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Abstract The Wendland radial basis functions [14, 15] are piecewigyomial compactly
supported reproducing kernels in Hilbert spaces which amenrequivalent to Sobolev
spaces. But they only cover the Sobolev spaces

Hd/2+k+l/2(Rd), k6 N (1)

and leave out the integer order spaces in even dimensionsleviie the missing Wend-
land functions working for half-integdeand even dimensions, reproducing integer—order
Sobolev spaces in even dimensions, but they turn out to havadditional non—polynomial
terms: a logarithm and a square root. To give these funcacsdid mathematical founda-
tion, a generalized version of the “dimension walk” is ap@liWhile the classical dimension
walk proceeds in steps of two space dimensions taking sdwjieatives, the new one pro-
ceeds in steps of single dimensions and uses “halved” disegeof fractional calculus.
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1 Introduction

In a wide range of applications from Machine Learning to Mest Methods [11], positive
definite kernels have proven to be very useful tools. Theyeanaturally as reproducing
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kernels of Hilbert spaces of continuous functions, and tfégsn come in translation- and
rotation-invariant form asadial basis functions

K(xy) = ¢(|x—yl2) forall x, y € R

onRY with a smooth univariate functiogp : [0,%) — R. Typical examples are furnished by
the Gaussiarp(r) := exp(—r?) or the Sobolev/Matérn functiong(r) = K, (r)r". The latter
have special importance in geostatistics [8], and are theodeicing kernels of Sobolev
spaceH™(RY) for v =m—d/2 > 0. They involve theK, Bessel functions of third kind
and decay exponentially towards infinity.

Unfortunately, these kernels are not compactly suppoltedby arguments using con-
volutions of compactly supported functions, it is quiteacl¢hat there must be compactly
supported positive definite radial basis functions of aabyt prescribed smoothness. The
quest for explicit formulas for such functions started wiguclid's hat” in 1993 [9,4] and
continued with piecewise polynomial radial basis funcsion\Wu [16] and Wendland [14] in
1995. While Euclid’s hat is not differentiable and Wu’s ftinas have zeros in their Fourier
transform, Wendland’s function@; x have no such drawbacks. They are polynomials on
[0,1] and yield positive definit€ radial basis functions oRY. Given these properties,
their polynomial degreed/2] 4+ 3k + 1 is minimal, and they are reproducing kernels of
Hilbert spaces isomorphic to Sobolev spat®?+k+1/2(RY).

But since this means that integer-order Sobolev spacesim @wmensions are not cov-
ered, this paper produces the “missing” functions by altgahialf-integer values d€ They
still are compactly supported, but they are polynomialshvétiditional logarithmic and
square-root terms. For example, the function

V2 2 r 2 >
®o1/2(r) = NG (Sr Iog(1+m) +(2rer+1)v1-r ) (2
on [0,1] and extended by zero {6, «) yields a positive definite radial basis function RA
and it will turn out to be the reproducing kernel in an isontocpcopy of toH?(R?). See
Figure 1 for a plot of this function.

The paper will first review the standard construction predes Wendland’s functions
by the “dimension walk”. It usually steps through space digiens in steps of two while
taking successive derivatives. To reach the missing irddirate space dimensions, the di-
mension walk has to proceed in steps of single dimensionsthgn it has to use “half-
derivatives” from what is called “fractional calculus” [7This generates the functions we
need, and we provide a MAPLE program for explicit calculati&inally, we add proofs
for the required properties of the new functions and closth wn outlook that connects
everything to hypergeometric functions.

2 Radial Transforms

To start with, we repeat part of the machinery of fractioracualus from [12] and [10].
Proof details can be found there. It is well-known that aabldasis function

®(x) = @(|X|l2), x € R°

has a radiatl-variate Fourier transform

(@) = ol 2 [ o2 o a(r @]} @
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Fig. 1 The missing Wendland functiog 1>

if the integral exists. It allows the Fourier transform ofaalial function to be written as a
univariateHankel transform
We now introduce = r2/2 as a new variable, writing a radial basis functipas

ol 1l2) = f(lI-12/2)- (4)

At first sight, this “f—form” seems somewhat strange. Indeed, théorm of the famil-
iar Wendland functiongs; 1(r) = (1—r)4(4r + 1) will be the non—polynomial function
fa1(t) = (1—v20)% (4v/2t 4 1). But the following mathematical analysis of radial func-
tions in f—form turns out to be much simpler than in “normal” form, ah@tfact should
be familiar from Schoenberg’s connection of positive définadial basis functions to com-
pletely monotone functions [13].

Now (3) forv = (d — 2) /2, when written inf—form on both sides, turns into

s = /o (Ot Hy (ts)dt (5)
with the function
—v L Z2
(3) w@=HZe= 2 Wr k+/3)+1) ©)

for ze C andv € C with v > 0. Note that (5) is a generalization of the Fourier transform
on radial functions, allowing Fourier transforms for sgacé fractal dimension, because
v = (d—2)/2 need not be a half-integer. The functions

(3) %@ =H.E/4)

are calledoscillatory radial basis function®y Fornberg et. al. [3]. The above derivation
shows that they are of central importance, because theystingpgeneralized Fourier trans-
forms of general radial functions. We shall use them fretjyem what follows.



Using derivative formulae for thid, functions obtainable from those of thgfunctions,
one gets

—dESFv(f)(S) =Fya(f)(s) and(Fy 41 (= 1))(s) = (R ())(s). )

Going back tov = (d — 2)/2, these are the basic features of the dimension walk, but we
shall need them later in steps of dimension one:

Theorem 1 If the mentioned Fourier transforms and derivatives exist,

— the(d + 2)-variate Fourier transform of a radial function after the form substitution
(4) is the negative univariate derivative of the d-variataufer transform in f—form,
and

— the d—variate Fourier transform of a radial function in f-o is the(d + 2)—variate
Fourier transform of the negative derivative of f.

Note that all continuous and compactly supporfedill have smooth generalized Fourier
transformd=, () in all dimensions, making the left—hand part of (7) validédidimensions.
However, the application of the right—hand part of (7) ignieted by the smoothness 6f

The dimension walk, expressed via derivatives, is extrgmeéful when programming
with radial basis functions. It turns out that all the relevelasses of radial basis functions,
when written inf form, are invariant under differentiation and integratievhile the F,
operators map the class to another one which is also clogigt differentiation and inte-
gration. Implementing the general classfifiorm automatically yields an implementation
of all derivatives.

But we shall need fractional derivatives to generalize ths. To this end, [12] intro-
duces a scale of integral operators

s—t)a-t

00 (
lo(F)(1):= / f(S)——=—ds 8
()= | 1= F ®)

forall a > 0, t > 0, defined on continuous functions {fi ) with compact support or ex-

ponential decay at infinity. As the authors of [12] found aiél, these are closely connected

to the Weyl derivative operators of fractional calculus avete introduced also in [6] for
use in the dimension walk. The simplest special case is

L(F)(t) = /tw f(s)ds

with the inverse
La(F)(r):=—f'(r)

we already had above, doing the dimension walk. These apsrsatisfy

Iaolﬁ = I(X+ﬁ

for all a, B > 0. Thus the “semi-integration” operator

= f(9
| f)(t) = / ds
120 = | =5
satisfied, oly/> = 11. These definitions can be extended to let

Iaolﬁ = I(X+ﬁ



hold for alla, B € R and on suitable domains, but we refer to [12, 10] for detbitde that all
of these operators are intended to workfediorms of radial functions, not on their normal
form. They are closely connected but not identical to thedded operators of fractional
calculus.

With these operators at hand, [12,10] generalize the dilbengalk to

(FuoFy)(f) = ly—u(f)
Fu=lv—uyFv 9
F =Fulv_u

as far as the operators are applicable, in particulavfor u and on compactly supported
smooth functions, and this is what we need for generatingnissing Wendland functions.

3 Application to Wendland Functions

Due to a result of Askey [1] the radial truncated power funmsi

Au() = (1= [l2)%
are positive definite oRY for integery > |d/2] + 1, because they have a strictly positive
radial Fourier transform in these cases. Formally, we ajlote be positive and real from
now on and turn to positive definiteness later.
The f—form of Askey functions is

ay(s) == (1—vV29)K.

Since thdy operators preserve compact supports and are applicablefto all o, p > 0,
we can define

aya = la(ay) with ay o =ay.
Going back to “normal” form, the functions

Wua(r) = (la(ay))(r?/2)) (10)

are well-defined and supported[® 1] for all a, u > 0 and can be callegeneral Wendland
functions At this point, we do not know for which parameters they arsifpee definite in
which space dimension. They can be represented as

I (s—x2/2)%1
Wu,a(x) —/0 (l_\/z_s)iT)-’_dS
1 2 2va-1 (11)
-/ t(l—t)“%dt

for x € [0, 1]. This coincides with the formula (9.2.20) in [10] (see alswe@ing [5]) and itis
normally used only for integem, u to get the polynomial representations of the Wendland
functions directly. The connection to tigg  notation in Wendland’s monograph [15] to the
above formula is via

@ik = Wd/2) kr1ks (12)
because there are good reasons to pick the smallest kpominich guaranteegy, x to be
positive definite ind dimensions for a givenl, and this minimaly is |d/2| +k+ 1 for
integerk. The case of half-integer or u of the formula (11) was not treated so far, though
it clearly generates functions with supportj®1].



4 Construction Algorithm

If uanda are integers, the resulting function in (11) is a single potyial of degreg: + 2a
in the variablex= || - ||2 on its support, and the integral can be directly calculdtkmivever,
one can try to calculate the integral in general, and thisaisigdly done by the MAPLE
shippet

wend :=proc (mu,alpha,x)

local wend;

wend:=r* (1-r) “mu* (r*r-x*x) ~ (alpha-1)/(GAMMA (alpha) *2~ (alpha-1));
wend:=int (wend,r=x..1);

return factor(simplify(wend));

end proc:

which runs for all reasonable and fixed choicesuoAnd a where one half-integer is al-
lowed, while it fails if bothu and a are genuine half-integers. Singg >, q11/24 =
@,o Will be proven in Corollary 1 below to be reproducing in spao®rm—equivalent to
HY/2+a+1/2(Rd) for half-integera and evend, the above snippet generates the missing
Wendland functions for half-integer and integeiu. The first interesting case js=d =

2, a = 1/2 leading to (2) plotted in Figure 1. It is a reproducing kéiinean isomorphic
copy ofH?(R?). Using the abbreviations

. X
L(x) := log (1+\/1—x2) (13)
S(x) == V1-x2
the next cases are
V2 ea 2
Wo3/2(X) = 607t (15¢L(x) + (8* + 9 — 2)S(x)) ,
\/i 6 6 A 2
Wos/2(X) = m(m& L(x) + (48¢E + 87x* — 38X +8)S(x)).
Wa1/2(X) = 30\/\;_(45XA+60)(2) () + (16¢ +83¢ +6)S(x)) ,
Waz/2(X) = 4_?\{/57—1 ((105<6+210<4)|-(X)
+(32¢ + 247 + 40¢° — 4)S(x) ) ,
Y

Uns/2X) = 350077 ((945¢+25208) L)
+(256¢ + 263¢ + 690" — 136¢ + 16)S(x))

%zﬁ ((525<6 +2100¢ 4 840¢)L(x)

+(128¢ +177%* +1518¢ + 40)S(X) ) -
The general case will be proven below to be of the form
Wam,20—1)/2(X) = X% Pe (}2)L(X) + Olm, ¢ (X2) S(X) (14)

with polynomialspp,  of degreem— 1 andqn,, of degreem— 1+ ¢. These functions do not
seem to be directly available via the technique of Buhmahn [2

We1/2(X) =



5 Theoretical Analysis

We now provide rigid proofs of the statements made abovealRémat the standard Askey
functions satisfyF, (a,) > 0 iff u > |v] + 2 wherep is an integer ané = (d — 2) /2 may
be a half-integer. Furthermore, we know tigt f) > 0 andd = 2v +2 € N imply that
f(|.|13/2) is positive definite oiRY = R?V+2,

Theorem 2 For all a € N/2and all p € N with

u>|d/2+al+1, (15)
the generalized Wendland functign o is positive definite oRY.
Proof: We use the identitf, .o = F, oly from (9) fora, and get

Foraay =Fy(la(ay)) (16)
which is valid for alla, u > 0 and allv > —1/2. But we restrict ourselves to the case
v+aeZ/2, v+a>-1/2,

and apply Askey’s result fat = 2v + 2a + 2 to get that the left-hand side is strictly positive
whenever

u>v+al+2
Looking at the right—hand side of (16) and introducing a newmethsion with(d —2) /2= v,
we see that the functioly (A,,) is positive definite orRY if (15) holds. O
Theorem 3 For a € N/2, the d—variate Fourier transforn#qy (. ) of Yy o with
p=ld/2+al+1>3 (17)
satisfies
Fa(Pua)(r) =0 (r @2+ forr — o, (18)

Proof: Using (16) and the transition to tifeform, we get
Fdua(r) = Fd_E_Z aya(r?/2)
_ 2

— Fd;zzwau_,o(r /2) (19)

= ﬁd+2aau(r2/2)
= Fdr2aAu(r)

to see that thel—variate Fourier transform af, o in normal form is identical to théd +
2a)—variate Fourier transform of the Askey functiég in normal form.

Since (17) allows two possible connections betwgeandd, we fix d and a first,
defined’ :=d + 2a and look at the two possibilitied’ = 21 — 1 andd’ = 2u — 2 which
share|d’'/2] = |d/2+ a| = p— 1. From section 10.5 of [15] we cite

(F2u-1A)(r) = O(r~2)
(Fou—2Pu)(r) = O(r—2u+1)

for integeru > 3. Then (19) yields the assertion. ad

Note that the above argument excluges- 2, a = 1/2 andd = 1, thus not proving
thaty, 1, is reproducing in a space equivalenttd/?(R?). But it generalizes (1) for half—
integersa and even—dimensional spaces, sipce 3 holds in such cases:

(20)

Corollary 1 Forintegers n> 1 and n> 0, the generalized Wendland functigh, ni1n41/2
taken for even dimensions-62m is reproducing in a Hilbert space which is isomorphic to
Sobolev space B (R2M) = Hd/2+a+1/2(Rd) wherea = n+1/2. 0



6 Inductive Construction

This chapter proves the representation (14) for the misalegdland functionglom 2,12

for all £ andm. We start with/ = 1 and generain.

Theorem 4 The general Wendland functiong,a »(t) have the form

1/2 (17 \/Z_S)Zm
a t) ;= / ————ds
2m,1/2( ) A \/TI'(S——t)
= Pno(t)L(v2t) + Qmo()S(V21)
with polynomials R, Qmo of degree m and
Pm,O(l/z) = Qm,O(l/z)
forallm> 1.
Proof: We can also consider
V2 (lr(1—r)2m
2 2) = X= N\
aZm,l/Z(X/ ) \/ﬁ . m
= Pno(%/2)L(x) +Qmo(X¢/2)S(x)
and transform this by := v/r2 —x2 into
2 V1
2/9) = i/ 1— /X2 + 72)2Md
Am1/2(X°/2) Jitlo ( X2 +2%)"dz

Applying the binomial formula leads to terms

V1%
o(X) ::/ (X + ) dz
0
for all k € Z /2 with 0 < k < mcombining into

2m .
a2m,1/2(X2/2) = %2_[ Z)(—l)J (ij> gj/2(X)-
=

dr

We get
Ok+1(X) = /O m(xz+zz)(x2+zz)kdz
= X2gk(x) —|—/0m22(x2+22)kdz
V1I—X2 V/1-x2
= Xgk(X) + 2(i+§) —2(k1+ N L )z
/1 —x2
= x2gk(x) + 2(i+)1() 72(k1+ 0 Ok 1(X)
such that ,
a1+ g ) = R + 303
01(8) = 2R+

2k+3

(21)

(22)



is a useful recursion that boils everything down to

go(X) = vV1—x2 = S(x)
1, 12 1 )
O1/2(X) = —5X L(x) + > =5 (S(x) =x°L(x)) -

This gives polynomial;,q;, rj of degree at mosj with

9j(x) = S(X)pj (x*)
9j-1/2(x) = L(X)j (%) + S(X)rj-1(¢)

such that

Vgemaabé/2 = 3 (a0

is of the required form.

We have to check the additional conditions (21). Sigcéas no constant term, we get
Pno(0) = 0. To prove the conditions at 1/2, we remark that evaluatioanof form at 1/2
means evaluation of the standard form at 1. We rewrite theeseptation (22) in terms of
z=+vV1-x2as

aom1/2(1-2)/2) = Pno((1-2)/2L(VI-2)
+Qmo((1-2)/2)S(V1-2)

and now evaluation at= 1 means evaluation at= 0. We expand the terms at= 0 to get

LWV1-2) = —z+0(D)

SV1i-2) =z
to see that
a2m,1/2(l/2) = *Pm,O(l/z) + QmﬁO(l/z)
which vanishes due to the support of théorm ending at 1/2. ad

Theorem 5 The representation
8om,(20+1)/2(S) = Pme(S)L(V2S) + Qme()S(v/29) (23)
with polynomials R/, Qm of degree m-¢ and

Pne(1/2) = Qme(1/2)
Pm,O(O) =0

holds for allm> 1 and all ¢ > 0.
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Proof: We know that (23) holds fof = 0 and allm > 1, and thus we proceed by induc-
tion on ¢. By the standard dimension walk rules (9) we have to cons®yg, Qm, from
Pme-1, Qme-1 to satisfy

—aom2¢-1(S) = @om (2011)/2(9) - (24)

The induction recipe will be to defir, , by

Pne(s)’ = —Pme-1(9)
' : 25
Pm,l(o) =0 (25)
and to definy, , via
Qme(8)'(1—25) —Qme(9)
Pme(s
= P a2,

It can easily be shown that the above equation is uniquebab# forQn, , of degreem+-¢,
and it implies

Qme(1/2) = Pne(1/2).
Now we have to evaluate both sides of (24) in order to finishinkdection. We need the
derivatives

S0 = =
N
SVE = ———

and get
Bom (2041)/2(S)

= Pn¢(9)'L(V25) + Py ()L(v/2s)’
+Qme(9)'S(V2S) + Qm(5)S(V'2s)/

= Pne(8)'L(V/2S) + Pns(s) el oe

—i—Qm’@(S)/S(\/Z_S) - Qm/(s) TZS

Focusing on the log terms above andaji, (2—1)/2(S), we see that they are correct due to
our choice ofPy,,. Now we are left to prove that

—Qmr-1(9)S(V2s) = —Qmy-1(9)vV1—2s
coincides with

1

Pme(s :
me() 1-2s

+Qme(S)'V1—25—Qme(s)

1
2sv1—-2s
But the latter is identical to

Prm.e(S) +25(1—25)Qme(S) — 25Qme(9)
2sy/1—2s '
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Introducingz:= /1 — 2swe have to prove

Qm/ 1(1 ZZ

g (w (%)

(55 )z2<1 2)-0n (15 ) -2,
But since our construction yields

Pne(1/2) = Qme(1/2)
Pm,/(o) =0,

the critical denominator cancels, and our definitiorQaf, does the job. O

Note that Theorems 4 and 5 imply the representation (14) speeial form of theom,
part is due to the fact that (25) does not change the numbeoabmial terms, which is
fixed at startup in Theorem 4, but only blows the degree up lgy on

7 Open Problems

Readers will have noticed that we did not deal with the twoaiing cases of generalized
Wendland functiongJ, x: those with integek and half-integept and those with both indices
being half-integer. We did not focus on these because tleelgss promising. This is based
on some hypotheses, confirmed for special cases, which wéanowlate.

First, there is quite some evidence that

Fu(auo)(t) =06 (t"”?’/z) fort — oo (26)

holds in full generality, in particular independentiofand is positive for all

3
not only in the special cases related to (20). Note here ligegtindard case is recovered by
[v+3/2]=[d/2+1/2] = |d/2]+1ifv=(d—2)/2,

but one could allow more general The above assertions should follow from a very thor-
ough inspection of chapters 6 and 10 of [15], and they geerdheorems 2 and 3. Since
large 1 do not pay off, Wendland’s notation (12) based on the smallegelding positive
definiteness for dimensiahmakes a lot of sense.
If the above is assumed, the minimalfor (s, o to be positive definite in generalized
dimensiond is
u=Ja+d/2+1/2].

Then (26) can be applied far = a + (d — 2)/2, proving that the generalized Wendland
function Yq.4/241/2],¢ IS reproducing in Hilbert spaces isomorphicHd'(RY) for m=
a+d/2+1/2. This should be expected for all rehhnda, leading to compactly supported
reproducing kernels also in fractional-order Sobolev epac

To generate the integer—order Hilbert spaces in all dineaissiit therefore suffices to
use the classical Wendland functions and those we desdniered Theu parameter is not
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of central importance. However, fractional Sobolev spad#sequire fractionala, but our
integral operators (8) will allow to generate these eithezally via (10) and (11), if the
integral can be calculated, or from a polynomial Wendlanttfion via

lody =lg—|a|l|aj@u =la—|a)@y, a

if the operatoll,_ 4| can be explicitly evaluated on monomials.

The case of}y, o with half-integery € (N/2) \ N and integerr can easily be handled
with the methods of Section 4 and the MAPLE program presethtec. It generates poly-
nomials times,/1 — x. But under the above assertions, genuinely half-intggdo not seem
to be minimally chosen. Things would be different if thereswelf—integer leeway in the
condition (27), buf ,a7/4 is not positive, thanks to MAPLE.

Finally we remark that there are good chances to put all afitiio a uniform theory
based on hypergeometric functions. But we leave thesestapgn.

Acknowledgements Special thanks go to a referee for careful reading and usafidestions.
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