
Stability of Radial Basis Fun
tion InterpolantsRobert S
haba
kAbstra
t. The stability of the linear systems arising from s
attereddata interpolation problems with radial basis fun
tions is analysed in fullgenerality. Sin
e lower bounds for the smallest eigenvalue of the 
oeÆ
ientmatrix yield upper bounds for the absolute error of the RBF 
oeÆ
ientsin terms of the absolute errors in the data, we then fo
us on a new andshort proof of su
h bounds.x1. Introdu
tionWe shall study the stability of multivariate interpolation by 
onditionally pos-itive de�nite radial fun
tions of order m � 0.De�nition 1. A univariate fun
tion� : IR�0 ! IRis 
alled 
onditionally positive de�nite of order m on IRd, if for all possible
hoi
es of sets X = fx1; : : : ; xNg � IRdof N distin
t points, the quadrati
 form indu
ed by the N �N matrixA = (�(kxj � xkk2))1�j;k�N (1)is positive de�nite on the subspa
eV := 8<:� 2 IRN : NXj=1 �jp(xj) = 0 for all p 2 IPdm9=;where IPdm stands for the spa
e of d-variate polynomials of order not ex
eedingm.Approximation Theory X 1Charles K. Chui, Larry L. S
humaker, and Joa
him Stoe
kler (eds.), pp. 1{8.Copyright o
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2 R. S
haba
kNote that m = 0 implies V = IRN be
ause of IPdm = f0g, and then thematrix A in (1) is positive de�nite.The most prominent examples of 
onditional positive de�nite radial basisfun
tions of order m on IRd are�(r) = (�1)d�=2er� � > 0; � 62 2IN0 m � d�=2e�(r) = (�1)k+1r2k log(r) k 2 IN m � k + 1�(r) = (
2 + r2)�=2 � < 0 m � 0�(r) = (�1)d�=2e(
2 + r2)�=2 � > 0; � 62 2IN0 m � d�=2e�(r) = e��r2 � > 0 m � 0�(r) = (1� r)4+(1 + 4r) d � 3 m � 0See e.g. [10℄ for a 
omprehensive derivation of the properties of these fun
tions.Interpolation of real values f1; : : : ; fN on a set X = fx1; : : : ; xNg of Ndistin
t s
attered points of IRd by a radial basis fun
tion � is done by solvingthe (N +Q)� (N +Q) systemA� + P� = fPT� + 0 = 0 (2)where Q = dimIPdm and P = (pi(xj))1�j�N;1�i�Qfor a basis p1; : : : ; pQ of IPdm. In fa
t, if the additional assumptionrank (P ) = Q � N (3)holds, then the system (2) is uniquely solvable. The resulting interpolant hasthe form s(x) = NXj=1 �j�(kxj � xk2) + QXi=1 �ipi(x) (4)with the additional 
ondition � 2 V .x2. StabilityTo investigate the numeri
al stability of the system (2), we repla
e �; �; fby perturbations of the original quantities and get(��)TA(��) + 0 = (��)T�fPT (��) + 0 = 0 (5)Sin
e A is positive de�nite on the subspa
e V = kerPT , there are positiveeigenvalues � � � su
h that�k�k22 � �TA� � �k�k22 for all � 2 V = kerPT : (6)



Stability of RBF 3We 
an insert this into (5) to getk��k2 � 1�k�fk2to bound the absolute error �� of � by the absolute error �f in the datave
tor f . If the solution � is nonzero, we have that f � P� is nonzero, and asimilar argument 
ombining (2) and (6) yieldsk��k2k�k2 � �� k�fk2kf � P�k2for the relative error. Thus the standard L2 theory of numeri
al stabilityapplies to the RBF part of (2). The 
ondition is given by the ratio �=�, whilestability of the absolute error is dominated by �.The stability of the 
al
ulation of � follows the lines of the stability theoryfor dis
rete L2 polynomial approximation, be
ause we have� = (PTP )�1PT (f � A�): (7)This means that the polynomial part 
an be 
al
ulated from the residuals ofthe RBF data via the standard operator (PTP )�1PT of dis
rete L2 polynomialapproximation. The absolute error of the residuals 
an be bounded byk�f � A��k2 � k�fk2(1 + �� );and we 
an see how the 
ondition of the RBF part enters into the stabilitytheory for the polynomial part: the upper bounds have to be multiplied by1 + �� .To derive stability bounds for pra
ti
al use, one needs upper bounds for� and lower bounds for �.x3. Upper Bounds for EigenvaluesFor bounded radial basis fun
tions one 
an get 
rude upper bounds for � viaGers
hgorin's theorem. In fa
t, if we normalize � to satisfy1 = �(0) � �(r) for all r 2 [0;1);then j1� �j � N � 1;whi
h is not too bad for standard appli
ations and 
ompared to the bad be-havior of � to be
ome apparent later. In parti
ular, this bound is independentof the data lo
ations and the smoothness of �, whi
h have a strong in
uen
eon lower bounds for �.
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kA somewhat more general argument works for 
ases in whi
h we have a
onvolution representation�(kx� yk2) = ZIRd 	(x� t)	(y � t)dt: (8)This is a
tually true for all smooth un
onditionally positive de�nite andFourier{transformable fun
tions, be
ause the Fourier transform of 	(x) 
anbe obtained via the square root of the (nonnegative) Fourier transform of�(k � k2). If we assume (8), then�TA� = ZIRd0� NXj=1 �j	(xj � t)1A2 dt� 0� NXj=1�2j1AZIRd NXj=1	(xj � t)2dt= N�(0) NXj=1�2j :For general positive de�nite fun
tions �(x; y) we know that�(x; y) = (�(x; �);�(y; �))Hholds, where H is the native Hilbert spa
e for � (see e.g. [9℄ for details). Thenthe above argument takes the form�TA� = 





 NXj=1�j�(xj ; �)





2H� 0� NXj=1�2j1A0� NXj=1�(xj ; xj)1A : (9)
The 
ase of unbounded radial basis fun
tions is somewhat more 
ompli
ated.It 
omprises the radial basis fun
tions with positive minimal order of 
ondi-tional positive de�niteness, for instan
e the multiquadri
s �(r) = pr2 + 
2or thin{plate splines �(r) = r2 log r. In 
ontrast to the above upper bound,whi
h did not use the additional 
ondition � 2 V = kerPT , we now have torely on the latter. If we insert (7) into the �rst equation in (2), we get(A� P (PTP )�1PTA)� = f � P (PTP )�1PT f:Due to P (PTP )�1PT� = 0, this system 
an be written asRART� = Rf;



Stability of RBF 5where R := I � P (PTP )�1PT = RT is the operator that maps dis
rete datainto their residuals after least{squares approximation by polynomials fromIPdm. The matrix B := RART will now have a signi�
antly better behaviorthan A, as far as upper bounds are 
on
erned, be
ause it 
an be interpretedas an interpolation matrix of an un
onditionally positive de�nite non{radialfun
tion (see x6 of [9℄). In parti
ular, we 
an apply (9) to this new fun
tion,and we get a numeri
ally 
omputable upper bound on the largest eigenvalue.Further details are suppressed here. We summarize:Theorem 2. For any positive de�nite radial basis fun
tion �, the largesteigenvalue � of the matrix A as de�ned in (1) is bounded above by N�(0).For non{radial positive de�nite basis fun
tions the bound takes the formNXj=1�(xj ; xj);and the 
ase of positive order of 
onditional positive de�niteness 
an be re-du
ed to the positive de�nite non{radial 
ase by matrix transformations.x4. Lower Bounds for EigenvaluesThe work of Ball [1℄[2℄, Nar
owi
h, Sivakumar, and Ward [5℄[6℄ already 
on-tains lower bounds for the smallest eigenvalue � of A, and these bounds arenear{optimal due to [7℄. However, the proofs are 
ompli
ated, and we wantto provide a mu
h shorter though less general argument, whi
h 
an be trans-ferred to expansion kernels [4℄. It relies on the existen
e of positive de�nitefun
tions with 
ompa
t support, whi
h were not available before 1995 due toWu [13℄ and Wendland [12℄.The idea is to perturb the matrix A on the diagonal by subtra
ting froma 
onditionally positive de�nite radial fun
tion � of order m some positivede�nite radial fun
tion  with small support, su
h that � �  still is 
ondi-tionally positive (semi)de�nite of order m. If we write A� when A in (1) isbased on �, we then get�TA�� = �TA�� �+ �TA � � �TA � =  (0)k�k22 for all � 2 Vif the support of � is smaller than the minimal distan
eq := min1�i<j�N kxi � xjk2 (10)between two di�erent data points, and then A =  (0)I.Theorem 3. Let � be a 
onditionally positive de�nite fun
tion of order m.If  is a positive de�nite radial basis fun
tion with support in [0; q℄ with qfrom (10) su
h that � �  is 
onditionally positive de�nite of order at leastm, then  (0) is a lower bound for the smallest eigenvalue of A� as de�ned in(1).
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kThus we get  (0) as a lower bound for �, whenever we 
an �nd a  withsupport in [0; q℄ su
h that  and �� are positive de�nite. Of 
ourse, we wouldlike to take the maximal  (0) under these 
onditions, but the 
orrespondingoptimization problem still is an open 
hallenge.To be more spe
i�
, we 
on�ne ourselves to 
onditionally positive de�niteradial basis fun
tions with a radial generalized Fourier transform b� satisfyingb�(r) � 
1r�d�� for all r > 1: (11)Note that this pla
es an upper bound on the smoothness of �, and thus itrules out in�nitely di�erentiable 
ases like the Gaussian and the multiquadri
s.Furthermore, it implies by arguments from [11℄ that the standard L1(
) errorbounds for interpolation of fun
tions in the native spa
e H 
annot be betterthan of order O(h�=2), where h is the data densityh := supy2
 min1�j�N kxj � yk2:By the Un
ertainty Prin
iple in [8℄, the optimal lower bounds of eigenvalues� have the form O(q�) for small q, and this is what we want to re
over by ournew te
hnique.Theorem 4. Let � be a 
onditionally positive de�nite radial basis fun
tionwhose Fourier transform has at most the de
ay (11). Then the smallest eigen-values of the matri
es A in (1) have a lower bound of the form� � 
q�for all data sets with q � 1.Proof: For 
onvenien
e of notation, we add0 < 
0 � b�(r) for all r � 1to (11). From Wendland's supply of arbitrarily smooth 
ompa
tly supportedpositive de�nite radial basis fun
tions we 
an �nd some � with support on[0; 1℄ satisfying �(0) = 1 and having a positive radial Fourier transform b�with b�(r) � C1r�d�� r > 0b�(r) � C0 r � 1:We now take  (�) = ��(�=q) to squeeze the support of  into [0; q℄, and wemaximize � under the 
onstraintb�(r) � b (r) = �qdb�(rq) for all r � 0 (12)whi
h still makes �� 
onditionally positive semide�nite of at least the sameorder as �, be
ause this order is related to the order of the singularity of b� atzero.



Stability of RBF 7We �rst treat the 
ase r > 1, in whi
h it suÆ
es to guarantee (12) byb (r) = �qdb�(rq) � �qdC1(rq)�d�� = �q��C1r�d�� � 
1r�d�� � b�(r)by pi
king � � 
1C1 q� :The 
ase r � 1 has rq � 1 and we 
an satisfyb (r) = �qdb�(rq) � �qdC0 � �C0 � 
0 � b�(r)by taking � � 
0C0 :Note that we 
ould in
orporate in�nitely di�erentiable 
ases like theGaussian and the multiquadri
s, if we had a suÆ
ient supply of in�nitelydi�erentiable radial basis fun
tions with small 
ompa
t supports. The 
aseof expansion kernels su�ered also from la
k of positive de�nite fun
tions witharbitrarily small support, but this was over
ome in [4℄. An appli
ation tonon{radial basis fun
tions with varying s
ales and shapes is in [3℄.A
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