-

pling operator SΛE
to an unknown function f , and we test certain trial

functions ur to see if they reproduce the data, i.e., if

SΛE
(ur) = SΛE

(f) (18)

holds. Thus sampling here is the same as testing. This viewpoint is
borrowed from Petrov–Galerkin methods, where an approximate solution
is taken from a space of trial functions, and it has to satisfy a number of test
equations. There is a lot of literature in this field, the following collection is
by far not complete, but should give an overview [1, 2, 3, 4]. In the Finite
Element Method, these test equations are weak, since they are integrals
against test functions, while in collocation methods the test equations
are strong, i.e., they are evaluations of functions or their derivatives at
discrete points. Evaluating test data on trial functions is nothing else
than sampling them in the sense of this survey.

Consequently, we shall carefully distinguish between the test and the
trial side. The test side consists of the sampling operator SΛE

based on
the given functionals ΛE . The trial side consists of a finite dimensional
trial space R which is used to generate an approximate solution ur ∈ R to
the problem. Typical examples for trial spaces are linear hulls of translates
of a kernel or finite element spaces. Note that we use letters like R, r etc.
for the tRial side and E, ǫ etc. for the tEst side. In applications to PDE
solving, sampling and testing involves a large variety of functionals. For
instance, in strong collocation methods for a Poisson problem

−∆u = g in Ω
u = ϕ on ∂Ω

there will be functionals of the forms

λj (ur) := −∆ur (xj) , xj in Ω, 1 ≤ j ≤ NΩ

λj (ur) := ur (xj) , xj on ∂Ω, NΩ < j ≤ NE ,

and we assume that there is some f that provides sampled data λj (f) to
yield the test equations

λj (ur) = −∆ur (xj) = −∆f (xj) = g(xj), 1 ≤ j ≤ NΩ

λj (ur) = ur (xj) = f (xj) = ϕ(xj), NΩ < j ≤ NE

which are at least approximately solved for a trial function ur. Weak meth-
ods will replace point evaluations by local integrals against test functions,
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but our common viewpoint is that trial functions ur are tested by sam-
pling them and comparing the sampled data λj (ur) to the given sampled
data λj (f) of an unknown exact solution f .

Error estimates will take the form of upper bounds of ‖ur−f‖ in some
norm. But if dist (f,R) is large, there is no testing strategy that can
lead to small errors. Thus users must care first for a trial space R which
allows good approximations ur to the function f providing the test data.
This fact is often overlooked, and it is independent of how testing is done.
The job of testing is to enable the user to select one good approximation
ur ∈ R to f in an efficient and stable way. Thus the error of the recon-
struction process depends crucially on the trial side, while the test side
cares for the stability of the reconstruction.
When testing trial functions, interpolation requires the trial functions to
reproduce the test data exactly, whereas approximation allows small er-
rors in data reproduction. While in some applications interpolation is
required, others, in particular those involving errors or noise in the given
data, prefer approximation methods. Sometimes certain parameters are
used to control the error in data reproduction, e.g., in machine learning
or spline smoothing, and these parameters are closely related to regular-
ization. Examples will follow later, after we have described our favourite
trial spaces.

4.2. Kernel–Based Trial Spaces

Throughout the rest of this survey, we shall mainly restrict ourselves to
kernel-based methods, i.e., to “meshless” trial spaces spanned by trans-
lates of kernels. In their simplest form, they define a trial space R gener-
ated by translates of a single trial kernel K (·, ·) via

R := span {K (xj , ·) : xj ∈ XR} ,

where the set XR := {x1, . . . , xNR
} ⊂ Ω is called the set of trial points.

To avoid complications, our trial kernels K : R
d×R

d → R will always be
symmetric, continuous and positive definite on R

d, though we shall often
restrict them to a domain Ω ⊆ R

d. They are reproducing kernels in a
native Hilbert space [36] NK(Ω) of functions on Ω ⊆ R

d in the sense

f (x) = (f, K (x, ·))NK
for all f ∈ NK(Ω), x ∈ Ω ⊆ R

d,

and NK(Ω) is continuously embedded in C (Ω). Typical examples are
Gaussians K (x, y) = exp

(

−‖x − y‖2
2

)

or Sobolev–Matérn kernels

Kτ−d/2 (‖x − y‖2) ‖x − y‖τ−d/2
2

for τ > d/2 with the Bessel functions Kν of second kind. In the latter case
one has NK (Ω) = W τ

2 (Ω), and certain compactly supported Wendland
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kernels are reproducing in Hilbert spaces which are norm–equivalent to
Sobolev spaces. See [36] for details. To arrive at useful sampling orders,
we shall assume a continuous embedding

NK(Ω) ⊆ W τ
2 (Ω) (19)

for some τ > 0. Concerning the dependence of native Hilbert spaces
NK(Ω) on the domain Ω and related extension/restriction mappings, we
again have to refer to [36] for details. For a detailed overview on the use of
kernels, in particular in partial differential equations, see the recent review
[30] and the references therein.

By picking trial kernels of limited smoothness, we confine ourselves in
this section to the case of finitely smooth trial spaces. This is just for the
sake of simplicity. Most of the issues can be carried over to the infinitely
smooth case using analytic kernels like the Gaussian.

Kernel–based trial spaces allow to align the trial side formally with the
test side. This is done by a second set

MR = {µ1, . . . , µNR
} ⊂ N ∗

K(Ω)

of linear functionals and a second sampling operator for trial purposes via

SMR
:= (µ1, . . . , µNR

)
T

to define a generalized kernel–based trial space

RMR
:= span

{

µx
j K (x, ·) : µj ∈ MR

}

⊂ NK(Ω) (20)

where we denote the action of µj on the variable x by µx
j . The two

sampling operators SMR
and SΛE

will allow us to use sampling inequalities
on both the trial and the test side.

Introducing coefficient vectors α = (α1, . . . , αNR
)
T ∈ R

NR we can write
the trial functions from RMR

as

uα(·) :=

NR
∑

j=1

αjµ
x
j K (x, ·) = αT Sx

MR
K(x, ·). (21)

4.3. Symmetric Interpolation Methods

In symmetric methods the test and trial sides are the same, i.e., we set
SMR

= SΛE
and NR = NE , allowing to skip the R and E indices for this

subsection and to use Λ = {λ1, . . . , λN} ⊂ NK(Ω)∗ throughout. Each
trial function will be of the form (21), and the interpolation system (18)
takes the form of a linear equation for the coeffiecient vector α

SΛ (uα) = AΛ,Λα = SΛ (f) , (22)
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where the kernel matrix

AΛ,Λ :=
(

λx
i λy

j K (x, y)
)

1≤i,j≤N
(23)

is symmetric and positive definite if the functionals in Λ ⊂ NK(Ω)∗ are
linearly independent and if the kernel K is positive definite. Under these
assumptions, the above system is uniquely solvable [38] for data given by
arbitrary functions f ∈ NK(Ω).

We now sketch how sampling inequalities can be used for a fully gen-
eral error analysis of symmetric interpolation. We point out that sampling
inequalities can also be used for non-interpolatory and unsymmetric re-
covery processes, as will be shown in later sections.

Assume that the sampling operator SΛ allows a sampling inequality
of the form (4) on a space F into which NK(Ω) can be continuously
embedded. Then we have

‖f − u∗ (f)‖W ≤ Chσ
Λ |f − u∗ (f)|F for all f ∈ NK(Ω)

if we denote the solution of the interpolation system by u∗ (f). Using
the embedding NK(Ω) ⊂ S and the standard minimum–norm property
[36, 38]

‖u∗ (f) ‖NK(Ω) ≤ ‖f‖NK(Ω)

of solutions of systems like (22) this implies the error bound

‖f − u∗ (f)‖W ≤ Chσ
Λ ‖f‖NK(Ω) for all f ∈ NK .

We shall give a few examples.

4.3.1. Symmetric Strong Interpolation

The simplest case takes a finite subset X of Ω with fill distance (6) and
assumes (19). Then we can use the above argument to apply Theorem 1
and get an error bound

‖f − u∗ (f)‖Lq(Ω) ≤ Ch
τ−d( 1

2
− 1

q )
+‖f‖NK(Ω) (24)

for all f ∈ NK and all sets X with sufficiently small fill distance h. This re-
produces the well known error bounds (see [36]). If some other functionals
are added, such a bound will still hold.

4.3.2. Symmetric Weak Interpolation

In the case of weak convolution-type data based on a set X = {x1, . . . , xN}
as defined in (15), i.e.,

λj (u) =

∫

Ω

E (x − xj)u (x) dx j = 1, . . . , N
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with a stationary test kernel E as in Definition 1 the kernel matrix AΛ,Λ

as defined in (23) has entries

(AΛ,Λ)i,j :=

∫

Ω

∫

Ω

E (x − xi)E (y − xj) K (x, y) dxdy

where the kernel K is symmetric, positive definite and satisfies (19). Then
the sampling inequality of the form (16) yields as a direct consequence

Theorem 5. Under the above assumptions, recovery of functions f by
symmetric weak interpolation leads to interpolants u∗ (f) with error bounds

‖f − u∗ (f)‖L2(Ω) ≤ Chτ
X,Ω‖f‖NK(Ω) (25)

for all f ∈ NK (Ω) and all discrete sets X with sufficiently small fill dis-
tance hX,Ω.

4.4. Symmetric Non-Interpolatory Methods

Although interpolation processes lead to good approximation properties,
they have some drawbacks, e.g., the condition of the system (22) is dom-
inated by the separation distance qX of (7) which can be considerably
smaller than the fill distance. In particular, if an additional point comes
close to a point of X , the system condition deteriorates dramatically, but
omission of the new point would do no harm and can be viewed as a
regularization of the augmented system. This indicates that regularized
methods are important even in the case of noise-free data. We shall deal
with these now.

4.4.1. Approximation as Regularized Interpolation

Here, we outline how sampling inequalities can be used to derive worst-
case convergence rates for regularized reconstruction processes. We shall
concentrate on regularization methods that avoid exact solving of the sys-
tem (22).

Besides improving condition numbers, most regularization methods
have several advantages, e.g., regularization is closely related to sparse

approximation [19]. The crucial point for the analysis of all regularized
reconstruction processes Πν , where ν is a regularization parameter, is to
show the following two properties

‖Πν (f)‖W τ
2

(Ω) ≤ ‖f‖W τ
2

(Ω) and

max
1≤j≤N

|λj (f − Πνf)| ≤ g (ν, f) ‖f‖W τ
2

(Ω)

where the function g (ν, f) determines the approximation quality of Πν .
These properties can be seen as stability and consistency. We give two
examples where these properties are successfully coupled with sampling
inequalities.
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4.4.2. Spline Smoothing

We shall focus on the well-known case of spline smoothing or ℓ2-spline-

regression. A more detailed overview can be found in [34] and [36]. For
a given f ∈ W τ

2 (Ω) and the various functionals λj from the previous
sections we can formulate the smoothed optimal recovery problem

min
u∈W τ

2
(Ω)





N
∑

j=1

|λj (u − f)|2 + ν ‖u‖2
W τ

2
(Ω)



, (26)

where ν ≥ 0 is called the smoothing parameter. The case of strong data
λj = δxj

is discussed in [37], whereas the case of weak convolution-type
data is dealt with in [25]. For a detailed discussion of the smoothing
parameter see [34]. We simply note that the special case ν = 0 corresponds
to finding a generalized interpolant, i.e., a function u(0) (f) ∈ W τ

2 (Ω) that
satisfies the generalized interpolation conditions (18). It is well known [36]
that there always exists a solution u(ν) (f) to this relaxed interpolation
problem (26) in the linear space (20). The coefficients α ∈ R

N with
respect to the basis {λx

j K (·, x)} can be found by solving the linear system

(AΛ,Λ + νId)α = fΛ,

with the kernel matrix AΛ,Λ from (23) and

fΛ = SΛ (f) = (λ1 (f) , . . . , λN (f))
T

.

As elaborated in [37] for strong data, we have the following two inequalities

∥

∥u(ν) (f)
∥

∥

W τ
2

(Ω)
≤

∥

∥u(ν) (f)
∥

∥

W τ
2

(Ω)
≤ ‖f‖W τ

2
(Ω) ,

∥

∥SΛ

(

f − s(ν) (f)
)∥

∥

ℓ∞(RN )
≤ √

ν ‖f‖W τ
2

(Ω) .

Inserting into the sampling inequality (1) yields the bound

∥

∥

∥f − s
(ν)
f

∥

∥

∥

L2(Ω)
≤ C

(

hτ +
√

ν
)

‖f‖W τ
2

(Ω) .

This inequality suggests an a priori choice of the smoothing parameter as
ν ≤ h2τ , which leads to the optimal order [29] achievable by interpola-
tion, but now using a linear system with a condition independent of the
separation distance qX .

4.4.3. Kernel-Based Learning

There is a close link between the theories of kernel-based approximation,
spline smoothing and machine learning. Since there is a broad collection of
literature on this topic (see, e.g., [31, 16, 30, 5, 6, 7, 8, 9] and the references
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therein), we shall only briefly sketch the viewpoint of learning theory. In
this section, we deal only with strong recovery or approximation problems.
In order to recover a continuous function f from a strong sample SX (f) =

(f (x1) , . . . , f (xN ))T , the most common choice for an approximant in
kernel-based approximation theory uf is an interpolant, i.e., SX (uf ) =
SX (f). This method obviously makes the best use of the sample SX (f) ∈
R

N . But there are also some drawbacks of classical interpolation. On the
one hand, the reconstruction is very unstable if we consider SX (f) to be
spoiled by noise. On the other hand, there are also numerical disadvan-
tages, namely the computation of the interpolant may be ill-conditioned.
Furthermore, if uf (·) =

∑N
j=1 αjK (·, xj) denotes the interpolant, there

will be many non-zero coefficients, i.e., this method is non-sparse.

One way out of these problems is provided by learning theory. Here,
the reconstruction problem is an example of supervised regression, because
the real values SX (f) are generated by an unknown, but fixed function
f . Instead of SX (f) we may consider more generally a vector of possi-
bly disturbed values y ≈ SX (f). One typically relaxes the interpolation
condition by using a more general similarity measure, e.g., by using a loss

function. A typical example is Vapnik’s ǫ-intensive loss function [33]

|f (x) − y|ǫ =

{

0 if |f (x) − y| ≤ ǫ
|f (x) − y| − ǫ if |f (x) − y| > ǫ

,

which allows deviations up to a positive parameter ǫ > 0. A popular recon-
struction technique called ν–Support–Vector–Regression (ν–SVR, [32]) in
a Hilbert space H (Ω) of functions Ω → R is then obtained as solution to
the optimization problem

min
u∈H(Ω)

ǫ∈R
+

1

N

N
∑

j=1

|u (xj) − yj |ǫ + ǫν + λ ‖u‖2
H(Ω) (27)

with an a priori chosen parameter λ. In this section we shall focus on the
ν–SVR, but everything works as well for similar regression techniques such
as the ǫ-SVR [27, 26]. The ν–SVR possesses a solution (uy, ǫ

∗) [23], and
if H (Ω) is equivalent to the native Hilbert space of a symmetric positive

definite kernel K, there is a solution of the form uy (·) =
∑N

j=1 αjK (·, xj)
which can be computed by solving a finite dimensional quadratic opti-
mization problem for the coefficient vector α [31]. As elaborated in [26],
sampling inequalities can be used to provide a worst-case error analysis,
even in the case of noisy data. Such bounds require no knowledge about
the underlying noise model. As outlined above, we assume that the data
y = yf ∈ R

N comes from the strong sample SX (f) from some function
f ∈ W τ

2 (Ω) ∼= NK (Ω) on a set X = {x1, . . . , xN} ⊂ Ω, but we allow the
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given data to be corrupted by some additive error r ∈ R
N , i.e.,

SX (f) = y + r. (28)

If we solve the optimization problem (27) with data y = SX (f) − r, we
obtain an approximant uy to the generating function f . The following
theorem provides an upper bound for the approximation error of this pro-
cess.

Theorem 6. Suppose some bounded domain Ω ⊂ R
d with Lipschitz

boundary, and ⌊τ − 1⌋ > d/2. Then there are constants C, h0 > 0,
depending only on Ω, d, q and τ with the following property. For all func-
tion f ∈ W τ

2 (Ω), all sets X = {x1, . . . , xN} ⊂ Ω with fill distance h ≤ h0

and all errors r ∈ R
N , a solution (uy, ǫ

∗) of (27) with data y being related
to the samples of f via (28), satisfies for any δ > 0

‖f − uy‖L∞(Ω) ≤ C



hτ−d
2



‖f‖W τ
2

(Ω)+

√

√

√

√

1

Nλ

N
∑

j=1

|rj |δ+
νδ

λ
+‖f‖2

W τ
2

(Ω)





+

N
∑

j=1

|rj |δ + νNδ + ǫ∗ (1 − Nν) + Nλ ‖f‖2
W τ

2
(Ω)



 .

The bound in Theorem 6 involves a positive parameter δ, which we are
free to choose. The optimal choice of δ obviously depends on the problem
parameters. Again, the error estimate suggests some choice of the problem
parameters. If we assume that the error does not exceed the data itself,
i.e., ‖r‖ℓ∞(RN ) ≤ δ ≤ ‖f‖W τ

2
(Ω), we can choose the parameters λ, ν and ǫ

(see [26] for details) such that

‖f − uy‖L∞(Ω) ≤ C
(

hτ−d/2 ‖f‖W τ
2

(Ω) + δ
)

.

This shows that the solution of the ν–SVR leads to optimal sampling
orders [29] in Sobolev spaces with respect to the fill distance h. These
optimal rates are also attained by classical interpolation in the native
Hilbert space [36]. The ν–SVR, however, allows for much more flexibility
and less complicated solutions.

4.5. Unsymmetric Methods

We now go back to Section 4.4.1 and deal with unsymmetric recovery
methods where the sampling operator SΛS

used for testing is different
from the sampling operator SMR

defining the trial space. We simplify the
trial space to let the sampling operator

SMR
=

(

δx1
, . . . , δxNR

)T
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consist of point evaluations on a set of points XR := {x1, . . . , xNR
} ⊂ Ω

only, and thus we use the trial space

R := span {K (xj , ·) : xj ∈ XR} .

We want to recover an unknown function f ∈ NK(Ω) ⊆ W τ
2 (Ω) from its

given weak or strong test data

SΛE
(f) := (λ1 (f) , . . . , λNE

(f))
T

using trial functions from R. That is, we seek a function ur(f) ∈ R
satisfying

1. SΛE
(ur (f)) ≈ SΛE

(f)

2. ‖ur (f) − f‖W m
2

(Ω) ≤ ǫ(r, f, τ, m) small, for some m < τ .

Typically, one has ǫ(r, f, τ, m) = hτ−m
R ‖f‖W τ

2
(Ω). Consider the interpola-

tion system
SΛE

(ur (f)) = SΛE
(f)

as in (18). Unfortunately, this system is unsymmetric and hence we can-
not simply solve a linear system as in the case of symmetric methods. But
we use the observation from Section 2.3 that under the condition (13) the
linear system has full rank. Hence we can apply any numerical method
solving the usually overdetermined system (18) to some accuracy by resid-

ual minimization. We denote by u∗ (f) the best approximant from R to
f which is an interpolant to the unknown data RMR

(f) and define ur(f)
by the following property

‖SΛE
(f) − SΛE

(ur (f)) ‖
R

NE = inf
ur∈R

‖SΛE
(f) − SΛE

(ur) ‖R
NE .

Then we have

‖SΛE
(f) − SΛE

(ur (f)) ‖
R

NE = infur∈R ‖SΛE
(f) − SΛE

(ur) ‖R
NE

≤ ‖SΛE
(f) − SΛE

(u∗ (f)) ‖
R

NE

≤ ǫ(r, f, τ, m)‖SΛE
‖,

(29)
where ‖SΛE

‖ denotes the norm of the test sampling operator as a mapping
between Wm

2 (Ω) and R
NE . Note that we used a sampling inequality to

bound the interpolation error. This gives the first property. For the second
we find

‖f − ur (f) ‖W m
2

(Ω) ≤ ‖f − u∗ (f) ‖W m
2

(Ω) + ‖ur (f) − u∗ (f) ‖W m
2

(Ω) .

In order to bound the second term on the right-hand side, we apply a
stability inequality of the form (10) to the function ur (f) − u∗ (f) ∈ R
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and get

‖ur (f) − u∗ (f) ‖W m
2

(Ω)

≤ Cstab (m, hE ,R) ‖SΛE
(ur (f)) − SΛE

(u∗ (f)) ‖
R

NS

≤ ǫ(r, f, τ, m)Cstab (m, hE ,R) ‖SΛE
‖ .

Now everything combines into

‖f − ur (f) ‖W m
2

(Ω) ≤ Cǫ(r, f, τ, m) (1 + Cstab (m, hE,R) ‖SΛE
‖)

which reduces under the assumption ǫ(r, f, τ, m) = hτ−m
R ‖f‖W τ

2
(Ω) to the

usual form

‖f − ur (f) ‖W m
2

(Ω) ≤ Chτ−m
R (1 + Cstab (m, hE ,R) ‖SΛE

‖) ‖f‖W τ
2

(Ω).

4.6. Unsymmetric Weak Recovery

The paper [28] deals with unsymmetric recovery of functions f ∈ L2(Ω)
from weak data obtained via nonstationary convolution. Under suitable
conditions on the trial and test kernels, the numerical solution ur(f) has
an error bound of the form

‖f − ur(f)‖W−2τ
2

≤ Ch2τ
R ‖f‖L2(Ω) for all f ∈ L2(Ω)

provided that both kernels have at least smoothness τ in the sense of
section 4.2. To show how weak stationary sampling can be put into the
framework of the previous section, we follow [25] and combine the func-
tionals from Section 3.4.1 with the ideas from the last section and from
[28] to derive L2–error estimates. For convenience we briefly recall the
definition of weak stationary convolution-type data

λj (u) =

∫

Ω

E (x − xj) u (x) dx

with a stationary test kernel E as characterized in Definition 1. As out-
lined in Section 4.5 we consider the following problem. An unknown
function f ∈ W τ

2 (Ω) has to be recovered approximately from its data

(λ1 (f) , . . . , λN (f))
T
. We know that there is a good but unknown ap-

proximation u∗ (f) from the trial space R = span {K (xj , ·) : xj ∈ XR}
to the function f ∈ W τ

2 (Ω). Under certain conditions [25], there is an
error estimate of the form

‖f − u∗(f)‖L2(Ω) ≤ hτ
R ‖f‖W τ

2
(Ω) , (30)

showing the expected approximation order. The unsymmetric overdeter-
mined system (18) takes the form

λj (f − ur) = 0 for all 1 ≤ j ≤ NE .
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As shown in (29) we can find a function ur (f) ∈ R which solves this
system up to some accuracy, i.e.,

|λj (f − ur (f))| ≤ Chτ
R‖SΛE

‖ ‖f‖W τ
2

(Ω) for 1 ≤ j ≤ NE.

As pointed out in section 4.5 and in (10) we assume an inverse inequality
of the form

‖u‖W τ
2

(Ω) ≤ Cγ (XR) ‖u‖L2(Ω) for all u ∈ R.

Unfortunately, the value of γ (XR) is in general not known. There is a
result in this direction in [25], namely if the trial kernel K is a radial basis
function with algebraic smoothness τ > d/2 and if XR is separated from
the boundary by qR, then γ (XR) ≈ q−τ

R . Here, qR denotes the separation
distance of XR. However, we can always make sure that the fill distance
of the test data is small enough to stabilize the reconstruction, i.e., we
shall assume a coupling of the discretizations as in (13),

γ (XR) hτ
E ≤ 1

2C
with C > 1. (31)

Combining everything yields the following result:

Theorem 7. We denote by ur (f) ∈ R the approximate solution of the
system (18). Then we have an error bound of the form

‖f − ur (f)‖L2(Ω) ≤ C

(

2hτ
E +

1

C1
hτ

R + hτ
R‖SΛE

‖
)

‖f‖W τ
2

(Ω)

for sufficiently fine test discretizations.

In contrast to the results of [28], this error analysis does not assume f to be
known on a slightly larger domain Ω̃. Furthermore, the result holds for the
L2-norm, not for negative order Sobolev norms as in [28]. Unfortunately,
the norm of the sampling operator shows up in the final estimate. This

norm ‖SΛE
‖ ∼ h

−d/2
S grows and hence prevents optimal rates in the error

estimate. Furthermore one needs to sassume τ > d/2, which excludes fully
weak problems. A promising way out seems to be to drop the inadequate
ℓ∞ norm in favor of hd/2‖SΛE

u‖ℓ2(RN ) like in Madych’s sampling inequality
(14). But this is work in progress.

§5. Outlook

Research on general sampling and stability inequalities is just in its be-
ginnings, but since they are of central importance to Numerical Analysis,
they deserve a larger audience via this survey. There are at least two ob-
vious directions for future research. On the one hand-side, there are many
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more possible applications for which sampling inequalities involving differ-
ent functionals are required. This might include sampling of parametric
curves and surfaces. On the other hand, there are some technical issues
for improving the practical applicability. In every theorem, there are sev-
eral generic constants involved for which one would need better bounds.
This interacts with the stability estimates and the coupling of trial and
test discretizations. In particular, to provide realistic upper bounds on
fill distances on the test side, various generic constants need thorough
investigation.
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