Stability of Radial Basis Function Interpolants

Robert Schaback

Abstract. The stability of the linear systems arising from scattered
data interpolation problems with radial basis functions is analysed in full
generality. Since lower bounds for the smallest eigenvalue of the coefficient
matrix yield upper bounds for the absolute error of the RBF coefficients
in terms of the absolute errors in the data, we then focus on a new and
short proof of such bounds.

§1. Introduction

We shall study the stability of multivariate interpolation by conditionally pos-
itive definite radial functions of order m > 0.

Definition 1. A univariate function
d) : ]R20 — R

is called conditionally positive definite of order m on RY, if for all possible
choices of sets
X ={x1,...,2n} c R?

of N distinct points, the quadratic form induced by the N X N matrix

A= (@2 = zrll2)1<jnen (1)

is positive definite on the subspace

N
Vi={aecR" : Zajp(xj):01‘101“aHpE]PZ1

i=1

where ]P% stands for the space of d-variate polynomials of order not exceeding
m.
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Note that m = 0 implies V = R" because of P% = {0}, and then the
matrix A in (1) is positive definite.

The most prominent examples of conditional positive definite radial basis
functions of order m on R? are

¢(r) = (~1)IP/21P f>0,0¢2Ng m>[3/2]
o(r) (—1)k+1r2k Jog(r) ke N m>k+1
o(r) (¢ + r2)B/2 B<0 m>0
o(r) = (=) + )82 5>0,8¢ 2Ny m > [(/2]
p(r) = e’ a>0 m >0
p(r) = (1—r)i(1+4r) d<3 m>0

See e.g. [10] for a comprehensive derivation of the properties of these functions.

Interpolation of real values fy,..., fy on a set X ={zy,...,zn} of N
distinct scattered points of IR? by a radial basis function ¢ is done by solving
the (N + Q) x (N + Q) system

Ao + Pp =
Pla + 0 =

o =

(2)
where Q = dimIP¢ and

P = (pi(25))1<;<n1<i<q
for a basis p1,...,pg of ]PZT In fact, if the additional assumption
rank (P)=Q < N (3)

holds, then the system (2) is uniquely solvable. The resulting interpolant has
the form

N Q
s(z) =Y bz — zll2) + Y Bipil@) (4)
j=1 i=1
with the additional condition o« € V.

§2. Stability

To investigate the numerical stability of the system (2), we replace o, 3, f
by perturbations of the original quantities and get

(Aa)TA(Aa) + 0 = (Aa)TAf -
PT(Aa) + 0 = 0 (5)

Since A is positive definite on the subspace V = ker PT, there are positive
eigenvalues A > X such that

Alle|2 > aT Ao > M|a|? for all @ € V = ker PT. (6)
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We can insert this into (5) to get
1
IAalz < S1A7],

to bound the absolute error A« of a by the absolute error Af in the data
vector f. If the solution « is nonzero, we have that f — P is nonzero, and a
similar argument combining (2) and (6) yields

[Aafz _ A [[Af]

el = A =P8l

for the relative error. Thus the standard Ly theory of numerical stability
applies to the RBF part of (2). The condition is given by the ratio A/, while
stability of the absolute error is dominated by A.

The stability of the calculation of 3 follows the lines of the stability theory
for discrete Lo polynomial approximation, because we have

p=(PTP)"'PT(f - Aa). (7)

This means that the polynomial part can be calculated from the residuals of
the RBF data via the standard operator (PT P)~! PT of discrete Ly polynomial
approximation. The absolute error of the residuals can be bounded by

A
|IAf — AAalls < [|Af][2(1 + X)v

and we can see how the condition of the RBF part enters into the stability
theory for the polynomial part: the upper bounds have to be multiplied by
1+ 4.

To derive stability bounds for practical use, one needs upper bounds for
A and lower bounds for .

63. Upper Bounds for Eigenvalues

For bounded radial basis functions one can get crude upper bounds for A via
Gerschgorin’s theorem. In fact, if we normalize ¢ to satisfy

1= ¢(0) > ¢(r) for all r € [0, 00),

then

which is not too bad for standard applications and compared to the bad be-
havior of A to become apparent later. In particular, this bound is independent
of the data locations and the smoothness of ¢, which have a strong influence
on lower bounds for A.
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A somewhat more general argument works for cases in which we have a
convolution representation

Mo =yl = [ W =¥ o (¥

This is actually true for all smooth unconditionally positive definite and
Fourier—transformable functions, because the Fourier transform of ¥(z) can
be obtained via the square root of the (nonnegative) Fourier transform of
o] - ||2). If we assume (8), then

2

N
ol Aa = / Z a;W(z; —t) | dt

N N
2 2
< Zaj /RdZ\IJ(xj—t) dt
7j=1 7j=1
N
=N¢(0)) o,
j=1

For general positive definite functions ®(z,y) we know that

O(z,y) = (2(z,), @y, ) n

holds, where H is the native Hilbert space for ® (see e.g. [9] for details). Then
the above argument takes the form

ol Aa = Z a;®(x;,-)

IN
WE
K}Q[\')

i M
iy
QH
QH

The case of unbounded radial basis functions is somewhat more complicated.
It comprises the radial basis functions with positive minimal order of condi-
tional positive definiteness, for instance the multiquadrics ¢(r) = V12 + ¢2
or thin—plate splines ¢(r) = r?logr. In contrast to the above upper bound,
which did not use the additional condition & € V = ker PT, we now have to
rely on the latter. If we insert (7) into the first equation in (2), we get

(A—P(PTP)'PTA)a = f — P(PTP)~'PTY.
Due to P(PTP)~'PTq = 0, this system can be written as

RART o = RY,
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where R := I — P(PTP)~1PT = RT is the operator that maps discrete data
into their residuals after least—squares approximation by polynomials from
]P;in. The matrix B := RAR”T will now have a significantly better behavior
than A, as far as upper bounds are concerned, because it can be interpreted
as an interpolation matrix of an unconditionally positive definite non-radial
function (see §6 of [9]). In particular, we can apply (9) to this new function,
and we get a numerically computable upper bound on the largest eigenvalue.
Further details are suppressed here. We summarize:

Theorem 2. For any positive definite radial basis function ¢, the largest
eigenvalue A of the matrix A as defined in (1) is bounded above by N¢(0).
For non-radial positive definite basis functions the bound takes the form

N

> B(xj, @),

j=1

and the case of positive order of conditional positive definiteness can be re-
duced to the positive definite non—radial case by matrix transformations.

§4. Lower Bounds for Eigenvalues

The work of Ball [1][2], Narcowich, Sivakumar, and Ward [5][6] already con-
tains lower bounds for the smallest eigenvalue A of A, and these bounds are
near—-optimal due to [7]. However, the proofs are complicated, and we want
to provide a much shorter though less general argument, which can be trans-
ferred to expansion kernels [4]. It relies on the existence of positive definite
functions with compact support, which were not available before 1995 due to
Wu [13] and Wendland [12].

The idea is to perturb the matrix A on the diagonal by subtracting from
a conditionally positive definite radial function ¢ of order m some positive
definite radial function ¢ with small support, such that ¢ — ¢ still is condi-
tionally positive (semi)definite of order m. If we write A, when A in (1) is
based on ¢, we then get

ol Aga =aTAy_ya+aTAya > aT Aya = 9(0)||al|3 for all a € V
if the support of ¢ is smaller than the minimal distance

qi= min flz; — 5l (10)

between two different data points, and then Ay = ¢(0)1.

Theorem 3. Let ¢ be a conditionally positive definite function of order m.
If ¢ is a positive definite radial basis function with support in [0, q] with g
from (10) such that ¢ — 1 is conditionally positive definite of order at least
m, then ¢(0) is a lower bound for the smallest eigenvalue of A, as defined in

(1).
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Thus we get 1(0) as a lower bound for A, whenever we can find a ¢ with
support in [0, ¢] such that ¢ and ¢—1) are positive definite. Of course, we would
like to take the maximal 1 (0) under these conditions, but the corresponding
optimization problem still is an open challenge.

To be more specific, we confine ourselves to conditionally positive definite
radial basis functions with a radial generalized Fourier transform ¢ satisfying

b(r) > coor™@ P for all r > 1. (11)

Note that this places an upper bound on the smoothness of ¢, and thus it
rules out infinitely differentiable cases like the Gaussian and the multiquadrics.
Furthermore, it implies by arguments from [11] that the standard L., (Q2) error
bounds for interpolation of functions in the native space H cannot be better
than of order O(hP/?), where h is the data density

h:= 21618 érgugn 25— yll2-

By the Uncertainty Principle in [8], the optimal lower bounds of eigenvalues
A have the form O(¢®) for small ¢, and this is what we want to recover by our
new technique.

Theorem 4. Let ¢ be a conditionally positive definite radial basis function
whose Fourier transform has at most the decay (11). Then the smallest eigen-
values of the matrices A in (1) have a lower bound of the form

A > cg?

for all data sets with q < 1.

Proof: For convenience of notation, we add
0<c0§($(r) forallr <1

to (11). From Wendland’s supply of arbitrarily smooth compactly supported
positive definite radial basis functions we can find some o with support on
[0, 1] satisfying 0(0) = 1 and having a positive radial Fourier transform &

with
o(r) < Cor™@# 1r>0
a(r) < Co r<1.

We now take v(-) = eo(-/q) to squeeze the support of 1 into [0, q], and we
maximize € under the constraint

a(r) > {b\(r) = €q¥G(rq) for all ¥ > 0 (12)

which still makes ¢ — 1) conditionally positive semidefinite of at least the same
order as ¢, because this order is related to the order of the singularity of ¢ at
Zero.
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~

We first treat the case r > 1, in which it suffices to guarantee (12) by

b(r) = eq¥5(rq) < eq?Coo(rq) ™ P = eq P Coor™ 4P < cour™ P < §(r)

by picking
Coo
e < —q".
S Cooq
The case r < 1 has rq < 1 and we can satisfy

~

P(r) = eqda(rq) < eq?Cy < eCy < ¢y < a(r)

by taking

O

Note that we could incorporate infinitely differentiable cases like the

Gaussian and the multiquadrics, if we had a sufficient supply of infinitely
differentiable radial basis functions with small compact supports. The case
of expansion kernels suffered also from lack of positive definite functions with
arbitrarily small support, but this was overcome in [4]. An application to
non-radial basis functions with varying scales and shapes is in [3].
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