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Abstra
t. Using the heat equation as a simple example, we give a rigid theoreti
al analysis of

the Method of Lines, implemented as a meshless method based on spatial trial spa
es spanned by

translates of positive de�nite kernels. The te
hnique 
an be generalized to other paraboli
 problems,

and some numeri
al illustrations are given.
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1. Introdu
tion. There are plenty of appli
ation papers in whi
h kernels or

radial basis fun
tions are su

essfully used for solving partial di�erential equations

by meshless methods. The usage of kernels is typi
ally based on spatial interpolation

at s
attered lo
ations, writing the trial fun
tions �entirely in terms of nodes�[2℄. For

stationary partial di�erential equations, the dis
retization 
an take pointwise analyti


derivatives of the trial fun
tions to end up with a linear system of equations. This

started in [6℄ and was pursued in the following years, in
luding a 
onvergen
e theory

in [12℄. There are also variations that use weak data, like the Meshless Lo
al Petrov�

Galerkin method [1℄ with a 
onvergen
e theory in [14℄. For the potential equation,

there are spe
ial kernels that allow the use of trial fun
tions that satisfy the di�erential

equation exa
tly [13, 5℄.

For time�dependent partial di�erential equations, meshless kernel�based methods

were similarly based on a �xed spatial interpolation, but now the 
oe�
ients are time�

dependent, and one obtains a system of ordinary di�erential equations for these. This

is the well�knownMethod of Lines, and it turned to be experimentally useful in various


ases (see e.g. [16, 7, 4, 15℄). However, a rigid analysis of its behavior seems to be

still missing.

For the simple 
ase of the heat equation, this paper provides an analysis of the

Method of Lines. To this end, we start with basi
s on kernels, then des
ribe the

Method of Lines and analyze it. Though the Method of Lines needs no expli
it CFL


ondition, we show how a CFL 
ondition a
ts behind ths s
ene. Some numeri
al

examples are provided as well, and a short se
tion showing how to generalize this to

mu
h more general paraboli
 equations.

2. Kernel-Based Spa
e Dis
retization. A kernel is a symmetri
 fun
tion

K : Ω× Ω → R

on some spatial domain Ω ⊂ R
d
. The kernel usually is assumed to be positive de�nite,

i.e. for all sele
tions of �nite point sets X = {x1, . . . , xn} ⊂ Ω, the n × n kernel

matri
es A = A(X) with entries K(xj , xk), 1 ≤ j, k ≤ n are symmetri
 and positive

de�nite. Standard examples are radial basis fun
tions like the Gaussian

K(x, y) = exp(−‖x− y‖22) for all x, y ∈ R
d

or the 
ompa
tly supported Wendland fun
tion

K(x, y) =

{
(1− ‖x− y‖2)4(1 + 4‖x− y‖2) ‖x− y‖1 ≤ 1

0 ‖x− y‖1 ≥ 1

1
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for all x, y ∈ R
d
with d ≤ 3.

The standard way to use kernels for solving time�dependent partial di�erential

equations is to introdu
e a �xed spa
e dis
retization via �nite spatial point sets X =
{x1, . . . , xn} ⊂ Ω and to generate spatial trial fun
tions via translates of a kernel K
in the form

s(x) :=

n∑

j=1

αjK(x, xj), x ∈ Ω.(2.1)

Interpolation of a spatial fun
tion f : Ω → R on the given point set X is done by

solving the system

s(xk) =

n∑

j=1

αjK(xk, xj) = f(xk), 1 ≤ k ≤ n

involving the n × n kernel matrix A with entries K(xj , xk), 1 ≤ j, k ≤ n whi
h is

positive de�nite for all positive de�nite kernels.

For further use we note that one 
an 
onstru
t a Lagrange basis u1(x), . . . , un(x)
of the span of the fun
tions K(·, xj), 1 ≤ j ≤ n via solving the system

u(x) = K(x)A−1
(2.2)

where we use the notation

u(x) := (u1(x), . . . , un(x)), K(x) = (K(x, x1), . . . ,K(x, xn)).

Here and in what follows, indi
es running over fun
tions will be 
olumn indi
es, while

indi
es running over points will be row indi
es. In parti
ular, it is 
onvenient to

introdu
e the 
olumn-valued evaluation operator de�ned as

E(f) := (f(x1), . . . , f(xn))
T
for all f : Ω → R,

and appli
ation of this operator to a row of m fun
tions v1, . . . , vm should generate

the n×m matrix with entries vj(xk) with 1 ≤ j ≤ m for the 
olumns and 1 ≤ k ≤ n
for the rows. In parti
ular, the kernel matrix then is A = E(K(x)) and the Lagrange

property simply follows from

E(u(x)) = E(K(x)A−1) = E(K(x))A−1 = AA−1 = In×n.

Using the Lagrange basis, the representation (2.1) of an interpolant to a fun
tion f
turns into

s(x) =

n∑

j=1

uj(x)f(xj) = u(x)E(f), x ∈ Ω,

whi
h is �entirely in terms of nodes� as required for meshless methods [2℄.

If L is a linear spatial di�erential operator, and if the kernel K is su�
iently

smooth to allow appli
ation of L, an advantage of kernel�based spatial dis
retizations

is that

(Ls)(x) =

n∑

j=1

(Luj)(x)f(xj) = Lu(x)E(f), x ∈ Ω,
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is expli
itly available and again �entirely in terms of nodes�. The required derivatives

Luj of the Lagrange basis fun
tions uj 
ome from (2.2) via solving

(Lu)(x) = (LK)(x)A−1

provided that one 
an expli
itly evaluate the a
tion of L on K.

3. Method of Lines. With these notations 
on
erning spatial fun
tions and

their derivatives, we now turn to modeling time�dependent fun
tions v(x, t) where

the spatial argument x varies in Ω. One 
an always interpolate values v(xk, t) of

u(x, t) at all times t to get an interpolant

s(x, t) =
n∑

j=1

v(xj , t)uj(x) = u(x)E(u(·, t))(3.1)

in terms of the Lagrange basis. This 
an be seen as a superposition of a separation

of variables. The a
tion of a spatial linear operator L then is

(Ls)(x, t) =

n∑

j=1

v(xj , t)(Luj)(x) = (Lu)(x)E(v(·, t)),

again separating the time variation from the spa
e variation.

A linear evolution equation

ut(x, t) = (Lu)(x, t), x ∈ Ω, t ≥ 0

with a starting fun
tion g on Ω with

u(x, 0) = g(x) for all x ∈ Ω


an then be modeled by substituting (3.1) and dis
retizing the spatial variable to the

points x1, . . . , xn. This leads to

st(xk, t) = (Ls)(xk, t) 1 ≤ k ≤ n, t ≥ 0
s(xj , 0) = g(xj), 1 ≤ j ≤ n,

i.e. the whole problem is posed dis
retely in spa
e, but 
ontinuously in time. The

seond part is just interpolation of the initial fun
tion, while the �rst takes the form

∂

∂t
v(xk, t) =

n∑

j=1

v(xj , t)(Luj)(xk), 1 ≤ k ≤ n, t ≥ 0

whi
h is a linear system of ordinary di�erential equations

y′k(t) =

n∑

j=1

yj(t)(Luj)(xk), 1 ≤ k ≤ n, t ≥ 0

for unknowns yk(t) having the meaning yk(t) = v(xk, t) for an approximate solution

v(x, t) of the problem. The initial values are

yj(0) = g(xj), 1 ≤ j ≤ n.
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This is the 
lassi
al Method of Lines in the simplest linear 
ase without additional

boundary 
onditions. It is easy to generalize to nonlinear problems of the form

ut(x, t) = F (t, u(x, t), (Lu)(x, t)),

leading to a nonlinear system

y′k(t) = F



t,
n∑

j=1

yj(t)uj(xk),
n∑

j=1

yj(t)(Luj)(xk)





of ODEs, and it is also easy to in
orporate multiple spatial di�erential operators.

Additional time�dependent boundary 
onditions of the form

u(z, t) = uB(z, t) for all z ∈ Γ := ∂Ω, t ≥ 0


an also be handled. One dis
retizes them to

v(xn+i, t) = uB(xn+i, t), 1 ≤ i ≤ m

for a 
hoi
e of boundary points xn+1, . . . , xn+m. These are added to the spatial

interpolation problem, avoiding 
oales
en
e with the points x1, . . . , xn. The trial

fun
tions are again spe
i�ed in the form (3.1), but they split into

s(x, t) =

n∑

j=1

v(xj , t)uj(x) +

m∑

i=1

v(xn+i, t)un+i(x)

=

n∑

j=1

v(xj , t)uj(x) +

m∑

i=1

uB(xn+i, t)un+i(x)

being still entirely in terms of values at the nodes. Sin
e we form the Lagrange basis

with respe
t to all points x1, . . . , xn+m, the �rst sum vanishes on the boundary points

xn+1, . . . , xn+m, while the se
ond attains the 
orre
t boundary values there. The

resulting ODE system then is the inhomogeneous system

y′k(t) =

n∑

j=1

yj(t)(Luj)(xk) +

m∑

i=1

uB(xn+i, t)L(un+i)(x)

in the linear 
ase, for 1 ≤ k ≤ n and all t ≥ 0.
In numeri
al experiments, this te
hnique was reported to work well (see e.g. [16,

7, 4, 15℄), but a thorough mathemati
al analysis of its behavior is still missing, sin
e

one has to �ght stability properties [10℄. We shall supply a thorough analysis for a

simple spe
ial 
ase, the heat equation.

4. Method of Lines for Heat Equation. Consider

ut = uxx

on (x, t) ∈ [0, 1]× [0,∞) under boundary 
onditions

u(x, 0) = g(x), x ∈ [0, 1],
u(0, t) = g(0) = 0, t ≥ 0,
u(1, t) = g(1) = 0, t ≥ 0
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de�ned by a smooth fun
tion g on [0, 1] vanishing at both ends. By standard transfor-

mations, any heat equation problem with 
onstant boundary values 
an be brought

into this form. More pre
isely, the uxx part of the heat equation vanishes on a�ne-

linear spatial fun
tions. Thus one 
an 
hange ea
h problem with 
onstant boundary

values by subtra
ting an a�ne-linear fun
tion into one with zero boundary 
onditions,

and �nally transform ba
k by adding the a�ne-linear fun
tion.

For simpli
ity, we dis
retize [0, 1] by

0 = x0 < x1 < . . . < xn+1 = 1(4.1)

using equidistant points xj = jh, 0 ≤ j ≤ n+1 with distan
e h = 1/(n+1), but any
other dis
retization (4.1) with �ll distan
e

h := sup
x∈[0,1]

min
1≤j≤n

|x− xj |

will do.

Let K be a smooth positive de�nite symmetri
 kernel on R that vanishes in

x0 = 0 and xn+1 = 1, and let u1, . . . , un be the Lagrange basis for interpolation using

translates ofK in the points x1, . . . , xn. Note that u1, . . . , un will automati
ally satisfy

the zero boundary 
onditions at x0 and xn+1, be
ause the kernel vanishes there.

When starting from a kernel K without zero boundary 
onditions, one 
an form

the power kernel [8℄ for kernel�based interpolation in 0 and 1 as the new kernel K2

with

K1(x, y) := K(x, y)− K(x, 0)K(y, 0)

K(0, 0)
,

K2(x, y) := K1(x, y)−
K1(x, 1)K1(y, 1)

K1(1, 1)
,

whi
h will then vanish at 0 and 1 while being still positive de�nite.

Another possibility is to use kernels of the form

K(x, y) =

∞∑

k=1

µk sin(πkx) sin(πky)(4.2)

with suitably de
aying positive 
oe�
ients µk. We shall use this 
onstru
tion [9℄ in

our examples.

We use interpolatory trial fun
tions

s(x, t) =

n∑

j=1

s(xj , t)uj(x)

vanishing at x = 0 nd x = 1 and interpolate the starting fun
tion g by requiring

s(xk, 0) = g(xk), 1 ≤ k ≤ n.

The Method of Lines uses fun
tions

y(x, t) =

n∑

j=1

yj(t)uj(x)
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with y(xj , t) = yj(t) and poses the linear ODE system

y′k(t) =
n∑

j=1

yj(t)u
′′
j (xk), 1 ≤ k ≤ n

with starting values

yk(0) = s(xk, 0) = g(xk), 1 ≤ k ≤ n.

Introdu
ing the matrix-ve
tor notation for values at the points x1, . . . , xn as in the

previous se
tion, we get the linear �rst�order system

y′(t) = U ′′y(t)(4.3)

with the solution

y(t) = exp (U ′′t) y(0).

The solution satis�es

yt(xk, t) = yxx(xk, t), 1 ≤ k ≤ n

by 
onstru
tion, sin
e

yt(xk, t) =

n∑

j=1

y′j(t)uj(xk)

= y′k(t)

=
n∑

j=1

yj(t)u
′′
j (xk), 1 ≤ k ≤ n

= yxx(xk, t), 1 ≤ k ≤ n.

5. Error Analysis. We introdu
e the interpolant v(x, t) to the true solution

u(x, t) at the points x1, . . . , xn for all t. This is

v(x, t) =
n∑

j=1

u(xj , t)uj(x)

and we use it to insert the true solution into the ODE system for the Method of Lines.

Then

ut(xk, t) = uxx(xk, t)

=
n∑

j=1

u(xj , t)u
′′
j (xk) + uxx(xk, t)−

n∑

j=1

u(xj , t)u
′′
j (xk)

=

n∑

j=1

u(xj , t)u
′′
j (xk) + uxx(xk, t)− vxx(xk, t).

Introdu
ing ve
tors for values at the xk again, we get

u′(t) = U ′′u(t) + (uxx − vxx)(t)
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and

(u− y)′(t) = U ′′(u− y)(t) + (uxx − vxx)(t).

Sin
e the dis
rete starting values (u − y)(0) are zero, the standard formula for inho-

mogeneous linear �rst�order systems yields

(u − y)(t) =

∫ t

0

exp(U ′′(t− s))(uxx − vxx)(s)ds.(5.1)

This is an exa
t formula for the error at the dis
rete points.

We shall use a smooth positive de�nite translation�invariant kernel K on R of

the form (4.2) with 
oe�
ients satisfying

0 < µk ≤ Ck−2m
for all k ≥ 1(5.2)

for some �xed m > 1/2. It will be reprodu
ing in a �native� Hilbert spa
e of at least


ontinuous fun
tions whi
h is 
ontained in the Sobolev spa
e Wm
2 [0, 1] of fun
tions

with 1�periodi
 extensions into R. All fun
tions of this spa
e vanish on 0 and 1. Then

we 
an get

‖u(·, t)− v(·, t)‖L∞[0,1] ≤ Chm−1/2‖u(·, t)‖K(5.3)

due to [9, Cor. 3.6, p. 78℄ sin
e we 
an also assume by standard results on the heat

equation that the solution is smooth enough to lie in the spatial native spa
e of the

kernel for all times. Similarly,

‖uxx(·, t)− vxx(·, t)‖L2[0,1] ≤ Chm−2‖u(·, t)‖K(5.4)

if we use sampling inequalities [18℄,[11, Thm. 1℄. The 
orresponding result for L∞

errors of derivatives in 1D is

‖uxx(·, t)− vxx(·, t)‖L∞[0,1] ≤ Chm−2−1/2‖u(·, t)‖K .(5.5)

All of this follows from standard literature on kernel�based methods, see e.g. [17℄ for

the ba
kground of the 
ited papers.

6. Bounding the Exponential. The remaining problem now is to bound the

matrix exponential

exp(U ′′t)c =

∞∑

n=0

tn

n!
(U ′′)nc

somehow, e.g. via

‖ exp(U ′′t)c‖2 ≤
∞∑

n=0

tn

n!
ρ(U ′′)n‖c‖2

where ρ is the spe
tral radius. A spe
ial way to deal with the matrix exponential

in a better way than above is to use that the matrix U ′′
will be negative de�nite.

In fa
t, if A is the standard kernel matrix for the given points, and A′′
is the same,

but with se
ond derivatives of a kernel of the form (4.2), we 
an use that −A′′
will

be positive de�nite, be
ause the kernel expansion 
oe�
ients µk are going over to
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k2µk and thus stay positive. But U ′′
is A−1A′′

, thus negative de�nite. Therefore

the matrix exponential de
ays for in
reasing time, and 
an be bounded by a 
onstant

when looking at the integral (5.1). By Cau
hy�S
hwarz applied to (5.1), we have

‖u(t)− y(t)‖2 ≤
∫ t

0

‖exp(U ′′(xj − s))(uxx − vxx)(s)‖2 ds

≤ C
√
t

(∫ t

0

‖uxx(s)− vxx(s)‖22ds
)1/2

and with (5.4) this yields

|u(xj , t)− y(xj , t)| ≤ C
√
thm−2

(∫ t

0

|u(·, s)‖2Kds

)1/2

the �nal error bound on data then is

|u(xj , t)− y(xj , t)| ≤
√
tChm−2

(∫ t

0

‖u(·, s)‖2Kds

)1/2

.(6.1)

Theorem 6.1. If the Method of Lines is 
arried out using a kernel of order m
in the sense of (5.2), the error on the dis
retization points and up to all �xed times

will be given by (6.1).✷

Sin
e the true solution is C∞
and vanishes for in
reasing t due to its standard

series representation based on separation of variables, we know that the se
ond fa
tor

in (6.1) is uniformly bounded.

The error outside the data 
an be bounded by a�posteriori analysis, using the

Lagrange basis again. Writing

y(x, t) =

n∑

j=1

uj(x)y(xj , t)

and making use of the fa
t [3℄ that the Lagrange basis fun
tions are uniformly bounded

if the distribution of spatial data points is not too irregular, we have

|v(x, t)− y(x, t)| =

∣
∣
∣
∣
∣
∣

n∑

j=1

uj(x)(v(xj , t)− y(xj , t))

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

n∑

j=1

uj(x)(u(xj , t)− y(xj , t))

∣
∣
∣
∣
∣
∣

≤ Cn
√
thm−2

≤ C
√
thm−3

(6.2)

for the global error between the interpolant v to the true solution and the solution y
via the Method of Lines. The error between the true solution u and its interpolant v
has the better bound (5.3). This implies

Theorem 6.2. If the Method of Lines is 
arried out using a kernel of order m
in the sense of (5.2), the error on the dis
retization points and up to all �xed times

will be of order O(
√
thm−3).✷

Note that there is no CFL 
ondition here, sin
e there is no time step. At this

point, it is assumed that the ODE system indu
ed by the Method of Lines is solved
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exa
tly, and propagation of roundo� is ignored. Any ODE solver has to 
ope with

the linear system (4.3) somehow, and sin
e we shall see in the next se
tion that U ′′

has negative eigenvalues of absolute value O(h−2), the ODE system will be hard to

integrate with good quality if h is small. All instability issues are shifted ba
k to the

ODE system when using the Method of Lines, but there is a CFL 
ondition behind

the s
ene, as we shall see in the next se
tion.

7. Time Stepping Te
hniques. Using the above spatial dis
retization, and

using the notation w(x, t) for our approximate solution, a variation of a forward Euler

time�stepping method would then be

w(xk , t+∆t)− w(xk, t)

∆t
= wxx(xk, t) =

n∑

j=1

w(xj , t)u
′′
j (xk).

It still has a time dis
retization, but the spa
e dis
retization is hidden in the exa
t

di�erentiation of the spatial interpolant. In our ve
tor notation, it is

E(w(·, t +∆t)) = (I + U ′′∆t)E(w(·, t)).

Its stability 
an thus be analyzed via linear algebra, and the algorithm is the same as

a forward Euler step for the linear ODE system

w′(t) = U ′′w(t)

we en
ountered before. We shall have to analyze the spe
trum of U ′′
for asserting

stability, and this will follow below.

By standard approximation results like (5.5) for kernel�based methods, we get

Theorem 7.1. For kernels with orders m > 5/2, the forward Euler method (and

others dis
retizing the spatial se
ond derivative in the same way) will be 
onsistent of

order m− 5/2.
Note that for stable methods the 
onsisten
y order will be the 
onvergen
e order.

To 
he
k stability and to get a CFL 
ondition, we need

Theorem 7.2. The spe
tral radius of U ′′
satis�es

ρ(U ′′) ≤ Ch−2

if spatial dis
retization is done with m > 5/2.
Proof: If λ is an eigenvalue of U ′′

with eigenve
tor c, then

U ′′c = λc,
n∑

j=1

u′′
j (xk)cj = λck, 1 ≤ k ≤ n,

and the fun
tion

sλ(x) :=
n∑

j=1

cjuj(x)

satis�es

s′′λ(xk) = λsλ(xk), 1 ≤ k ≤ n
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and vanishes on both x0 = 0 and xn+1 = 1. We invoke the �sampling� inequality

‖s′′‖∞,[0,1] ≤ C
(

hm−5/2‖s‖m + h−2‖s‖∞,X

)

for all s ∈ Wm
2 [0, 1]

from [18℄ for m > 5/2 and normalize s to satisfy ‖s‖m = 1. Then

|λ||sλ(xk)| ≤ ‖s′′‖∞,[0,1]

≤ Ch−2‖s‖∞,X .

Pi
king k with |sλ(xk)| = ‖s‖∞,X yields the assertion.✷

Thus, for Euler time�stepping in the ODE system (4.3), a spe
tral radius of order

h−2
means that there must be a CFL 
ondition of the form

∆t ≤ C(∆x)2

as is to be expe
ted.

8. Example. Figure 8.1 shows the approximate solution and absolute error for

the following paraboli
 equation

ut(x, t) = uxx(x, t), x ∈ (0, 1), 0 ≤ t ≤ 0.2,
u(x, 0) = 2min(x, 1− x), x ∈ (0, 1),
u(0, t) = 0, u(1, t) = 0, 0 ≤ t ≤ 0.2,

with the exa
t solution

u(x, t) =
∞∑

k=1

8(−1)k+1

(2k − 1)2π2
sin((2k − 1)πx) exp−(2k − 1)2π2t .

Using the Method of Lines for 150 equidistant spatial points, using the kernel in (4.2).

9. General Paraboli
 Equations. We 
onsider the problem

ut(x, t) = ∇ · (a(x, t)∇u(x, t)) + f(x, t) + c(x, t)u(x, t) x ∈ Ω ⊂ R
d, 0 ≤ t ≤ T,

u(x, 0) = g(x), x ∈ Ω,
u(y, t) = uB(y, t), y ∈ Γ := ∂Ω, 0 ≤ t ≤ T.

A meshless dis
retization in terms of values at nodes 
an be 
arried out using u(xj , t)
for xj ∈ Ω \ Γ, 1 ≤ j ≤ N . Known values are

u(yk, t) = uB(yk, t), yK ∈ Γ, 1 ≤ k ≤ K.

We assemble all points into

Z = {x1, . . . , xN , y1, . . . , yk} = {z1, . . . , zN+K}
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Fig. 8.1. Approximation and absolute error

and represent meshless trial fun
tions in Lagrange form by the Lagrange basis {vj}N+K
j=1

as

v(x) =

N+K∑

j=1

v(zj)vj(x)

vj(zi) = δji, 1 ≤ j, i ≤ N +K

v(x, t) =

N+K∑

j=1

v(zj , t)vj(x)

∇v(x, t) =

N+K∑

j=1

v(zj , t)∇vj(x)

a(x, t)∇v(x, t) =

N+K∑

j=1

v(zj , t)a(x, t)∇vj(x)

∇ · (a(x, t)∇v(x, t)) =

N+K∑

j=1

v(zj , t)∇ · (a(x, t)∇vj(x))
︸ ︷︷ ︸

=:wj(x,t)

=

N+K∑

j=1

v(zj , t)wj(x, t).



12

We now state the PDE on the trial fun
tions:

vt(x, t) = ∇ · (a(x, t)∇v(x, t))
+c(x, t)v(x, t) + f(x, t)

N+K∑

j=1

vt(zj , t)vj(x) =

N+K∑

j=1

v(zj , t)wj(x, t)

+c(x, t)
N+K∑

j=1

v(zj , t)vj(x) + f(x, t)

and 
ollo
ate on points zi, 1 ≤ i ≤ N +K to get

N+K∑

j=1

vt(zj , t)vj(zi) =

N+K∑

j=1

v(zj , t)wj(zi, t)

+c(zi, t)
N+K∑

j=1

v(zj , t)vj(zi) + f(zi, t)

vt(zi, t) =

N+K∑

j=1

v(zj , t)wj(zi, t)

+c(zi, t)v(zi, t) + f(zi, t).

Due to the known boundary values v(zj , t) = uB(zj , t) with j = N +1, · · · , N +K, in

terms of ve
tors v(t) := (v(z1, t), . . . , v(zN ))T , vB(t) := (v(zN+1, t), . . . , v(zN+K))T ,
and f(t) := (f(z1, t), . . . , f(zN+K))T , we get the system

v
′(t) = A(t)v(t) +B(t)vB(t) + f(t)

with the matrix A(t) having the entries

wj(zi, t) + c(zi, t)δij , 1 ≤ i, j ≤ N,

and the matrix B(t) having the entries

wj(zi, t), N ≤ i, j ≤ N +K.

This 
an be solved via the method of Lines, the initial values provided by interpolation

of g.
A further generalization to nonlinear problems is

ut(x, t) = F (t, x, u)

whi
h similarly leads to

vt(zi, t) = F



t, zi,

N+K∑

j=1

v(zj , t)vj(x)





or

v
′(t) = G(t,v(t))

with suitable nonlinear mappings F and G.
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10. Example for a General Paraboli
 Equation. We 
onsider the one di-

mensional paraboli
 equation

ut(x, t) = xuxx(x, t) + (π2x+ 1)et sinπx, x ∈ (0, 1), 0 ≤ t ≤ 0.8,
u(x, 0) = sinπx, x ∈ (0, 1),
u(0, t) = 0, u(1, t) = 0, 0 ≤ t ≤ 0.8,

with the exa
t solution

u(x, t) = et sinπx .

Utilizing the Method of Lines for 100 equidistant spatial points, using the kernel in

(4.2), we plot the absolute error between the exa
t solution and approximation in

Figure 10.1.
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Fig. 10.1. Absolute error.
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