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Abstract. The Matérn model has been a cornerstone of spatial statistics for
more than half a century. More recently, the Matérn model has been cen-
tral to disciplines as diverse as numerical analysis, approximation theory,
computational statistics, machine learning, and probability theory. In this
article we take a Matérn-based journey across these disciplines. First, we
reflect on the importance of the Matérn model for estimation and predic-
tion in spatial statistics, establishing also connections to other disciplines in
which the Matérn model has been influential. Then, we position the Matérn
model within the literature on big data and scalable computation: the SPDE
approach, the Vecchia likelihood approximation, and recent applications in
Bayesian computation are all discussed. Finally, we review recent devlop-
ments, including flexible alternatives to the Matérn model, whose perfor-
mance we compare in terms of estimation, prediction, screening effect, com-
putation, and Sobolev regularity properties.

Keywords: Approximation Theory, Compact Support, Covariance, Ker-
nel, Kriging, Machine Learning, Maximum Likelihood, Reproducing Kernel
Hilbert Spaces, Spatial Statistics, Sobolev Spaces.

1. INTRODUCTION

This paper serves two purposes: On the one hand, we1

provide a panoramic view, across several disciplines, of2

the Matérn model. On the other hand, the paper provides3

constructive criticisms about the role of the Matérn model4

in several disciplines, while discussing alternative or more5

general models and their relevance to many aspects of sta-6

tistical modeling, estimation, prediction, computational7

statistics, numerical analysis, and machine learning.8

A historical account of the Matérn model is provided9

by Guttorp and Gneiting [70]. The Matérn model – also10
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called the Matérn covariance function, or the Matérn ker-11

nel, depending on context – is commonly attributed to12

Matérn [108], but can be found under alternative names13

in different branches of the scientific literature. The use14

of the Matérn model is widespread, and it is impossible to15

cover all its diverse applications here; our review focuses16

on a selection of applications that are of especial interest17

and significance. Specifically, we aim to cover18

1. estimation and prediction using the Matérn model19

in statistics, with emphasis on maximum likelihood20

estimation, Kriging prediction, and the associated21

screening effect;22

2. applications of the Matérn model in23

a) computational statistics, including the stochas-24

tic differential equation (SDE) and stochas-25

tic partial differential equation (SPDE) ap-26

proaches, likelihood approximation, inference27

of partial differential equations (PDEs) and28

Stein’s method;29

b) statistical modeling, including non-standard30

scenarios, for instance when isotropy and sta-31

tionarity cannot be assumed, or to model di-32

rections and curves;33
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c) approximation theory and numerical analysis,34

where the Matérn model is used to construct35

kernel-based interpolants;36

d) machine learning, where the Matérn model is37

central to the literature on Gaussian processes38

modelling; and39

e) probability theory, where the Matérn model40

has inspired several contributions based on41

properties of the sample paths of associated42

stochastic processes, in concert with the solu-43

tion of certain classes of stochastic differential44

equations;45

3. comparison with recent flexible alternatives to the46

Matérn model, with a focus on47

a) enhanced models with interesting features,48

such as compact support or polynomial decay;49

b) asymptotic estimation accuracy, misspecified50

prediction, and screening effects;51

c) the implications of using certain classes of52

compactly supported kernels within approx-53

imation theory, computational statistics, and54

machine learning.55

This article is novel, in being the first to take a broad view56

of the scientific literature through the lens of the Matérn57

model. In particular, we do not attempt a review of covari-58

ance functions in general. Recent reviews provide a quite59

exhaustive panorama of covariance models, from space60

to space-time [126], to multivariate covariance functions61

[60], and covariance-based modeling on spheres and man-62

ifolds [122]. In addition, while there are many fascinat-63

ing applications of the Matérn model across the scientific64

landscape, we cannot hope to do justice to them all. Our65

emphasis is therefore limited to methodological and the-66

oretical issues which we hope are of relevance across a67

wide range of disciplines in which the Matérn model is68

used.69

1.1 Setting and Notation70

Throughout, bold letters refer to vectors and matrices,
and the transpose operator is denoted ⊤. Let d ∈N and let
Z = {Z(x), x ∈ Rd} be a real-valued Gaussian random
field, having zero mean and and covariance function K :
Rd ×Rd →R defined via K(x,y) := Cov(Z(x),Z(y)).
Covariance functions are symmetric and positive definite,
where in this paper the term positive definite is understood
as

(1)
n∑

i=1

n∑

j=1

ciK(xi,xj)cj ≥ 0

for all ci ∈ R, all n ∈ N and all xi ∈ Rd. If the inequal-71

ity above is strict, then K will be called strictly positive72

definite.73

Each symmetric positive definite function K : Rd ×
Rd → R defines translate functions K(x, ·) on Rd, for

all x ∈ Rd. In addition, one can define an inner product
on two translates by

(2) 〈K(x, ·),K(y, ·)〉H(K) :=K(x,y), x, y ∈R
d,

in terms of K itself. This extends to all linear combina-
tions of translates and generates, by completion, a Hilbert
space H(K) of functions on Rd. This space is called the
native space for K. Notice that the Hilbert space allows
for continuous point evaluations δx : f 7→ f(x) via a re-

production formula

(3) f(x) = 〈f,K(x, ·)〉H(K), x ∈R
d, f ∈H(K)

that follows from (2). Then H(K) is called a reproducing

kernel Hilbert space (RKHS) with kernelK. In particular,
the translatesK(x, ·) lie in H(K), forming its completion
and being the Riesz representers of delta functionals δx.
They are central to machine learning, numerical analysis
and approximation theory, since (2) allows inner products
in the abstract space H(K) to be explicitly computable
using the kernel - the so-called kernel trick. See Section
6.1 and [166] for more detail. For a positive definite and
stationary kernel K, its Fourier transform K̂ can be used
to recast the inner product (2) on the Hilbert space H(K)
by

(4) 〈f, g〉H(K) =

∫

Rd

f̂(ω)ĝ(ω)

K̂(ω)
dω, f, g ∈H(K),

up to a constant factor. Here, g denotes the complex con-74

jugate of a function g. Note how the spectrum of K pe-75

nalizes the spectrum of the functions in H(K). Roughly,76

the Hilbert space H(K) consists of functions f for which77

f̂/
√
K̂ is square integrable over Rd. The subtle connec-78

tions of the Hilbert space H(K) to sample paths of Gaus-79

sian processes with covariance function K will come up80

at many places in this paper, e.g. in Sections 2, 4.4, 6.3,81

and 7.1. In this sense, kernels are important links between82

deterministic and probabilistic models.83

A strictly positive definite kernel K is called stationary

if K(x,y)≡K(x−y). According to Bochner’s theorem
[28],K is the Fourier transform of a positive and bounded
measure F , that is

K(x− y) =
∫

Rd

ei(x−y ,ω)F (dω), x,y ∈R
d.

Here, (·, ·) is the inner product in Rd and i is the unit
complex number. Fourier inversion is possible when K
is absolutely integrable, in which case we call the Fourier
transform K̂ its spectral density. We note that K̂ is non-
negative and integrable. Furthermore, most of the paper
assumes stationarity and isotropy for the covariance func-
tion, K, so that

(5) Cov(Z(x),Z(y)) =K(x− y) = σ2ϕ(‖x− y‖),
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for x,y ∈ Rd and ‖ · ‖ denoting the Euclidean distance.
Here, we assume ϕ to be continuous with ϕ(0) = 1.
Throughout, we shall equivalently call ϕ a function or
a correlation function, the last as a shortcut to ϕ(‖ · ‖).
Hence, the parameter σ2 > 0 is the variance of Z(x), for
all x ∈ Rd. Let Φd denote the class of such functions
ϕ inducing a covariance function K through the iden-
tity (5) i.e. Φd is the class of continuous isotropic cor-
relation functions defined on Rd. Such functions have a
precise integral representation according to Schoenberg
[142], given by

(6) ϕ(x) =

∫ ∞

0
Ωd(rx)Fd(dr), x≥ 0,

with Fd being a probability measure and

(7) Ωd(x) = Γ(d/2)

(
2

x

)d/2−1

Jd/2−1(x), x≥ 0,

with Γ(·) the gamma function and Jν the Bessel function
of the first kind of order ν > 0 [118, formula 10.2.2]. For
a member ϕ of the class Φd, we can use that its d-variate
Fourier transform of ϕ(‖x − y‖) is isotropic again, and
therefore reducible to a scalar integral formula
(8)

ϕ̂(z) =
z1−d/2

(2π)d/2

∫ ∞

0
ud/2Jd/2−1(uz)ϕ(u)du, z ≥ 0,

defining its d-variate isotropic spectral density, and we84

assume this integral to exist. If the denominator (2π)d/285

is omitted, the same formula holds for the inverse ra-86

dial Fourier transform. Throughout, we write Φ∞ for87 ⋂
d≥1Φd, the class of functions ϕ inducing positive def-88

inite radial functions on every d-dimensional Euclidean89

space. Hence, ϕ ∈ Φd if and only if ϕ(‖ · ‖) is a correla-90

tion function in Rd.91

2. THE MATÉRN MODEL

The Matérn model, Mν,α, is defined as [148]

(9) Mν,α(x) =
21−ν

Γ(ν)

(x
α

)ν
Kν

(x
α

)
, x≥ 0,

with α > 0 the scale parameter, ν > 0 the smoothness pa-92

rameters, and Kν a modified Bessel function of the sec-93

ond kind of order ν [2, 9.6.22]. It can be verified that94

Mν,α(0) = 1, so that (9) is a correlation function. Argu-95

ments in Stein [148, p48] show that Mν,α belongs to the96

class Φ∞. The function σ2Mν,α will be termed Matérn97

covariance function, and σ2 > 0 will denote the variance98

of the associated Gaussian random field.99

The importance of the Matérn class stems from the pa-
rameter ν that controls the differentiability of the sam-
ple paths of the associated Gaussian field. Specifically,
for any positive integer k, the sample paths of a Gaus-
sian field Z on Rd with Matérn correlation function are

k-times mean square differentiable (in any direction) if
and only if ν > k. Also, a rescaled version of the Matérn
correlation function converges to the Gaussian or squared
exponential kernel as ν→∞, that is

(10) Mν,α/(2
√
ν)(x)−−−→ν→∞

exp(−x2/α2), x≥ 0,

with convergence being uniform on any compact set of100

Rd. For this reason, the parametrisation Mν,α/(2
√
ν) is101

sometimes also adopted [169].102

When ν = k + 1/2, for k a nonnegative integer, the
Matérn correlation function simplifies into the product of
a negative exponential correlation function with a polyno-
mial of order k. For instance, M1/2,1(x) = exp(−x) and
M3/2,1(x) = exp(−x)(1 + x). In general,
(11)

Mk+1/2,1(x) = exp(−x)
k∑

i=0

(k+ i)!

2k!

(
k

i

)
(2x)k−i

for k ∈ N0. This simple algebraic form for the Matérn103

correlation functions has undoubtedly contributed to the104

widespread popularity of the Matérn model.105

Now we are in a position to explore in detail the many106

faces of the Matérn model. Section 3 discusses maximum107

likelihood estimation, Kriging prediction, and the screen-108

ing effect, while Section 4 explores an SPDE characterisa-109

tion of the Matérn model. Section 5 discusses the Matérn110

model as a building block to more sophisticated models,111

while Section 6 views the scientific landscape through the112

lens of the Matérn model, with special emphasis on nu-113

merical analysis, probability theory and machine learn-114

ing. Section 7 introduces some recently developed alter-115

natives and generalisations of the Matérn model, while116

Section 8 compares these alternative models in terms of117

estimation, prediction, and the screening effect.118

3. ESTIMATION AND PREDICTION WITH THE
MATÉRN MODEL

Let D ⊂ Rd be a subset of Rd. Consider a set Xn =
{x1, . . . ,xn} of (distinct) locations in D, at which val-
ues Zn = (Z(x1), . . . ,Z(xn))

⊤ of the Gaussian random
field Z , defined in Section 1.1, are observed. An impor-
tant problem concerns the prediction of values Z(x0) at
an unobserved location x0 ∈D \Xn. Then an especially
natural predictor for Z(x0) is

(12) Ẑn = c
⊤
nR

−1
n Zn

with the vector [cn]i = K(x0,xi) and the kernel matrix119

[Rn]i,j =K(xi,xj). The predictor (12) can be motivated120

from multiple directions. Classically, (12) is motivated121

as the best linear unbiased predictor (BLUP) for Z(x0),122

and is often referred to as the simple Kriging predictor of123

Z(x0) [44]. From a modern perspective, where the role124

of unbiased estimation is increasingly questioned, we can125

motivate this choice using alternative optimality proper-126

ties, including:127
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1. it is the expectation of Z(x0) conditionally on the128

realisation Zn;129

2. it is the optimal estimate (i.e. the Bayes act) for130

Z(x0) based on the data-set Zn, under squared er-131

ror loss [116, Section 13.3];132

3. it yields the minimal RKHS norm interpolant of the133

data evaluated at x0, by Section 6.1;134

4. it is the algorithm for approximating Z(x0) from135

Zn that minimises the worst case error in the136

sense of information-based complexity [116, Sec-137

tion 10.2] and approximation theory (see Section138

6.1),139

to name but a few. The Matérn model provides a natu-140

ral setting to study the performance of (12) if we sup-141

pose Z to have a stationary isotropic covariance function142

σ2Mν,α. The crucial question of how to select suitable143

values for the parameters σ, α, ν will be considered first,144

in Section 3.1, and then the performance of (12) will be145

studied in Section 3.2. The possibility of a direct exten-146

sion of the Matérn model to more general domains, such147

as manifolds and graphs, is discussed in Section 3.3.148

3.1 Estimation Using Maximum Likelihood149

Maximum likelihood (ML) and similar estimation150

methods are popular in this setting due to the availabil-151

ity of practical (inc. gradient-based) numerical methods152

for computation and the classical theory that underpins153

ML. On the other hand, implicit in the use of ML is that154

the statistical model is well-specified, and this judgement155

must be made on a case-by-case basis. To limit scope,156

we focus on ML estimation in the sequel. Our aim is to157

understand when the parameters of the Matérn model can158

be consistently estimated from data, and to understand the159

asymptotic distribution of the ML estimator. To this end,160

recall that the Gaussian log-likelihood function is161

Ln(θ) =−1

2

(
log(|σ2Rn)|) +

1

σ2
Z⊤
nR

−1
n Zn

)
,(13)

up to an additive constant, with θ = (ν,α,σ2). The ML
estimator is defined as

(14) θ̂n = argmax
θ∈R3

+

Ln(θ).

The ML estimate for the variance parameter can be com-162

puted in closed-form as σ̂2n = Z⊤
nR

−1
n Zn/n; plugging163

this expression into (13) reduces the numerical problem to164

optimisation of a so-called concentrated likelihood over165

R2
+. However, maximizing the log-(concentrated) like-166

lihood requires a nonlinear optimisation problem to be167

solved, for which numerical methods must be used; see168

Section 4.3.169

The performance of ML estimation has been studied170

principally in two different asymptotic limits. Under fixed171

domain asymptotics, the sampling domain D is bounded172

and the set of sampled locationsXn becomes increasingly173

dense in D. Under increasing domain asymptotics, the174

domain D grows with the number n of observed data,175

and the distance between any two sampled locations is176

bounded away from zero. Zhang and Zimmerman [180]177

note that the peformance of the ML estimator can be quite178

different under these two frameworks, as will now be dis-179

cussed.180

3.1.1 Increasing Domain Asymptotics. Mardia and
Marshall [107] make use of increasing domain asymp-
totics to establish, under mild regularity conditions, that
the ML estimator is strongly consistent, meaning that
θ̂n

a.s.−→ θ0 for the true parameter ψ0. Furthermore, they
establish that the ML estimator is asymptotically normal,
meaning that

(15) F 1/2(θ0)(θ̂n − θ0) d−→N (0,I)

where F (θ) =−E[L′′

n(θ)] is the Fisher information ma-
trix, whose entries are

F (θ)i,j =
1

2
tr

(
dΣn

dθi
Σ

−1
n

dΣn

dθj
Σ

−1
n

)
,

and Σn = σ2Rn. Although our focus is on the Matérn181

model, we note that these kind of asymptotic results hold182

for any parametric correlation function obeying particu-183

lar regularity conditions that are stated in terms of eigen-184

value conditions on the correlation matrix and its deriva-185

tives [107], thought these may not be easy to verify in186

general (see for instance Shaby and Ruppert [144], for the187

exponential case). Generally speaking, as long as the spa-188

tial extent of the sampling region is large compared with189

the range of dependence of the random field, increasing-190

domain asymptotics provide a very accurate description191

of the behavior of the ML estimate [180, 144, 84].192

3.1.2 Fixed Domain Asymptotics. Zhang [179] consid-
ered ML estimation for the Matérn model under fixed do-
main asymptotics, proving that when the smoothness pa-
rameter ν is known and fixed, none of the parameters σ2

and α can be estimated consistently when d= 1,2,3. In-
stead, only the parameter

(16) microM = σ2/α2ν ,

sometimes called microergodic parameter [180, 148], can
be consistently estimated. This is a consequence of the
equivalence of the two corresponding Gaussian measures,
that we denote with P (σ2iMν,αi

), with i = 0,1. In par-
ticular, for any bounded infinite set D ⊂ Rd, d = 1,2,3,
P (σ20Mν,α0

) is equivalent to P (σ21Mν,α1
) on the paths

of Z(x),x ∈D, if and only if

(17) σ20/α
2ν
0 = σ21/α

2ν
1 .
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In contrast, for d≥ 5, Anderes [8] proved the orthogonal-193

ity of two Gaussian measures with different Matérn co-194

variance functions and hence, in this case, all the param-195

eters can be consistently estimated under fixed-domain196

asymptotics. The case d= 4 has been recently studied in197

Bolin and Kirchner [31].198

Asymptotic results associated with ML estimation of
the microergodic parameter, again for a fixed known
smoothness parameter ν , can be found in Zhang [179],
and later on in Kaufman and Shaby [84]. In particular,
for a zero mean Gaussian field defined on a bounded in-
finite set D ⊂ Rd, d = 1,2,3, with a Matérn covariance
function σ20Mν,α0

the ML estimator σ̂2n/α̂
2ν
n of the mi-

croergodic parameter is strongly consistent, i.e.,

σ̂2n/α̂
2ν
n

a.s.−→ σ20/α
2ν
0 ,

and its asymptotic distribution is given by
√
n(σ̂2n/α̂

2ν
n − σ20/α

2ν
0 )

d−→N (0,2(σ20/α
2ν
0 )2).

Generally speaking, when the range of dependence of the199

random field is large with respect to the spatial extent of200

the sampling region, fixed domain asymptotics provide a201

very accurate description of the behavior of the ML es-202

timate of the microergodic parameter [84]. Extensions of203

these results to the case where Z is observed with Gaus-204

sian errors can be found in Tang et al. [156], while re-205

sults for a space-time version of the Matérn model can be206

found in Ip and Li [77] and Faouzi et al. [55]. Finally we207

highlight that the efficient estimation of the microergodic208

parameter assuming the smoothness parameter unknown209

is still an open problem; some promising results in this210

direction can be found in Loh et al. [105].211

3.2 Prediction and the Screening Effect212

The equivalence of Gaussian measures within the213

Matérn class has consequences for prediction of Z(x0) at214

an unobserved location x0 ∈D \Xn; these consequences215

will now be discussed. In what follows, ν is supposed216

known and fixed, and we consider the setting where σ217

and α are misspecified. That is, we suppose Z is a Gaus-218

sian field with Matérn covariance σ20Mν,α0
, and we con-219

sider the performance of the predictor (12) when a Matérn220

model σ21Mν,α1
is used. This situation is typical, since the221

true parameters σ0 and α0 of the data-generating process222

will be unknown in general. Our theoretical setting will223

be fixed domain asymptotics.224

Note, first, that (12) does not depend on the value of
σ1, but does depend on the value of the parameter α1 (and
the parameter ν , but this parameter is fixed). This depen-
dence will be emphasised using the notation cn(α1) and
Rn(α1). Under the Gaussian measure P (σ20Mν,α0

) asso-
ciated with the true model σ20Mν,α0

, the mean squared

error of the predictor Ẑn(α1) is given by

VARα0,σ2
0

[
Ẑn(α1)−Z(x0)

]

= σ20

(
1− 2cn(α1)

⊤Rn(α1)
−1cn(α0)

+ cn(α1)
⊤Rn(α1)

−1Rn(α0)Rn(α1)
−1cn(α1)

)
,

while if there is no misspecification then the previous ex-
pression reduces to

VARα0,σ2
0

[
Ẑn(α0)−Z(x0)

]
(18)

= σ20
(
1− cn(α0)

⊤R−1
n (α0)cn(α0)

)
.

Under regularity conditions, and for fixed domain asymp-
totics, Stein [146] shows that both asymptotically efficient
prediction and asymptotically correct estimation of pre-
diction variance hold when the two Gaussian measures
P (σ2iMν,αi

), i = 0,1 are equivalent, i.e. (17). Specifi-
cally,

(19)
VARσ2

0 ,α0

[
Ẑn(α1)−Z(x0)

]

VARσ2
0 ,α0

[
Ẑn(α0)−Z(x0)

] a.s.−→ 1

and

(20)
VARσ2

1 ,α1

[
Ẑn(α1)−Z(x0)

]

VARσ2
0 ,α0

[
Ẑn(α1)−Z(x0)

] a.s.−→ 1.

The implication of (19) is that, under the true model, if225

the correct value of ν is used, any value of α1 will give226

asymptotic efficiency. The implication of (20) is stronger227

and guarantees that using the misspecified predictor un-228

der the correct and misspecified models is asymptotically229

equivalent from mean squared error point of view. Note230

that these kind of results does not consider the uncertainty231

associated with the covariance parameters of the misspec-232

ified model. Kaufman and Shaby [84] show that (20) still233

holds by considering the ML estimator of the variance234

σ̂2n =Z
⊤
nR

−1
n (α1)Zn/n in place σ21 .235

Conditions of equivalence of two Gaussian measures236

based on a space-time [77] and bivariate [14] version of237

the Matérn model have also been established. Next, we238

consider a practically important aspect of prediction; the239

co-called screening effect.240

Screening Effect. The screening effect refers to the phe-241

nomenon where the predictor (12) depends almost ex-242

clusively on those observations that are located nearest243

to the predictand [149]. As such, the screening effect is244

an important tool that can be used to mitigate the com-245

putational burden of evaluating (12) in the presence of246

big datasets. This issue has traditionally been an impor-247

tant subject in geostatistics [109, 110, 111, 41]. Indeed,248

Matheron [109, 110], in the School of Geostatistics at249

the Ecole des Mines, developed a first formalisation of250
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screening effect, referring to situations where the observa-251

tions located far from the predictand receive a zero krig-252

ing weight. Matheron’s definition has a direct connection253

with the Markov property on the real line, which happens254

when kriging is performed under the exponential model255

(indeed, M1/2,α).256

M. Stein [148, 149, 151, 152] adopts an alternative
definition of the screening effect that will now be de-
scribed. Let Z be a mean-square continuous, zero mean
and weakly stationary Gaussian random field on Rd. Let
e(Xn) be the error of the predictor (12) ofZ(x0) based on
Zn. Two choices for the set Xn of observation locations
will be considered, and to this end we let Fǫ,Nǫ be sets,
indexed by ǫ > 0, such that Nǫ contains the nearest obser-
vations to the predictand, andFǫ the furthest observations.
Then Stein [149] says that Nǫ asymptotically screens out

Fǫ when

(21) lim
ǫ↓0

E e(Nǫ ∪ Fǫ)2
E e(Nǫ)2

= 1.

A thorough discussion of the implications of this defini-257

tion can be found in Porcu et al. [128], where nontrivial258

differences between fixed domain and increasing domain259

asymptotics are reported.260

The spatial configuration of the sampling point Xn de-
termines whether the screening effect will hold. Porcu
et al. [128] refer to a regular scheme as one for which
Fǫ = {ǫ(x0 + j)}, for j ∈ Zd and Nǫ being the restric-
tion of Fǫ to some fixed region with x0 in its interior,
assuming x0 /∈ Zd. For regular schemes, Stein [149] es-
tablished (21) whenever the spectrum K̂ varies regularly

at infinity [27] in every direction with a common index of

variation [quoted from 128]. However, this condition may
not be useful for space-time processes, where differentia-
bility properties in the space and time coordinates are not
necessarily identical. To overcome such a problem, we in-
stead consider an irregular scheme: for x1, . . . ,xn being
distinct nonzero elements of Rd, y1, . . . ,yN distinct ele-
ments of Rd, x0 = 0 ∈Rd and y0 ∈Rd being nonzero, we
have Nǫ = {ǫx1, . . . , ǫxn} and Fǫ = {y0 + ǫy1, . . . ,y0 +
ǫyN}. The Stein hypothesis [termed in 128]

(22) ∀R> 0, lim
‖ω‖→∞

sup
‖τ‖<R

∣∣∣∣
K̂(ω + τ )

K̂(ω)
− 1

∣∣∣∣= 0,

provides a sufficient condition for the screening effect in
this setting (under some mild additional conditions on K̂
and Nǫ), which can be verified in dimensions d = 1 and
d = 2 for mean-square continuous but non-differentiable
random fields, for some specific designs Nǫ [151]. The
Matérn model with K = Mα,ν admits a simple expres-
sion for its spectrum [2, 11.4.44]:

(23) M̂ν,α(z) =
Γ(ν + d/2)

πd/2Γ(ν)

αd

(1 + α2z2)ν+d/2
, z ≥ 0,

from which (22) can be verified.261

The screening effect can thus be established for the262

Matérn model, under both regular and irregular schemes,263

justifying the use of “local” approximations to the predic-264

tor (12).265

3.3 Matérn on Manifolds and Graphs266

Let M be a general manifold. A pragmatic question is267

whether the Matérn correlation function (9) can be com-268

posed with a suitable metric g, defined on the manifold,269

to preserve positive definiteness over M . For the case270

of the sphere, a natural metric is the geodesic distance;271

the length of the arc connecting any pair of points lo-272

cated over the spherical shell. For this metric, (x, y) 7→273

Mν,α(g(x, y)) is a correlation function only for 0< ν ≤274

1/2 [63]. This limitation is emphasised in Alegría et al.275

[3], who propose the F family, a model that is valid on276

the sphere, and having the same properties as the Matérn277

function in terms of mean-square differentiability and278

fractal dimension. The Matérn function on other general279

manifolds has been studied by Li et al. [98]. Guinness and280

Fuentes [69] propose a spectral expansion to define a co-281

variance function that mimics the Matérn model, but this282

construction is criticised by Lindgren et al. [101] as being283

incorrect as the spectral expansion does not reproduce the284

same properties of the Matérn model.285

Unfortunately, it seems that the limited applicability of286

the Matérn model on any space that is not a flat surface287

extends to more abstract settings as well. An elegant iso-288

metric embedding argument in Anderes et al. [9] proves289

that the restriction 0 < ν ≤ 1/2 is required when the in-290

put space is a graph with Euclidean edges. A more general291

argument in Menegatto et al. [112] proves that the same292

restriction is inherited for a general quasi metric space en-293

dowed with a geodesic metric. The notable effort by Bolin294

and Kirchner [30] provides a model that is once differen-295

tiable over metric graphs. It is reasonable to conclude that296

some form of the SPDE approach, which we discuss next297

in Section 4.2, is needed in general to extend the Matérn298

model to a general manifold.299

4. THE MATÉRN MODEL IN COMPUTATIONAL
STATISTICS

This section explores the interaction of the Matérn300

model with computational statistics, starting with numer-301

ical methods for implementation of the Matérn model302

(Sections 4.1, 4.2 and 4.3), and then turning to uses of303

the Matérn model to facilitate numerical computation it-304

self (Section 4.4).305

4.1 Implementation as an SDE306

The Matérn model admits a state space representation
as an SDE, which enables efficient computational tech-
niques from the signal processing literature to be em-
ployed for simulation, estimation and prediction. Indeed,
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focusing on dimension d= 1, and letting

Z(x) = (Z,dZ/dx, . . . ,dkZ/dxk),

the Matérn model Mν,α with ν = k + 1/2 admits the
characterisation

dZ=




0 1
...

...
0 1

−a0 −a1 . . . −ak−1


Z dx+




0
...
0
1


dW

where ai = k+1Ci · α−k−1+i, the ·C· are binomial coef-307

ficients, and W(x) represents a zero-mean white noise308

process on x ∈ R [73]. The advantage of state space for-309

mulations is that both estimation and prediction can be310

performed in a single pass through the data, at linear311

O(n) cost, using familiar Kalman updating equations as312

described in Sarkka et al. [135] and in further detail in313

Chapter 6 of Hennig et al. [75]. Similar characterisations314

for higher dimensions, including spatio-temporal versions315

of the Matérn model, can be found in Sarkka et al. [135],316

though we note these retain linear complexity only in the317

number of time steps; complexity is cubic in the size of318

the spatial grid. The SPDE approach can offer a solution319

in this respect, and we discuss this next.320

4.2 Implementation as an SPDE321

A major reason for the continued popularity of the
Matérn model is the availability of efficient and scalable
numerical methods for simulation, due in large part to
Lindgren et al. [102]. These authors consider the SPDE

(24) (α−2 −∆)γ/2Z(x) =W(x), x∈R
d,

where α > 0, ∆ is the Laplacian, and W is a Gaussian
white noise on Rd, so that Cov (W(A1),W(A2)) = |A1∩
A2|, where Ai are subsets of Rd, i= 1,2, and where | · |
is the volume integral. Whittle [167] and Whittle [168]
proved that the solution to (24) is a Gaussian field with
Matérn covariance σ2Mν,α with parameters α (as before)
and

σ2 =
Γ(ν)α2ν

Γ(ν + d/2)(4π)d/2
, ν = γ − d/2.

This perspective offers two insights; first, tools developed322

for the numerical approximation of SPDEs can be brought323

to bear on the Matérn model, and second, there is a clear324

path to generalise the definition of the Matérn model to325

any (planar or non planar) manifold on which the analo-326

gous SPDE may be defined. (For example, Jansson et al.327

[78] take this perspective to generalise the Matérn model328

to the sphere Sd.)329

To provide a computationally convenient approxima-330

tion to (24), Lindgren et al. [102] considered the weak331

solution to (24) and approximation of the weak solution332

using basis functions with compact support over a com-333

pact domain Ω⊂Rd (specifically, a Galerkin approxima-334

tion using finite element basis functions was used). As335

a result, the authors establish a formal route to approxi-336

mation of the random field Z with a Gauss–Markov ran-337

dom field having a sparse precision matrix. Sparse matrix338

algebra enables fast simulation of realisations from the339

Matérn random field, and fast evaluation of the likelihood340

(13) (albeit not fast evaluation of the gradient of the like-341

lihood).342

The choice of domain Ω introduces boundary effects343

which must be carefully mitigated. Khristenko et al. [87],344

Brown et al. [37] provide a solution for the case where γ is345

an integer; the non-integer case is considered in Bolin and346

Kirchner [30]. The extension of the Matérn field based on347

SPDEs to space-time is provided by Cameletti et al. [39]348

and subsequently by Bakka et al. [15], Clarotto et al. [42],349

while the multivariate Matérn case has been explored in350

Bolin and Wallin [33]. Alternative approximations based351

on Galerkin methods on manifolds have been provided352

by Lang and Pereira [92]. An interesting approach that353

allows working on manifolds with huge datasets is pro-354

posed by Pereira et al. [121]. The interest in this literature355

is dual. On the one hand, the technical aspects related to356

the finite dimensional representation of Gaussian random357

fields are extremely interesting per se. On the other hand,358

this group of authors is actually driven by providing tools359

for efficient computation. This is witnessed by the rele-360

vant existing packages (R-INLA, inlabru, and rSPDE for361

instance) and we refer to the review of Lindgren et al.362

[101].363

Sanz-Alonso and Yang [133] attempt to explain the
trade-off between accuracy and scalability in numerical
approxmation of the Matérn model. Recall that, in the
SPDE approach [102], Z in (24) is numerically approx-
imated using a Gaussian process

(25) Zδ(x) =

nδ∑

k=1

ωkǫk(x), x ∈Ω,

where ǫk are finite element basis functions and the vec-364

torω = (ω1, . . . , ωnδ
)⊤ is multivariate Gaussian with zero365

mean and with a sparse precision matrix. The accuracy366

of the approximation Zδ is dependent on (a) the compact367

support of the finite elements basis functions, (b) bound-368

ary effects due to the domain Ω, and (c) by the mesh width369

δ that determines the cardinality nδ in (25). Most of the370

earlier literature has considered (25) with nδ proportional371

to the sample size n of the dataset being modelled. Sanz-372

Alonso and Yang [133] adopt a fixed domain asymptotic373

approach to explain when nδ ≪ n might be a legitimate374

strategy. To do so, they consider Gaussian process regres-375

sion and work under the framework of Bayesian contrac-376

tion rates. Their results provide justification for specific377
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scalings of nδ with nδ = o(n), provided that the smooth-378

ness ν is sufficiently high.379

A different path to SPDE and Gauss–Markov random380

fields was recently taken in Sanz-Alonso and Yang [134],381

who adopt graph-based discretisations of SPDEs. This ap-382

proach can be well-suited to working with discrete and383

unstructured point clouds, such as in machine learning384

tasks where the data belong to an implicitly defined low-385

dimensional manifold. A second advantage of this ap-386

proach is that an explicit triangulation of the domain is387

not required.388

4.3 Approximate Likelihood and the Matérn Model389

In estimating the parameters of the Matérn model using390

ML (14), numerical optimisation is required. Although391

generic optimisation routines can be used, an often better392

approach is to first construct an accurate-but-cheap ap-393

proximation to the likelihood, which can then be more394

readily maximised. Indeed, approximate likelihoods are395

essential when dealing with large datasets, since the eval-396

uation of (13) requires computing the inverse and the397

determinant of the correlation matrix, usually via the398

Cholesky decomposition at complexity O(n3) and stor-399

age cost O(n2).400

Perhaps the most successful approximation is Vecchia’s401

method [163], which has attracted a remarkable amount402

of attention in recent times [inc. 147, 48, 49, 67, 47]. The403

Vecchia approximation can be used with any correlation404

model and its basic idea is is to replace (13) with a prod-405

uct of Gaussian conditional distributions, in which each406

conditional distribution involves only a small subset of407

the data. This approximation requires that the data are or-408

dered and the number m of ‘previous’ data on which to409

condition is to be specified. Generally, larger m entails410

more accurate and computationally expensive approxima-411

tion, while the choice of ordering affects the accuracy of412

the approximation [67]. The Vecchia method provides a413

sparse approximation to the Cholesky factor of the pre-414

cision matrix, such that the approximate likelihood can415

be computed in O(nm3) time and with O(nm2) storage416

cost. See the recent review of Katzfuss and Guinness [83]417

for further detail. The Vecchia likelihood can be viewed418

as a specific instance of a more general class of estimation419

methods called quasi- or composite likelihood [103, 162]420

that have been widely used for the estimation of Gaussian421

fields with the Matérn model [52, 26, 13].422

An alternative method of mitigating the computational423

burden of ML estimation is covariance tapering [59]. The424

basic idea is to multiply the Matérn model with a com-425

pactly supported correlation function, resulting in a ‘mod-426

ified’ Matérn model with compact support. This induces427

sparseness in the associated covariance matrix, so that al-428

gorithms for sparse matrices can be exploited for a com-429

putationally efficient evaluation of the Cholesky decom-430

position [59]. However, some authors [25, 23] suggest431

that tapering might be an obsolete approach in view of432

the fact that flexible compactly supported models that in-433

clude the Matérn model as a special case have been re-434

cently proposed; see Section 8. A comprehensive review435

of the likelihood approximations is beyond the scopes of436

this paper, so we refer the reader to Sun et al. [154] and437

Heaton et al. [74] for further detail.438

4.4 The Matérn Model for Bayesian Computation439

In the last decade there has been increasing interest in
the use of kernel methods for solving PDEs. Consider a
system

Au= f in Ω

Bu= g on ∂Ω

specified by a differential equation involving A and f ,440

and initial or boundary conditions specified by B and g.441

Dating back at least to Fasshauer [57] in the determinis-442

tic setting, and reinterpreted through a Bayesian lens by443

authors such as Cockayne et al. [43], one can seek an ap-444

proximation to the strong solution u : Ω → R by mod-445

elling u as a priori a Gaussian random field and condi-446

tioning that field to satisfy the differential equation at lo-447

cations {x1, . . . ,xm} ⊂ Ω and satisfy the boundary con-448

ditions at locations {xm+1, . . . ,xn} ⊂ ∂Ω. The condi-449

tional mean of this process coincides with the symmetric450

collocation method introduced by Fasshauer [57], which451

we return to in Section 6.1, while the conditional vari-452

ance provides probabilistic uncertainty quantification for453

the solution, expressing the uncertainty that remains as a454

result of using only a finite computational budget. To im-455

plement these methods, one requires a Gaussian process456

whose sample paths possess sufficient regularity for the457

operation of conditioning on the derivative Au to be well-458

defined. On the other hand, assuming excessive smooth-459

ness could lead to over-confident uncertainty quantifi-460

cation. One therefore requires a kernel with customis-461

able smoothness, which can be adapted to the differential462

equation at hand. The Matérn class satisfies this require-463

ment, but is not alone in doing so; we continue discussion464

of this point in Section 7.465

A specific PDE that has received considerable recent at-466

tention in the Bayesian statistical community is the Stein467

equation, for which Au = c + p−1∇ · (p∇u), where p468

is the probability density function of a posterior distribu-469

tion of interest, f is a function whose posterior expecta-470

tion we seek to compute, and c is a constant. If the Stein471

equation has a solution, then c must be the value of the472

posterior expectation we seek. This has motivated sev-473

eral efforts to numerically solve the Stein equation, as a474

more direct alternative to first approximating p (for ex-475

ample using Markov chain Monte Carlo) and then using476

the approximation of p to approximate the expectation477

of interest. In this context kernel methods are typically478
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used [117, 145] and in particular the kernel should have479

smoothness that is two orders higher than that of the func-480

tion f whose expectation is of interest, since the Stein481

equation is a second-order PDE. The generalisation of the482

Stein equation to Riemannian manifolds was considered483

in [19], who advocated for the use of kernels with cus-484

tomisable smoothness that reproduce Sobolev spaces of485

functions on the manifold, such as the (manifold gener-486

alisation of the) Matérn model. The connection between487

the Matérn model and Sobolev spaces is set out in Section488

6.1.489

5. FLEXIBLE MODELLING WITH MATÉRN

One might object that the Matérn model is insufficiently490

flexible for many statistical applications, being limited to491

scalar-valued random fields that are stationary, isotropic492

and Gaussian. However, the Matérn model is also an im-493

portant building block for many more sophisticated mod-494

els, some of which will now be described. This is a rich495

literature, and our discussion is necessarily succinct; an496

extended version of this section can be found in Appendix497

A of the Supplementary Material.498

5.1 Scalar Valued Random Fields499

Let us start by discussing models for scalar-valued ran-500

dom fields that build on the Matérn model. Note that one501

can trivially introduce non-zero mean functions into the502

Matérn model, or combine (additively or multiplicatively)503

kernels to obtain a potentially more expressive kernel; we504

will not dwell on either point.505

To relax the isotropy assumption of the Matérn model,506

[7] consider scale mixtures that take into account pref-507

erential directions in which spatial dependence develops.508

On the other hand, the case of space-time models re-509

quires special treatment, and non-separable versions of510

the Matérn kernel are described in Gneiting [62], Zas-511

tavnyi and Porcu [178].512

The stationarity assumption was relaxed in a paramet-513

ric manner in Paciorek and Schervish [119], and then514

in a nonparametric manner in Roininen et al. [132]. An515

attempt to strike a balance between the computational516

tractability of parametric models and the flexibility of517

nonparametric models was reported in Wilson et al. [170],518

who proposed input warping to transform the inputs to the519

Matérn model using a neural network.520

The Gaussian assumption can be relaxed through out-521

put warping, meaning transformation of the form Z̃(x) =522

w(Z(x)) where w(·) is a nonlinear map from Rd to Rd.523

The covariance function of Z̃ will not be Matérn in gen-524

eral, when the covariance function of Z is Matérn , but525

if w is sufficiently regular then the smoothness proper-526

ties of Z transfer to Z̃ . The question of whether there ex-527

ist non-Gaussian processes whose covariance function is528

nevertheless of Matérn class was answered positively in529

Åberg and Podgórski [1]. Yan and Genton [174] have pro-530

posed trans-Gaussian random fields with Matérn covari-531

ance function. Bolin [29] and subsequently Wallin and532

Bolin [164] provided SPDE-based constructions for non-533

Gaussian Matérn fields. General classes of non-Gaussian534

fields with covariance g(Mν,α), for g(·) a suitable func-535

tion that preserves the positive definiteness and smooth-536

ness properties of the Matérn model, have been provided537

for instance by Palacios and Steel [120], Xua and Gen-538

ton [173], Bevilacqua et al. [24], Morales-Navarrete et al.539

[113].540

An important extension of the Matérn model, which541

has received recent attention, is to random fields on542

spaces for which classical notions of smoothness are not543

well-defined. For example, Anderes et al. [9] consider544

graphs with Euclidean edges, equipped with either the545

geodesic distance over the graph, or the resistance metric.546

Menegatto et al. [112] provide a generalisation of this set-547

ting by considering quasi-metric spaces. Bolin et al. [32]548

adopt a different approach to build random fields with549

their covariance structure on metric graphs. Space-time550

version of the Matérn model, for graphs with Euclidean551

edges, have been considered by Tang and Zimmerman552

[155] and Porcu et al. [127]. These efforts considerably553

extend the applicability of the Matérn model.554

The Matérn covariance function decays exponentially555

with distance, which can be inappropriate for modelling556

processes that involve long memory. Several approaches557

have been developed to modify the tails of the Matérn cor-558

relation function while preserving many of its desirable559

characteristics; we describe these in Section 7.560

[68] considers Gaussian random fields defined for lat-561

tices Zd with a covariance function that is the restriction562

of the Matérn covariance to Zd. The resulting spectrum563

is smoothed version of the spectral density associated564

with the Matérn covariance. For this specific situation, the565

SPDE approximation can overestimate the scale, α. Yet,566

it is not clear how this message extends to Gaussian fields567

that are continuously indexed in Rd.568

5.2 Vector-Valued Random Fields569

There has been a plethora of approaches related to mul-
tivariate spatial modeling, and the reader is referred to
Genton and Kleiber [60]. Here, the isotropic covariance
function K : [0,∞) → Rp×p is matrix-valued. The ele-
ments on the diagonal, Kii, are called auto-covariance

functions, and the elements Kij , i 6= j, are called cross-

covariance functions. Gneiting et al. [64] proposed a mul-
tivariate Matérn model

(26) Kij(x) = σiiσjjρijMνij ,αij
(x), x≥ 0,

where σ2ii is the variance of Zi, the ith component of a570

multivariate random field in Rp, and ρij is the collocated571
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correlation coefficient. There are restrictions on the pa-572

rameters νij , αij and ρij required to ensure positive defi-573

niteness, and often the restrictions on the collocated cor-574

relations coefficients ρij are rather strict. This last remark575

has motivated alternative approaches, and the reader is re-576

ferred to Apanasovich et al. [11] and more recently to577

Emery et al. [54]. Extensions to multivariate space-time578

Matérn structures have been provided by Allard et al.579

[6] and through a technical approach by Porcu et al.580

[125]. Multivariate nonstationary Matérn functions have581

been proposed by Kleiber and Nychka [88]. Multivariate582

Matérn models with dimple effect have been studied by583

Alegría et al. [4]; a ‘dimple’ in a space-time covariance584

model refers to the case when Cov(Z(x, t),Z(x′, t′)) is585

bigger than Cov((Z(x, t),Z(x′, t)), which requires spe-586

cial mathematical treatment.587

Multivariate Matérn modeling on graphs has been re-588

cently investigated in Dey et al. [51], who propose a class589

of multivariate graphical Gaussian processes through590

stitching, a construction that gets multivariate covari-591

ance functions from the graph, and ensures process-level592

conditional independence between variables. When cou-593

pled with the Matérn model, stitching yields a multi-594

variate Gaussian process whose univariate components595

are Matérn Gaussian processes, and which agrees with596

process-level conditional independence as specified by597

the graphical model. Stitching can offer massive com-598

putational gains and parameter dimension reduction. An599

ingenious approach to Gaussian process construction in-600

volving the Matérn covariance function has been recently601

proposed by Li et al. [97], who considered a product space602

involving the d-dimensional Euclidean space cross an ab-603

stract set that allows to index group labels.604

5.3 Directions, Shapes and Curves605

The Matérn model has an important role in the study606

of directional processes, with Banerjee et al. [18] formal-607

ising the notions of directional finite difference processes608

and directional derivative processes with special empha-609

sis on the Matérn model. The Matérn model also has a role610

in shape analysis, where Banerjee and Gelfand [16] in-611

troduced Bayesian wombling to measure spatial gradients612

related to curves through ‘wombling’ boundaries, and ap-613

proach taken further in Halder et al. [71]. The smoothness614

properties of the Matérn model are ideally suited to such615

a framework. Modeling approaches to temporal gradients616

using the Matérn model have been proposed by Quick617

et al. [131]. Related to these approaches, the smoothness618

parameter ν of the Matérn model plays a central role in619

the recent paper by Halder et al. [71], who analyse ran-620

dom surfaces in order to explain latent dependence within621

a response variable of interest.622

This represents a short tour of statistical applications of623

the Matérn model, but its reach goes well beyond statis-624

tics, and we explore the importance of the Matérn model625

to related fields next.626

6. THE MATÉRN MODEL OUTSIDE STATISTICS

This section explores the impact of the Matérn model627

on numerical analysis and approximation theory (Section628

6.1), machine learning (Section 6.2), and probability the-629

ory (Section 6.3).630

6.1 Numerical Analysis and Approximation Theory631

The problem considered here is to reconstruct a real-
valued function f defined on a domain D ⊂ Rd from
given data values yi = f(xi) available at a set Xn =
{x1, . . . ,xn} of distinct data locations. In contrast to
the statistical exposition in Section 3.1, from a numeri-
cal analysis standpoint these data are not assumed to be
random in any way. Nevertheless, many of the mathe-
matical expressions that we previously motivated from a
statistical perspective appear also in the solution of this
numerical task. The data vector Zn is reinterpreted as
Zn = (f(x1), . . . , f(xn))

⊤ and the task is to approximate
the value f(x) of the unknown function f at an unsam-
pled location x ∈D\Xn. A natural solution is a minimal-
norm interpolant

sf,Xn,K = argmin
s∈H(K)

‖s‖H(K) s.t.
s(xi) = f(xi),

i= 1, . . . , n,

which we recall was the third optimality property re-
ferred in Section 3. Thus, using again the kernel matrix

Rn = [K(xi,xj)]
n
i,j=1, the system Rncn =Zn is solved

for a fixed coefficient vector cn that determines a linear
combination

sf,Xn,K(x) =

n∑

i=1

ciK(xi,x), x ∈D,

in the span of the translates K(xi, ·). This follows eas-632

ily from the reproduction formula (3) and (2). The above633

formula is identical to (12) when setting x= x0, and the634

resulting value sf,Xn,K(x) is interpreted as a numerical635

approximation to f(x). The log-likelihood function (13)636

can equivalently be viewed as penalising the norm of the637

interpolant, since ‖sf,Xn,K‖2H(K) =Z
⊤
nR

−1
n Zn.638

The fourth optimality principle in Section 3 corre-
sponds here to the fact that the norm of the error func-
tional ǫx : f 7→ f(x) − sf,Xn,K(x) in the dual space
H(K)∗ of H(K) is minimal under all linear reconstruc-
tion algorithms in H(K) that use the same data Zn. The
key tool is the power function PK,Xn

, defined for all
x∈D by

PK,Xn
(x)

= sup
{
f(x) : f ∈H(K), f(Xn) = 0, ‖f‖H(K) ≤ 1

}

It has the property PK,Xn
(x) = ‖ǫx‖H∗(K) and leads to

optimal error bounds of the form

|f(x)− sf,Xn,K(x)| ≤ PK,Xn
(x)‖f‖HK

.
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for all x ∈D and f ∈ H(K). It can be numerically cal-639

culated using the kernel matrix based on Xn ∪ {x}, but640

we omit the detail. Strikingly, the power function coin-641

cides with the square root of the kriging variance [141],642

giving the variance of the kriging error at x for given data643

locations Xn and kernel K.644

Analysis of the approximation error in this context thus
reduces to analysis of the power function, and in turn anal-
ysis of the space H(K). From (4) and (23), the RKHS
generated by the Matérn kernel Mν,1 has the inner prod-
uct

(27) 〈f, g〉H(Mν,1) =

∫

Rd

f̂(ω)ĝ(ω)

(1 + ‖ω‖2)ν+d/2 dω

up to constants, which we recognise as the inner prod-645

uct of the classical Sobolev space W
ν+d/2
2 (Rd). By the646

Sobolev embedding theorem, the elements of this space647

are well-defined continuous functions whenever ν > 0.648

This space is a canonical setting for mathematical anal-649

ysis of PDEs, a connection that we trailed in Section 4.4.650

Summarising, the use of Matérn kernels yields optimal651

recovery techniques for functions in Sobolev spaces from652

given sampled data. Generalised recoveries using deriva-653

tive data produce meshless numerical methods for solving654

PDEs in Sobolev spaces, including the symmetric colloca-655

tion method which uses derivative data for the PDE based656

on Wu [172], and shares similar Hilbert space optimality657

properties Schaback [137]. The use of the Matérn kernel658

is strongly motivated by the fact that PDE theory often659

implies that solutions lie in Sobolev spaces. On the other660

hand, there are also good arguments to replace Matérn661

kernels by polyharmonics [138, 50].662

Plenty of other results on deterministic recovery prob-663

lems using kernels can be found in Wendland [166], while664

applications are in Schaback and Wendland [139] and665

MATLAB programs combined with the essential theory666

are in Fasshauer and McCourt [58].667

In numerical analysis and approximation theory, Matérn668

and other kernels are normally used for rather large val-669

ues of their smoothness parameter, because they seek to670

solve an interpolation rather than a regression task. Nar-671

cowich et al. [114] proved that convergence rates then672

depend on the minimum of the smoothness of the func-673

tion f providing the data and the kernel; a misspecified674

Matérn kernel, for which the smoothness parameter ν is675

taken to be too large relative to the smoothness of f , pro-676

duces an error that converges at the same rate as we would677

have achieved had ν been correctly specified. On the other678

hand, Tuo and Wang [159] prove in the same setting that679

the prediction error becomes more sensitive to the space-680

filling property of the design points. In particular, optimal681

convergence rates require also that the quasi-uniformity682

of the experimental design is controlled.683

Of course, the use of kernels in numerical analysis and684

approximation theory requires estimation of kernel pa-685

rameters. The quantity σ does not arise in the correla-686

tion matrix Rn, but the scale parameter α has a strong687

influence on the error of the interpolant. There is a vast688

literature on scale estimation that partially builds on sta-689

tistical notions like ML (see references in Section 3). On690

the other hand, specific alternatives to the Matérn model,691

such as the polyharmonic kernels of Section 7.3, are able692

to bypass scale estimation due to the remarkable property693

that the interpolant is independent of the value of the scale694

parameter used. See Wendland [166] and Section 7.3.695

6.2 Machine Learning696

Kernel methods are a major strand of machine learning697

research, where kernels are routinely used to solve a vari-698

ety of supervised and unsupervised learning tasks. Com-699

pared to the interpolatory setting of Section 6.1, data in700

machine learning are usually observed with noise, neces-701

sitating either a likelihood or a loss function to be speci-702

fied.703

The Matérn model is often convenient for the analy-704

sis of kernel methods; for example, Tuo et al. [160] pro-705

vide sufficient conditions for the rates of convergence of706

the Matérn kernel ridge regression to exceed the standard707

minimax rates under both the L2 norm and the norm of708

the RKHS. However, the presence of noise in the data709

can pose a substantial challenge to selection of smooth-710

ness parameters such as ν in the Matérn model. Karvonen711

[81] proves that the ML estimate of ν cannot asymptot-712

ically undersmooth the truth under fixed domain asymp-713

totics; that is, if the true regression function has a Sobolev714

smoothness ν0+d/2, then the smoothness parameter esti-715

mate cannot be asymptotically less than ν0+d/2, but this716

in itself it not compelling motivation to use ML [82]. As a717

result of these additional challenges, standard practice is718

to keep the kernel general as far as possible when develop-719

ing methodology, and as far as possible to learn a suitable720

form for the kernel using the data and model selection cri-721

teria. However, recent machine learning methodology for722

non-Euclidean data hinges on the SPDE approach, and as723

a consequence the Matérn and related models are explic-724

itly being used.725

As the types of data that researchers seek to analyse be-
come more heterogeneous and structured, there has been a
demand for flexible Gaussian process models defined on
such non-Euclidean domains as manifolds and discrete,
graph-based domains. Under the framework of Gaussian
processes, Borovitskiy et al. [35] proposed to avoid nu-
merical solution of the SPDE (24) and instead to work
with a finite-rank approximation to the Gaussian process
model. Specifically, they consider the SPDE in (24) ap-
propriately adapted to a Riemannian manifold M , for
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which the corresponding Matérn model admits a series
expansion of the type

∞∑

n=0

(
2ν

α2
+ λn

)−ν−d/2
fn(x)fn(x

′), x,x′ ∈M

where {λn}∞n=0 and {fn}∞n=0 are, respectively, the se-726

quences of eigenvalues and eigenfunctions from the727

Laplace–Beltrami operator −∆M . The authors propose728

to first solve numerically for the leading eigenfunctions729

{fi}ni=0 of the Laplace–Beltrami operator, and then work-730

ing with a finite-rank Gaussian process whose realisations731

are linear combinations of the {fi}ni=0. Though solving732

the eigenproblem may be harder than numerically solving733

the SPDE, the authors argue that caching of the eigen-734

functions can lead to a cost saving in settings where mul-735

tiple tasks are to be solved on the same manifold. Such736

an approach is ingeniously extended to undirected graphs737

by Borovitskiy et al. [34], and has had a direct impact738

on Gaussian processes defined on neural networks [80],739

pathwise conditioning of Gaussian processes [171], sim-740

ulation intelligence in AI [93] and extension to kernel741

methods withing graphs cross time [115]. Other applica-742

tions include Thomson sampling in neural information743

systems [161], Bayesian optimisation in robotics [79],744

and Gaussian processes regression on metric spaces [90].745

6.3 Probability Theory and Stochastic Processes746

The Matérn model is well-studied from a probability747

theory and stochastic process viewpoint. From the per-748

spective of regularity, Scheuerer [140] summarises the749

properties of Gaussian random fields with Matérn covari-750

ance functions; sample paths are k-times differentiable in751

the mean-square sense if and only if ν > k. Under the752

same condition, the sample paths have (local) Sobolev753

space exponent being identically equal to k. Further, a754

Gaussian random field with Matérn covariance has frac-755

tal dimension that is identically equal to min(ν, d), for d756

being the dimension of the Euclidean space on which the757

random field is defined. For non-Gaussian random fields758

with Matérn covariance, continuity properties are studied759

by Kent [86].760

Several other properties of the Matérn model have been761

investigated. Kelbert et al. [85] study fractional random762

fields under the scenario of stochastic fractional heat763

equations under a Matérn model; see also Leonenko et al.764

[96]. Random fields defined on the unit ball embedded765

in Rd, with a covariance function that is the restriction766

of the Matérn model to a finite range, were studied in767

Leonenko et al. [95]. Tensor-valued random fields with768

an equivalent class of Matérn covariance functions were769

studied in Leonenko and Malyarenko [94]. Terdik [157]770

considers angular spectra for non-Gaussian random fields771

with Matérn covariance function. A recent contribution772

[158] provides interesting connection between the Matérn773

model and certain Laplacian ARMA representations of a774

class of stochastic processes. Lilly et al. [99] show that the775

Matérn process is a damped version of fractional Brown-776

ian motion. Lim and Teo [100] study random fields with777

a generalised Matérn covariance obtained as the solution778

to the fractional stochastic differential equation with two779

fractional orders, enabling the authors to deduce the sam-780

ple path properties of the associated random field. Space-781

time extensions of Matérn random fields through stochas-782

tic Helmholtz equations are provided by Angulo et al.783

[10].784

According to N. Leonenko1, a major contributor to this785

literature, the importance of Matérn model is based on786

the Duality theorem [72, Theorem 1] which provides an787

explicit relation between certain classes of characteris-788

tic functions of symmetric random vectors and their den-789

sity. Specifically, the spectral density associated with the790

Matérn model is by itself a covariance function, called the791

Cauchy or inverse multiquadric covariance function, that792

allows to parameterise the Hurst effect of the associated793

Gaussian random field.794

This completes our tour across the scientific landscape795

through the lens of the Matérn model. Our attention turns796

now to the future, and promising enhancements that can797

be made to the Matérn model.798

7. ENHANCEMENTS OF THE MATÉRN MODEL

This section described enhancements of the Matérn799

model; covariance functions that share (at least partially)800

the local properties of the Matérn model while providing801

additional features and functionality. Here we first intro-802

duces the models one at a time, with critical commentary803

on their features deferred to Section 8.804

7.1 Models with Compact Support805

Compactly supported covariance models have a long
history that can be traced back to Askey [12], who pro-
posed the kernel

(28) Aµ,β(x) =

(
1− x

β

)µ

+

, x≥ 0,

with β and µ being strictly positive, and where (x)+ =806

max(0, x) is the truncated power. It was shown in that807

work that Aµ,β belongs to Φd for all β > 0 if and only808

if µ ≥ (d + 1)/2. Clearly, the mapping x 7→ Aµ,β(‖x‖)809

is compactly supported over a ball with radius β embed-810

ded in Rd. As a result, covariance matrices contain exact811

zero entries whenever the associated states xi and xj sat-812

isfy ‖xi− xj‖ ≥ β; the computational advantages of this813

sparsity are discussed further in Section 8.5.814

1Personal Communication, January 2023.
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Matheron’s montée and descente [110] approach was815

applied by Wendland [165] to the Askey functions, ob-816

taining compactly supported covariance functions with817

higher-order smoothness that are truncated polynomials818

as functions of ‖x‖. This strategy was unable to generate819

integer-order Sobolev spaces in even space dimensions, a820

problem that was resolved in Schaback [136] who identi-821

fied the ‘missing’ Wendland functions. A unified view of822

Wendland functions was provided by Gneiting [62]. Zas-823

tavnyi [175] provided necessary and sufficient conditions824

for a general class encompassing both ordinary and miss-825

ing Wendland functions. Buhmann [38] provided a gener-826

alisation of Wendland functions, with sufficient paramet-827

ric conditions that allow the new class to belong to Φd828

for a given d. Those functions, termed Buhmann func-829

tions, were then studied by Zastavnyi [176] and subse-830

quently by Zastavnyi and Porcu [177], Porcu et al. [129]831

and Faouzi et al. [56]. Alternative representations and832

properties of the Wendland functions have been studied833

by Hubbert [76] and Chernih and Hubbert [40]. Exten-834

sions of the Wendland functions to multivariate [124, 46],835

spatio-temporal [123] and non-stationary processes [89]836

have also been developed.837

A more technical discussion follows, in which we in-838

troduce two further classes of correlation functions with839

compact support, each of which will be the subject of dis-840

cussion in Section 8.841

1. The generalized Wendland (GW ) family [61, 176]
contains correlation functions with compact sup-
port that, as in the Matérn model, admit a contin-
uous parameterisation of smoothness of the under-
lying Gaussian random field. The GWκ,µ,β model
depends on parameters κ≥ 0 and µ,β > 0 through
the identity

(29) GWκ,µ,β(x)

=
Γ(κ)Γ(2κ+ µ+1)

Γ(2κ)Γ(κ+ µ+1)2µ+1
Aκ+µ,β2

(
x2
)

× 2F1

(
µ

2
,
µ+ 1

2
;κ+ µ+1;A1,β2

(
x2
))

,

where µ ≥ (d + 1)/2 + κ is needed for GWκ,µ,β842

to belong to the class Φd and 2F1(a, b, c, ·) is843

the Gaussian hypergeometric function [2]. Sam-844

ple paths of the GWκ,µ,β model are k times mean-845

square differentiable, in any direction, if and only846

if κ > k − 1/2 [61], so that κ plays the role of847

the smoothness parameter in this model. When848

κ = k ∈ N, GWk,µ,β factors into the product of849

the Askey function Aµ+k,β with a polynomial of850

degree k. This model includes the Wendland func-851

tions (κ = k, a positive integer), as well as the852

missing Wendland functions (κ = k + 1/2). The-853

orem 1(3) in Bevilacqua et al. [25] implies that854

the RKHS induced by GWκ/2−(d+1)/4,µ,β , with855

κ ≥ (d + 1/2), is norm-equivalent to the Sobolev856

space W κ
2 (R

d).857

2. The Gauss hypergeometric (GH) family [53] is de-
fined as

(30) GHκ,δ,γ,β(x)

=
Γ(δ − d/2)Γ(γ − d/2)

Γ(δ − κ+ γ − d/2)Γ(κ− d/2)

×Aδ−κ+γ−d/2+1,β2

(
x2
)
×

2F1

(
δ− κ;γ − κ; δ − κ+ γ − d/2;A1,β2(x2)

)
.

This model has four parameters and it belongs to
the class Φd for every positive β provided κ > d/2
with

2(δ − κ)(γ − κ)≥ κ, and 2(δ + γ)≥ 6κ+ 1.

Sample paths of the GHκ,δ,γ,β model are ⌈k/2⌉858

times mean-square differentiable, in any direction,859

if and only if κ > (k + d)/2. The parameter κ thus860

also controls the smoothness of samples from this861

model.862

The importance of the GW and GH models is discussed863

in Section 8.864

7.2 Models with Polynomial Decay865

Correlation models with polynomial decay such as the
generalized Cauchy [65] or the Dagum models [22] can
be useful when modelling data with long-range depen-
dence. However, in using these correlation models one
loses control over the differentiability of the the sample
paths, a key property of the Matérn model. Ma and Bhadra
[106] recently proposed a modification of the Matérn
class that allows for polynomial decay, while maintain-
ing the local properties of the conventional Matérn model.
The correlation function associated to this model is given
by
(31)

CHν,η,β(x) =
Γ(ν + η)

Γ(ν)
U
(
η,1− ν, ν

(
x

β

)2
)
, x≥ 0,

where U is the confluent hypergeometric function of the866

second kind [2]. Here ν > 0 controls mean-square differ-867

entiability near the origin, as in the Matérn case, while868

η > 0 controls the heaviness of the tail. The construction869

(31) is based on a scale mixture of (a reparameterised ver-870

sion of) the Matérn model involving the inverse-gamma871

distribution. Ma and Bhadra [106] have shown that this872

class is particularly useful for extrapolation problems873

where large distances are predominant.874
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7.3 Polyharmonic Kernels875

Our catalogue of enhancements of the Matérn model
finishes with polyharmonic kernels, defined as

(32) Hν,d(x) :=

{
x2ν−d logx for 2ν − d ∈ 2Z
x2ν−d else

}

up to the sign (−1)⌊ν−d/2⌋+1. As a function of x= ‖x‖,876

x ∈ Rd, the Matérn kernel Mν−d/2,1 starts with even877

powers of x followed by Hν,d, and in this sense the two878

models are related. Up to a constant factor, the gener-879

alised Fourier transform of Hν,d(‖x‖) on Rd is ‖ω‖−2ν ,880

and then a scale parameter is just another constant factor.881

This makes kernel-based interpolation by polyharmonics882

scale-independent. Compare with (23) to see the connec-883

tion to Mν−d/2,α in Fourier space. Stein [150] provides884

a formal connection between polyharmonic kernels, for885

which the name power law covariance functions is also886

used, and the Matérn model. Polyharmonic kernels are887

conditionally positive definite of order ⌊ν − d/2⌋ + 1;888

for a technical definition see Wendland [166]. Instead of889

Hilbert Spaces, polyharmonic kernels generate Beppo–890

Levi spaces, which share similarities to Sobolev spaces891

modulo that an additional polynomial space has to be892

added to enable prediction (Section 3) and interpolation893

(Section 6.1); see Wendland [166]. In general, polyhar-894

monic kernels arise as covariances in fractional Gaussian895

fields, including forms of Brownian motion [104, Theo-896

rem 3.3].897

Next our attention turns to a critical discussion of898

whether such enhancements to the Matérn model are899

needed.900

8. ARE ENHANCEMENTS OF THE MATÉRN MODEL
USEFUL?

This final section provides critical commentary on the901

Matérn model and the enhanced versions of the model in-902

troduced in Section 7.903

8.1 Rigorous Generalisation of the Matérn Model904

The Matérn model does not allow for compact support,905

hole effects (oscillations between positive and negative906

values) at large distances, or slowly decaying tails suit-907

able for modeling long-range dependence. Most of the908

enhancements in Section 7 aim to resolve these kind of is-909

sues; here we describe how the GW , GH and CH models910

can be viewed as rigorous generalisations of the Matérn911

model.912

Bevilacqua et al. [23] have shown that the Matérn
model is a limit case of a rescaled version of the GW
model. In particular they have considered the model G̃W
defined as

G̃Wκ,µ,β(x) = GW
κ,µ,β

(

Γ(µ+2κ+1)

Γ(µ)

) 1
1+2κ

(x), x≥ 0,

and proved that

lim
µ→∞

G̃Wκ,µ,β(x) =Mκ+1/2,β(x), κ≥ 0,

with uniform convergence over the set x ∈ (0,∞). The
parameter µ thus allows for switching from compactly
supported to globally supported models, and can either be
fixed to ensure sparse correlation matrices, or can be es-
timated based on the dataset. However, this equivalence
applies only to smoothness parameters greater than or
equal to 1/2 in the Matérn model, so the full range of the
smoothness parameter is not covered. This is unfortunate,
since the fractal dimension [a widely used measure of
roughness of the sample paths for time series and spatial
data; 66] is fully parameterised using the Matérn model
when the smoothness parameter lies between 0 and 1. As
a consequence, the GW (or G̃W ) model cannot fully pa-
rameterise the fractal dimension of the random field. This
kind of issue can be solved with the GH model, which
includes the GW model as a special case [53]:

GH d+1

2
+ν, d+µ+1

2
+ν, d+µ

2
+1+ν,β(x) = GWν,µ,β(x)

Letting β, δ and γ tend to infinity in such a way that913

β/
√
4δγ tends to α > 0, the GH model (30) converges914

uniformly to the Matérn model Mκ−d/2,α(x), and in this915

case the full range of the smoothness parameter of the916

Matérn model is covered.917

The Matérn model also arises as a special limit case of
the CH model. Specifically, Ma and Bhadra [106] show
that

lim
η→∞

CH
ν,η,2

√
ν(η+1)β

(x) =Mν,β(x),

with convergence being uniform on any compact set.918

The turning band operator of Matheron [109] can be919

applied to a correlation function to create hole effects920

while retaining positive definiteness of the kernel. An ar-921

gument in Schoenberg proves that, for an isotropic corre-922

lation in Rd, the correlation values cannot be smaller than923

−1/d [143]. Since the Matérn model is a valid model for924

all d, this implies that the application of turning bands to925

the Matérn model will not provide any hole effect. On the926

other hand, the GW and GH models allow for such an927

effect.928

8.2 Estimation of Enhanced Models929

ML estimation for the Matérn model are well-understood;930

here we discuss the extent to which similar results can be931

obtained for enhancements of the Matérn model.932

In the context of increasing domain asymptotics, pa-933

rameters of the GW and CH models can be estimated934

consistently using ML and the associated asymptotic dis-935

tribution is known; see Section 3.1.1.936

In the context of fixed domain asymptotics, similar to
the classical Matérn model, the parameters of the these
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enhanced models cannot be consistently estimated. For
instance, Bevilacqua et al. [25] show that the microer-
godic parameter of the covariance model σ2GWκ,µ,β ,
assuming κ and µ known, is given by microGW =
σ2/β2κ+1. In addition they prove that for a zero mean
Gaussian field defined on a bounded infinite set D ⊂ Rd

(d= 1,2,3), with covariance model σ20GWκ,µ,β0
, the ML

estimator σ̂2n/β̂
2κ+1
n of the microergodic parameter is

strongly consistent, i.e.,

σ̂2n/β̂
2κ+1
n

a.s.−→ σ20/β
2κ+1
0 .

Additionally, for µ > (d + 1)/2 + κ + 3, its asymptotic
distribution is given by
√
n(σ̂2n/β̂

2κ+1
n − σ20/β

2κ+1
0 )

d−→N (0,2(σ20/β
2κ+1
0 )2).

Analogous for the GH model proposed are not available937

at present.938

Similarly, Ma and Bhadra [106] show that the microer-
godic parameter of the covariance model σ2CHν,η,β , as-
suming ν known, is given by

microCH = (σ2Γ(ν + η))/(β2νΓ(η)).

In addition they prove that for a zero mean Gaussian field
defined on a bounded infinite set D ⊂ Rd (d = 1,2,3),
with covariance model σ20CHν,η0,β0

, the ML estimator
(σ̂2n/β̂

2ν
n )(Γ(ν + η̂n)/Γ(η̂n)) of the microergodic param-

eter is strongly consistent, i.e.,

σ̂2n(Γ(ν + η̂n)

β̂2νn Γ(η̂n)

a.s.−→ σ20Γ(ν + η0)

β2ν0 Γ(η0)

and, if η0 > d/2, its asymptotic distribution is given by

σ̂2n(Γ(ν + η̂n)

β̂2νn Γ(η̂n)
− σ20Γ(ν + η0)

β2ν0 Γ(η0)

d−→N
(
0,2

(
σ20Γ(ν + η0)

β2ν0 Γ(η0)

)2
)
.

These results broadly support the use of ML plug-in esti-939

mates for these enhanced versions of the Matérn model;940

the issue of predictive performance is discussed next.941

8.3 Prediction with Enhanced Models942

If two Gaussian measures are equivalent then the asso-
ciated predictions and mean squared errors are asymptot-
ically identical (c.f. Section 3.2). To this end, recent re-
sults have sought to establish equivalence between Gaus-
sian measures for the Matérn model and enhancements
of the Matérn model. Bevilacqua et al. [25] consider
the σ21GWκ,µ,β model and show that for given σ1 ≥ 0,
ν ≥ 1/2, and κ≥ 0, if ν = κ+1/2, µ > d+ κ+1/2 and

(33) σ20α
−2ν =

(
Γ(2κ+ µ+ 1)

Γ(µ)

)
σ21β

−(1+2κ),

then P (σ20Mν,α) is equivalent to P (σ21GWκ,µ,β), for d=
1,2,3, on the paths ofZ(x) for x ∈D ⊂Rd. Thus predic-
tions made using the GW model with compact support are
asymptotically identical to those made using the Matérn
model. Likewise, Ma and Bhadra [106] show that for a
given η ≥ d/2 and ν ≥ 0, if

(34) σ20α
−2ν =

(
Γ(ν + η)

Γ(η)

)
σ21

(
β2

2

)−ν
,

then P (σ20Mν,α) is equivalent to P (σ21CHν,η,β), for d=943

1,2,3, on the paths of Z(x) for x ∈D ⊂ Rd. Thus pre-944

dictions made using the GW model with polynomial tail945

decay are asymptotically identical to those made using the946

Matérn model.947

If interest is in the predictor (12), but not the predictive948

uncertainty resulting from the associated Gaussian ran-949

dom field, then it is interesting to note that the stationar-950

ity assumption of the Matérn model may not be needed.951

Stein et al. [153] showed that, under suitable paramet-952

ric conditions, one can consider α = 0 in the Matérn953

model, and this is equivalent to prediction using the poly-954

harmonic kernels Hν,d in (32). Theorem 1 in that work955

shows that if d ≤ 3 and the parameter ν satisfies condi-956

tion (2) therein (or d= 1), then it is impossible to distin-957

guish α> 0 from α= 0 on a bounded domain. The above958

observation reflects the fact that prediction using polyhar-959

monic kernels, like in Section 6.1, is scale-independent.960

This follows from homogeneity of the Fourier transform961

and eliminates the need for scale estimation in this con-962

text.963

8.4 Screening with Enhanced Models964

The screening effect extends also to enhanced versions965

of the Matérn model. For regular schemes, Theorem 1 in966

Porcu et al. [128] shows that the GW model allows for an967

asymptotic screening effect when µ > (d+1)/2+κ. This968

condition is not restrictive, since µ≥ (d+1)/2 + ν is al-969

ready required for GWκ,µ,β to belong to the class Φd. For970

irregular schemes the situations is more complicated. For971

example, for non-differentiable fields in d = 1, Theorem972

1 in Stein [151] in concert with Theorem 1 in Porcu et al.973

[128] explains that the Askey model GW0,µ,β allows for974

a screening effect provided µ > 1. For d = 2, Theorem975

2 in Stein [151] implies that the Askey model allows for976

screening provided that µ> 3/2. The GW model satisfies977

Stein’s condition in (1.3) of Porcu et al. [128], which in978

turn allows the Stein hypothesis (22) to be verified.979

The numerical experiments in Porcu et al. [128] sug-980

gest that the screening effect is even stronger under en-981

hanced models with compact support, compared to the982

standard Matérn model. This can deliver computational983

advantages, which we discuss next.984
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8.5 Scalable Computation985

The eternal fight between statistical accuracy and com-986

putational scalability has produced methods that attempt987

to deal with this notorious trade-off. The discussion that988

follows focuses specifically on this trade-off in the con-989

text of the Matérn model. General approaches, such as990

those based on predictive processes [17] and those based991

on fixed-rank kriging [45], will not be discussed; the in-992

terested reader is referred to the review of Sun et al. [154].993

The computational complexity associated with the994

Matérn model is broadly governed by the input space di-995

mension (d), the number (p) of kernel parameters that996

must be estimated, and the number of data (n). These997

challenges will be considered in turn.998

First we consider the challenge of large d, which is of-999

ten encountered in machine learning, when Gaussian pro-1000

cess regression is performed on high-dimensional input1001

spaces [169]. Since the Matérn model Mν,α reproduces a1002

Sobolev space up to an equivalent norm (c.f. Section 6.1),1003

and ν > d/2 is required to for elements of this space to1004

be pointwise well-defined, it follows that ν must tend to1005

infinity as d tends to infinity, so that the Matérn model re-1006

duces to the Gaussian model (10). The flexibility of some1007

enhanced models is also lost in this limit; the condition1008

µ ≥ (d+ 1)/2 + κ in the G̃Wκ,µ,β model forces the pa-1009

rameter µ to go to infinity with d, which in turn forces1010

G̃Wκ,µ,β to approach Mν,α. From this point of view the1011

class GHκ,δ,γ,β seems more promising to use for large1012

d. An additional remark is that, for d ≥ 5, all Gaussian1013

measures with Matérn covariance functions are orthogo-1014

nal [8]. This has philosophical consequences for Gaussian1015

process regression when the Matérn model is viewed as a1016

prior distribution encoding a priori belief, since a small1017

change to the kernel parameters results in the entire sup-1018

port of the prior being changed.1019

Coupled to large input dimension d is the challenge1020

where there are a large number of parameters p appearing1021

in the model. The multivariate Matérn model suffers from1022

the fact, not only does p increase exponentially with d,1023

but the conditions for validity of the model imply severe1024

restrictions on the collocated correlation coefficient ρij in1025

(26). Emery et al. [54] show that such restrictions become1026

extremely severe already with p = 3. Similar comments1027

apply to other multivariate covariance functions, includ-1028

ing the multivariate GW model in Daley et al. [46].1029

Finally we consider the case where the number n of1030

data is large, entailing a O(n3) computational and O(n2)1031

storage cost associated with the predictor (12). Several ap-1032

proaches have been proposed to reduce these costs in the1033

context of the Matérn model, many of which take advan-1034

tage of the (approximate) sparsity of the covariance (Σn)1035

or precision (Σ−1
n ), or its Cholesky factor (ch(Σ−1

n )):1036

• Sparsity in the covariance matrix Σn of the Matérn1037

model is directly exploited by enhanced versions of1038

the Matérn model from Section 7. Such approaches1039

can be useful when the (estimated) compact support1040

is relatively small with respect to the spatial extent1041

of the sampling region, so that approximations are1042

extremely sparse; see below for an empirical inves-1043

tigation of this point.1044

• The precision matrix Σ
−1
n associated with the1045

Matérn model is in general non-sparse (except for1046

the case d= 1 and ν = 0.5) but it turns out that the1047

matrix values are in general relatively close to 0, i.e.1048

Σ
−1
n is quasi-sparse. As a consequence, approxi-1049

mating Σ
−1
n with a sparse matrix can be a good1050

strategy. A notable instance of this approach is the1051

SPDE approach from Section 4.2. This approach1052

can be also motivated from results in numerical lin-1053

ear algebra, which demonstrate that if the elements1054

of a matrix show a property of decay, then the ele-1055

ments of its inverse also show a similar (and faster)1056

behavior [20].1057

• Vecchia’s approximation [163] and its extensions1058

[e.g. 48, 67, 83, 47] imply a sparse approximation1059

of of ch(Σ−1
n ) and are often applied to the Matérn1060

model, although they can be applied to any co-1061

variance model. One potential limitation of these1062

method is that they depend on an ordering of the1063

variables and the choice of conditioning sets which1064

determines the Cholesky sparsity pattern [see 67].1065

It is instructive to numerically investigate the sparseness
of matrices associated with enhancements of the Matérn
model, and for this we focus on the G̃Wκ,µ,β model,
which allows us to switch from a model with compact
support of radius

C = β

(
Γ(µ+ 2κ+1)

Γ(µ)

) 1

1+2κ

to the Matérn model by increasing the µ parameter. In1066

our experiment, the sparseness of Σn and the quasi-1067

sparseness of Σ−1
n and ch(Σ−1

n ) are reported, the latter1068

being defined as the percentage of values in the upper tri-1069

angular matrix with absolute value lower than an arbitrary1070

small constant ǫ, and in our example we set ǫ= 1.e− 8.1071

The empirical assessment considers n = 1,156 and1072

n= 4,489 location sites over [0,1]2, where the points are1073

equally spaced by 0.03 and 0.015 respectively in a reg-1074

ular grid. For ν = 0,1,2, we set β such that the prac-1075

tical range of the Matérn model is equal to 0.15 (β =1076

0.050,0.0316,0.0253 respectively), and consider increas-1077

ing µ= 1.5+κ,4,8,16,32,120,∞ (with G̃Wκ,∞,β being1078

the Matérn model Mκ+1/2,β).1079

The results are reported in Table 1. For the low val-1080

ues µ = 1.5,2.5,3.5 and ν = 0,1,2, the covariance ma-1081

trix is highly sparse, while the sparseness decreases when1082
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matrix, then Σ
−1
n or ch(Σ−1

n ) tends to be highly quasi-1087

sparse.1088

We replicate the same experiment but with a practical1089

range of the Matérn model equal to 0.4. This leads to1090

β = 0.133,0.084,0.067 for ν = 0,1,2 respectively. The1091

results are reported in Table 2. The conclusions are the1092

same of the previous setting but in this case, we have1093

lower levels of sparseness for Σn and of quasi-sparseness1094

for Σ−1
n and ch(Σ−1

n .1095

These numerical experiments highlight a clear trade-off1096

between the (quasi-)sparseness of Σ−1
n (or ch(Σ−1

n )) and1097

Σn when increasing µ for fixed β and ν i.e. when switch-1098

ing from a compactly supported to a globally supported1099

Matérn model. In particular, when µ→ ∞ (the Matérn1100

model), then Σ
−1
n is highly quasi-sparse and Σn is dense.1101

In contrast, when µ is small then Σ
−1
n is not quasi-sparse1102

yet Σn is highly sparse. This seems to suggest that sparse1103

precision matrix approximation should work reasonably1104

well for the Matérn model, but could be problematic when1105

handling data exhibiting short compactly supported de-1106

pendence. In this case a better approach should be to ex-1107

ploit the sparsity of Σn, as enabled by enhanced versions1108

of the Matérn model.1109

9. CONCLUSION

The impact of the Matérn model since its conception1110

has been substantial, and the model continues to be widely1111

used, across a broad range of scientific disciplines and be-1112

yond. While the original motivation for the Matérn model1113

came from its flexibility in context of spatial interpola-1114

tion, there is now also a rich literature of alternative and1115

enhanced versions of the model. In particular, the SPDE1116

and related approaches enable one to define analogues of1117

the Matérn model on quite general domains, admitting1118

sparse approximations to precision matrices, while recent1119

advances in enhanced models with compact support can1120

facilitate scalable computation through sparse approxima-1121

tion of covariance matrices, and are well-suited to pro-1122

cesses with short-scale dependence. The theoretical and1123

empirical properties of these enhanced models have been1124

recently and actively studied. On the other hand, there re-1125

main open theoretical issues of practical importance, such1126

as parameter estimation at finite sample sizes, and the im-1127

pact of parameter estimation on the performance of the1128

associated predictions.1129

Our current understanding of the Matérn model has1130

emerged as the result of engagement between scientists1131

and practitioners from different disciplines, and our hope1132

is that this multi-disciplinarity perspective will shine fur-1133

ther light onto the Matérn model.1134
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Supplementary Material1687

APPENDIX A: MODELLING THROUGH MATÉRN IN UNCONVENTIONAL SCENARIOS: THE EXTENDED VERSION

One might object that the Matérn class is limited to scalar-valued random fields that are stationary and isotropic. While1688

this being true, it is also true that the Matérn class represents the building block for way more sophisticated scenarios.1689

We list them throughout.1690

1. Scalar-valued random fields.1691

a) Anisotropies. If spatial dimension develops over preferential directions, isotropy is no longer a realistic1692

assumption for spatial modeling. Several types of anisotropies are challenged in [7], and it is shown that the1693

Matérn class can be composed with ad hoc deformations so to take into account preferential directions in1694

terms of spatial dependence.1695

b) Nonstationarity. The Matérn kernel has been used by [119] to build nonstationary models. Consider a col-
lection of Gaussian distributions indexed by their mean, such that the element with mean x has covariance
matrix Σx. Let

Qx,y = (x− y)⊤
(
Σx +Σy

2

)−1

(x− y)

and1696

K(x,y) =
∣∣∣Σx

∣∣∣
1/4∣∣∣Σy

∣∣∣
1/4
∣∣∣∣∣
Σx +Σy

2

∣∣∣∣∣

−1/2

Mν,α

(√
Qx,y

)
.

Then, K is positive definite. This approach was recently generalised in Roininen et al. [132]. Alternatively,1697

one may induce non-stationarity by warping the inputs of the Matérn covariance function, as K(x,y) =1698

Mν,α(‖w(x)−w(y)‖) for some diffeomorphismw :Rd→Rd that may itself be parametrised. The case in1699

whichw is parametrised by a deep neural network was explored in Wilson et al. [170].1700

c) Graphs and Quasi Metric spaces. [9] consider graphs with Euclidean edges, equipped with either the geodesic1701

distance over the graph, or the resistance metric. They prove that Mν,α can be composed with the resistance1702

metric over the graph provided 0 < ν ≤ 1/2. More recently, [112] provide a generalisation of this setting1703

by considering quasi-metric spaces. Apparently, similar restrictions hold for this case. Recently, [32] adopt1704

a different approach to build random fields with their covariance structure on metric graphs. Space-time1705

version of the Matérn class, for space being a graph with Euclidean edges, have been considered by [155]1706

and by [127].1707

d) Space-time. For a space-time Gaussian random field {Z(x, t), x ∈ Rd+1, t ∈ R}, a typical second-order
assumption is that the covariance is isotropic in space and stationary over time. That is,

(35) Cov (Z(x, t),Z(y, t′)) =K (‖x− y‖, |t− t′|)

for all (x, t), (y, t′) ∈ Rd × R. The Matérn function has been used as a building block for such a structure.
Of particular interest are non-separable covariance functions, that allow for an interaction between space and
time, and in this context [62] and [178] prove that

(36) K(x,u) =
σ2

ψ(u2)
Mν,α

(
x

ψ(u2)

)
, x, u≥ 0,

generate a valid space-time covariance function of the type (35). Here, ψ is a strictly positive function having1708

a completely monotonic derivative [21].1709

e) Non Gaussian Fields. Through consideration of transformations w : R→ R, one can use the Matérn model1710

as the basis for a range of non-Gaussian models Z̃(x) = w(Z(x)). However, the covariance function of Z̃1711

will not be Matérn in general. The question of whether there exist non-Gaussian processes whose covariance1712

function is nevertheless of Matérn class was answered positively in [1]. [174] have proposed trans-Gaussian1713

random fields with Matérn covariance function. [29] and subsequently [164] have provided SPDE based1714

constructions for non Gaussian Matérn fields. A general class of non Gaussian fields with kernel g(Mν,α)1715

with g(·) a suitable function that preserves positive definiteness can be obtained through a transformation of1716

(independent replicates of) a Gaussian field (see for instance [120, 173, 24, 113]).1717
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f) Mixtures of Gaussian Fields. One can model a real-world phenomenon as a superposition Z1 +Z2 where Z11718

might be selected to capture an overall trend (e.g. Z1(x) = c1φ1(x)+ · · ·+ cpφp(x) for some fixed functions1719

φ1, . . . , φp and some coefficients c ∈ Rp and Z2 could be Matérn, to capture the level of smoothness of the1720

process. Such processes appear in Bayesian linear regression, where the coefficient c is viewed as random1721

due to epistemic uncertainty, for example c ∼ N (µ,Σ), and both c and Z2 are to be jointly inferred. The1722

resulting mixture Z1 +Z2 is then again a Gaussian random field.1723

g) Matérn Models with Modified Tails. The Matérn covariance function decays exponentially with distance.1724

This can be a drawback in the presence of long memory. Some classes of covariance functions allow to index1725

long versus short memory in spatial data. The generalised Cauchy [65] and the Dagum [22] are prominent1726

examples of families allowing to index both fractal dimensions and long memory, also termed Hurst effect.1727

Yet, these families do not allow to parameterise the smoothness in the same fashion of the Matérn class.1728

This dilemma has preoccupied several scientists. Below we describe the approaches devoted to modify the1729

tails of the Matérn model while preserving (a) positive definiteness and (b) local behavior, in turn connected1730

with mean square differentiability and Sobolev space parameterisation. Each of the contributions below has1731

different motivations as explained throughout.1732

(a) Matérn models with periodic tails. A modification of the spectral density of the Matérn model has been
proposed by [91]. The primary idea is to propose an isotropic class of spectral densities, M̃ν,α,σ2 , that is
connected to the Matérn family M̂ν,α,σ2 through the identity

(37) M̃ν,α,σ2(z) =
(
b2 + z2

)ξ M̂ν,α,σ2(z),

with b ≥ 0 and ξ < ν . While b is an additional range parameter, ξ is related to the smoothness of the1733

respective process. More precisely, the random field is k-times mean square differentiable if and only if1734

ν − ξ > k. In the limit case ξ→ 0, the traditional Matérn model is recovered.1735

This scale in the spectral density produces a shift in the mode of the spectrum; thus, it is particularly1736

useful to obtain processes with strong periodicities. The covariance function associated to (37) does not1737

have a known explicit expression, so statistical methodologies in the spectral domain should be employed1738

when dealing with this model.1739

(b) Hybrid Models. Another generalisation of the Matérn model exploits the fact that it can be written as a
scale mixture of a Gaussian kernel against a probability density function

(38) Mν,α(x) =

∫ ∞

0
exp(−ux2)πIG(u;ν,1/(4α2))du

of the inverse gamma type. [5] make use of the identity above to create hybrid models that allow to
preserve the local properties of the conventional Matérn model while attaining more flexible behaviours
at large distances. One potential hybrid construction, called Matérn-Cauchy and denoted MCν1,ν2,α,ξ , is
attained through

(39) MCν1,ν2,α,ξ(x) =
∫ ξ

0
exp(−ux2)πG(u;ν1/2, α)du+

∫ ∞

ξ
exp(−ux2)πIG(u;ν2,1/(4α2))du.

Here, πG is the gamma probability density function, with a shape-rate parameterisation, πIG is the den-1740

sity in (41), α > 0 is a range parameter, ν1 > 0 controls the polynomial rate of decay of the covariance,1741

ν2 > 0 indexes the mean square differentiability, and ξ ≥ 0 is an additional parameter that balances the1742

Matérn and Cauchy contributions to the total covariance function. As ξ→ 0, the hybrid model tends to a1743

Matérn covariance. A closed form expression for this model is provided in [5]. Note that this covariance1744

function is positive definite in any dimension, and is a natural competitor of the model (31).1745

Another hybrid model is constructed in [5] by replacing the Gaussian kernel in (38) with a difference of
Gaussian kernels

(
a exp(−ubx2)− exp(−ux2)

)
(a− 1)−1,

where a and b satisfy the condition 1 < b < a2/d, in order to obtain a positive definite kernel in Rd1746

[130]. The resulting model has a local behavior of Matérn type and allows for negative correlations at1747

large distances (hole effect). The parameters a and b control the sharpness of the hole effect. When a1748

is arbitrarily large, the conventional Matérn model is recovered. Algebraically closed expressions are1749

reported in [5].1750
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2. Vector-valued random fields.
Let {Z(x), x∈Rd} ⊂Rp be a p-variate random field with isotropic covariance mappingK :Rd→Rp×p having
elements Kij defined as

Kij(x) = cov (Zi(0),Zj(x)) , 0,x ∈R
d.

Specifically, Kii and Kij are termed auto and cross-covariance function.1751

a) Multivariate Spatial. There has been a plethora of approaches related to multivariate spatial modeling, and
the reader is referred to [60]. [64] have proposed a multivariate covariance structure of the type

Kij(x) = σiiσjjρijMνij ,αij
(‖x‖), x ∈R

d,

where σ2ii is the variance of Zi from Z , and ρij is the collocated correlation coefficient. There are restrictions1752

on the parameters νij, αij and ρij to preserve positive definiteness, and often the restrictions on the collocated1753

correlations coefficients ρij are severe. This motivated alternative approaches to alleviate the parametric1754

restrictions, and the reader is referred to [11] and more recently to [54].1755

b) Multivariate space-time. The setting above can be generalised to space-time by considering {Z(x, t), x ∈
Rd, t ∈ R} ⊂ Rp a p-variate random field with isotropic covariance mapping K : Rd × R → Rp×p having
elements Kij defined as

Kij(x, u) = cov (Zi(0, t),Zj(x, t+ u))

for 0,x ∈Rd, t, u ∈R. [36] consider mappings Kij of the type

Kij(x, u) =
σiiσjjρij

ψ(u2)d/2
Mνij ,αijψ(u2)(‖x‖)

for x ∈ Rd, u ∈ R and a suitable positive valued and continuous function ψ. This setting has been recently1756

generalised by [6] and through a technical approach by [125]: for both contribution, the idea is to replace1757

(pointwise) the mapping ψ with the mapping ψ having continuous and strictly positive elements ψij .1758

c) Multivariate Nonstationary. [88] derive a class of matrix valued covariance functions where the direct and1759

cross-covariance functions belong to the Matérn class. The parameters of the Matérn class are allowed to vary1760

with location, yielding local variances, local ranges, local geometric anisotropies and local smoothnesses.1761

Define Σi,x =Σi(x) : R
d→Rd×d and assume Σi(x) is positive definite for all i and all x ∈Rd. Let

Qij;x,y = (x− y)⊤
(
Σi,x +Σj,y

2

)−1

(x− y)

and

Kij(x,y) = ρijσi,xσj,yMν,α

(√
Qij;x,y

)
.

Then,K(·, ·) = [Kij(·, ·)]pi,j=1 is positive definite.1762

d) Multivariate Matérn with Dimple. In a bivariate spatial context, each element of the matrix-valued Matérn1763

covariance function admits a scale-mixture representation as in (38). [4] considered a modification of such a1764

mixture to obtain a generalization of the Matérn model, given by1765

K̃ij(x) = σiiσjjρij

∫ ∞

0
exp(−ux2)gij(u; ξ)× πIG(u;νij ,1/(4α

2
ij))du,(40)

where gii(u; ξ) = 1, and gij(u; ξ) = 1{u≤ ξ}−1{u≥ ξ} for i 6= j, with 1{·} being the indicator function and
ξ a nonnegative parameter, and where πIG is the probability density function of an inverse gamma random
variable, that is

(41) πIG(z;a, b) =
ba

Γ(a)
z−a−1 exp(−b/z), z > 0.

Observe that the diagonal elements of the matrix-valued covariance are not altered; thus, the appealing local1766

attributes of the Matérn model are maintained. This construction only has an impact on the cross-covariances.1767

Indeed, [4] showed that K̃12(x) is not a monotonically decreasing function of x. More precisely, the cross-1768

covariance can attain its maximum value at a strictly positive distance. This property was called cross-dimple1769

in [4]. The parameter ξ regulates the intensity of the cross-dimple. Clearly, the traditional bivariate Matérn1770

model is a limit case of this construction (ξ →∞). Closed-form expressions for (40) are provided by [4].1771

Moreover, for ν12 = 1/2 + n, n ∈ N, K̃12(x) can be expressed in terms of error functions and exponential1772

functions.1773
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3. Directions, shapes and curves. The Matérn model is central to the study of directional processes. [18] formalize1774

the notions of directional finite difference processes and directional derivative processes with special emphasis1775

on the Matérn covariance function. They provide complete distribution theory results under the assumptions of a1776

stationary Gaussian process (with Matérn covariance) model either for the data or for spatial random effects.1777

[16] introduced Bayesian wombling to measure gradients related to curves through wombling boundaries. The1778

smoothness properties of the Matérn model are proved to be successful within such a framework. Modeling ap-1779

proaches to temporal gradients using the Matérn model have been proposed by [131].1780
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