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Adaptive Greedy Techniques for Approximate Solutionof Large RBF SystemsRobert Schaback a Holger Wendland aa Institut f�ur Numerische und Angewandte Mathematik, Universit�at G�ottingen, Lotzestr.16-18, D-37083 G�ottingen, GermanyE-mail: schaback@math.uni-goettingen.de, wendland@math.uni-goettingen.deFor the solution of large sparse linear systems arising from interpolation problemsusing compactly supported radial basis functions, a class of e�cient numerical al-gorithms is presented. They iteratively select small subsets of the interpolationpoints and re�ne the current approximative solution there. Convergence turns outto be linear, and the technique can be generalized to positive de�nite linear systemsin general. A major feature is that the approximations tend to have only a smallnumber of nonzero coe�cients, and in this sense the technique is related to greedyalgorithms and best n{term approximation.1. IntroductionLet 
 � IRd be a bounded domain, and let � : 
�
! IR be a symmetricpositive de�nite function. This means that for any �nite set X = fx1; : : : ; xNgof N di�erent points in 
 the matrixAX := (�(xj; xk))1�j;k�Nis symmetric and positive de�nite. In particular, we think of � being a radialbasis function generated by a compactly supported function � : [0; h0] ! IRvia �(x; y) := �(kx � yk2). In this case, the matrix AX will be sparse for h0small enough. However, the reproduction quality su�ers dramatically, if h0 is toosmall. Therefore we shall provide adaptive techniques for choosing the supportradius h0.



2 R. Schaback & H. Wendland / Adaptive Greedy Techniques for RBF SystemsThe reconstruction of a function f : 
 ! IR from its discrete data fjX =(f(x1); : : : ; f(xN ))T on X can be done by an interpolantsf;X := NXj=1�j(f;X)�(�; xj) (1)whose coe�cients �(f;X) = (�1(f;X); : : : ; �N (f;X))T satisfy the systemAX�(f;X) = fjX :The main goal of this paper is to provide methods that e�ciently produce ap-proximate solutions of very large systems of the above form. In addition, we con-centrate on approximate solutions with only few nonzero coe�cients �j(f;X).The reason is that the evaluation of a full sum in (1) on many points will be toocostly, if the sum contains a term for each data value, and if sparsity is limitedfor reasons of approximation quality. In short, we try to approximate N datawith K << N terms, and we want to keep the storage and computational e�ortproportional to N . This implies that we try to avoid storage of the full matrixAX .2. Native Space NormA crucial tool will be the norm k:k� de�ned via the inner product(sf;X ; sg;Y )� = MXi=1 NXj=1�i(f;X)�j(g; Y )�(xi; yj):For the special case �(x; y) = kx � yk2 log kx � yk2 in IR2 the value ksf;Xk2�describes the bending energy of a thin plate described by the function sf;X .Thus one should view this norm as kind of an energy. The closure of all functionsof the form sf;X with respect to the above norm is a (\native") Hilbert space N�of functions in 
. We do not want to pursue this topic any further (see e.g. [7]for a recent reference), but we need the orthogonality relation(sf;X ; f � sf;X)� = 0for all f from the native space. It is a consequence of the fact that sf;X has min-imal norm under all functions in N� that interpolate f on X. The PythagoreanTheorem then implies kfk2� = kf � sf;Xk2� + ksf;Xk2�; (2)



R. Schaback & H. Wendland / Adaptive Greedy Techniques for RBF Systems 3and we shall make frequent use of this equation.3. Iteration on ResidualsThe orthogonality relation (2) simply says that the \energy" of a function fcan be split up into the \energy" of an interpolant sf;X plus the \energy" of theresidual f � sf;X . We shall apply this \energy split" recursively by interpolatingthe residual. More precisely:Algorithm 1. Start with a given function f0 := f 2 N� and iterate over anindex k = 0; 1; ::: by interpolating fk on some set Xk � 
 by sk := sfk;Xk . Thenext iterate will then be fk+1 := fk � sk.Theorem 2. The functions sk of Algorithm 1 satisfy the summability conditionkf0k2� � kfm+1k2�= mXk=0�kfkk2� � kfk+1k2��= mXk=0 kskk2�: (3)
Proof. Using Algorithm 1, equation (2) turns intokfkk2�= kfk � sfk;Xkk2� + ksfk;Xkk2�= kfk+1k2� + kskk2�and by summation we get (3). 2We now want to look for conditions that imply convergence of the residuals fkto zero, because then our accumulated interpolantsgk := kXj=0 sj = f � fk+1 (4)converge to f for k ! 1. This needs some further assumptions, since we haveso far not excluded trivial cases like Xk = X for all k.



4 R. Schaback & H. Wendland / Adaptive Greedy Techniques for RBF Systems4. Convergence AnalysisFrom the energy viewpoint, we should require that sk picks up at least acertain fraction of the energy of fk.Theorem 3. If there is some positive constant 
 such thatkskk� � 
kfkk� for all k; (5)then the functions fk and the accumulated interpolants gk of (4) converge linearlyto zero and f , respectively, in the native space.Proof. The assertion is implied bykfk+1k2� = kfkk2� � kskk2� � (1� 
2)kfkk2�: 2But since kfkk� is not easily accessible in practice, we prefer to use a weakerseminorm j:j�, i.e. jf j� � Ckfk� for all f 2 N�: (6)Theorem 4. If there is some positive constant 
 such thatjskj� � 
jfkj� for all k; (7)then the seminorms jfkj� and jf�gkj� converge to zero for k !1. More precisely,they form square summable sequences.Proof. The assumptions (6) and (7) implykf0k2� � kfm+1k2�= mXk=0�kfkk2� � kfk+1k2��= mXk=0 kskk2�� 
2C2 mXk=0 jfkj2� (8)



R. Schaback & H. Wendland / Adaptive Greedy Techniques for RBF Systems 5and summability of jfkj2� = jf � gk�1j2�. This is all we can hope for under ourweak hypotheses. 2But note that the seminorm j:j� can be a norm like k:k2 or k:k1 on 
. Then wewould get convergence in these norms, and the requirement (7) in each step stillis manageable. We leave this interesting case and its consequences for calculatingnative space norms open for later work.5. Interpolation on subsetsAn important special case arises from a discrete norm j:j� = k:kLp(X) on alarge subset X = fx1; : : : ; xNg � 
. By standard results on error bounds forradial basis function interpolation, this is a bounded seminorm on the nativespace. We now con�ne everything to X and use the above argument for s(f;X)instead of f .Algorithm 5. Start with data f0jX of some function f0 := f 2 N� and iterateover an index k = 0; 1; ::: by interpolating the data fkjX of fk on some subsetXk � X = fx1; : : : ; xNg � 
 satisfyingjfkjLp(Xk) � 
jfkjLp(X): (9)by sk := sfk;Xk . The next iterate will then be fk+1 := fk � sk.Theorem 6. The functions gk of (4) converge linearly in N� to s(f;X). Fur-thermore, the norms jfkjLp(X) of residuals fk converge linearly to zero.Proof. We �rst apply the results of Theorem 4 to s(f;X) instead of f , notingthat everything just works on the �nite set X. At each step of Algorithm 5 weneed Xk � X and (7) in the formjskjLp(X) � 
jfkjLp(X) for all k; (10)which is easily achievable, since we make sk to coincide with fk on Xk � X byinterpolation. In fact, due tojskjLp(X) � jskjLp(Xk) = jfkjLp(Xk) � 
jfkjLp(X) (11)



6 R. Schaback & H. Wendland / Adaptive Greedy Techniques for RBF Systemswe only require Xk to satisfy (9).Then the accumulated approximations gk converge to s(f;X) on X. But sincefunctions of this form are bijectively mapped to their values on X, we have aconvergent iterative scheme for solving large systems of the form (1).But this is not the end of the story. Since we restrict everything to X and linearcombinations s of �(�; xj) for xj 2 X, there are constants c1 = c1(p;X;�) andC1 = C1(p;X;�) with c1jsjLp(X) � ksk� � C1jsjLp(X)for all such s. But nowkskk� � c1jskjLp(X) � c1
jfkjLp(X) � c1
C1 kfkk� (12)implies linear convergence by Theorem 3. 2For smooth radial basis functions and densely distributed points in X, the quo-tient c1=C1 can be extremely small, making the linear convergence statementa purely theoretical issue. The convergence behavior of kskk� from (3) oftenshadows linear convergence within the numerically relevant range of iterations.6. Iterative interpolation on single pointsLet us look at the above argument for the case where Xk consists of a singlepoint xjk 2 X = fx1; : : : ; xNg. We get linear convergence via (9) in Theorem 6,if the condition jfk(xjk)j � 
jfkjL1(X) (13)holds at each step. This is clear for p = 1 in (11), and for the other cases wehave jfkjpLp(X) � jfk(xjk)jp � 
pjfkjpL1(X) � 
pN jfkjpLp(X): (14)Picking the maximum absolute value of the residual at each stage means 
 = 1,and then we have a \greedy" method. Since this extremely simple algorithmturns out to be unexpectedly useful in case of compactly supported radial basisfunctions, let us write it down in some detail. Everything is done on function or



R. Schaback & H. Wendland / Adaptive Greedy Techniques for RBF Systems 7residual values on a large �nite setX = fx1; : : : ; xNg. Storage is needed forX andthe values fjX = (f(x1); : : : ; f(xN ))T , which are later overwritten by residuals,i.e.the values of fk on X. Furthermore, a vector of length N accumulates thecoe�cients �j of the functions gk for later use. Storage requirements thus areN � (d+ 2) in d dimensions.Algorithm 7. For initialization, the values of f = f0 on X are generated andstored. The N coe�cients are set to zero. For the startup iteration index k = 0we further pick some dummy point xj0 2 X = fx1; : : : ; xNg and the dummycoe�cient �j0 = 0.The iteration at stage k then loops over all values of fk on X and does two thingson each value: it replaces fk(xi) by the residualfk+1(xi) := fk(xi)� �jk�(xi; xjk)and it keeps track of the maximum absolute value of the updated results. Afterthis loop over N elements, there is some point xjk+1 2 X = fx1; : : : ; xNg wherejfk+1(xjk+1)j = jfk+1jL1(X), and the interpolant to this value on xjk+1 is thefunction sk := �(�; xjk+1) fk+1(xjk+1)�(xjk+1 ; xjk+1) :Thus we set �jk+1 := fk+1(xjk+1)�(xjk+1 ; xjk+1)and add this value to the current value of �jk+1 to update the total approximation.Then we repeat the iteration for k + 1 instead of k.Due to Theorems 2 and 6, the values jfkjL1(X) generated by Algorithm 7 aresquare summable and converge linearly to zero. This proves linear convergenceof the algorithm, measured in the native space norm or any discrete norm on X.For curiosity, one can form the energykskk2� = fk+1(xjk+1)2�(xjk+1 ; xjk+1)



8 R. Schaback & H. Wendland / Adaptive Greedy Techniques for RBF Systemsand monitor the monotonely convergent sum over these values according to (3).The values jfkjL1(X) are also numerically available, and they must converge lin-early (but not necessarily monotonely) to zero. Furthermore, their squares aresummable, and they must converge to zero at least like 1=k. Though being in-ferior to linear convergence, this convergence behaviour is the one that can benumerically observed in early stages of the iteration. These values can be usedas a stopping criterion, but one can also choose any discrete norm jfkjLp(X) forthis purpose. In view of (3) and (8), a comparison of the sum of squares of kskk�and jfkjLp(X) reveals some information on the constants in the error analysis.Convergence of the algorithm is rather slow, but its merits for extremely largeproblems rely on other properties:� It brings in one coe�cient at a time, and it produces approximations that haveless than the full number of nonzero coe�cients.� It does not form any matrix{vector multiplications, and it does not even storethe coe�cient matrix.� Compared to the convergence analysis in [4], its convergence (in theory) islinear with respect to the index k only, and does not require N such steps toform a successful iteration.Let us do a very rough analysis of its performance, based on the weaker conver-gence behaviour like 1=k. After k steps the order of magnitude of the residualswill be brought down by a factor of 1=k, and this is achieved by using only kapproximating functions. One can possibly expect 1% accuracy after 100 steps,using just 100 coe�cients.This strategy is not useful if one wants an exact solution of a system of, say,100.000 data points. But it often does not make sense to use all 100.000 degreesof freedom to solve such a system exactly, coming up with a \solution" with100.000 coe�cients, whose sheer size limits its usefulness. It seems to be muchmore reasonable to get away with 1000 nonzero parameters that �t the data toan accuracy of 0.1%. The above algorithm adaptively picks points (and corre-sponding coe�cients) that are the best candidates for further treatment, and itturns out to be extendable to an algorithm that is the �rst to use radial basisfunctions of di�erent scales adaptively. We shall address this in the next section.Some comments towards other techniques seem appropriate at this point.



R. Schaback & H. Wendland / Adaptive Greedy Techniques for RBF Systems 9� The Faul-Powell [4] method will usually work on a full coe�cient vector. Con-vergence of the latter is proven via steps that need a full sweep over a set ofN directions, and thus each step contains a full coe�cient vector. If just apart of the �rst sweep is considered, the technique gets comparable to ours,because it then does not work on a full coe�cient vector. Linear convergenceis not proven.� Conjugate gradients have linear convergence like our technique, and in caseswhere its convergence rate is numerically reasonable, it outperforms ourmethod. But it uses matrix{vector multiplications, and these (and the conver-gence rate) limit its applicability. For large and badly conditioned problemsour technique will already produce some reasonable approximation before theconjugate gradient method has even �nished its �rst step.� The above technique is a special case of a greedy algorithm as described in [1],[6],[2], [8], and [9]. We use it here for solving a large linear system, but theanalysis in section 3 shows that the notion of a dictionary is applicable here.Furthermore, it extends to cases with multiple instances of functions �, orwith radial basis functions of varying scale. We shall exploit these possibilitieslater, without using results of the cited literature on greedy algorithms.7. General Linear SystemsWe now look at the above greedy algorithm in case of a general linear systemAx = b with a symmetric and positive de�nite N � N coe�cient matrix A. Asusual in the theory of the conjugate gradient method, we de�nekxk2A := xTAx for all x 2 IRN :Algorithm 8. For j := 0 start with xj := 0 2 IRN ; rj := �b 2 IRN . Theniterate for j = 0; 1; 2; : : : as follows:stop if krjk1 is small enough, else:jrjkj j := krjk1�kj := �rjkj=akj ;kjxj+1 := xj + �kjekjrj+1 := rj + �kjAekj (in practice)= Axj+1 � b (by induction)



10 R. Schaback & H. Wendland / Adaptive Greedy Techniques for RBF SystemsNote that the method introduces only the numerically relevant unknowns dueto its pivoting strategy based on the right{hand side. Thus the technique isfundamentally di�erent from the method of Gauss{Seidel or Jacobi. Furthermore,the method does not form any matrix{vector products. It pays for this by a lowconvergence rate.Theorem 9. The iterates xj of Algorithm 8 converge linearly to the solutionx� 2 IRN with Ax� = b. The convergence rate can be bounded above viakx� � xj+1k2A � kx� � xjk2A �1� �min(A)N maxk akk�Proof. By a standard variational argument, the algorithm solves the minimiza-tion problem kx� � xj+1kA = min� kx� � xj � �ekjkA:By Pythagoras' theorem we then getkx� � xjk2A = kx� � xj+1k2A + �2kjkekjk2A:From kekjk2A = akj ;kj and j�kj j = krjk1=akj ;kj we concludekx� � xj+1k2A = kx� � xjk2A � krjk21=akj ;kj :We are done if we show krjk21 � �min(A)N kx� � xjk2A:But this follows fromkx� � xjk2A = (x� � xj)TA(x� � xj) = (x� � xj)T rj � krjk1kx� � xjk1and �min(A)kx� � xjk21 �N�min(A)kx� � xjk22�N(x� � xj)TA(x� � xj)=Nkx� � xjk2A: 2The above algorithm cannot be suggested as a general{purpose solver for sym-metric positive de�nite linear systems. It makes sense only for cases where theapplication expects to get away with an approximative solution that has many



R. Schaback & H. Wendland / Adaptive Greedy Techniques for RBF Systems 11zero coe�cients. This, however, is the case as soon as bases with some hierarchi-cal structure or a lot of built{in redundancy are considered. Since preconditioningcan be seen as an appropriate change of basis, it makes sense to investigate howthis algorithm behaves under some additional preconditioning. But we leave suchthings open here.8. Adaptive ScalingWe now want to look at a modi�cation of Algorithm 5 that uses scaled radialbasis functions �c(x; y) := �(kx � yk2=c2). In particular, we aim at functions �that have support in [0; 1], such that �c(x; y) vanishes for kx� yk2 > c.Algorithm 10. We �x real constants�; � > 0 < 
 < � < 1 < �:Furthermore, we use some discrete norm for residuals on a large data set X, andwe need an iteration count K � 1 and a large starting scale c. In what follows,a successful try is de�ned by a run of K steps of Algorithm 7 at a �xed scale csuch that the discrete norm of residuals is reduced at least by a factor of �.� The outermost loop runs over successful tries until the discrete norm of resid-uals falls below a prescribed bound �. At each iteration, it uses the other loopsto �nd a successful try by suitable variation of the values of K and c:� A middle loop tries larger and larger numbers K;K�;K�2; : : : of iterations,and an inner loop� tries scales c; c�; c�2 > : : : > c
until a successful try is found.Since we know that at any �xed scale Algorithm 7 must bring the residuals tozero after su�ciently many iterations, the middle loop must terminate at each ofthe �nitely many scales allowed in the inner loop. It terminates using the scalethat roughly takes the fewest number of new points to reach success. Since themiddle loop reduces the residual norm by a certain factor smaller than 1, anyprescribed accuracy can be reached after su�ciently many outer iterations.Note that the algorithm tries �rst to get away with as few new points as possi-ble, using the smallest possible iteration count that leads to a reduction of the



12 R. Schaback & H. Wendland / Adaptive Greedy Techniques for RBF Systemsresiduals. For each iteration count, it tests large scales �rst, but priority is givento the iteration count over the scale.Setting K = 1, using a large c and extremely small values of �; 1 � �; � � 1 willlead to a very time{consuming optimization, trying hard to reconstruct the datawith as few centers as possible. We shall call such a case an \optimizing" run ofthe algorithm in our examples. But there are some economizations that shouldbe pointed out.First, extremely small scales will have a very local e�ect and will not lead to anyreasonable reduction in early stages of the algorithm. This means that the algo-rithm tends to prefer large scales over small scales at early stages, and extremelysmall values of � need not be considered. We found � = 0:5 or � = 0:25 quitesu�cient.Second, if the scales c for successful cases are inspected, they tend to be decreasingsteadily (but not monotonically). It therefore makes sense to use an updateformula like cnew := � � csuccesswith some factor � � 1 after each success.Third, the necessary iterations to reach success have the tendency to increase.This suggests an update formulaKnew := � �Ksuccesswith some factor � � 1 after each success. The two values above are determinedafter a successful outer iterations, and used for starting the inner iterations.A particularly e�cient situation is given by � = � = 1, forcing successful it-erations to have weakly monotone increasing or decreasing values of K and c,respectively. We shall call such a run of Algorithm 10 a \monotonic" run.If applied for compactly supported radial basis functions, the algorithm in itsabove form reaches smaller and smaller scales, until the calculations can be lo-calized and parallelized. This has not yet been fully exploited in the numericalexamples following in the next section.



R. Schaback & H. Wendland / Adaptive Greedy Techniques for RBF Systems 13But we want to point out a further generalization. One can view the inner itera-tion just as a trial ofM di�erent radial basis functions, ignoring scale completely.Since the middle iteration increases the number of iterations for each function, itwill automatically select the radial basis function that reaches success using thefewest centers. The inner loop must be �nite, but after each success of the outeriteration one can come up with a di�erent set of �nitely many candidates for ra-dial basis functions. It is easy to incorporate thin{plate splines or multiquadricsat early stages, and one can go over to compactly supported functions when itcomes to resolving local details. Numerical experiments in this direction are stillto be carried out. The notion of a dictionary with respect to a greedy algorithmin the sense of [1], [6],[2], [8], and [9] applies here, and it is an interesting researcharea to pursue this connection further.9. Numerical ExperimentsWe start with a reproduction of the following Franke{type function:f(x) = 3Xj=0 aj exp(bjkx� xjk22)with the values j aj bj xj0 1.0 -0.1 ( 0.0, 0.0)1 1.0 -5.0 ( 0.5, 0.5)2 1.0 -15.0 (-0.2,-0.4)3 1.0 -9.0 (-0.8, 0.8)To make it less smooth, we introduced a singularity of lower-order derivativesalong the line � � � = �1:0 by taking f(�; �) � (� � � + 1:0)� instead of f(�; �)for � � � < �1:0. The function plot is given in Figure 1, and one can clearlysee the modi�cation in the front right corner. We then picked 40000 randomcenters on [�1;+1]2 and constructed approximate solutions of the correspondinginterpolation problem, consisting of up to 500 centers. In all examples to follow,we concentrate on three cases that reduce the maximum absolute value of theresiduals to 10%, 5%, and 1%, respectively. Further reduction should be done bylocal techniques provided by a forthcoming paper. The following table shows howmany of the 40000 data locations are necessary to reach the prescribed accuracy:
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 = 0:5; � = 2, and the startingscale was c = 10. A more detailed plot of the error as a function of the usedcenters is in Figure 2, while the corresponding scales are in Figure 3. Note howclose the monotone run is to the optimized run in both cases, in particular forlarge numbers of centers. The error for the monotone run does not lead to amonotone decreasing error curve, because monotonicity is only attained for theouter iteration. Since later iterations use large values of K, there are clearlyvisible non{monotonic sections in the curve for the monotonic run in Figure 2.The decrease of the optimized scale in Figure 3 clearly shows that the optimizingalgorithm has a strong tendency to \localize" automatically.Both �gures strongly support our suggestion to prefer the monotonic run overthe optimizing run, if one just wants a quick approximation of 1% accuracy. In
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"optimal""monotone"Max. error versus number of data used
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1010.10.010.001 Figure 2. Error behavior
"optimal""monotone"Support radii versus number of data used
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1010.10.01 Figure 3. Scale behaviorparticular, the calculation time for up to 500 actually used centers out of 40000on a notebook with a 350MHz AMD{K6 under Linux was about 1 hour for thefull optimization, as opposed to 100 seconds for the monotone run. If just the



16 R. Schaback & H. Wendland / Adaptive Greedy Techniques for RBF Systems1% accurate solution based on 125 points is needed, the monotone run needs 30seconds.Figure 4 shows how our adaptive technique automatically selects crucial pointsnear the discontinuity line, if we let the monotone run extend up to 500 centers.The 1% accurate approximations from the table above do not yet discover thediscontinuity precisely.Points
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10.50-0.5-1 Figure 4. First 500 center locationsThe mbay.dat data from R. Franke's webpage [5] are rather di�cult to handle,though they have only 1669 data points. The main problem is their in�nitevariation in relative scale. In the NE area of Figure 5 there is an area havingdata values exactly zero, and near the origin there is a single sharp positive peak.Both of these are de�ned by rather few data values, but there are many and densedata with small positive values describing a \shallow" area with small positivedata values. The problem is to avoid negative values of the reconstruction inthe zero area, and to avoid errors from the �tting of the peak to propagate intothe shallow area. An exact solution with c = 1:0 is given in Figure 6. Note thatthere are areas with negative function values, and there is some visible undulationnear the NE corner. The coarse approximations with our algorithm, starting
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0.50.450.40.350.30.250.20.150.10.050 Figure 5. Data locations for mbay.datwith c = 0:3, yielded the following numbers of centers for a prescribed relativeaccuracy: % monotone optimized10% 48 285% 109 551% 430 335Even the optimized approximation of Figure 7 is calculated rather quickly (48 sec-onds on the aforementioned notebook computer) compared to an exact solutionof a full system with 1669 equations.In all cases one can observe how the residuals and the scales go down proportion-ally to 1=k, when k centers are introduced. The summability of the squares ofthe residuals supports this behaviour, but asymptotic linear convergence is notvisible at this distance from the full solution.In Figure 6 one can see that the scale c = 1:0 and the C2 smoothness ofthe radial basis function lead to a Gibbs-type phenomenon. There is not enough\localisation". In contrast to this, the greedy method in Figures 7 and 8 producestoo many undulations in the shallow area, because there is too much localisation.
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Figure 8. Monotonic run with 430 centers


