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Abstract. Using the heat equation as a simple example, we give a rigid theoretical analysis of
the Method of Lines, implemented as a meshless method based on spatial trial spaces spanned by
translates of positive definite kernels. The technique can be generalized to other parabolic problems,
and some numerical illustrations are given.
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1. Introduction. There are plenty of application papers in which kernels or
radial basis functions are successfully used for solving partial differential equations
by meshless methods. The usage of kernels is typically based on spatial interpolation
at scattered locations, writing the trial functions “entirely in terms of nodes’[2]. For
stationary partial differential equations, the discretization can take pointwise analytic
derivatives of the trial functions to end up with a linear system of equations. This
started in [6] and was pursued in the following years, including a convergence theory
in [12]. There are also variations that use weak data, like the Meshless Local Petrov—
Galerkin method [1] with a convergence theory in [14]. For the potential equation,
there are special kernels that allow the use of trial functions that satisfy the differential
equation exactly [13, 5].

For time—dependent partial differential equations, meshless kernel-based methods
were similarly based on a fixed spatial interpolation, but now the coefficients are time—
dependent, and one obtains a system of ordinary differential equations for these. This
is the well-known Method of Lines, and it turned to be experimentally useful in various
cases (see e.g. [16, 7, 4, 15]). However, a rigid analysis of its behavior seems to be
still missing.

For the simple case of the heat equation, this paper provides an analysis of the
Method of Lines. To this end, we start with basics on kernels, then describe the
Method of Lines and analyze it. Though the Method of Lines needs no explicit CFL
condition, we show how a CFL condition acts behind ths scene. Some numerical
examples are provided as well, and a short section showing how to generalize this to
much more general parabolic equations.

2. Kernel-Based Space Discretization. A kernel is a symmetric function

K:OxQ—=R

on some spatial domain Q C R?. The kernel usually is assumed to be positive definite,
i.e. for all selections of finite point sets X = {z1,...,z,} C Q, the n x n kernel
matrices A = A(X) with entries K (z;,z1), 1 < j,k < n are symmetric and positive
definite. Standard examples are radial basis functions like the Gaussian

K (z,y) = exp(—||z — y||3) for all 2, y € RY
or the compactly supported Wendland function

[ A=le—yl)* 0 +4le—yla)  e—yh <1
K(z,y) = { 0 lz —ylh > 1
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for all 2, y € R? with d < 3.

The standard way to use kernels for solving time—dependent partial differential
equations is to introduce a fixed space discretization via finite spatial point sets X =
{z1,...,2,} C Q and to generate spatial trial functions via translates of a kernel K
in the form

(2.1) s(z) == ZozjK(x,xj), x € .

Interpolation of a spatial function f :  — R on the given point set X is done by
solving the system

s(ak) = iajK(xkaxj) = f(zx), 1<k <n
j=1

involving the n x n kernel matriz A with entries K(x;,x), 1 < j,k < n which is
positive definite for all positive definite kernels.

For further use we note that one can construct a Lagrange basis u1(z), ..., u,(x)
of the span of the functions K (-, z;), 1 < j <n via solving the system

(2.2) u(r) = K(z)A™!
where we use the notation
u(x) == (ur(x),...,un(x)), K(z) = (K(z,21),...,K(z,x,)).

Here and in what follows, indices running over functions will be column indices, while
indices running over points will be row indices. In particular, it is convenient to
introduce the column-valued evaluation operator defined as

E(f) := (f(z1),..., f(x,))T forall f : Q =R,

and application of this operator to a row of m functions vy, ...,v,, should generate
the n x m matrix with entries v;(x)) with 1 < j < m for the columns and 1 <k <n
for the rows. In particular, the kernel matrix then is A = E(K(x)) and the Lagrange
property simply follows from

B(u(z)) = E(K(2)A™") = B(K(z))A™' = AA™' = I,».

Using the Lagrange basis, the representation (2.1) of an interpolant to a function f
turns into

s(r) = ZUj(I)f(xj) =u(@)E(f), v €9,

which is “entirely in terms of nodes” as required for meshless methods [2].

If L is a linear spatial differential operator, and if the kernel K is sufficiently
smooth to allow application of L, an advantage of kernel-based spatial discretizations
is that

n

(Ls)(@) =) (Luy)(2) f(x) = Lu(z) E(f), @ € Q,

Jj=1
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is explicitly available and again “entirely in terms of nodes”. The required derivatives
Lu; of the Lagrange basis functions u; come from (2.2) via solving

(Lu)(z) = (LK)(x)A™
provided that one can explicitly evaluate the action of L on K.

3. Method of Lines. With these notations concerning spatial functions and
their derivatives, we now turn to modeling time-dependent functions v(x,t) where
the spatial argument z varies in . One can always interpolate values v(xy,t) of
u(x,t) at all times ¢ to get an interpolant

(31) sat) = 3 vy, Oy () = (@) E(u(-,1))

in terms of the Lagrange basis. This can be seen as a superposition of a separation
of variables. The action of a spatial linear operator L then is

= " v(w;, t)(Luy) (@) = (Lu)(2) E(u(-, 1)),
=1

again separating the time variation from the space variation.
A linear evolution equation
wi(@,t) = (Lu)(a,t), w € Q, £ >0
with a starting function g on  with

u(z,0) = g(x) for all x €

can then be modeled by substituting (3.1) and discretizing the spatial variable to the
points x1, ..., x,. This leads to

st(zp,t) = (Ls)(xp,t) 1<k<n,t>0
s(25,0) = glx;), 1<j<n

i.e. the whole problem is posed discretely in space, but continuously in time. The
seond part is just interpolation of the initial function, while the first takes the form

6 n
av(a@k, = Zlv(xj,t)(Luj)(xk), 1<k<n,t>0
j=
which is a linear system of ordinary differential equations

Zyj (Luj)(zg), 1<k<mn,t>0

for unknowns y(¢) having the meaning yx(t) = v(xg,t) for an approximate solution
v(x,t) of the problem. The initial values are

y;(0) = g(z;), 1 < j < n.
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This is the classical Method of Lines in the simplest linear case without additional
boundary conditions. It is easy to generalize to nonlinear problems of the form

ug(z,t) = F(t,u(x,t), (Lu)(x,t)),

leading to a nonlinear system

n
ZyJ Ju;(xk) Z t)(Lu;)(xg)
of ODEs, and it is also easy to incorporate multiple spatial differential operators.
Additional time—dependent boundary conditions of the form
u(z,t) =up(z,t)forall zeT: =00, t >0
can also be handled. One discretizes them to
V(Tntirt) = up(Tpti t), 1<i<m

for a choice of boundary points x,41,...,Zptm- These are added to the spatial
interpolation problem, avoiding coalescence with the points zi,...,z,. The trial
functions are again specified in the form (3.1), but they split into

NE

s(z,t) = v(aj, uj(w) + Z (Tt ) ngi ()

1

<.
Il

v(zj, t)uj(x) + Z UB(Tntis t)Un+i(T)

i=1

I
NE

<.
Il
-

being still entirely in terms of values at the nodes. Since we form the Lagrange basis
with respect to all points 1, ..., Zy4m, the first sum vanishes on the boundary points
Tp41s-- -, Tntm, while the second attains the correct boundary values there. The
resulting ODE system then is the inhomogeneous system

Zy-] L’U,J Tl +ZUB xn-i—zat)L(un-i-i)(x)

i=1

in the linear case, for 1 <k <mn and all ¢ > 0.

In numerical experiments, this technique was reported to work well (see e.g. [16,
7,4, 15]), but a thorough mathematical analysis of its behavior is still missing, since
one has to fight stability properties [10]. We shall supply a thorough analysis for a
simple special case, the heat equation.

4. Method of Lines for Heat Equation. Consider
Ut = Ugy

on (z,t) € [0,1] x [0,00) under boundary conditions

u(z,0) = g(z), v €[0,1],
u(0,t) = ¢(0)=0,¢t>0,
u(l,t) = ¢(1)=0,t>0



defined by a smooth function ¢ on [0, 1] vanishing at both ends. By standard transfor-
mations, any heat equation problem with constant boundary values can be brought
into this form. More precisely, the u,, part of the heat equation vanishes on affine-
linear spatial functions. Thus one can change each problem with constant boundary
values by subtracting an affine-linear function into one with zero boundary conditions,
and finally transform back by adding the affine-linear function.

For simplicity, we discretize [0, 1] by

(4.1) O=2p<21<...<Tpy1=1

using equidistant points x; = jh, 0 < j < n+ 1 with distance h = 1/(n+ 1), but any
other discretization (4.1) with fill distance

h:= sup min |z — x|
ze0,1] 1SI<n

will do.

Let K be a smooth positive definite symmetric kernel on R that vanishes in
xo =0 and x,,41 = 1, and let uq, ..., u, be the Lagrange basis for interpolation using
translates of K in the points x1, ..., x,. Note that ui, ..., u, will automatically satisfy

the zero boundary conditions at g and x,41, because the kernel vanishes there.

When starting from a kernel K without zero boundary conditions, one can form
the power kernel [8] for kernel-based interpolation in 0 and 1 as the new kernel K»
with

Kl(xvy) = K(:E,y) — K(O O) ,
Ko(z,y) = Ki(z,y)— Kl(?(ll()fﬁlgyjl)’

which will then vanish at 0 and 1 while being still positive definite.
Another possibility is to use kernels of the form

(4.2) K(z,y) = Z o sin(mka) sin(rky)
k=1

with suitably decaying positive coefficients ux. We shall use this construction [9] in
our examples.
We use interpolatory trial functions

n
s(a,t) =) sy, thuy(z)
j=1
vanishing at x = 0 nd z = 1 and interpolate the starting function g by requiring

s(xg,0) = g(zr), 1 <k <n.

The Method of Lines uses functions

y(a,t) = y;(t)u;(x)
j=1



with y(z;,t) = y;(t) and poses the linear ODE system

with starting values
ye(0) = s(2x,0) = g(zx), 1 <k <n.

Introducing the matrix-vector notation for values at the points x1,...,x, as in the
previous section, we get the linear first—order system

(4.3) y'(t) = U"y(t)

with the solution
y(t) = exp (U"t) y(0).
The solution satisfies
Ye(Tr,t) = Yoo (xp, 1), 1L <k <n

by construction, since

velwn,t) =Y yi(tus(er)
Jj=1
= y(t)
= > yu)(zk), 1<k <n
Jj=1
= ymm(xkat)a 1<k<n.

5. Error Analysis. We introduce the interpolant v(z,¢) to the true solution
u(x,t) at the points x1, ..., z, for all ¢. This is

n

v(z,t) = Z u(zj, t)uj(z)

Jj=1

and we use it to insert the true solution into the ODE system for the Method of Lines.
Then

’U,t(-fk,t) = u

8

m(xk;t)
n

u(wj, t)uf (zr) + Uza (T, t) — Z u(xj, t)uf (zx)
1 j=1

I
NE

<.
Il

[
NE

u(z;, t)u;/(:zk) + Ugr (Thy ) — Vo (Tk, ).
1

<.
Il

Introducing vectors for values at the zj; again, we get

w(t) = U"u(t) + (Ugy — Vaz) (1)



and
(u—y)(t) =U"(u—1y)(t) + (tee — Vex)(t).

Since the discrete starting values (u — y)(0) are zero, the standard formula for inho-
mogeneous linear first—order systems yields

(5.1) (u—y)(t) = /0 exp(U”(t = ) (tza — Vax)(s)ds.

This is an exact formula for the error at the discrete points.
We shall use a smooth positive definite translation—invariant kernel K on R of
the form (4.2) with coefficients satisfying

(5.2) 0<pur <Ck™ ™ forall k >1

for some fixed m > 1/2. It will be reproducing in a “native” Hilbert space of at least
continuous functions which is contained in the Sobolev space W3[0, 1] of functions
with 1-periodic extensions into R. All functions of this space vanish on 0 and 1. Then
we can get

(5.3) [u(st) = v( D)l moa) < CH™ 2 |ul 1) x

due to [9, Cor. 3.6, p. 78] since we can also assume by standard results on the heat
equation that the solution is smooth enough to lie in the spatial native space of the
kernel for all times. Similarly,

(5.4) [taa (1) = Voo ()| Lafo,1) < CR™ [l )l

if we use sampling inequalities [18],[11, Thm. 1]. The corresponding result for Lo,
errors of derivatives in 1D is

(5.5) [tz (-, 1) = vaw (s )| o,y < CR™ 22l ) i

All of this follows from standard literature on kernel-based methods, see e.g. [17] for
the background of the cited papers.

6. Bounding the Exponential. The remaining problem now is to bound the
matrix exponential

oo t"
1" _ "Mn
exp(U"t)e = 270 = {U"e
somehow, e.g. via
lexp(U"t)ella < E ,p @) lell2

where p is the spectral radius. A special way to deal with the matrix exponential
in a better way than above is to use that the matrix U” will be negative definite.
In fact, if A is the standard kernel matrix for the given points, and A” is the same,
but with second derivatives of a kernel of the form (4.2), we can use that —A” will
be positive definite, because the kernel expansion coefficients py are going over to
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k?py, and thus stay positive. But U” is A=*A”, thus negative definite. Therefore

the matrix exponential decays for increasing time, and can be bounded by a constant
when looking at the integral (5.1). By Cauchy—Schwarz applied to (5.1), we have

l[ut) = y(®)]2

IN

[ 1@ = 5 tae — v
o ( /Ot ttaa(s) — vm(s)lléds> N

IN

and with (5.4) this yields

" 1/2
fues ) — y(apt)| < cﬁw*(/o |u<-,s>||%(ds)

the final error bound on data then is

. 1/2
(6.1) |u<xj,t>—y<xj,t>|g¢zchm2( / ||u<-,s>||%<ds> |

THEOREM 6.1. If the Method of Lines is carried out using a kernel of order m
in the sense of (5.2), the error on the discretization points and up to all fized times
will be given by (6.1).0

Since the true solution is C'*° and vanishes for increasing ¢ due to its standard
series representation based on separation of variables, we know that the second factor
in (6.1) is uniformly bounded.

The error outside the data can be bounded by a—posteriori analysis, using the
Lagrange basis again. Writing

y(z,t) = Zuj(fﬂ)y(ﬂcjat)

and making use of the fact [3] that the Lagrange basis functions are uniformly bounded
if the distribution of spatial data points is not too irregular, we have

v(z,t) — y(x, 1)

Z U (I)(U(Ijv t) - y(xj’ t))

Z wi(z)(u(zj,t) —y(z,,t))
j=1

< Cnyithm2
< O\/Ehme

for the global error between the interpolant v to the true solution and the solution y
via the Method of Lines. The error between the true solution u and its interpolant v
has the better bound (5.3). This implies

THEOREM 6.2. If the Method of Lines is carried out using a kernel of order m
in the sense of (5.2), the error on the discretization points and up to all fized times
will be of order O(y/th™3).0

Note that there is no CFL condition here, since there is no time step. At this
point, it is assumed that the ODE system induced by the Method of Lines is solved
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exactly, and propagation of roundoff is ignored. Any ODE solver has to cope with
the linear system (4.3) somehow, and since we shall see in the next section that U”
has negative eigenvalues of absolute value O(h~2), the ODE system will be hard to
integrate with good quality if A is small. All instability issues are shifted back to the
ODE system when using the Method of Lines, but there is a CFL condition behind
the scene, as we shall see in the next section.

7. Time Stepping Techniques. Using the above spatial discretization, and
using the notation w(z,t) for our approximate solution, a variation of a forward Euler
time-stepping method would then be

n

w(xg,t+ At) —w(xy, t
( Az)f @k, ) = Wy (Tk, 1) = Zw(:bj,t)u;-'(xk).

j=1

It still has a time discretization, but the space discretization is hidden in the exact
differentiation of the spatial interpolant. In our vector notation, it is

E(w(-,t+ At)) = (I + U"At)E(w(-, 1)).

Its stability can thus be analyzed via linear algebra, and the algorithm is the same as
a forward Euler step for the linear ODE system

w'(t) = U"w(t)

we encountered before. We shall have to analyze the spectrum of U” for asserting
stability, and this will follow below.

By standard approximation results like (5.5) for kernel-based methods, we get

THEOREM 7.1. For kernels with orders m > 5/2, the forward Euler method (and
others discretizing the spatial second derivative in the same way) will be consistent of
order m — 5/2.

Note that for stable methods the consistency order will be the convergence order.

To check stability and to get a CFL condition, we need

THEOREM 7.2. The spectral radius of U satisfies

p(U") < Ch™*

if spatial discretization is done with m > 5/2.
Proof: If ) is an eigenvalue of U” with eigenvector ¢, then

U'ec = e

Zu;/(xk)cj = dep, 1 <k<n,
j=1
and the function
sa(w) ==Y cju ()
j=1

satisfies

sh(zg) = Asa(zn), 1<k <n
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and vanishes on both o = 0 and x,,+1 = 1. We invoke the “sampling” inequality
15 loe o1 < C (™22l + B~ 2l|sl|oe,x ) for all s € W3"[0,1]
from |18 for m > 5/2 and normalize s to satisfy ||s||,, = 1. Then

[Mlfsx(ze)l < 118" llos 0,11
< Ch™2||s]|oo,x-

Picking k with [sx(zx)| = ||$|lco,x yields the assertion.O
Thus, for Euler time-stepping in the ODE system (4.3), a spectral radius of order
h~2 means that there must be a CFL condition of the form

At < C(Ax)?
as is to be expected.

8. Example. Figure 8.1 shows the approximate solution and absolute error for
the following parabolic equation

w(z,t) = ugg(x, 1), z€(0,1),0<t<0.2,
u(xz,0) = 2min(z,1 —z), z€(0,1),
w0,8) = 0, wu(l,t)=0, 0<t<0.2

with the exact solution

s 1)kl
u(xz,t) = Z éi_lﬁ sin((2k — 1)7x) exp —(2k — 1)1t
k=1

Using the Method of Lines for 150 equidistant spatial points, using the kernel in (4.2).

9. General Parabolic Equations. We consider the problem

w(z,t) = V- (a(z,t)Vu(z,t)) + f(z,t) + (@, hu(z,t) 1€ QCRL0<t<T,
u(;v,O) = g(CE), x € Q,

A meshless discretization in terms of values at nodes can be carried out using u(zx;,t)
for z; € Q\ T, 1 < j < N. Known values are

u(yr,t) = up(yg,t), yx €T, 1 <k < K.
We assemble all points into

Z:{xla"'axNuyla"wyk}:{Zla-'-;ZN-‘rK}
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Fic. 8.1. Approximation and absolute error

and represent meshless trial functions in Lagrange form by the Lagrange basis {v; } ;V:‘EK
as
N+K
v(x) = Y v(z)v(e)
j=1
Uj(Zi) = 5ji7 1§j,’LSN+K
N+K
v(z,t) = Z ’U(Zjvt)vj(x)
j=1
N1k
Vo(z,t) = Z v(zj,t)Vu;(x)

Jj=1

a(z,t)Vo(z,t) = Zv(zj,t)a(:zr,t)ij(:c)
Nik

Ve (a(z, )Vo(z,t) = Y v(z,t) V- (alx,t)Vu;(z))

1
J =:wj(z,t)

N+K

= Z ’U(Zj,t)wj(xvt)'

Jj=1
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We now state the PDE on the trial functions:

Ut(xvt) = ( ( ,t)Vv( ))
+e(z, t)v(z,t) + f(z,1)
N+K N+K
Z (25, 1) = Z v(zj, t)w;(x,t)

j=1
N+K

+e(z,t) Z v(zj, t)vi(x) + f(z,t)

j=1

and collocate on points z;, 1 <7 < N + K to get

N+K N+K
Sz tiz) = > vz, Hws(zit)
i=1 =1
N+K
+e(zi,t) Z v(zj, t)v;(z:) + f(z,t)
N+K a
vz t) = Z v(zj, t)w;(z,t)
j=1

+C(zi7t) (ZU )+f(zlv )

Due to the known boundary values v(zj,t) = up(z;,t) with j = N+1,--- . N+ K, in
terms of vectors v(t) := (v(21,t),...,v(2n))T, vB(t) == (v(zni1,t), .- v(2nek))T,
and f(t) := (f(z1,1),..., f(znsx))T, we get the system

v/ (t) = A(t)v(t) + B(t)vp(t) + f(t)
with the matrix A(¢) having the entries

wj (2, t) + c(z,1)045, 1 <i,j < N,
and the matrix B(¢) having the entries

wj(z,t), N <i,j <N+ K.
This can be solved via the method of Lines, the initial values provided by interpolation
o g'A further generalization to nonlinear problems is
u(xz,t) = F(t,xz,u)

which similarly leads to

N+K

ve(zi,t) = F | £, 24, Z v(zj, t)vj(z)

or

with suitable nonlinear mappings F' and G.
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10. Example for a General Parabolic Equation. We consider the one di-
mensional parabolic equation

ug(w,t) = duge(w,t) + (7%z + Defsinrz, x € (0,1),0<t<0.8,
u(z,0) = sinma, z € (0,1),
u(0,t) = 0, w(l,t)=0, 0<t<0.8,

with the exact solution
u(z,t) = e'sinmw.

Utilizing the Method of Lines for 100 equidistant spatial points, using the kernel in
(4.2), we plot the absolute error between the exact solution and approximation in
Figure 10.1.

1.2

Fic. 10.1. Absolute error.
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