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Abstract

When applied to solving partial differential equations by either Rayleigh—
Ritz or collocation techniques, compactly supported radial basis functions
may replace other meshless tools like multiquadrics. They generate sparse
and well-conditioned matrices, and we give a survey over the current the-
oretical results known in this area, as far as they seem to be relevant for
boundary element techniques.

1 Introduction

As special instances of meshless methods [1], applications of radial basis
functions (RBF) have gained quite some importance over the past years.
They have been successfully applied to a large variety of problems [1-7, 17-
21, 23-28, 32-34, 39, 45, 55, 61, 66-68], especially as tools for collocation
[32, 33] and the Dual Reciprocity Method (DRM) [3, 4, 5, 18, 20, 30, 31, 40,
41]. Unfortunately, the mathematical theory of RBF [35-38] lagged back
behind the numerical applications to PDE for quite some time, but recently
there was some progress [15, 59] towards a solid underpinning of numerical
algorithms using RBF’s for solving PDE’s. We shall provide a short account
of such results.

Furthermore, the construction of compactly supported radial basis func-
tions (CSRBF) by Wendland, Wu and Schaback [46, 56, 62] based on a
toolkit by Wu and Schaback [53] made it possible to overcome the non—
sparsity of the matrices arising from radial basis function techniques. But
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the proper choice of the support radius and the smoothness of such func-
tions seems to require some skill and experience on the user’s side. We shall
provide some guidelines based on numerical experiments.

2 Radial basis functions

A scalar function ¢ : R>o — R may be used as a radial basis function (RBF)
by forming a space

Sx = span {6(]|- ~z;ll2) : 1< < M) 1)

for each finite set X := {z; € R : 1 < j < M} of scattered “centers”. The
advantage is that a simple univariate function serves to create a space of
multivariate functions, and that the space can be controlled directly by
centers, without any triangulation. It is easy to implement numerical al-
gorithms acting on such spaces, and if ¢ is compactly supported or decays
quickly towards infinity, the basis functions ¢(|| - —z;||2) for distant centers
are only weakly coupled.

A space like Sx can serve for collocation, numerical integration or Rayleigh—
Ritz techniques, because it can be seen as a discretization of the space in
which the actual solution lies. We shall explain this in the next section.
Some RBFs require to add polynomials of some order m (= degree - 1) to
the space (1), but we shall ignore details here. Typical cases of radial basis
functions are provided in Table 1, where F'(h) stands for the standard ap-
proximation order attained for interpolation problems, measured in terms of
the maximal distance h from any point of a compact domain to its nearest
center. Some comments will be given later.

Table 1. All entries are modulo factors that are independent of r and h,
but possible dependent on parameters of ®.

O(z) = o(r),r = [lll, m F(h)
(=D)IBRIB B € Roo\2N hP/?

. . [8/2]
thin-plate splines [65]
(—1)1P2rPlogr, B € 2N ho/2
thin-plate splines Al2+1 [65]
(=DPT(y* +12)P7, 3 € R\2N>g e o/m

[8/2]if >0

Multiquadrics d > 0[37]
e—ﬁrz, B8>0 0 e—8/h*
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d<3 0 [58]
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3 Generalized interpolation

The range of applications of radial basis functions is extremely large, and we
confine ourselves here to a still rather general setting where the application
wants to solve a linear operator equation

Lu=f, L:U—=F, wuwuelU,

where f € F'is given and u € U has to be constructed. In case of problems
with boundary conditions, we put the boundary conditions either into the
space U or into the operator L, turning it into a pair (D, R) of a differential
and a boundary operator, respectively, and using suitable product spaces
for U and F. Examples will follow later.

We then assume that the operator equation is discretized by picking NV
linear functionals Aq, ..., Axy and trying to solve the system

Aj(up) =fj€R, 1<j<N (2)

where now wuy, is sought in a finite subspace U, C U. It should be clear that
collocation takes the above form, where the functionals are evaluations of
differential operators on points in the interior of some domain, plus func-
tionals evaluating boundary value operators on (possibly only parts of) the
boundary of the domain. We allow any kind of linear functionals, and thus
one can handle rather exotic cases, mixing various differential or integral
operators in a single problem. Furthermore, certain additional conditions
like conservation laws can be written that way, and additional properties
like ellipticity of the underlying problem are irrelevant. The generality of
the setting is possible because the RBF approach has some built—in regu-
larization that allows to handle ill-posed problems without regarding the
ill-posedness. We cannot dwell on this subject here, but it can be seen as
both an advantage and a drawback, depending on the user’s viewpoint.
The simplest case of collocation is pure interpolation at the centers, i.e.
Aj = 0., for the same centers x; as used in the definition of Sx. Then we get
the symmetric matrix Ax = (¢(|lzx — z;l|2)),; < and require it to be
nonsingular. If this matrix is positive definite for all choices and all numbers
N of pairwise distinct centers z; in X := {:Uj ER? : 1<j< N} C R?, the
radial basis function ¢ is called (strictly) positive definite (SPD) on R?. This
is a rather strong property for a scalar function, and the theory of radial
basis functions is focused around the construction of such functions with
additional properties. Gaussians and inverse multiquadrics (multiquadrics
of Table 1 with 8 < 0) even have this property for all space dimensions
d, but due to a well-known characterization of such functions via complete
monotonicity [38, 54], there are no compactly supported radial functions
that work for all space dimensions. The construction of compactly sup-
ported strictly positive definite radial basis functions (CS-SPD-RBF) for
restricted space dimensions was done in 1995 by Wu [62] and Wendland [56],



providing functions that can be chosen to suit any space dimension and any
smoothness requirement. Surprisingly, these functions are piecewise poly-
nomials, and Wendland’s construction provided functions with minimal de-
grees under the above conditions. See Table 2 for a list, and note that the
matrix Ax will be sparse and positive definite in case of CS—-SPD-RBF.
In Table 2 we have used the cut-off function (r)4 which is defined to be
r if » > 0 and to be zero elsewhere. Furthermore, d denotes the maximal
possible space dimension, i.e. if you want to work on R’, you have to pick
a basis function with table entry d > /.

Table 2. SPD(R?) Wendland functions pg ; with native spaces

W2d/2+k+1/2(]Rd)

d |k | pa |

110 (T—=r)y C?
11| (1=r)2@Br+1) C?
1|2 (@ —rﬁ (8r% +5r + 1) ct
3ol (1-r) O
31 - r)I (4r + 1) C?
312 (- rﬁ (3512 + 187 + 3) ct
313 (=% (32r3+25r° +8r+1) | C°
500 (1— r)‘; O
501 =7 (Br+1) C?
512 (1- r)?— (16r% + 7r + 1) ct

There is an intrinsic relation of SPD-RBF’s to reproducing kernel Hilbert
spaces, but there is no room here to give details [52]. In short, one can
introduce an inner product (.,.)4 such that

@Ul-=lly) o (- = yll,) = ¢ (llz = vll,)

holds, and then the matrix Ax is a Gramian. The linear hull of all spaces Sx
can be completed to form a Hilbert space called the native space for ¢, and
a very natural application of RBF techniques would be the case where the
bilinear form a(., .) of a Rayleigh-Ritz setting coincides with the above inner
product in the native space. However, such cases are somewhat difficult to
handle in full generality, because (for instance) the standard bilinear form
for second—order elliptic problems lives in Sobolev space W.} (R?) containing
discontinuous functions and having the natural radial (Bessel) basis function
Ky(r) with a logarithmic singularity. Research in this direction is still in its
early stages, concentrating on spaces with higher regularity.

For the theoretical analysis of RBF’s, the study of these native spaces
is of quite some importance. Error bounds normally are first derived for
functions in the native space, and are then moved over to other spaces [48].
The generalized RBF interpolation setting can be proven to be optimal in
at least three different aspects, and therefore the attained error bounds ([57]



for Wendland’s functions in Sobolev spaces) are optimal with respect to all
other linear recovery processes based on the same data and working in the
same space of functions. We cannot say much more here, and we refer the
reader to survey articles on RBF theory [9, 43, 44, 47, 50, 52].

4 Collocation

For applications, the generalization from pure interpolation to collocation
requires to replace the point evaluation functionals d,; by general function-
als A; that are continuous on the native space. It is not easy to tell directly
which functionals have this property with respect to a given ¢, but a rule—
of-thumb [52] allows any functional A that can be continuously applied to
one argument of ¢(||z — y||2) and be approximated by finitely supported
functionals (e.g. differential operator evaluations by finite differences, or in-
tegrals by quadrature formulae). But even if the functionals and ¢ are cho-
sen to match, the matrix A = (AY¢([ly — xk|l2))1§j,k§N where A stands for
the evaluation of A; with respect to the variable y, is not symmetric and not
necessarily nonsingular. We call this an unsymmetric collocation, because
the functionals d,, providing the functions ¢(|| - —zl[2)) = 6%, o(Il - —vyll2))
of the space Sx differ from the collocation functionals A;. A symmetric
collocation [63] drops 0, altogether and works with the span of functions
Aol - —yll2)) to get a symmetric matrix Ay = (MM} o(||ly — x||2))1§j7k§N
which can be proven to be positive definite whenever the functionals A; are
linearly independent and continuous in the native space.

The unsymmetric collocation technique for RBF was introduced by Kansa
[32, 33] and successfully used by various other authors. e.g. [7, 8, 19, 34].
However, a recent example [29] showed that it may fail in some specially
constructed cases which are, fortunately, rare to find. Kansa’s technique
has the advantage of a wider applicability, because more functionals are
allowable for a given RBF, but it still lacks proven error bounds, even for
elliptic model problems. This is a challenging research area with little or no
progress in the unsymmetric case.

On the other side, symmetric collocation has been investigated recently
by Franke and Schaback [15, 16|, giving error bounds and criteria for the
proper choice of ¢ for a given collocation setting defined by functionals ;.
A different and independent approach was made by Wu [64]. We cannot
provide details here, but the theoretical approximation order roughly is at
least the order F'(h) given in Table 1 reduced by the order of differentiation
involved in the functionals, where h is the density of centers in the sense

h= i — x|
sup, min [ly = ;ll:

if we work in a bounded domain €2 and use collocation with values of differen-
tial operators (order zero allowed for boundary values) at centers x;. Recent



results [51] in the interpolation case suggest to replace F(h) by (F(h))” in
the interior of the domain, and this is the order that is observable there.

For interpolation and symmetric collocation with RBF there are some
rules to be suggested:

e Pick ¢ smooth enough such that all collocation functionals can be
continuously applied to both arguments of ¢(||z — yl|2) [52].

e Additional smoothness of ¢ will improve the attainable discretization
error at the expense of increased condition number[49].

e Be careful with “wide” Gaussians or multiquadrics, because these have
both an exponentially good error behavior and an exponentially bad
condition number[49].

e For compactly supported RBF’s, pick the support radius in such a
way that each RBF support contains roughly the same number B of
centers (for each operator, i.e. separately in the interior and on the
boundary). Then the condition depends on B, not on the meshwidth.
For fixed B, the error first goes down nicely when data are getting
more and more dense, but, from a certain A on, one has to enlarge B
to get higher accuracy [50].

The proper choice of scale of the RBF in relation to the data density
is another challenging research problem. There are many experimental re-
sults for multiquadrics [2, 33, 34], but so far there is no systematic theory.
Numerical experiments by Floater/Iske [13, 14] and Fasshauer [10, 12] have
demonstrated the feasibility of multiscale techniques, using RBFs of differ-
ent support scales on data subsets of different densities. In many cases,
linear convergence with increasing levels is observed, but the theoretical
investigations are still rather limited [11, 22, 42].

5 Rayleigh—Ritz applications

For a bounded domain Q with C'-boundary 99 Wendland [59] considers
problems of the form

) du
_ Z — <aij8—arj> (x) + c(x)u(z) = f(x), x€Q (3)
(U@ _
> aij() j vi(z) + h(z)u(z) = g(zx), =€dQ (4)

where a;j,c € Loo(Q), 4,5 = 1...,n, f € Ly(Q), aij,h € L(00)

» g €
L,(09) and v denotes the unit normal vector to the boundary 992. ¢ > 0



and h > 0, at least one of them being uniformly bounded away from zero
on a subset of nonzero measure of {2 or 01, respectively.
The corresponding variational problem

find u € W5 (Q) : a(u,v) = F(v) for all v € Wy () (5)

excludes worrying about boundary values, and allows to work with the whole
Sobolev space W, (Q).

Under the strong regularity assumption u € W§(Q) and ®(z) = ¢(||z||2)
having a Fourier transform ) satisfying

B(w) ~ (1+[|wll2) 2. (6)

with 8>k > % + m, the Rayleigh—Ritz—Galerkin solution s of the stiffness
system based on ¢ satisfies the error bound

= sllwgr ) < C B |lullywe o)

for h < hg. These results are best possible as far as the approximation
order is concerned. However, this work still is preliminary in the sense
that boundary conditions were excluded and sufficient regularity had to
be assumed. A second paper [60] uses a multilevel technique to attack
discretizations of elliptic problems by RBFs. Here, the proof of error bounds
still is missing.

6 Homogenization in the interior (DRM)

Let us consider a standard elliptic model problem
Lu=f finQCR? L:Wgqg — Lg
Bu=g in 0 B :Wq — Wsq

uu, up €Sy C Wa.

in certain Hilbert spaces. We assume that the map R from the data (f, g) €
Lq x Waq back to the solution u € Wq, is linear and bounded. This means
that the problem can be solved stably in the above setting.

Radial basis functions can be used in two ways to solve such a problem
via homogenization. Going over to a homogeneous problem in the interior
is called the Dual Reciprocity Method (DRM) [3, 4, 5, 18, 20, 30, 40, 41].
We outline the computational steps here:

1. Approximate f well in Lo by some fy in 2, but make sure that you
know explicitly some ug with Lug = fy. This is easily achieved by
using various RBFs, because one can either start with some ¢ and
find ¢ with

L - =) = ol - =al)), (7)

or start with some ¢ and apply L to get ¢ via (7).



2. Evaluate the boundary values gy := Bug and pose the homogeneous
problem Lu; = 0in Q, Bu; = g — go in 992. Using a BEM technique,
one gets a function us that satisfies Lus = 0 exactly, but with dis-
turbed boundary values Buy = g2, such that ||g — go — g2|| is small in

Wagq.
3. Compose the final numerical solution by us := ug + us.

The error analysis takes uq := u — ug — u2 and gets Luy = f — fp in
Q, Buy = g — go — g2 in 0€2. By our assumption on the stable solvability
of the problem, we get an error bound. But any special application must
make sure that the approximations lie in the correct spaces and have small
errors in the correct norms. This sometimes causes problems and requires
quite some theoretical work [20, 31]. But, at least in principle, the basic
identity (7) for RBF's makes this approach feasible.

7 Homogenization on the boundary

There is a complementary technique that homogenizes on the boundary.
For a BEM audience, this is hardly an advantage, but we have in mind to
use CS-RBF with zero boundary values in the interior of the domain, and
thus want to go over to a sparse problem that is inhomogeneous in the
interior, but has homogeneous boundary data. We assume the same setting
as above, but now the steps are

1. Solve the problem approximately by invertible RBFs, but just on and
near the boundary. This yields functions ug € Wq, fo € Lo, g0 € Wsa
such that Luy = fo, Bug =: go, where g; := g — go is small in Wsq.
Of course, the function f — fy will not be small in the interior, but we
correct this in the following step.

2. We now suggest to use invertible CS-RBF to solve the problem Lu; =
fi=f—fo € L,Bu; =0 € Wq. In practice, we will get a function
uy € Wgq such that Lus = fo ~ f— fo and Bua = g2, where f— fo— fa
and g, are small in Lg and Wjgq, respectively.

Now we consider u3 := up + us to be an approximation of the solution
u, and we get L(u —u3) = f — fo — fo, Blu —u3) =g —go— g2 = g1 — g2,
and again we can use the stable solvability to conclude that the result must
be a good approximation to the solution.

Let us compare these two approaches.

e The classical DRM has the advantage of reducing the problem by one
dimension, but the system on the boundary usually has a non—sparse
matrix, even if CS-RBF are used there.



e Homogenization on the boundary can make use of sparsity in both
subproblems, but the system in the interior cannot be reduced by one
dimension. And, there is no practical experience so far.
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