Shift-invariant approximation

Robert Schaback

July 30, 2013

1 Synonyms
Approximation by integer translates

2 Mathematics Subject Classification
41A25, 42C15, 42C25, 42C40

3 Short Definition
Shift–invariant approximation deals with functions f on the whole real line, e.g. time series and signals. It approximates f by shifted copies of a single generator φ, i.e.

$$f(x) \approx S_{f,h,\varphi}(x) := \sum_{k \in \mathbb{Z}} c_{k,h}(f) \varphi \left(\frac{x}{h} - k \right), \quad x \in \mathbb{R}. \quad (1)$$

The functions $\varphi \left(\frac{x}{h} - k \right)$ for $k \in \mathbb{Z}$ span a space that is shift–invariant wrt. integer multiples of h. Extensions [de Boor et al(1994a)de Boor, DeVore, and Ron, de Boor et al(1994b)de Boor, DeVore, and Ron] allow multiple generators and multivariate functions. Shift–invariant approximation uses only a single scale h, while wavelets use multiple scales and refinable generators.

4 Description
Nyquist–Shannon–Whittaker–Kotelnikov sampling provides the formula

$$f(x) = \sum_{k \in \mathbb{Z}} f(kh) \text{sinc} \left(\frac{x}{h} - k \right)$$

for band–limited functions with frequencies in $[-\pi/h, +\pi/h]$. It is basic in Electrical Engineering for AD/DA conversion of signals after low–pass filtering. Another simple example arises from the hat function or order two B–spline
$B_2(x) := 1 - |x|$ for $-1 \leq x \leq 1$ and zero elsewhere. Then the “connect–the–
dots” formula

$$f(x) \approx \sum_{k \in \mathbb{Z}} f(kh)B_2 \left(\frac{x}{h} - k \right)$$

is a piecewise linear approximation of f by connecting the values $f(kh)$ by
straight lines. These two examples arise from a generator φ satisfying the car-
dinal interpolation conditions $\varphi(k) = \delta_{0k}$, $k \in \mathbb{Z}$, and then the right–hand
side of the above formulas interpolates f at all integers. If the generator is a
higher–order B–spline B_m, the approximation

$$f(x) \approx \sum_{k \in \mathbb{Z}} f(kh)B_m \left(\frac{x}{h} - k \right)$$

goes back to I.J. Schoenberg and is not interpolatory in general.

So far, these examples of (1) have very special coefficients $c_{k,h}(f) = f(kh)$
arising from sampling the function f at data locations $h\mathbb{Z}$. This connects shift–
invariant approximation to sampling theory. If the shifts of the generator are
orthonormal in $L_2(\mathbb{R})$, the coefficients in (1) should be obtained instead as
$c_{k,h}(f) = (f, \varphi(\cdot - k))_2$ for any $f \in L_2(\mathbb{R})$ to turn the approximation into an
optimal L_2 projection. Surprisingly, these two approaches coincide for the sinc
case.

Analysis of shift–invariant approximation focuses on the error in (1) for
various generators φ, and for different ways of calculating useful coefficients
$c_{k,h}(f)$. Under special technical conditions, e.g. if the generator φ is compactly
supported, the Strang–Fix conditions [Strang and Fix(1973)]

$$\hat{\varphi}^{(j)}(2\pi k) = \delta_{0k}, \ k \in \mathbb{Z}, \ 0 \leq j < m$$

imply that the error of (1) is $O(h^m)$ for $h \to 0$ in Sobolev space $W_m^2(\mathbb{R})$ if the
coefficients are given via L_2 projection. This holds for B–spline generators of
order m.

The basic tool for analysis of shift–invariant L_2 approximation is the bracket
product

$$[\varphi, \psi](\omega) := \sum_{k \in \mathbb{Z}} \hat{\varphi}(\omega + 2k\pi)\overline{\hat{\psi}(\omega + 2k\pi)}, \ \omega \in \mathbb{R}$$

which is a 2π–periodic function. It should exist pointwise, be in $L_2[-\pi, \pi]$ and
satisfy a stability property

$$0 < A \leq [\varphi, \varphi](\omega) \leq B, \ \omega \in \mathbb{R}.$$

Then the L_2 projector for $h = 1$ has the convenient Fourier transform

$$\hat{S}_{f,1,\varphi}(\omega) = \frac{[f, \varphi](\omega)}{[\varphi, \varphi](\omega)} \hat{\varphi}(\omega), \ \omega \in \mathbb{R},$$

and if $[\varphi, \varphi](\omega) = 1/2\pi$ for all ω, the integer shifts $\varphi(\cdot - k)$ for $k \in \mathbb{Z}$ are
orthonormal in $L_2(\mathbb{R})$.

Fundamental results on shift–invariant approximation are in [de Boor et al(1994a), de Boor, DeVore, and Ron,
de Boor et al(1994b), de Boor, DeVore, and Ron], and the survey [Jetter and Plonka(2001)]
gives a comprehensive account of the theory and the historical background.
References

