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Abstract
This is a short summary of recent mathematical results on error bounds and conver-

gence of certain unsymmetric methods, including variations of Kansa’s collocation tech-
nique and Atluri’s MLPG method. The presentation is kept as simple as possible in order
to address a larger community working on applications in Science and Engineering.

Introduction and Summary
The Meshless Local Petrov-Galerkin method (MLPG) of S.N. Atluri and T.L. Zhu

[3] [4] of 1998 has been applied widely and very successfully in recent years, and it led
already to various surveys and two books [1] [2]. However, its rigorous mathematical anal-
ysis lagged far behind its success in Science and Engineering. The same holds for the
unsymmetric collocation technique introduced as early as 1986 by E. Kansa [7], which is
confined to problems in strong form and uses collocation for trial spaces generated by mul-
tiquadrics, a special kind of radial kernel. It can be viewed as a special case of the MLPG,
and it was called MLPG2 in [1] [2]. Its mathematical analysis was attempted by the author
and others for several years, but was finally bound to fail because of a counterexample [5]
given in 2001, showing that solvability of the final linear system cannot be guaranteed in
general. Changes of the original method are necessary, avoiding solvability problems. This
argument applies also to the more general situation of the MLPG, but the easier case of
strong collocation was tackled first. A non-quantitative convergence result for a variation
of Kansa’s unsymmetric collocation method was given in [9], while [10] contained a gen-
eral convergence theory for a class of unsymmetric methods in strong form. The paper [6]
by Hu, Li, and Cheng deals with the important special case of solving elliptic problems
with analytic solutions by unsymmetric collocation based on analytic radial basis func-
tions, leading to exponential convergence rates. Handling unsymmetric problems in weak
form turned out to be more complicated, because there was no satisfactory theory of weak
testing, so far. After investigating weak approximation problems [11] without differential
equations, it was finally possible [12] to deal with a large class of unsymmetric methods
solving partial differential equations in weak form, including a variation of the MLPG.

The cited papers [10] [12] contain the mathematical core of a general framework built
for analysis of computational methods solving general linear operator equations by un-
symmetric methods in strong or weak form. However, the presentation and the results are
necessarily in a rigorous and abstract mathematical style, and they require a solid back-
ground in mathematics, including regularity theory of PDEs and nonstandard results of
approximation theory.

To address a wider audience interested in computational methods in Science and En-
gineering, this paper summarizes these results in a somewhat more application-oriented
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language, and taking a Poisson problem

−∆u = fΩ in Ω⊂ IRd

∂u
∂n = fN in ΓN ⊂ ∂Ω

u = fD in ΓD ⊆ ∂Ω

(1)

as a running example for explanation.

The final result is that unsymmetric computational methods can be rigorously proven
to converge at certain rates, if

1. the underlying problem can be written as a solvable well-posed linear operator
equation which need not be elliptic,

2. the chosen scale of trial spaces can approximate the solution well,

3. differential equations and boundary conditions are tested via separated local weak
or strong forms, leading to sufficiently many well-formulated linear test equations
satisfying a stability condition,

4. the final overdetermined non-square linear system of test equations for trial functions
is solved approximately by minimization of the discrete residuals.

Note that Atluri’s MLPG method and Kansa’s collocation technique are special cases, and
they can be proven to converge, if they are set up properly along the above lines. Further-
more, the framework allows very general trial spaces and test strategies. This is in line
with the many variations of the MLPG method induced by different test and trial strategies
(see pages 140-143 of [1]), but the paper [12] does not cover all variations, since it only
shows how kernel-based trial and test strategies fit into the framework. This leaves plenty
of leeway for future research.

However, readers should be aware that items 3 and 4 above contain two major differ-
ences to the standard setting of the MLPG variants. Problems like (1) are viewed here as
systems whose equations are always tested separately. This is standard for strong testing,
but for weak testing it means that we do not use a single weak form combining the three
equations. We rather stay with separate local weak forms to be tested separately.

Item 3 leads to non-square linear systems consisting of linear weak or strong test equa-
tions whose number must be expected to be much larger than the number of unknowns on
the trial side, i.e. the number of columns in the system matrix. This calls for solution
methods like least-squares which keep the residuals of the equations small. The frame-
work of [12] proves that good approximate solutions to these systems exist, and reasonable
numerical methods will not overlook them.

Convergence rates are mainly dependent on item 2. They cannot be positively influ-
enced by testing, since they are a matter of the trial side. Testing cares for safety, while



the trial side determines the attainable accuracy. If trial functions are chosen via translates
of smooth kernels, convergence rates increase with the smoothness of the kernel and the
solution. The rest of the paper will explain the above items one by one, adding more details.

Well-Posedness
The MLPG method and Kansa’s collocation can be used for very general equations

and boundary conditions. Ellipticity is not required, and the standard local weak form
of the MLPG does not in general describe a variational equation arising as a necessary
condition for a minimum of some functional in the sense of the Calculus of Variations. This
makes mathematical analysis hard, because standard properties like positive definiteness
and symmetry of stiffness matrices are not valid, and there is no “energy” minimization
built into the method. Thus the mathematical analysis of the MLPG cannot mimic the
theory of finite elements, as several other meshless methods based on more general trial
spaces do.

But this is a feature, not a bug of unsymmetric methods. They allow a much wider
scope of applicability at the expense of a more difficult mathematical background theory.
The crucial property replacing ellipticity is well-posedness of the problem, or continuous
dependence of the solution on the data. For this, we view equations like Poisson’s (1)
as a system L(u) = f with a solution u and data f which will usually consist of several
different kinds of “data”, e.g. a forcing term fΩ, a Dirichlet boundary data function fD and
a Neumann data function fN . Viewing (1) as a system of equations will also be crucial for
our presentation of item 3 of the introduction. Furthermore, it paves the way for treating
systems of differential equations.

Continuous dependence of the solution u on the aggregated data f must be formu-
lated rigorously as ‖u‖U ≤C‖ f‖F in terms of certain normed linear spaces U and F whose
choice usually is a mathematically hazardous problem in itself. We do not describe details
here, but we remind the application-oriented reader that the problem should have the prop-
erty that small perturbations of the data lead only to small perturbations of the solution.
Any nonlinear blow-up effect will spoil continuous dependence. Note further that this is
independent of trial functions, testing, and numerical methods. If problems are ill-posed,
special techniques are necessary [10] and deserve future attention.

Trial Spaces
The choice of trial spaces can be rather arbitrary, provided that the solution u can be

well approximated by some function ũ from the trial space. This “comparison” function ũ is
not calculated directly, but our subsequent analysis depends on the fact that any numerical
method should not produce an approximate solution u∗ from the trial space which is much
worse than ũ. This type of argument also occurs in the mathematical foundation of the
finite element method: the FEM solution u∗ has an error which is comparable to the error
of the best approximation ũ to u in the energy norm.

For users, this freedom of choosing trial functions implies that they can add very spe-



cial application-dependent functions, e.g. to model cracks, discontinuities, or singularities
at incoming vertices.

Testing
The previous section showed that the dimension of the trial space can be kept low, if

the user is sure that the solution will be well “captured” by the span of functions from the
trial space. It is a major advantage of unsymmetric methods to be able to avoid a fine space
discretization on the trial side, if the solution can be well approximated by a few nicely
chosen trial functions. This keeps the trial space small, while testing will always require a
fine space granularity in order to make sure that the approximate solution actually satisfies
the requirements everywhere. But we allow unsymmetric overdetermined systems here,
and if the final linear system of equations is able to reproduce the right-hand side well, we
do not care too much about the number of equations required for careful testing.

In general, testing works on linear combinations of trial functions and should come up
with a number of equations for the coefficients of an approximate solution. Strong testing
is synonymous for collocation, because it is based on plain evaluations of trial functions
and their derivatives at certain “test points”. If an operator equation like (1) is viewed as
a system, each equation is tested separately, using different test points for the differential
equation and each boundary condition. The link between these different tests is provided
only by the common trial function which is tested. Users should note that collocation
completely avoids all the hassles of numerical integration. If data and solutions are smooth
enough to allow evaluation of function values and derivatives, it does not make much sense
to make a detour via weak forms at all.

Here, we use a similar strategy for weak testing. Instead of merging several equations
like (1) into a single weak form with several localized domain and boundary integrals,
we look at each equation separately and test each equation with a possibly different test
strategy. Users may, for instance, even choose strong testing for boundary values and weak
testing for the differential equation, or vice versa. Like in strong testing, the common link
is via the trial functions only. For a weak treatment of the Poisson problem (1), we can use
three possibly different kinds of test functions vΩ, vD, vN on Ω, ΓD, and ΓN , respectively,
and set up test equations of the form

(−∆u,vΩ)L2(Ω) = ( fΩ,vΩ)L2(Ω)

( ∂u
∂n ,vN)L2(ΓN) = ( fN ,vN)L2(ΓN)
(u,vD)L2(ΓD) = ( fD,vD)L2(ΓD)

(2)

where we do not care if the first inner product is transformed via integration by parts or not.

The mathematical analysis of testing is a major challenge. For both kinds of testing,
one only has a finite number of test equations to make sure that the approximate solution
is close to the true solution everywhere or in norm. To overcome this discretization effect,
the mathematical framework of [10], [12] requires a stability condition of the following
simplified form:



If a trial function satisfies the test equations with a small residual,
it must be globally small.

This can be satisfied in most applications by using sufficiently many well-defined test equa-
tions for a given trial space, and it implies that the final non-square overdetermined system
must have maximal rank and thus no nonzero homogeneous solution. But in our mathemat-
ical background theory, we need the above stability uniformly with respect to refinement of
discretizations on both the trial and the test side, and this is hard to prove. As an aside, we
note that popular patch tests and consistency conditions have absolutely no significance for
the mathematical analysis we present here.

Up to this point, there is no difference between strong and weak testing. But weak
testing has a serious complication: it contains a hidden convolution. This can be easily seen
when test functions are provided by translates of compactly supported bell-shaped kernels
like the “shape functions” of moving least squares, or by Wendland-type [13] radial basis
functions. Each weak test equation as in (2) compares the convolution of the solution with
the kernel to the convolution of the data with the kernel, and it is satisfied if the results of
these convolutions coincide. Thus weak testing solves an equation by first convolving both
sides and then solving the convolved equation strongly. This means that weak testing acts
like convolution followed by strong testing, and it will always have a smoothing effect.

Consequently, any mathematical analysis of weak testing has to fight with the hidden
convolution. This is a challenging research topic. To overcome these problems, the paper
[12] makes use of convolution instead of fighting it. Testing is done there exclusively
via convolution with smooth compactly supported positive definite kernels. Then the paper
uses results on convolution operators to shift the smoothness requirements of the underlying
spaces accordingly, and it arrives at error bounds and convergence rates in weak norms, i.e.
in norms taken after convolution. This seems to be a serious drawback at first sight, but a
closer inspection reveals that it is rather a feature than a bug. For instance, our background
theory [12] allows weak problems with distributional data whose solutions u are only in L2,
and then it is quite normal that convergence rates can only be obtained in negative Sobolev
norms. On the other hand, this again confirms that weak formulations only make sense in
cases where there is not enough smoothness to allow strong function evaluations, and then
our theory provides quite appropriate results.

Numerical Methods
The previous section explained item 3 of the introduction, and we finally deal with

item 4. Our analysis sets up a non-square unsymmetric linear system of N weak or strong
test equations for m << N coefficients of trial functions. If the trial space is chosen well
along the lines of item 2, there will be a good candidate ũ for a solution. Furthermore, a
good testing strategy observing item 3 will ensure that the rank of the system matrix is m,
employing the stability condition we described in the previous section.

Now any numerical method which solves overdetermined full-rank systems will do,
if it picks an approximate solution which is not much worse than ũ. Any least-squares



solver will suffice, and in cases of bad condition one can use projections to subspaces of
the trial space, provided that they still contain a good approximation to the solution. This
explains why many ill-conditioned systems arising in weak or strong discretizations still
can produce satisfactory solutions if SVD or careful pivoting techniques are applied. It
does not make sense to go for an exact solution. Instead, the task is not to miss an existing
good approximate solution. It is possible [8] to extend all of this to adaptive numerical
techniques.
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