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Abstract The Wendland radial basis functions [14,15] are piecewise polynomial compactly
supported reproducing kernels in Hilbert spaces which are norm–equivalent to Sobolev
spaces. But they only cover the Sobolev spaces

Hd/2+k+1/2(Rd), k∈ N (1)

and leave out the integer order spaces in even dimensions. Wederive the missing Wend-
land functions working for half–integerk and even dimensions, reproducing integer–order
Sobolev spaces in even dimensions, but they turn out to have two additional non–polynomial
terms: a logarithm and a square root. To give these functionsa solid mathematical founda-
tion, a generalized version of the “dimension walk” is applied. While the classical dimension
walk proceeds in steps of two space dimensions taking singlederivatives, the new one pro-
ceeds in steps of single dimensions and uses “halved” derivatives of fractional calculus.
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1 Introduction

In a wide range of applications from Machine Learning to Meshless Methods [11], positive
definite kernels have proven to be very useful tools. They arise naturally as reproducing
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kernels of Hilbert spaces of continuous functions, and theyoften come in translation- and
rotation-invariant form asradial basis functions

K(x,y) = φ(‖x−y‖2) for all x, y∈ Rd

onRd with a smooth univariate functionφ : [0,∞)→ R. Typical examples are furnished by
the Gaussianφ(r) := exp(−r2) or the Sobolev/Matérn functionsφ(r) = Kν(r)rν . The latter
have special importance in geostatistics [8], and are the reproducing kernels of Sobolev
spacesHm(Rd) for ν = m−d/2 > 0. They involve theKν Bessel functions of third kind
and decay exponentially towards infinity.

Unfortunately, these kernels are not compactly supported,but by arguments using con-
volutions of compactly supported functions, it is quite clear that there must be compactly
supported positive definite radial basis functions of arbitrary prescribed smoothness. The
quest for explicit formulas for such functions started with“Euclid’s hat” in 1993 [9,4] and
continued with piecewise polynomial radial basis functions of Wu [16] and Wendland [14] in
1995. While Euclid’s hat is not differentiable and Wu’s functions have zeros in their Fourier
transform, Wendland’s functionsφd,k have no such drawbacks. They are polynomials on
[0,1] and yield positive definiteC2k radial basis functions onRd. Given these properties,
their polynomial degree⌊d/2⌋+ 3k+ 1 is minimal, and they are reproducing kernels of
Hilbert spaces isomorphic to Sobolev spaceHd/2+k+1/2(Rd).

But since this means that integer-order Sobolev spaces in even dimensions are not cov-
ered, this paper produces the “missing” functions by allowing half-integer values ofk. They
still are compactly supported, but they are polynomials with additional logarithmic and
square-root terms. For example, the function

φ2,1/2(r) =

√
2

3
√

π

(

3r2 log

(

r

1+
√

1− r2

)

+(2r2 +1)
√

1− r2

)

(2)

on [0,1] and extended by zero to[0,∞) yields a positive definite radial basis function onR2

and it will turn out to be the reproducing kernel in an isomorphic copy of toH2(R2). See
Figure 1 for a plot of this function.

The paper will first review the standard construction process for Wendland’s functions
by the “dimension walk”. It usually steps through space dimensions in steps of two while
taking successive derivatives. To reach the missing intermediate space dimensions, the di-
mension walk has to proceed in steps of single dimensions. But then it has to use “half-
derivatives” from what is called “fractional calculus” [7]. This generates the functions we
need, and we provide a MAPLE program for explicit calculation. Finally, we add proofs
for the required properties of the new functions and close with an outlook that connects
everything to hypergeometric functions.

2 Radial Transforms

To start with, we repeat part of the machinery of fractional calculus from [12] and [10].
Proof details can be found there. It is well–known that a radial basis function

Φ(x) := φ(‖x‖2), x∈ Rd

has a radiald–variate Fourier transform

Φ̂(ω) = ‖ω‖−(d−2)/2
2

∫ ∞

0
φ(r)rd/2J(d−2)/2(r‖ω‖2)dr (3)
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Fig. 1 The missing Wendland functionφ2,1/2

if the integral exists. It allows the Fourier transform of a radial function to be written as a
univariateHankel transform.

We now introducet = r2/2 as a new variable, writing a radial basis functionφ as

φ(‖ · ‖2) = f (‖ · ‖2
2/2). (4)

At first sight, this “f –form” seems somewhat strange. Indeed, thef –form of the famil-
iar Wendland functionφ3,1(r) = (1− r)4

+(4r + 1) will be the non–polynomial function
f3,1(t) = (1−

√
2t)4

+(4
√

2t + 1). But the following mathematical analysis of radial func-
tions in f –form turns out to be much simpler than in “normal” form, and this fact should
be familiar from Schoenberg’s connection of positive definite radial basis functions to com-
pletely monotone functions [13].

Now (3) for ν = (d−2)/2, when written inf –form on both sides, turns into

(Fν f )(s) :=
∫ ∞

0
f (t)tνHν (ts)dt (5)

with the function

( z
2

)−ν
Jν (z) =: Hν(z2/4) =

∞

∑
k=0

(−z2/4)k

k!Γ (k+ν +1)
(6)

for z∈ C andν ∈ C with ℜν > 0. Note that (5) is a generalization of the Fourier transform
on radial functions, allowing Fourier transforms for spaces of fractal dimension, because
ν = (d−2)/2 need not be a half–integer. The functions

( z
2

)−ν
Jν (z) = Hν (z2/4)

are calledoscillatory radial basis functionsby Fornberg et. al. [3]. The above derivation
shows that they are of central importance, because they supply the generalized Fourier trans-
forms of general radial functions. We shall use them frequently in what follows.
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Using derivative formulae for theHν functions obtainable from those of theJν functions,
one gets

− d
ds

Fν( f )(s) = Fν+1( f )(s) and(Fν+1(− f ′))(s) = (Fν( f ))(s). (7)

Going back toν = (d− 2)/2, these are the basic features of the dimension walk, but we
shall need them later in steps of dimension one:

Theorem 1 If the mentioned Fourier transforms and derivatives exist,

– the(d+2)-variate Fourier transform of a radial function after the f –form substitution
(4) is the negative univariate derivative of the d-variate Fourier transform in f –form,
and

– the d–variate Fourier transform of a radial function in f –form is the(d + 2)–variate
Fourier transform of the negative derivative of f .

Note that all continuous and compactly supportedf will have smooth generalized Fourier
transformsFν ( f ) in all dimensions, making the left–hand part of (7) valid forall dimensions.
However, the application of the right–hand part of (7) is restricted by the smoothness off .

The dimension walk, expressed via derivatives, is extremely useful when programming
with radial basis functions. It turns out that all the relevant classes of radial basis functions,
when written in f form, are invariant under differentiation and integration, while theFν
operators map the class to another one which is also closed under differentiation and inte-
gration. Implementing the general class inf form automatically yields an implementation
of all derivatives.

But we shall need fractional derivatives to generalize all of this. To this end, [12] intro-
duces a scale of integral operators

Iα( f )(t) :=
∫ ∞

t
f (s)

(s− t)α−1

Γ (α)
ds (8)

for all α > 0, t ≥ 0, defined on continuous functions on[0,∞) with compact support or ex-
ponential decay at infinity. As the authors of [12] found out later, these are closely connected
to the Weyl derivative operators of fractional calculus andwere introduced also in [6] for
use in the dimension walk. The simplest special case is

I1( f )(t) :=
∫ ∞

t
f (s)ds

with the inverse
I−1( f )(r) := − f ′(r)

we already had above, doing the dimension walk. These operators satisfy

Iα ◦ Iβ = Iα+β

for all α , β > 0. Thus the “semi-integration” operator

I1/2( f )(t) =

∫ ∞

t

f (s)
√

π(s− t)
ds

satisfiesI1/2 ◦ I1/2 = I1. These definitions can be extended to let

Iα ◦ Iβ = Iα+β
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hold for allα ,β ∈R and on suitable domains, but we refer to [12,10] for details.Note that all
of these operators are intended to work onf –forms of radial functions, not on their normal
form. They are closely connected but not identical to the standard operators of fractional
calculus.

With these operators at hand, [12,10] generalize the dimension walk to

(Fµ ◦Fν )( f ) = Iν−µ ( f )
Fµ = Iν−µ Fν
Fν = Fµ Iν−µ

(9)

as far as the operators are applicable, in particular forν ≥ µ and on compactly supported
smooth functions, and this is what we need for generating themissing Wendland functions.

3 Application to Wendland Functions

Due to a result of Askey [1] the radial truncated power functions

Aµ (·) := (1−‖·‖2)
µ
+

are positive definite onRd for integerµ ≥ ⌊d/2⌋+1, because they have a strictly positive
radial Fourier transform in these cases. Formally, we allowµ to be positive and real from
now on and turn to positive definiteness later.

The f –form of Askey functions is

aµ (s) := (1−
√

2s)µ
+.

Since theIα operators preserve compact supports and are applicable toaµ for all α , µ > 0,
we can define

aµ ,α := Iα(aµ ) with aµ ,0 = aµ .

Going back to “normal” form, the functions

ψµ ,α(r) := (Iα(aµ ))(r2/2)) (10)

are well–defined and supported in[0,1] for all α ,µ > 0 and can be calledgeneral Wendland
functions. At this point, we do not know for which parameters they are positive definite in
which space dimension. They can be represented as

ψµ ,α(x) =
∫ ∞

0
(1−

√
2s)µ

+

(s−x2/2)α−1
+

Γ (α)
ds

=
∫ 1

x
t(1− t)µ (t2−x2)α−1

Γ (α)2α−1 dt
(11)

for x∈ [0,1]. This coincides with the formula (9.2.20) in [10] (see also Gneiting [5]) and it is
normally used only for integerα , µ to get the polynomial representations of the Wendland
functions directly. The connection to theφd,k notation in Wendland’s monograph [15] to the
above formula is via

φd,k = ψ⌊d/2⌋+k+1,k, (12)

because there are good reasons to pick the smallest knownµ which guaranteesψµ ,k to be
positive definite ind dimensions for a givend, and this minimalµ is ⌊d/2⌋+ k+ 1 for
integerk. The case of half–integerα or µ of the formula (11) was not treated so far, though
it clearly generates functions with support in[0,1].
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4 Construction Algorithm

If µ andα are integers, the resulting function in (11) is a single polynomial of degreeµ +2α
in the variablex = ‖ ·‖2 on its support, and the integral can be directly calculated.However,
one can try to calculate the integral in general, and this is partially done by the MAPLE
snippet

wend:=proc(mu,alpha,x)

local wend;

wend:=r*(1-r)^mu*(r*r-x*x)^(alpha-1)/(GAMMA(alpha)*2^(alpha-1));

wend:=int(wend,r=x..1);

return factor(simplify(wend));

end proc:

which runs for all reasonable and fixed choices ofµ andα where one half–integer is al-
lowed, while it fails if both µ and α are genuine half–integers. Sinceψd/2+α+1/2,α =
φd,α will be proven in Corollary 1 below to be reproducing in spaces norm–equivalent to
Hd/2+α+1/2(Rd) for half–integerα and evend, the above snippet generates the missing
Wendland functions for half–integerα and integerµ. The first interesting case isµ = d =
2, α = 1/2 leading to (2) plotted in Figure 1. It is a reproducing kernel in an isomorphic
copy ofH2(R2). Using the abbreviations

L(x) := log

(

x

1+
√

1−x2

)

S(x) :=
√

1−x2
(13)

the next cases are

ψ2,3/2(x) =
−
√

2
60
√

π
(

15x4L(x)+(8x4 +9x2−2)S(x)
)

,

ψ2,5/2(x) =

√
2

2520
√

π

(

105x6L(x)+(48x6 +87x4−38x2 +8)S(x)
)

.

ψ4,1/2(x) =

√
2

30
√

π
(

(45x4 +60x2)L(x)+(16x4 +83x2 +6)S(x)
)

,

ψ4,3/2(x) =
−
√

2
420

√
π

(

(105x6 +210x4)L(x)

+(32x6 +247x4 +40x2−4)S(x)
)

,

ψ4,5/2(x) =

√
2

30240
√

π

(

(945x8 +2520x6)L(x)

+(256x8 +263x6 +690x4−136x2 +16)S(x)
)

,

ψ6,1/2(x) =

√
2

280
√

π

(

(525x6 +2100x4 +840x2)L(x)

+(128x6 +1779x4 +1518x2 +40)S(x)
)

.

The general case will be proven below to be of the form

ψ2m,(2ℓ−1)/2(x) = x2ℓ pm,ℓ(x2)L(x)+qm,ℓ(x2)S(x) (14)

with polynomialspm,ℓ of degreem−1 andqm,ℓ of degreem−1+ ℓ. These functions do not
seem to be directly available via the technique of Buhmann [2].
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5 Theoretical Analysis

We now provide rigid proofs of the statements made above. Recall that the standard Askey
functions satisfyFν (aµ ) > 0 iff µ ≥ ⌊ν⌋+2 whereµ is an integer andν = (d−2)/2 may
be a half-integer. Furthermore, we know thatFν ( f ) > 0 andd = 2ν + 2 ∈ N imply that
f (‖.‖2

2/2) is positive definite onRd = R2ν+2.

Theorem 2 For all α ∈ N/2 and all µ ∈ N with

µ ≥ ⌊d/2+α⌋+1, (15)

the generalized Wendland functionψµ ,α is positive definite onRd.

Proof: We use the identityFν+α = Fν ◦ Iα from (9) for aµ and get

Fν+α aµ = Fν (Iα(aµ )) (16)

which is valid for allα , µ > 0 and allν > −1/2. But we restrict ourselves to the case

ν +α ∈ Z/2, ν +α ≥−1/2,

and apply Askey’s result ford = 2ν +2α +2 to get that the left-hand side is strictly positive
whenever

µ ≥ ⌊ν +α⌋+2.

Looking at the right–hand side of (16) and introducing a new dimension with(d−2)/2= ν ,
we see that the functionIα(Aµ ) is positive definite onRd if (15) holds. ⊓⊔
Theorem 3 For α ∈ N/2, the d–variate Fourier transformFd(ψµ ,α) of ψµ ,α with

µ = ⌊d/2+α⌋+1≥ 3 (17)

satisfies
Fd(ψµ ,α)(r) = Θ(r−(d+2α+1)) for r → ∞. (18)

Proof: Using (16) and the transition to thef -form, we get

Fdψµ ,α(r) = Fd−2
2

aµ ,α(r2/2)

= Fd−2
2 +α aµ ,0(r2/2)

= Fd+2α aµ (r2/2)
= Fd+2α Aµ (r)

(19)

to see that thed–variate Fourier transform ofψµ ,α in normal form is identical to the(d +
2α)–variate Fourier transform of the Askey functionAµ in normal form.

Since (17) allows two possible connections betweenµ and d, we fix d and α first,
defined′ := d + 2α and look at the two possibilitiesd′ = 2µ −1 andd′ = 2µ − 2 which
share⌊d′/2⌋ = ⌊d/2+α⌋ = µ −1. From section 10.5 of [15] we cite

(F2µ−1Aµ )(r) = Θ(r−2µ )
(F2µ−2Aµ )(r) = Θ(r−2µ+1)

(20)

for integerµ ≥ 3. Then (19) yields the assertion. ⊓⊔
Note that the above argument excludesµ = 2, α = 1/2 andd = 1, thus not proving

thatψ2,1/2 is reproducing in a space equivalent toH3/2(R1). But it generalizes (1) for half–
integersα and even–dimensional spaces, sinceµ ≥ 3 holds in such cases:

Corollary 1 For integers m≥ 1 and n≥ 0, the generalized Wendland functionψm+n+1,n+1/2
taken for even dimensions d= 2m is reproducing in a Hilbert space which is isomorphic to
Sobolev space Hm+n+1(R2m) = Hd/2+α+1/2(Rd) whereα = n+1/2. ⊓⊔
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6 Inductive Construction

This chapter proves the representation (14) for the missingWendland functionsψ2m,(2ℓ−1)/2
for all ℓ andm. We start withℓ = 1 and generalm.

Theorem 4 The general Wendland functions a2m,1/2(t) have the form

a2m,1/2(t) :=
∫ 1/2

t

(1−
√

2s)2m
√

π(s− t)
ds

= Pm,0(t)L(
√

2t)+Qm,0(t)S(
√

2t)

with polynomials Pm,0, Qm,0 of degree m and

Pm,0(1/2) = Qm,0(1/2)
Pm,0(0) = 0

(21)

for all m≥ 1.

Proof: We can also consider

a2m,1/2(x
2/2) =

√
2√
π

∫ 1

x

r(1− r)2m
√

r2−x2
dr

= Pm,0(x2/2)L(x)+Qm,0(x2/2)S(x)

(22)

and transform this byz :=
√

r2−x2 into

a2m,1/2(x
2/2) =

√
2√
π

∫

√
1−x2

0
(1−

√

x2 +z2)2mdz.

Applying the binomial formula leads to terms

gk(x) :=
∫

√
1−x2

0
(x2 +z2)kdz

for all k∈ Z/2 with 0≤ k≤ mcombining into

a2m,1/2(x
2/2) =

√
2√
π

2m

∑
j=0

(−1) j
(

2m
j

)

g j/2(x).

We get

gk+1(x) =
∫

√
1−x2

0
(x2 +z2)(x2 +z2)kdz

= x2gk(x)+

∫

√
1−x2

0
z2(x2 +z2)kdz

= x2gk(x)+

√
1−x2

2(k+1)
− 1

2(k+1)

∫

√
1−x2

0
(x2 +z2)k+1dz

= x2gk(x)+

√
1−x2

2(k+1)
− 1

2(k+1)
gk+1(x)

such that

gk+1(x)

(

1+
1

2(k+1)

)

= x2gk(x)+

√
1−x2

2(k+1)

gk+1(x) =
2k+2
2k+3

x2gk(x)+
S(x)

2k+3
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is a useful recursion that boils everything down to

g0(x) =
√

1−x2 = S(x)

g1/2(x) = −1
2

x2L(x)+

√
1−x2

2
=

1
2

(

S(x)−x2L(x)
)

.

This gives polynomialsp j ,q j , r j of degree at mostj with

g j(x) = S(x)p j(x2)
g j−1/2(x) = L(x)q j(x2)+S(x)r j−1(x2)

such that
√

π√
2

a2m,1/2(x
2/2) =

m

∑
i=0

(

2m
2i

)

gi(x)

−
m

∑
i=1

(

2m
2i −1

)

gi−1/2(x)

= S(x)

(

m

∑
i=0

(

2m
2i

)

pi(x
2)−

m

∑
i=1

(

2m
2i −1

)

r i−1(x
2)

)

−L(x)
m

∑
i=1

(

2m
2i −1

)

qi(x
2)

is of the required form.
We have to check the additional conditions (21). Sinceq j has no constant term, we get

Pm,0(0) = 0. To prove the conditions at 1/2, we remark that evaluation of an f form at 1/2
means evaluation of the standard form at 1. We rewrite the representation (22) in terms of
z=

√
1−x2 as

a2m,1/2((1−z2)/2) = Pm,0((1−z2)/2)L(
√

1−z2)

+Qm,0((1−z2)/2)S(
√

1−z2)

and now evaluation atx = 1 means evaluation atz= 0. We expand the terms atz= 0 to get

L(
√

1−z2) = −z+O(z3)

S(
√

1−z2) = z

to see that
a2m,1/2(1/2) = −Pm,0(1/2)+Qm,0(1/2)

which vanishes due to the support of thef form ending at 1/2. ⊓⊔

Theorem 5 The representation

a2m,(2ℓ+1)/2(s) = Pm,ℓ(s)L(
√

2s)+Qm,ℓ(s)S(
√

2s) (23)

with polynomials Pm,ℓ, Qm,ℓ of degree m+ ℓ and

Pm,ℓ(1/2) = Qm,ℓ(1/2)
Pm,0(0) = 0

holds for all m≥ 1 and all ℓ ≥ 0.
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Proof: We know that (23) holds forℓ = 0 and allm≥ 1, and thus we proceed by induc-
tion on ℓ. By the standard dimension walk rules (9) we have to construct Pm,ℓ, Qm,ℓ from
Pm,ℓ−1, Qm,ℓ−1 to satisfy

−a2m,2ℓ−1(s) = a2m,(2ℓ+1)/2(s)
′. (24)

The induction recipe will be to definePm,ℓ by

Pm,ℓ(s)′ = −Pm,ℓ−1(s)
Pm,ℓ(0) = 0

(25)

and to defineQm,ℓ via

Qm,ℓ(s)′(1−2s)−Qm,ℓ(s)

= −Pm,ℓ(s)

2s
−Qm,ℓ−1(s)(1−2s).

It can easily be shown that the above equation is uniquely solvable forQm,ℓ of degreem+ℓ,
and it implies

Qm,ℓ(1/2) = Pm,ℓ(1/2).

Now we have to evaluate both sides of (24) in order to finish theinduction. We need the
derivatives

L′(x) =
1

x
√

1−x2

S′(x) =
−x√
1−x2

L(
√

2s)′ =
1

2s
√

1−2s

S(
√

2s)′ =
−1√
1−2s

and get
a2m,(2ℓ+1)/2(s)

′

= Pm,ℓ(s)′L(
√

2s)+Pm,ℓ(s)L(
√

2s)′

+Qm,ℓ(s)′S(
√

2s)+Qm,ℓ(s)S(
√

2s)′

= Pm,ℓ(s)′L(
√

2s)+Pm,ℓ(s)
1

2s
√

1−2s

+Qm,ℓ(s)′S(
√

2s)−Qm,ℓ(s)
1√

1−2s
.

Focusing on the log terms above and ina2m,(2ℓ−1)/2(s), we see that they are correct due to
our choice ofPm,ℓ. Now we are left to prove that

−Qm,ℓ−1(s)S(
√

2s) = −Qm,ℓ−1(s)
√

1−2s

coincides with

Pm,ℓ(s)
1

2s
√

1−2s
+Qm,ℓ(s)

′√1−2s−Qm,ℓ(s)
1√

1−2s
.

But the latter is identical to

Pm,ℓ(s)+2s(1−2s)Qm,ℓ(s)′−2sQm,ℓ(s)

2s
√

1−2s
.



11

Introducingz :=
√

1−2s we have to prove

−Qm,ℓ−1

(

1−z2

2

)

z

=
1

z(1−z2)

(

Pm,ℓ

(

1−z2

2

)

+ Q′
m,ℓ

(

1−z2

2

)

z2(1−z2)−Qm,ℓ

(

1−z2

2

)

(1−z2).

But since our construction yields

Pm,ℓ(1/2) = Qm,ℓ(1/2)
Pm,ℓ(0) = 0,

the critical denominator cancels, and our definition ofQm,ℓ does the job. ⊓⊔
Note that Theorems 4 and 5 imply the representation (14). Thespecial form of thepm,ℓ

part is due to the fact that (25) does not change the number of monomial terms, which is
fixed at startup in Theorem 4, but only blows the degree up by one.

7 Open Problems

Readers will have noticed that we did not deal with the two remaining cases of generalized
Wendland functionsψµ ,k: those with integerk and half–integerµ and those with both indices
being half–integer. We did not focus on these because they are less promising. This is based
on some hypotheses, confirmed for special cases, which we nowformulate.

First, there is quite some evidence that

Fν(aµ ,0)(t) = Θ
(

t−ν−3/2
)

for t → ∞ (26)

holds in full generality, in particular independent ofµ, and is positive for all

µ ≥ ⌈ν +
3
2
⌉, (27)

not only in the special cases related to (20). Note here that the standard case is recovered by

⌈ν +3/2⌉ = ⌈d/2+1/2⌉ = ⌊d/2⌋+1 if ν = (d−2)/2,

but one could allow more generalν . The above assertions should follow from a very thor-
ough inspection of chapters 6 and 10 of [15], and they generalize Theorems 2 and 3. Since
largeµ do not pay off, Wendland’s notation (12) based on the smallest µ yielding positive
definiteness for dimensiond makes a lot of sense.

If the above is assumed, the minimalµ for ψµ ,α to be positive definite in generalized
dimensiond is

µ = ⌈α +d/2+1/2⌉.
Then (26) can be applied forν = α + (d− 2)/2, proving that the generalized Wendland
function ψ⌈α+d/2+1/2⌉,α is reproducing in Hilbert spaces isomorphic toHm(Rd) for m =
α +d/2+1/2. This should be expected for all reald andα , leading to compactly supported
reproducing kernels also in fractional–order Sobolev spaces.

To generate the integer–order Hilbert spaces in all dimensions, it therefore suffices to
use the classical Wendland functions and those we describedhere. Theµ parameter is not
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of central importance. However, fractional Sobolev spaceswill require fractionalα , but our
integral operators (8) will allow to generate these either directly via (10) and (11), if the
integral can be calculated, or from a polynomial Wendland function via

Iα aµ = Iα−⌊α⌋I⌊α⌋aµ = Iα−⌊α⌋aµ ,⌊α⌋

if the operatorIα−⌊α⌋ can be explicitly evaluated on monomials.
The case ofψµ ,α with half–integerµ ∈ (N/2) \N and integerα can easily be handled

with the methods of Section 4 and the MAPLE program presentedthere. It generates poly-
nomials times

√
1−x. But under the above assertions, genuinely half–integerµ do not seem

to be minimally chosen. Things would be different if there was half–integer leeway in the
condition (27), butF1/2a7/4,0 is not positive, thanks to MAPLE.

Finally we remark that there are good chances to put all of this into a uniform theory
based on hypergeometric functions. But we leave these things open.

Acknowledgements Special thanks go to a referee for careful reading and usefulsuggestions.

References

1. R. Askey. Radial characteristic functions. Technical Report 1262, Univ. of Wisconsin, 1973. MRC
Technical Sum. Report.

2. M.D. Buhmann. Radial functions on compact support.Proceedings of the Edinburgh Mathematical
Society, 41:33–46, 1998.

3. B. Fornberg, E. Larsson, and G. Wright. A new class of oscillatory radial basis functions.Comput. Math.
Appl., 51(8):1209–1222, 2006.

4. T. Gneiting. Radial positive definite functions generated by Euclid’s hat.Journal of Multivariate Analy-
sis, 69(1):88–119, 1999.

5. T. Gneiting. Compactly supported correlation functions. J. Multivariate Anal., 83(2):493–508, 2002.
6. G. Matheron.Les variables régionaliseés et leur estimation. Masson, Paris, 1965.
7. K.B. Oldham and J. Spanier.The fractional calculus; theory and applications of differentiation and

integration to arbitrary order. Academic Press, 1974.
8. E. Pardo-Iguzquiza and M. Chica-Olmoa. Geostatistics with the Matern semivariogram model: A library

of computer programs for inference, kriging and simulations. Computers and Geosciences, 34:1073–
1079, 2008.

9. R. Schaback. Creating surfaces from scattered data usingradial basis functions. In T. Lyche M. Daehlen
and L.L. Schumaker, editors,Mathematical Methods for Curves and Surfaces, pages 477–496. Vanderbilt
University Press, Nashville, TN, 1995.

10. R. Schaback. Reconstruction of multivariate functionsfrom scattered data. Manuscript, available via
http://www.num.math.uni-goettingen.de/schaback/research/group.html, 1997.

11. R. Schaback and H. Wendland. Kernel techniques: from machine learning to meshless methods.Acta
Numerica, 15:543–639, 2006.

12. R. Schaback and Z. Wu. Operators on radial basis functions. J. Comp. Appl. Math., 73:257–270, 1996.
13. I.J. Schoenberg. Metric spaces and completely monotonefunctions.Annals of Math., 39:811–841, 1938.
14. H. Wendland. Piecewise polynomial, positive definite and compactly supported radial functions of min-

imal degree.Advances in Computational Mathematics, 4:389–396, 1995.
15. H. Wendland.Scattered Data Approximation. Cambridge Monographs on Applied and Computational

Mathematics. Cambridge University Press, Cambridge, 2005.
16. Z. Wu. Compactly supported positive definite radial functions.Advances in Computational Mathematics,

4:283–292, 1995.


