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PrefaeThis is a text intended for use with my leture �Approximationsverfahren II�in winter 2010/2011. Though the basi bakground material is in the book[Wen05℄ of Holger Wendland, some additional stu� is neessary at ertainplaes. The text is an update of of a 2005 leture handout. It is underonstrution at various marked plaes, and it will evolve during the term.Readers might onsult the books or surveys [Aro50, Mes62, BCR84, Sas94,Sh97b, BS00, Buh03, Wen05, SW06, Fas07℄ (in hronologial order) for ad-ditional material. Single papers will be ited where needed, but a few thingspresented here annot be found elsewhere.Göttingen, February 1, 2011R. Shabak
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1 IntrodutionThis text provides some basi material on kernels. It turns out that kernelsarise very naturally in Applied Mathematis, in various plaes, and for difer-ent purposes. To give the reader an impression of the kernels that are inour fous, we �rst list the most important ases without referring to spei�properties.1.1 Radial KernelsIn a sense that an be spei�ed, the Gaussian
K(x, y) := exp(−‖x− y‖2/2) for all x, y ∈ R

d or Cd (1.1)is the mother of many kernels. We shall use the notation K in the following,standing for either R or C.In general, our notion of kernels will use the followingDe�nition 1.2. Let Ω be an arbitrary nonempty set. A funtion
K : Ω× Ω → K, i.e. R or Cis alled a (real� or omplex�valued) kernel on Ω. We all K a Hermitiankernel if

K(x, y) = K(y, x) for all x, y ∈ Ω.If the kernel is real�valued, this property de�nes a symmetri kernel.Sine the Gaussian (1.1) an be written as a funtion
φ(r) = K(‖x− y‖2), φ : [0,∞) → Kof the Eulidean distane r = ‖x − y‖2, it is traditionally alled a radialbasis funtion (RBF). There are other prominent kernels of this type, e.g.the multiquadris

φ(r) = (1 + r2)β/2.For negative β, they are often alled inverse multiquadris.Other kernels are the powers
φ(r) = rβ, β /∈ 2Z.1
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Figure 1: Gaussian kernels
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Figure 2: Inverse multiquadrisThe latter are part of an important family alled polyharmoni for a reasonto be explained later, and the other kernels of this family take the form
φ(r) = rβ log(r), β ∈ 2Z2
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Figure 3: Multiquadriswith the speial ase
φ(r) = r2 log(r)alled the thin�plate spline beause of its onnetion to the partial di�er-ential equation desribing the bending of thin plates.
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Figure 4: Polyharmoni kernels3



The zoo of radial kernels also ontains ompatly supported kernels likeWendland's [Wen95℄ kernel
φ3,1(r) = (1− r)4+(1 + 4r)with the uto� funtion
(x)+ :=

{
x x ≥ 0,
0 x < 0,
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Figure 5: Some C2 Wendland kernelsFor reasons that ome up later, a partiularly important family of kernels
φ(r) = rβ Kβ(r)is related to Matérn or Sobolev. It uses the Bessel funtions Kν of third kind,see the setion 12.7 on Speial Funtions.1.2 Stationary, Periodi, and Zonal KernelsTo get away from radial kernels, we an fous on translation�invariant orstationary kernels that are funtions

K(x, y) = Φ(x− y)4
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Figure 6: Sobolev/Matérn kernelsof di�erenes, if the domain Ω allows an additive group operation. This, forinstane, applies to periodi funtions as well, and there we have exampleslike the Dirihlet kernel
D(ϕ) :=

1

2
+

N∑

j=1

cos(j ϕ) =
1

2

sin
((
n+ 1

2

)
ϕ
)

sin
(
ϕ
2

)whih is applied to di�erenes ϕ = α − β of angles or of 2π�periodi argu-ments. This kernel plays a dominat role in Fourier series theory, beause itallows to write a Fourier partial sum as an integral.Other non�radial kernels are funtions of inner produts, like
K(x, y) = exp(xT y) for all x, y ∈ R

d.Suh kernels are partiularly important when working on the unit sphere,sine then xT y is the osine of the angle between the two vetors x and y,and thus the kernel an be represented as a funtion of an angle. Histori-ally, these kernels are alled zonal. There are many papers on kernel�basedmethods on the sphere, but no omprehensive book, so far.At this point, we omit the general ase of kernels on (semi�) groups [BCR84℄or on Riemannian manifolds [Nar95℄. But we remark that kernels an alwaysbe restrited to subsets of their domain without losing essential properties.This applies when de�ning kernels on embedded manifolds, e.g. the sphere.5
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Figure 7: Dirihlet kernels1.3 Kernels in Mahine LearningRemember that Ω does not arry any struture at all. It an ontain texts andimages, for instane, and it will often be in�nite. Some readers may onsiderthis as being far too general. However, in the ontext of learning algorithms,the set Ω de�nes the possible learning inputs. Thus Ω should be generalenough to allow Shakespeare texts or X-ray images, i.e. Ω should betterhave no prede�ned struture at all. Thus the kernels ourring in mahinelearning [CST00, SS02, STC04℄ are extremely general, but still they take aspeial form whih an be tailored to meet the demands of appliations.This starts from de�ning the set Ω of objets one wants to learn about.Then an appliation-dependent feature map Φ : Ω → F with values ina Hilbert �feature� spae F is de�ned. It should provide for eah x ∈ Ωa large olletion Φ(x) of features of x whih are harateristi for x andwhih live in the Hilbert spae F of high or even in�nite dimension. Notethe F has plenty of useful struture, while Ω has not. Feature maps Ω → Fallow to apply linear tehniques in their range F , while their domain Ω isan unstrutured set. They should be hosen arefully in an appliation-dependent way, apturing the essentials of elements of Ω.With a feature map Φ at hand, there is a kernel
K(x, y) := (Φ(x),Φ(y))F for all x, y ∈ Ω (1.3)6



whih is automatially Hermitian. If the feature spae is �nite�dimensionalor a sequene spae, the resulting kernel is an expansion kernel. These willbe dealt with in Setion 1.6 and Chapter 4.1.4 Spaes of Trial FuntionsA kernel K on Ω de�nes a funtion K(x, ·) for all �xed x ∈ Ω. This allowsto generate and manipulate spaes
K0 := span {K(x, ·) : x ∈ Ω}. (1.4)of funtions on Ω. In Learning Theory, the funtion K(x, ·) = (Φ(x),Φ(·))Frelates eah other input objet to a �xed objet x via its essential features.But in general K0 just provides a handy linear spae of trial funtions on

Ω whih is extremely useful for most appliations of kernels, e.g. when Ωonsists of texts or images. For example, in meshless methods for solvingpartial di�erential equations, ertain �nite-dimensional subspaes of K0 areused as trial spaes to furnish good approximations to the solutions.1.5 Convolution KernelsIn ertain other ases, the set Ω arries a measure µ, and then, under rea-sonable assumptions like f, K(y, ·) ∈ L2(Ω, µ), the generalized onvolution
K ∗Ω f :=

∫

Ω
f(x)K(·, x)dµ(x) (1.5)de�nes an integral transform f 7→ K ∗Ω f whih an be very useful. Notethat Fourier or Hankel transforms arise this way, and reall the r�le of theDirihlet kernel in Fourier analysis of univariate periodi funtions. Theabove approah to kernels via onvolution works on loally ompat topolog-ial groups using Haar measure, but we do not want to pursue this detourinto abstrat harmoni analysis too far. See [BCR84℄ and the dissertation[Sh09b℄ for kernels on rotation groups.Note that disretization of the integral in the onvolution transform leadsto funtions in the spae K0 from (1.4). Using kernels as trial funtionsan be viewed as a disretized onvolution. This is a very useful fat in thetheoretial analysis of kernel-based tehniques.
7



1.6 Expansion KernelsIntegral operators (1.5) often have eigenfuntion expansions of the form
K(x, y) =

∞∑

i∈I
λiϕi(x)ϕi(y) (1.6)that go under the names of Hilbert�Shmidt or Merer or Karhunen�Loéve, using a general index set I whih usually is ountable. We shall usethe name expansion kernels for these, even if there is no integral operatorbehind them. Then they just are a series of the above form, with ertainfuntions ϕi : Ω → R, i ∈ I, ertain positive weights λi, i ∈ I and anindex set I suh that the summability onditions

K(x, x) :=
∑

i∈I
λi|ϕi(x)|2 <∞ (1.7)hold for all x ∈ Ω. Note that this ours in mahine learning, if the funtions

ϕi eah desribe a feature of x, and if the feature spae is the weighted
ℓ2 spae

ℓ2,I,λ := {{ξi}i∈I :
∑

i∈I
λi|ξi|2 <∞} (1.8)of sequenes with indies in I.Note further that the summability ondition (1.7) guarantees the well�de�nednessof the kernel by the Cauhy�Shwarz inequality

|K(x, y)| =
∣∣∣∣∣
∑

i∈I

(√
λiϕi(x)

)
·
(√

λiϕi(y)
)∣∣∣∣∣ ≤

√
K(x, x)K(y, y) for all x, y ∈ Ω.But there are many other kernels that have the above form. For instane,the univariate Gaussian kernel is

K(x, y) := exp(−(x− y)2)
= exp(−x2) exp(2xy) exp(−y2)
= exp(−x2)

( ∞∑

n=0

2n

n!
xnyn

)
exp(−y2)

=
∞∑

n=0

2n

n!
xn exp(−x2)︸ ︷︷ ︸

=:ϕn(x)

yn exp(−y2)︸ ︷︷ ︸
=:ϕn(y)

=
∞∑

n=0

2n

n!
ϕn(x)ϕn(y) for all x, y ∈ R

(1.9)
without summability problems. But we shall postpone the onstrution oflarge lasses of kernels to a later hapter.8



1.7 Kernels from TransformsA variation of the onvolution and the expansion kernels are kernels obtainedfrom transforms, e.g. Fourier series, Fourier transforms, or other instanesof harmoni analysis. The basi priniple is the representation
K(x, y) =

∫

T
g(ω, x)g(ω, y)dµ(ω) (1.10)where integration or summation takes plae with respet to a nonnegativemeasure µ on a transform domain T . In ase of Fourier series,

K(ϕ, ψ) :=
∑

n∈Z
K̂(n) exp(in(ϕ− ψ))with nonnegative real numbers K̂(n). These are examples of expansion ker-nels. In ase of Fourier transforms in d variables,

K(x, y) = (2π)−d/2
∫

Rd
K̂(ω) exp(iωT (x− y))dωwith a nonnegative transform funtion K̂ on Rd. We shall use this extensivelyin Setion 9.3.Theorem 1.11. If a kernel K is de�ned via (1.10), it is Hermitian andpositive semide�nite. If for all pairwise distint points xk ∈ Ω the funtions

g(·, xk) are linearly independent on at least a set of positive measure, thekernel is positive de�nite.Proof: The standard quadrati form is
N∑

j,k=1

ajakK(xj , xk)

=
N∑

j,k=1

ajak

∫

T
g(ω, xj)g(ω, xk)dµ(ω)

=
∫

T

∣∣∣∣∣
N∑

k=1

akg(ω, xk)

∣∣∣∣∣

2

dµ(ω) ≥ 0.If the form vanishes, the linear ombination of the g(·, xk) vanishes on allsets of positive measure. This proves the seond assertion.
9



1.8 Speial KernelsAnother soure of kernels are di�erential equations. Typial examples areGreen's funtions or fundamental solutions, or singular kernels like the single�layer or double�layer potential. We shall touh these ases here or there.But there also are kernels whih are speially tailored for use with PDEs,e.g. harmoni kernels [Sh09a, HS10℄ ormatrix�valued kernels [NW94,Low05a, Low05b, Fus08a℄ that allow to generate divergene�free vetor�elds [NWW07, Fus08b℄Finally, kernels often arise as ovariane kernels in stohasti models. If forevery t in some set Ω we have a random variable Xt with existing seondmoments, we an de�ne the ovariane kernel
K(s, t) := Cov(Xs, Xt), Ω× Ω → R (1.12)and analyze its properties. It turns out that the statistial estimation teh-niques alled Kriging in Geostatistis are algorithmially idential to inter-polation with translates of kernels in Numerial Analysis, and a large partof this text will study these methods in detail. The onnetion of ovarianekernels to learning is obvious: two learning inputs x and y from Ω should bevery similar, if they are losely �orrelated�, if they have very similar features,or if (1.3) takes large positive values.At this point, we leave out various other ourrenes of kernels in the math-ematial literature and in appliations (see the survey artile [SW06℄). Justkeep in mind that kernels have three major appliation �elds: they gener-ate onvolutions, trial spaes, and ovarianes. The �rst two are related bydisretization.RS: the setion on PDE-related kernels needs extension.2 Kernels from Hilbert SpaesFrom here on, we desribe a ommon framework for most of the kernels thatwe saw in the previous setion. We start with noting that all Hilbert spaeslead to � reproduing� kernels, and in the next hapter we shall see that mostkernels lead to �native� Hilbert spaes in whih they are reproduing.2.1 Reproduing Kernel Hilbert SpaesAs Numerial Analysts, we want to work with real� or omplex�valued fun-tions on domains Ω. For eah x ∈ Ω and eah funtion f we onsider, we10



want that the evaluation
x 7→ f(x) ∈ K, i.e. R or Cis a reasonable operation. It depends on both f and x, and it should bestably omputable.But we shall plae more emphasis on f than on x, beause the set Ω isompletely unstrutured in various appliations, e.g. in Mahine Learning.If we plae plenty of struture on the spae H of funtions we want to workwith, we an assume H to be a Hilbert spae with an inner produt (., .)H.See Setion 11 for a basi aount of Hilbert spae theory.For later use, we allow ourselves to onsider arbitrary Hilbert spaes as well,without being spaes of funtions on some set. But this is no generalization,beause any Hilbert spae H is a Hilbert spae of funtions on its own dual

H∗ via
f(µ) := µ(f) for all f ∈ H, µ ∈ H∗. (2.1)In partiular, the dual spae now onsists ompletely of point evaluationfuntionals, where �points� are funtionals themselves. We shall ome bakto this.Continuity of point evaluation funtionals

δx : f 7→ f(x), x ∈ Ωthen means that these funtionals are in the topologial dual H∗ of H andsatisfy
|δx(f)| = |f(x)| ≤ ‖δx‖H∗‖f‖H for all x ∈ Ω, f ∈ H.Furthermore, the Riesz isometry

R : H∗ → H, λ(f) = (f, R(λ))H for all f ∈ H, λ ∈ H∗maps δx into a funtion
K(x, ·) := R(δx) ∈ H for all x ∈ Ωthat is a kernel aording to De�nition 1.2. Then

δy(f) = f(y) = (f, R(δy))H = (f,K(y, ·))H for all f ∈ H, y ∈ Ω (2.2)is a reprodution equation for values of funtions from the inner produt.It is lear that any kernel K(x, ·) satisfying the reprodution equation must11



be the Riesz representer of the point evaluation funtional δx. Thus thereproduing kernel is unique.Speializing to f = K(x, ·) ∈ H we get
K(x, y) = (K(x, ·), K(y, ·))H = (δy, δx)H∗ for all x, y ∈ Ω. (2.3)This is one of the various ourrenes of kernels in Mathematis. We shallsee a number of ases later. Note that in the right�hand side the points xand y are interhanged. This is due to the antilinearity of the Riesz map inthe omplex ase, leading to the isometry property in the sense

(R(λ), R(µ))H = (µ, λ)H∗ for all λ, µ ∈ H∗.See setion 11.6 for details on Hilbert spaes and Riesz maps.Theorem 2.4. Eah Hilbert spae H of real� or omplex�valued funtions onsome set Ω with ontinuous point evaluation funtionals is a reproduingkernel Hilbert spae (RKHS) with a unique kernel
K : Ω× Ω → Ksatisfying the reprodution equation (2.2) and the representation (2.3).The above kernel K is Hermitian in the sense K(x, y) = K(y, x). In par-tiular, K(x, x) is always real. Note that K(x, ·) is a funtion in H, butnot neessarily K(·, x), unless K is real�valued and thus symmetri, i.e.

K(x, y) = K(y, x). This is related to the fat that vetor spaes over Cneed not have the property that they are losed under taking the omplexonjugate or taking the real or imaginary parts.The values of suh kernels an always be bounded by
|K(x, y)|2 ≤ K(x, x)K(y, y) for all x, y ∈ Ω (2.5)due to (2.3), but we shall generalize this property later in Theorem 3.7 onpage 42.As a warm�up we stateTheorem 2.6. All Hilbert spaes H of funtions on some set Ω with a re-produing kernel K oinide with the losure of the linear ombinations offuntions K(y, ·) for all y ∈ Ω. 12



Proof: Assume that some f ∈ H is orthogonal to all K(y, ·). Then (2.2)proves that f is zero as a funtion on Ω.Theorem 2.7. If a Hilbert (sub�) spae of funtions on Ω has a �nite or-thonormal basis v1, . . . , vN the reproduing kernel is
KN(x, ·) =

N∑

j=1

vj(x)vj(·) for all x ∈ Ω.In ase of a subspae, we have
KN(x, x) =

N∑

j=1

|vj(x)|2 ≤ K(x, x) for all x ∈ Ω.Proof: Whatever the (always existing) kernel looks like, it must have arepresentation
KN (x, ·) =

N∑

j=1

(KK(x, ·), vj)vj(·)

=
N∑

j=1

vj(x)vj(·)in the orthonormal basis. We ould postpone the seond assertion to Theo-rem 2.19, but here is another proof. Consider
KN(x, x) = (KN(x, ·), KN(x, ·))H

= (KN(x, ·), K(x, ·))Hyielding
KN(x, x) ≤

√
KN(x, x)

√
K(x, x) for all x ∈ Ω.The seond assertion is somewhat surprising for an orthonormal basis, sineit means that for inreasing N the funtions vN must get small in spite oftheir normalization being independent of N . But in many ases the Hilbertspae norm also inludes derivatives, and sine these are kept at bay bynormalization, it is no mirale that the basis funtions, exhibiting sharpspikes, tend to be small in their funtion values.Corollary 2.8. If a Hilbert (sub�) spae with ontinuous point evaluationhas a omplete orthonormal basis, then Theorem 2.7 also holds for N = ∞.13



Proof: Just use a series expansion in the above proof. There are no onver-gene problems, beause the Bessel inequality yields
∞∑

j=1

|(K(x, ·), vj)H|2 =
∞∑

j=1

|vj(x)|2 = ‖K(x, ·)‖2H = K(x, x) <∞,proving via the Cauhy�Shwarz inequality that the series
K(x, y) =

∞∑

j=1

vj(x)vj(y)onverges pointwise and absolutely.Note that all orthonormal bases give the same result. A hange of basis willnot hange the kernel, only the representation will hange.2.2 The Dual SpaeFor later use, we need some information about the dual spae of a reproduingkernel Hilbert spae. The reason is that one often knows the spae and thekernel, the latter as an expliit formula. But then one wants to know whihlinear funtionals λ : H → K are in the dual of the Hilbert spae. Here andelsewhere, we use supersript arguments to indiate the ation of variables,i.e. λx means the ation of λ with respet to the variable x.Theorem 2.9. The dual spae H∗ of a reproduing kernel Hilbert spae offuntions on some set Ω is the losure of the span of all point evaluationfuntionals δx for x ∈ Ω. For eah pair λ, µ of funtionals from the dual H∗of H, one an de�ne λx(µyK(x, y)) uniquely via Cauhy sequenes to yield
λx(µyK(x, y)) = (λ, µ)H∗ for all λ, µ ∈ H∗ (2.10)as a generalization of (2.3). In partiular, the Riesz representer of a fun-tional λ ∈ H∗ is λxK(·, x), and this funtion lies in H.Proof: Clearly, the �rst assertion is just the dual form of Theorem 2.6.The identity (2.10) holds for all linear ombinations of point evaluation fun-tionals, and by ontinuity it arries over to all limits of Cauhy sequenes,i.e. to all funtionals in the dual. For linear ombinations of point evaluationfuntionals (and thus later for all funtionals), the reprodution equation is

λ(f) = (f, λxK(·, x))Hproving R(λ) = λxK(·, x).Roughly speaking, the dual spae onsists of a funtionals whih14



• an be obtained via sequenes of linear ombinations of point evaluationfuntionals
• suh that their appliation in the limit is possible for both argumentsof K independently.To make this more preise, we onsider funtionals that have a meaningoutside the Hilbert spae in question. Examples are funtionals like

f 7→ (∆f)(x), f 7→
∫

Ω
f(t)dt.We want to have a su�ient ondition for these to lie in H∗.Theorem 2.11. Assume that the kernel K of a reproduing kernel Hilbertspae H of funtions on some set Ω is expliitly known as a funtion on Ω×Ω,and assume it allows the ation of a general funtional λ to both arguments,i.e. λyλxK(y, x) ∈ K exists. Furthermore, assume that there is a sequene

{λn}n∈N of linear ombinations of point evaluation funtionals on points of
Ω suh that for all ǫ > 0 there is an N ∈ N suh that for all n,m ≥ N wehave ∣∣∣λynλxmK(y, x)− λyλxK(y, x)

∣∣∣ ≤ ǫ. (2.12)Finally, assume
lim
n→∞λ

y
nK(x, y) = λyK(x, y) for all x ∈ Ω. (2.13)Then λ lies in H∗ and is the limit of the Cauhy sequene {λn}n∈N in H∗.Proof: We �rst want to show that {λn}n∈N is a Cauhy sequene in H∗.This follows immediately from

‖λn − λm‖2H2 = ‖λn‖2H2 + ‖λm‖2H2 − (λn, λm)H∗ − (λm, λn)H∗

= λynλ
x
nK(y, x) + λymλ

x
mK(y, x)

−λynλxmK(y, x)− λymλ
x
nK(y, x)

≤ 4ǫfor all n,m ≥ N . Now the sequene must have a limit λ̃ ∈ H∗, and we haveto show that λ = λ̃ as funtionals on H. From (2.13) we get
lim
n→∞λ

y
nK(x, y) = λ̃yK(x, y) = λyK(x, y) for all x ∈ Ω.By Theorem 2.6, this extends to all of H.15



2.3 Impliations for ΩWe �rst look at the situation where the Hilbert spae H is invariant under agroup T of transformations Ω 7→ Ω in the sense that
f(T (·)) ∈ H for all f ∈ H, T ∈ T
(f, g)H = (f(T (·)), g(T (·)))H for all f, g ∈ H, T ∈ T .Theorem 2.14. If H is invariant in the above sense under transformations,so is the reproduing kernel, i.e.
K(x, y) = K(T (x), T (y)) for all x, y ∈ Ω, T ∈ T .Proof: Just onsider

f(T (x)) = (f,K(T (x), ·))H
= (f(T (·)), K(T (x), T (·)))Hand introdue g := f(T (·)) to get

g(x) = (g,K(T (x), T (·)))H for all g ∈ H,to see that the point evaluation funtional δx is also represented byK(T (x), T (·)).Theorem 2.14 is behind many simpli�ed kernels. Translation�invariane on
Ω = Rd is indued by invariane under shifts, while radial kernels arisefrom invariane under both shifts, rotations, and re�etions, i.e. rigid�bodymotions. Zonal kernels on the sphere arise from rotational invariane.The mapping δ : x 7→ δx takes Ω into H∗. If it is not injetive, wehave a nontrivial equivalene relation x ∼ y on Ω de�ned by δx = δy or
f(x) = f(y) for all f ∈ H. In view of the Stone�Weierstraÿ theorem, and toavoid the above e�et, there isDe�nition 2.15. A spae H of funtions on a set Ω separates points of Ωif for every pair x 6= y of di�erent points in Ω there is a funtion f ∈ H with
f(x) 6= f(y).If H separates points of Ω, we have injetivity of δ. Otherwise, we mighteliminate this by going over to the fator set Ω̃ := Ω/ ∼ instead of Ω.Under the hypotheses of Theorem 2.4 we an de�ne

d(x, y) := ‖δx − δy‖H∗ for all x, y ∈ Ω (2.16)16



with the expliitly available representation
d(x, y)2 = K(x, x) +K(y, y)−K(x, y)−K(y, x) for all x, y ∈ Ω. (2.17)This is a nonnegative symmetri funtion that satis�es the triangle inequal-ity, but it an vanish for x 6= y in ase that f(x) = f(y) for all f ∈ H or

x ∼ y. If this is assumed, the above funtion is a true metri on the oth-erwise unstrutured set Ω, and the kernel ould be rede�ned as a funtion
K∗(δx, δy) = (δx, δy)H∗ = K(x, y) on Ω∗ × Ω∗ using the set

Ω∗ := {δx : x ∈ Ω}that is the image of the embedding from Ω into H∗ via x 7→ δx. The kernelin this form is nothing than the restrition of the inner produt on H∗ ×H∗.In the irumstanes of (2.1), the kernel is the inner produt itself, and themetri on Ω = H∗ is the usual metri indued by the norm.Aiming at ontinuity of funtions, we an look at
|f(x)− f(y)|2 = |(δx − δy)(f)|2

≤ ‖f‖2H ‖δx − δy‖2H∗

= ‖f‖2H d(x, y)2

= ‖f‖2H (K(x, x)−K(x, y)−K(y, x) +K(y, y))
= ‖f‖2H (K(x, x)− 2 Re (K(x, y)) +K(y, y))to seeTheorem 2.18. Funtions from H are always Lipshitz ontinuous with re-spet to d, and if K is ontinuous on Ω × Ω, the funtions in H are alsoontinuous on Ω.But note that talking about ontinuity on Ω needs a topology there, and wehave not �xed a topology other than the one indued by d.2.4 Kernels for SubspaesLet H0 be a losed subspae of a Hilbert spae H of funtions on Ω. As suh,it is a Hilbert spae itself, and it has its own reproduing kernel K0. Withthe projetor Π0 : H → H0 we haveTheorem 2.19. The subspae kernel is

K0(x, ·) = Π0(K0(x, ·)) for all x ∈ Ω,and the reproduing kernel for the orthogonal omplement H⊥
0 is K −K0.17



Proof: We an deompose the identity on H into the orthogonal projetors
I = Π0 + (I − Π0) =: Π0 +Π⊥

0and apply this to the reprodution equation (2.2). Then
f(y) = (Π0f)(y) + (Π⊥

0 f)(y)
= (f,K(y, ·))H
= (Π0f +Π⊥

0 f,Π0K(y, ·) + Π⊥
0K(y, ·))H

= (Π0f,Π0K(y, ·))H + (Π⊥
0 f,Π

⊥
0K(y, ·))H.Speializing this to f ∈ H0 or to f ∈ H⊥

0 proves the assertions.In partiular,
f(y) = (Π0f)(y) + (f − Π0f,Π

⊥
0 K(y, ·))Han in some instanes be the Taylor formula, as we shall see.The upshot here is that orthogonal spae deompositions orrespond to ad-ditive kernel deompositions using the appropriate projetors.2.5 Subspaes from Point SetsFor what follows, we �x a nonempty subset X ⊆ Ω of Ω and onsider thesubspae

HX := los span {K(x, ·) : x ∈ X} ⊆ H (2.20)of H. It is losed by de�nition, and we haveTheorem 2.21.
H⊥

X = {f : f ∈ H, f(X) = {0}}.Proof: If f(X) = {0}, then f ∈ H⊥
X by the reprodution formula (2.2), andonversely.From standard results in Hilbert spaes, we know that there is a projetor

ΠX from H to HX . With the shorthand notation fX := ΠX(f) we getTheorem 2.22. Eah funtion f ∈ H has an orthogonal deomposition
f = fX + f⊥

X18



with fX ∈ HX and f⊥
X ∈ H⊥

X . This means that eah funtion f ∈ H has aninterpolant fX ∈ HX reovering the values of f on X. Furthermore,
‖f − fX‖H = inf

g∈HX

‖f − g‖H (2.23)and
‖fX‖ = inf

f(x) = g(x)
∀x ∈ Ω
g ∈ H

‖g‖H = inf
v∈H⊥

X

‖f − v‖F (2.24)
due to orthogonality of the deomposition.Note that Theorem 2.22 overs trans�nite interpolation and provides twooptimality priniples known from spline theory. Beause of their importane,we restate them asCorollary 2.25. The interpolant fX ∈ HX to a funtion f on X is at thesame time the best approximation to f from all funtions in HX .Proof: This is (2.23).Corollary 2.26. The interpolant fX ∈ HX to a funtion f on X is mini-mizes the norm under all interpolants from the full spae H.Proof: This is (2.24).A third optimality property will follow in Setion 2.8.De�ning f∅ = 0, f⊥

∅ = f and H∅ = {0} with H⊥
∅ = H for ompleteness, wean note a few simple observations:Corollary 2.27. For all sets X ⊆ Y ⊆ Ω and all f ∈ H we have

‖fX‖H ≤ ‖fY ‖H ≤ ‖f‖Hand
‖f‖H ≥ ‖f − fX‖H ≥ ‖f − fY ‖H.2.6 Power FuntionWe now speialize to f = K(x, ·) for a �xed x ∈ Ω.De�nition 2.28. The funtion
PX(x) := ‖K(x, ·)−K(x, ·)X‖H, x ∈ Ωis alled the Power Funtion with respet to the set X and the kernel K.19



This is nonstandard in the trans�nite ase, so far. The error funtional
ǫx,X : f 7→ f(x)− (ΠX(f))(x)is well�de�ned and in H∗. Thus another de�nition of the Power Funtionould be
PX(x) := ‖ǫx,X‖H∗ for all x ∈ Ω.Theorem 2.29. These de�nitions are equivalent. The Power Funtion hasthe properties

PX(x) = 0 for all x ∈ X
P∅(x)2 = K(x, x) for all x ∈ Ω
PΩ(x) = 0 for all x ∈ Ω

0 = PΩ(x) ≤ PY (x) ≤ PX(x) ≤ P∅(x) for all x ∈ Ω, X ⊆ Y ⊆ Ω,
PX(x) = inf

g∈HX

‖K(x, ·)− g‖H for all x ∈ Ω

PX(x) = sup
f ∈ H

‖f‖H ≤ 1
f(X) = {0}

f(x) for all x ∈ Ω

but the most important is the error bound
|f(x)− fX(x)| = |f⊥

X(x)| ≤ PX(x)‖f⊥
X‖H = PX(x)‖f − fX‖H ≤ PX(x)‖f‖H(2.30)for all x ∈ Ω, f ∈ H.Proof: For the equivalene, we have to prove that the Riesz representer of

δx ◦ ΠX is K(x, ·)X . This follows from
(f, R(δx ◦ ΠX))H = (δx ◦ ΠX)(f)

= fX(x)
= (fX , K(x, ·))H
= (fX , K(x, ·)X +K(x, ·)⊥X)H
= (fX , K(x, ·)X)H
= (f − f⊥

X , K(x, ·)X)H
= (f,K(x, ·)X)Husing the various orthogonalities.The �rst �ve listed properties are easy onsequenes of De�nition 2.28 andthe previous results. The error bound follows as well from what we alreadyknow, but we an also use the error representation

f(x)− fX(x) = f⊥
X (x)

= (f⊥
X , K(x, ·))H

= (f⊥
X , K(x, ·)−K(x, ·)X)H20



beause f⊥
X is orthogonal to K(x, ·)X .We are left with the sixth, the �dual� representation of the Power Funtion.From the �rst inequality of the error bound, we see that

PX(x) ≥ sup
‖f⊥

X‖H≤1

f⊥
X (x)and equality must hold if we insert the representer of ǫx,X .The �fth property of the previous theorem has another equivalent formula-tion. Consider the subspae

H∗
X := los span {δx : x ∈ X}of the dual spae H∗. Then the property has the dual form of the �fthproperty of Theorem 2.29, i.e.
PX(x) = inf

λ∈H∗
X

‖δx − λ‖H∗ (2.31)for all x ∈ Ω, and it indiates how well the point evaluation funtional δx anbe approximated by arbitrary linear ombinations of the point funtionalsfor points of X .2.7 Interpolants on Finite SetsWe now onsider �nite sets X = {x1, . . . , xN} ⊆ Ω. For eah f ∈ H we anwrite fX as a linear ombination
fX =

N∑

j=1

αjK(xj , ·) (2.32)with oe�ients αj ∈ R or C, but note that the oe�ients might not beunique, sine we do not assume that the K(xj , ·) are linearly independent.Sine we know that fX must interpolate f on X , we haveTheorem 2.33. For eah f ∈ H, the linear system
N∑

j=1

αjK(xj , xk) = fk, 1 ≤ k ≤ N (2.34)with the Hermitian kernel matrix
A = (K(xj , xk))1≤k,j≤N (2.35)is solvable. 21



This is somewhat surprising, sine the kernel matrix an be singular underthe assumptions we made fo far.Theorem 2.36. In reproduing kernel Hilbert spaes, the kernel matrix fora �nite set X is positive semide�nite. It is positive de�nite if the pointevaluation funtionals δx for x ∈ X or, equivalently, the funtions K(x, ·)for x ∈ X are linearly independent.Proof: This follows beause any kernel matrix on a �nite setX = {x1, . . . , xN}is a Gramian matrix for the funtionals δxj
or the funtions K(xj , ·) due tothe representation equation (2.3).The upshot of Theorem 2.33 is that the right�hand side is always in the spanof the olumns of the matrix. Users must bear in mind that the system anbe unsolvable for general right�hand sides.Note that in the de�nition (2.35) of the kernel matrix, the row index k runsover the seond argument of K(xj , xk) to turn (2.32) into the interpolationsystem (2.34). For later use, we introdueDe�nition 2.37. A kernel on Ω × Ω is Hermitian and positive semidef-inite, if all kernel matries for all �nite point sets of Ω are Hermitian andpositive semide�nite.Then Theorem 2.36 isTheorem 2.38. All reproduing kernels of Hilbert spaes are Hermitian andpositive semide�nite.We mention this expliitly here, beause we shall prove the onverse in thenext hapter:Theorem 2.39. Every Hermitian and positive de�nite kernel has a �native�Hilbert spae in whih it is reproduing.This means that there is a one�to�one relation between Hilbert spaes andHermitian positive semide�nite kernels.Now we speialize Theorem 2.33 to f = K(x, ·). Then we know that

K(x, xk) =
N∑

j=1

uj(x)K(xj , xk), 1 ≤ k ≤ N (2.40)
22



has a solution uj(x) as a funtion on Ω. Note that this also follows whenalulating the optimal solution of (2.31). Furthermore, we now know that
K(x, ·)X(z) =

N∑

j=1

uj(x)K(xj , z) (2.41)holds for all x, z ∈ Ω. Note that the funtions uj need not be ontained in
HX at this point.Theorem 2.42. They are in HX and a Lagrange basis, i.e.

uj(xk) = δjk, 1 ≤ j, k ≤ Nif the kernel matrix is nonsingular. In general, we still have
fX =

N∑

j=1

uj(·)f(xj). (2.43)Proof: The �rst assertion follows from (2.40), and it is now lear why weused the omplex onjugates there. To prove the seond assertion, we startfrom (2.32) and proeed via
fX =

N∑

k=1

αkK(xk, ·)

=
N∑

k=1

αk

N∑

j=1

uj(·)K(xj , xk)

=
N∑

j=1

uj(·)
N∑

k=1

αkK(xk, xj)

=
N∑

j=1

uj(·)f(xj).2Going bak to (2.41), we getTheorem 2.44. The Power Funtion has the expliit representation
P 2
X(x) = K(x, x)−

N∑

j=1

uj(x)K(x, xj)−
N∑

j=1

uj(x)K(xj , x)

+
N∑

j=1

N∑

k=1

uj(x)uk(x)K(xj , xk)

= K(x, x)−K(x, ·)X(x).23



Proof: The Power Funtion is the norm of K(x, ·)−K(x.·)X . From (2.41)we then get the �rst assertion by diret alulation. Inserting (2.40), thethird and fourth term anel, and the seond is K(x, ·)X(x) by (2.41).Going into the seond part of Theorem 2.42 with f = K(x, ·), we get
K(x, ·)X(z) =

N∑

j=1

uj(z)K(x, xj)

=
N∑

j=1

uj(x)K(xj , z)and see that this quantity is real in ase x = z.If the kernel matrix is singular, the point evaluation funtionals at the pointsof x are not linearly independent. But then one an selet a maximal linearlyindependent subset of those funtionals and restrit oneself to the subset Yof X onsisting of the evaluation points of the seleted funtionals. Funtionvalues of all funtions of F on the disarded points are ompletely determinedby the values on Y by an expliit linear dependene whih is the same forall funtions, and the same applies to the interpolant on Y . Thus it su�esto pose the interpolation problem on Y and ignore the other points. Theinterpolant on Y will automatially interpolate all funtions from H on Xas well. And then one an use the Lagrange basis for the points on Y . Notethat this argument fails if the data are not from a funtion in the Hilbertspae.We shall make this point seletion proess more preise in Setion 2.10 onpage 27 and ombine it with a numerial onstrution of an orthonormalbasis.2.8 Best Linear EstimationFrom the above disussion, we know that fX with the representation (2.43)is the interpolant to f on the set X of data loations. We also have all thebakground material that allows us to onlude that (2.43) at some point
x is the best linear preditor for f(x) in a way that we now desribe. Inpartiular, this is important if the kernel omes from a ovariane (1.12).Consider ompletely arbitrary estimation formulas

(x, f) 7→
N∑

j=1

vj(x)f(xj)24



where no assumptions are made on the x�dependent salar oe�ients vj(x).These are linear in f , and for x �xed, their error funtional is
f 7→ f(x)−

N∑

j=1

vj(x)f(xj) =


δx −

N∑

j=1

vj(x)δxj


 (f).To let the estimation be optimal for all f , we should hoose the vj(x) tominimize

VX,v(x) :=

∥∥∥∥∥∥
δx −

N∑

j=1

vj(x)δxj

∥∥∥∥∥∥
H∗

.But from (2.31) we know the solution: it is what we have already with ourfuntions uj, and the optimal error is desribed by the Power Funtion.Theorem 2.45. In the above sense, kernel�based interpolation yields the bestlinear preditor of unknown funtion values f(x) from known funtion values
f(xj) at points xj , 1 ≤ j ≤ N .Let us speialize to the stohasti setting of (1.12) for a moment, with real�valued random variables Xt with mean zero and bounded variane. Theabove numerial estimation tehnique is then alled Kriging, and V 2

X,v isthe variane of the predition error, whih is minimized if we proeed like inthe previous setion.To supply the neessary details, we denote the error of the general linearpreditor at x by
ǫx,X,v := Xx −

N∑

j=1

vj(x)Xxj
.It has zero mean, and variane

E

(
ǫ2x,X,v

)
= Cov(Xx, Xx)− 2

N∑

j=1

vj(x)Cov(Xx, Xxj
)

+
N∑

j=1

N∑

k=1

vj(x)vk(x)Cov(Xxj
, Xxk

)

= K(x, x)− 2
N∑

j=1

vj(x)K(x, xj)

+
N∑

j=1

N∑

k=1

vj(x)vk(x)K(xj , xk)

= V 2
X,v.Note that there is no apparent Hilbert spae here, but we shall see later thatthere is one behind the sene. 25



2.9 Power Funtion and StabilityIt is a general observation that kernel matries are often badly onditioned,and the ondition is partiularly poor in ases where the Power Funtion issmall, i.e. when the interpolation error is small. This is kind of an Uner-tainty Priniple:It is impossible to make the Power Funtion and the ondition of thekernel matrix small at the same time.We shall analyze this e�et now, following [Sh95℄.The basi trik is to express the Power Funtion via the kernel matrix. Inaddition to the point set X = {x1, . . . , xN}, we denote another point x by
x0 := x and de�ne u0(·) := −1. Then we de�ne the extended kernel matrix
Ã with entries K(xj , xk), 0 ≤ j, k ≤ N and the vetor

u := (u0(x), u1(x), . . . , uN(x))
T = (−1, u1(x), . . . , uN(x))

Tto onsider the quadrati form
uT Ã u =

N∑

j=0

N∑

k=0

uj(x)uk(x)K(xj , xk)

= K(x, x)−
N∑

j=1

uj(x)K(x, xj)−
N∑

j=1

uj(x)K(xj , x)

+
N∑

j=1

N∑

k=1

uj(x)uk(x)K(xj , xk)

= P 2
X(x)using Theorem 2.44. The matrix Ã is Hermitian and positive semide�nite.Thus it has N + 1 nonnegative real eigenvalues

λ0 ≥ λ1 ≥ . . . ≥ λN ≥ 0and we get the inequality
P 2
X(x) ≥ λN+1


1 +

N∑

j=1

|uj(x)|2

 ≥ λN+1from the usual bound

λN+1‖u‖22 ≤ uT Ã u ≤ λ0‖u‖22.We an eliminate the speial r�le of the point x:26



Theorem 2.46. The kernel matrix for N points x1, . . . , xN forming a set Xhas a smallest eigenvalue λ bounded above by
λ ≤ min

1≤j≤N
PX\{xj}(xj).This implies that in settings where the Power Funtion still is small after onepoint is left out, the kernel matrix must be ill�onditioned.But note that the kernel matrix is diretly onneted to the span of translates

K(xj , ·), and therefore the ill�onditioning may be a onsequene of a badhoie of the basis. This is indeed the ase, sine one an prove under ad-ditional assumptions that the funtions uj are uniformly bounded [DMS10℄.We shall ome bak to stability questions later.2.10 Newton BasesThe above disussion shows that one should avoid �nearly dupliate� points,or those whose omission does not let the Power Funtion or the Krigingvariane inrease too muh. This an be ast into an adaptive algorithm[DMSW05, MS09℄ that we desribe now. It onstruts an orthonormal basisin a subspae of HX , whih, for ertain reasons, an be alled a Newtonbasis.We assume that we are given a fairly large and unordered set X of N pointsto work with. We start with X0 := ∅ and have P 2
∅ (x) = K(x, x) due toTheorem 2.29. We evaluate and store the N values P 2
∅ (x) = K(x, x) for the

x from X .We introdue an integer k ≥ 0 and assume that we have already hosen anordered subset Xk := {x1, . . . , xk} of X with linearly independent point fun-tionals δx1
, . . . , δxk

. Furthermore, we assume that we have an orthonormalbasis v1, . . . , vk of the spae HXk
with vj+1 ∈ HXj+1

∩H⊥
Xj
, 0 ≤ j ≤ k−1. Weassume that we have the values of these funtions on X in storage, togetherwith the values of PXk

(x)2 for all x ∈ X . So far, this uses O(N(k + 1))storage.To perform the next step, we an stop if X \Xk is empty. Then we hek thevalues of PXk
on X . If they are all zero or smaller than a hosen tolerane, westop. Otherwise we pik some xk+1 ∈ X with PXk

(xk+1) > 0. For a speial�greedy� strategy we ould also hoose
xk+1 := arg max {PXk

(x) : x ∈ X \Xk}. (2.47)27



If PXk
(x) = 0 for all x ∈ X , we stop sine there is nothing to gain by on-tinuing.Now we have PXk

(xk+1) > 0 and form Xk+1 = Xk ∪ {xk+1}. If δxk+1
werelinearly dependent on the funtionals δx1

, . . . , δxk
, we would have PXk

(x) =
PXk+1

(x) for all x ∈ Ω due to Theorem 2.29 and HXk
= HXk+1

, but then
PXk

(xk+1) = PXk+1
(xk+1) = 0 is a ontradition.Then we go for vk+1 ∈ HXk+1

∩ H⊥
Xk

with norm one. The standard way todo this is to ignore normalization �rst, an to make a funtion
wk+1 := K(xk+1, ·)−

k∑

j=1

αjvjorthogonal to all v1, . . . , vk. This means
.

(vi, K(xk+1, ·))H = vi(xk+1)

=
k∑

j=1

αj(vi, vj)H

= αi, 1 ≤ i ≤ k

(2.48)as simple evaluations of the funtions vi. We already have these values, butwe need the additional n values K(xk+1, x) for x ∈ X to alulate wk+1 on
X by O(Nk) operations. Note that vk+1 ∈ H⊥

Xk
implies that vk(xj) = 0, 1 ≤

j ≤ k, but we do not let these onditions enter into the alulation.The norm of wk+1 is also easy to alulate via the orthonormal deomposition
K(xk+1, ·)− wk+1 =

k∑

j=1

αjvjleading to
k∑

j=1

|αj|2 = ‖K(xk+1, ·)− wk+1‖2H
= K(xk+1, xk+1)− (K(xk+1, ·), wk+1)H

−(wk+1, K(xk+1, ·))H + ‖wk+1‖2H
= K(xk+1, xk+1)− 2 Re (wk+1(xk+1)) + ‖wk+1‖2H.We an now de�ne

vk+1(x) :=
wk+1(x)

‖wk+1‖28



and alulate its values on X . Finally, we need the Power Funtion P 2
Xk+1

on
X . To this end, we use Theorem 2.44 in the form

P 2
Xk+1

(x) = K(x, x)−K(x, ·)Xk+1
(x)and take advantage of our orthonormal basis:

K(x, ·)Xk+1
(z) =

k+1∑

j=1

(K(x, ·), vj)Hvj(z)

=
k+1∑

j=1

vj(x)vj(z),

K(x, ·)Xk+1
(x) =

k+1∑

j=1

|vj(x)|2to arrive at the surprisingly simple reursion
P 2
Xk+1

(x) = K(x, x)−K(x, ·)Xk+1
(x)

= K(x, x)−
k+1∑

j=1

|vj(x)|2

= P 2
Xk

(x)− |vk+1(x)|2.

(2.49)We see that we are onstruting inreasing ordered sets of points where theassoiated point evaluation funtionals are linearly independent, and thus allkernel matries here are positive de�nite. Furthermore, we have a sequeneof orthonormal funtions v1, v2, . . . with the property
vk(xj) = 0, 1 ≤ j < k (2.50)like the basis
vk(x) =

k−1∏

j=1

(x− xj)for the univariate interpolating polynomial in Newton form. This is why weall the vj a Newton basis. We summarize:Theorem 2.51. The above adaptive algorithm selets for 0 ≤ k ≤ N an or-dered subsequene of points x1, . . . , xk of an N�point set X suh that the pointevaluation funtionals δx1
, . . . , δxk

are linearly independent. In addition, anorthonormal basis v1, . . . , vk of HXk
is onstruted with the Newton property(2.50). The overall storage is O(Nk), while omputational operations are

O(Nk2). The original N ×N kernel matrix is never formed or stored. Thealgorithm produes and monitors monotonially dereasing power funtionswith (2.49). It should be stopped when these are small on X.29



So far, the algorithm only produes the values of the basis on X . In pratie,one an often let N and X be as large as needed for plotting and funtionevaluation, stopping the method at reasonably small values of k. This impliesthat additional evaluations are not neessary at all. But if evaluation at some
x is neessary, it an be done at O(k2) ost as follows. We start with

v1(x) =
K(x1, x)√
K(x1, x1)and work our way up to vk(x) using

vj(x) =
wj(x)

‖wj‖Hand
wj(x) = K(xj , x)−

j−1∑

i=1

vi(xj)vi(x)using (2.48).Theorem 2.52. The Newton basis funtions have the additional property
k∑

j=1

|vj(x)|2 ≤ K(x, x) for all x ∈ Ω.and for the �greedy� variation also
|vj(x)| ≤ |vj(xj+1)| = PXj

(xj+1) for all x ∈ X.Proof: The �rst property follows from Theorem 2.7 beause we onstrutedan orthonormal basis of HXk
. For the seond, the �greedy� seletion of xj+1implies

|vj(x)|2 ≤ PXj
(x)2 ≤ PXj

(xj+1)
2 = |vj(xj+1)|2using that PXj+1

(xj+1) = 0 due to Theorem 2.29.The seond property guarantees that the Newton basis has no higher maximathan the ontrolled one at xj+1.By orthonormality, we an write the interpolants fXk
=: fk on Xk in theform

fk =
k∑

j=1

(f, vj)vj , (2.53)30



and if we do so, we need the oe�ients
λj(f) := (f, vj), 1 ≤ j ≤ k.This means that the vj are the Riesz representers of the funtionals λj. Con-sequently,Theorem 2.54. The funtionals λj for the Newton basis are orthonormal,and their Riesz representers are the Newton basis funtions. In partiular,
k∑

j=1

|λj(f)|2 ≤ ‖fk‖2H ≤ ‖f‖2H.Looking at the numerial evaluation of (2.53) at some point x, given that wehave both the vj(x) and the λj(f), we get
|fk(x)|2 ≤




k∑

j=1

|λj(f)|2





k∑

j=1

|vj(x)|2

 ≤ ‖fk‖2HK(x, x).The outer part is not surprising, but the message here is that both innerfators stay bounded. This is in sharp ontrast to (2.32), where in mostappliations the oe�ients αj are large in absolute value, leading to severeanellation when forming the sum.2.11 Kernel Reursions and ExpansionsWe need not always assume the speial hoie (2.47) for the next point. Towhat we do now, it su�es to guarantee PXk

(xk+1) > 0 throughout. In viewof the reursion (2.49) for the Power Funtion, we de�ne kernels
Kk(x, y) :=

k∑

j=1

vj(x)vj(y) for all x, y ∈ Ω (2.55)and
K⊥

k (x, y) := K(x, y)−Kk(x, y) for all x, y ∈ Ωwith the reursion
Kk+1(x, y) = Kk(x, y) + vk+1(x)vk+1(y). (2.56)Theorem 2.57. The kernel Kk is reproduing on HXk

, while K⊥
k is repro-duing on H⊥

Xk
. As reproduing kernels in Hilbert spaes, they are Hermitianand positive semide�nite by Theorem 2.38. Furthermore,

P 2
Xk

(x) = K⊥
k (x, x) for all x ∈ Ω.31



Proof: Eah funtion in HXk
is of the form (2.53), and this means

fk(x) =
k∑

j=1

(fk, vj)vj(x)

= (fk,
k∑

j=1

vj(x)vj)H

= (fk, Kk(x, ·))H
= (f,Kk(x, ·))Hwhere the last equality holds for all funtions f that fk interpolates on Xk.Eah funtion in H⊥

Xk
is of the form g = f − fk, and then

g(x) = f(x)− fk(x)
= (f,K(x, ·))H − (f,Kk(x, ·))H
= (f,K⊥

k (x, ·))H
= (g + fk, K

⊥
k (x, ·))H

= (g,K⊥
k (x, ·))H.Finally, (2.49) implies the rest.The adaptive matrix�free algorithm of the previous setion is nothing elsethan a pivoted Cholesky deomposition:Theorem 2.58. If stopped after k steps, the algorithm for the Newton basishas produed a Cholesky deomposition Ak = LLT of the kernel matrix

Ak for HXk
. The matrix L has the entries vj(xi), 1 ≤ i, j ≤ k.Proof: From (2.55) we get that the kernel matrix entries are
K(xi, xj) = Kk(xi, xj) + 0

=
k∑

j=1

vj(xi)vj(xj) for all x, y ∈ Ω.If we go from Xk one step further, we have the starting step of the algorithmagain, but now ating on Kk. This means
vk+1(x) =

Kk(xk+1, x)√
Kk(xk+1, xk+1)and we get the reursions

Kk+1(x, y) = Kk(x, y) +
Kk(x, xk+1)Kk(xk+1, y)

Kk(xk+1, xk+1)

K⊥
k+1(x, y) = K⊥

k (x, y)−
Kk(x, xk+1)Kk(xk+1, y)

Kk(xk+1, xk+1)32



from (2.56) whih does not ontain the Newton basis anymore.But the main point of this disussion is that one an pass to the limit k →
∞ if there is an in�nite set X and if the alulation does not break downprematurely, then leading to a �nite�dimensional subspae HX of H. In fat,the kernels are pointwise absolutely summable via (2.5) and

Kk(x, x) = K(x, x)− P 2
Xk

(x) ≤ K(x, x)for all k.De�nition 2.59. A subset X ⊆ Ω is unisolvent for a spae of funtions Fon a set Ω, if a funtion f ∈ F vanishing on X must be zero on all of Ω.Note that we did not use Hilbert spae struture here. But in our standardHilbert spae ontext, we an apply setions 2.5 and 2.6 to getTheorem 2.60. If X is an unisolvent set for a Hilbert spae H of fun-tions on Ω with ontinuous point evaluation, then HX = H and H⊥
X = {0}.Furthermore, PX = 0.At this point, one an ask whether �dense� point sets X are unisolvent, butwe have only the distane (2.16) of Setion 2.3 at our disposal.Theorem 2.61. If X is dense in the distane (2.16), i.e. if for all points

y ∈ Ω and all ǫ > 0 there is a point x ∈ X with d(x, y) < ǫ, then X isunisolvent for H.Proof: From (2.31) we know that
PX(y) ≤ inf

x∈X
‖δy − δx‖H∗ for all y ∈ Ω,and this implies PX(y) = 0 under the assumptions of the theorem.2.12 General InterpolantsWe now depart from point evaluation funtionals. We �x a subset Λ ofthe dual H∗ that generalizes the set X we had before, and want to onsiderinterpolation using the data λ(f) for all λ ∈ Λ. This replaes point evaluationfuntionals by general funtionals, and goes bak to [Wu92℄.In standard speial ases, these funtionals an ontain derivatives, e.g.
λ(f) =

∂f

∂tj
|z33



for the j�th partial derivative of a d�variate funtion f at a point z, or
λ(f) =

∫

T
f(t)v(t)dtfor a loal integral over a subdomain T against a weight or �test� funtion

v. Interpolation of general funtionals λ1, . . . , λN usually is a mess, beauseone wants to use interpolants from a span of funtions u1, . . . , uN and has nohane to make sure that the matrix with entries λk(uj) is nonsingular. Evenfor univariate polynomials, the fully general Hermite�Birkho� interpo-lation problem has no apparent and simple solution. In this situation, oneresorts to Hermite interpolation requiring all neessary lower derivatives,too. In multivariate appliations, things are even more ompliated, butfor kernel�based interpolation there is a solution we desribe now. It is thestarting point for various meshless methods for solving partial di�erentialequations.We have already derived it without knowing. In fat, we an deal withthis seemingly more general situation by temporarily dropping the kernel Kompletely, using the kernel
K∗(λ, µ) := (λ, µ)H∗ for all λ, µ ∈ H∗instead of K with
K(x, y) = (δy, δx)H∗ = K∗(δy, δx)H∗ .This means that we simply redo the previous paragraphs using Ω = H∗and replaing points x and xj by funtionals λ and λj , while K∗ replaes Kwith swapped arguments. At the same time, this allows us to work in Hilbertspaes where users annot rely on point evaluation and have to resort to weakmethods. This applies to Hilbert spaes like Wm

2 (Ω) for domains Ω ⊂ Rdwith m ≤ d/2. The most important of suh ases arises for d = 2 and
m = 1. But we an also deal with fairly general Hilbert spaes H that arenot neessarily a spae of funtions on some spei� set Ω 6= H∗. Readersshould note that in the sense of (2.1) on page 11 the funtionals our in atwofold way, namely as arguments of funtions in H and as funtionals onelements of H.Given a subset Λ of the dual H∗, we de�ne

HΛ := los span {R(λ) : λ ∈ Λ}.34



To see the onnetion to (2.20), we onsider
(R(λ))(µ) = µ(R(λ))

= (R(λ), R(µ))H
= (µ, λ)H∗

= K∗(µ, λ) for all λ ∈ H∗, µ ∈ H∗suh that R(λ)(·) = K∗(·, λ).If the original kernel K is still there, readers an be trapped by assumingthat R(δx)(y) = K(x, y) generalizes to R(λ)(y) = λ(K(·, y)), but the ationof funtionals to the �rst argument of the kernel is unde�ned if we are in thetruly omplex ase. Instead, the property K(x, y) = R(δx)(y) generalizes to
R(λ)(x) = (R(λ), K(x, ·))H

= (K(x, ·), R(λ))H
= λyK(x, y)where λy denotes ation of λ with respet to y. If we let another funtional

µ at with respet to x on this, we get
µ(R(λ)) = µx(λyK(x, y)) = (µ, λ)H∗.Thus entries of generalized kernel matries are

(λj, λk)H∗ = λxj (λ
y
kK(x, y)) (2.62)if the kernel K is still present.Dropping K again, we generalize Theorem 2.21 toTheorem 2.63.

H⊥
Λ = {f ∈ H : λ(f) = 0 for all λ ∈ Λ}.A new proof is not neessary, but we an translate the original proof. Eah

f ∈ H⊥
Λ is haraterized by (f, R(λ))H = 0 for all λ ∈ Λ, and this means

λ(f) = 0 for all λ ∈ Λ.Again, we de�ne a projetor ΠΛ onto HΛ and denote fΛ := ΠΛ(f). ThenTheorem 2.22 generalizes to
35



Theorem 2.64. Eah element f ∈ H has an orthogonal deomposition
f = fΛ + f⊥

Λwith fλ ∈ HΛ and f⊥
Λ ∈ H⊥

Λ . Then fΛ interpolates f in the sense
λ(f) = λ(fΛ) for all λ ∈ Λ.Furthermore,
‖f − fΛ‖H = inf

g∈HΛ

‖f − g‖Hand
‖fΛ‖H = inf

g ∈ H
λ(f) = λ(g)for all λ ∈ Λ

‖g‖H.

This performs trans�nite interpolation by general sets of funtionals. Mono-toniity like in Corollary 2.27 also prevails, and we have the optimality prin-iples from the orollaries following Theorem 2.22.To evaluate the error, we annot use point evaluation funtionals. Instead,we take an �evaluation� funtional µ ∈ H∗ replaing a point x and onsiderthe error funtional
µ(f − fΛ) = (µ− µ ◦ ΠΛ)(f)The generalization of the Power Funtion then is

PΛ(µ) := ‖µ− µ ◦ ΠΛ‖H∗ for all µ ∈ H∗.and we leave it to the reader to generalize Theorem 2.29, where the �fthproperty should be replaed by its dual form (2.31). The numerial on-strution of interpolants for �nite sets Λ = {λ1, . . . , λn} generalizes similarly.Instead of (2.32) we have
fΛ =

n∑

j=1

αjR(λj),and we impose the interpolation onditions to get
λk(fΛ) = λk(f) =

n∑

j=1

αjλk(R(λj)), 1 ≤ k ≤ n.36



The kernel matrix is replaed by the Gramian with elements
λk(R(λj)) = (R(λj), R(λk))H = (λk, λj)H∗ .Note that in presene of the original kernel K one has to alulate this using(2.62).To generalize the system (2.40) we pik f = R(µ) to obtain

λk(R(µ)Λ) = λk(R(µ)) = (λk, µ)H∗

=
n∑

j=1

uj(µ)(λk, λj)H∗ , 1 ≤ k ≤ nwhere we annot say that the uj are elements of H unless the funtionalsin Λ are linearly independent. But in the latter ase, we have that they arelinear ombinations of
λk(R(µ)) = (µ, λk) = R(λk)(µ)as funtions of µ, i.e. the uj are in HΛ. This is in line with Theorem 2.42.In general, the solution of the interpolation problem an be written as

fΛ =
n∑

j=1

λj(f)ujin the sense that
µ(fΛ) =

n∑

j=1

λj(f)uj(µ)for all µ ∈ H∗. Also, the onnetion between the Power Funtion and stabilitygeneralizes toTheorem 2.65. The kernel matrix for N funtionals λ1, . . . , λN forming aset Λ has a smallest eigenvalue λ bounded above by
λ ≤ min

1≤j≤N
PΛ\{λj}(λj).Finally, we note that also the onstrution of the Newton basis generalizesverbatim.For what follows, we an always stik to point evaluation, going bak to

Ω = H∗ and K∗ if we want to deal with general funtionals.37



2.13 Fator SpaesRS: Still somewhat inomplete, De. 2010In ertain important situations onneted to the notion of onditional posi-tive de�niteness (see Setion 5), there is no reproduing kernel Hilbert spaeof funtions on Ω at �rst sight. Instead, there is a spae H of K�valued fun-tions on Ω arrying a semi�inner produt with a losed nullspae P ⊂ H,i.e.
(x, y)H = 0 for all y ∈ H holds i� x ∈ P,suh that the fator spae H/P is a Hilbert spae under the inner produt

([f ], [g]) := (f, g)H for all f, g ∈ H,where we adopt the notation [f ] for the lass f + P represented by some f .Note that we now have a Hilbert spae again, but the elements are equivalenelasses modulo some subspae P. With a linear projetor Π onto P we assumethat the funtionals
µx : f 7→ f(x)− (Π(f))(x) for all x ∈ Ω, f ∈ H (2.66)are ontinuous in the seminorm or on H/P, i.e.

|µx(f)| ≤ Cx‖[f ]‖H = Cx‖[f ]‖ for all f ∈ H.Then µx has a Riesz representer [K(x, ·)] in H/P with some K(x, ·) ∈ Hwhih is for eah x nonunique up to funtions in P. Then
µx(f + P) = f(x)− (Π(f))(x) = ([f ], [K(x, ·)]) = (f,K(x, ·))Hholds for all x ∈ Ω, f ∈ H. This yields a Taylor�type representation formula

f(x) = (Π(f))(x) + (f,K(x, ·))H (2.67)for all f ∈ H, x ∈ Ω, replaing the reprodution equations we had so far.Sine for eah x ∈ Ω we are free to hange K(x, ·) by some funtion in P,we an assume that Π(K(x, ·)) = 0 for all x ∈ Ω, e.g. by going over to
K(x, y)−Π(K(x, ·))(y). Then the reprodution formula leads to

K(y, x) = (K(y, ·), K(x, ·))H for all x, y ∈ Ω. (2.68)This yields a positive semide�nite Hermitian kernel, but note that it dependson the hosen projetor Π. 38



But we do not want to work with equivalene lasses. If we want to reoverfuntions from their values at points of a set X = {x1, . . . , xN} ⊂ Ω, weannot use the data diretly, beause point evaluation funtionals δx are notwell de�ned. We have to use funtionals µxj
instead. Thus we should startfrom a lass [f ] and onsider the problemarg min {

‖[s]‖ : s ∈ H, µxj
(s) = µxj

(f), 1 ≤ j ≤ N
}
.This learly has a minimizer in the fator spae, and we know it is a lin-ear ombination of the Riesz representers of the µxj

whih are the lasses
[K(xj , ·)]. Thus the funtion

s0(x) =
N∑

j=1

αjK(xj , x)represents the solution lass. We also have
µxk

(s0) = µxk
(f) = 0+

N∑

j=1

αjµxk
(K(xj , ·)) =

N∑

j=1

αjK(xj , xk) + 0, 1 ≤ k ≤ N.This system is learly solvable, but we do not have interpolation of f onall data. We have only ared for data de�ned by [f ], but we also have thesame interpolation properties so far, if we hange s0 by some funtion p ∈ P.Considering s = s0 + p with some p ∈ P, we get
f(xk) = µxk

(f) + Π(f)(xk)
= µxk

(s0) + Π(f)(xk)
= µxk

(s) + Π(f)(xk)
= s(xk)− Π(s)(xk) + Π(f)(xk), 1 ≤ k ≤ N.and see that we should hange s0 into s + p in suh a way that Π(s) =

Π(s0 + p) = Π(p) = Π(f). Thus the funtion s0 + Π(f) solves the fullinterpolation problem. We summarize:Theorem 2.69. Let H be a spae of funtions on Ω whih arries a semi�inner produt with a losed nullspae P suh that the fator spae H/P isa Hilbert spae. Assume further that the funtionals (2.66) are ontinuousin the seminorm, and denote a �xed projetor onto P by Π. Then one ande�ne a Hermitian kernel K on Ω × Ω suh that the reprodution equation(2.67) and the standard identity (2.68) hold together with Π(K(x, ·)) = 0 forall x ∈ Ω. Furthermore, interpolation of data of funtions of H is alwayspossible and has ertain optimality properties in the fator spae.Note that we have used a good deal of freedom to de�ne a kernel that suitedour needs. When going bakwards in Setion 5, starting from a given ondi-tionally positive de�nite kernel and proeding towards a Hilbert spae, wewill not be free to hange the kernel.39



3 Hilbert Spaes from KernelsWe now go bak the the abstrat de�nition 1.2 on page 1 of kernels on generalsets Ω. We shall onstrut a Hilbert spae in whih the kernel is reproduing.This will then allow us to apply everything we did in the previous hapter.3.1 Positive De�nitenessIf we have no hypotheses to start with, we annot expet to be able todevelop a reasonable theory for kernels. The basi assumption we shall needis positive semide�niteness, as already de�ned in De�nition 2.37. We giveanother motivation for it here.If we have an arbitrary set X = {x1, . . . , xN} of N distint elements of Ω anda symmetri or Hermitian kernel K on Ω, we an form linear ombinations
s(x) :=

N∑

j=1

ajK(xj , x), x ∈ Ω, ak ∈ K (3.1)of �translates� of the kernel, ating as trial funtions like we did in Setion1.4 already. This is a very onvenient tehnique to generate funtions on anotherwise unstrutured set Ω. It will be lear later why we take the omplexonjugate of the oe�ients in (3.1).With suh a set X = {x1, . . . , xN} we an form the symmetri N×N kernelmatrix
A := (K(xj , xk))1≤j,k≤N (3.2)and pose the interpolation problem

yk = s(xk), 1 ≤ k ≤ N

yk =
N∑

j=1

ajK(xj , xk), 1 ≤ k ≤ N.
(3.3)for s from (3.1). In matrix notation, this is an N ×N linear system

Aa = y.In general, solvability of suh a system is a serious problem, but one of theentral features of kernels and radial basis funtions is to make this problemobsolete via 40



De�nition 3.4. (see also De�nition 2.37)A Hermitian kernel K on Ω with values in K is alled positive (semi�)de�nite, if for all sets X = {x1, . . . , xN} of N distint elements of Ω andall N the N ×N kernel matrix (3.2) is positive (semi�) de�nite.This means that the Hermitian quadrati form
a ∈ K

n 7→
N∑

j,k=1

ajakK(xj , xk) =
N∑

j,k=1

ajakK(xk, xj)has nonnegative real values. In the positive de�nite ase, it additionally iszero only if the vetor a is zero.Theorem 3.5. Expansion kernels of the form (1.6) are positive semide�nite.Also, kernels arising from feature maps via (1.3) are positive semide�nite.Proof: The seond statement is obvious, beause kernels from feature mapsgenerate kernel matries that are Gramian matries, and these are alwayspositive semide�nite. To prove the �rst part, one an write the expansionvia a suitable feature map with values in a weighted sequene spae. To givean expliit proof whih is typial for muh more general ases, the quadratiform orresponding to the kernel matrix an be written as
aT Aa =

N∑

j,k=1

ajakK(xj , xk)

=
N∑

j,k=1

ajak
∑

i∈I
λiϕi(xj)ϕi(xk)

=
∑

i∈I
λi

N∑

j=1

ajϕi(xj)
N∑

k=1

akϕi(xk)

=
∑

i∈I
λi

∣∣∣∣∣
N∑

k=1

akϕi(xk)

∣∣∣∣∣

2

≥ 0for all vetors a ∈ KN .Note that this applies to the univariate Gaussian via (1.9).At this point, we stik to positive semide�niteness, but later we shall turn topositive de�nite kernels.The basi onnetion of positive semide�nite kernels to a representation (1.6)is Merer's 41



Theorem 3.6. Suppose K is a ontinuous symmetri positive semide�nitekernel on a losed bounded interval Ω := [a, b] ⊂ R. Then there is an or-thonormal basis {ϕi}i∈N of L2[a, b] onsisting of eigenfuntions of the linearintegral operator de�ned by K suh that the orresponding sequene of eigen-values λi is nonnegative. This means
∫ b

a
K(x, y)ϕi(y)dy = λiϕi(x) for all x ∈ [a, b], i ∈ N.The eigenfuntions orresponding to non-zero eigenvalues are ontinuous on

[a, b] and K has the representation (1.6), where the onvergene is absoluteand uniform.This theorem is ontained in all reasonable books on Integral Equations orFuntional Analysis. The bakground fat is that the operator
ϕ 7→

∫ b

a
K(x, y)ϕ(y)dyis a ompat �positive � integral operator on L2[a, b], and Merer's theoremis a onsequene of standard spetral theory in Hilbert spaes. Furthermore,all of this generalizes to domains and kernels in more than one dimension.3.2 General RulesWe state some useful results on positive (semi)�de�nite kernels on some do-main Ω.Theorem 3.7. Let K be a positive semide�nite kernel on Ω. Then

K(x, x) ≥ 0 for all x ∈ Ω,

K(y, x) = K(x, y) for all x, y ∈ Ω,
|K(x, y)|2 ≤ K(x, x) ·K(y, y) for all x, y ∈ Ω,
2|K(x, y)|2 ≤ K(x, x)2 +K(y, y)2 for all x, y ∈ Ω.Furthermore, any �nite linear ombination of positive semide�nite kernelswith nonnegative oe�ients yields a positive de�nite kernel (this means thatpositive de�nite kernels form a onvex one). If one of the kernels is positivede�nite, and if its fator is positive, the superposition of kernels is positivede�nite. Finally, the produt of two positive semide�nite kernels is positivesemide�nite.
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Proof: For the �rst property, use X = {x} in De�nition 3.4. The seondproperty restates that our kernels will always be Hermitian. Sine determi-nants of positive semide�nite Hermitian quadrati forms must be nonnega-tive, the third property follows if we take a setX = {x, y}. The �nal propertyfollows from the third, using the standard inequality
2ab ≤ a2 + b2for nonnegative real numbers a, b. The statements on nonnegative linearsuperposition are very easy to see.Thus we are left with the �nal assertion, whih is nontrivial. Assume twopositive semide�nite kernels K and L to be given, and take a set X of Npoints of Ω and a oe�ient vetor a ∈ CN . We have to prove nonnegativityof the quadrati form

Q :=
N∑

j,k=1

ajakK(xj , xk)L(xj , xk).Sine the kernel matrix A for K is positive semide�nite, we an transformit to a diagonal matrix with nonnegative diagonal entries λ1, . . . , λN by aunitary matrix S. This means that
K(xj , xk) =

N∑

m=1

λmsj,msk,mwith omplex sj,k and we an insert this into our quadrati form to get
Q =

N∑

j,k=1

ajakL(xj , xk)
N∑

m=1

λmsj,msk,m

=
N∑

m=1

λm
N∑

j,k=1

ajsj,m︸ ︷︷ ︸
=:bj,m

aksk,mL(xj , xk)

=
N∑

m=1

λm
N∑

j,k=1

bj,mbk,mL(xj , xk)

︸ ︷︷ ︸
≥0

≥ 0.

We leave it to the reader to use some linear algebra to proveCorollary 3.8. The produt of two positive de�nite kernels is positive de�-nite. 43



For later use, we add another superposition priniple, applying generalizedonvolution. If
L : Ω× Z → Cis an arbitrary funtion, and if we take any set of points z1, . . . , zm ∈ Z, wean form a kernel

K(x, y) :=
m∑

ℓ=1

cℓL(x, zℓ)L(y, zℓ)when taking nonnegative real oe�ients c1, . . . , cm. The kernel K will behermitian, and positive semide�nite due to
N∑

j,k=1

ajakK(xj , xk)

=
N∑

j,k=1

ajak
m∑

ℓ=1

cℓL(xj , zℓ)L(xk, zℓ)

=
m∑

ℓ=1

cℓ
N∑

j,k=1

ajL(xj , zℓ)akL(xk, zℓ)

=
m∑

ℓ=1

cℓ

∣∣∣∣∣∣

N∑

j=1

ajL(xj , zℓ)

∣∣∣∣∣∣

2

≥ 0.This generalizes easily to ases where the sum an be replaed by an integral,e.g.
K(x, y) :=

∫

Z
c(z)L(x, z)L(y, z)dz, x, y ∈ Ωwith a nonnegative funtion c, provided that the above is well�de�ned and�nite. This holds whenever

K(x, x) =
∫

Z
c(z)|L(x, z)|2dzis well�de�ned and �nite for all x ∈ Ω, due to the Cauhy�Shwarz inequality.Applying measure theory, on an also go over to

K(x, y) :=
∫

Z
L(x, z)L(y, z)dµ(z), x, y ∈ Ωwith a nonnegative measure µ on Z, using

K(x, x) =
∫

Z
|L(x, z)|2dµ(z)as a su�ient ondition for well�de�nedness of the new kernel.44



But note that the above argument is nothing else than the transition to asuitable feature spae. If
Φ(x) := L(x, ·)maps Ω into a suitable funtion spae F onsisting of funtions on Z as afeature spae, we an write eah instane of the above onstrution in theform (1.3). Thus positive semide�niteness of suh kernels is no mirale.3.3 Inner ProdutThe following onstrution is of utmost importane for kernel�based teh-niques. We assume K to be a Hermitian real� or omplex�valued positivesemide�nite kernel on Ω, and we form the linear spae

H := span {K(x, ·) : x ∈ Ω} (3.9)of all �nite linear ombinations of generalized translates of the kernel. Simi-larly, we de�ne the linear spae
L := span {δx : x ∈ Ω, δx : H → K} (3.10)of all �nite linear ombinations of point evaluation funtionals ating onfuntions inH . Note that we restrit the ation of the funtionals to funtionsin H .Now all elements from L or H take the form

λa,X :=
N∑

j=1

ajδxj
, fa,X(x) := λya,XK(x, y) =

N∑

j=1

ajK(xj , x) (3.11)with a ∈ KN while X = {x1, . . . , xN} ⊂ Ω, but di�erent N and all pointsets X are allowed. We introdued omplex onjugates in the seond form,beause we want to end up with fa,X = R(λa,X) for the antilinear Riesz map
R. Note that fa,X(·) = 0 or λa,X(·) = 0 do not imply a = 0, foring us to beareful.On L we an de�ne a sesquilinear form

(λa,X , λb,Y )L :=
M∑

j=1

N∑

k=1

ajbkK(yk, xj)

= λxa,Xλ
y
b,YK(x, y)

= λa,X(fb,Y ).

(3.12)
45



It is well�de�ned, beause the seond form in (3.12) is obtained by an ationof the funtionals, thus it is independent of their representation. Further-more, we have a positive semide�nite form due to the positive semide�nite-ness of all kernel matries.Then we have
|λa,X(fb,Y )| = |(λa,X , λb,Y )L|

≤ ‖λa,X‖L‖λb,Y ‖L (3.13)where we may still have just a seminorm, not a norm.Strangely enough, the sesquilinear form is even positive de�nite:Theorem 3.14. If K is a positive semide�nite Hermitian kernel on Ω, thesesquilinear form (., .)L of (3.12) is positive de�nite on the spae L of (3.10)as a spae of funtionals de�ned on funtions on Ω. Thus L is a pre�Hilbertor Eulidean spae of funtions on Ω.Proof: Assume that
(λa,X , λa,X)L =

N∑

j,k=1

ajakK(xj , xk) = λxa,Xλ
y
a,XK(x, y) = λa,X(fa,X) = 0for a ∈ KN and X = {x1, . . . , xN} ⊂ Ω. Then by (3.13) we have λa,X = 0 asa funtional on H . Here it pays o� to have the funtionals in L restrited tofuntions in H . Note that we do not need or get a = 0.Theorem 3.15. The mapping

R : λa,X 7→ fa,X := λya,XK(·, y)is antilinear and bijetive from L onto H. Thus
(fa,X , fb,Y )H := (λb,Y , λa,X)L = (R(λa,X), R(λb,Y ))His an inner produt on H, and R ats as the Riesz map.Proof: If some fb,Y = R(λb,Y ) ∈ H vanishes, (3.12) implies that λb,Y isorthogonal to all of L, thus zero due to Theorem 3.14. The Riesz propertyis already in (3.12) sine

(λa,X , λb,Y )L = (R(λb,Y ), R(λa,X))H
= (fb,Y , R(λa,X))H
= λa,X(fb,Y ).46



When speializing (3.12) to λ1,x for a point x ∈ Ω, we get the reprodutionequation
(λ1,x, λb,Y )L = fb,Y (x)

= (R(λb,Y ), R(λ1,x))H
= (fb,Y , R(λ1,x))H
= (fb,Y , K(x, ·))H

(3.16)in H . Finally, (2.3) follows if we set λb,Y = λ1,y above.3.4 Native SpaeWe now know that H is an inner�produt or semi�Hilbert spae of funtionson Ω under the inner produt (., .)H , provided that K is a positive semide�-nite Hermitian kernel on Ω. Furthermore, we also have L as its dual, and wehave the Riesz map R.Then we an invoke a lassial argument from Hilbert spae theory to goover the losure H of H under (., .)H . This is an abstrat spae de�ned byequivalene lasses of Cauhy sequenes in H , but it is a omplete spae(thus a Hilbert spae), and eah ontinuous map from H to a Banah spae
Y extends uniquely to the losure.Theorem 3.17. Eah symmetri positive semide�nite kernel K on a set Ωis the reproduing kernel of a Hilbert spae alled the native spae H := NKof the kernel. This Hilbert spae is unique, and it is a spae of funtions on
Ω. The kernel K is a reproduing kernel of NK in the sense

(f,K(y, ·))H = f(y) for all y ∈ Ω, f ∈ NKgeneralizing (3.16).Proof: The existene of the native spae follows from standard Hilbert spaearguments we do not repeat here, see setion 11.8. Sine (3.16) is an equationwith both sides being ontinuously dependent on f ∈ H , it arries over tothe losure and thus to the native spae, proving the reprodution formulaabove. But then it explains how an abstrat element f of the native spaean be interpreted as a funtion: just use the left�hand side as a de�nitionof the right�hand side.If K is reproduing in a possibly di�erent Hilbert spae T with an analogousreprodution equation, we an use (2.3) and the reprodution equation in Tto onlude
K(x, y) = (K(x, ·), K(y, ·))H = (K(x, ·), K(y, ·))T ,47



and this proves that the inner produts of T and NK oinide on H . Sine
T is a Hilbert spae, it must then ontain the losure NK of H as a losedsubspae. If T were larger than NK , there must be a nonzero element f ∈ Hwhih is orthogonal to NK and in partiular to H . But then

f(y) = (f,K(y, ·))T = 0 for all y ∈ Ωis a ontradition.To mark the dependene of the native Hilbert spae on the kernel K westarted with, we prefer the notation NK over the notation H we used inChapter 2.Note that usually the Hilbert spae losure of an inner�produt spae is on-siderably �larger� than the spae itself. This is very muh like the transitionfrom rational numbers to real numbers.4 Expansion KernelsThe previous two hapters showed that we an start from Hilbert spaesto arrive at positive semide�nite Hermitian kernels, but we also an startfrom the kernels and onstrut orresponding Hilbert spaes. This hapterillustrates this orrespondene for the speial ase of expansion kernels.4.1 Kernels from Orthonormal BasesLet us start from Hilbert spaes �rst, and work our way towards kernels. Weonsider the fairly general �separable� ase where a Hilbert spae H has aomplete orthonormal basis {ϕn}n∈N. The model situation is the spae ℓ2 ofquadratially summable sequenes. A pratially important ase are trigono-metri polynomials in the spae of square�integrable 2π�periodi funtions,or any spae of funtions spanned by orthogonal polynomials. A third exam-ple is the spae Bh of univariate bandlimited funtions on R with spetrum in
[−π/h, π/h] with the orthonormal basis of shifted and saled sinc funtions

sinc(x) =
sin(π x)

π x
, x ∈ Ras used in the Shannon�Whittaker�Kotelnikov theorem representingfuntions f ∈ Bh as

f(x) =
∑

k∈Z
f(kh)sinc

(
x− kh

h

)
.48



Another expansion kernel is given by the well�known formula
exp

(
−x

2t2 − 2txy + y2t2

2(1− t2)

)
=

√
1− t2

∞∑

n=0

Hn(x)Hn(y)
tn

n!of Mehler (f. [Wat33℄) with x, y ∈ R. It onsists of a weighted expansion intoHermite polynomialsHn on R, whih are orthogonal with weight exp(−x2/2).But �rst we stay general and note that we have not restrited ourselves tospaes of funtions, so far.Eah f ∈ H has a unique expansion
f =

∑

n∈N
(f, ϕn)Hϕn (4.1)with the Parseval equation

‖f‖2H =
∑

n∈N
(f, ϕn)

2
H <∞.This is �ne in the Hilbert spae ontext, but even if all ϕn an be interpretedas funtions on a domain Ω, it is not lear if an expression like

f(x) =
∑

n∈N
(f, ϕn)Hϕn(x)makes sense. In fat, in many ases, inluding trigonometri or orthogo-nal algebrai polynomials, the expansions of funtions in H do not onvergepointwise, but only in the Hilbert spae norm. Thus point�evaluation fun-tionals are not ontinuous on H. As we have seen in Setion 2.12, theseHilbert spaes an always be interpreted as spaes of funtions on their owndual, but this viewpoint is too theoretial at this point.As well�known from Fourier series, the situation is better if the oe�ients ofthe expansion satisfy a deay ondition. We mimi this in general by formallyintroduing positive and uniformly bounded weights λn into the above sum,leading to

f(x) =
∑

n∈N

(f, ϕn)H√
λn

√
λnϕn(x)and the bound

|f(x)|2 ≤

∑

i∈N

|(f, ϕn)H|2
λn




∑

i∈N
λn|ϕn(x)|2
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if we assume that both fators on the right are bounded. We see that we areoming bak towards (1.7) on page 8, but we have no kernel yet. We simplyassume the summability ondition
∑

i∈N
λn|ϕn(x)|2 <∞ for all x ∈ Ω (4.2)and de�ne the funtion spae by

H1 := {f : (4.1) with ∑

i∈N

|(f, ϕn)H|2
λn

<∞}. (4.3)The inner produt of two funtions in H1 then is de�ned as
(f, g)H1

:=
∑

n∈N

(f, ϕn)H(g, ϕn)H
λn

. (4.4)Uniform boundedness of the weights implies that H1 ⊂ H with boundedembedding, and sine we have a spae that an be isometrially mapped to
ℓ2 via oe�ients, we have a Hilbert spae. Thus H1 is a losed subspae of
H, and we have made sure that point evaluation funtionals are ontinuouson H1.From the de�nition (4.4) of the inner produt on H1 we see that the ϕn areorthogonal, but not orthonormal in H1. But the funtions √λnϕn are.Now Theorem 2.4 on page 12 implies that H1 has a reproduing kernel Ksuh that K(x, ·) is the Riesz representer of δx. We assert that

K(x, y) :=
∑

n∈N
λnϕn(x)ϕn(y) (4.5)does the job. The expansion oe�ients of K(x, ·) in H are

(K(x, ·), ϕn)H = λnϕn(x),and they satisfy
∑

∈N

λ2n|ϕn(x)|2
λn

≤
∑

i∈N
λn|ϕn(x)|2 <∞,proving K(x, ·) ∈ H1. Furthermore,

(f,K(x, ·))H1
=

∑

n∈N

(f, ϕn)H(K(x, ·), ϕn)H
λn

=
∑

n∈N
(f, ϕn)Hϕn(x)

= f(x) for all x ∈ Ωproves the reprodution equation, with absolute summability of the series.50



Theorem 4.6. If a Hilbert spae H of funtions on Ω has a ountable or-thonormal basis {ϕn}n∈N, eah summability property of the form (1.7) leadsto a reproduing expansion kernel (4.5) for a suitable subspae H1 with (4.3)of funtions with ontinuous point evaluation. In the spae H1, the funtions√
λnϕn are orthonormal.Note that the reprodution equation uses the inner produt (., .)H1

. Themapping
x 7→ (f,K(x, ·))Hdoes not yield f(x), but rather something like a onvolution (f ∗K)(x). Weevaluate it as

(f,K(x, ·))H =
∑

n∈N
(f, ϕn)H(K(x, ·), ϕn)H

=
∑

n∈N
λn(f, ϕn)Hϕn(x)and this funtion lies in

H2 := {f : (4.1) with ∑

i∈N

|(f, ϕn)H|2
λ2n

<∞}.Thus we get a sale of spaes
Hm := {f : (4.1) with ∑

i∈N

|(f, ϕn)H|2
λmn

<∞}.with
H =: H0 ⊃ H1 ⊃ H2 ⊃ . . .whih are onneted by the onvolution map f 7→ f ∗K. They arry innerproduts

(f, g)Hm :=
∑

n∈N

(f, ϕn)H(g, ϕn)H
λmn

,and have reproduing kernels
Km(x, y) :=

∑

n∈N
λmn ϕn(x)ϕn(y).Note that the map f 7→ f ∗ K = (f,K(x, ·))H oinides with the integraloperator de�ned by a kernel, if it exists, and if the Merer theorem holds.This is easy to see, sine both operators at on expansions by oe�ient�wisemultipliation with the weights, i.e. they are multipliers. An integral or aonnetion to an L2 spae is not neessary.51



Just for uriosity, let us ignore ontinuity of point evaluation for a moment.For linear funtionals λ, µ ∈ H∗ we have square summability of the sequenes
λ(ϕn), µ(ϕn) and

(λ, µ)H∗ =
∑

n∈N
λ(ϕn)µ(ϕn).The kernel

K0(x, y) :=
∑

n∈N
ϕn(x)ϕn(y)makes no pointwise sense, but it satis�es

λx(µyK0(x, y)) =
∑

n∈N
λx(ϕn(x))µy(ϕn(y))

= (λ, µ)H∗i.e. it makes perfet sense in view of (2.62) if funtionals are applied to thearguments. Again, we used a supersript x at λx to denote that λ ats withrespet to the variable x.We �nish this setion with an approximation result. Let K be an expansionkernel assoiated to a omplete set of orthonormal funtions ϕn as above,and let fN be the orthogonal projetion of some element f ∈ H to the spanof ϕ1, . . . , ϕN in the original inner produt. Beause projetions have normone, one annot assert a onvergene rate fN → f in the Hilbert spae normwhih is better than the usual summability property
‖f − fN‖2H =

∞∑

j=N+1

|(f, ϕn)|2.Things are better if we go to weighted kernels and onsider pointwise on-vergene:Theorem 4.7. Let K be an expansion kernel as above, and let fN be theorthogonal projetion of some element f ∈ H to the span of ϕ1, . . . , ϕN inthe original inner produt. Then
|f(x)− fN (x)|2 ≤ ‖f − fN‖2H(K(x, x)−KN(x, x)) (4.8)where KN is the trunated kernel

KN(x, y) :=
N∑

n=1

λnϕn(x)ϕn(y).
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Proof:
|f(x)− fN(x)|2 =

∣∣∣∣∣∣

∞∑

n=N+1

(f, ϕn)ϕn(x)

∣∣∣∣∣∣

2

≤



∞∑

n=N+1

|(f, ϕn)|2
λn






∞∑

n=N+1

λn|ϕn(x)|2



= ‖f − fN‖2H(K(x, x)−KN(x, x)).Consequently, if KN onverges quikly to K for N → ∞, this quik onver-gene goes over to the pointwise onvergene of the projetions.Example 4.9Consider the Gaussian kernel expansion (1.9) on Ω = [−1, 1] ∈ R. Then
K(x, x)−KN(x, x) = exp(−x2 − y2)

∞∑

n=N+1

2n

n!
(xy)n

≤ 2N+1

(N + 1)!
= λN+1

(4.10)via the residual of Taylor's formula. Thus
|f(x)− fN(x)|2 ≤ ‖f − fN‖2H

2N+1

(N + 1)!
≤ ‖f‖2H

2N+1

(N + 1)!is a stunningly fast onvergene rate, but only for funtions in the (small)native spae H.Note that the error bound in Theorem 4.7 is sharp, beause equality is at-tained for f(x) = K(y, x), leading to the inequality (2.5) for K −KN , whihis sharp for x = y. Thus the onvergene rates implied by Theorem 4.7 arewhat one should go for using interpolation.4.2 Shannon KernelTo understand the kernel theory behind the Shannon�Whittaker�Kotelnikovtheorem, we an use an expansion into an orthonormal basis in L2(R). Itan be proven (diretly or via Fourier transforms) that the funtions
sk(x) =

1√
h
sinc

(
x− kh

h

) for all k ∈ Z53



are orthonormal in L2(R), i.e. under the inner produt
(f, g)L2(R) :=

∫

R

f(t)g(t)dt.Thus we an write down the expansion kernel
K(x, y) :=

1

h

∑

k∈Z
sinc

(
x− kh

h

)
sinc

(
y − kh

h

)to get the reprodution equation
f(x) = (f,K(x, ·))L2(R) for all x ∈ Rbut this does not hold for all funtions in L2(R), but rather for funtions fwith ∑

k∈Z
|(f, sk)L2(R)|2 = h

∑

k∈Z
|f(kh)|2 <∞whih form a Hilbert spae that needs Fourier transforms to be analyzed.It turns out to be the spae of funtions bandlimited to [−π/h, π/h], i.e.whose Fourier transforms exist in L2(R) but vanish outside that interval.Suh funtions are neessarily in�nitely often di�erentiable, and pointwiseevaluation of the funtion and all derivatives is ontinuous.For these funtions, the inner produt takes the seond form

(f, g)L2(R) =
∫

R

f(t)g(t)dt = h
∑

k∈Z
f(kh)g(kh).Sine for eah �xed x the funtion

Sx(y) =
1

h
sinc((x− y)/h)is in that spae, we an write the inner produt with f in two ways:

(f, Sx)L2(R) =
∑

k∈Z
f(kh)sinc((x− kh)/h)

= f(x)to see that the series kernel K(x, y) is idential to Sx(y), i.e.
K(x, y) =

1

h

∑

k∈Z
sinc

(
x− kh

h

)
sinc

(
y − kh

h

)
=

1

h
sinc

(
x− y

h

)
.54



This nie summation formula an also be proven by using the fat that thespae is translation�invariant, so that the kernel must also be translation�invariant by Theorem 2.14 from page 16.By the above disussion, we also see that the set hZ ⊂ Ω = R is unisolventfor H in the sense of De�nition 2.59 on page 33.A generalization to higher dimensions leads to the radial Bessel kernels
φν(r) = r−νJν(r),see Theorem 9.17 on page 181. The ase ν = 1/2 is the sin kernel, and someothers are in Figure 29 on page 182. These kernels were studied in [FLW06℄.4.3 Trigonometri KernelsLet us look at trigonometri series

f(x) =
a0
2

+
∞∑

n=1

(an cos(nx) + bn sin(nx)) (4.11)as an example. The basi spae H is the spae of 2π�periodi square inte-grable funtions with the inner produt
(f, g)H :=

1

π

∫ π

−π
f(t)g(t)dtand with the orthonormal funtions

1√
2
, cos(nx), sin(nx), n ∈ N.We an write these via the index set

J := (0, 0) ∪ (N, 0) ∪ (0,N)and
ϕj(x) :=





1√
2

j = (0, 0)

cos(nx) j = (n, 0), n ≥ 1
sin(nx) j = (0, n), n ≥ 1as
f =

∑

j∈J
(f, ϕj)Hϕjin the sense of onvergene in H. 55



Note that all funtions ϕj are uniformly bounded, suh that the summabilityondition (1.7) is satis�ed whenever the weights are summable. This workswhen the weights are n−2, and thus we start with
K1(x, y) :=

1√
2
+

∞∑

n=1

n−2 (cos(nx) cos(ny) + sin(nx) sin(ny))

=
1√
2
+

∞∑

n=1

n−2 cos(n(x− y)).In view of the previous setion, where we had a sequene of kernels withweights λmn , we de�ne
λn :=





1 i = (0, 0)
n−2m i = (n, 0), n ≥ 1
n−2m i = (0, n), n ≥ 1to get the expansion kernels

K2m(x, y) :=
1√
2
+

∞∑

n=1

n−2m (cos(nx) cos(ny) + sin(nx) sin(ny))

=
1√
2
+

∞∑

n=1

n−2m cos(n(x− y)) (4.12)whih must be positive semide�nite on Ω = [0, 2π). Plotting the kernel K2(see top left of Figure 8) reveals that it is a ontinuous pieewise parabola,and from K ′′
2m = −K2m−2 for large m we see that K2m must be a pieewisepolynomial of degree 2m whih is still 2m − 2 times ontinuously di�eren-tiable.To verify this by elementary means, we suspet K2 to be something like

g(t) := (π − t)2 on [0, π] with periodi ontinuation to an even 2π�periodifuntion. We alulate the even Fourier oe�ients as
(g(t), cos(nt))H

=
2

π

∫ π

0
(π − t)2 cos(nt)dt

=
[
2

nπ
(π − t)2 sin(nt)

]π

0
+

4

nπ

∫ π

0
(π − t) sin(nt)dt

= 0 +
4

n2π
[−(π − t) cos(nt)]π0 −

4

n2π

∫ π

0
cos(nt)dt

=
4

n2 56



and
(g(t),

1√
2
)H

=
2

π

∫ π

0
(π − t)2

1√
2
dt

=

√
2π2

3suh that we get
K2(t) =

1

4
g(t) +

1√
2
− π2

12
.We note that periodi funtions of this form arise in the ontext of Rombergintegration.In more generality, the funtions

∞∑

n=1

1

n2k
cos(n t) (4.13)represent polynomials of degree 2k on [0, 2π]. To see this, onsider Hurwitz-Fourier expansions

Bm(x) = − m!

(2πi)m

+∞∑

n=−∞, n 6=0

n−me2πinxof the Bernoulli polynomials1 Bm of degree m on [0, 1]. If we set t = 2πxand m = 2k, we get
B2k(

t
2π
) = (−1)k+1 (2k)!

(2π)2k

+∞∑

n=−∞, n 6=0

n−2k(cos(nt) + i sin(nt))

= 2(−1)k+1 (2k)!

(2π)2k

+∞∑

n=1

n−2k cos(nt)that proves our laim. The native spae for K2m ontains all funtions withFourier series oe�ients satisfying the summability ondition in Hλ, whihin ase of (4.11) and K2m takes the form
∑

n∈N
n2m

(
a2n + b2n

)
<∞.Thus the funtions in the native spae for K2m get more and more smooth forinreasing m. Readers familiar with Sobolev spaes will reognize that K2m1http://mathworld.wolfram.com/BernoulliPolynomial.html57
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Figure 8: Periodi kernelsis the reproduing kernel of the Sobolev spae of order 2m for univariate
2π�periodi funtions.From Anette Meyenburg's thesis [Mey96℄ we ite the in�nitely di�erentiableperiodi kernels

∞∑

n=0

1

n!
cos(nx) = cos(sin(x)) · exp(cos(x))

∞∑

n=0

1

2n
cos(nx) =

1− 1
2
cos(x)

1− cos(x) + 1
4

.

(4.14)Their proofs are easy, if the osines of the left�hand side are written asexponentials. They are plotted in Fig. 8 on the top right and bottom left,respetively. Without any further work we know that their native spaesonsist of 2π�periodi funtions whose Fourier oe�ients deay like 1
n!

or
1
2n
, respetively.
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By standard Fourier analysis, one also gets [Mey96℄
exp(−2|x|) =

4

π

∞∑

n=0

1− (−1)ne−2π

4 + n2
cos(nx), x ∈ [−π, π],

K(x) :=





4− x 0 ≤ x ≤ 2π − 4
8− 2π 2π − 4 < x < 4

4− 2π + x 4 ≤ x ≤ 2π

=
16

π
+

∞∑

n=1

4 sin2(2n)

πn2
cos(nx).The �nal one is plotted in the bottom right of Fig. 8.We now want to apply Theorem 4.7 to Fourier series. We have to evaluatethe errors of the trunated kernels. In ase of λn = n−2m we have to bound

K(x, x)−KN−1(x, x) =
∞∑

n=N

1

n2m

=
∞∑

p=1

N−1∑

q=0

1

(pN + q)2m

≤ 1

N2m−1

∞∑

p=1

1

p2m

=
ζ(2m)

N2m−1
.

(4.15)
Now Theorem 4.7 impliesTheorem 4.16. In the native Hilbert spaes

Hm :=

{
f : (4.11), ∞∑

n=0

(a2n + b2n)n
2m <∞

} (4.17)for the expansion kernels of (4.12), the pointwise onvergene rate of par-tial sums of trigonometri series (4.11) trunated at n = N has the behavior
O(N−m+1/2) for N → ∞ and �xed m ≥ 1. The kernels of (4.14) lead to point-wise onvergene rates O( 1√

N !
) and O(2−N/2), respetively, in their assoiatednative Hlbert spaes de�ned via (4.3).Note that all trigonometri kernels in osine form an be transformed by thestandard transformation x = cos(ϕ) into series of Chebyshev polynomials on

[−1, 1]. For instane, the kernel
K(x, y) :=

∞∑

n=0

1

n!
Tn(x)Tn(y)59



on [−1, 1] an be transformed by substitution x = cos(ϕ), y = cos(ψ) into
∞∑

n=0

1

n!
cos(nϕ) cos(nψ)

=
1

2

∞∑

n=0

1

n!
(cos(n(ϕ+ ψ)) + cos(n(ϕ− ψ)))

=
1

2
[cos(sin(ϕ+ ψ)) · exp(cos(ϕ+ ψ)) + cos(sin(ϕ− ψ)) · exp(cos(ϕ− ψ))].4.4 Taylor KernelsThere is still another variation on the theme of periodi kernels. For allomplex�valued funtions whih are holomorphi on the interior of the unitdis and still L2 on the unit irle C, we an de�ne an inner produt by
(f, g)H :=

1

2π

∫ 2π

0
f(eiϕ)g(eiϕ)dϕ =

1

2πi

∫

C

f(z)g(z)

z
dz.This generates the Hardy spae2 H2, and omplex polynomials zn are or-thonormal in this spae for n ≥ 0. Consequently, we an onsider expansionkernels

K(u, z) :=
∞∑

n=0

λnu
nzn =: Φ(uz). (4.18)with nonnegative and absolutely summable weights λn. All power series withnonnegative oe�ients and onvergene radius at least 1 provide examplesof expansion kernels. If we on�ne the funtions to the unit irle, we anset u = exp(iψ) and z = exp(iϕ) to get periodi omplex�valued expansionkernels

K(ψ, φ) :=
∞∑

n=0

λn exp(in(ϕ− ψ)) =: Φ(ϕ− ψ) (4.19)and if we fous on real�valued kernels, we are bak to the osine series westarted with.But there is no need to on�ne everything to the unit irle, sine we knowthat the funtions have unique extensions to the full dis, determined bytheir values on the irle. Cauhy's integral formula
f(z) =

1

2πi

∫

C

f(ζ)

ζ − z
dζ2http://en.wikipedia.org/wiki/Hardy_space60
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then is a reprodution formula, and its kernel is the Szegö kernel
K(u, z) =

1

1− uz
=

∞∑

n=0

unzn.This kernel annot be evaluated when both arguments are on the irle,whih is to be expeted beause funtions in Hardy spae have no ontinuouspoint evaluation on the irle itself. Interpolation of funtions on point sets
Z = {z1, . . . , zN} inside the unit dis are no problem, and the result is alinear ombination of rational funtions

K(zj , z) =
1

1− zjzwhih have �mirror� singularities at z = zj/|zj|2 outside the dis. The inter-polant is an optimal reovery of funtions from Hardy spae, inluding beingnorm�minimal in L2 on the irle among all other oneivable interpolants.But this it not all we an say, by far. Clearly, the funtions we want toonsider here have expansions in Taylor series
f(z) =

∞∑

n=0

f (n)(0)

n!
znwith at least onvergene radius 1. We an view this as an expansion intothe orthonormal basis, with

(f, zn)H =
f (n)(0)

n!
.If we de�ne a weighted kernel by (4.18), Theorem 4.6 shows that it reproduesin the Hilbert subspae of funtions with the summability ondition

∞∑

n=0

|(f, zn)H |2
λn

=
∞∑

n=0

|f (n)(0)|2
(n!)2λn

.and the inner produt
(f, g)λ :=

∞∑

n=0

f (n)(0)g(n)(0)

λn(n!)2
.Theorem 4.20. In all of these ases, independent of the weights used, thereprodution formula is the Taylor formula. The orresponding Hilbertspaes an be alled Taylor spaes. 61



Proof: We just work it out by �rst alulating
dj

dzj |0
K(u, z) = λjj!u

j , j ≥ 0and then
f(u) = (f,K(u, ·))

=
∞∑

n=0

λn
f (n)(0)λnn!u

n

λn(n!)2

=
∞∑

n=0

f (n)(0)

n!
un.This gives a whole range of spei� kernels and assoiated Hilbert subspaesof the Hardy spae. See Table 1 for a list in the notation of (4.18), where weintrodued subsets N of N in order to are for expansions in even and oddterms. If the kernels exist for |z| = 1, they an be brought to the unit irleand used for periodi funtions via (4.19).

Φ(z) =
∑

j∈N λjz
j N λj

(1− z)−1,−1 < |z| < 1 N 1
(1− z2)−1,−1 < |z| < 1 2N 1

(1− z)−α, α ∈ N,−1 < |z| < 1 N
(α + j − 1)!

(α− 1)!j!

− log(1− z)

z
,−1 < |z| < 1 N

1

j + 1
exp(z) N 1/j!

(1− z2)−α, α ∈ N,−1 < |z| < 1 2N
(α + j − 1)!

(α− 1)!j!
sinh(z) 2N+ 1 1/j!

sinh(z)/z 2N 1
(j+1)!

cosh(z) 2N 1/j!

z−αIα(z) 2N
1

j!4jΓ(j + α + 1)Table 1: Kernels for Taylor SpaesA more detailed analysis of Taylor spaes is in a preprint [ZS10℄.4.5 Native Spaes of Expansion KernelsWe now want to turn the above situation upside down, starting with anexpansion kernel and nothing else. We want to arrive at a Hilbert spae62



of funtions on Ω with ontinuous point evaluation suh that the expansionkernel is reproduing. Note that this is the standard ase in Mahine Learningwith kernels.Thus we start with an expansion kernel (1.6) on page 8 with the summabilityondition (1.7) to make it pointwise well�de�ned. We want to write the kernelvia a feature spae, and this leads to the feature spae ℓ2,λ,I of (1.8) underthe inner produt
({ξi}i∈I , {ηi}i∈I)λ,I :=

∑

i∈I
λiξiηi.The dual spae then is ℓ2,1/λ,I , and the ation of a funtional µ ∈ ℓ2,1/λ,I ona sequene c ∈ ℓ2,λ,I is de�ned as

µ(c) :=
∑

i∈I
µici.With this de�nition, the Riesz map is

R : ℓ2,1/λ,I → ℓ2,λ,I , R(µ) = {µi/λi}i∈I . (4.21)More details on sequene spaes are in Setion 11.3 on page 220.The feature map
Φ(x) := {ϕi(x)}i∈I ∈ ℓ2,λ,I for all x ∈ Ωtakes Ω into a set Φ(Ω) ⊆ ℓ2,λ,I , and the kernel we expet is

K(x, y) =
∑

i∈I
λiϕi(x)ϕi(y) = (Φ(y),Φ(x))λ,I for all x, y ∈ Ω,but we have no Hilbert spae and no reprodution formula yet.If the ϕn are linearly independent, one an go easily over to the native spaevia sequene spaes of expansion oe�ients, using the spaes and inner prod-uts of Setion 4.1. But if linear independene of the ϕi is not guaranteed, weannot work with oe�ients of expansions into the ϕi in a simple way. Thereis a workaround by R. Opfer [Opf06℄ using frames, but this is unneessarilyompliated. Instead, we diretly work in subspaes of sequene spaes. The�funtions� will be sequenes in ℓ2,1/λ,I , while �funtionals� will be in ℓ2,λ,I .We de�ne point evaluations of �funtions� c = {ci}i ∈ ℓ2,1/λ,I via

δx(c) :=
∑

i

ciϕi(x),63



and they are ontinuous due to
|δx(c)|2 ≤

(∑

i

|ci|2
λi

)(∑

i

|ϕi(x)|2λi
)
= ‖c‖2ℓ2,1/λ,IK(x, x).Their Riesz images are sequenes

R(δx) = {ϕi(x)λi}i(note that we go in the reverse diretion of (4.21)) as �funtions�, suh thattheir evaluation at y is
δy(R(δx)) =

∑

i

ϕi(y)ϕi(x)λi = K(x, y)as expeted. The reprodution equation is
(c, R(δx)) = δx(c)by de�nition. But not all of the sequene spaes ome out to be allowed.The dual of the native spae will be

L := los span {δx : x ∈ Ω}while the native spae H is the losure of the span all sequenes R(δx) for
x ∈ Ω. This makes perfet sense, but it is not so easy to evaluate thesespaes for spei� appliations. In partiular, it is not guaranteed that the
ϕi are in the native spae. And, they annot be an orthonormal system likein our starting point in Setion 4.1, beause they need not even be nonzeroor linearly independent at this point.But there is a formal trik to ome bak to the orthonormal basis. Wearti�ially extend Ω by the index set I and postulate funtion values

ϕk(j) = δjk, j, k ∈ Ithere, leaving the values on Ω unhanged, and doing no harm to the summa-bility ondition. Now we an use the reprodution equation for
(c, R(δj)) = cj for all j ∈ Iand

λjϕj(y) = δy(R(δj)) = K(j, y)to see that the ϕj are in the native spae now. Their inner produt there is
(K(j, y), K(k, y))H = K(j, k) = λjδjk for all j, k ∈ I,64



as expeted from Setion 4.1. In the unweighted spae ℓ2,1,I their sequenerepresentations are the unit sequenes, thus they are orthonormal there. Wedo not assume ontinuous point evaluation on �funtions� in the full spae
ℓ2,1,I , sine we have posed our speial summability ondition that fores usto use weights. We summarize:Theorem 4.22. The native spae for an expansion kernel on Ω with weights
λi, i ∈ I and features ϕi, i ∈ I is isometrially isomorphi to a losedsubspae of ℓ2,1/λ,I , while its dual is a losed subspae of ℓ2,λ,I in Riesz relation,being the losure of all point evaluation funtionals. By a suitable formalextension of Ω one an ome bak to the situation in Theorem 4.6 on page51.The problem is to haraterize the spaes H and L in more detail. But thisis dependent on the spei� example.4.6 Error Analysis of Expansion KernelsRS: this is still under researh, as of February 1, 2011.Theorem 4.23. For any �nite set X = {x1, . . . , xN} ⊆ Ω and an expansionkernel K with the summability ondition (4.2), the pointwise norm of theerror funtional has the form

∥∥∥∥∥∥
δx −

N∑

j=1

uj(x)δxj

∥∥∥∥∥∥

2

H∗

=
∑

n

λn

∣∣∣∣∣∣
ϕn(x)−

N∑

j=1

uj(x)ϕn(xj)

∣∣∣∣∣∣

2

≥ P 2
X(x)If this is minimized over all uj(x) ∈ K, the Power Funtion P 2

X(x) results,and the (existing) optimal solution u∗j(x) satis�es the linear system
K(xk, x) =

N∑

j=1

u∗j(x)K(xk, xj), 1 ≤ k ≤ N.Proof: The identity follows from diret alulation, the inequality via thede�nition of the Power Funtion, and the linear system follows from standardorthogonality properties of the optimum.If an interpolation proess for a set X yields a small power funtion, andif the weights λn derease rapidly, then there must neessarily be a good65



reovery of the �rst ϕn from the data. More preisely,
∣∣∣∣∣∣
ϕn(x)−

N∑

j=1

u∗j(x)ϕn(xj)

∣∣∣∣∣∣

2

≤ P 2
X(x)

λnfor all n.Theorem 4.24. Assume that a set X ⊂ Ω is unisolvent for a spae PM :=span {ϕ1, . . . , ϕM} of funtions on Ω. Then interpolation on X with valuesin PM is possible by a linear proess, and it reovers funtion from PM exatly.Proof: This should be well�known, but we give a proof here. Consider theevaluation map EX with
EX(f) := (f(x1), . . . , f(xN))

T ∈ K
N .By unisolveny, it is injetive on PM , and thus there is an inverse map bakto PM on the range EX(PM). This means that interpolation on X an bewritten as a map

I(f)(x) =
N∑

j=1

uj(x)f(xj)whih is the identity on PM , and where the funtions uj are in PM .In our ontext, this works like Shannon's theorem. If high�frequeny partsof f are missing, reovery an be exat.We add another triviality:Theorem 4.25. Oversampling an be used to stabilize linear interpolationproesses on unisolvent sets for �xed trial spaes.Proof: If we work with the notation of the previous theorem, oversamplingmeans that N >> M , and the funtions uj are not unique. Thus one anminimize norms like
‖u(x)‖22 =

N∑

j=1

|uj(x)|2 (4.26)over N variables under the M onstraints
ϕk(x) =

N∑

j=1

uj(x)ϕk(xj), 1 ≤ k ≤M
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for eah �xed x. By standard arguments of quadrati optimization, thesolution has the form
uj(x) =

M∑

k=1

vk(x)ϕk(xj), 1 ≤ j ≤ Nwhere the funtions vk satisfy the normal equations
ϕm(x) =

M∑

k=1

vk(x)
N∑

j=1

ϕk(xj)ϕm(xj), 1 ≤ m ≤ M.Inreasing the number N of data points yields more degreees of freedom forthe minimization, and thus the optimal value of (4.26) gets smaller if N isinreased while PM is �xed.Theorem 4.27. Let X be unisolvent for PM , and let uMj (x) be the reoveryfuntions on PM from values on X, possibly with quite some stability, i.e. areasonably bounded value (4.26) due to oversampling. Then
P 2
X(x) ≤


1 +

N∑

j=1

|uMj (x)|2

 ·

·

K(x, x)−KM(x, x) +

N∑

j=1

(K(xj, xj)−KM(xj , xj))


.Proof: Just onsider

P 2
X(x) ≤

∞∑

n=M+1

λn

∣∣∣∣∣∣
ϕn(x)−

N∑

j=1

uMj (x)ϕn(xj)

∣∣∣∣∣∣

2

≤

1 +

N∑

j=1

|uMj (x)|2



∞∑

n=M+1

λn


|ϕn(x)|2 +

N∑

j=1

|ϕn(xj)|2



=


1 +

N∑

j=1

|uMj (x)|2



K(x, x)−KM(x, x)

+
N∑

j=1

(K(xj , xj)−KM(xj , xj))


 .If the λn are dereasing quikly, one an have K − KM very small or evennumerially zero for reasonably small M . Then the above result says that if

X is large enough to be unisolvent on PM and to allow enough oversamplingto let the �rst fator in the bound be not too large, the interpolation errorusing the kernel K will be small.Example 4.28 67



Consider the kernel
K(x, y) = exp(2xy) =

∞∑

n=0

2n

n!
xnynarising within the expansion (1.9) on Ω = [−1, 1] ∈ R. It has a similar boundlike (4.10). For point sets X = XM , we hoose theM zeros or extrema of theappropriate Chebyshev polynomials, and onsider reovery of polynomials.Then it is well�known that the standard Lebesgue onstants and thus alsothe absolute maxima of the uj behave like log(M), leading to a O(log(M))bound of (4.26). Consequently,

P 2
XM

(x) ≤ C log(M)
2M

M !
for all x ∈ [−1, 1].RS: the plots are to be hanged, they still belong to the GaussianFigure 9 shows the ϕn, the Power Funtion and its upper bound of Theorem4.23 , the Lagrange bases using either kernel translates or polynomials, andthe orresponding Lebesgue funtions (4.26) for M = 12, in reading order.The atual bounds are

λ12 ≤ 4.3 · 10−6

K −K12 ≤ 1.0 · 10−7

P 2
X12

≤ 6.0 · 10−13

‖u(x)‖22 ≤ 1.3.The bound in Theorem 4.23 is quite sharp, while the upper bound of Theorem4.27 has some leeway in the seond inequality sign in the proof.Example 4.29Let us onsider the Taylor spaes of Setion 4.4 whih have the Taylor seriesas a reprodution formula and omplex�valued kernels
K(u, z) :=

∞∑

n=0

λnu
nznin the unit dis. We onsider their restrition to a real interval Ω = [−R,R]with 0 < R < 1 and assume that the λn derease with inreasing n. Thenthe trunated kernels an be bounded by

K(x, x)−KM(x, x) =
∑

n>M

λn|x|2n

≤ λM+1

∑

n>M

|x|2n

≤ λM+1
R2M+2

1− R2
.68
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Polynomial Lebesgue functionFigure 9: Gaussian Expansion Kernel PlotsNow we onsider interpolation in N +1 ≥M +1 points of [−R,R] suh thatpolynomials up to degree M are reovered. The power funtion will then bebounded by

P 2
X(x) ≤ λM+1

(M + 2)R2M+2

1− R2


1 +

N∑

j=0

|uNj (x)|2

with the appropriate reovery funtions u0, . . . , uN . Note that this will yieldgeometri onvergene forM → ∞, if (4.26) an be kept under ontrol, whihis a nontrivial problem.If we take N+1 =M+1 equidistant points, the standard Lebesgue onstantwill be

M∑

j=0

|uMj (x)| ≤ C
2M+1

eM log(M)suh that
1 +

M∑

j=0

|uMj (x)|2 ≤ C
22M+2

M2 log2(M)with a onstant C whih is independent of M . This yields
P 2
X(x) ≤ CλM+1

(M + 2)R2M+2

1− R2

22M+2

M2 log2(M)69



and leads to geometri onvergene to zero if R < 1/2 even for the Szegökernel.If M + 1 Chebyshev nodes are used, the standard Lebesgue onstant will beof order log(M), and then
1 +

M∑

j=0

|uMj (x)|2 ≤ C log2(M)with a onstant C whih is independent of M . Thus
P 2
X(x) ≤ CλM+1

(M + 2)R2M+2

1− R2
log2(M)implies geometri onvergene for all R < 1 and all kernels onsidered.Let us rewrite this in terms of the �ll distane

h := max
−R≤y≤R

min
xj∈X

|y − xj |of a subset X . For M + 1 Chebyshev zeros on [−1, 1], the �ll distane isbounded above by h = π/(M + 1), but we an make it easier by piking
M = ⌈π

h
⌉ for a given h. Then

R2M = (R2)⌈
π
h
⌉

= exp
(
2⌈π

h
⌉ log(R)

)and
P 2
X(x) ≤ Cλ⌈π

h
⌉+1

(⌈π
h
⌉+ 2)R2

1− R2
log2(⌈π

h
⌉) exp

(
2⌈π
h
⌉ log(R)

)
. (4.30)Even for the Szegö kernel, this is a onvergene rate of the form

P 2
X(x) ≤ C exp(−c/h) for h→ 0with ertain positive onstants C, c.Theorem 4.31. If a Taylor kernel with deaying λn is given and if one worksin [−R,R] for some 0 < R < 1, one an �nd for all h > 0 a point set X with�ll distane at most h suh that (4.30) holds.
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We now start with an arbitrary presribed point set X with �ll distane hand N + 1 points, but now we employ oversampling. We pik the smallest
M with 2M2 ≥ 1/h, i.e.

M =

⌈
1√
2h

⌉
,and then we know by Theorem 8.41 on page 151 that we get

N∑

j=0

|uj(x)| ≤ 2,leading to
1 +

N∑

j=0

|uj(x)|2 ≤ 5.Consequently, we get the bound
P 2
X(x) ≤ 5λM+1

(M + 2)R2M+2

1−R2and an insert our hoie of M for
P 2
X(x) ≤ 5λ

1+

⌈
1√
2h

⌉

(
2 +

⌈
1√
2h

⌉)
R2

1− R2
R

2

⌈
1√
2h

⌉ (4.32)whih is a onvergene result of the form
P 2
X(x) ≤ C exp(−c/

√
h) (4.33)with positive and expliitly obtainable onstants.Theorem 4.34. For all kernels of Taylor spaes with deaying λn, and forall point sets X ⊂ [−R,R] with �ll distane h and 0 < R < 1, the PowerFuntion is bounded by (4.32) and has exponential onvergene to zero for

h→ 0 with a law like (4.33).Note that the proof implies that suh sets have N + 1 points with at least
hN ≥ 2R, but the polynomial reovery used in the bound will only beexat up to degree M with 2hM2 ≥ 1. This is a onsiderable amount ofoversampling, but the proof requires it only for going to the general ase
0 < R < 1. The proof for the ase R < 1/2 does not need oversampling.RS: Open: what happens in pratie? Is the proof still too weak?RS: To Do: better onvergene if λn deay fast71



Let us onsider the ase of real�valued 2π�periodi trigonometri kernelsfrom (4.12) and interpolate in the usual 2N +1 equidistant points in [−π, π]suh that we have a �ll distane of h = π/(2N + 1). Then we know that theLebesgue onstants behave like O(log(N)), and we an use (4.15) in Theorem4.27 forTheorem 4.35. If the trigonometri kernels (4.12) are used whose nativespaes (4.17) are of Sobolev type, and if interpolation in 2N + 1 equidistantpoints is performed, the pointwise error deays at least like O(N−m+1 log(N)) =
O(hm−1| log(h)|) for N → ∞ or h→ 0.4.7 Finite CaseWe now speialize to the ontext of learning models on a �nite set Ω on-sisting of N = |Ω| points and a �nite�dimensional feature spae. Insteadof using point notation for Ω, we an identify Ω with the set Ω = {1, . . . , N}and use index notation instead, and we assume the feature spae to be KLfor simpliity. Expansion kernels (1.6)

K(j, k) :=
L∑

ℓ=1

λℓϕℓ(j)ϕℓ(k)then an be written as Hermitian positive semide�nite matries K with en-tries K(j, k), 1 ≤ j, k ≤ N as
K = Φ∗ ΛΦwith an L × L diagonal matrix Λ ontaining positive weights λ1, . . . , λL onits diagonal, while Φ is a L× N matrix onsisting of entries ϕℓ(r), 1 ≤ ℓ ≤

L, 1 ≤ r ≤ N .The feature map j 7→ Φ(j) := {ϕℓ(j)}ℓ ∈ KL maps to the N olumns of Φ,and thus L is the subspae of KL spanned by the olumns of Φ. In mostases, it will be all of KL, but not neessarily so. Anyway, eah element of Lis of the form Φz with z ∈ K
N . Then µz := R−1(Φz) will be µz = ΛΦz andthe elements of H are vetors with elements

T (µz)(j) =
L∑

ℓ=1

ϕℓ(j)µzℓ =
L∑

ℓ=1

ϕℓ(j)λℓ
N∑

k=1

ϕℓ(k)zk = eTj Kz,i.e. linear ombinations of rows of K. Thus H is the row span of K, whih isalso evident from the fat that the native spae should be the losure of the
K(j, ·). Eah funtion f in H thus is a linear ombination of rows of K, and72



thus it has the form fa := KTa with a vetor a ∈ KN . The inner produtthen is
(fa, fb)H = aTKb = aTΦ∗ΛΦb for all a, b ∈ K

N .The well�de�nedness of the inner produt an here be heked easily, sinefor KTa = KT ã and KT b = KT b̃ we get
(fa, fb)K = aTKb

= ãTKb

= ãTKb̃
= (fã, fb̃)K .Also, the positive de�niteness of the inner produt is simple to see, beausefrom ‖fa‖2K = aTKa = 0 we �rst get Φa = 0 from

0 = aTKa = aTΦ∗ΛΦa = aTΦ∗√Λ
√
ΛΦa = ‖

√
ΛΦa‖22with the nonsingular diagonal matrix √

Λ de�ned in an obvious way. But
Φa = 0 implies fa = KTa = (Φ∗ΛΦ)Ta = ΦTΛΦa = 0.In pratial ases, the matries Φ and K are muh too large to be handled,but there are e�ient methods for the redution of dimensions via prinipalomponent analysis or singular value deomposition. We desribethe basi priniple now, but remark that pratial appliations will deal withsquare submatries of equal row/olumn seletions of the matrix K, i.e. withminors of it, while the kernel is unhanged..A singular value deomposition splits the kernel matrix K into a produt

K = Φ∗ΛΦ = U∗ΣUwith a unitary N × N matrix U and a real diagonal N × N matrix Σ ofsingular values of K, i.e. the nonnegative eigenvalues of K∗K. Note thatthis amounts to onsider an equivalent setting with now L = N, U = Φ, and
Λ = Σ, but now the diagonal of Σ may ontain zero entries. The unitarymatrix U just is a oordinate hange in the native spae, and the new Nfeature funtions are orthonormal, but only L of them are used. The kernelgets the equivalent form

K(j, k) =
L∑

ℓ=1

σℓuℓ(j)uℓ(k)with the uℓ being orthonormal vetors. If small singular values our here,they an be ignored, thus reduing the kernel's omplexity.73



5 Conditionally Positive De�nite KernelsSo far, we looked at positive semide�nite symmetri kernels. But this is notthe end of the story. We need the more general notion of onditional pos-itive (semi�) de�nite kernels, and there are several ways to introdue them.They do not fall diretly out of a simple (non�distributional) Hilbert spaesetting, beause otherwise they would be unonditionally positive semide�-nite. Instead, the most important onditionally positive de�nite kernels likethe thin�plate spline K(x, y) = log(‖x − y‖22) arise diretly from appli-ations, or as ertain fundamental solutions of partial di�erential equations.Thus we have to begin with kernels �rst and then work our way towards aHilbert spae. For ertain reasons to beome apparent later, we shall post-pone ompletion as far as possible.5.1 UnisolvenyTo de�ne a su�iently general notion of onditional positive (semi�) de�-niteness, we �x a �nite�dimensional spae P of funtions on a set Ω, denoteits dimension by Q and selet a basis p1, . . . , pQ. The ase of (unonditional)positive (semi�) de�niteness, as in De�nitions 2.37 and 3.4 refers to the spe-ial ase Q = 0 and P = {0}.De�nition 5.1. A subset X = {x1, . . . , xN} of Ω is alled P�unisolvent,if zero is the only funtion in P that vanishes on X.Looking at the matrix PX of values pj(xk), 1 ≤ j ≤ Q, 1 ≤ k ≤ N , we seethat it must have rank Q for unisolveny, thus N ≥ Q must hold. Thereforewe assume Ω to have at least Q points and ontain a unisolvent set. Fromnow on, all subsets X of Ω we shall onsider must be P�unisolvent and thushave at least Q points. Later, we shall needTheorem 5.2. Eah P�unisolvent set X has a unisolvent subset of Q points.Proof: Just selet a nonsingular Q×Q submatrix of PX . .
P�unisolveny means that funtions from P are ompletely determined bytheir values on X . Therefore we an have a reovery formula

p(x) =
N∑

j=1

p(xj)uj(x) for all p ∈ P, x ∈ Ωwith a suitable set of funtions u1, . . . , uN spanning P. If |X| = Q, the ujwill be a Lagrange basis with uj(xk) = δjk, 1 ≤ j, k ≤ Q.74



It is instrutive to onsider minimal P�unisolvent sets for spaes of poly-nomials over R in d variables and of degree n. In one dimension, eah setof n + 1 distint points is unisolvent and minimal, due to the FundamentalTheorem of Algebra. In d real dimensions, minimal unisolvent sets for linearreal�valued polynomials are the nondegenerate simplies onsisting of d+ 1points not on a hyperplane. In geometry, ertain on�gurations of unisol-vents sets are alled �in general position�. For instane, minimal unisolventsets for quadrati polynomials on R
2 onsist of 6 points not lying on a oni.But the onnetion of unisolvent sets to geometry annot be pursued hereany further.5.2 Conditional Positive De�nitenessDe�nition 5.3. Let a �nite�dimensional spae P of real�valued funtionson a set Ω be given. A Hermitian kernel K : Ω × Ω → K is alled P�onditionally positive (semi�) de�nite, if for all P�unisolvent subsets

X = {x1, . . . , xN} of Ω the kernel matries with entries K(xj , xk), 1 ≤ j, k ≤
N ≥ Q are positive (semi�) de�nite on the subspae of KN of vetors a ∈ KNwith the moment onditions

N∑

j=1

ajp(xj) = 0 for all p ∈ P. (5.4)If the spae P onsists of all polynomials of order (=degree −1) m on Ω,the kernel is onditionally positive (semi�) de�nite of order m, if it is P�onditionally positive (semi�) de�nite.There are some highly important onditionally positive de�nite kernels, inpartiularmultivariate ones, whih we shall handle in detail later. These areradial kernels K(x, y) = φ(‖x− y‖2) with salar funtions φ : [0.∞) → Rand orders of onditional positive de�niteness given by Table 2. Like theKernel φ(r), r = ‖x− y‖2 Order Conditions Name
(−1)⌈β/2⌉(c2 + r2)β/2 ⌈β/2⌉ β > 0, β /∈ 2N Multiquadris

(−1)⌈β/2⌉rβ ⌈β/2⌉ β > 0, β /∈ 2N polyharmoni splines
(−1)k+1r2k log r k + 1 k ∈ N thin�plate splinesTable 2: Orders of onditional positive de�nitenessspeial univariate spline kernels we shall enounter later, suh kernels arisenaturally and are not diretly identi�able as reproduing kernels of ertainHilbert spaes, beause otherwise they would be unonditionally positive75



semide�nite. Thus they have no diret link to Hilbert spae theory, and wehave to repeat the onstrution of setions 3.3 and 3.4 to see their onne-tion to Hilbert spaes. Note that (unonditionally) positive (semi�) de�nitekernels are P�onditionally positve (semi�) de�nite for all �nite�dimensionalspaes P.5.3 Interpolation ProblemsThe standard tehnique to set up an interpolation problem on a P�unisolventpoint set X = {x1, . . . , xN} in Ω for a P�onditionally positive kernel K isto use a linear ombination
s(y) := sX,a,b(y) :=

N∑

j=1

ajK(xj , y) +
Q∑

m=1

bmpm(y) for all y ∈ Ω (5.5)using oe�ient vetors a = (a1, . . . , aN)
T ∈ KN and b = (b1, . . . , bQ)

T ∈ KQ,but with a satisfying the moment onditions (5.4). Interpolation of data
f1, . . . , fN in X then poses the (N +Q)× (N +Q) linear system

s(xk) =
N∑

j=1

ajK(xj , xk) +
Q∑

m=1

bmpm(xk) = fk, 1 ≤ k ≤ N,

N∑

j=1

ajpn(xj) + 0 = 0, 1 ≤ n ≤ Q

(5.6)with a Hermitian oe�ient matrix.Theorem 5.7. If X is P�unisolvent and K is P�onditionally positive def-inite, the system (5.6) is uniquely solvable.Proof: Assume a homogeneous system of the same form and sum the �rst
N equations up with weights ak. Then

N∑

j,k=1

ajakK(xj , xk) +
Q∑

m=1

bm
N∑

k=1

akpm(xk) = 0,and by P�onditional positive de�niteness, the vetor a must vanish. Butthen the �rst N equations are
Q∑

m=1

bmpm(xk) = 0, 1 ≤ k ≤ N,and P�unisolveny of X implies b = 0.76



In view of Theorem 2.33 on page 21, we would like to prove that for P�onditional positive semide�nite kernels, the system is solvable if the dataome from a funtion in the native spae, but we have no native spae yet.Readers will have to wait for Setion 5.7. But there is something simpler:Theorem 5.8. If X is P�unisolvent and K is P�onditionally positive semidef-inite, the system (5.6) is solvable with a = 0 if the data ome from funtionsin P.Proof: We set a = 0 from the start, and use that, by P�unisolveny of X ,eah funtion from P an be uniquely reovered from its values on X .5.4 Inner ProdutWe now proeed like in Setion 3.3, �x Ω, P, and K and de�ne the set
M :=

{
(a,X) : X ⊆ Ω, P�unisolvent, |X| =: N, a ∈ K

N , P T
Xa = 0

}of vetor/set pairs that satisfy the moment ondition (5.4) in the form
P T
Xa = 0 with the matrix P T

X = (pj(xk))1≤j≤Q, 1≤k≤N .In partiular, we have to assume that Ω has at least one P�unisolvent set inorder to let M be nonempty.Then we de�ne the spae of funtions
H := {λya,XK(·, y), (a,X) ∈M} (5.9)and the spae of funtionals

L := {f 7→ λa,X(f) :=
N∑

j=1

ajf(xj) : (a,X) ∈M, f ∈ H}.It is easy to see that L is a linear spae, sine we already know this withoutusing the moment onditions, and adding two funtionals vanishing on P willyield a funtional vanishing on P. We an argue similarly for H .We an now follow the pattern of Setion 3.3 to de�ne a sesquilinear form(3.12) on L, where we just have to additionally obey the moment onditions.Theorems 3.14 and 3.15 arry over verbatim, but we annot use funtionals
δx = λ1,x for providing ontinuous point evaluation, beause they are notneessarily in L. We are left with the Riesz map

R : L→ H, R(λa,X)(y) = λxa,XK(y, x) =: fa,X(y) (5.10)77



and the identities
(λa,X , λb,Y )L = (fb,Y , fa,X)H = λa,X(fb,Y ) (5.11)for all (a,X), (b, Y ) ∈M .Theorem 5.12. The sum of spaes P + H is diret, if the kernel K is P�onditionally positive semide�nite.Proof: Consider a funtion p ∈ P and a funtional λb,Y ∈ L with

p(x) = λyb,YK(x, y) for all x ∈ Ω.Then
λa,X(p) = 0 = (λa,X , λb,Y )Lfor all λa,X ∈ L, in partiular for λb,Y . Thus λb,Y = 0 as a funtional on H ,but b = 0 holds only in ase of de�niteness. By antilinearity of the Rieszmap, we onlude in the general ase that fb,Y is zero and thus also p.5.5 ProjetionsTo see how interpolation works under the inner produt of the previous se-tion, we �x a �nite P�unisolvent set X ⊆ Ω and de�ne a subspae

HX :=
{
λya,XK(·, y) : (a,X) ∈M,X �xed } (5.13)of H for eah �xed X .Theorem 5.14. The orthogonal omplement of HX in H is

H⊥
X = {f ∈ H : λa,X(f) = 0 for all (a,X) ∈ M,X �xed }.Now we an de�ne a projetor ΠX onto HX . Note that we let HX to be�nite�dimensional here. Exatly like in Theorem 2.22 on page 18 we getTheorem 5.15. For eah f ∈ H and eah �xed P�unisolvent set X ⊂ Ωthere is an interpolant ΠX(f) ∈ HX with the somewhat nonstandard interpo-lation onditions

λb,X(f) = λb,X (ΠX(f)) for all (b,X) ∈M.It is the best approximation to f from HX and attains the minimal norm in
H under all funtions in H satisfying the same interpolation problem.78



To see the onnetion to what we did in Setion 5.3, we should interpolatean abstrat element f = p + g from P + H on X . Then the above theoryapplies only to g, and the interpolant in the above sense must have the form
s0(x) = (ΠX(g))(x) =

N∑

j=1

ajK(xj , x)with a vetor a satisfying the moment ondition, i.e. (a,X) ∈ M . Theinterpolation onditions are
N∑

k=1

bks0(xk) = λb,X(s0) = λb,X(g)for all (b,X) ∈M . Of ourse, adding funtions from P to either g or s0 willnot hange these interpolation onditions, due to the moment onditions.Theorem 5.16. Under the above onditions, there is a funtion p ∈ P with
p(xk) = g(xk)− (ΠX(g))(xk), 1 ≤ k ≤ N.Proof: Clearly, h := g − ΠX(g) lies in H⊥

X , and we know that λb,X(h) = 0for all (b,X) ∈M . Splitting KN into the subspaes
TX := {(p(x1), . . . , p(xN ))T : p ∈ P} and T⊥

X ,we see that the vetor (h(x1), . . . , h(xN ))T is orthogonal to all b ∈ T⊥
X , thusin TX . .The data of f = g + p an now be interpolated on X by s = s0 + q, where qinterpolates the data of g − s0 + p = g − ΠX(g) + p on X . In fat,

f(xk) = g(xk) + p(xk)
= g(xk)− s0(xk) + p(xk) + s0(xk)
= q(xk) + s0(xk)
= s(xk), 1 ≤ k ≤ N.De�nition 5.17. For a P�onditionally positive de�nite Kernel K, the pre�native spae is

NK := P +Hwhere H is the pre�Hilbert spae of (5.9) under the inner produt de�ned via(5.11).Of ourse, we an extend the inner produt on H to a semi�inner produton NK by de�ning it to be zero if one of the arguments is in P. This is the�rst part of 79



Theorem 5.18. The pre�native spae NK arries a semi�inner produtwhih vanishes if one of the arguments is in P, and it is an inner prod-ut on H. Eah funtion in NK an be interpolated on any P�unisolvent set
X by a funtion sf,X from P +HX with HX from (5.13). The onstrutionan be performed along the lines of Setion 5.3. The funtion sf,X mini-mizes the seminorm under all other interpolants from NK , and it is the bestapproximation to f in the seminorm from all funtions in P +HX .Proof: We only need to prove the �nal sentene, and we an use Theorem5.15 for that purpose. In the ontext of Setion 5.3 and the splitting NK =
P + H we an split sf,X = pf,X + fa,X with pf,X ∈ P and fa,X ∈ H . Then
fa,X ......RS: gap here, to be done...Theorem 5.18 extends Theorem 5.7 to let the system (5.6) be solvable, if thedata ome from funtions in the pre�native spae.5.6 Conditional Lagrange BasisWe now proeed towards a Lagrange�type basis. We need the system (5.6)for this, but we know solvability only if the data on the right�hand side arefrom a funtion in the pre�native spae, or if the kernel is de�nite. We shallgo for the �rst ase.Starting with a P�unisolvent set X , we an add another point y ∈ Ω andstill know that the set X ∪ {y} is P�unisolvent. This means that we anhave a formula

(Pu)(y) :=
N∑

j=1

u(xj)pj(y) (5.19)whih reprodues funtions from P, but yields funtions in P if applied togeneral funtions. With this at hand, the funtional
µy : f 7→ f(y)− (Pf)(y) = f(y)−

N∑

j=1

pj(y)f(xj) (5.20)lies in L and the funtion
R(µy) = µz

yK(·, z) = K(y, ·)−
N∑

j=1

pj(y)K(xj , ·)
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lies in H . If we use its values on X as a right�hand side in the system (5.6)and write the oe�ients as funtions of y, we get
N∑

j=1

aj(y)pn(xj) = 0, 1 ≤ n ≤ Qand
N∑

j=1

aj(y)K(xj , xk) +
Q∑

m=1

bm(y)pm(xk)

= K(y, xk)−
N∑

j=1

pj(y)K(xj , xk)whih turns into
N∑

j=1

uj(y)K(xj , xk) +
Q∑

m=1

bm(y)pm(xk) = K(y, xk), 1 ≤ k ≤ N.with
uj(y) = aj(y) + pj(y), 1 ≤ j ≤ Nand

N∑

j=1

uj(y)p(xj) =
N∑

j=1

aj(y)p(xj) +
N∑

j=1

pj(y)p(xj) = 0 + p(y) for all p ∈ P.This is usually ombined into the system
N∑

j=1

K(xk, xj)uj(y) +
Q∑

m=1

bm(y)pm(xk) = K(xk, y), 1 ≤ k ≤ N

N∑

j=1

uj(y)p(xj) + 0 = p(y), p ∈ P (5.21)whih is solvable and has the same oe�ient matrix as (5.6), but a right�hand side that is not neessarily in the native spae. If the kernel is de�nite,the funtions uj are a Lagrange basis, and the funtions bm satisfy bm(xj) =
0, 1 ≤ j ≤ N, 1 ≤ m ≤ Q. This follows from uniqueness, setting y = xi.Theorem 5.22. The overall solution of the interpolation for data f(xj) fora funtion f from P +H takes the form

s(y) =
N∑

j=1

uj(y)f(xj).81



Proof: We write s in the form (5.5) and insert the two above equations intothe right�hand side. Then
s(y) =

N∑

k=1

akK(xk, y) +
Q∑

n=1

bnpn(y)

=
N∑

k=1

ak




N∑

j=1

K(xk, xj)uj(y) +
Q∑

m=1

bm(y)pm(xk)


+

Q∑

n=1

bn
N∑

j=1

uj(y)pn(xj)

=
N∑

j=1

uj(y)




N∑

k=1

akK(xk, xj) +
Q∑

n=1

bnpn(xj)


+ 0

=
N∑

j=1

uj(y)f(xj), 1 ≤ j ≤ N.5.7 Native SpaeWe now use the tehnique of the previous setion to arrive at reprodutionformulae and ar a proper de�nition of the netive spae. Again, X is P�reproduing, and we use the funtionals µy ∈ L of (5.20) applied to funtions
f ∈ H . This yields

µy(f) = (f, R(µy)) =


f,K(y, ·)−

N∑

j=1

pj(y)K(xj , ·)



Hwhere we annot split the inner produt, beause terms like (f,K(x, ·))H areunde�ned. For funtions f ∈ H we an split the left�hand side as
µy(f) = f(y)−

N∑

j=1

f(xj)pj(y),and this gives us a reprodution formula
f(y)−

N∑

j=1

f(xj)pj(y) =


f,K(y, ·)−

N∑

j=1

pj(y)K(xj , ·)



H
(5.23)that holds on H , while the right�hand term an be dropped for f ∈ P. Bothsides have limits when we go to the ompletion of H .But the assignment of single funtion values to elements of the ompletionis still to be done. We want to omplete H into an abstrat Hilbert spae

H and de�ne the native spae formally as P ×H and assign values to a pair
(p, f) on Ω onsistently, i.e. without dependene on P�unisolvent sets X .82



To start with a unique value assignment, we �x a minimal P�unisolventset Ξ = {ξ1, . . . , ξQ} with exatly Q Lagrange basis funtions of P we all
π1, . . . , πQ. Then, given f ∈ H and p ∈ P, we use (5.23) for X = Ξ to assignfuntion values as
(p, f)Ξ(y) :=

Q∑

m=1

p(ξm)πm(y) +


f,K(y, ·)−

Q∑

m=1

πm(y)K(ξm, ·)



H
. (5.24)To show that this de�nition is onsistent with what we have in (5.23), we�rst note that the inner produt above vanishes for y = ξn, suh that therewe have (p, f)Ξ(ξn) = p(ξn), 1 ≤ n ≤ Q. This shows that the above formulais onsistent with (5.23) and makes sense for the ompletion.To ompare this with the situation on a general set, we denote the valuesneeded in (5.23) by fX and �rst evaluate

(p, f)Ξ(xj) =
Q∑

m=1

p(ξm)πm(xj) +


f,K(xj , ·)−

Q∑

m=1

πm(xj)K(ξm, ·)



H
.Then

N∑

j=1

pj(y)(p, f)Ξ(xj)

=
N∑

j=1

pj(y)
Q∑

m=1

p(ξm)πm(xj)

+


f,

N∑

j=1

pj(y)


K(xj , ·)−

Q∑

m=1

πm(xj)K(ξm, ·)





H

=
N∑

j=1

pj(y)
Q∑

m=1

p(ξm)πm(xj)

+


f,

N∑

j=1

pj(y)K(xj , ·)−K(y, ·) +K(y, ·)−
Q∑

m=1

K(ξm, ·)πm(y)



H

=
Q∑

m=1

p(ξm)πm(y) + (p, f)Ξ(y)−
Q∑

m=1

p(ξm)πm(y)

+
N∑

j=1

pj(y)fX(xj)− fX(y)proves
(p, f)Ξ(y)−

N∑

j=1

pj(y)(p, f)Ξ(xj) = fX(y)−
N∑

j=1

pj(y)fX(xj),83



i.e. our value assignment is onsistent. From (5.24) we also see that
(p, f)Ξ(y) = (p, 0)Ξ(y) + (0, f)Ξ(y) for all f ∈ H, p ∈ P, y ∈ Ωimplies that we an form P +H in a onsistent way. We summarize:De�nition 5.25. The native spae for a P�onditionally positive semidef-inite kernel K an be de�ned as P×H or P+H with a onsistent assignmentof funtion values on Ω to make all reprodution equations (5.23) meaningful.A onsistent de�nition of values needs �xing a minimal P�unisolvent set Ξ,and the de�nition of values will depend on that set. The native spae arriesa seminorm with kernel P whih is an inner produt on H.We now look bak at Setion 5.5 and onsider the Hilbert spae ompletion.We now an go over to the ompletion in the pre�native spae P +H , whihwas impossible until we knew how to add these spaes. Thus we get aftershort inspetion of what we did there,Theorem 5.26. The interpolation problem for P�onditionally positive de�-nite kernels on P�unisolvent sets is solvable, if the data ome from a funtionin the native spae of the kernel.The extension of Theorems 5.15 and 5.16 to the native spae isTheorem 5.27. If sf,X is the interpolant to a funtion f of the native spaeof a P�onditionally positive semide�nite kernel K on a P�unisolvent set

X, then sf,X minimizes the seminorm under all other interpolants from thenative spae. Furthermore, it provides the best approximation to f from HXin the seminorm.5.8 Power FuntionTo generalize the Power Funtion to the onditionally positive semide�nitease, let K be a P�onditionally positive semide�nite kernel on Ω and let
X = {x1, . . . , xN} be a P�unisolvent subset of Ω. We onsider general re-prodution formulae of the form

P (f)(x) :=
N∑

j=1

uj(x)f(xj) (5.28)whih should reover funtions from P, i.e. the funtionals
µx(f) := f(x)−

N∑

j=1

uj(x)f(xj) =


δx −

N∑

j=1

uj(x)δxj


 (f)84



are in L. Then we de�ne the Power Funtion as
PX(x) := inf

u(x)∈KN





∥∥∥∥∥∥
δx −

N∑

j=1

uj(x)δxj

∥∥∥∥∥∥
L

: p(x) =
N∑

j=1

uj(x)p(xj) for all p ∈ P


.(5.29)The norms an be expliitly evaluated via

‖µx‖2L = µu
xµ

v
xK(x, v)

= µv
xK(x, v)−

N∑

j=1

uj(x)µv
xK(xj , v)

= K(x, x)−
N∑

k=1

uk(x)K(xk, x)−
N∑

j=1

uj(x)K(x, xj)

+
N∑

j=1

N∑

k=1

uj(x)uk(x)K(xk, xj)

(5.30)
and are upper bounds for P 2

X(x). This will be useful for error bounds, sinewe haveTheorem 5.31. If interpolation of a funtion f in the native spae NK fora P�onditionally positive semide�nite kernel K on Ω is performed on a P�unisolvent set X and solved by some funtion s of the form (5.5), then thereis an error bound
|f(x)− s(x)| ≤ PX(x)‖f‖NK

for all x ∈ Ω, f ∈ NK . (5.32)For eah reovery formula (5.28) whih is exat on P, the Power Funtionhas the upper bound
P 2
X(x) ≤ ‖µx‖2Lwith (5.30). Equality is attained if the uj(x) are the Lagrange�type reon-strution funtions of Setion 5.6 de�ned by the system (5.21).Proof: We only have to prove the �nal statement. For the uj(x) of (5.21)and the assoiated funtional µx we then have to prove that

(µx, λb,X)L = 0 for all λb,X ∈ L,
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beause these λb,X are the admissible perturbations. This is
(µx, λb,X)L = µx(fb,X)

= fb,X(x)−
N∑

j=1

uj(x)fb,X(xj)

=
N∑

k=1

bkK(xk, x)−
N∑

j=1

uj(x)
N∑

k=1

bkK(xk, xj)

=
N∑

k=1

bk


K(xk, x)−

N∑

j=1

uj(x)K(xk, xj)




=
Q∑

m=1

bm(y)
N∑

k=1

bkpm(xk)

= 0due to (5.21).5.9 Redued KernelsHere, we desribe a pratial trik that allows a simple transition from a P�onditionally positive (semi�) de�nite kernel to an unonditionally positive(semi�) de�nite kernel.Repeating what we needed in the previous setion to de�ne funtion valuesfor the abstrat elements of the native spae, we �x a minimal P�unisolventset Ξ ⊂ Ω of size |Ξ| = Q. Every p ∈ P an then be reprodued by aLagrange basis π1, . . . , πQ with πj(ξk) = δjk, 1 ≤ j, k ≤ Q, i.e. we anwithout loss of generality assume that
p(x) =

Q∑

m=1

p(ξm)πm(x) =: (ΠΞ(p))(x) for all x ∈ Ω, p ∈ Pafter hanging to the Lagrange basis. This de�nes a linear projetor ΠΞ onto
P that extends to general funtions on Ω as

(ΠΞ(f))(x) :=
Q∑

m=1

f(ξm)πm(x) for all x ∈ Ω, f : Ω → K. (5.33)This implies that the funtionals
µx := δx −

Q∑

m=1

πm(x)δξm86



satisfy the moment onditions, and we de�ne the redued kernel
K̃(x, y) := (µx, µy)L

= µs
yµ

t
xK(s, t)

= K(x, y)−
Q∑

m=1

πm(x)K(ξm, y)

−
Q∑

n=1

πn(y)K(x, ξn) +
Q∑

m=1

Q∑

n=1

πm(x)πn(y)K(ξm, ξn)

(5.34)
for all x, y ∈ Ω.Theorem 5.35. The redued kernel is Hermitian and unonditionally pos-itive semide�nite on Ω. It vanishes, if one of the arguments is in Ξ. If Kis P�onditionally positive de�nite on Ω, then K̃ is unonditionally positivede�nite on Ω \ Ξ. Quadrati forms with moment onditions will be the samefor K and K̃.Proof: The �rst statement follows from the de�nition via an inner produtof funtionals. The seond follows from µx = 0 for x ∈ Ξ. Sine the µfuntionals annihilate funtions in P, quadrati forms for K and K̃ mustoinide, if they satisfy moment onditions.If we have a set X = {x1, . . . , xN} ⊆ Ω \ Ξ and a vetor a ∈ KN , then wehave to look at the quadrati form

N∑

j,k=1

ajakK̃(xj, xk)

=
N∑

j,k=1

ajakK(xj , xk)

−
N∑

k=1

ak

Q∑

m=1

K(ξm, xk)
N∑

j=1

ajπm(xj)

−
N∑

j=1

aj

Q∑

n=1

K(xj , ξn)
N∑

k=1

akπn(xk)

+
Q∑

m=1

Q∑

n=1

K(ξm, ξn)
N∑

j=1

ajπm(xj)
N∑

k=1

akπn(xk).If we de�ne
βn := −

N∑

k=1

akπn(xk), 1 ≤ n ≤ Q,87



then this turns into
N∑

j,k=1

ajakK̃(xj , xk)

=
N∑

j,k=1

ajakK(xj , xk) +
N∑

k=1

ak

Q∑

m=1

K(ξm, xk)βm

+
N∑

j=1

aj

Q∑

n=1

K(xj , ξn)βn +
Q∑

m=1

Q∑

n=1

K(ξm, ξn)βmβnwhih is a Hermitian quadrati form for the set X ∪ Ξ. Cheking momentonditions on this set for πm ∈ P, we get
N∑

k=1

akπm(xk) +
Q∑

n=1

βnπm(ξn)

N∑

k=1

ak

Q∑

n=1

πm(ξn)πn(xk)−
Q∑

n=1

N∑

k=1

akπn(xk)πm(ξn) = 0.IfK is onditionally positive de�nite on Ω, and if the form for K̃ onX ⊂ Ω\Ξvanishes for a oe�ient vetor a, then the form for K vanishes on X ∪ Ξand we get a = 0.We now an resort to the unonditionally positive semide�nite ase and knowfrom Theorem 3.17 on page 47 that K̃ is the reproduing kernel of a Hilbertspae H̃ of funtions vanishing on Ξ. Eah funtion f̃ ∈ H̃ has the repro-dution formula
f̃(x) = (f̃ , K̃(x, ·))H̃ for all x ∈ Ω, f ∈ H̃.Sine the funtions of H̃ vanish on Ξ, and the funtions of P are determinedby their values on Ξ, we an add the spae P to H̃ without overlap. Wede�ne the sum

Ĥ := P + H̃whih is diret, and we use the projetor ΠΞ from (5.33). Then
f − ΠΞ(f) ∈ H̃ for all f ∈ Ĥ.Inserting this as f̃ into the reprodution formula in H̃, we get the Taylor�typereprodution formula

f(x) = ΠΞ(f)(x) + (f − ΠΞ(f), K̃(x, ·))H̃ for all f ∈ Ĥ, x ∈ Ω. (5.36)88



By setting
(f, g)Ĥ := (f −ΠΞ(f), g − ΠΞ(g))H̃ for all f, g ∈ Ĥwe get a semi�inner produt on Ĥ that vanishes if one of the arguments isin P. And we an use

ΠΞ(K̃(x, ·)) = 0 for all x ∈ Ωfor
(K̃(x, ·), K̃(y, ·))Ĥ = K̃(x, y) for all x, y ∈ Ω. (5.37)Theorem 5.38. The native spae of the given P�onditionally positive semidef-inite kernel K oinides as a spae of funtions with Ĥ := P + H̃, where H̃is the native spae for the redued kernel K̃.Proof: By Theorem 5.35 we an use K̃ instead of K when we do the on-strution of setions 5.4 and 5.7, sine the quadrati forms will not hange.The hange is only modulo P. This implies that the resulting spae H willautomatially onsist of funtions vanishing on Ξ, and the equations (5.36)and (5.24) oinide. Thus we get a speial instane of value assignment thatis onsistent with De�nition 5.25.In Theorem 5.7 of Setion 5.3 we saw that we an do interpolation on P�unisolvent sets X = {x1, . . . , xN}, if the kernel K is P�onditionally positivede�nite. We did this without using Hilbert spae struture, but now wewant to link this with our Hilbert spae bakground. Given a funtion f in

H and a P�unisolvent set X on whih we want to interpolate f by a funtion
s ∈ H, we annot expet f and s to oinide on Ξ. Formally, we take thedata µxj

(f), 1 ≤ j ≤ N and interpolate these data �rst by some
s0(x) :=

N∑

j=1

αjK̃(xj , x)that vanishes on Ξ. We then have
µxk

(f) = f(xk)− (ΠΞ)(f)(xk)

= f(xk)−
Q∑

m=1

πm(xk)f(ξm)

= µxk
(s0)

= s0(xk), 1 ≤ k ≤ Nand see that we should use
s := (ΠΞ)(f) + s089



to get a full interpolant on X .But we have to hek in whih funtion span this interpolant lies. We seethat
s0(x) =

N∑

j=1

αjK̃(xj , x)

=
N∑

j=1

αjK(xj , x)−
Q∑

m=1

K(ξm, x)
N∑

j=1

αjπm(xj)

−
Q∑

n=1

πn(x)
N∑

j=1

αjK(xj , ξn) +
Q∑

m=1

Q∑

n=1

πm(x)K(ξm, ξn)
N∑

j=1

αjπn(xj)still ontains funtions of the formK(ξm, ·) if there are no moment onditionswith respet to Ξ. This means that we have an interpolant that is possiblydi�erent from what we had before.But if Ξ is a subset of a P�unisolvent data set on whih we want to interpo-late, we have no problem at all and just perform the previous algorithms ina di�erent way. We use the redued kernel on X \ Ξ for data of f − ΠΞ(f)there, and then add the interpolant in P to ΠΞ(f), whih is ΠΞ(f) itself.We now show how this an be done in pratie. Assume Ξ ⊆ X and de�ne
Y := X \ Ξ with |Y | = N − Q. We sort the points suh that the �rst Qpoints of X are the points of Ξ. Then we write down the linear system (5.6)in (Q,N −Q,Q) blok form as



AΞ,Ξ AΞ,Y IQ×Q

A∗
Ξ,Y AY,Y B
I B∗ 0Q×Q






aΞ
aY
b


 =




fΞ
fY
0Q×1


using the fat that the matrix of values πm(xj) onsists of IQ×Q for the Ξpart and a (N − Q) × Q matrix B for the points of Y , sine the πm are aLagrangian basis on Ξ. We know that the system is solvable, and we use thethird and �rst part to get

aΞ = −B∗aY ,
b = fΞ − AΞ,ΞaΞ −AΞ,Y aY

= fΞ + (AΞ,ΞB
∗ − AΞ,Y ) aY .

(5.39)We insert this into the seond part. Then
fY = A∗

Ξ,Y aΞ + AY,Y aY +Bb
= −A∗

Ξ,YB
∗aY + aY +B (fΞ + (AΞ,ΞB

∗ − AΞ,Y ) aY ) ,90



gives the solvable system
fY − BfΞ =

(
AY,Y − A∗

Ξ,YB
∗ − BAΞ,Y +BAΞ,ΞB

∗
)
aY .One this is solved, we use (5.39) to get the remaining parts of the solution.Writing the above system in detail, we get

f(xk)−
Q∑

m=1

πm(xk)f(ξm)

=
N∑

j=Q+1


K(xj , xk)−

Q∑

m=1

K(ξm, xk)πm(xj)−
Q∑

n=1

πn(xj)K(xk, ξn)

+
Q∑

m,n=1

πn(xj)πm(xj)K(ξm, ξn)


 ajfor Q + 1 ≤ k ≤ N . This is

µxk
=

N∑

j=Q+1

K̃(xj , xk)aj , Q + 1 ≤ k ≤ N,i.e. a redued system using the redued kernel.Readers should note that this is a variation of a Shur omplement argument.For appliations, we need to know whih funtionals an be used for general-ized interpolation, provided that we have a P�onditionally positive semidef-inite kernel K that is expliitly known as a funtion on Ω × Ω. This willamount to generalize Theorem 2.11 to the P�onditionally positive semidef-inite ase. We an avoid a new theorem by applying Theorem 2.11 to theredued kernel.5.10 Extended KernelsThe previous setions showed that in the P�onditionally positive (semi)�de�nite ase we have a diret sum P + H as a native spae, with an innerprodut only on the H part. But in order to arrive at an inner produt on thewhole spae, we an extend the redued kernel (5.34) to get the extendedkernel
K†(x, y) := K̃(x, y) +

Q∑

m=1

πm(x)πm(y)

= K(x, y) +
Q∑

m=1

πm(x)πm(y)−
Q∑

m=1

πm(x)K(ξm, y)

−
Q∑

n=1

πn(y)K(x, ξn) +
Q∑

m=1

Q∑

n=1

πm(x)πn(y)K(ξm, ξn)

(5.40)
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for all x, y ∈ Ω, using the Lagrange basis π1, . . . , πQ of P again. The ad-ditional part learly is an unonditionally positive semide�nite kernel itself.Regarding the results of Setion 5.7, we here �x X = Ξ like in Setion 5.9and getTheorem 5.41. If K is a P�onditionally positive semide�nite kernel on
Ω, the extended kernel K† is an unonditionally positive semide�nite kernelon Ω whose native spae H† oinides with the native spae of K as a vetorspae. The subspae

H†
Ξ := {f ∈ H† : f(Ξ) = {0}}is isometrially isomorphi toH and orthogonal to P in the new inner produtindued by K†. If K is de�nite, so is K†.Proof: The kernel K† learly is Hermitian and unonditionally positivesemide�nite on Ω due to its de�nition and Theorem 5.35. We note in passingthat

K†(x, ξm) = πm(x), K
†(ξm, y) = πm(y) for all 1 ≤ m ≤ Q, x, y ∈ Ω.The projetor ΠΞ onto P is (5.33), and thus

K†(x, y)− ΠΞ(K
†(x, ·))(y) = K†(x, y)−

Q∑

m=1

πm(y)K
†(x, ξm)

= K†(x, y)−
Q∑

m=1

πm(x)πm(y)

= K̃(x, y) for all x, y ∈ Ω.The translates K†(x, ·) are in P +H , and to eah translate K̃(x, ·) we anadd an element of P to get K†(x, ·). Thus, without going to losures, we nowwork in P +H without loss of generalization, unless we go to losures.We �rst assert that the inner produt (., .)† on the native spae of K†, ne-essarily satisfying (2.3), is the same as
(f, g)†† :=

Q∑

m=1

f(ξm)g(ξm) + (f −ΠΞ(f), g − ΠΞ(g))H for all f, g ∈ P +H.
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We only have to hek this on translates of K†. This is
(K†(x, ·), K†(y, ·))††

=
Q∑

m=1

K†(x, ξm)K†(y, ξm)

+
(
K†(x, ·)−ΠΞ(K

†(x, ·)), K†(y, ·)−ΠΞ(K
†(y, ·))

)
H

=
Q∑

m=1

πm(x)πm(y) + (K̃(x, ·), K̃(y, ·))H
= K†(x, y)− K̃(x, y) + (K̃(x, ·), K̃(y, ·))H
= K†(x, y)due to (5.37). In this inner produt, the spaes P and H are orthogonal.Furthermore, we have the reprodution equation

f(x) = (ΠΞ(f))(x) +
(
f −ΠΞ(f), K̃(x, ·)

)
H

=
Q∑

m=1

f(ξm)πm(x) +
(
f − ΠΞ(f), K̃(x, ·)

)
H

=
Q∑

m=1

f(ξm)K†(x, ξm) +
(
f −ΠΞ(f), K

†(x, ·)− ΠΞ(K
†(x, ·))

)
H

= (f,K†(x, ·))††
= (f,K†(x, ·))† for all f ∈ P +H, x ∈ Ω.Going to the losure now is no problem at all. Sine it is lear that

(f, g)H = (f, g)†for all f, g in P + H that vanish on Ξ, the Hilbert spae topologies on Hfor the redued kernel and on the subspae H†
Ξ of P + H for the extendedkernel are isometri. We now are exatly in the situation of Theorem 2.19on page 17. The spae P is orthogonal to H in the new inner produt, andthe extended kernel re�ets this orthogonal deomposition.Using the extended kernel, one an bypass all the hassles indued by on-ditional positive de�niteness, when it omes to numerial alulations. Buteverything will depend on Ξ, and if interpolations on di�erent P�unisolventsets X are performed and ompared, one must keep Ξ �xed throughout.However, results will be di�erent from what we did in Setion 5.3, if Ξ is notontained in the set X used for interpolation. The reason is that translatesof K̃ and K† will usually ontain translates at the points of Ξ.93



6 SplinesThe following is a somewhat nonstandard introdution to splines, modeledfor extensions to general multivariate kernel-based funtion spaes.First we �x a positive integer k and denote the spae of real�valued poly-nomials with order (= degree -1) at most k by Pk. In the d�variate asewe shall use the notation Pd
k .6.1 Semi�inner produtAs a funtion spae, we start with the vetor spae Ck[a, b] of all real-valuedfuntions f with pieewise ontinuous k-th derivatives for whih

|f |2k :=
∫ b

a

(
dkf(t)

dtk

)2

dt (6.1)is �nite. We leave it to the reader that this de�nes a reasonable vetor spaeof funtions on [a, b].Equation (6.1) de�nes a semi-norm, i.e. it has the properties of a norm exeptfor the de�niteness, and there is a semi-inner produt
(f, g)k :=

∫ b

a

dkf(t)

dtk
dkg(t)

dtk
dt.Lemma 6.2. The seminorm |f |k is zero if and only if f is a polynomial oforder at most k.Proof: Clearly, the seminorm |f |k is zero if f is a polynomial of order at most

k. Conversely, if the seminorm |f |k is zero for some funtion f ∈ Ck[a, b],then f (k) is zero exept for its points of disontinuity. Then f onsists ofpolynomial piees of order at most k whih are glued together in suh away that the (k − 1)st derivative still is ontinuous. But then f is a globalpolynomial of order at most k.6.2 Taylor's FormulaWe want to align the above starting point with what we know about positivesemide�nite kernels and reproduing kernel Hilbert spaes, but so far wehave no inner produt and no kernel. But we an go for a reprodutionproperty whih everybody should be well aquainted with.94



Every funtion f on [a, b] with k ontinuous derivatives satis�es
f(x) =

k−1∑

j=0

f (j)(a)

j!
(x− a)j +

∫ x

a
f (k)(t)

(x− t)k−1

(k − 1)!
dt, x ∈ [a, b]and this generalizes to funtions in Ck[a, b] (without proof here). This is areprodution formula, and in the integral we an see what ould later be akernel, but we still have to work a little.The upper bound x of the integral an be eliminated by de�ning the trun-ated power as

(z)k+ :=





zk z > 0
0 z < 0
1
2

z = 0, k = 0
0 elseto get

f(x) =
k−1∑

j=0

f (j)(a)

j!
(x− a)j +

∫ b

a
f (k)(t)

(x− t)k−1
+

(k − 1)!
dt, x ∈ [a, b].With the kernel funtion

Kk,a(x, t) := (−1)k
(x− t)2k−1

+

(2k − 1)!the above equation takes the form
f(x) =

k−1∑

j=0

f (j)(a)

j!
(x− a)j

︸ ︷︷ ︸
=:(Pk,af)(x)

+(f,Kk,a(x, ·))k

= (Pk,af)(x) + (f,Kk,a(x, ·))k, x ∈ [a, b].

(6.3)This is a reprodution formula, i.e. it allows f to be reprodued from f (k)in [a, b] and the derivatives at a up to order k − 1. We also have a kernelnow, but it is unsymmetri, and thus it does not �t into our framework.6.3 Taylor's Formula SymmetrizedBut note that we have takled a symmetri problem in an unsymmetri way,whih is a mathematial rime. We should also use Taylor's formula at b.95



This is
f(x) =

k−1∑

j=0

f (j)(b)

j!
(x− b)j +

∫ x

b
f (k)(t)

(x− t)k−1

(k − 1)!
dt, x ∈ [a, b]

=: (Pk,bf)(x) +
∫ b

x
f (k)(t)(−1)k

(t− x)k−1

(k − 1)!
dt

= (Pk,bf)(x) + (f,Kk,b(x, ·))kwith
Kk,b(x, y) = (−1)k

(y − x)2k−1
+

(2k − 1)!
.To get something symmetri, we take the mean of the two Taylor formulae.This is

f(x) = 1
2
(Pk,af)(x) +

1
2
(Pk,bf)(x) +

1
2
(f,Kk,a(x, ·) +Kk,b(x, ·))k

=: (Rkf)(x) + (f,Kk(x, ·))k (6.4)with
(Rkf)(x) := 1

2
(Pk,af)(x) +

1
2
(Pk,bf)(x)

=
1

2

k−1∑

j=0

f (j)(a)

j!
(x− a)j +

1

2

k−1∑

j=0

f (j)(b)

j!
(x− b)j

Kk(x, t) := 1
2
(−1)k

|x− t|2k−1

(2k − 1)!
.Note that the two reprodution formulae (6.3) and (6.4) an both be usedto our onveniene. The di�erent kernels are linked to di�erent polynomialprojetors.We have three reprodution formulas and three kernels, so far. But we alsowant to have (2.3), and this will not hold for either of these kernel. We boldlyde�ne

Φk(x, y) := (Kk(x, ·), Kk(y, ·))k for all x, y ∈ [a, b]and see what this new symmetri kernel is. We use (6.4) for f(y) := Kk(x, y)to �nd
Φk(x, y)

= (Kk(x, ·), Kk(y, ·))k
= Kk(x, y)− Rk(Kk(x, ·))(y)
= Kk(x, y)− 1

2
(Pk,aKk(x, ·))(y)− 1

2
(Pk,bKk(x, ·))(y)

= Kk(x, y)−
1

2
(−1)k

k−1∑

j=0

(x− a)2k−1−j

(2k − 1− j)!
(−1)j(y − a)j

−1

2
(−1)k

k−1∑

j=0

(b− x)2k−1−j

(2k − 1− j)!
(y − b)j .96



Sine both Φk and Kk are symmetri, so is the polynomial on the right�handside. This means that it must be a polynomial of degree at most k − 1 inboth x and y by some hidden anellation. But as these kernels di�er onlyby funtions in Pk, we have
Φk(x, y) = (Φk(x, ·),Φk(y, ·))k for all x, y ∈ [a, b] (6.5)and the reprodution equation

f(x) =: (Rkf)(x) + (f,Φk(x, ·))k for all f ∈ Ck[a, b], x ∈ [a, b]. (6.6)To illustrate the hidden anellation, we onsider k = 1. Then
Φ1(x, y)

= K1(x, y) +
1

2
(x− a) +

1

2
(b− x)

= −1
2
|x− y|+ a+b

2
.Readers might hek the anellation for k = 2.6.4 Conditional Positive De�nitenessAs readers will already expet, we haveTheorem 6.7. The kernel Φk is unonditionally positive semide�nite. Allspline kernels we have onsidered so far are Pk�onditionally positive de�nite.Proof: The �rst statement follows immediately from (6.5), but note that itdoes not hold for the other kernels. For the onditional positive de�niteness,we take the kernel Φk, a Pk�unisolvent set X and a oe�ient vetor a withmoment onditions, and then we have to prove that if the funtion

f(t) :=
N∑

j=1

ajΦk(xj , t) (6.8)is in Pk, then all oe�ients vanish. For these oe�ients, we look at
λa,X(v) =

N∑

j=1

ajv(xj)

=
N∑

j=1

aj(v(xj)− (Rkv)(xj))

=


v,

N∑

j=1

ajΦk(xj , ·)



k

= 0 97



for all funtions v that we an insert into the Taylor formula. By hoosing aLagrange polynomial basis for interpolation on X , we get that all oe�ientsmust vanish. This �nishes the proof for Φk, but the same argument worksfor all other ombinations of kernels and projetors that we have seen so farand that lead to a Taylor formula.6.5 Native Spae for Spline KernelsTheorem 6.7 allows for two paths towards a native spae:1. for Φk as an unonditionally positive semide�nite kernel,2. for Φk or other kernels as Pk�onditionally positive de�nite kernels.We shall see that we get di�erent results. If we use Φk as an unonditionallypositive semide�nite kernel, the native spae will onsist of the losure oftranslates Φk(x, ·) under an inner produt that also allows (6.5). But thenthis inner produt, sine it oinides with (., .)k on the �generators� Φk(x, ·)must be idential to (., .)k. This is puzzling at �rst sight, beause in general
(., .)k vanishes on Pk, i.e. it is not positive de�nite. But if a linear ombina-tion (6.8) without moment onditions is in Pk, we an plug it into (6.6) toget

(f,Φk(x, ·))k =
N∑

j=1

aj (Φk(xj , ·),Φk(x, ·))k =
N∑

j=1

ajΦk(xj , x) = f(x) = 0for all x ∈ Ω, proving that (., .)k is positive de�nite on the span of thetranslates of Φk. If we take another look at (6.5) and (6.6), we see that alltranslates of Φk neessarily are in the kernel of the projetor Rk, and we havethe standard reprodution formula
f(x) = (f,Φk(x, ·))kfor all f in the native spae H generated by the translates of Φk, as is to beexpeted. But this spae onsists of funtions f with Rk(f) = 0, i.e. it isnot exatly what we want, sine the spae Pk has fallen out. Of ourse, weould get it bak in by going over to an extended kernel, but this would yieldanother native spae.We now hek what we get if we onsider Φk as a Pk�onditionally positivede�nite kernel. The native spae will then onsist of the diret sum of Pkwith a Hilbert spae H generated by funtions

fa,X(y) :=
N∑

j=1

ajΦk(x, y)98



where the oe�ients satisfy moment onditions and X is Pk�unisolvent.The inner produt on H is
(fa,X , fb,Y )H =

N∑

j=1

M∑

i=1

aibjΦk(xi, yj)

=
N∑

j=1

M∑

i=1

aibj(Φk(xi, ·),Φk(yj, ·))k
= (fa,X , fb,Y )kby (6.5), and it is positive de�nite there, as we know. Clearly, all fa,X are inthe Beppo�Levi spae

BLk[a, b] := {f : [a, b] → R : f (k) ∈ L2[a, b]}beause their k�th derivatives are pieewise ontinuous or even smoother,and they lie in the subspae of the f with Rk(f) = 0. This is lear, beausefor eah funtion f ∈ BLk[a, b] we have the reprodution formula (6.6) asan instane of a symmetrized Taylor formula. The semi�inner produt (., .)kis positive de�nite on that subspae, and thus we an deompose BLk[a, b]into BLk[a, b] = Pk + kerRk with kerRk being a Hilbert spae isometriallyisomorphi to L2[a, b] via the map f 7→ f (k) from BLk[a, b] to L2[a, b].We now assertTheorem 6.9. The native spae for Φk as a Pk�onditionally positive de�-nite kernel is the Beppo�Levi spae BLk[a, b].Proof: We know that all fa,X are in kerRk, and thus we only need to provethat the losure of these funtions under (., .)k is not larger than kerRk.Assume that some g ∈ kerRk is orthogonal to all fa,X . This implies
0 = (g, fa,X)k

=
N∑

j=1

aj(g,Φk(xj , ·))k

=
N∑

j=1

aj (g(xj)− Rk(g)(xj))

=
N∑

j=1

ajg(xj)and we use the argument at the start of the proof of Theorem 5.16 on page79 to onlude that the vetor of values g(x1), . . . , g(xN) an be viewed as a99



vetor of values of a polynomial in Pk. Sine this holds for all Pk�unisolventsets X , the funtion g must itself be a polynomial, and vanish sine it is
kerRk.We now an apply everything we know from Chapter 5 about ondition-ally positive de�nite kernels. The interpolation systems of Setion 5.3 arenonsingular, and we have the same optimality results.7 Pratial Observations.... inomplete...In partiular, I should add all the MATLAB programming hints that I gavefor the exerises.This hapter is from a draft of a book, and it is not yet linked intothis text properly. Quite some ross�referenes are hanging in the air,in partiular those leading to methods for solving partial di�erentialequations. Furthermore, this hapter fouses on radial basis funtionsand ignores more general kernels.Before we go on with serious theory, we should present some experimentalresults.7.1 Lagrange InterpolationIn Figure 10 we have 150 sattered data points in [−3, 3]2 in whih we in-terpolate the MATLAB peaks funtion (top right). The next row shows theinterpolant using Gaussians, and the absolute error. The lower row showsMATLAB's standard tehnique for interpolation of sattered data using thegriddata ommand. The results are typial for suh problems: radial basisfuntion interpolants reover smooth funtions very well from a sample ofsattered values, provided that the values are noiseless and the underlyingfuntion is smooth.The ability of radial basis funtions to deal with arbitrary point loationsin arbitrary dimensions is very useful when geometrial objets have to beonstruted, parametrized, or warped, see e.g. [ADR94, CFB97, NFN00,CBC+01, OBS03, RTSD03, WK05, BK05℄. In partiular, one an use suhtransformations to ouple inompatible �nite element odes [ABW06℄.Furthermore, interpolation of funtions has quite some impat on methodssolving partial di�erential equations.100



Figure 10: Interpolation by radial basis funtionsAnother important issue is the possibility to parametrize spaes of trans-lates of kernels not via oe�ients, but via funtion values at the translationenters. This simpli�es meshless methods �onstruting the approximationentirely in terms of nodes� [BKO+96℄. Sine kernel interpolants approximatehigher derivatives well, loal funtion values an be used to provide good esti-mates for derivative data [WHW05℄. This has onnetions to pseudospetralmethods [Fas06℄.7.2 Interpolation of Mixed DataIt is quite easy to allow muh more general data for interpolation by radialbasis funtions. For example, onsider reovery of a multivariate funtion ffrom data inluding the values ∂f

∂x2
(z),

∫

Ω
f(t)dt. The basi trik, due toZ.M. Wu [Wu92℄, is to use speial trial funtions

∂φ(‖x− z‖2)
∂x2

for ∂f

∂x2
(z)

∫

Ω
φ(‖x− t‖2)dt for ∫

Ω
f(t)dtto ope with these requirements. In general, if a linear funtional λ de-�nes a data value λ(f) for a funtion f as in the above ases with λ1(f) =101



∂f

∂x2
(z), λ2(f) =

∫

Ω
f(t)dt, the speial trial funtion uλ(x) to be added is
uλ(x) := λtφ(‖x− t‖2) for λt(f(t))where the upper index denotes the variable the funtional ats on. If m = nfuntionals λ1, . . . , λm are given, the span (3.1) of trial funtions is to bereplaed by

u(x) =
n∑

k=1

akλ
t
kφ(‖x− t‖2).The interpolation system (3.3) turns into

λju =
n∑

k=1

akλ
t
kλ

x
jφ(‖x− t‖2), 1 ≤ j ≤ n (7.1)with a symmetri matrix omposed of λtkλxjφ(‖x− t‖2), 1 ≤ j, k ≤ n whih ispositive de�nite if the funtionals are linearly independent and φ is positivede�nite.
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Figure 11: Generalized interpolant to Neumann dataTo give an example with general funtionals, Figure 11 shows an interpolationto Neumann data +1 and -1 on eah half of the unit irle, respetively, inaltogether 64 points by linear ombinations of properly saled Gaussians.102



In ase of onditionally positive de�nite radial basis funtions, the span of(??) or (??) turns into
u(x) :=

n∑

k=1

akλ
t
kφ(‖x− t‖2) +

q∑

ℓ=1

bℓpℓ(x)while the additional ondition (5.4) is replaed by
n∑

k=1

αkλ
t
kpℓ(t) = 0, 1 ≤ ℓ ≤ qand the interpolation problem is solvable, if the additional ondition

λtkp(t) = 0 for all 1 ≤ k ≤ n and p ∈ P d
Q−1 implies p = 0is imposed, replaing (5.4) and P�unisolveny.Another example of reovery from non-Lagrange data is the onstrution ofLyapounov basins from data onsisting of orbital derivatives [GW07℄.The �exibility to ope with general data is the key to various appliations ofradial basis funtions within methods solving partial di�erential equations.Colloation tehniques, as treated in books on numerial methods for solvingpartial di�erential equations, solve partial di�erential equations numeriallyby interpolation of values of di�erential operators and boundary onditions.Another important aspet is the possibility to implement additional linearonditions or onstraints like

λ(u) :=
∫

Ω
u(x)dx = 1on a trial funtion. For instane, this allows to handle onservation laws andis inevitable for �nite-volume methods. A onstraint like the one above,when used as additional data, adds another degree of freedom to the trialspae by addition of the basis funtion uλ(x) := λtφ(‖x − t‖2), and at thesame time it uses this additional degree of freedom to satisfy the onstraint.This tehnique deserves muh more attention in appliations.7.3 Error BehaviorIf exat data ome from smooth funtions f , and if smooth kernels K orradial basis funtions φ are used for interpolation, users an expet verysmall interpolation errors. In partiular, the error goes to zero when thedata samples are getting dense. The atual error behavior is limited by thesmoothness of both f and φ. Quantitative error bounds an be obtained103



from the standard literature [Buh03, Wen05℄ and reent papers [NWW06℄.They are ompletely loal, and they are in terms of the �ll distane
h := h(X,Ω) := sup

y∈Ω
min
x∈X

‖x− y‖2 (7.2)of the disrete set X = {x1, . . . , xn} of enters with respet to the domain
Ω where the error is measured. The interpolation error onverges to zerofor h → 0 at a rate ditated by the minimum smoothness of f and φ. Forin�nitely smooth radial basis funtions like the Gaussian or multiquadris,onvergene even is exponential [MN92, Yoo01℄ like exp(−c/h). Derivativesare also onvergent as far as the smoothness of f and φ allows, but at a smallerrate, of ourse. This is partiularly important when appliations require goodreprodutions of derivatives, e.g. veloity �elds or stress tensors.

10
−0.7

10
−0.5

10
−0.3

10
−0.1

10
0.1

10
0.3

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Gauss, scale=0.5
Wendland C2, scale=50
Thin−plate spline, scale=1

Inverse Multiquadric, scale=1
Multiquadric, scale=0.8

Figure 12: Nonstationary interpolation to a smooth funtion as a funtionof �ll distaneFor interpolation of the smooth peaks funtion provided by MATLAB andused already in Figure 10, the error behavior on [−3, 3]2 as a funtion of �lldistane h is given by Figure 12. It an be learly seen that smooth φ yieldsmaller errors with higher onvergene rates. In ontrast to this, Figure 13shows interpolation to the nonsmooth funtion
f(x, y) = 0.03 ∗max(0, 6− x2 − y2)2, (7.3)104



on [−3, 3]2, where now the onvergene rate is ditated by the smoothnessof f instead of φ and is thus more or less �xed. Exessive smoothness of φnever spoils the error behavior, but indues exessive instability, as we shallsee later.
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Figure 13: Nonstationary interpolation to a nonsmooth funtion as a funtionof �ll distane7.4 StabilityBut there is a serious drawbak when using radial basis funtions on densedata sets, i.e. with small �ll distane. The ondition of the matries usedin (3.3) and (7.1) will get extremely large if the separation distane
S(X) :=

1

2
min

1≤i<j≤n
‖xi − xj‖2of points of X = {x1, . . . , xn} gets small. Figure 14 shows this e�et in thesituation of Figure 12.If points are distributed well, the separation distane S(X) will be propor-tional to the �ll distane h(X,Ω) of (7.2). In fat, sine the �ll distane isthe radius of the largest ball with arbitrary enter in the underlying domain

Ω without any data point in its interior, the separation distane S(X) is theradius of the smallest ball anywhere without any data point in its interior,105
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Figure 14: Condition as funtion of separation distanebut with at least two points of X on the boundary. Thus for onvex domainsone always has S(X) ≤ h(X,Ω). But sine separation distane only dependson the losest pair of points and ignores the rest, it is reasonable to avoidunusually lose points leading to some S(X) whih is onsiderably smallerthan h(X,Ω). Consequently, a distribution of data loations in X is alledquasi�uniform if there is a positive uniformity onstant γ ≤ 1 suh that
γ h(X,Ω) ≤ S(X) ≤ h(X,Ω). (7.4)To maintain quasi-uniformity, it su�es in most ases to delete �dupliates�.Furthermore, there are sophistiated �thinning� tehniques [FI98, DDFI05,WR05℄ to keep �ll and separation distane proportional, i.e. to assure quasi-uniformity at multiple saling levels.7.5 Unertainty PrinipleUnless radial basis funtions are resaled in a data-dependent way, it an beproven [Sh95℄ that there is a lose link between error and stability, even if�ll and separation distane are proportional. In fat, both are tied to thesmoothness of φ, letting stability beome worse and errors beome smallerwhen taking smoother radial basis funtions. This is kind of anUnertaintyPriniple: 106



It is impossible to onstrut radial basis funtions whih guarantee goodstability and small errors at the same time.
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Figure 15: Squared L∞ error times ondition as a funtion of �ll distaneWe illustrate this by an example. Sine [Sh95℄ proves that the square of the
L∞ error roughly behaves like the smallest eigenvalue of the interpolationmatrix, Figure 15 plots the produt of the MATLAB ondition estimateondest with the square of the L∞ error for the nonstationary interpolationof the MATLAB peaks funtion, used already for Figures 12, 22, and 14 toshow the error and ondition behavior there. Note that the urves do notvary muh if ompared to Figure 14.Thus smoothness of radial basis funtions must be hosen with some are,and hosen dependent on the smoothness of the funtion to be approximated.From the point of view of reprodution quality, smooth radial basis funtionsan well reover nonsmooth funtions, as proven by papers onerning errorbounds [NWW06℄. On the other hand, non-smooth radial basis funtions willnot ahieve high onvergene rates when approximating smooth funtions[SW02℄. This means that using too muh smoothness in the hosen radialbasis funtion is not ritial for the error, but rather for the stability. Butin many pratial ases, the hoie of smoothness is not as sensible as thehoie of sale, as disussed in setion 7.6.107



7.6 SalingIf radial basis funtions are used diretly, without any additional triks andtreats, users will quikly realize that saling is a ruial issue. The literaturehas two equivalent ways of saling a given radial basis funtion φ, namelyreplaing it by either φ(‖x − y‖2/c) or by φ(ǫ‖x − y‖2) with c and ǫ beingpositive onstants. Of ourse, these salings are equivalent, and the ase
ǫ → 0, c → ∞ is alled the �at limit [DF02℄. In numerial methods forsolving di�erential equations, the sale parameter c is preferred, and it isalled shape fator there. Readers should not be irritated by slightly otherways of saling, e.g.

φc(‖x‖2) :=
√
c2 + ‖x‖22 = c ·

√

1 +
‖x‖22
c2

= c · φ1

(
‖x‖2
c

) (7.5)for multiquadris, beause the outer fator c is irrelevant when forming trialspaes from funtions (3.1). Furthermore, it should be kept in mind thatonly the polyharmoni spline and its speial ase, the thin-plate splinegenerate trial spaes whih are sale-invariant.Like the tradeo� between error and stability when hoosing smoothness (seethe preeding setion), there often is a similar tradeo� indued by saling:a �wider� sale improves the error behavior but indues instability. Clearly,radial basis funtions in the form of sharp spikes will lead to nearly diagonaland thus well-onditioned systems (3.3), but the error behavior is disastrous,beause there is no reprodution quality between the spikes. The oppositease of extremely ��at� and loally lose to onstant radial basis funtionsleads to nearly onstant and thus badly onditioned matries, while manyexperiments show that the reprodution quality is even improving when salesare made wider, as far as the systems stay solvable.For analyti radial basis funtions ( i.e. in C∞ with an expansion into apower series), this behavior has an explanation: the interpolants often on-verge towards polynomials in spite of the degeneration of the linear systems[DF02, Sh05, LF05, LYY05, Sh06a℄. This has impliations for many exam-ples in this text whih approximate analyti solutions of partial di�erentialequations by analyti radial basis funtions like Gaussians or multiquadris:whatever is alulated is lose to a good polynomial approximation to thesolution. Users might suggest to use polynomials right away in suh irum-stanes, but the problem is to pik a good polynomial basis. For multivariateproblems, hoosing a good polynomial basis must be data-dependent, and itis by no means lear how to do that. It is one of the intriguing propertiesof analyti radial basis funtions that they automatially hoose good data-dependent polynomial bases when driven to their ��at limit�. There are new108
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Figure 16: Error as funtion of relative sale, smooth asetehniques [LF03, FW04℄ whih irumvent the instability at large sales,but these are still under investigation.Figure 16 shows the error for interpolation of the smooth MATLAB peaksfuntion on a �xed data set, when interpolating radial basis funtions φ areused with varying sale relative to a φ-spei� starting sale given in thelegend. Only those ases are plotted whih have both an error smaller than1 and a ondition not exeeding 1012. Sine the data ome from a funtionwhih has a good approximation by polynomials, the analyti radial basisfuntions work best at their ondition limit. But sine the peaks funtionis a superposition of Gaussians of di�erent sales, the Gaussian radial basisfuntion still shows some variation in the error as a funtion of sale.Interpolating the nonsmooth funtion (7.3) shows a di�erent behavior (seeFigure 17), beause now the analyti radial basis funtions have no advantagefor large sales. In both ases one an see that the analyti radial basisfuntions work well only in a rather small sale range, but there they beatthe other radial basis funtions. Thus it often pays o� to selet a good saleor to irumvent the disadvantages of large sales [LF03, FW04℄.Like in �nite element methods, users might want to sale the basis funtionsin a data-dependent way, making the sale c in the sense of using φ(‖x −
y‖2/c) proportional to the �ll distane h as in (7.2). This is often alled astationary setting, e.g. in the ontext of wavelets and quasi-interpolation.109
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Figure 17: Error as funtion of relative sale, nonsmooth aseIf the sale is �xed, the setting is alled nonstationary, and this is whatwe were onsidering up to this point. Users must be aware that the errorand stability analysis, as desribed in the previous setions, apply to thenonstationary ase, while the stationary ase will not onverge for h → 0in ase of unonditionally positive de�nite radial basis funtions [Buh88,Buh90℄. But there is a way out: users an in�uene the �relative� sale of cwith respet to h in order to ahieve a good ompromise between error andstability. The positive e�et of this an easily be observed [Sh97a℄, and forspeial situations there is a sound theoretial analysis alled approximateapproximation [MS96℄. Figure 18 shows the stationary error behavior forinterpolation of the smooth MATLAB peaks funtion when using di�erentradial basis funtions φ at di�erent starting sales. It an be learly seen howthe error goes down to a ertain small level depending on the smoothness of
φ, and then stays roughly onstant. Using larger starting radii dereasesthese saturation levels, as Figure 19 shows.Due to the importane of relative saling, users are strongly advised to alwaysrun their programs with an adjustable sale of the underlying radial basisfuntions. Experimenting with small systems at di�erent sales give a feelingof what happens, and users an �x the relative sale of c versus h ratherheaply. Final runs on large data an then use this relative saling. In manyases, given problems show a ertain �intrinsi� preferene for a ertain sale,110
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Figure 18: Stationary interpolation to a smooth funtion at small startingsalesas shown in Figure 17, but this is an experimental observation whih still iswithout proper theoretial explanation.7.7 Pratial RulesIf users adjust the smoothness and the saling of the underlying radial basisfuntion along the lines of the previous setions, hanes are good to getaway with relatively small and su�iently stable systems. The rest of thetext ontains plenty of examples for this observation.For ompleteness, we add a few rules for Sienti� Computing with radialbasis funtions, in partiular onerning good hoies of sale and smooth-ness. Note that these apply also to methods for solving partial di�erentialequations in later hapters.
• Always allow a sale adjustment.
• If possible, allow di�erent RBFs to hoose from.
• Perform some experiments with saling and hoie of RBF before youturn to tough systems for �nal results.111
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Figure 19: Stationary interpolation to a smooth funtion at wider startingsales
• If you do not apply iterative solvers, do not worry about large onditionnumbers, but use a stabilized solver, e.g. based on Singular ValueDeomposition (SVD). Remember that unless you apply ertain triks,getting a good reprodution quality will always require bad ondition.If you need k deimal digits of �nal auray for an appliation, do notbother about ondition up to 1012−k.
• If you use ompatly supported radial basis funtions, do not expetthem to work well when eah support ontains less than about 50 neigh-bors. This means that the bandwidth of large sparse systems shouldnot be below 50. Inreasing bandwidth will usually improve the qualityof the results at the expense of omputational omplexity.
• When using either ompatly supported or quikly deaying radial basisfuntions of high smoothness, the theoretial support and the pratialsupport do not oinide. In suh ases one should enfore sparsity byhopping the radial basis funtions, in spite of losing positive de�nite-ness properties. But this should be done with are, and obeying the�50 neighbors� rule above.
• If systems get large and ill-onditioned, and if hange of sale and RBFdo not improve the situation, try methods desribed in the following112



setion.
• Use blokwise iteration (�domain deomposition�) �rst, beause it issimple and often rather e�ient.
• Blokwise iteration an be speeded up by prealulation of LR deom-positions of bloks.
• If all of this does not work, try partitions of unity, multilevel methods,or speial preonditioning tehniques. You are now at urrent researhlevel, and you should look into the next setion.7.8 Sensitivity to NoiseSo far, the disussion foused on noiseless data, with the exeption of Fig-ure 23. If users expet noise in the data, an interpolatory reovery is notappropriate, beause it treats noise as data. In most of the later setions ofthis text, data are right-hand sides or boundary values for partial di�erentialequations, and they usually are given as noiseless funtions whih an beevaluated anywhere. Thus the rest of the text does not treat noisy inputs indetail. But at this point, some remarks are appropriate.In all noisy situations, interpolation should be replaed by approximation.This an be done in various ways leading to stabilization.A primitive, but often quite su�ient tehnique is to run a smoothing proesson the raw data and to reover the unknown funtion from the smoothed datainstead of the raw data.Another standard trik is to solve (3.3) in the L2 sense with oversampling, ifonly n << m trial points xj are used for m data points yk. The trial pointsan then be plaed rather freely with a large separation distane, while asmall separation distane of data points will not have a dramati e�et onstability any more. However, there is not very muh theoretial and pratialwork done on unsymmetri reovery tehniques [Sh06b, Sh07℄.A third possibility is the old Levenberg-Marquardt trik of adding a pos-itive value λ into the diagonal of the kernel matrix of (3.3) with entries

φ(‖xj−xk‖2). As is well-known from literature on spline smoothing, this leadsto an approximant ahieving a tradeo� between smoothness and reprodutionquality whih an be ontrolled by λ. If a stohasti bakground is available,there are methods to estimate λ properly, e.g. by ross-validation. How-ever, in most ases users adjust λ experimentally. This tehnique also helpsto �ght instability when working on irregularly distributed data [WR05℄,beause it is able to shift the stability from dependene on the separationdistane to dependene on the �ll distane (see setion 7.4).113



A fourth possibility is regularization, for example using a singular-valuedeomposition as desribed in setion 7.10.In general, one an replae the system (3.3) by an optimization methodwhih penalizes the reprodution error on one hand and either a omplexity orsmoothness riterion on the other, allowing a fair amount of ontrol over thetradeo� between error and stability. Penalties for the disrete reprodutionerror an be made in various disrete norms, the ℓ1 and ℓ∞ ase having theadvantage to lead to linear optimization restritions, while the disrete ℓ2norm leads to quadrati ones. For radial basis funtions of the form (3.1) or(??), the quadrati form
‖u‖2φ :=

n∑

j,k=1

αjαkφ(‖xj − xk‖2) (7.6)is a natural andidate for penalizing high derivatives without evaluating any.This is due to the standard fat that the above expression is a squared norm ina native spae of funtions with about half the smoothness of φ, penalizingall available derivatives there. For details, we have to refer to basi literature[Buh03, Wen05℄ on the theory of radial basis funtions. But even though weskip over native spaes here, all users should be aware that they always lurein the theoretial bakground, and that all methods based on radial basisfuntions impliitly minimize the above quadrati form under all funtionsin the native spae having the same data. This has a strong regularizatione�et whih is the bakground reason why radial basis funtion or more gen-eral kernel methods work well for many ill-posed and inverse problems[HW03, Li04, TWN04, CC05b, CC05a, HW05, JZ05, Li05, Sai05, Nas06℄.The above strategy of minimizing the quadrati form (7.6) also is entral formodern methods of mahine learning, but we annot pursue this subjetin detail here [CST00, SS02, STC04℄.Let us use minimization of the quadrati form (7.6) to provide an example forthe tradeo� between error and omplexity. Again, the basi situation is inter-polation to the MATLAB peaks funtion, this time in 14×14=196 regularlydistributed points in [−3, 3]2 by Gaussians of sale 1. The global L∞[−3, 3]2error of the exat interpolation on these data is 0.024, evaluated on a �negrid with 121×121=14641 points. But now we minimize the quadrati form(7.6) under the onstraints
− ǫ ≤

n∑

j=1

αjφ(‖xj − xk‖2)− f(xk) ≤ ǫ, 1 ≤ k ≤ n (7.7)for positive ǫ. The ase of ǫ = 0 is exat interpolation using all 196 datapoints and trial funtions. For positive ǫ, the usual Karush-Kuhn-Tuker114
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Figure 21: Error E(ǫ) as a funtion of the number n(ǫ) of neessary pointsDemos on power funtions and on point seletion.... inomplete...7.9 CalulationWe now want to take a loser look at the systems (??) or (??). To this end,we perform a singular�value�deomposition of the kernel matrix as
A = UΣUTwith an orthogonal matrix U and a diagonal matrix with nonnegative entries

σ1, . . . , σN . We fous on (??) as minimization of a quadrati form. The latteris
0 ≤ Q(a) = K(x, x)− 2

N∑

j=1

ajK(x.xj) +
N∑

j,k=1

ajakK(xj , xk)

= K(x, x)− 2aTKX(x) + aTAa with
KX(x) := (K(x1, x), . . . , K(xN , x))

T

116



and an be rewritten as
Q(a) = K(x, x)− 2aTUUTKX(x) + aTUUTAUUTa

= K(x, x)− 2aTU UTKX(x)︸ ︷︷ ︸
=:z(x)

+aTUΣUT a︸ ︷︷ ︸
=:b

= R(b) := K(x, x)− 2bT z(x) + bTΣb

= K(x, x) +
N∑

j=1

(
b2jσj − 2bjzj(x)

)
.We know that this quadrati form is always nonnegative, and we an mini-mize it now by taking derivatives with respet to eah bj . The optimal values

b∗j (x) have to satisfy
b∗j (x)σj = zj(x), 1 ≤ j ≤ N.This leads to
b∗j (x) :=

zj(x)

σj
for σj > 0.In ase of σj = 0 we must (in theory) have zj(x) = 0 beause otherwise thequadrati form ould take on negative values. For these j we an take any

b∗j (x), and we formally write
b∗j (x) :=





zj(x)

σj
σj > 0

λjzj(x) σj = 0with arbitrary λj for the j with σj = 0. Thus we an write
b∗(x) = Dz(x)with a diagonal matrix D = D(σ, λ) having the entries
1

σj
for σj > 0

λj for σj = 0on the diagonal. This yields the representation
a∗(x) = Ub∗(x) = UDz(x) = UDUTKX(x)of the total solution, but we already know that this solution also arises as

u∗j(x) = a∗j (x) in the system (??) and the Lagrange type formula (??). Butin the above form we see that the solution an in spite of the singular systembe written in suh a way that it lies in SX and thus in the native spae.117



In pratial situations, the right�hand side of a system (??) will not nees-sarily onsist of values of a funtion from the native spae. In suh a ase thesystem might be unsolvable, and this then proves that the data indeed do notome from a funtion in the native spae. But one an always go for a quasi�interpolant of the form (??) with the u∗j(x) onstruted as above. This willnot neessarily interpolate the data, but probably be a good reonstrutionstrategy anyway.7.10 RegularizationLet A be an m× n matrix and onsider the linear system
Ax = b ∈ R

m (7.8)whih is to be solved for a vetor x ∈ Rn. The system may arise fromany method using kernels, inluding (??) and (??), but we allow for moreequations than unknowns here. Then the system will have m ≥ n and itusually is overdetermined. Furthermore, for later ases, we allow the matrix
A to be unsymmetri.The previous setion told us that even in the ase m = n with a positivesemide�nite matrix, hanes are good there is an approximate solution x̂whih at least yields ‖Ax̂ − b‖2 ≤ η with a small tolerane η, and whihhas a oe�ient vetor x̂ representable on a standard omputer. Note that
η may also ontain noise of a ertain unknown level. The entral problem isthat there are many vetors x̂ leading to small values of ‖Ax̂− b‖2, and theseletion of just one of them is an unstable proess. But the reprodutionquality is muh more important than the atual auray of the solutionvetor x̂, and thus questions like the nonsingularity or the ondition of thematrix are not the right aspets here.Clearly, any reasonably well-programmed least-squares solver [GvL96℄ shoulddo the job, i.e. produe a numerial solution x̃ whih solves

min
x∈Rn

‖Ax− b‖2 (7.9)or at least guarantees ‖Ax̃−b‖2 ≤ η. It should at least be able not to overlookor disard x̂. This regularization by optimization works in many pratialases, but we shall take a loser look at the joint error and stability analysis,beause even an optimizing algorithm will reognize that it has problems todetermine x̂ reliably if olumns of the matrix A are lose to being linearlydependent. 118



By singular-value deomposition [GvL96℄, the matrix A an be deom-posed into
A = UΣV T (7.10)where U is an m × m orthogonal matrix, Σ is an m × n matrix with zerosexept for singular values σ1, . . . , σn on the diagonal, and where V T is an

n × n orthogonal matrix. Due to some sophistiated numerial triks, thisdeomposition an under normal irumstanes be done with ≀(mn2 + nm2)omplexity, though it needs an eigenvalue alulation. One an assume
σ2
1 ≥ σ2

2 ≥ . . . ≥ σ2
n ≥ 0,and the σ2

j are the nonnegative eigenvalues of the positive semide�nite n×nmatrix ATA.The ondition number of the non-square matrix A is then usually de�nedto be σ1/σn. This is in line with the usual spetral ondition number
‖A‖2‖A−1‖2 for the symmetri ase m = n. The numerial omputation of
U and V usually is rather stable, even if the total ondition is extremelylarge, but the alulation of small singular values is hazardous. Thus thefollowing arguments an rely on U and V , but not on small singular values.Using (7.10), the solution of either the minimization problem (7.9) or, in thease m = n, the solution of (7.8) an be obtained and analyzed as follows.We �rst introdue new vetors

c := UT b ∈ R
m and y := V Tx ∈ R

nby transforming the data and the unknowns orthogonally. Sine orthogonalmatries preserve Eulidean lengths, we rewrite the squared norm as
‖Ax− b‖22 = ‖UΣV Tx− b‖22

= ‖ΣV Tx− UT b‖22
= ‖Σy − c‖22
=

n∑

j=1

(σjyj − cj)
2 +

m∑

j=n+1

c2jwhere now y1, . . . , yn are variables. Clearly, the minimum exists and is givenby the equations
σjyj = cj , 1 ≤ j ≤ n,but the numerial alulation runs into problems when the σj are small andimpreise in absolute value, beause then the resulting yj will be large andimpreise. The �nal transition to the solution x = V y by an orthogonaltransformation does not improve the situation.119



If we assume existene of a good solution andidate x̂ = V ŷ with ‖Ax̂−b‖2 ≤
η, we have

n∑

j=1

(σj ŷj − cj)
2 +

m∑

j=n+1

c2j ≤ η2. (7.11)A standard regularization strategy to onstrut a reasonably stable ap-proximation y is to hoose a positive tolerane ǫ and to de�ne
yǫj :=

{ cj
σj

|σj| ≥ ǫ

0 |σj| < ǫi.e. to ignore small singular values, beause they are usually polluted byroundo� and hardly disernible from zero. This is alled the trunatedsingular value deomposition (TSVD). Fortunately, one often has small
c2j whenever σ2

j is small, and then hanes are good that
‖Axǫ − b‖22 =

∑

1 ≤ j ≤ n
|σj| ≥ ǫ

c2j +
m∑

j=n+1

c2j ≤ η2holds for xǫ = V yǫ.
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Figure 22: Error and ondition of linear subsystems via SVD120



Figure 22 is an example interpolating the MATLAB peaks funtion in m =
n = 441 regular points on [−3, 3]2 by Gaussians with sale 1, using the stan-dard system (??). Following a �xed 441× 441 singular value deomposition,we trunated after the k largest singular values, thus using only k degrees offreedom (DOF). The results for 1 ≤ k ≤ 441 show that there are low-ranksubsystems whih already provide good approximate solutions.
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Error with 0.01% noiseFigure 23: Error as funtion of regularization parameter δ2But now we proeed with our analysis. In ase of large cj for small σj ,trunation is insu�ient, in partiular if the dependene on the unknownnoise level η omes into fous. At least, the numerial solution should notspoil the reprodution quality guaranteed by (7.11), whih is muh moreimportant than an exat alulation of the solution oe�ients. Thus onean minimize ‖y‖22 subjet to the essential onstraint

n∑

j=1

(σjyj − cj)
2 +

m∑

j=n+1

c2j ≤ η2, (7.12)but we suppress details of the analysis of this optimization problem. Another,more popular possibility is to minimize the objetive funtion
n∑

j=1

(σjyj − cj)
2 + δ2

n∑

j=1

y2j121
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Figure 24: Coe�ients |cj| as funtion of jwhere the positive weight δ allows to put more emphasis on small oe�ientsif δ is inreased. This is alled Tikhonov regularization.The solutions of both settings oinide and take the form
yδj :=

cjσj
σ2
j + δ2

, 1 ≤ j ≤ ndepending on the positive parameter δ of the Tikhonov form, and for xδ :=
V yδ we get

‖Axδ − b‖22 =
n∑

j=1

c2j

(
δ2

δ2 + σ2
j

)2

+
m∑

j=n+1

c2j ,whih an me made smaller than η2 for su�iently small δ. The optimalvalue δ∗ of δ for a known noise level η in the sense of (7.12) would be de�nedby the equation ‖Axδ∗ − b‖22 = η2, but sine the noise level is only rarelyknown, users will be satis�ed to ahieve a tradeo� between reprodutionquality and stability of the solution by inspeting ‖Axδ − b‖22 for varying δexperimentally.We now repeat the example leading to Figure 22, replaing the trunationstrategy by the above regularization. Figure 23 shows how the error ‖Axδ −
b‖∞,X depends on the regularization parameter δ. In ase of noise, users anexperimentally determine a good value for δ even for an unknown noise level.The ondition of the full matrix was alulated by MATLAB as 1.46 · 1019,122
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and the solution vetor will usually not be sparse, i.e. the evaluation ofthe �nal solution at many points is ostly. In many ases, linear systemsarising from kernels often have good approximate solutions with only fewnonzero oe�ients, and the orresponding numerial tehniques are other,and possibly preferable regularizations whih still are under investigation.8 Error AnalysisThis setion is the ore for any error analysis of interpolation or approxima-tion methods. There are essentially two possible approahes:1. via upper bounds on the power funtion and2. via �sampling inequalities�.These share some ommon tools. e.g. the onept of stable loal polynomialapproximation. The seond alternative is more modern, but, as the other one,it is hardore mathematis and involves quite some work. Sine the urrentforms of sampling inequalities ontain a good deal of onealed oversampling,it will hopefully worthwhile to start slowly and exhibit the plaes whereoversampling kiks in. Thus we shall �rst fous on motivating and explainingthe important ingredients to error bounds in general, before we reproduethe urrent state�of�the art.8.1 General ConsiderationsFor simpliity, we start with an unonditionally or P�onditionally real�valued positive de�nite symmetri kernel K on a s set Ω. This means thatwe rule out the truly omplex�valued and the positive semide�nite ase.The reason is that we want to work with a true Lagrange basis u∗1, . . . , u∗Nwhenever we have a P�unisolvent set X = {x1, . . . , xN} of points of Ω, andwe want to postpone extensions to a later version of the text.We assume that we want to reover an unknown funtion f from the nativespae N of K from its given data f(x1), . . . , f(xN) on X , and we shall fouson interpolation by kernel translates and funtions from P. This means thatthe interpolant s = sX,f,K exists and is uniquely de�ned by its representation
s(x) =

N∑

j=1

u∗j(x)f(xj)124



in terms of the Lagrange basis. This is the same for the unonditionally andthe P�onditionally positive de�nite ase, though the onstrutions of theLagrange bases in (2.41) and (5.21) are di�erent.The error bounds we are looking for are of the form
|f(x)− s(x)| ≤?for arbitrary funtions f ∈ N and arbitrary points x ∈ Ω. We have thestandard bound

|f(x)− s(x)| ≤ PX(x)‖f‖Nfrom (2.30) and (5.32) via the Power Funtion at our disposal. This nielysplits the e�et of f and X into two independent fators, and we an usethe optimality property of the Power Funtion from (2.31) and (5.29) forgetting upper bounds on it. We shall pursue this line of argument later,sine it gives a lot of information. Furthermore, in the ase of kernels omingfrom ovarianes, the natural notion of an error bound is given by the PowerFuntion itself, beause it desribes the variane of the Kriging estimationerror, and leads to on�dene bands in the ase of Gaussian proesses.But in may ases, e.g. for the Gaussian kernel, the native spae is far toosmall to be useful, and thus one wants to extend these error bounds to largerfuntion spaes. This is where the quest for sampling inequalities started.8.2 Sampling InequalitiesThe basi idea of sampling inequalities is to forget about kernels and theirsometimes exoti native spaes. Assume that a funtion s approximates orinterpolates a funtion f on a disrete subset X of its domain Ω. Then f − sis small or even zero on X . How large an the error funtion f − s beoutside of X? If, for instane, any diretional derivative of both f and s isbounded above by some onstant C, we an write
|f(x)− s(x)| ≤ |f(xj)− s(xj)|+ 2C · ‖x− xj‖2if the line onneting x and xj ∈ X is in Ω and if we integrate the diretionalderivative along the line. If we de�ne the �ll distane

h := h(X,Ω) := sup
x∈Ω

min
xj∈X

‖x− xj‖2of X in Ω and if Ω is onvex, this yields the simple error bound
‖f − s‖∞,Ω ≤ 2C · h,125



but we need to have C under ontrol, i.e. in terms of some triky high�ordernorm ‖f‖ of f .Here is a more general desription of the above argument, applied to theerror funtion:If a smooth funtion has a bound on its highest derivatives, and if it issmall on a large set of points whih ��lls� the domain, then it shouldbe small everywhere.This an be ast into a more general bound like
‖f‖∞,Ω ≤ F (h(X,Ω))|f |F + C · ‖f‖∞,X (8.1)with F (h) → 0 for h → 0, and holding for all f in some funtion spae Fwith a (semi�) norm |f |F . This is a speial ase of a sampling inequality.Its appliation to error funtions f − s of interpolants on X works whenever

f and s are in F via
‖f − s‖∞,Ω ≤ F (h(X,Ω))|f − s|F + C · ‖f − s‖∞,X

= F (h(X,Ω))|f − s|F
≤ F (h(X,Ω))(|f |F + |s|F).At this point, one has to take into aount that |s|F will still depend on Xand thus also on h(X,Ω), but in many ases one an infer a stability boundof the form

|s|F ≤ C|f |Fwith a onstant independent of X , e.g. when we have the usual optimalitypriniple for interpolants in native spaes. This leads to
‖f − s‖∞,Ω ≤ (1 + C)F (h(X,Ω))|f |F (8.2)with F (h) → 0 for h→ 0 and works for general funtion spaes, irumvent-ing the restrition to native Hilbert spaes.8.3 Simple Bounds for Power FuntionsIn the unonditional ase, we an use Theorem 2.29 on page 20 for somesimple upper bounds. For X ⊆ Y ⊆ Ω we have PY (x) ≤ PX(x) for all x ∈ Ω.And if we have two native spaes H1 and H2 with assoiated kernels K1 and

K2, respetively, suh that for the unit balls we have an inlusion
f ∈ H1, ‖f‖H1

≤ 1 ⇒ f ∈ H2, ‖f‖H2
≤ 1,126



then
PX,K1

(x) ≤ PX,K2
(x) for all x ∈ Ω.This generalizes to the ase of bounded inlusions. Assume two unonditionalkernels K1, K2 with native spaes H1, H2 suh that

f ∈ H1 ⇒ f ∈ H2, ‖f‖H2
≤ C‖f‖H1

.Then
PX,H1

(x) = sup
f∈H1,f(X)={0},‖f‖H1

≤1
f(x)

≤ sup
f∈H2,f(X)={0},‖f/C‖H2

≤1
f(x)

≤ C sup
g∈H2,g(X)={0},‖g‖H2

≤1
g(x)

= C PX,H2
(x)allows to arry all upper bounds on PX,H2
over to upper bounds on PX,H1

upto a onstant fator.Roughly speaking: larger native spaes in the sense of unit ball inlusion orbounded inlusion lead to larger Power Funtions.Other upper bounds for the Power Funtion are based on (2.31) and (5.29).There, a set of funtions u1, . . . , uN our whih in ase of P�onditionalpositive de�niteness must additionally reover funtions from P in the senseof the seond set of equations in (5.21). Then the upper bounds are of theform
P 2
X(x) ≤ K(x, x)− 2

N∑

j=1

uj(x)K(xj , x)

+
N∑

j,k=1

uj(x)uk(x)K(xj , xk).

(8.3)The simplest ase uses nearest�neighbor reonstrution. Assume thatfor eah x ∈ Ω we pik a single xk(x) ∈ X and de�ne
uj(x) :=

{
1 j = k(x)
0 else }

.Then
P 2
X(x) ≤ K(x, x)− 2K(xk(x), x) +K(xk(x), xk(x)) = d(x, xk(x))

2with the distane de�ned in (2.17). This shows that one should pik xk(x) ∈ Xlosest to x in that distane. Sine this reovery proess reprodues onstants,we have 127



Theorem 8.4. If K is unonditionally positive semide�nite or onditionallypositive semide�nite with respet to the spae of onstant funtions, the PowerFuntion on nonempty sets X of interpolation points satis�es
PX(x) ≤ min

xj∈X
d(x, xj)with the distane de�ned in (2.17).Note that this simple result does not assume any smoothness of K or anystruture on Ω.If the domainΩ lies in Rd, we an use baryentri oordinates u0(x), . . . , ud(x)if the point x lies in a nondegenerate simplex with verties x0, . . . , xd. Thisyields a proess that reovers all linear polynomials. We set uj(x) = 0 forall other indies j. Then by standard arguments on the �linear preision� ofbaryentri oordinates, and for twie ontinuously di�erentiable funtions

f ,
|f(x)−

d∑

j=0

uj(x)f(xj)| ≤ C(f)ǫ(x)2if ǫ(x) is the diameter of the simplex, and with a onstant C(f) that involvesthe seond derivatives of f in suh a way that it ats like a seminorm thatvanishes on all polynomials of degree at most 1.We now assume that the native spae N of the kernel K is ontained in thespae of twie di�erentiable funtions in the sense that there is a boundedimmersion, i.e. there is a bound
|f(x)−

d∑

j=0

uj(x)f(xj)| ≤ C(f)ǫ(x)2 ≤ c ǫ(x)2|f |N for all f ∈ N (8.5)with a onstant c independent of f and X . By Theorem 5.31 we then get
PX(x) ≤ ‖δx −

d∑

j=0

uj(x)δxj
‖L

≤ c ǫ(x)2with an even easier argument in ase of unonditional positive semide�nite-ness via (2.31).Theorem 8.6. Assume that Ω is a ompat domain in Rd and the kernel Kis 128



1. unonditionally positive semide�nite or2. onditionally positive semide�nite with respet to polynomials of degreeat most one,3. and has a native spae whih is ontinuously embedded in the spae oftwie ontinuously di�erentiable funtions in the sense of (8.5).If an arbitrary point x ∈ Ω lies in a nondegenerate simplex of diameter ǫ(x)spanned by d + 1 data points of some interpolation set X, then the PowerFuntion an be bounded at x by
PX(x) ≤ cǫ(x)2.Note that this applies to smooth unonditionally positive semi�de�nite ker-nels, but the onnetion to thin�plate splines is not obvious at this point. Itmimis the error bounds for pieewise linear interpolation on simplies, i.e.for the simplest �nite element spaes.Clearly, this argument generalizes to orders larger than 2 in (8.5) and Theo-rem 8.6, provided that ǫ(x) is replaed by some other useful quantity E(x, h)whih is small if the point x is surrounded by su�iently many well�plaedpoints of X . Note that it uses loal error bounds for loal reovery proessesto prove loal error bounds for global proesses of an order that is not worsethan the order of the best possible loal reovery. But it turns out to be notso easy to �nd the right quantity E(x, h) and the right notions for �su�ientlymany� and �well�plaed� in more general situations.Let us have a short look at neessary onditions for good bounds on thePower Funtion. Assume that we an prove something like
PX(x) ≤ CE(x, h)for all data sets X with �ll distane at most h. This implies

∣∣∣∣∣∣
f(x)−

N∑

j=1

u∗j(x)f(xj)

∣∣∣∣∣∣
≤ CE(x, h)‖f‖H for all f ∈ H, x ∈ Ωfor the Lagrange�type basis assoiated to the kernel and the data set X .Thus there is a ontinuously embedded subspae H of H (here: H itself) anda set of reprodution funtions uj suh that

∣∣∣∣∣∣
f(x)−

N∑

j=1

uj(x)f(xj)

∣∣∣∣∣∣
≤ CE(x, h)‖f‖H for all f ∈ H, x ∈ Ω..129



If we try to prove upper bounds for the Power Funtion via �nding instaneswhere the above inequality holds, we have not departed from the main road.We just have to �nd the best of all suh reonstrution proesses, and issueslike oversampling or stability are not neessarily on our way.To do the more general ase, we an simplify the upper bound (8.3) byintroduing the error operator
Ey

x(f(y)) := f(x)−
N∑

j=1

uj(x)f(xj)to get
P 2
X(x) ≤ K(x, x)− 2

N∑

j=1

uj(x)K(xj , x)

+
N∑

j,k=1

uj(x)uk(x)K(xj , xk)

= K(x, x)−
N∑

j=1

uj(x)K(xj , x)

+
N∑

j=1

uj(x)

(
N∑

k=1

uk(x)K(xj , xk)−K(xj , x)

)

= Ez
xK(z, x)−

N∑

j=1

uj(x)E
z
xK(z, xj)

= Ey
xE

z
xK(y, z).Our basi tehnique will be to use a bound of the form

|Ey
x(f(y))| :=

∣∣∣∣∣∣
f(x)−

N∑

j=1

uj(x)f(xj)

∣∣∣∣∣∣
≤ ǫX,K(h)‖Lf‖ (8.7)with some linear di�erential opperator L with values on some normed spae.We then an bound the Power Funtion by

P 2
X(x) ≤ |Ey

xE
z
xK(y, z)|

≤ ǫX,K(h)‖LyEz
xK(y, z)‖

≤ ǫ2X,K(h)‖Ly‖LzK(y, z)‖‖
(8.8)if the �nal expression makes sense.
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8.4 Univariate CaseLet us look at the univariate ase �rst, using a ompat interval Ω = [a, b]and a �nite subset X = {x1, . . . , xN} thereof. Of ourse, we would �x a point
x ∈ [a, b] and then selet a �loal� subset

Xx := {xj ∈ X : j ∈ N(x) ⊆ {1, . . . , N}}of points of X whih are �su�iently many� and �well�plaed� near x. Ofourse, to keep things elementary, we would like to work with loal poly-nomial reoveries. Thus we �x a positive integer k and work loally withpolynomials of order at most k. The simplest idea would be to pik the klosest neighbors to x within X and to perform loal Lagrange interpolationby some polynomial px of order at most k at these points. If we go for anerror bound of the form (8.5), we an take the error formula for interpolationin Newton form as
f(y)− px(y) = [y,Xx]f

∏

xj∈Xx

(y − xj) for all y ∈ [a, b]where [y,Xx]f is the divided di�erene on the points of Xx ∪ {y} applied to
f . If we assume f to be ontinuously k�times di�erentiable, we get the loalerror bound

|f(x)− px(x)| ≤
‖f (k)‖∞,[a,b]

k!

∏

xj∈Xx

|x− xj |.This is of the form (8.7), if we use the fat that1. the �rst nearest neighbor to x is at distane at most h,2. the seond nearest neighbor to x is at distane at most 3h,3. the third nearest neighbor to x is at distane at most 5h,4. the k�th nearest neighbor to x is at distane at most (2k − 1)hand thus
∏

xj∈Xx

|x− xj | ≤ hk
(2k)!

2kk!
.leading to

|Ey
xf(y)| ≤ hk

(2k)!

2k(k!)2
‖f (k)‖∞,[a,b].
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Now we use a univariate kernel K whih has k ontinuous and independentderivatives with respet to both variables. Then we an use (8.8) to get
P 2
X(x) ≤

(
hk

(2k)!

2k(k!)2

)2

sup
a≤z≤b

sup
a≤y≤b

∣∣∣∣∣
∂k

∂zk
∂k

∂yk
K(z, y)

∣∣∣∣∣whih altogether leads toTheorem 8.9. Assume a positive semide�nite kernel K on [a, b]×[a, b] whihis k times ontinuously and independently di�erentiable with respet to botharguments. Then, with the onstant
ck =

(2k)!

2k(k!)2

√√√√ sup
a≤z≤b

sup
a≤y≤b

∣∣∣∣∣
∂k

∂zk
∂k

∂yk
K(z, y)

∣∣∣∣∣,for every point set X ⊂ [a, b] onsisting of at least k points and with �lldistane at most h, the Power Funtion an be bounded in the form
PX(h)(x) ≤ ckh

k for all x ∈ Ω.Example 8.10Let us hek this for the Gaussian
K(x, y) = exp(−(x− y)2/2)on the interval [−1, 1]. The derivatives are linked to Hermite polynomials

Hn by
dn

dtn
exp(−t2/2) = (−1)n exp(−t2/2)Hn(t).To take derivatives with respet to both arguments, we set t := x − y anduse

∂k

∂xk
∂k

∂yk
K(x, y) = (−1)k

d2k

dt2k |t=x−y

exp(−t2/2)
= (−1)k exp(−(x− y)2/2)H2k(x− y)This is a Hermite funtion with a well�known, but ompliated extremalbehavior. For x, y ∈ [−1, 1], we an proeed rudely by bounding H2k(x− y)via bounds on Hermite polynomials on [−2, 2] using the reursion

Hn+1(x) = xHn(x)− nHn−1(x)and H0 = 1, H1(t) = t. We assert
‖Hn‖∞,[−2,2] ≤ 3n n!132



and get indutively
‖Hn+1‖∞,[−2,2] ≤ 2‖Hn‖∞,[−2,2] + n‖Hn−1‖∞,[−2,2]

≤ 2 · 3n n! + n3n−1 (n− 1)!
= 7 · 3n−1 n!

=
7

9(n + 1)
· 3n+1 (n+ 1)!

≤ 3n+1 (n+ 1)!Thus ∣∣∣∣∣
∂k

∂xk
∂k

∂yk
K(x, y)

∣∣∣∣∣ ≤ 32k (2k)!on [−1, 1] and
c2k ≤

((2k)!)332k

22k(k!)4
.Up to �xed multipliative onstants independent of k, we an apply Stirling'sasymptotis

n! ≈ nne−n
√
nto get the bound

c2k ≤ C
((2k)2ke−2k

√
2k)332k

22k(kke−k
√
k)4

≈ C
(2k)6ke−6kk3/232k

22kk4ke−4kk2

≤ C

(
23k3e−33

2k2e−2

)2k

= C (12e−1k)
2k
.This ombines into

PX ≤ C
(
12he−1k

)kWe now ouple k to h via requiring
k =

⌊
1

12h

⌋suh that we get
12he−1k ≤ e−1 < 1and the exponential rate

PX ≤ C exp
(
k log e−1

)
≈ C exp(−1/(12h)).But we should hek if we need oversampling here. For a �ll distane of hwith N points in [−1, 1], we need at least N ≈ 1/h points, plaing the innerones at distane 2h from eah other and the outer ones at −1 + h and 1− h.Thus we need no oversampling for the exponential rate.133



Theorem 8.11. If a kernel on domains in Rd is radial, i.e. it is a funtion
K(x, y) = φ(‖x− y‖2) = g(‖x− y‖22/2), x, y ∈ R

d,and if in the above representation the funtion g is k�times ontinuouslydi�erentiable, then K has ontinuous partial derivatives up to order k, irre-spetive whih partial derivatives are taken.Proof: If we set r := ‖x− y‖2, then
∂

∂xj
r =

xj
r
,

∂

∂xj
(r2/2) = xj , 1 ≤ j ≤ d.Consequently,

∂

∂xj
g(r2/2) = g′(r2/2)xj,and repeated appliation of this simple rule shows that eah partial derivativerequires a derivative of g and produes a fator xj or yk. Altogether, a mixedderivative of total order m is a linear ombination of derivatives of g at r2/2up to order m, multiplied by polynomials in x and y of degree up to m. .This result an be applied easily to various kernels. Examples are the Wend-land kernels or the Whittle/Matern/Sobolev kernels.Example 8.12Let us look at the latter, i.e. rνKν(r) =: gν(r

2/2) for ν > 0 with the Besselfuntion of seond kind. It has the property
K ′

ν(z) = −Kν+1(z) +
ν

z
Kν(z) = −Kν−1(z)−

ν

z
Kν(z)and we need

gν(s) := φν(
√
2s) = Kν(

√
2s)(

√
2s)νand (

√
2s)′ = 1√

2s
. Then

g′ν(s) = K ′
ν(
√
2s)

1√
2s

(
√
2s)ν +Kν(

√
2s)ν(

√
2s)ν−1 1√

2s
= K ′

ν(
√
2s)(

√
2s)ν−1 + νKν(

√
2s)(

√
2s)ν−2

=

(
−Kν−1(

√
2s)− ν√

2s
Kν(

√
2s)

)
(
√
2s)ν−1 + νKν(

√
2s)(

√
2s)ν−2

= −Kν−1(
√
2s)(

√
2s)ν−1

= −gν−1(s).Thus the radial kernel rνKν(r) =: gν(r
2/2) has partial derivatives of total or-der 2k for ν > 2k, and then we have onvergene of order hk in the univariatease. 134



Example 8.13Another ase is the kernel r3, whih is onditionally positive de�nite of order2. We have g(s) = s3/2 up to a fator, and at �rst sight we annot take twoderivatives. But in 1D and in general we have
∂2

∂x∂y
g(r2/2) = x y g′′(r2/2)and in our ase

∂2

∂x∂y
g(r2/2) =

3

4
xy(r2/2)−1/2 =

3
√
2

4

xy

rwhih has no singularity at zero. Thus the onvergene of interpolation is atleast like O(h). With better methods we get O(h3/2).It is tempting to generalize all of this diretly to the multivariate setting.But the main problem ours right at the beginning, sine it is a problemto prove error bounds for multivariate polynomial interpolation on irregulardata sets. Even more, it is highly nontrivial to �nd good su�ient onditionsfor unisolveny.8.5 Conditions for UnisolvenyWe now want to derive su�ient and (if possible) neessary onditions forsets X = {x1, . . . , xN} to be unisolvent on sets Ω ⊂ Rd with respet to linearspaes P = span {p1, . . . , pQ} of dimension Q ≤ N on Ω.To begin with, it is lear that unisolveny is equivalent to the existene offuntions u1, . . . , uN on Ω suh that the reprodution equations
pk(x) =

N∑

j=1

uj(x)pk(xj), x ∈ Ω, 1 ≤ k ≤ Q (8.14)hold. But note that at this point it is not lear whether we have uj ∈ P.For what follows, we should introdue the sampling map
T : C(Ω) → K

N , f 7→ (f(x1), . . . , f(xN))
Tand the vetor

u(x) := (u1(x), . . . , uN(x))
T ∈ K

N .135



Then we have a stability inequality of the form
|p(x)| ≤ ‖u(x)‖q‖T (p)‖r for all p ∈ P, x ∈ Ωwith q, r�norms on K

N satisfying 1/q + 1/r = 1. For all p ∈ P \ {0}, all
u(x) ∈ KN and all x ∈ Ω this implies

|p(x)|
‖T (p)‖r

≤ sup
p 6=0

|p(x)|
‖T (p)‖r

≤ inf
u(x)∈KN ,(8.14) ‖u(x)‖q ≤ ‖u(x)‖q.This suggests that the two inner optimization problems are in weak duality.Theorem 8.15. Assume that X = {x1, . . . , xN} ⊆ Ω is unisolvent for P =span {p1, . . . , pQ} of dimension Q ≤ N on Ω. and let x ∈ Ω be �xed. Thenthe middle inequality in the above display is an equality, i.e.

sup
p 6=0

|p(x)|
‖T (p)‖r

= inf
u(x)∈KN ,(8.14) ‖u(x)‖q =: C∗(x)and

|p(x)| ≤ C∗(x)‖T (p)‖r for all x ∈ Ω, p ∈ P,
‖u(x)‖q ≥ C∗(x) for all x ∈ Ω, u(x) with (8.14)and there is an optimal reovery de�ned by some u∗(x) ∈ KN with ‖u∗(x)‖q =

C∗(x) satisfying (8.14).Proof: For eah u(x) ∈ KN with (8.14) we onsider the linear funtional
µx : T (p) 7→

N∑

j=1

uj(x)p(xj) for all p ∈ P.This is well�de�ned on the subspae T (P) ⊆ KN in the r�norm, and bythe Hahn�Banah theorem there is an extension to all of KN with the samenorm in the dual. Thus there is a vetor û(x) := (û1(x), . . . , ûN(x))
T ∈ KNextending the funtional, i.e. it also satis�es (8.14), and its norm satis�es

‖û(x)‖q = ‖µx|T (P)
‖(KN )∗ = sup

p∈P, p 6=0

|µx(T (p))|
‖T (p)‖r

= sup
p∈P, p 6=0

|p(x)|
‖T (p)‖rproving the assertion.RS: ToDo: do this as duality in onvex optimization...This implies that �nding a reovery via u(x) with (8.14) and the smallestpossible Lebesgue funtion value ‖u(x)‖q is the same as �nding the smallestpossible onstant C(x) in a stability inequality

|p(x)| ≤ C(x)‖T (p)‖r for all p ∈ P,136



and the minimal onstant C∗(x) is equal to the smallest possible value
‖u∗(x)‖q of the Lebesgue funtion.Towards Moving Least Squares, we an speialize the above theorem toweighted ℓ2 norms.Corollary 8.16. Assume that X = {x1, . . . , xN} ⊆ Ω is unisolvent for P =span {p1, . . . , pQ} of dimension Q ≤ N on Ω. and let x ∈ Ω be �xed. Thenthe minimization of

‖u(x)‖22,w :=
N∑

j=1

|u2j(x)|2wjwith positive weights w1, . . . , wN is equivalent to solving
sup
p 6=0

|p(x)|
‖T (p)‖2,1/w

,and the resulting optimal reovery u∗(x) satis�es the stability inequality
|p(x)| ≤ ‖u∗(x)‖2,w‖T (p)‖2,1/w.In the lassial theory of Lebesgue funtions, users will hoose r = ∞ and

q = 1. This leads to a very useful result:Corollary 8.17. Let Ω ⊂ Rd be ompat, and let the funtions of P beontinuous. If for all p ∈ P with ‖p‖∞,Ω = 1 we have ‖p‖∞,X ≥ 1/C with
C ≥ 1, then X is P�unisolvent and there is a reovery with ‖u(x)‖1 ≤ C forall x ∈ Ω.Proof: Take an arbitrary p ∈ P with ‖p‖∞,Ω = 1. Then

‖p‖∞,X ≥ 1

C
=

1

C
‖p‖∞,Ωimplies via resaling that for all x ∈ Ω and all p ∈ P we have

|p(x)| ≤ ‖p‖∞,Ω ≤ C‖p‖∞,X.This implies unisolveny, and the rest follows from Theorem 8.15.There also is a onverse:Corollary 8.18. Let Ω ⊂ Rd be ompat, and let the funtions of P beontinuous. If X is P�unisolvent, then there is a onstant C ≥ 1 suh thatfor all p ∈ P with ‖p‖∞,Ω = 1 we have ‖p‖∞,X ≥ 1/C. Furthermore, there isa reovery with ‖u(x)‖1 ≤ C with the same onstant.137



Proof: If we parametrize funtions in P via a basis, we see that the valuesat maxima are ontinuously dependent on the oe�ients, and thus
sup

p∈P,p 6=0

‖p‖∞,Ω

‖p‖∞,Xan be alulated via oe�ients on a sphere, and thus the supremum is a�nite number C ≥ 1. All the rest follows from what we know already.To illustrate this for the Eulidean ase, we provideTheorem 8.19. Assume that X = {x1, . . . , xN} ⊆ Ω is unisolvent for P =span {p1, . . . , pQ} of dimension Q ≤ N on Ω. and let x ∈ Ω be �xed. In thease r = q = 2 the reovery
p(x) =

N∑

j=1

uj(x)p(xj) for all p ∈ P (8.20)with minimal
‖u(x)‖22 :=

N∑

j=1

|uj(x)|2 (8.21)has the form
u∗j(x) =

Q∑

k=1

a∗k(x)pk(xj)with uniquely de�ned oe�ients a∗k(x) satisfying
pm(x) =

Q∑

k=1

a∗k(x)
N∑

j=1

pk(xj)pm(xj) =
N∑

j=1

u∗j(x)pm(xj), 1 ≤ m ≤ Q. (8.22)Both the a∗k and the u∗j are in P.Proof: By unisolveny, the system (8.22) is uniquely solvable, the u∗j(x) arewell-de�ned and provide the reprodution. To see that they minimize (8.21),we have to prove that the vetor with omponents u∗j(x) is orthogonal to thea�ne subspae de�ned by (8.20). This means that we have to take vj(x)with
0 =

N∑

j=1

vj(x)p(xj) for all p ∈ Pand prove
N∑

j=1

u∗j(x)vj(x)

=
Q∑

k=1

a∗k(x)
N∑

j=1

pk(xj)vj(x) = 0.138



Now we de�ne
p∗x :=

Q∑

k=1

a∗k(x)pk ∈ Pand take an arbitrary p ∈ P to get
|p(x)|2 =

∣∣∣∣∣∣

N∑

j=1

u∗j(x)p(xj)

∣∣∣∣∣∣

2

≤



N∑

j=1

|u∗j(x)|2





N∑

j=1

|p(xj)|2

.

(8.23)We assert that equality is attained for px. For this, look at (8.22) and seethat there is a reprodution
pm(x) =

N∑

j=1

p∗x(xj)pm(xj), 1 ≤ m ≤ Q. x ∈ Ω,whih in partiular yields
px(x) =

N∑

j=1

p∗x(xj)px(xj) =
N∑

j=1

|px(xj)|2and by optimality of the u∗j(x) we have
px(x) =

N∑

j=1

|p∗x(xj)|2 ≥
N∑

j=1

|u∗j(x)|2.Now we hek (8.23) for px and get that it is attained with equality, and inpartiular
px(x) =

N∑

j=1

p∗x(xj)px(xj) =
N∑

j=1

|px(xj)|2 =
N∑

j=1

|u∗j(x)|2.For later use with Moving Least Squares, we add another property of reon-strutions whih are optimally oversampled in the ℓ2 sense. It turns out thatthe ℓ2�optimally stable reprodution guarantees an optimal least�squaresdata error at the same time.Theorem 8.24. Let X be P�unisolvent, and onsider a weighted minimiza-tion of
‖u(x)‖2w :=

N∑

j=1

|uj(x)|2wj139



with positive weights wj under the reprodution onstraints (8.20). Denotethe solution by u∗(x). For all weighted least�squares problems minimizing
N∑

j=1

|f(xj)− p(xj)|2/wjunder all p ∈ P , the solution p∗f ∈ P satis�es
p∗f (x) =

N∑

j=1

u∗j(x)f(xj).Proof: Denoting the diagonal matrix with weights wj by Dw, and the Q×Nmatrix of values pm(xj) by A, and P (x) := (p1(x), . . . , pQ(x))
T , the solution

u∗(x) of the �rst problem minimizes the penalized quadrati form
uT (x)Dwu(x) + zT (P (x)− Au(x))leading to

(u∗)T (x)Dw = z(x)TA, or Dwu
∗(x) = A∗z(x).Equation (8.20) then leads to

Au∗(x) = AD−1
w A∗z(x) = P (x),

z(x) = (AD−1
w A∗)−1P (x)

Dwu
∗(x) = A∗(AD−1

w A∗)−1P (x)and ends up with
u∗(x) = D−1

w A∗(AD−1
w A∗)−1P (x).For the seond problem, write

p(x) = (p1(x), . . . , pQ(x)) cand use T : F 7→ (f(x1), . . . , f(xN))
T again, to let the problem take theform

min ‖T (f)− T (p)‖21/w = min ‖T (f)−AT c‖21/w.Then by similar reasoning, we get
(T (f)−AT c∗f )

TD−1
w A∗ = 0,

T (f)TD−1
w A∗ = (AT c∗f )

TD−1
w A∗

AD−1
w T (f) = AD−1

w AT c∗f
c∗f = (AD−1

w AT )−1AD−1
w T (f)140



and
T (f)Tu∗(x) = T (f)TD−1

w A∗(AD−1
w A∗)−1P (x)

= ((AD−1
w AT )−1AD−1

w T (f))TP (x)
= (c∗f )

TP (x) = p∗f (x).RS: There seems to be a similar theorem for general q, r�norms.We now proeed towards �nding P�unisolvent subsets of setsX = {x1, . . . , xN}of sattered points in a ompat domain Ω ⊂ Rd with some �ll distane h.We assume P to onsist of ontinuous funtions. The goal is to prove P�unisolveny for arbitrary sets with su�iently small h. We might later restritourselves to small subsets of Ω, but this is a later issue, sine at this point Ωmight be just a small ball.We want to use Corollary 8.17 for our purpose. This means that we startwith some p ∈ P with ‖p‖∞,Ω = 1, and we an selet an x ∈ Ω with p(x) = 1without loss of generalization. If we an manage to show that there is an
xj ∈ X ∩Ω with p(xj) ≥ 1/C > 0, we are done after appliation of Corollary8.17. If h is small enough, we an surely �nd suh points xj , and they willbe lose to x, but we do not know how fast p falls when we go from x to xj .To get this under ontrol, we must ontrol di�erenes of p�values at di�erentpoints. This means that we have to ontrol derivatives.8.6 Stable Polynomial ReprodutionTo do this for spaes Pd

m of d�variate polynomials of order m, we fous �rston polynomials in P1
m on [−1, 1]. There, the lassial Bernstein�Markovinequality is

‖q′‖∞,[−1,1] ≤ (m− 1)2‖q‖∞,[−1,1] for all q ∈ P1
m.This turns into the form we need in 1D, if we work along

|q(s)− q(t)| ≤ |q′(τ)||s− t|
≤ (m− 1)2‖q‖∞,[−1,1]|s− t|for all s, t ∈ [−1, 1], q ∈ P1

m. This looks �ne, but remember that we have qde�ned and bounded on all of [−1, 1] while we use it only between s and t.In what follows, we an assume m ≥ 2 throughout, beause the ase m = 0is empty and the ase m = 1 is trivial.To apply this argument for a generalized Bernstein�Markov inequality on aonvex set, we are tempted to onnet x and xj by a line, but in view of141



the 1D ase we will need that we have to be able to evaluate and boundthe polynomials on more than just the setion of the line between x and
xj . In a more expliit form, the drawbak is that if we rewrite the lassialBernstein�Markov inequality for a small interval [−α, α], we get

‖q′‖∞,[−α,α] ≤
(m− 1)2

α
‖q‖∞,[−α,α] for all q ∈ P1

mby plugging q(α t) into the inequality on [−1, 1]. Thus it will not pay o� tohave something like α = ‖x− xj‖2. We need that we an draw a su�ientlylong line from all points x ∈ Ω through at least one point xj ∈ X , the lengthof the line segment ontained in Ω being larger than h or ‖x−xj‖2. The wayout is the interior one ondition that we now desribe.De�nition 8.25. A one with vertex x, axis diretion z with ‖z‖2 = 1, height
H, and angle θ ∈ (0, π/2) is the set

{x+ λy : 0 ≤ λ ≤ H, y ∈ R
d, ‖y‖2 = 1, zT y ≥ cos θ}.To understand this, note that the angle between z and y should be at most

θ. Sine the osine is dereasing, this means cos∠(y, z) = zT y ≥ cos θ.De�nition 8.26. A set Ω ⊂ Rd has an interior one ondition of angle
θ ∈ (0, π/2) and height H > 0, if for eah x ∈ Ω there is a one with height atleast H, angle at least θ and arbitrary axis z(x) whih is ompletely ontainedin Ω. This means that the ones

{x+ λy : 0 ≤ λ ≤ H, y ∈ R
d, ‖y‖2 = 1, yTz(x) ≥ cos θ}.are all ontained in Ω for all x ∈ Ω and a seletion of unit axis vetors z(x).These ones ontain balls of the form B(x + tz(x), r(t)) with radii r(t) ≤

t sin(θ) for t ≤ H
1+sin(θ)

. This follows easily from a litte drawing of the situa-tion. Furthermore, the above balls do not ontain x if t > 0. Finally, if some
v = x+ λy lies in the one above, then the whole ray from x to x+Hy liesin the one.Theorem 8.27. Assume that a ompat domain Ω ⊂ Rd satis�es an interiorone ondition of angle θ ∈ (0, π/2) and height H > 0. Then for all �nitesets X ⊂ Ω with �ll distane h satisfying

h ≤ h0 :=
H sin(θ)

1 + sin(θ)

1

4(m− 1)2the set X is Pd
m�unisolvent, and there is a reovery u(x) with ‖u(x)‖1 ≤ 2.142



Proof: We again start with a p ∈ Pd
m with ‖p‖∞,Ω = 1 and p(x) = 1 forsome x ∈ Ω. Then we use the one at x to work on. If we take

t :=
h

sin θ
≤ H

1 + sin(θ)and onsider the ball B(x+ tz(x), r(t)), we an take r(t) := t sin(θ) = h andan �nd an xj ∈ X in that ball. The ray from x through xj an be extendedup to the point zj := x+H(x− xj)/‖x− xj‖, and we have x 6= xj sine wehave t > 0. Furthermore,
‖x− xj‖2 ≤ t + r(t)

= t(1 + sin(θ))

= h
1 + sin(θ)

sin(θ)
≤ H.We now apply the 1D Bernstein�Markov inequality along the line setionfrom x to zj via xj , setting

q(t) := p(x+ t(xj − x)/‖xj − x‖), 0 ≤ t ≤ H.Then the saled version of the Bernstein�Markov inequality is
‖q′‖∞,[0,H] =

2(m− 1)2

H
‖q‖∞,[0,H].This yields

|p(x)− p(xj)| = |q(0)− q(‖x− xj‖2)|
≤ ‖x− xj‖2

2(m− 1)2

H
‖q‖∞,[0,H]

≤ h
1 + sin(θ)

sin(θ)

2(m− 1)2

H

≤ 1

2
,leading to

p(xj) = p(xj)− p(x) + 1

≥ 1

2
.This result still is not loal. We would like to apply it in sets Ω∩B(x, r) forarbitrary x ∈ Ω and ertain ball radii r.Theorem 8.28. Assume that a ompat domain Ω ⊂ Rd satis�es an interiorone ondition of angle θ ∈ (0, π/2) and height H > 0. Then for all r with

0 < r ≤ H and all x ∈ Ω the set Ω∩B(x, r) ontains a ball of radius at least
r sin(θ)/(1 + sin(θ). 143



Proof: Let x ∈ Ω be arbitrary. We an have a one C ⊂ Ω of height H andangle θ with vertex x. Interseting it with B(x, r) with some r ≤ H , we havethat the ball B(x+ z(x)r/(1 + sin θ), r sin θ/(1 + sin θ)) is in the one and inthe ball B(x, r).Then we just need unisolveny onditions on balls. Via a small drawing, wegetTheorem 8.29. Assume Ω = B(0, r) with some radius r > 0. Then Ωsatis�es an interior one ondition with height r and angle θ with θ = π/3.Proof: On the unit irle, pik the point x = (−1, 0) and its one pointingto the right with a 60 degree angle and radius 1. Moving that one with x tothe right shows that a one of this size works for all x between (−1, 0) and
(0, 0), thus for all points in the irle.Theorem 8.30. Assume that a ompat domain Ω ⊂ Rd satis�es an interiorone ondition of angle θ ∈ (0, π/2) and height H > 0. De�ne

c0 :=
4(2 +

√
3)(m− 1)2(1 + sin(θ))√

3 sin(θ)
.Then for all �nite sets X ⊂ Ω with �ll distane h satisfying

h ≤ h0 :=
H

c0the set X ∩ B(x, c0h) is Pd
m�unisolvent, and there is a reovery u(x) with

‖u(x)‖1 ≤ 2 based only on points in X ∩B(x, c0h).Proof: We start with the one ondition at some arbitrary x ∈ Ω. Thus wean �nd a ball with radius r sin(θ)/(1+sin(θ)) that is still in B(x, r)∩Ω for all
0 ≤ r ≤ H . For this ball, we know by Theorem 8.29 that it satis�es an interiorone ondition of height r sin(θ)

1+sin(θ)
and angle α = π/3 with sin(π/3) =

√
3/2.Then the h0 of Theorem 8.27 for this ball is

h0(r) =
r sin(θ)

√
3

(2 +
√
3)(1 + sin(θ))

1

4(m− 1)2
=

r

c0and we now know that every set X with �ll distane h ≤ h0(r) has a unisol-vent subset in that ball. We now turn this upside down, starting with someset X with �ll distane h ≤ H
c0
. We then take r(h) := c0h ≤ H and see that

h0(r(h)) = h, leading to unisolveny.144



De�nition 8.31. A ompat domain Ω ⊂ Rd allows uniformly stableloal polynomial reprodution of order m ≥ 1, if there are positive on-stants c, C, h0 suh that for all �nite sets X = {x1, . . . , xN} with �ll distane
h ≤ h0 there are salars u1(x), . . . , uN(x) suh that

N∑

j=1

uj(x)p(xj) = p(x) for all p ∈ Pd
m, x ∈ Ω,

N∑

j=1

|uj(x)| ≤ C for all x ∈ Ω,

uj(x) = for all xj with ‖x− xj‖ ≤ c0 h.Note that we have proven this for ompat domains in R
d satisfying aninterior one ondition with height H and angle θ, where the onstants aregiven above.To arrive at an error bound for these reprodutions on funtions f withontinuous derivatives up to order m on Ω, we apply the Taylor formula fromTheorem 12.1 on page 234 of Setion 12.1. We �x a point x ∈ Ω with theone C ⊂ Ω of the proof of Theorem 8.28 and work on points y ∈ C∩B(x, c0r)with c0 from Theorem 8.30. Both the Taylor polynomial Tx(f) of f at x ∈ Ωand the loal polynomial reprodution

sx(f)(y) :=
N∑

j = 1
‖x− xj‖ ≤ c0h

uj(y)f(xj),are in Pd
m, and for the latter we are using only those data at the points

xj ∈ X with ‖x − xj‖2 ≤ c0h that we used in the proof of Theorem 8.30.These have the property that all line segments from x to xj lie ompletely in
Ω, together with the line segments from x to all y ∈ C ∩B(x, c0h). Thus wean apply the Taylor bound

|f(z)− Tx(f)(z)| ≤ ‖z − x‖m2
∑

|α|=m

1

α!
‖Dαf‖∞,Ω

︸ ︷︷ ︸
=:|f |m

≤ c0h
m|f |m
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for z = y and all z = xj for these j. This yields
|f(y)− sx(f)(y)| ≤ |f(y)− Tx(f)(y)|+ |Tx(f)(y)− sx(f)(y)|

= |f(y)− Tx(f)(y)|+ |sx(Tx(f))(y)− sx(f)(y)|

≤ |f(y)− Tx(f)(y)|+
∣∣∣∣∣∣

N∑

j=1

uj(y)(Tx(f)(xj)− f(xj))

∣∣∣∣∣∣

≤

1 +

N∑

j=1

|uj(y)|

 cm0 h

m|f |m
≤ 3cm0 h

m|f |m.We now an go bak to (8.8) and getTheorem 8.32. Under the assumptions and notations of Theorem 8.30, andif we have a onditionally positive semide�nite kernel of order at most mwith ontinuous derivatives up to order m independently in both variables,the Power Funtion for reovery on Pd
m�unisolvent sets X with �ll distane

h ≤ h0 is bounded by
P 2
X(x) ≤ 9c20h

2m sup
y,z∈Ω

∑

|α|,|β|=m

1

α!β!
|Dα,yDβ,zK(y, z)|.RS: This is still open�ended. The �nal goal is to prove more general stabilityresults in onnetion with oversampling.RS; Inomplete here, as of February 1, 20118.7 Univariate Sampling InequalitiesSine the forthoming mathematial analysis is quite hard, let us �rst startwith the muh simpler univariate ase. We shall work on a bounded interval

I := [a, b] ⊂ R, and there we shall de�ne the (semi�) inner produts and(semi�) norms
(f, g)j :=

∫

I
f (j)(t)g(j)(t)dt for all f, g ∈ Cj(I)

|f |∞,X := sup
t∈X

|f(t)| for all f ∈ C(I), X ⊂ I,

|f |22,X := h(X,Ω)
∑

x∈X
f 2(x) for all f ∈ C(I), X ⊂ I, |X| <∞.Throughout, we shall on�ne ourselves to subsets X ⊂ [a, b] with �ll distane

h = h(X, [a, b]). 146



Lemma 8.33. Given g ∈ C1(I) and a subset X of [a, b] with �ll distane h.Then we have
‖g‖0 ≤ h |g|1 +

√
2|g|2,X,

‖g‖0 ≤ h |g|1 +
√
2(b− a)|g|∞,X,

‖g‖∞,I ≤ h ‖g′‖∞,I +|g|∞,X,

‖ g‖∞,I ≤
√
h |g|1 +|g|∞,X.

(8.34)Proof: For all x ∈ I we an take its losest neighbor xj ∈ X with distane
|x− xj | ≤ h. Then

g(x) = g(xj) +
∫ x

xj

g′(τ)dτ

|g(x)| ≤ |g(xj)|+
∫ x

xj

|g′(τ)|dτ
‖g‖∞,I ≤ h ‖g′‖∞,I + |g|∞,Xfor all x ∈ I. With the Cauhy�Shwarz inequality we we get

|g(x)| ≤ |g(xj)|+
∣∣∣∣∣

∫ x

xj

12dτ

∣∣∣∣∣

1/2

·
∣∣∣∣∣

∫ x

xj

(g′(τ))2dτ

∣∣∣∣∣

1/2

(x ∈ I)

≤ |g(xj)|+ |x− xj |1/2 ·
∣∣∣∣∣

∫ x

xj

(g′(τ))2dτ

∣∣∣∣∣

1/2

,

‖ g‖∞,I ≤
√
h |g|1 + |g|∞,X.By taking squares and the usual trik

(a + b)2 ≤ a2 + b2 + 2|ab| ≤ 2a2 + 2b2we see that
g(x)2 ≤ 2g(xj)

2 + 2|x− xj | ·
∫ x

xj

(g′(τ))2dτand by integration we �nd
∫ x
xj
g(t)2dt ≤ 2|x− xj |g(xj)2 +

∫ x

xj

2|t− xj | ·
∫ t

xj

(g′(τ))2dτdt

= 2|x− xj |g(xj)2 +
∫ x

xj

(g′(τ))2
∫ τ

x
2|t− xj |dtdτ

≤ 2|x− xj |g(xj)2 + |x− xj |2 ·
∫ x

xj

(g′(τ))2dτ.From here on we superimpose di�erent integrals of this form to a full integralover [a, b] to end up with
‖g‖20 ≤ h2 |g|21 + 2(b− a)|g|2∞,X

‖g‖0 ≤ h |g|1 +
√
2(b− a)|g|∞,X147



where we used √
a2 + b2 ≤ a+b for a, b > 0. If we sum up the disrete values,we arrive at

‖g‖20 ≤ h2 |g|21 + 2h
N∑

j=1

g(xj)
2

‖g‖0 ≤ h |g|1 +
√
2|g|2,X.8.8 Example: Univariate SplinesIn the notation of the text on splines, we haveTheorem 8.35. Let f ∈ Ck[a, b] be interpolated by s∗ in N ≥ k data with a�ll distane

h := sup
x∈[a,b]

min
xj

|x− xj |.Then there is a onstant ck depending only on k and [a, b], but not on f orthe data or h, suh that
‖f − s∗‖L2[a,b] ≤ ckh

k|f − s∗|k ≤ 2ckh
k|f |k,

‖f − s∗‖L∞[a,b] ≤ ckh
k−1/2|f − s∗|k ≤ 2ckh

k−1/2|f |k.Proof: Note that the zeros of f − s∗ have a distane of at most 2h betweeneah other and of at most h ≤ 2h to the boundary. By Rolle's theorem, thereare zeros of (f − s∗)′ with distane of at most 4h between eah other and
3h to the boundary. This means that we an use the �ll distane 4h for thezeros of the �rst derivative. This works up to the derivative of order k − 1,whih has zeros with distane of at most 4k−1h between eah other and tothe boundary. Using indution on the previous Lemma yields

‖f − s∗‖L2[a,b] ≤ h · 4h · · · 4k−1h|f − s∗|k =: ckh
k|f − s∗|kand the left�hand parts of the assertions follow.For the right-hand parts we use the optimality ondition |s∗|k ≤ |f |k.If some additional boundary onditions are satis�ed, the onvergene orderdoubles.Theorem 8.36. If, in addition, f ∈ C2k[a, b] and if (f − s∗)(j) vanishes at aand b for j = 0, . . . , k − 1, then

‖f − s∗‖L2[a,b] ≤ c2kh
2k|f |2k.

‖f − s∗‖L∞[a,b] ≤ c̃2kh
2k−1|f |2k.148



Proof: We an use the orthogonality relation
(f − s∗, s∗)k = 0and do integration by parts via

|f − s∗|2k = (f − s∗, f − s∗)k
= (f − s∗, f)k

=
∫ b

a
(f − s∗)(k)(t)f (k)(t)dt

= (−1)k
∫ b

a
(f − s∗)(0)(t)f (2k)(t)dt

≤ ‖f − s∗‖L2[a,b]|f |2k.Then
‖f − s∗‖2L2[a,b]

≤ c2kh
2k|f − s∗|2k

≤ c2kh
2k‖f − s∗‖L2[a,b]|f |2k

‖f − s∗‖L2[a,b] ≤ c2kh
2k|f |2k.Similarly,

‖f − s∗‖2L∞[a,b] ≤ c2kh
2k−1|f − s∗|2k

≤ c2kh
2k−1‖f − s∗‖L2[a,b]|f |2k

≤
√
b− ac2kh

2k−1‖f − s∗‖L∞[a,b]|f |2k
‖f − s∗‖L∞[a,b] ≤ c̃2kh

2k−1|f |2k.Note that the above argument used Rolle's theorem, whih does not hold inmultivariate settings. Thus we annot generalize this approah diretly tofuntions of several variables.8.9 Univariate Polynomial ReprodutionOur goal is to prove a multivariate version of a sampling inequality. Butalready in the univariate ase, a general inequality like
‖u‖∞,[a,b] ≤ C

(
hk−1/2|u|k + |u|∞,X

)means that for all polynomials p ∈ Pk we have
‖p‖∞,[a,b] ≤ C|p|∞,X. (8.37)Then X must be unisolvent, but this is not enough. If we take X to ontainexatly k points, an equality of the above form annot hold. To see this,�x k − 1 zeros and presribe 1 at a point whih moves lose to a zero. The149



resulting Lagrange basis polynomial will onverge to in�nity exept at thezeros.But if we take many more than k points, i.e. we do some oversampling,hanes are better to get something like (8.37). If we extend (8.37) triviallyto the right, we get
‖p‖∞,[a,b] ≤ C|p|∞,X ≤ C‖p‖∞,[a,b]and see that X must guarantee norm equivalene of a disrete norm with a�ontinuous� norm. We ould all X a �norming set�, but there is a moregeneral de�nition of that notion, and we provide it later.To move loser to (8.37), let us �x a polynomial p ∈ Pk with ‖p‖∞,[a,b] = 1.We need to show that suh a polynomial annot be too small on a nontrivialset X , but we want to get away with a smallest possible set X . For simpliity,we take a t ∈ [a, b] with |p(t)| = 1 and ask: How far must we go to let |p|drop below 1/2? Fortunately, we have a bound on the derivative:Theorem 8.38. Any univariate polynomial of degree n satis�es Markov'sinequality

‖p′‖∞,[−1,1] ≤ n2‖p‖∞,[−1,1].We skip over the proof, but by norm equivalene there must be an n�dependent onstant that does the job. The only problem is to prove thatthe onstant is n2.Now we know that our speial polynomial has a derivative ‖p′‖∞,[−1,1] ≤ n2if we assume that the interval is [−1, 1]. Thus, in order to let p go down to
1/2 we need to go at least a distane 1/2n2. If we know that X has a �lldistane

h ≤ 1

2n2we an be sure that we annot reah a point with absolute value of p smallerthan 1/2 when starting from t. This means that
|p|∞,X ≥ 1

2and onsequently ‖p‖∞,[−1,1] ≤ 2|p|∞,X. Thus we haveTheorem 8.39. If X ⊂ [−1, 1] is a set of �ll distane h ≤ 1
2n2 , then

‖p‖∞,[−1,1] ≤ 2|p|∞,Xfor all polynomials of degree at most n.150



From now on we assume that the hypothesis of Theorem 8.39 is satis�ed.Then X learly is unisolvent, and we know that we an reprodue all poly-nomials p ∈ Pn by a nonunique formula like
p(x) =

∑

xj∈X
uj(x)p(xj). (8.40)In our old notation, this is an under-determined linear system

PX · u(x) = p(x)and one an impose additional onditions. In fat, there are e�ient numeri-al tehniques (e.g. moving least squares whih produe useful admissiblesolutions.Theorem 8.41. Under all possibilities to satisfy (8.40) under the onditionsof Theorem 8.39 there is one whih has a uniformly bounded Lebesgue fun-tion ∑

xj∈X
|uj(x)| ≤ 2 for all x ∈ [−1, 1].Proof: This statement is not at all evident, and for now we have to do anabstrat existene proof. We de�ne the sampling operator

TX : f 7→ (f(x1), . . . , f(xN))
T ∈ R

N ,whih is ontinuous on C[−1, 1] with the ‖.‖∞ norm and invertible on T (Pn) ⊂
RN . It has a bounded inverse

S : T (Pn) → Pn ⊂ C[−1, 1].For eah vetor y ∈ T (Pn) ⊂ RN there is a unique p ∈ Pn with suh y =
(p(x1), . . . , p(xN))

T , and thus for eah x ∈ [−1, 1] we have a linear funtional
λx : y = (p(x1), . . . , p(xN ))

T 7→ p(x)on T (Pn). By the Hahn�Banah theorem it has a norm�preservingextension to all of RN , and this is the abstrat and non-onstrutive part ofthe argument. As a funtional on all of RN it an be written as
λx(y) :=

N∑

j=1

uj(x)yjwith ertain real values uj(x), and its norm must be
‖λx‖1 :=

∑

xj∈X
|uj(x)| = sup

y∈RN\{0}

∣∣∣
∑

xj∈X uj(x)yj
∣∣∣

‖y‖∞151



beause the dual of RN under the ‖.‖∞ norm is RN with the L1 norm. Butsine the extension is norm�preserving, this norm is equal to the norm of thefuntional on the subspae T (Pn). There it has the form λx = δx ◦ S, andthus
‖λx‖1 ≤ ‖δx‖ · ‖S‖with operator norms

‖δx‖ = sup
f∈C[−1,1]\{0}

|f(x)
‖f‖∞

≤ 1and
‖S‖ := sup

T (p)∈T (Pn)\{0}

|p(x)|
‖T (p)‖∞

≤ 2.Thus we get the assertion.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
1

1.005

1.01

1.015

1.02

1.025

Figure 26: Minimal Lebesgue funtion for 17 equidistant points in [−1, 1]and polynomial degree n = 3It is an easy task to �nd funtions uj(x) for whih the Lebesgue funtionis pointwise minimal, while a ertain polynomial reprodution of a degree nis required. It boils down to an L1 optimization problem, beause we anwrite eah uj(x) as uj(x) = aj − bj with nonnegative variables to arrive atthe linear optimization problemMinimize 1TN(a+ b) under PX(a− b) = p(x)152
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Figure 27: Funtions uj for the same ase as in the previous �gurein normal form with nonnegative variables a, b ∈ R
N . This an be solvedpointwise, but the solution is rather strange, see �gures 27 and 26. Thetheory of linear optimization implies that at a ertain point x there an beat most 2(n+1) nonzero uj(x), but the funtions uj are not loalized around

xj , as Figure 28 shows.Thus it is an additional problem to �nd a stable solution whih is loalizedin the sense that uj(x) vanishes if x is �far� from xj . But this an be doneby loalizing the above argument. However, we shall not do this at thispoint. Instead, we start with the general multivariate ase and are for bothloalization and a bounded Lebesgue funtion.8.10 Norming SetsAs a little digression, we generalize the above onstrution, following an ideaof Jetter, Stökler, and Ward.... inomplete here.....
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Figure 28: Derivative of u1 for the same ase as in the previous �gure8.11 Multivariate Polynomial ReprodutionIn the multivariate setting, we should go for sampling inequalities of the form
‖u‖Wm

2
(Ω) ≤ C

(
hM−m|u|WM

2
(Ω) + h−m‖u‖∞,Xh

)

‖Dαu‖L∞(Ω) ≤ C
(
hM−|α|−d/2|u|WM

2
(Ω) + h−m‖u‖∞,Xh

) (8.42)for all funtions in the Sobolev spae WM
2 (Ω) with the inner produt

(f, g)WM
2

(Ω) :=
M∑

j=0

(f, g)j

(f, g)j :=
∑

|α|=j

∫

Ω
DαfDαgand (semi�)norms

‖f‖2
WM

2
(Ω)

:= (f, f)WM
2

(Ω)

|f |2
WM

2
(Ω)

:= (f, f)M =
∑

|α|=j

∫

Ω
|Dαf |2where we use standard multivariate notation. If u is a polynomial of orderat most M , then |u|2WM(Ω) = |u|M = 0 and our equations take a speial form

‖p‖L2(Ω) ≤ C‖p‖∞,Xh

‖p‖L∞(Ω) ≤ C‖p‖∞,Xh154



for all p ∈ PM , i.e. there is stable polynomial reprodution in the senseof (8.37). But we also want this reprodution to be loal and it should beguaranteed via Lagrange�type funtions uj. We thus formulate the followinggoal:De�nition 8.43. Let Ω ⊂ Rd be a domain and �x a number k ∈ N. If thereare positive numbers h0, c1, c2 depending on k and Ω suh that for eah�nite subset X = {x1, . . . , xN} ⊂ Ω with �ll distane h(X,Ω) ≤ h0 there arefuntions uX1 , . . . , uXN on Ω suh that
.

N∑

j=1

uXj (x)p(xj) = p(x) for all p ∈ Pk, x ∈ Ω

N∑

j=1

|uXj (x)| ≤ c1 for all x ∈ Ω

‖x− xj‖2 > c2h ⇒ uXj (x) = 0 for all x ∈ Ω, 1 ≤ j ≤ N

(8.44)then we say that the quasi�interpolation proess
f 7→ QX(f)(·) :=

N∑

j=1

uXj (·)f(xj) for all f : Ω → Rde�ned for all suh X provides stable loal polynomial reprodution oforder k.Then we have a rather simple loal error bound:Theorem 8.45. Assume that Ω ⊂ Rd is bounded and admits stable loalpolynomial reprodution of order k. Then there is a onstant C with
|f(x)−QX(f)(x)| ≤ Chk+1|f |k+1,Ω∗for all x ∈ Ω and all f ∈ Ck+1(Ω∗) on the extended domain

Ω∗ :=
⋃

x∈Ω
B(x, c2h0)where B(x, r) is the open ball with enter at x and radius r.Proof: See Wendland's book [Wen05℄, p. 25/26. The basi trik is tointrodue the loal Taylor expansion at x whih has the same error boundand is reprodued by the quasi�interpolant. Then use the boundedness ofthe Lebesgue funtion to show that the error of the loal Taylor expansionarries over to the quasi�interpolant. .155



Inspetion of the proof shows that the extended domain is not neessary forall forms of loal bounds.To proeed towards an existene proof of stable loal polynomial reprodu-tion on nondegenerate domains, we repeat our argument from the univariatease, but we an fous on k > 1 beause stable polynomial reprodution byonstants is trivial, using the nearest neighbor of X to eah x ∈ Ω. Anotherhoie for stable loal approximation of order one is Shepard approxima-tion, whih we shall desribe in the next setion.It does not su�e to use Pk�unisolvent subsets, beause they will not havebounded Lebesgue funtions. We thus �rst aim at a proof of an inequalitylike
‖p‖∞,Ω ≤ c2‖p‖∞,X for all p ∈ Pkfor suitable domains Ω and �nite sets X ⊂ Ω . We start with a polynomial

p ∈ Pk with p(x) = ‖p‖∞,Ω = 1 and see how fast it an go down when movingaway from x. On a ray going from x to some other point z, the polynomial
q(t) := p (x+ t(z − x)), t ∈ [0, 1]is univariate and of order at most k. We have

|p (x+ t(z − x))− p(x)| = |q(t)− q(0)| =
∣∣∣∣
∫ t

0
q′(t)dt

∣∣∣∣ ≤ t‖q′‖∞,[−1,1]and use Markov's inequality to get
|p (x+ t(z − x))− p(x)| ≤ t(k − 1)2‖q‖∞,[−1,1] ≤ t(k − 1)2‖p‖∞,Ωfor all t ∈ [0, 1]. But for our hoie of 1 = p(x) = ‖p‖∞,Ω we get

p


x+ t(z − x)︸ ︷︷ ︸

=:yt


 = q(t) ≥ 1− 2t(k − 1)2leading to p(yt) ≥ 1/2 for all yt on the ray with t = ‖x− yt‖2 ≤ 1

4(k−1)2
. Forall �nite sets X with

min
z∈X

‖x− z‖2 ≤
1

4(k − 1)2this implies
|p|∞,X ≥ 1

2
=

1

2
p(x).This argument needs that the ray from x to z is ontained in the domain wewant to fous on. 156



De�nition 8.46. A set Ω ⊂ Rd is onvex, if for all points x, y ∈ Ω the line
[x, y] := {λx+ (1− λ)y : λ ∈ [0, 1]}onsisting of all onvex ombinations of x and y belongs to Ω.Thus the argument works for all losed bounded onvex sets Ω and we haveTheorem 8.47. If X is a �nite subset with �ll distane

h ≤ 1

4(k − 1)2
=: h1in a losed bounded onvex set Ω ⊂ Rd, then the inequality

‖p‖∞,Ω ≤ 2‖p‖∞,Xholds for all polynomials p ∈ Pk.Note that this result is independent of the size of Ω, but it requires onvexity,beause we need the rays from any point x ∈ Ω to any point z ∈ X .To proeed towards the argument providing the funtions uXj , we look at thesampling operator
TX(f) := (f(x1), . . . , f(xN))

Tmapping funtions on Ω into RN for eah set X = {x1, . . . , xN} ⊂ Ω. Underthe assumptions of Theorem 8.47, this map is injetive on V := Pk, and wean proeed exatly as in the univariate ase to getTheorem 8.48. If X is a �nite subset with �ll distane
h ≤ 1

4(k − 1)2
=: h1in a losed bounded onvex set Ω ⊂ Rd, then there are funtions uXj on Ω thatrealize stable polynomial reprodution in the sense of the �rst two equationsof (8.44) with c2 = 2.The remaining problem is loalization together with elimination of onvexity.But the problem is that, for instane with gridded data, there may be onvexsubdomains whih ontain no point ofX at all, and a fortiori there are onvexsubdomains where a set X with �ll distane h1 with respet to Ω has a loal�ll distane larger than h1. We thus have to fous on domains where we have157



positive onstants h0 ≤ h1 and c1 suh that eah point of Ω belongs to aonvex subset Ω̃ of Ω in whih any disrete set with �ll distane h ≤ h0 withrespet to Ω still has a �ll distane h̃ ≤ c1h0 ≤ h1 with respet to Ω̃. In thisase, given a point x, we just work on the subdomain Ω̃ ontaining x andrestrit ourselves to points in X ∩ Ω̃ to prove (8.44). This will turn out towork for domains satisfyingDe�nition 8.49. A domain Ω ⊂ Rd satis�es an interior one onditionwith angle α and radius r suh that for eah x ∈ Ω there is a normalizedone axis zx with ‖zx‖2 = 1 suh that the one
{x+ λy : λ ∈ [0, r], ‖y‖2 = 1, yTzx ≥ cos(α)}of height r > 0 and opening angle 2α > 0 is still ontained in Ω.... missing piture...We restrit ourselves to domains with 0 < α < π and r ≤ 1 in order toavoid di�ulties. In fat, if a domain satis�es a one ondition with angle

α > 0 and r > 0, it satis�es a ondition also for all smaller positive α and
r. We shall over the domain by ones of the above form, and thus we onlyhave to prove that suh ones have the property we mentioned, i.e. anydisrete set with �ll distane h ≤ h0 with respet to Ω still has a �ll distane
h̃ ≤ c1h0 ≤ h1 with respet to suh a one, where we an de�ne h0 and c1 interms of α and r.In suh a one, the point x has distane z = r

1+sinα
from a ball of radius

r sinα
1+sinα

whih still is in the one.... missing piture...If
h0 ≤

r sinα

1 + sinαwe have at least one point of X in the ball. Sine the maximal distane of xto this point is r, we get that X has �ll distane at most
r ≥ 1 + sinα

sinα
h0with respet to that one. But we have to aim at a �ll distane h̃ ≤ c1h0 ≤ h1,and we an get away with

c1 :=
1 + sinα

sinα
≥ 1

h0 :=
1

c1
min(r, h1).158



In fat, this implies c1h0 ≤ h1, and any set X with �ll distane h ≤ h0 withrespet to Ω will have a �ll distane at most c1h0 with respet to any of ourones, beause we an use r̃ = c1h0 ≤ r in the interior one ondition.Theorem 8.50. In bounded domains in Rd with interior one ondition withangle 0 < α < π and radius r ≤ 1 there is stable loal polynomial reprodutionof order k with the onstants given above.8.12 Moving Least SquaresThe above theory does not provide a pratial way to onstrut funtions
uXj with the required properties. But there is a onstrutive way to generatestable loal polynomial reprodution onstrutively.The easiest ase is Shepard approximation. Take a nonnegative nontrivialkernel in translation�invariant form, e.g. K(x, y) = Φ(x−y) with Φ : Rd →
R and onsider the funtion

SX(f)(x) :=
∑

xj∈X
f(xj)

Φ(x− xj)∑
xk∈X Φ(x− xk)for any �nite set X and any funtion f . If the quotient is unde�ned forertain exeptional ases, e.g. when the support of Φ is very small and theset X has large �ll distane, the quotient an be de�ned to be zero. Thisapproximant preserves onstant, beause it uses a partition of unity, i.e.a set of nonnegative funtions that sum up to one. It learly is stable withLebesgue funtion bounded by one, and it an be made loal if the supportof the kernel is proportional to the �ll distane h of the set X .Motivated by this ase, we introdue a saling into the kernel by de�ning

Φδ(x) := Φ(x/δ) for all x ∈ R
d, δ > 0and take a nonnegative kernel with preise support in the unit ball B(0, 1),i.e.

Φ(x) = 0 for x ∈ R
d if and only if ‖x‖2 ≥ 1.Then the kernel Φδ has support in the ball B(0, δ) with enter 0 and radius

δ.When onstruting an approximation at some point x based on funtionvalues f(xj) at ertain points xj of a �nite set X , we use the kernel as aweight funtion to let the points xj ∈ X loser to x have more importane159



than those further away. If Φ is smooth, there is some hope that the resultingfuntion of x an be de�ned to be ontinuous or even di�erentiable, beausethe weights of the used points are varying smoothly. Furthermore, one anhope to get a fully loal method, if the support radius δ is saled like δ =
c1h and thus onneted to the �ll distane h of X . Finally, polynomialreprodution should be built into the method by adding equations like (8.40)as onstraints and allowing enough oversampling to let them be satis�ed upto a ertain order.Put together, all of this suggests the following pointwise de�nition of amov-ing least�squares approximation:Minimize ∑

xj∈Xx,δ

(f(xj)− p(xj))
2Φδ(x− xj) over all p ∈ Pkfor �xed x and sets X := {x1, . . . , xN}, and all the resulting funtion value

MLS(x) := MLS(f,XΦδ)(x) := p∗(x) when p∗ is the optimal polynomial.Note that we restrited the sum in the objetive funtion to
Xx,δ := {xk ∈ X : ‖x− xk‖2 < δ}
Jx,δ := {j : xj ∈ Xx,δ} (8.51)desribing the points of X lose enough to x to enter into the alulation.For onveniene, we use the shorthand notation J := Jx,δ, and we shouldrewrite the problem in terms of a polynomial basis and in matrix�vetorform. Then it is Minimize ‖√W (F − Pb)‖22 over b ∈ R

Qwhere
F := (f(xj), j ∈ J)T ∈ R|Xx,δ|

P := (pℓ(xj))j∈J, 1≤ℓ≤Q

b := (b1, . . . , bQ)
T ∈ RQ

W := (δjkΦδ(x− xk))j,k∈Jand it is a standard least�squares problem approximationg√WfX by√WPXbfor b ∈ RQ. In theory, the solution satis�es the normal equations
P T
XWF = P T

XWPXband is unique if the rank of P T
XWPX is Q. This requires Q ≤ |Xx,δ| ≤ N and

Pk�unisolvene of Xx,δ. With this assumption, we an alulate the uniquesolution of the problem by standard least�squares tehniques, but we have160



no information about stability or polynomial reprodution. To this end, onean try to rewrite the problem as one in the loalized quasi�interpolant form
MLS(x) =

∑

j∈J
a∗j (x)f(xj)where we already inserted the optimal values a∗j (x) for �xed x without know-ing how to set up an equivalent optimization problem. Anyway, we shouldimpose the polynomial reprodution onstraints

p(x) =
∑

j∈J
aj(x)p(xj) for all p ∈ Pk (8.52)restriting the variables aj(x) for j ∈ J . But we still have nothing to optimize.Clearly, we should make sure that a∗j (x) gets small if xj is just about to leavethe in�uene region for x, i.e. if ‖x − xj‖2 is lose to δ, or if Φδ(x − xj) issmall. This suggests to minimize

∑

j∈J
a2j(x)

1

Φδ(x− xj)
. (8.53)Theorem 8.54. If the set Xx,δ of (8.51) is Pk�unisolvent, the moving least�squares problem has a unique solution. It oinides with the solution of theminimization of (8.53) under the onstraints (8.52) and thus has polynomialreprodution of order k.Proof: We already have the �rst part of the theorem. If we take the optimalsolution vetor b∗ ∈ RQ of the �rst form of the problem, we an write theoptimal polynomial

p∗(x) :=
Q∑

ℓ=1

b∗ℓpℓ(x)in terms of the basis p1, . . . , pQ of Pk we used in de�ning the matrix PX .Sine we know that we have a unisolvent set, we an rewrite the polynomialat arbitrary points y ∈ Rd as
p∗(y) =

Q∑

ℓ=1

b∗ℓpℓ(y) =
∑

j∈J
âj(y)p

∗(xj)with ertain nonunique oe�ients âj(y). Thus the onstraints (8.52) anbe satis�ed, but our hoie of the âj may not be the optimal ones for mini-mization of erefeqMLSobjfun. The diagonalized quadrati form of (8.53) is161



positive de�nite, and thus it attains its unique minimum on all a�ne sub-spaes like the one de�ned by (8.52). Thus there is a solution vetor a∗j (x),and we have to prove that the equation
N∑

j∈J
a∗j (x)f(xj) = p∗(x) =

Q∑

ℓ=1

b∗ℓpℓ(x) =
∑

j∈J
âj(x)p

∗(xj)holds. The new problem takes the formMinimize ‖√W−1a(x)‖22 = a(x)TW−1a(x) under P T
Xa(x) = p(x)with p(x) := (p1(x), . . . , pQ(x))

T as in (??). By the standard �parabola�argument for solutions of quadrati problems with a�ne�linear onstraints,we know that a(x)TW−1c = 0 for all c ∈ R|J | with P T
Xc = 0, and by thefatorization lemma 11.10 we get Lagrange multipliers λ(x) ∈ RQ with

a(x)TW−1c = λT (x)P T
Xc for all c ∈ R|J |. This proves that a∗(x) =WPXλ(x)and from P T

Xa
∗(x) = p(x) we get p(x) = P T

XWPXλ(x). But then
p∗(x) = pT (x)b∗ = λT (x)P T

XWPXb
∗ = λT (x)P T

XWF = F Ta∗(x)proves the assertion.For further analysis, we note some results of the above argument. First, theequation a∗(x) = WPXλ(x) is
a∗j (x) = Φδ(x− xj)

Q∑

k=1

λk(x)pk(xj), j ∈ J,and p(x) = P T
XWPXλ(x) shows that the λk(x) satisfy the system

pℓ(x) =
Q∑

k=1

λk(x)
∑

j∈J
pk(xj)Φδ(x− xj)pℓ(xj), 1 ≤ ℓ ≤ Q.This is another way to alulate the solution, and it only requires a Q × Qsystem whose entries an be alulated with omplexity |J | eah.From the �rst equation we get that the a∗j are as smooth as the funtions Φδand λk allow. But the seond system an be written as

pℓ(x) =
Q∑

k=1

λk(x)
N∑

j=1

pk(xj)Φδ(x− xj)pℓ(xj), 1 ≤ ℓ ≤ Q,and thus we have 162



Corollary 8.55. If all sets Xx,δ for arbitrary x ∈ Ω and �xed δ are Pk�unisolvent, then the solution of the moving least�squares approimation is assmooth as the kernel Φδ.Proof: Due to global Pk�unisolvene of all sets Xx,δ, the oe�ient matrix isglobally nonsingular and has a determinant as smooth as the kernel itself.To align moving least�squares with our previous theory of stable loal poly-nomial reprodution, we should �x δ to be c1h for a �xed set X with �lldistane h. Then we have unisolvene of eah set Xx,δ and loal polyno-mial reprodution. The main problem is stability, and for this we shall needquasi�uniformity in the sense that the separation distane q and the �lldistane h are related by qc3 ≥ h for some positive onstant c3.For stability, we bound the fators of

∑

j∈J
|a∗j (x)|




2

≤

∑

j∈J

|a∗j(x)|2
Φδ(x− xj)




∑

j∈J
Φδ(x− xj)


separately. The �rst is the objetive funtion of the seond form of ourminimization, and thus it an be bounded by any stable solution uj(x) wehave from the previous theory. To have some leeway, we make δ larger, takingit as 2c1h, while we use the uj for c1h. Thus

∑

j∈J

|a∗j(x)|2
Φδ(x− xj)

≤
∑

j∈J

|uj(x)|2
Φδ(x− xj)

≤ 1

infz∈B(0,1/2) Φ(z)

∑

j∈J
|uj(x)|2

≤ C


∑

j∈J
|uj(x)|




2

≤ 4C.The seond fator an be dealt with a ounting argument, sine it is boundedby a onstant times the number |J |. Eah point of Xx,δ has a ball of radius
q/2 around it with no other point of X . Sine all of these disjoint balls lie inthe ball B(x, δ + q/2), we have

|J |vol(B(xj, q/2)) ≤ vol(B(x, δ + q/2))and
|J |q

d

2d
≤ (δ + q/2)d ≤ (2c1h + q/2)d ≤ (2c1c3q + q/2)d163



leading to
|J | ≤ (4c1c3 + 1)d.Altogether, we see that moving least�squares realize stable loal polynomialreprodution.8.13 Bramble�Hilbert LemmaWe now leave the stable loal polynomial reprodution part and go bak to(8.42). We now have to are for the part varying with h, but we alreadyknow something about stable loal polynomial reovery, i.e. we have
‖p‖∞,Ω ≤ C‖p‖∞,Xhfor all p ∈ PM and all set Xh with h ≤ h0. For onveniene, we restrit ourattention to the L∞ norm, and fous on the remaining part

‖u‖L∞(Ω) ≤ ChM−d/2|u|WM
2

(Ω).Clearly, an inequality like this annot hold unless the funtion u is replaedby something like u− p∗ for some polynomial p∗ ∈ PM , beause if the right�hand side is zero, the left�hand side must be zero. Thus we go for somethinglike
‖u− p∗‖L∞(Ω) ≤ ChM−d/2|u|WM

2
(Ω)and inequalities like this are well-known in simple ases like the univariateones. We already did that for M = d = 1, and it also is easy for univariateases of higher order when p∗ is the Taylor polynomial and if the basis intervalis of length h.This observation is the lue for what we are doing next. Let us onsider asimple ase �rst, whih is a variation of a Poinaré�Friedrihs inequality.Lemma 8.56. Let Ω be a bounded ube in Rd of maximal sidelength s. Thenfor eah funtion u in W 1

2 (Ω) there is a onstant γ(u) suh that
‖u− γ(u)‖L2(Ω) ≤ s|u|W 1

2
(Ω) (8.57)and the onstant an be taken as the mean value of u over Ω.Proof: We �rst prove the assertion for smooth funtions, and then we goto the ompletion limit. There is a point x where u(x) = γ(u). We set

v := u− γ(u). As in the univariate ase we now integrate from x to any z in164



the ube, but we �rst integrate along the �rst oordinate only, i.e. we take
z = x+ τe1 and get

v(z) =
∫ τ

0

∂v

∂x1
(x+ te1)dt

|v(z)|2 ≤
∣∣∣∣∣∣
τ
∫ τ

0

(
∂v

∂x1
(x+ te1)

)2

dt

∣∣∣∣∣∣
≤ s

∣∣∣∣∣∣

∫ τ

0

(
∂v

∂x1
(x+ te1)

)2

dt

∣∣∣∣∣∣
.We integrate this over the full line L of length s through x and z along the�rst oordinate to get

∫
L |v(y)|2dy ≤ s2

∫

L

(
∂v

∂x1
(y)

)2

dy.beause the right�hand side is independent of z and the length |τ | of inte-gration towards z annot be greater than s. If we integrate both sides overthe other dimensions as well, we get
‖v‖2L2(Ω) ≤ s2

∫

Ω

(
∂v

∂x1
(y)

)2

dy = s2|v|21.Now the assertion follows when inserting v = u− γ(u) and when going overto the Hilbert spae losure.A more standard and lassial version of this, named after Poinaré andFriedrihs, does the same thing without γ(u), but with the assumption that
u vanishes somewhere on the boundary. The proof is the same.Unfortunately, we annot sum up the inequalities (8.57) when ombining alarger domain from ube subdomains, beause the onstants will be di�erentin eah subdomain. But we an proeed on ube subdomains Ωs like

‖u‖L2(Ωs) ≤ ‖u− γ(u)‖L2(Ωs) + ‖γ(u)‖L2(Ωs)

≤ s|u|W 1
2
(Ωs) + |γs(u)|

√
vol(Ωs)

‖u‖2L2(Ωs)
≤ 2s2|u|2W 1

2
(Ωs)

+ 2|γs(u)|2vol(Ωs)and we an sum this up for a domain Ω omposed of suh subdomains. Theresult is
‖u‖2L2(Ω) ≤ 2s2|u|2W 1

2
(Ω) + 2vol(Ω)

∑

Ωs

|γs(u)|2

‖u‖L2(Ω) ≤
√
2s|u|W 1

2
(Ω) +

√
2vol(Ω)

√∑

Ωs

|γs(u)|2165



and an be viewed as our �rst full�size sampling inequality.Having understood the basi logi, readers an now imagine that a general-ization of Lemma 8.56 isLemma 8.58. (�Loal� Bramble�Hilbert Lemma)Let Ω be a nie domain of diameter s, e.g. a ube, a ball, or a onvex ora star�shaped set. Then there is a onstant C suh that for all funtions
u ∈ WM

2 (Ω) with M ≥ 1 there is a polynomial p(u) ∈ PM suh that
‖u− p(u)‖L2(Ω) ≤ CsM |u|WM

2
(Ω).The polynomial an be hosen as an averaged Taylor polynomial, and theonstant is only dependent on the dimension d and the type of �nie� domain.We just had the ase M = 1 for ubes, but we want to avoid a full proof (see[BS02℄ for the star�shaped ase, and ertain papers for other ases). Themain argument �rst works on a domain of diameter 1 and bounds the errorof the averaged Taylor polynomials uniformly by

‖u− p(u)‖L2(Ω) ≤ C|u|WM
2

(Ω) for all u ∈ WM
2 (Ω).Roughly, this is a result of the fatorization lemma 11.10, beause the oper-ator Id − TM with TM being the Taylor projetor of order M , vanishes onthe kernel PM of the linear map

LM : u 7→ (Dαu, |α| =M)and thus must be fatorizable over the range of LM , implying that it an bebounded by the derivatives Dαu with |α| =M alone.The next step in this rough proof sketh is a plain saling argument. Wenow take u ∈ WM
2 (Ωs) and de�ne v(x) := u(x · s) to get some v ∈ WM

2 (Ω1).Then
s−d‖u− p(u)‖2L2(Ωs) = ‖v − p(v)‖2L2(Ω) ≤ C2|v|2WM

2
(Ω) = C2s2Ms−d|u|2WM

2
(Ωs)does the job, provided that we also have the sale invariane

p(v)(x) = pt(u(t · s))(x) = p(u)(s · x).
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But this holds for standard Taylor polynomials at zero
TM(v)(x) =

M−1∑

j=0

∑

|α|=j

vα(0)

α!
xα

=
M−1∑

j=0

∑

|α|=j

uα(0)s|α|

α!
xα

=
M−1∑

j=0

∑

|α|=j

uα(0)

α!
(xs)α

= TM(u)(xs)and arries over to the averaged ones.For the L∞ norm, the orrespondent result is
‖u− TM(u)‖L∞(Ω) ≤ CsM−d/2|u|WM

2
(Ω) (8.59)under the restrition M > d/2 beause otherwise we have no ontinuouspoint evaluation. here, we wrote the averaged Taylor projetor TM . We analso sketh the idea that leads to (8.59). By a fatorization argument, onean get a result like

‖u− TM (u)‖L∞(Ω) ≤ C|u|WM
2

(Ω)for a �nie� domain of diameter one. This time, one an also work with thestandard Taylor projetor. The next step is again a saling argument likethe one above, using v(x) = u(x · s) onneting v on Ω1 with u on Ωs withdiameter s. The saling now gives
‖u− TM(u)‖2L∞(Ωs) = ‖v − TM(v)‖2L∞(Ω) ≤ C|v|2WM

2
(Ω) = Cs2M−d|u|2WM

2
(Ωs)whih is what we need. Note that this argument is a loal proof of Sobolev'simbedding inequality, sine it implies that C(Ωs) is ontinuously embeddedin WM

2 (Ωs) for M > d/2.8.14 GlobalizationFrom (8.59) and stable polynomial reprodution f 7→ QM(f) of order Mfrom values on a set X we an proeed to a loal sampling inequality on�nie� domains of diameter s. This starts from bounding the Taylor operatorin terms of data on X via
‖TMu‖∞,Ω ≤ C‖TMu‖∞,X

≤ C (‖TMu− u‖∞,X + ‖u‖∞,X)
≤ C (‖TMu− u‖∞,Ω + ‖u‖∞,X)

≤ C
(
CsM−d/2|u|WM

2
(Ω) + ‖u‖∞,X

)167



and proeeds via
‖u‖L∞(Ω) ≤ ‖u− TMu‖L∞(Ω) + ‖TMu‖L∞(Ω)

≤ CsM−d/2|u|WM
2

(Ω) + C
(
CsM−d/2|u|WM

2
(Ω) + ‖u‖∞,X

)

≤ C
(
sM−d/2|u|WM

2
(Ω) + ‖u‖∞,X

)with generi onstants. This is perfetly �ne for �nie� domains of diameter sproportional to h suh that a global set X restrited to Ω still has �ll distane
h. In fat, this an be done at the expense of hanging the onstants, andit an be done uniformly for arbitrary domains with a �xed one ondition.We do not want to do this in full detail, beause it is rather tehnial andprovides no new insights.But we state the �nal results for sampling inequalities, as they are providednow by the literature. In all ases, the domain Ω ⊂ Rd has to be boundedwith a Lipshitz boundary and an interior one ondition, and the order mhas to be �xed beforehand, together with real numbers 1 ≤ p, q ≤ ∞. Thenthere exist onstants C, h0 > 0 suh that the following inequalities hold forall funtions u in m�th order Sobolev spae and all disrete sets Xh ⊂ Ωwith �ll distane h ≤ h0:

• Narowih, Ward, & Wendland MC 2005 [NWW06℄
|u|

W
|α|
q

≤ chm−|α|−d(1/p−1/q)+ |u|Wm
p
, u(Xh) = {0}for 0 ≤ |α| ≤ m > d/p,

• Wendland & Rieger Num. Math. 2005 [WR05℄
|u|

W
|α|
q

≤ C
(
hm−|α|−d(1/p−1/q)+ |u|Wm

p
+ h−|α|‖u‖∞,Xh

)for 0 ≤ |α| ≤ m > d/p,

• Madyh JAT 2006 [Mad06℄
‖u‖Lq ≤ C

(
hm−d(1/p−1/q)+ |u|Wm

p
+ hd/max(p.q)‖u‖ℓp,Xh

)for 0 ≤ m > d/p.Finally, there is a more sophistiated inequality due to Christian Riegerand Barbara Zwiknagl [RZ06℄. It holds on Hilbert spaes H of funtionson bounded Lipshitz domains Ω ⊂ Rd with interior one ondition pro-vided that the Hilbert spaes are uniformly and ontinuously embedded inall Sobolev spaes Wm
2 (Ω) for all m ∈ N, i.e.
‖u‖Wm

2
(Ω) ≤ C‖u‖H for all u ∈ H.Then for all 1 ≤ q ≤ ∞ and m ≥ 0 there exist onstants C, h0 > 0 suh that

‖u‖Wm
q (Ω) ≤ C

(
exp

(
c1
log(c2h)√

h

)
‖u‖H + h−|α|‖u‖ℓq(Xh)

) (8.60)168



holds for all funtions u in H, all disrete sets Xh ⊂ Ω with �ll distane
h ≤ h0. The proof of this is based in the Wendland�Rieger form of the�xed�order sampling inequality, but traks the onstants arefully in termsof the order m. Then the used m is onneted to h in suh a way that thenew sampling inequality is obtained.8.15 Error BoundsWe now an use the sampling inequalities for error bounds onerning kernelinterpolation in Sobolev spaes. As we pointed out before, we only need thatthe native spae N for a kernel K is ontinuously embedded in some Sobolevspae of order m, i.e.

‖u‖Wm
2

(Ω) ≤ C‖u‖N for all u ∈ N . (8.61)If we take a set Xh with �ll distane h ≤ h0 in one of the above situations,we an use the minimum norm property of the interpolation operator QXhto get
‖QXh

u‖Wm
2

(Ω) ≤ C‖QXh
u‖N ≤ C‖u‖N for all u ∈ N ,and we use Sobolev embedding from (8.61) in one of the sampling inequalitiesof 8.14 when applying them to the di�erene u − QXh

u. This yields in the�rst ase
|u−QXh

u|
W

|α|
q

≤ chm−|α|−d(1/2−1/q)+ |u−QXh
u|Wm

p

≤ chm−|α|−d(1/2−1/q)+‖u−QXh
u‖N

≤ Chm−|α|−d(1/2−1/q)+‖u‖Nfor all 0 ≤ |α| ≤ m > d/2, 1 ≤ q ≤ ∞ and thus also in the full Sobolev norm
‖u−QXh

u‖Wµ
q

≤ Chm−µ−d(1/2−1/q)+‖u‖Nfor all 0 ≤ µ ≤ m > d/2, 1 ≤ q ≤ ∞.Using Madyh's form we get
‖u−QXh

u‖Lq(Ω) ≤ Chm−d(1/2−1/q)+ |u−QXh
u|Wm

2

≤ Chm−d(1/2−1/q)+‖u‖Wm
2

≤ Chm−d(1/2−1/q)+‖u‖Nfor 0 ≤ m > d/2, 1 ≤ q ≤ ∞.In the situation of the re�ned inequality (8.60), the orrespondent errorbaound
‖u−QXh

u‖Wm
q (Ω) ≤ C exp

(
c1
log(c2h)√

h

)
‖u‖Hyields exponential onvergene of the error.169



9 Constrution of KernelsFor this setion, we only present some additional material. The standardproedure will be like the one in the book [Wen05℄ of Holger Wendland, butwith several omittanes. This theory heavily relies on Fourier transforms,the essentials of whih are overed by an appendix in setion 12.3.9.1 General Constrution TehniquesThis setion is planned to give an overview of methods for the onstrutionof new kernels from existing ones. For the time being, we restrit ourselvesto translation-invariant ases in Rd.9.1.1 Elementary OperationsIt is very easy to see that (onditionally) positive (semi-) de�nite funtionson Ω form a one in the spae of all funtions on Ω × Ω. In partiular, if
Φ and Ψ are (onditionally) positive (semi-) de�nite, so are αΦ + βΨ for
α, β > 0. Furthermore, if a family Φζ of (onditionally) positive (semi-)de�nite funtions an be integrated against a positive funtion w(ζ), theresult

Φ(x, y) :=
∫
w(ζ)Φζ(x, y)dζwill again be (onditionally) positive (semi-) de�nite.9.1.2 Autoorrelation MethodIf we annot start with a (onditionally) positive (semi-) de�nite funtion buthave an arbitrary funtion Ψ ∈ L2(R
d), we an form the autoorrelationfuntion

Φ(x, y) :=
∫

Rd
Ψ(x− z)Ψ(y − z)dz.This always yields a symmetri positive semide�nite funtion whih even ispositive de�nite, if all translates Φ(xj − ·) for di�erent points xj are linearlyindependent in L2(R

d).9.1.3 Integration MethodThe previous method easily generalizes for any Ω. For any funtion Ψ on
Ω× Π one an formally onsider

Φ(x, y) :=
∫

Π
Ψ(x, ζ)Ψ(y, ζ)w(ζ)dζ170



with a positive weight funtion w on Π. If the integral is well-de�ned, theresult will be a symmetri positive semide�nite funtion on Ω.9.2 Speial Kernels on R
dIn Mahine Learning, the polynomial kernels

Kn(x, y) = (xTy)n for all n ≥ 0, x, y ∈ Rdor Kn(x, y) = (1 + xTy)n for all n ≥ 0, x, y ∈ Rdare often used. Due to Theorem 3.7, they are positive semide�nite when thekernel K(x, y) = xT y is, but this is easy to see.Clearly, their translates generate polynomials of degree at most n of d vari-ables, suh that the native spae of the kernels must be a subspae of thispolynomial spae. However, the geometry of Ω will determine the nativespae.For illustration, onsider the kernel K1(x, y) = xTy. It generates funtions
g(y) :=




N∑

j=1

ajxj




T

y, y ∈ R
d.Eah suh funtion lies in the subspae

NΩ := {fa : y → aTy : a ∈ LH(Ω)} (9.1)of (RN )∗ where LH(Ω) is the linear hull of Ω, i.e.
LH(Ω) := span {x ∈ Ω}.If Ω lies in a k�dimensional subspae of Rd, the spae NΩ annot be morethan k�dimensional. The inner produt in the native spae is de�ned asusual, and it turns out easily that it oinides with the usual dual innerprodut on (RN)∗ in the notation of (9.1) as

(fa, fb) := aT b for all a, b ∈ R
N .It is now an interesting exerise to see what happens if we solve a systemwith the usual kernel matrix for K1 on any hoie of N points, but we skipover details.To Do: Insert details 171



The kernel K1 has an analogon in the periodi ase, i.e. the kernel K(x, y) =
cos(x− y). It is an easy exerise to see that it is positive semide�nite. Thisworks similarly for the kernels Kα(x, y) := cos(α(x− y)).To Do: Insert detailsInspired by the previous example, we an onsider kernels in polar oordi-nates (r, ϕ) in R2. If we desribe two variables inR2 via two polar oordinates
(r, ϕ) and (s, ψ), the kernels

Kα((r, ϕ), (s, ψ)) := rαsα cos(α(ϕ− ψ))are positive semide�nite and harmoni, i.e. they satisfy the homogeneousLaplae equation ∆u = 0 in both arguments.To Do: Insert detailsThese examples are losely related to the omplex�valued ase
Kn(z, u) := (zu)n, z, u ∈ C, n ∈ N0.To Do: Insert detailsFrom these kernels, we an generate new kernels by additive superposition.Let us do a simple example by taking

K(x, y) :=
n∑

n=0

(xTy)n

n!
= exp(xTy), x, y ∈ R

d.It is well�de�ned sine the series is absolutely onvergent everywhere, and itis positive semide�nite due to Theorem 3.7. By an easy additional argumentthis proves that the Gaussian kernel
G(x, y) := exp(−‖x− y‖22), x, y ∈ R

dis positive semide�nite.To Do: Insert details
172



9.3 Translation�Invariant Kernels on RdWe now go bak to setion 3.2 and de�ne kernels on Ω := Rd by the featuremap
Φ(x) := exp(−ixT ·) for all x ∈ R

dinto a weighted L2 feature spae
Fc := {g : R

d → C, (2π)−d/2
∫

Rd
|g(ω)|2c(ω)dω <∞}for a nonnegative and integrable weight funtion c on Rd. This de�nes akernel Kc in translation�invariant form via

Kc(x− y) := (2π)−d/2
∫

Rd
exp(−i(x− y)Tω)c(ω)dωand this oinides with c∧(x − y) sine the Fourier transform c∧ of c existspointwise under the above assumption. If c is even in the sense c(ω) = c(−ω),the Fourier transform and the kernel are real�valued.Theorem 9.2. If c is a nonnegative even and integrable funtion on Rd, itsFourier transform is a real�valued symmetri translation�invariant positivesemide�nite kernel Kc on Rd.This is the easiest approah to translation�invariant kernels on Rd, and it israther lose to the general situation due to the famous but di�ultTheorem 9.3. (Bohner)A ontinuous omplex�valued translation�invariant kernel on Rd is positivesemide�nite if and only if it is the Fourier transform of a nonnegative Borelmeasure µ on Rd, i.e.

K(x, y) := (2π)−d/2
∫

Rd
exp(i(x− y)Tω)dµ(ω).Sine we omitted measure theory in this text, we do not want to proveBohner's theorem, but the reader should be aware that the onnetion be-tween the above theorems is via the ase that the measure µ has density c,i.e. dµ(ω) = c(ω)dω.The above onstrution immediately implies that the Gaussian is positivesemide�nite on all Rd. It even is positive de�nite, but we shall prove thissoon in more generality. 173



In fat, we should take a general nonnegative even and integrable funtion con Ω and ask for su�ient onditions to make the kernel Kc positive de�nite.As always, we onsider the quadrati form
N∑

j,k=1

ajakK(xj , xk)

= (2π)−d/2
∫

Rd

N∑

j,k=1

ajake
i(xj−xk)

Tωc(ω)dω

= (2π)−d/2
∫

Rd

∣∣∣∣∣∣

N∑

j=1

aje
ixT

j ω

∣∣∣∣∣∣

2

c(ω)dω ≥ 0and assume that it vanishes. Then the produt of the generalized trigono-metri polynomial
p(ω) := pa,X(ω) :=

N∑

j=1

aje
ixT

j ω (9.4)with c vanishes almost everywhere. But we an expet that suh polynomialsannot vanish on reasonable sets without being identially zero and havingzero oe�ients. More preisely:Lemma 9.5. If a generalized trigonometri polynomial of the above formvanishes on an open set in Rd, it has zero oe�ients.Proof: By a simple shift (whih multiplies eah oe�ient with a nonzeroomplex number) we an assume that the open set ontains the origin in itsinterior. Then all derivatives of p at zero must vanish. This implies that allomplex numbers
Dβp(0) =

N∑

j=1

aj(ixj)
β, β ∈ N

d
0vanish, and this means that all

N∑

j=1

ajx
β
j , β ∈ N

d
0are zero. If we pik a single index j, 1 ≤ j ≤ N , we an �nd a multivariatepolynomial qj(x) with the Lagrange property qj(xk) = δjk, 1 ≤ j, k ≤ N , forinstane

qj(x) :=
∑

k 6=j

‖x− xk‖22
‖xj − xk‖22

=:
∑

β

b
(j)
β xβ
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for �nitely many nonzero oe�ients b(j)β . Then we get
aj =

N∑

k=1

akqj(xk)

=
N∑

k=1

ak
∑

β

b
(j)
β xβk

=
∑

β

b
(j)
β

N∑

k=1

akx
β
k

= 0for all j, 1 ≤ j ≤ N .Theorem 9.6. If c is a nonnegative even and integrable funtion on Rd whihis positive on an open set, its Fourier transform is a real�valued symmetritranslation�invariant positive de�nite kernel Kc on R
d.This now implies that the Gaussian is positive de�nite, beause its inverseFourier transform is never zero.Furthermore, sine both the kernel and its inverse Fourier transform arereal�valued and symmetri, we an ignore the di�erene between inverse andforward Fourier transform in this ontext.We an turn the above theorem upside�down to getTheorem 9.7. Let K be a translation�invariant symmetri real�valued ker-nel on R

d whose Fourier transform exists, is even and nonnegative and inte-grable on Rd and positive on an open set. Then K is positive de�nite.This gives us plenty of leeway to onstrut positive de�nite kernels. However,we are interested in expliitly known kernels only, and then we have to hektheir Fourier transforms. For instane, Wendland's kernel
K(x− y) = (1− ‖x− y‖2)4+(1 + 4‖x− y‖2), x, y ∈ R

dhas positive Fourier transform in Rd for d ≤ 3, but this is not at all lear.We postpone suh kernels for a while.9.4 Global Sobolev Kernels on R
dClearly, we should look for the reproduing kernel of global Sobolev spae

Wm
2 (Rd). This is de�ned as the spae of funtions with generalized derivativesup to order m being in L2(R

d), and we an ast this into a ondition on175



Fourier transforms. If f is a smooth funtion on Rd, we know that theFourier transform of the derivative Dαf is the funtion ω 7→ (iω)αf̂(ω), andthis is in L2(R
d) if the integral

∫

Rd
|Dαf |2(x)dx =

∫

Rd
|(iω)αf̂(ω)|2dω =

∫

Rd
|ωα|2|f̂(ω)|2dωis �nite. Thus Sobolev spae Wm

2 (Rd) an be de�ned via the inner produt
(f, g)Wm

2
(Rd) :=

m∑

j=0

(
m

j

) ∑

|α|=j

(
j

α

)∫

Rd
Dαf(x)Dαg(x)dx

=
m∑

j=0

(
m

j

) ∑

|α|=j

(
j

α

)∫

Rd
|ωα|2f̂(ω)ĝ(ω)dω

=
∫

Rd

(
1 + ‖ω‖22

)m
f̂(ω)ĝ(ω)dωand onsists of all funtions f on Rd with

‖f‖2Wm
2

(Rd) =
∫

Rd

(
1 + ‖ω‖22

)m |f̂(ω)|2dω <∞.We now look for the kernel K whih will be reproduing in Sobolev spae
Wm

2 (Rd). We write it in di�erene form right away, and we need the relation
f(x) = (f,K(x− ·))Wm

2
(Rd) for all x ∈ R

d, f ∈ Wm
2 (Rd).We formally see that

(K̂(x− ·))(ω) = e−ixTωK̂(ω)and �nd that we have to satisfy
f(x) = (f,K(x− ·))Wm

2
(Rd)

= (2π)−d/2
∫

Rd
f̂(ω)

(
1 + ‖ω‖22

)m
e+ixTωK̂(ω)dωwhih works if we an set

K̂(ω) =
(
1 + ‖ω‖22

)−mand if K and f are inverse Fourier�transformable.Sine we now have an idea what the kernel should be, we de�ne it as
K(x− y) := (2π)−d/2

∫

Rd

(
1 + ‖ω‖22

)−m
ei(x−y)Tωdω (9.8)176



This integral is well�de�ned if −2m < −d or m > d/2, whih is the usualsu�ient ondition for an embedding of C(Ω) into Wm
2 (Ω). Thus the kernelexists pointwise, and we have to hek whether K(x− ·) lies in Wm

2 (Ω). Tothis end, we hek the Fourier transform ondition
(2π)−d/2

∫

Rd

(
1 + ‖ω‖22

)m |(K̂(x− ·))(ω)|2dω
= (2π)−d/2

∫

Rd

(
1 + ‖ω‖22

)m
K̂(ω)2dω

= (2π)−d/2
∫

Rd

(
1 + ‖ω‖22

)−m
dωwhih is �nite and equal to K(0), again due to the ondition m > d/2.What is left is the inverse Fourier transformability of f , sine we an formthe right�hand side of the reprodution equation, and it is

(2π)−d/2
∫

Rd
eix

Tωf̂(ω)dω.This integral is lassially integrable beause of
∫

Rd
|f̂(ω)|dω

=
∫

Rd

(
1 + ‖ω‖22

)m/2 |f̂(ω)|
(
1 + ‖ω‖22

)−m/2
dω

≤
√∫

Rd
(1 + ‖ω‖22)m |f̂(ω)|2dω

√∫

Rd
(1 + ‖ω‖22)−m

dω

≤ C‖f‖Wm
2

(Ω)K(0)and thus it represents f(x). We haveTheorem 9.9. The reproduing kernel for Sobolev spae Wm
2 (Rd) for m >

d/2 is given by (9.8) and turns out to have the expliit radial representation
21−m

(m− 1)!
‖x− y‖m−d/2

2 K−m+d/2(‖x− y‖2) (9.10)where Kν is the modi�ed Bessel funtion of order ν.We postpone the expliit alulation ending with the above formula, but inFigure 6 on page 5 we already presented a plot of the kernels rνKν(r) after aresaling to attain 1 at zero. In setion 12.7.8 we provide some properties ofthese funtions. In partiular, they derease monotonially away from zero,and they have exponential deay towards in�nity. At zero, they have limitedsmoothness. 177



9.5 Native Spaes of Translation�Invariant KernelsAfter we have seen the speial ase of a kernel that diretly leads to a globalSobolev spae, we now go bak to the more general situation of a translation�invariant kernel Kc generated from an even, nonnegative, and summableFourier transform c = K̂c. We want to alulate the native spae of thekernel, but in order to be aligned with our error analysis, we have to do thison a bounded domain Ω ⊂ Rd. We an drop c and work with K and K̂diretly.The inner produt in the native spae is de�ned for typial funtions fa,X asin (3.11) in setion 3.3. But we an now use Fourier transforms on it and get�rst
(f̂a,X)(ω) = (2π)−d/2

∫

Rd
fa,X(x)e

−ixTωdx

= (2π)−d/2
M∑

j=1

aje
−ixT

j ω
∫

Rd
K(x− xj)e

i(xj−x)Tωdx

= K̂(ω)
M∑

j=1

aje
−ixT

j ω

=: K̂(ω) pa,X(ω)and then
(fa,X , fb,Y ) =

M∑

j=1

N∑

k=1

ajbkK(yk, xj)

= (2π)−d/2
M∑

j=1

N∑

k=1

ajbk

∫

Rd
K̂(ω)ei(yk−xj)

Tωdω

= (2π)−d/2
∫

Rd
K̂(ω)

M∑

j=1

aje
−ixT

j ω
N∑

k=1

bke
iyTk ωdω

= (2π)−d/2
∫

Rd

f̂a,X(ω)f̂b,Y (ω)

K̂(ω)
dω.Thus we an read o� the right inner produt of the native spae. We de�ne

FK := {f ∈ L2(R
d) :

∫

Rd

|f̂(ω)|2
K̂(ω)

dω <∞}and see that this spae ontains the native spae for K beause it ontainsit as a set and has the same topology. Sine, by de�nition as a losure, thenative spae for K is losed, it is a losed subspae of FK . We now look at178



its orthogonal omplement. For this, we take any f ∈ FK and evaluate theinner produt
(f, fa,X)K = (2π)−d/2

∫

Rd

f̂(ω)f̂a,X(ω)

K̂(ω)
dω

= (2π)−d/2
∫

Rd
f̂(ω)pa,X(ω)dω

= (2π)−d/2
∫

Rd
f̂(ω)

M∑

j=1

aje
ixT

j ωdω

=
M∑

j=1

ajf(xj)whih implies that K is the reproduing kernel in FK on the full domain Rd.If f is orthogonal to all fa,X with X ⊂ Ω for a bounded domain Ω ⊂ Rd, wesee that f(Ω) = {0}, and onversely.Theorem 9.11. The native spae for a general translation�invariant sym-metri positive de�nite kernel K on a domain Ω is the orthogonal subspaeof the spae of funtions in FK vanishing on Ω, where orthogonality is un-derstood in FK.We now hek for whih m we have a ontinuous embedding of the nativespae NK of K into Wm
2 (Ω). We take an f ∈ NK and note �rst that it is in

FK , whih means that it has a global extension and satis�es
∫

Rd

|f̂(ω)|2
K̂(ω)

dω <∞.We now hek if we an prove f ∈ Wm
2 (Rd). This would work if we get

∫

Rd
|f̂(ω)|2(1 + ‖ω‖22)mdω

=
∫

Rd

|f̂(ω)|2
K̂(ω)

K̂(ω)(1 + ‖ω‖22)mdω

≤
(
sup
ω∈Rd

K̂(ω)(1 + ‖ω‖22)m
)
·
∫

Rd

|f̂(ω)|2
K̂(ω)

dω <∞under the hypothesis
sup
ω∈Rd

K̂(ω)(1 + ‖ω‖22)m ≤ C <∞or
K̂(ω) ≤ C(1 + ‖ω‖22)−m for all ω ∈ R

d. (9.12)179



Theorem 9.13. If a translation�invariant symmetri positive de�nite kernel
K on Rd satis�es (9.12) for some m > d/2, then its native spae NK isontinuously embedded in Wm

2 (Rd), and its restrition to a domain Ω is in
Wm

2 (Ω). Furthermore, interpolation on subsets X of Ω with �ll distane
h ≤ h0(m,Ω) has onvergene order hm−d/2 for h → 0 in the L∞ norm on
Ω.Note that the ondition (9.12) is losely related to the smoothness of thekernel K in the global L2(R

d) sense. Roughly spoken, it means that thekernel itself is in Sobolev spae W n
2 (R

d) for all n < 2m− d/2.9.6 Constrution of Positive De�nite Radial Funtionson RdThis subsetion ontains tools from [Wu95℄ as generalized in [SW96℄ for theonstrution of positive de�nite radial funtions on Rd. We start with thestandard redution of d-variate Fourier transforms of radial funtions to Han-kel transforms of univariate funtions. Introduing t = r2/2 as a new vari-able, two suh transforms for di�erent spae dimensions are related to eahother by a simple univariate di�erential or integral operator that preservesompat supports. This fundamental trik of Z. Wu then opens up the wayfor the easy derivation of various ompatly supported radial basis funtions.9.6.1 Hankel TransformsWe assume a radial funtion Φ(·) = φ(‖ · ‖2) to be given suh that φ :
R>0 → R has some deay towards in�nity that we are going to quantifylater. Let us formally look at the Fourier transform formula and simplify it,using radiality, and introduing polar oordinates for x:

Φ̂(ω) = (2π)−d/2
∫

Rd
Φ(x)e−ix·ωdx

= (2π)−d/2
∫

Rd
φ(‖x‖2)e−ix·ωdx

= (2π)−d/2
∫ ∞

0
φ(r)rd−1

∫

‖y‖2=1
e
−ir‖ω‖2y· ω

‖ω‖2 dydr.This ontains the funtion F (r‖ω‖2, d) de�ned in (12.29) by the integral
F (t, d) :=

∫

‖y‖2=1
e−ity·zdy
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for t ≥ 0 and some ‖z‖2 = 1, z ∈ Rd. Using its representation (12.31) via aBessel funtion, we get the very important equation
Φ̂(ω) = (2π)−d/2σd−2

∫ ∞

0
φ(r)rd−1 Γ(d−1

2
)Γ(1

2
)

(r‖ω‖2/2)(d−2)/2
J(d−2)/2(r‖ω‖2)dr

= ‖ω‖−(d−2)/2
2

∫ ∞

0
φ(r)rd/2J(d−2)/2(r‖ω‖2)dr. (9.14)that allows the Fourier transform of a radial funtion to be written as aunivariate Hankel transform. Equation (9.14) implies that the Fouriertransform of a radial funtion Φ is again a radial funtion. It holds also for

d = 1, as an be proven by diret alulation and
√
π

2z
J−1/2(z) =

cos z

z
. (9.15)This equation is not diretly ompatible with (12.30), beause the latter doesnot exist for ν = −1/2. But we an use the usual power series representation(12.32) of Bessel funtions to get (9.15) from (12.34).9.6.2 Bessel KernelsWe apply the Hankel transform for evaluating the Fourier transform of theharateristi funtion χ1 of the unit ball in Rd. This is needed in the proofof a theorem tn stability theory, but it also yields useful new kernels.In partiular, we apply (12.38) and get

χ̂1(ω) = ‖ω‖−(d−2)/2
2

∫ 1

0
rd/2J(d−2)/2(r‖ω‖2)dr

= ‖ω‖−d/2
2 Jd/2(‖ω‖2).

(9.16)Considered as a univariate radial funtion, this is an entire analyti funtionof exponential type that we shall meet again later. Figure 29 shows thekernels r−νJν(r) for various ν after resaling to have value 1 at zero. For ν ∈
Z/2 they are positive de�nite on R

d for d ≤ 2ν, sine they are positive de�niteon Rd for d = 2ν and all smaller dimensions. Sine their Fourier transform isompatly supported, they are band�limited and they generalize the usual
sinc funtion.Theorem 9.17. [FLW06℄. The Bessel kernel r−νJν(r) when ating as aradial kernel K(x, y) := ‖x − y‖−ν

2 Jν(‖x − y‖2) on Rd is positive de�nite if
2Z ∋ ν ≥ d/2. The kernel r−d/2Jd/2(r) generates the spae of bandlimitedfuntions on Rd with L2 Fourier transforms supported in the unit ball of
Rd. 181
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Figure 29: The Bessel kernels r−νJν(r)From (12.31) we know that F (r, d) behaves like r−νJν(r) for ν = (d−2)/2 for
d > 1. Its Fourier transform on Rd is not positive on an open set, and thus wehave to invest some work in order to prove positive de�niteness on Rd, whileTheorem 9.17 guarantees positive de�niteness only on R

k for 0 ≤ k ≤ d− 2.This was �rst observed in [FLW06℄.Theorem 9.18. The Bessel kernel r−νJν(r) for ν = (d − 2)/2 is positivede�nite on Rd for d > 1.Proof: With our standard argument we have to prove that a generalizedpolynomial p = pa,X of the form (9.4) has zero oe�ients, if it vanishes on thesphere. If we single out any two oordinates of Ω, we have an analyti funtionwhih vanishes on a irle, thus it vanishes for all arguments. Repeating thisfor all ombinations of two variables, we see that the polynomial must vanishon all of Rd, and then we an proeed as before to prove positive de�nitenessof the kernel.From [FLW06℄ we also take the interesting observation that the kernel (cr)−(d−2)/2J(d−2)/2(rc)satis�es the Laplae eigenvalue equation (or the Helmholtz equation)
∆u+ c2u = 0 for d > 1 dimensions.A seond appliation of the Hankel transform is the proof of (9.10) in Theo-rem 9.9. A more expliit and diret proof is in [Wen05℄ on pages 76�77, but182



we ite (12.51) with
ν =

d− 2

2
, µ = m− 1, t = r, a = ‖ω‖2, z = cto get

∫ ∞

0

rd/2J(d−2)/2(r‖ω‖2)
(r2 + c2)m

dr =
‖ω‖m−1

2 c−m+d/2

2m−1Γ(m)
K−m+d/2(c‖ω‖2).Combining with (9.14) applied to φ(r) = (r2 + c2)−m this yields

Φ̂(ω) =
‖ω‖m−1−(d−2)/2

2 c−m+d/2

2m−1Γ(m)
K−m+d/2(c‖ω‖2)

=

(
‖ω‖2
c

)m−d/2
21−m

(m− 1)!
K−m+d/2(c‖ω‖2).9.6.3 Change of VariablesWe now introdue t = r2/2 as a new variable, writing a radial basis funtion

Φ as
Φ(·) = φ(‖ · ‖2) = f(‖ · ‖22/2), (9.19)and we shall use Latin haraters f, g, . . . to distinguish the transformedfuntions from the original ones φ, ψ, et. Note that going over from Φ to φand further to f loses the information on the dimension of the spae that wewant to work on. But we an take advantage of this loss and write dimension-dependent operations like Fourier transforms as univariate operations with asalar parameter d.We keep the dimension d in mind and rewrite the d-variate Fourier transformequation (9.14) in terms of the transformed funtion f to get

Φ̂(ω) = ‖ω‖−
d−2

2

2

∫ ∞

0
f(s2/2)sd/2J d−2

2

(s · ‖ω‖2)ds

=
∫ ∞

0
f
(
s2

2

)(
s2

2

) d−2

2
(
s · ‖ω‖2

2

)− d−2

2

J d−2

2

(s · ‖ω‖2)s ds

=
∫ ∞

0
f
(
s2
2

)(
s2
2

) d−2

2

H d−2

2

(
s2
2 · ‖ω‖

2
2

2

)
s dswith the funtions Jν and Hν de�ned by

(
z
2

)−ν
Jν(z) = Hν(z

2/4) =
∞∑

k=0

(−z2/4)k
k!Γ(k + ν + 1)183



for ν ∈ C as in (12.33). If we substitute t = s2/2, we �nd
Φ̂(ω) =

∫ ∞

0
f(t)t

d−2

2 H d−2

2

(
t · ‖ω‖

2

2

)
dt

=:
(
F d−2

2

f
)
(‖ω‖2/2)

(9.20)with the general operator
(Fνf)(r) :=

∫ ∞

0
f(t)tνHν(tr)dt. (9.21)Theorem 9.22. The d�variate Fourier transform of a radial kernel φ with

φ(r) = f(r2/2) is given by
F(d−2)/2(f)(‖ω‖22/2).The operator Fν is formally de�ned for all ν > −1 and su�iently niefuntions f , but we an extend it to all ν ∈ R, if we omit terms in the seriesof Hν that have a singularity of the Gamma funtion in their denominator.However, we want to hek its domain of de�nition with respet to funtions

f on R>0 for ν > −1. Near zero, the funtion f(t)tν should be absolutelyintegrable, beause the analytiity of Hν auses no problems at zero. Forlarge ν this allows a moderate singularity of f at zero. Near in�nity we haveto hek the deay of Hν . But sine the Bessel funtions Jν have a ≀(t−1/2)behaviour for t→ ∞ due to (12.42), we see that Hν(t) deays like t−ν/2−1/4.Thus we require integrability of f(t)tν/2−1/4 at in�nity for ν > −1. Sine wedo not need the weakest onditions, we an simply assume
f(t)tν ∈ L1(R>0). (9.23)Note that both Fν and Hν generalize to arbitrary ν ∈ R, provided thatertain restritions on f like (9.23) hold. Furthermore, by symmetry of radialfuntions and our de�nition of Fourier transforms we have

F−1
d−2

2

= F d−2

2

for d ∈ Non su�iently smooth funtions with su�ient deay. We shall see laterthat this generalizes to F−1
ν = Fν for all ν ∈ R, wherever both operatorsare de�ned. Please keep in mind that the parameter ν is related to thespae dimension d via ν = (d − 2)/2. We shall work with ν instead of

d for notational simpli�ation. Furthermore, we onsider a spae Srad oftempered radial funtions. It ould be de�ned as a subspae of the spae
S of d-variate tempered test funtions, omprising all radial test funtions184



after introduing ‖x‖22/2 as a new variable. However, we prefer to de�ne it asthe spae of real-valued funtions on [0,∞) that are in�nitely di�erentiablesuh that all derivatives vanish faster than any polynomial at in�nity. Takingderivatives of (9.19), one an easily see that this yields a subspae of radialtest funtions on Rd for all spae dimensions d. Conversely, any radial testfuntion Φ in the form (9.19) yields a funtion f that is in Srad. To see thisone an proeed indutively, using
∂m

∂ωm
j

Φ(ω) = f (m)(‖ω‖22/2)ωm
j + lower derivatives with polynomial fators.Thus the two notions of S oinide, and eah radial funtion whih yields atest funtion for a spei� spae dimension will provide a test funtion forany dimension. Thus Srad is the proper spae to de�ne the operators Fν on,and it learly ontains e−r, whih an easily proven to be a �xed point of any

Fν , using the de�nitions (12.33) of Hν and (12.25) of the Gamma funtion.9.6.4 Calulus on the Hal�ineIn the spae Srad we an introdue a quite useful generalization of the lassialalulus operations. We start with the family of operators
Iα(f)(r) :=

∫ ∞

0
f(s)

(s− r)α−1
+

Γ(α)
ds (9.24)on Srad for all α > 0. The simplest speial ase is

I1(f)(r) :=
∫ ∞

r
f(s)dswith the inverse

I−1(f)(r) := −f ′(r).Note that this operation implies that the resulting funtion vanishes at in�n-ity, and thus there is no additive onstant in the integration. Furthermore,the identity
Id = In1 ◦ In−1is Taylor's formula at in�nity, as follows from (9.24). The identity (12.26)allows a diret proof of the property
Iα ◦ Iβ = Iα+β (9.25)for all α, β > 0 by appliation of Fubini's theorem. Di�erentiation andintegration by parts imply

In−1 ◦ Iα = Iα−n 0 < α < n
In+α ◦ In−1 = Iα α > 0, n > 0.185



By Iα = Iα ◦ In ◦ In−1 = In ◦ Iα ◦ In−1 we get
In−1 ◦ Iα = Iα ◦ In−1,and this su�es to prove that (9.25) holds for all α, β ∈ R if we de�ne
I0 := Id
I−n := In−1, n > 0
Iα := Iα−⌊α⌋ ◦ I⌊α⌋for the remaining ases of α. Altogether, we haveTheorem 9.26. The operators Iα on Srad form an abelian group under om-position whih is isomorphi to R under �+� via α 7→ Iα.Proof: The remaining things are easy to prove using the above rules.Let us do some simple examples of di�erentiation and integration of frationalorder. The independent variable will be denoted by t, and we indiate thedomain of validity of the di�erent ases, beause we do not restrit ourselvesto tempered radial funtions.

Iα(f(t+ x))(r) = Iα(f(t))(r + x) α ∈ R, x ≥ 0
Iα(f(tx))(r) = x−αIα(f(t))(rx) α ∈ R, x ≥ 0
Iα(e

−st)(r) = s−αe−sr α ∈ R, s > 0
Iα(t

−βΓ(β))(r) = r−(β−α)Γ(β − α) β > 0, α < β
Iα((x+ t)−βΓ(β))(r) = (x+ r)−(β−α)Γ(β − α) β > 0, α < β, x > 0

Iα

(
(s− t)β−1

+

Γ(β)

)
(r) =

(s− r)α+β−1
+

Γ(α + β)
β > 0, α + β > 0We shall make spei� use of the �semi-integration� operator and its inverse,the �semi-di�erentiation�, as given by

I1/2(f)(r) =
∫ ∞

r

f(s)√
π(s− r)

ds

I−1/2(f)(r) = −
∫ ∞

r

f ′(s)√
π(s− r)

ds

= I1/2 ◦ I−1(f)(r),

(9.27)that are inverses of eah other.A very simple representation of the operators Iα is possible via the Laplaetransform
L(ϕ)(r) :=

∫ ∞

0
ϕ(s)e−rsds (9.28)186



whih exists lassially for any ontinuous funtion ϕ on [0,∞) that grows atmost polynomially towards in�nity. For the time being, we ignore the moregeneral de�nitions of Laplae transforms and observe that the ation of Iαan be written down as
Iα(L(ϕ)(·)) := L(ϕ(·)(·)−α),where all real α are formally possible (provided that ϕ behaves niely enough).9.6.5 Basi TransitionsThe main advantage of Srad and the de�nition (9.21) of the radial Fouriertransform using (9.20) is that we an ompare Fourier transforms for variousdimensions, while working on a simple spae of univariate funtions. But themost surprising fat, as disovered by Wu, shows up when we simply takethe derivative of Fν(f)(r). We use (12.35) to get

− d

dr
Fν(f)(r) = (I−1 ◦ Fν)(f)(r)

= − d

dr

∫ ∞

0
f(t)tνHν(rt)dt

= −
∫ ∞

0
f(t)tν

d

dr
Hν(rt)dt

=
∫ ∞

0
f(t)tν+1Hν+1(rt)dt

= Fν+1(f)(r).

(9.29)
Going bak to ν = (d−2)/2, we see that the (d+2)-variate Fourier transformof a radial funtion after the substitution (9.19) is nothing else than thenegative univariate derivative of the d-variate Fourier transform after (9.19).We shall generalize the above identity later to Iα ◦ Fν = Fν−α on R, but wealready know that I1◦Fν = Fν+1 allows to proeed from (d+2)-variate radialFourier transforms to d-variate Fourier transforms by univariate integration.Let us apply (12.36) to get another identity on tempered funtions:

Fν(−f ′)(r) =
∫ ∞

0
−f ′(s)sνHν(sr)ds

=
∫ ∞

0
f(s)sν−1Hν−1(sr)dsdt

= = Fν−1(f)(r).

(9.30)
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This will generalize to Fν ◦ Iα = Fν+α and is a trivial onsequene of Iα ◦
Fν+α = Fν and F 2

µ = Id, if the latter holds in general.Note that in both ases we have operators that preserve ompat supports.The integral operator even preserves nonegativity (it is a monotone op-erator). The expliit onstrution of ompatly supported radial funtionsrelies heavily on these features. But we also want to proeed from d-variateFourier transforms to (d+1)- or (d−1)-variate Fourier transforms. This willbe ahieved by the operator I1/2 and its inverse from (9.27). We shall treatthis problem in general, omparing two arbitrary instanes Fν and Fµ.9.6.6 Identities for Transforms, First VersionWe an easily evaluate the ation of the Fourier operator on the Laplaetransform as
Fν(L(ϕ))(r) =

∫ ∞

0
sνHν(sr)

∫ ∞

0
ϕ(t)e−stdtds

=
∫ ∞

0
ϕ(t)

∫ ∞

0
sνHν(sr)e

−stdsdt

=
∫ ∞

0
ϕ(t)t−ν−1

∫ ∞

0
xνHν(xr/t)e

−xdxdt

=
∫ ∞

0
ϕ(t)t−ν−1e−r/tdt

=
∫ ∞

0
ϕ(1/s)sν−1e−srds

= L (ϕ(1/·)(·)ν−1) .Then, again as formal operations,
Fν(L(ϕ(·))) = L (ϕ(1/·)(·)ν−1)

= Iµ−νL (ϕ(1/·)(·)µ−1)
= Iµ−νFµ(L(ϕ(·)),

Fν(Fµ(L(ϕ(·)))) = Fν (L (ϕ(1/·)(·)µ−1))
= L (ϕ(·)(·)−µ+1(·)ν−1)
= Iµ−ν(L(ϕ(·))),as expeted. Note that this implies F 2

ν = Id for all ν. All of these identitiesare valid at least on Laplae transforms of funtions ϕ that vanish faster thanany polynomial at zero and at in�nity, but ontinuity arguments an be usedto enlarge the sopes. 188



9.6.7 Identities for Transforms, Seond VersionThe previous setion showed that the identity
Fν ◦ Fµ = Iµ−νholds for all µ, ν ∈ R on a small spae of funtions, and where Iα is anoperator that roughly does α-fold integration for α ∈ R. We now want tomake this more preise and expliit. In partiular, we assert F 2

ν = Id forall ν, whih we only know for ν ∈ 1
2
Z>−2. Furthermore, we want to use ourexpliit representations for the operators Iα.To proeed towards inversion of the operator Fν , let us start alulatingthe Fourier transform of the simplest ompatly supported funtion, i.e.: atrunated power. The outome is somewhat surprising, beause we run intothe funtion Hν again:Lemma 9.31. For ν > µ > −1 and all s, r ≥ 0 we have

Fµ

(
s−ν(s− ·)ν−µ−1

+

Γ(ν − µ)

)
(r) = Hν(rs).Proof: We diretly alulate the assertion and use (12.37) from page 252.In detail,

Fµ

(
s−ν(s− ·)ν−µ−1

+

Γ(ν − µ)

)
(r)

=
∫ ∞

0
tµ
s−ν(s− t)ν−µ−1

+

Γ(ν − µ)
Hµ(tr)dt

= s−ν

Γ(ν − µ)

∫ s

0
tµ(s− t)ν−µ−1Hµ(tr)dt

= s−ν

Γ(ν − µ)

∫ s

0
tµ(s− t)ν−µ−1Jµ(2

√
rt)(rt)−µ/2dt,and by substitution t = su2, we get

= s−ν

Γ(ν − µ)

∫ 1

0
sµu2µsν−µ−1(1− u2)ν−µ−1Jµ(2

√
rsu)(rsu2)−µ/22sudu

=
2(rs)−µ/2

Γ(ν − µ)

∫ 1

0
uµ+1(1− u2)ν−µ−1Jµ(2

√
rsu)du

=
2(rs)−µ/2

Γ(ν − µ)
2ν−µ−1Γ(ν − µ)
(2
√
rs)−ν−µ Jν(2

√
rs)

= (
√
rs)−νJν(2

√
rs)

= Hν(rs). 189



We would like to invert the Fourier transform in the above assertion, butthe deay of Hν is not su�ient to see diretly that Fµ is appliable at all.However, we an resort to spei� tools from Speial Funtions to getLemma 9.32. For ν > µ > −1 and all r, s > 0 we have
(FµHν(s·))(r) = s−ν(s− r)ν−µ−1

+

Γ(ν − µ)
.Proof: The assertion is a onsequene of theWeber�Shafheitlin integral(see (12.45) or [AS70℄ p. 487, 11.4.41) after substitutions of the type t = s2/2.In detail, we have

(
FµHν

(
u2
2 ·

))(
r2
2

)

=
∫ ∞

0
tµHµ

(
r2
2 t

)
Hν

(
u2
2 t

)
dt

=
∫ ∞

0

(
s2
2

)µ

· s ·Hµ

(
r2
2 · s

2

2

)
Hν

(
u2
2 · s

2

2

)
ds

=
∫ ∞

0
2−µs2µ+1

(
rs
2

)
−µ
(
us
2

)
−νJν(us)ds

= 2νr−µr−ν
∫ ∞

0
sµ−ν+1Jµ(rs)Jν(us)ds

=
2νr−µu−ν2µ−ν+1rµ(u2 − r2)ν−µ−1

+

uνΓ(ν − µ)

= 1
Γ(ν − µ)

(
u2

2

)
−ν

(
u2

2 − r2

2

)
ν−µ−1
+ .The above result an be used to derive the d�variate Fourier transform ofthe kernel

K(x, y) := Hν

(
c2‖x− y‖22

4

)
=

(
c‖x− y‖2

4

)−ν

Jν

(
c‖x− y‖2

2

) (9.33)We have to rewrite this kernel as φ(r) = f(r2/2) and get
f(t) = Hν

(
c2

2
t

)
.190



Then the above lemma yields
(
F(d−2)/2Hν

(
c2

2
·
))(

‖ω‖22
2

)
=

(
c2

2

)−ν (
c2

2
− ‖ω‖22

2

)ν−d/2

+

Γ(ν − d/2 + 1)
(9.34)provingTheorem 9.35. If 2ν+2 > d holds, the saled Bessel kernel (9.33) is positivede�nite on Rd and has the ompatly supported Fourier transform (9.34) dueto Theorems 9.22 and 9.7.We now know that Fν ◦ Fν = Id holds on Laplae transforms, on trunatedpowers, and on funtions of the form Hµ(s·). But before we generalize thisto a larger lass of funtions, we generalize it to other Fµ operators:Theorem 9.36. Let ν > µ > −1. Then for all tempered radial test funtions

f ∈ Srad we have
Fµ ◦ Fν = Iν−µ (9.37)where the integral operator Iα is given by

(Iαf)(r) =
∫ ∞

0
f(s)

(s− r)α−1
+

Γ(α)
ds, r > 0, α > 0.Proof: For any tempered radial test funtion f ∈ Srad we evaluate (Fµ ·

Fν)f(r) by means of Lemma 9.32 to obtain
∫ ∞

0
Hµ(tr)t

µ
∫ ∞

0
Hν(st)s

νf(s)dsdt

=
∫ ∞

0
sνf(s)

∫ ∞

0
tµHµ(tr)Hν(ts)dt ds

=
∫ ∞

0
sνf(s) · Fµ(Hν(s·))(r)ds

=
∫ ∞

0
f(s)

(s− r)ν−µ−1
+

Γ(ν − µ)
ds = (Iν−µf)(r).By the above theorems it is easy to see that

IαHν = Hν−αfor all α < ν + 1, generalizing (12.35).191



9.6.8 Wendland's FuntionsDue to a result of Askey [Ask73℄ the radial trunated power funtion
Aµ(·) := (1− ‖ · ‖2)µ+is positive de�nite on R

d for µ ≥ ⌊d/2⌋+1, beause it has a stritly positiveradial Fourier transform in this ase.Inomplete: add proof see [Wen05℄Its radial form after substitution is (1−√
2r)µ+, and due to its �nite supportwe an apply any Fν operator for ν > −1. We use the identity Fν+α = Fν ◦Iαfrom (9.30) for this funtion and get

Fν+kAµ = Fν(Ik(Aµ)), k ∈ N,where the left-hand side is stritly positive whenever
µ ≥ ⌊d/2⌋+ 1 + k. (9.38)Thus the funtion Ik(Aµ) is positive de�nite on Rd for the same range ofparameters. Sine the Ik operators preserve ompat supports, the resultingfuntions

ψµ,k(r) := Ik(Aµ(r
2/2))lead to ompatly supported positive de�nite funtions

Ψµ,k(·) = ψµ,k(‖ · ‖2) = Ik(Aµ(‖ · ‖22/2))on Rd under the ondition (9.38). Let us do a straightforward evaluation.This yields
IkAµ(r) =

∫ ∞

0
(1−

√
2s)µ+

(s− r)k−1
+

(k − 1)!

=
∫ 1

√
2r
t(1− t)µ

(t2/2− r)k−1
+

(k − 1)!

=
∫ 1

x
t(1− t)µ

(t2 − x2)k−1
+

(k − 1)!2k−1

(9.39)
for 0 ≤ r ≤ 1/2 or 0 ≤ x =

√
2r ≤ 1. If µ is an integer, the resulting funtionis a single polynomial of degree µ+2k in the variable x = ‖·‖2 on its support.192



The ase k = 1 is partiularly simple. We get the expliit representation
I1Aµ(x

2/2) =
∫ 1

x
t(1− t)µdt

=
x(1− x)µ+1

µ+ 1
+

(1− x)µ+2

(µ+ 1)(µ+ 2)

=
(1− x)µ+1

+

(µ+ 1)(µ+ 2)
(1 + (µ+ 1)x) .The smallest possible integer µ for d ≤ 3 and k = 1 is µ = 3, whene

I1A3(x
2/2) =

1

20
(1− x)4+(1 + 4x).In addition to Ak,µ := IkAµ let us de�ne

Bk,µ :=
∫ 1

x
(1− t)µ

(t2 − x2)k−1
+

(k − 1)!2k−1and split the integral de�ning Ak,µ via t = (t− 1) + 1 into
Ak,µ = −Bk,µ+1 +Bk,µ.Then do integration by parts for Bk,µ and k > 1 to get
Bk,µ =

1

µ+ 1
Ak−1,µ+1.Thus we have the reurrene relation

Ak,µ = − 1

µ+ 2
Ak−1,µ+2 +

1

µ+ 1
Ak−1,µ+1.Looking at our result for k = 1 we see that we an assume

Ak,µ(x
2/2) = (1− x)µ+kCk,µ(x)with the reursion

Ck,µ(x) =
(x− 1)

µ+ 2
Ck−1,µ+2(x) +

1

µ+ 1
Ck−1,µ+1(x),for k ≥ 1, starting with

C0,µ(x) = 1.193



Thus the polynomials Ck,µ have degree k with a positive leading oe�ient.The number of ontinuous derivatives of Ak,µ(x
2/2) at x = 1 thus is µ+k−1 ≥

2k + ⌊d/2⌋ ≥ 2k. To get the number of derivatives at zero we apply thebinomial theorem to the last fator in the integrand. Then
Ak,µ(x

2/2) =
k−1∑

j=0

(
k − 1
j

)
(−1)jx2j

(k − 1)!

∫ 1

x
t(1 − t)µt2k−2−2jdt

qµ,k−j(x) :=
∫ 1

x
t(1− t)µt2k−2−2jdt

= qµ,k−j(1)−
∫ x

0
t(1− t)µt2k−2−2jdt

= qµ,k−j(1)−
x2k−2j

2k − 2j
+ higher-order termsshows that the �rst odd monomial ourring in Ak,µ(x

2/2) annot have anexponent smaller than 2k+1. Thus the funtion has 2k ontinuous derivativesat zero, and we get 2n−1 = 2k+1 in the ontext of Wendland's funtions. Interms of ontinuity requirements, we get overall C2k ontinuity at a minimaldegree µ + 2k = ⌊d/2⌋ + 3k + 1, and Wendland proves in [Wen95℄ that thisdegree is minimal, if we ask for a single polynomial piee on [0, 1] that induesa positive de�nite radial funtion whih is C2k and positive de�nite on Rd.Note that the order of smoothness at the boundary of the support is ⌊d/2⌋larger than the smoothness at zero, whih has a positive e�et on the visualappearane of the reprodued funtions.We end this by giving the C4 ase for all dimensions d, where µ = ⌊d/2⌋+3:
A2,µ(x

2/2)

=
(1− x)µ+2

+

(µ+ 1)(µ+ 2)(µ+ 3)(µ+ 4)
(x2(µ+ 1)(µ+ 3) + 3x(µ+ 2) + 3)and the most frequent ase for d ≤ 3 is

A2,4(x
2/2) =

(1− x)6+
1680

(35x2 + 18x+ 3).The Fourier transforms are
FνIkAµ = Fν+kAµ194



and thus for r = x2/2 of the form
Fν+kAµ(r) =

∫ 1/2

0
(1−

√
2s)µsν+kHν+k(rs)ds

=
x−ν−k

2ν+k

∫ 1

0
(1− t)µtν+k+1Jν+k(xt)dt

=
x−µ−2ν−2k−2

2ν+k

∫ x

0
(x− u)µuν+k+1Jν+k(u)du.Due to a result of Gasper [Gas75℄, the above integral an be written as apositive sum of squares of Bessel funtions, at least in the odd-dimensionalase d = 2n−1 with µ = n+k+1, whih leads to ν = m−1/2 and µ = m+1for m = n+k ≥ n. Results of Wendland [Wen95℄ then imply the asymptotibehaviour

FνIkAµ(r
2/2) = Fν+kAµ(r

2/2) ≥ cr−d−2k−1for the neessary values of µ from (9.38).9.7 Conditionally Positive De�nite KernelsWe now go over to the treatment of general unonditionally positive de�nitekernels. To do this, we shall introdue Fourier transforms in a somewhat moregeneral way that will later save us quite some work. The diret attak is im-possible, beause some of the most important onditionally positive de�nitefuntions on Rd are radial funtions Φ(·) = φ(‖ · ‖2) that grow towards in�n-ity, e.g.: thin-plate splines φ(r) = r2 log r or multiquadris φ(r) = √
r2 + c2.These do not have lassial Fourier transforms, but sine they grow at mostpolynomially, they indue funtionals on the Shwartz spae S. Thus theyhave generalized Fourier transforms de�ned via the Fourier transforms ofthe funtionals that they indue on S. These generalized Fourier transformsare not straightforward to handle and require quite some mahinery fromdistribution theory.We go a di�erent way by piking a very spei� set of assumptions to startwith, and then we an work our way without distributions. We do noteven assume Φ to be a onditionally positive de�nite funtion; this will be aonsequene of our assumptions and lead to an important tehnique to proveonditional positive de�niteness for spei� examples.In what follows, reall the notation used in setion 5.4, but here we �x thespae P to be the spae Pd

m of d�variate polynomials of order at mostm. Fur-195



thermore, we use the notion of Fourier transforms of funtionals as providedin setion 12.6.Assumption 9.40. Let Φ : R
d → R be even and ontinuous. Furthermore,let there be a ontinuous nonnegative funtion

Φ̂ : R
d \ {0} → Rwhih is positive on at least an open set. It may possibly have an algebraisingularity

Φ̂(ω) = ≀(‖ω‖−d−β0) (9.41)with some real value β0 for ω near zero, and it must have the behavior
Φ̂ ∈ L1 near in�nity. (9.42)Then de�ne m := max(0, ⌊β0⌋) ≥ 0 to get the restrition

β0 < 2m (9.43)that will often our later. Finally, let the usual bilinear form on L be repre-sentable by
(λa,X , λb,Y )Φ = (2π)−d/2

∫

Rd
Φ̂(ω)

M∑

j=1

N∑

k=1

ajbke
i(xj−yk)·ωdω, (9.44)where the funtionals λa,X ∈ L satisfy the moment onditions (5.4) in theform

λa,X(Pd
m) = {0}, (9.45)and thus we may use the notation (Pd
m)

⊥
Rd for L.Lemma 9.46. The funtionals λa,X ∈ L have Fourier transforms

λ̂a,X(ω) = pa,X(ω) =
N∑

j=1

aje
−ixT

j ωwith zeros of order at least m in the origin.Proof: Sine we have (9.45), we an use Example 12.22 to get our result.Theorem 9.47. Under the above assumptions the funtion Φ(x− y) is on-ditionally positive de�nite of order ≥ m on Rd.196



Proof: From the previous lemma we know that the funtionals λa,X ∈ Lhave Fourier transforms with zeros of order at least m in the origin. Thusthe integrand in (9.44) is of order ≀(‖ω‖2m−d−β0) near zero, and the integralis well-de�ned due to (9.43) and (9.42). Nonnegativity of Φ̂ proves that thebilinear form is positive semide�nite. The rest is as in the proofs of Theorems9.6 and 12.8.The reader should be aware that we did not assume Φ̂ to be the usual Fouriertransform. We thus annot use equations (12.7) or (12.12), but we have thegeneral identity
M∑

j=1

N∑

k=1

ajbkΦ(xj − yk) = (2π)−d/2
∫

Rd
Φ̂(ω)

M∑

j=1

N∑

k=1

ajbke
i(xj−yk)·ωdω.that is idential to (9.44) and is valid for all funtionals in L due to Assump-tion 9.40. It will niely serve as a substitute for (12.12), but note that it doesnot allow single point-evaluation funtionals in the left-hand side.9.8 ExamplesWe now present speial ases of (9.44) for radial kernels

K(x, y) = Φ(x− y) = φ(‖x− y‖2), x, y ∈ R
dwhere we get a resulting generalized d�variate Fourier transform in radialform whih we denote by φ̂.The �rst example generalizes the inverse multiquadris to general multi-quadris. If we set

φ(r) := (c2 + r2)β/2, r ≥ 0, c > 0, β ∈ R \ 2N0we get the funtion
φ̂(s) =

21+β/2

Γ(−β/2)
(
s

c

)−β+d
2

Kβ+d
2

(cs), s ∈ Rwhile the order of onditional positive de�niteness turns out to be
m = max(0, ⌈β/2⌉).Note that for positive β the denominator has the sign (−1)⌈β/2⌉. Thus we haveto multiply φ for positive β with this fator to get a onditionally positivede�nite funtion. 197



The proof idea is quite nie. Eah side of the standard Fourier transformidentity (9.44), inluding the quadrati form and holding �rst for negative
β is proven to be an analyti funtion of β. Under the additional momentonditions, both sides also make sense for general β, and they an be on-neted by analyti ontinuation with the ase for negative β by a detour overomplex β avoiding passing through the origin. Thus the Fourier transformequation also holds for the other β.The next example onerns the power funtions, and this is the limit of theprevious ase for c→ 0. If we set

φ(r) := (−1)⌈β/2⌉rβ, r ≥ 0, β ∈ R>0 \ 2Nwe get the positive funtion
φ̂(s) =

2β+d/2Γ((β + d)/2)

(−1)⌈β/2⌉Γ(−β/2) s
−β−d, s ∈ Rwhile the order of onditional positive de�niteness turns out to be

m = ⌈β/2⌉.This proof works from the previous ase for positive β by letting c tend tozero, heking arefully how the Bessel funtion interats with the premulti-plied rational funtion.The �nal ase is onneted to β being an even integer. If we set
φ(r) := (−1)k+1r2k log r, r ≥ 0, k ∈ Nwe get

φ̂(s) = 22k−1+d/2s−2k−d, s ∈ Rwhile the order of onditional positive de�niteness turns out to be
m = k + 1.The last two ases are alled polyharmoni, beause they are homogeneoussolutions of a power of the Laplaian. This is due to the fat that theirgeneralized Fourier transform is a plain negative power. The last ase isalled the thin�plate spline.
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9.9 Connetion to L2(R
d)We now go bak to De�nition ?? of the native spae via (??) and Corollary??as

NK,Ξ := Pd
m +G = Pd

m + F .This de�nition is very general, and we want to re�express the native spaevia Fourier transforms. We do this using a detour over weighted L2 spaes.The spae L of setion 5.4 onsists of funtionals λa,X with the momentondition (a,X) ∈ M . These funtionals have Fourier transforms λ̂a,X withthe property
λa,X(f) = (2π)−d/2(f̂ , λ̂a,X)L2(Rd), (λ̂a,X)(ω) =

N∑

j=1

aje
−ixT

j ω.Assumption 9.40 makes sure that the mapping
L : λ 7→ λ̂

√
Φ̂, L = (Pd

m)
⊥
Rd → L2(R

d)is well-de�ned. Indeed, the funtion L(λ) is in L2 near in�nity due to (9.42),and it is ontinuous around zero due to (9.43), sine λ̂ has a zero of order atleast m at the origin.With the results of the previous setion, (9.44) takes the form
(λa,X , λb,Y )Φ = (2π)−d/2(Lλa,X ,Lλb,Y )L2(Rd). (9.48)Theorem 9.49. Let Assumption 9.40 be satis�ed, and let m be minimal withrespet to (9.43). Then the map L extends by ontinuity to los (L), and ityields an isometry between los (L) and all of L2(R

d).Proof: It is evident from (9.44) that L is isometri, and thus L extends tolos (L) by ontinuity. But the density of L( los (L)) in L2(R
d) does notfollow from abstrat Hilbert spae arguments. We thus need an additionalanalyti argument. We �rst prove the assertion for ontinuous Φ̂ with Φ̂ > 0on Rd \ {0}.Let some funtion f ∈ L2(R

d) and some ε > 0 be given. Then there is aompatly supported C∞ funtion g ∈ L2(R
d) suh that ‖f − g‖2 ≤ ε due toLemma 12.5. Now de�ne û := g/

√
Φ̂ on Rd, where the (possible) singularityof Φ̂ at zero does no harm. Clearly û is ontinuous and ompatly supported,thus in L2(R

d) and u is band�limited, of exponential type, and in L2(R
d).199



We now invoke the multivariate sampling theorem to reover u exatly fromits funtion values on a grid in Rd with spaing h, where h is su�ientlysmall and related to the support of û.Thus we have
u(x) =

∑

j∈Zd

u(jh) Sincd

(
x− jh

h

)
, x ∈ R

dwhere
Sincd(x1, . . . , xd) =

d∏

j=1

sin πxj
πxj

,and
û(ω) =

∑

j∈Zd

u(jh)eihj·ω, ω ∈ R
dhas the form û = λ̂u for the funtional

λu(v) =
∑

j∈Zd

v(jh)u(jh).We now have to make sure that λu ∈ los (L). If this is done, we are �nishedbeause of L(λu) = g and
‖f −

√
Φ̂λ̂u‖2 = ‖f − g‖2 ≤ ε.For all p ∈ Pd

m we have to show that λu(p) = 0. By a standard argument inFourier analysis this requires a zero of order at least m of û at zero. But ourassumption (9.41) on Φ̂ and the minimality of m in (9.43) imply that û hasa zero of order at least
1

2
(d+ β0) >

1

2
(d+ 2m− 2) = m− 1 +

d

2
,thus of order ≥ m.We then evaluate the norm formally as

‖λu‖2Φ = ‖
√
Φ̂ · λ̂u‖22 = ‖

√
Φ̂û‖22 = ‖g‖22 <∞.Now we an proeed to prove that λu lies in los (L) by de�ning the funtion

fλu(x) := (λu, δx,Ξ)Φ, x ∈ R
d200



via the expliit form of the inner produt, and using the �niteness of thenorm ‖λu‖Φ to show that the de�nition is valid. Then for all λY,N,β ∈ L weget
λY,N,β(fλu) = (λu, λY,N,β)Φand this proves that fλu ∈ F . Finally, we get λu = F−1(fλu) by heking

(λu, λY,N,β)Φ = λY,N,β(fλu)

= (λY,N,βF
−1fλu))Φfor all λY,N,β ∈ L, and this onludes the proof in ase of Φ̂ > 0.Now let Φ̂ be positive up to a set of Lebesgue measure zero. We over the setof zeros by intervals Ik, where k varies over some index set K and the totalarea ∑k |Ik| is less than some given δ. Now let Φ̂δ(ω) ≥ Φ̂(ω) be a stritlypositive ontinuous funtion that di�ers from Φ̂ only on the Ik. Then Φ̂δ willalso satisfy our assumptions, and we an use (9.44) in the form

(µ, λ)Φδ
:= (2π)−d/2

∫

Rd
Φ̂δ(ω)λ̂(ω)µ̂(ω)dωas a de�nition of an inner produt, but we do not need Φδ expliitly.Now we approximate a given f ∈ L2(R

d) by some √Φ̂δ · λ̂ up to ε/2 in the
L2 norm, piking a suitable λ for eah δ and ε. Then

‖f −
√
Φ̂λ̂‖2 ≤ ‖f − λ̂

√
Φ̂δ‖2 + ‖λ̂(

√
Φ̂δ −

√
Φ̂)‖2and

‖λ̂(
√
Φ̂δ −

√
Φ̂)‖22 = ‖λ̂ ·

√
Φ̂δ(1−

√
Φ̂/Φ̂δ)‖22

≤
∑

k

∫

Ik

|λ̂(ω)|2Φ̂δ(ω)dω.The full integral ∫

Rd
|λ̂(ω)|2Φ̂δ(ω)dω = ‖λ̂ ·

√
Φ̂δ‖22an be bounded independent of δ, beause it approximates ‖f‖22. Thus weare able to pik δ small enough to guarantee

∑

k

∫

Ik

|λ̂(ω)|2Φ̂δ(ω)dω ≤ ε/2yielding an overall bound ‖f −
√
Φ̂λ̂‖2 ≤ ε.201



9.10 Charaterization of Native SpaesWe now an re�express the native spae NK,Ξ := Pd
m + G = Pd

m + F . viaFourier transforms.Theorem 9.50. The native spae NK,Ξ := Pd
m+G for a onditionally positivede�nite funtion of order m on Rd satisfying Assumption 9.40 oinides withthe spae of all funtions f on Rd that an be written as

fh(x) = (2π)−d/2
∫

Rd
ĥ(ω)

√
Φ̂(ω)


eix·ω −

Q∑

j=1

pj(x)e
iξj ·ω


 dω (9.51)plus polynomials from Pd

m and where ĥ ∈ L2(R
d). The above funtions arespanning the spae G. The bilinear form on G an be rewritten as

(fg, fh)Φ = (2π)−d/2(g, h)L2(Rd). (9.52)Proof: We �rst fous on (9.51). Starting with an arbitrary h ∈ L2(R
d) anda �xed Pd

m-unisolvent set Ξ ⊂ Rd, we mimi the tehnique of Riesz maps tode�ne a funtion
fh(x) := (ĥ,Lδ(x))L2(Rd). (9.53)This is (9.51). Sine
λfh = (ĥ,Lλ)L2(Rd)follows easily from (9.53) for all λ ∈ L, we an transform this equation furtherinto
λfh = (ĥ,Lλ)L2(Rd)

= (L−1ĥ, λ)Φ.By the previous setion, (9.48) with Theorem 9.49 yields that L−1 maps
L2(R

d) isometrially bak to L. But L is isometri to G via the extension Rof the Riesz map R : L→ G we had in setion ??. Thus the above identityan be extended to
λfh = (ĥ,Lλ)L2(Rd)

= (L−1ĥ, λ)Φ
= (RL−1ĥ,Rλ)Φ for all λ ∈ Lproving

fh = RL−1ĥ ∈ G.By (9.52) we also get 202



Corollary 9.54. The mapping
F = RL−1 : h 7→ fhis isometri between L2(R

d) and G.Note that we avoided to use the Fourier transform of fh. In ase that √Φ̂ĥ =:
gh is an absolutely integrable funtion, the right�hand side of (9.51) is

fh(x) = g∨h (x)−
Q∑

j=1

pj(x)g
∨
h (ξj)suh that we see that a polynomial variation of fh has a Fourier transformwhih is √Φ̂ĥ.But we an also work via the F part of the native spae. It is the losure ofall funtions

fa,X(x) := λta,XΦ(x− t),and if the funtional is suh that Fourier tyransforms an be taken, we get
f̂a,X = Φ̂λ̂a,X =

√
Φ̂Lλa,Xsuh that

f̂a,X√
Φ̂

= Lλa,X ∈ L2(R
d).This an also be written as

R(λ)∧ = λ̂ =

√
Φ̂L(λ)if all transforms exist, and this is a third reason to de�ne

f̂h :=

√
Φ̂ĥas a generalized Fourier transform of fh, but the use of standard Fouriertransform equations is forbidden without additional argumants along theabove lines.
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9.11 Connetion to Sobolev SpaesTo make error bounds appliable, we need inlusion theorems for nativespaes in Sobolev spaes. Sine polynomials are not ontained in globalSobolev spaes, we an only expet the G part of the native spae to beontained in a global Sobolev spae W τ
2 (R

d), while polynomials are alwaysontained in loal Sobolev spaes W τ
2 (Ω) for bounded domains. Thus weannot work as easily as in the unonditionally positive de�nite ase.Let us hek the di�erentiability of the funtions from (9.51). Under su�ientregularity of √Φ̂ĥ =: gh, we take a derivative Dα of fh of order α with

|α| ≥ m. It will have Fourier transform (iω)α
√
Φ̂(ω)ĥ(ω) and we hek whenit is well�de�ned and globally in L2. This is the ase when ‖ω‖2|α|Φ̂(ω) isglobally bounded. Sine we only use L2 arguments for this result, we anignore the additional regularity assumptions on √Φ̂ĥ =: gh by an additionaldensity argument.Near zero, the boundedness of ‖ω‖2|α|Φ̂(ω) follows for

2|α| ≥ d+ β0beause
‖ω‖2|α|Φ̂(ω) ≤ ≀(‖ω‖2|α|−d−β0).Near in�nity, we have not yet made any assumptions about the behavior of

Φ̂. For simpliity, we mimi (9.41) as
Φ̂(ω) ≤ ≀(‖ω‖−d−β∞) near ∞. (9.55)Then a su�ient ondition for boundedness at in�nity is

2|α| ≤ d+ β∞.Altogether, we get that the derivative Dαfh is de�ned and globally in L2 atleast for
|α| ≥ m, β0 + d ≤ 2|α| ≤ β∞ + d.This is quite su�ient for the multiquadri ase, beause there β∞ is arbi-trarily large. For the thin�plate spline and the polyharmoni splines, we have

β0 = β∞ and see that we an still work with generalized derivatives of order
m = |α| = d/2 + β∞/2 = d/2 + β0/2 > d/2 if this is an integer.In all of these ases we an take the maximum possible |α| and get onver-gene of interpolants like h|α|−d/2 in the L∞ norm when the data are from a204



funtion in the native spae. This yields in�nite order for the multiquadrisand onvergene like hβ0/2 = hβ∞/2 for the thin�plate spline and the poly-harmoni spline provided that d+ β0 = d+ β∞ is even.inomplete here...10 Stability TheoryIt would be very desirable to have reovery methods with small errors andgood stability. However, these two goals annot be met at the same time,sine there is a onnetion between them that implies bad stability wheneverthe a-priori error bound is very small.10.1 Unertainty RelationLet us look at this onnetion in the Lagrange interpolation setting and on-sider optimal reovery of a funtion g ∈ N in a Hilbert spae N whih is thenative spae of a reproduing kernel K on a domain Ω ⊂ Rd. This reoveryshould use data g(xj), 1 ≤ j ≤ M for a �nite set X = {x1, . . . , xM} ⊂ Ω ⊂
Rd.We add a variable point x to X and de�ne the kernel matrix

Ax,X :=




Φ(x, x) Φ(x, x1) . . . Φ(x, xM )
Φ(x1, x) Φ(x1, x1) . . . Φ(x1, xM)... ... ...
Φ(xM , x) Φ(xM , x1) . . . Φ(xM , xM)


and the vetor

(u∗X)
T (x) := (1,−u∗1(x), . . . ,−u∗M(x))T ∈ R

M+1with the Lagrange basis of (??) and get the speial form
P 2
X(x) = K(x, x)− 2

N∑

j=1

u∗j(x)K(xj , x) +
N∑

j,k=1

u∗j(x)u
∗
k(x)K(xj , xk)

= (u∗X)
T (x)Ax,X(u

∗
X)(x)

≥ σ(Ax,X)


1 +

M∑

j=1

|u∗j(x)|2



≥ σ(Ax,X) (10.1)205



of the power funtion (??), where σ(Ax,X) is the minimal eigenvalue of Ax,X .Note that both sides are ontinuous funtions of x and X (or Λ standing for
X) that vanish whenever x tends to points in X .Theorem 10.2. The error of kernel interpolation an only be small if theondition of the kernel matrix is large. In partiular,

P 2
X(x) ≥ σ(Ax,X)holds for the power funtion P 2
X in terms of the smallest eigenvalue σ(Ax,X)of the kernel matrix Ax,X .We an all the above observation anUnertainty Priniple or a Tradeo�priniple.The interpretation of the above result is as follows. Assume we have a re-overy proess with a very good error bound (??) via the power funtion.Then Ax,X must have a very small eigenvalue. The largest eigenvalue of Ax,Xan only be as large as a onstant times N , thus it is not very relevant forthe ondition of Ax,X, whih is the quotient of the largest by the smallesteigenvalue, if the ondition is taken in the spetral norm. Thus the onditionof Ax,X is large whenever the reovery error is small. But Ax,X is itself akernel matrix, if we view x as the � `next� interpolation point. Or, when wehange the meaning of x and X somewhat, we an rewrite the above resultas

min
1≤j≤N

P 2
X\xj

(xj) ≥ σ(AX),bounding the smallest eigenvalue of a kernel matrix via the �leave�one�out�power funtion.We now an give some hints to the results that follow in later setions. TheUnertainty Relation in the form (10.1) suggests to bound P 2 from aboveand σ from below, in order to have both upper bounds on the attainableerror and on the numerial stability, measured by 1/σ. We have seen in theprevious hapter that upper bounds for P 2 take the form
P 2
Xh

(x) ≤ F (hX,Ω) for all x ∈ Ω (10.3)where F is a monotoni funtion of the �ll distane hX,Ω de�ned in (7.2). Onthe other hand, the lower bounds for σ whih we shall prove in this hapter,will be of the form
σ(AX) ≥ G(qX) for all X = {x1, . . . , xM} ⊂ Ω (10.4)206



with the separation distane
q := qX := min

1≤i 6=j≤M
‖xi − xj‖2. (10.5)For gridded data on ǫZd ∩ Ω we an roughly expet hX,Ω = qX

√
d, and thenthe Unertainty Relation neessarily implies

F (t
√
d) ≥ G(t) (10.6)for all t ≥ 0. This allows to hek the quality of the bounds (10.3) and (10.4),sine the lowest possible bounds F and the largest possible bounds G mustneessarily satisfy (10.6) and are optimal, if they turn (10.6) into an equality.This opens the rae for optimal bounds of the form (10.3) and (10.4), andthis text will desribe the urrent state-of-the-art. To ut the story short,we shall prove that F and G just di�er by a fator in ase of kernels of �nitesmoothness, i.e. (10.6) is extended to

F (t
√
d) ≥ G(t) ≥ C · F (c · t) (10.7)for all t ≥ 0, proving that the square of the power funtion and the minimaleigenvalue of the kernel matrix are roughly proportional in all ases of �nitesmoothness.10.2 Lower Bounds on EigenvaluesThis setion uses Fourier transform tehniques to prove results onerningthe ondition of the matries that our in the basi equations (??) and (??)for optimal reovery. This requires upper bounds for the largest, and lowerbounds for the smallest eigenvalue. We start with the latter and restrit our-selves to the Lagrange ase. The bounds should (if possible) should neitherdepend on the spei� data loations X = {x1, . . . , xM}, nor on the num-ber M of data points, but rather on ertain real-valued quantities like theseparation distane (10.5).We generalize the tehnique of Narowih and Ward [NW91a℄ [NW91b℄ foralulating stability bounds, but we introdue Fourier transforms right fromthe start, whih makes it muh easier to treat large values of m, the order ofonditional positive de�niteness of Φ.The starting point is that any onditionally positive de�nite funtion Φ oforder m satisfying Assumption 9.40 allows the formula

M∑

j=1

M∑

k=1

αjαkΦ(xj − xk) = (2π)−d/2
∫

Rd
Φ̂(ω)

∣∣∣∣∣∣

M∑

j=1

αje
ixj ·ω

∣∣∣∣∣∣

2

dω (10.8)207



for all Pd
m�nondegenerate sets X = {x1, . . . , xM} and all vetors α ∈ RMsuh that λX,M,α is a funtional that annihilates Pd

m. This is just anotherway of writing (9.44).The left�hand side of (10.8) is the quantity αTAX,Φα that we want to boundfrom below, and we an do this by any minorant Ψ̂ on Rd \ {0} of Φ̂ thatsatis�es
Φ̂(ω) ≥ Ψ̂(ω) on R

d \ {0} (10.9)and that itself leads to a similar quadrati form
M∑

j=1

M∑

k=1

αjαkΨ̂(xj − xk) = (2π)−d/2
∫

Rd
Ψ̂(ω)

∣∣∣∣∣∣

M∑

j=1

αje
ixj ·ω

∣∣∣∣∣∣

2

dω (10.10)for another basis funtion Ψ̂ and a weaker onstraint on α ∈ R
M (or none atall). Furthermore, there should be an easy lower bound

αTAX,Ψα ≥ σ‖α‖22for the left�hand side αTAX,Ψα of (10.10). Then learly for all α ∈ R
M thatare admissible,

αTAX,Φα ≥ αTAX,Ψα ≥ σ‖α‖22,as required. The basi trik of Narowih and Ward now is to make AX,Ψdiagonally dominant, while Ψ̂ is obtained by hopping o� Φ̂ appropriatelynear in�nity.Before we proeed any further, here is the main result:Theorem 10.11. Let Φ be a onditionally positive de�nite funtion on Rdthat satis�es Assumption 9.40. Furthermore, let X = {x1, . . . , xM} ⊂ Rd beany set of Lagrange data loations having separation distane (10.5). Withthe funtion
φ0(r) := inf

‖ω‖∞≤2r
Φ̂(ω), (10.12)the smallest eigenvalue σ of the quadrati form assoiated to the matrix

AX,Φ = (Φ(xj − xk))1≤j,k≤M ,restrited as usual to the subspae of RM that ontains the oe�ient vetors
α of funtionals λX,M,α ∈ P⊥

Ω has the lower bound
σ ≥ 1

2

φ0(K)

Γ (d/2 + 1)

(
K√
2

)d (10.13)208



for any K > 0 satisfying
K ≥ 4

q

(
2πΓ2 (d/2 + 1)

) 1

d+ 1 (10.14)or, a fortiori,
K ≥ 9.005 d

q
. (10.15)Proof: We start with any K > 0 and the harateristi funtion

χK(x) =





1 ‖x‖2 ≤ K

0 else 

of the L2 ball BK(0) in Rd with radius K. Then we de�ne

Ψ̂(ω) := Ψ̂K(ω) :=
φ0(K)Γ (d/2 + 1)

Kd πd/2
(χK ∗ χK)(ω)and immediately see that the support issupp (Ψ̂K) =

{
x ∈ R

d : ‖x‖2 ≤ 2K
}
=: B2K(0).We now use the formula (12.27) for the volume of the unit ball to get the

L∞ bound
‖χK ∗ χK‖∞ ≤ vol(BK(0)) = Kd πd/2

Γ (d/2 + 1)via the usual onvolution integral. We adjusted the fators in the de�nitionof Ψ̂ to guarantee (10.9) on all of Rd.This is part of what we wanted, but we still have to evaluate Ψ itself or atleast to show diagonal dominane of AX,Ψ. The radial basis funtion ΨKorresponding to Ψ̂K is obtained via the inverse Fourier transform as
χ̌K(x) = χ̌1(·/K)(x)

= Kdχ̌1(Kx)

= Kd(K‖x‖)−d/2 Jd/2(K · ‖x‖2)

=

(
K

‖x‖

)d/2

Jd/2(K · ‖x‖2)209



using saling of Fourier transforms and (9.16). Then we apply the Fouriertransform to the onvolution to get
ΨK(x) = φ0(K)Γ (d/2 + 1)K−dπ−d/2(χK ∗ χK)

∨(x)

= φ0(K)Γ
(
d
2 + 1

)
2d/2‖x‖−dJ2

d/2(K · ‖x‖).Equation (12.40) yields
ΨK(0) =

φ0(K)

Γ (d/2 + 1)

(
K√
2

)dand we assert diagonal dominane of the quadrati form in (10.10) by asuitable hoie of K. We have
αTAX,Ψα ≥ ‖α‖22


ΨK(0)− max

1≤j≤M

M∑

k=1

k 6=j

ΨK(xj − xk)


by Gershgorin's theorem, and the �nal bound will be of the form

σ ≥ 1

2
ΨK(0) =

φ0(K)

2Γ (d/2 + 1)

(
K√
2

)d

,beause we shall hoose K suh that
max

1≤j≤M

∑

k=1

k 6=j

ΨK(xj − xk) ≤
1

2
ΨK(0). (10.16)This is done by a triky summation argument of Narowih andWard [NW91b℄using (12.39) whih proves (10.16) for K satisfying (10.14). Sine the teh-nique is nie and instrutive, we repeat it here in full detail.To proeed towards diagonal dominane of the matrix, we should �x a point

xj ∈ X = {x1, . . . , xM} and exploit the observation that many of the dis-tanes xj − xk to the remaining points should be large, if the separationdistane q > 0 does not let two points to be too near to eah other. But thenumber of far-away points will strongly depend on the spae dimension d,and we need a preise argument to put the above reasoning on a solid basis.To this end, de�ne the sets
En := { xk ∈ X : nq ≤ ‖xj − xk‖2 < (n + 1)q }210



for all n ∈ N and observe that E1 is empty due to the de�nition of theseparation distane q, whih implies
‖xj − xk‖2 ≥ 2q for all 1 ≤ j 6= k ≤M.Now we an put a little ball Bq(xk) of radius q around eah of the xk ∈ En.Any two of these balls annot overlap due to the de�nition of q. Sine noneof the xk is farther away from xj than (n + 1)q, the balls are all ontainedin the ball B(n+2)q(xj) of radius (n+ 2)q around xj . But all of the xk are atleast nq away from xj , suh that their surrounding balls annot interset thesmaller ball B(n−1)q(xj) around xj of radius (n− 1)q. Adding their volumesusing (12.27) we get the bound

|En|
qdπd/2

Γ(1 + d/2)
≤ (q(n+ 2))dπd/2

Γ(1 + d/2)
− (q(n− 1))dπd/2

Γ(1 + d/2)

|En| ≤ (n+ 2)d − (n− 1)d.for the number |En| of elements of En. If both terms on the right-hand sideare expanded with the binomial formula, the leading positive term is 3nd−1,and all the terms must ombine into powers of n with nonnegative fators.Thus we arrive at
|En| ≤ 3nd−1.For points xk ∈ En we an bound the values of Ψ via (12.39) as follows:

ΨK(xj − xk) = φ0(K)Γ
(
d
2 + 1

)
2d/2‖xj − xk‖−dJ2

d/2(K · ‖xj − xk‖)

= φ0(K)Γ
(
d
2 + 1

)
2d/2K−1‖xj − xk‖−d−1

·(K · ‖xj − xk‖2)J2
d/2(K · ‖xj − xk‖)

≤ φ0(K)Γ
(
d
2 + 1

)
2d/2K−1((n− 1)q)−d−12

d+2

π

= ΨK(0)

(
4

K(n− 1)q

)d+1

π−1Γ2

(
d
2 + 1

)
.Now it is time to do the summation over all k 6= j, and this summation an
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be done by summing the points in the sets En. This yields
∑

k 6=j

ΨK(xj − xk) =
∞∑

n=2

∑

xk∈En

Ψ(xj − xk)

≤ ΨK(0)

(
4

Kq

)d+1

π−1Γ2

(
d
2 + 1

) ∞∑

n=2

3nd−1(n− 1)−d−1

≤ ΨK(0)

(
4

Kq

)d+1

π−1Γ2

(
d
2 + 1

)
6

∞∑

n=2

(n− 1)−2

≤ ΨK(0)

(
4

Kq

)d+1

π−1Γ2

(
d
2 + 1

)
π2

= ΨK(0)

(
4

Kq

)d+1

πΓ2

(
d
2 + 1

)

≤ 1
2
ΨK(0)if we hoose K aording to (10.16).It remains to show that (10.15) implies (10.14). We use a variation of Stir-ling's formula in the form

Γ(1 + x) ≤
√
2πxxxe−xe1/12x, x > 0to get

2πΓ2 (d/2 + 1) ≤ 2π2dd+1(2e)−de1/3d,

(2πΓ2 (d/2 + 1))
1

d+ 1 ≤ d

2e

(
4eπ2

) 1

d+ 1 e

1

3d(d+ 1)

≤ d
π√
e
· e1/6 ≤ d · 2.2511suh that

K ≥ 9.005

qdis satisfatory for all ases.We now want to look at the spei� ases for appliations. From (10.13) and(10.14) we see that
σ = σ(q) =≥ ≀

(
q−dφ0(cd/q)

)with some positive onstant c. Thus we only need to look at the deay ofthe Fourier transforms to get the asymptotis of σ with respet to q → 0,212



keeping the spae dimension d �xed. Our known Fourier transforms thenyield the results of Table 3.
φ(r) Lower Bound in ≀ form for q → 0
rβ qβ

rβ log r qβ

(r2 + γ2)β/2 q−d exp(−c/q), c > 0

e−βr2 q−d exp(−c/q2), c > 0
rνKν(r) q2ν

(1− r)2+(2 + r) q
(1− r)4+(1 + 4r) q3Table 3: Lower Bounds of Smallest Eigenvalue Based on Lagrange Data withSeparation Distane q10.3 Stability in Funtion SpaeThis text is from a reent preprint with Stefano deMarhi, and needs somebrushing�up.10.3.1 Lebesgue ConstantsGiven a positive de�nite kernel Φ : Ω×Ω → R, the reovery of funtions fromfuntion values f(xj) on the set X = {x1, ..., xN} ⊂ Ω ⊆ Rd of N di�erentdata sites an be done via interpolants of the form

sf,X :=
N∑

j=1

αjΦ(·, xj) . (10.16)This interpolant, as in lassial polynomial interpolation, an also be writtenin terms of ardinal funtions uj ∈ VX := span{Φ(·, x) : x ∈ X} suh that
uj(xk) = δj,k. Then, the interpolant (10.16) takes the usual Lagrangian form

sf,X =
N∑

j=1

f(xj)uj. (10.16)As in the (univariate) polynomial ase, based on the representation (10.16)we onsider the Lebesgue funtion
λN(x) :=

N∑

j=1

|uj(x)| .213



Its maximum value, ΛN := maxx∈Ω λN(x) is referred to as the assoiatedLebesgue onstant and gives the norm of the interpolating projetor PX :
C(Ω) → VX ⊆ VΩ, with VΩ = span{Φ(·, x) : x ∈ Ω}, both spaes equippedwith the sup-norm. As well-known in the polynomial ase, either in the uni-variate and in the bivariate ase, there exist upper bounds for the Lebesguefuntion. Moreover, many authors faed the problem of �nding near-optimalpoints for polynomial interpolation. All these near-optimal sets of N pointshave a Lebesgue funtion that behaves in 1D like log(N) while as log2(N) in2D (f. [℄ and referenes therein).We want to bound the Lebesgue onstant and the Lebesgue funtion forinterpolation projetors using (10.16). For a rather large lass of kernel-basedmultivariate interpolants, we an prove that the Lagrange basis funtionsfor N well-distributed data loations in a bounded Lipshitz domain withan interior one ondition are uniformly bounded, and thus the Lebesgueonstant grows only linearly with N , irrespetive of the spae dimension andthe kernel used.For onditionally positive de�nite kernels with �nite smoothness, sharperresults are possible. The lassial Lebesgue onstants grow only like √

N ,and the generalized L2 Lebesgue onstants, de�ned as the norms of the in-terpolation projetors between R
N under a saled ℓ2 norm and L2(Ω) areuniformly bounded, provided that the data loations are well-distributed.Spei� estimates for general sattered data loations are also available, andsome numerial examples in the next setion show that the results are real-isti.We shall onsider interpolation of d-variate funtions on a bounded Lipshitzdomain Ω ⊂ R

d with an outer one ondition [Wen05℄. Interpolation is doneon a set X = {x1, . . . , xN} of N sattered data loations or enters. Theirgeometri relation to the domain Ω is desribed by the �ll distane ormeshnorm
hX,Ω = sup

x∈Ω
min
xj∈X

‖x− xj‖2and the separation distane
qX =

1

2
min

xi, xj ∈ X
xi 6= xj

‖xi − xj‖ .These parameters are used for standard error and stability estimates for mul-tivariate interpolants, and they will be also of inportane here. The inequality
qX ≤ hX,Ω will hold in most ases, but if points of X nearly oalese, qX an214



be muh smaller than hX,Ω, ausing ionstability of the standard solution pro-ess. Point sets X are alled quasi�uniform with uniformity onstant
γ > 1, if the inequality

1

γ
qX ≤ hX,Ω ≤ γqXholds. Later, we shall onsider arbitrary sets of arbitrary ardinality, butwith uniformity onstants bounded above by a �xed number. Note that hX,Ωand qX play an important role in �nding good points for radial basis funtioninterpolation, as reently studied in [FI96, DMSW05℄.To generate interpolants, we allow onditionally positve de�nite translation-invariant kernels Φ of the form

(x, y) 7→ Φ(x− y), x, y ∈ R
dwhih have generalized Fourier transforms on Rd [Wen05℄.For reasons to beome apparent later, we onsider two di�erent lasses of ker-nels. First, there are kernels of limited smoothness measured by a parameter

τ with
0 < c(1 + ‖ω‖22)−τ ≤ Φ̂(ω) ≤ C(1 + ‖ω‖22)−τ (10.16)at in�nity. This inludes polyharmoni splines, thin-plate splines, the Sobolev/Maternkernel, and Wendland's ompatly supported kernels. Seond, there are ker-nels with unlimited smoothness where the Fourier transform deays exponen-tially at in�nity, e.g. the Gaussian and various multiquadris.10.3.2 Results for Limited SmoothnessUnder the assumption (10.16) the spae VX will be a subspae of Sobolevspae W τ

2 (Ω). Our entral result then isTheorem 10.17. The lassial Lebesgue onstant for interpolation with Φ on
N data loations X = {x1, . . . , xn} in a bounded domain Ω ⊆ Rd satisfyingan outer one ondition has a bound of the form

λN ≤ C
√
N

(
hX,Ω

qX

)τ−d/2

.For quasi-uniform sets with bounded uniformity γ, this simpli�es to
λN ≤ C

√
N.Eah single ardinal funtion is bounded by

‖uj‖L∞(Ω) ≤ C

(
hX,Ω

qX

)τ−d/2

,215



whih in the quasi-uniform ase simpli�es to
‖uj‖L∞(Ω) ≤ C.There also is an L2 analog of this. We ompare the L2(Ω) norm of f withits disrete ounterpart hd/2X,Ω‖f|X‖2 and note that the latter onverges to amultiple of the former, if f is smooth and if the disrete setX is quasi-uniformand asymptotially dense. The generalized L2 Lebesgue onstant an then bede�ned as the norm of the map

f|X 7→ sf,X , R
N → L2(Ω)if the above norms are hosen.Theorem 10.18. Under the above assumptions,

‖sf,X‖2(Ω) ≤ C

(
hX,Ω

qX

)τ−d/2

h
d/2
X,Ω‖f‖2,X ,and for quasi-uniform data loations with bounded uniformity γ the general-ized L2 Lebesgue onstant is uniformly bounded. The ardinal funtions havea bound

‖uj‖L2(Ω) ≤ C

(
hX,Ω

qX

)τ−d/2

h
d/2
X,Ωand for quasi-uniform data loations they behave like

‖uj‖L2(Ω) ≤ Ch
d/2
X,Ω.10.3.3 L∞ BoundsOur most important tool for the proof of Theorem 10.17 is the samplinginequality (f. [WR05, Th. 2.6℄)

‖u‖L∞(Ω) ≤ C
(
h
τ−d/2
X,Ω ‖u‖W τ

2
(Ω) + ‖u‖∞,X

)
, ∀u ∈ W τ

2 (Ω), (10.18)where X ⊂ Ω is a disrete set of points in Ω with �ll distane hX,Ω. This isindependent of kernels.We an apply the sampling inequality in two ways
‖sf,X‖L∞(Ω) ≤ C

(
h
τ−d/2
X,Ω ‖sf,X‖W τ

2
(Ω) + ‖sf,X‖∞,X

)

≤ C
(
h
τ−d/2
X,Ω ‖sf,X‖W τ

2
(Ω) + ‖f‖∞,X

)
,

‖uj‖L∞(Ω) ≤ C
(
h
τ−d/2
X,Ω ‖uj‖W τ

2
(Ω) + ‖uj‖∞,X

)

≤ C
(
h
τ−d/2
X,Ω ‖uj‖W τ

2
(Ω) + 1

)216



sine we know that the spae VX is ontained in W τ
2 (Ω). To get a bound oneither the Lebesgue onstant or the norm of a ardinal funtion, we have to�nd bounds of the form

‖s‖W τ
2
(Ω) ≤ C(X,Ω,Φ)‖s‖∞,Xfor arbitrary elements s ∈ VX . Suh bounds are available from [SW02℄, butwe repeat the basi notation here. Let Φ satisfy (10.16). Then [SW02℄ has

‖s‖2W τ
2
(Ω) ≤ Cq−2τ+d

X ‖s‖22,X ≤ CNq−2τ+d
X ‖s‖2∞,X for all s ∈ VXwith a di�erent generi onstant. If we apply this to uj, we get

‖uj‖L∞(Ω) ≤ C



(
hX,Ω

qX

)τ−d/2

+ 1


 ,while appliation to sf,X yields

‖sf,X‖L∞(Ω) ≤ C



(
hX,Ω

qX

)τ−d/2

‖f‖2,X + ‖f‖∞,X


 ≤ C



√
N

(
hX,Ω

qX

)τ−d/2

+ 1


 ‖f‖∞,X.Then the assertions of Theorem 10.17 follow. 2.10.3.4 L2 BoundsFor the L2 ase overed by Theorem 10.18, we take the sampling inequality

‖f‖L2(Ω) ≤ C
(
hτX,Ω‖f‖W τ

2
(Ω) + ‖f‖ℓ2(X)h

d/2
X,Ω

)
, ∀f ∈ W τ

2 (Ω) (10.18)of [Mad06, Thm. 3.5℄. We an apply the sampling inequality as
‖sf,X‖L2(Ω) ≤ C

(
hτX,Ω‖sf,X‖W τ

2
(Ω) + ‖sf,X‖ℓ2(X)h

d/2
X,Ω

)

≤ C
(
hτX,Ω‖sf,X‖W τ

2
(Ω) + ‖f‖ℓ2(X)h

d/2
X,Ω

)
,

≤ C
(
hX,Ω

qX

)τ−d/2 ‖f‖ℓ2(X)h
d/2
X,Ω,

‖uj‖L2(Ω) ≤ C
(
hτX,Ω‖uj‖W τ

2
(Ω) + ‖uj‖ℓ2(X)h

d/2
X,Ω

)

≤ C
(
h
τ−d/2
X,Ω ‖uj‖W τ

2
(Ω) + 1

)
h
d/2
X,Ω

≤ C
((

hX,Ω

qX

)τ−d/2
+ 1

)
h
d/2
X,ΩThis proves Theorem 10.18. 2217



11 Hilbert Spae TheoryThis is intended as a short tutorial on Hilbert spaes as required in this text.We only require fundamentals on linear spaes, bilinear forms, and norms.If a reader has problems with any of the stated fats below, it is time to gobak to an introdutory ourse on Calulus and Numerial Analysis.11.1 Normed Linear SpaesFor ompleteness, we reall some basis from normed linear spaes over a�eld K = R or C.1. A sequene {un}n∈N ⊂ N of a normed linear spae N with norm ‖ · ‖Nis a zero sequene in N , if the sequene {‖un‖N}n∈N onverges tozero in R.2. A sequene {un}n∈N ⊂ N is a onvergent sequene in N with limit
u, if the sequene {un − u}n is a zero sequene.3. A subspae M of N is a losed subspae, if for every onvergentsequene {un}n∈N ⊂ M ⊂ N with limit u one an onlude that thelimit u also belongs to M.4. The normed linear spae N is omplete or a Banah spae, if everysequene whih is a Cauhy sequene in the norm ‖ · ‖V is neessarilyonvergent in V.5. A omplete normed linear spae is losed, sine eah onvergent se-quene is a Cauhy sequene.6. A subset M of a normed linear spae N is dense, if eah element of
N an be written as a limit of a onvergent sequene from M.7. A linear mapping (or operator) A : N → M with values in a normedlinear spae M with norm ‖ · ‖M is a ontinuous mapping or abounded mapping, if there is a onstant C suh that

‖Ax‖M ≤ C‖x‖Nholds for all x ∈ N .8. The mapping A then has an operator norm
‖A‖N ,M := sup

x∈N\{0}

‖Ax‖M
‖x‖N

≤ C218



and the bound
‖Ax‖M ≤ ‖A‖N ,M‖x‖Nis best possible.9. The most important speial ase arises for M = K, i.e. for linearfuntionals λ : N → K. If they are ontinuous, they have anoperator norm

‖λ‖N ∗ := ‖λ‖N ,K := sup
x∈N\{0}

|λ(x)|
‖x‖N

≤ C.10. The spae of ontinuous linear funtionals on a normed linear spae Nis a normed linear spae under the above dual norm, and it is alledthe dual spae N ∗ to N .11. The kernel of a ontinuous linear map on a normed linear spae isalways a losed subspae.11.2 Pre�Hilbert SpaesDe�nition 11.1. A set H and a mapping (·, ·)H : H × H → K form apre-Hilbert spae or a Eulidean spae over K, if the following holds:1. H is a vetor spae over K.2. (·, ·)H is a Hermitian positive de�nite inner produt, linear in the �rstand antilinear in the seond argument.Then
‖x‖2H := (x, x)H, x ∈ H (11.2)de�nes a norm on H, and we assume all readers to be familiar with thisnotion. Sometimes, we shall weaken the assumptions on (·, ·)H and onlyask for symmetry and positive semide�niteness. Even in this more generalsituation, we have the Cauhy-Shwarz inequality
|(u, v)H| ≤ |u|H|v|Hfor all u, v ∈ H, where we use the notation |x|2H := (x, x)H to denote aseminorm instead of a norm as in (11.2). To prove the Cauhy-Shwarzinequality for K = R as a warm-up, just onsider the quadrati funtion

ϕ(t) := |u+ tv|2H = |u|2H + 2t(u, v)H + t2|v|2H.219



It must be nonnegative, and thus it has none or a double real zero. Thisproperty is satis�ed for a general funtion ϕ(t) = at2 + 2bt + c, i� b2 ≤ acholds. But this is the square of the Cauhy-Shwarz inequality. An argumentlike the one above is very frequent, and we all it the �parabola argument�.In the omplex ase, the argument is similar. For real t, we get
ϕ(t) := |u+ tv|2H = |u|2H + 2t Re ((u, v)H) + t2|v|2Hand see that

| Re ((u, v)H)|2 ≤ |u|2H|v|2Hholds, Taking purely imaginary t leads to the same for the imaginary part,proving the omplex ase, too.Now we add some simple fats about pre-Hilbert spaes:1. For two nonzero elements x, y of H over R one an de�ne the osine ofthe angle ∠(x, y) as
cos(∠(x, y)) =

(x, y)H
‖x‖H‖y‖H

.2. Two elements x, y of H are orthogonal, if (x, y)H = 0. In that ase,the theorem of Pythagoras is
‖x+ y‖2H = ‖x‖2H + ‖y‖2Hand trivially proven by evaluating the left�hand side as

‖x+ y‖2H = (x+ y, x+ y)H = ‖x‖2H + (x, y)H + (y, x)H + ‖y‖2H.3. Two subspaes U , V of a pre-Hilbert spae are orthogonal, if all ve-tors u ∈ U , v ∈ V are orthogonal, i.e.: (u, v)H = 0.Roughly speaking, Eulidean geometry needs the de�nition of angles andorthogonality. This is why one an also use the notion of an Eulideanspae here, provided that we work over R.11.3 Sequene SpaesFor illustration, we an look at sequene spaes. Let I be a �nite orountably in�nite set, and take the spae
S0 := span {{ξi}i∈I : ξi 6= 0 for only �nitely many i ∈ I}. (11.3)220



Then take a sequene {λi}i∈I of positive numbers, and de�ne the inner prod-ut
({ξi}i∈I , {ηi}i∈I)λ,I :=

∑

i∈I
λiξiηion S0. Then S0 is a pre�Hilbert spae with the above inner produt, andwe should all it S0,λ,I now to make the dependene on the topology on λiapparent. The dual of S0,λ,I is at least as large as the full sequene spae

S∞ := span {{µi}i∈I}beause we an let eah µ := {µi}i∈I ∈ S∞ at on eah ξ := {ξi}i∈I ∈ S0 via
µ(ξ) :=

∑

i∈I
ξiµibeause we only have �nitely many nonzero ξi.If we allow in�nite sequenes, we have to be areful with onvergene andduality. But we an de�ne the spae

Sλ,I := span {{ξi}i∈I :
∑

i∈I
λi|ξi|2 <∞} (11.4)whih learly also has the above inner produt, and it ontains S0,λ,I . Weassert that its dual ontains S1/λ,I , and it an surely not be as large as S∞.We an let eah µ := {µi}i∈I ∈ S1/λ,I at on eah ξ := {ξi}i∈I ∈ Sλ,I via

µ(ξ) :=
∑

i∈I
ξiµibeause we an use the Cauhy�Shwarz inequality

|µ(ξ)|2 =

∣∣∣∣∣
∑

i∈I
ξiµi

∣∣∣∣∣

2

=

∣∣∣∣∣
∑

i∈I

√
λiξi

1√
λi
µi

∣∣∣∣∣

2

≤
(∑

i∈I
λi|ξi|2

)(∑

i∈I

1

λi
|µi|2

)

= ‖ξ‖2λ,I‖µ‖21/λ,I .The linear map
R : S1/λ,I → Sλ,I , µ 7→ {µi/λi}i221



has the properties
µ(ξ) =

∑

i

µiξi =
∑

i

λiξi
µi

λi
= (ξ, R(µ))λ,Iand

(R(ρ), R(µ))λ,I =
∑

i

λi
ρiµi

λ2i
= (µ, ρ)1/λ,I .We shall generalize this later, but note that R is an antilinear isometry.11.4 Best ApproximationsDe�nition 11.5. An element u∗ of a subspae M of a normed linear spae

N is a best approximation to a given element u ∈ N , if
‖u− u∗‖N = sup

v∈M
‖u− v‖N =: EM(u).Theorem 11.6. An element u∗ of a subspae M of a pre-Hilbert spae H isa best approximation to a given element u ∈ H, i� the variational identity

(u− u∗, v)H = 0 for all v ∈ M (11.7)holds. If it exists, the best approximation is unique. IfM is �nite-dimensionaland spanned by linearly independent elements u1 . . . , uM , then the oe�ients
α∗ of the representation

u∗ =
M∑

j=1

α∗
jujare solutions of the normal equations

M∑

j=1

α∗
j (uj, uk)H = (u, uk)H, 1 ≤ k ≤M.The symmetri and positive de�nite matrix with entries (uj, uk)H in the abovesystem is alled a Gram matrix. In this speial ase, the best approximationexists uniquely and an theoretially be alulated via the normal equations.Proof: Let us onsider the ase K = R �rst. Let u∗ be a best approxima-tion to u. To have another instane of the parabola argument, onsider anarbitrary v ∈ M and form the quadrati funtion

uv(α) := ‖u− u∗ + αv‖2H = ‖u− u∗‖2H + 2α(u− u∗, v)H + α2‖v‖2H222



whose minimum must be attained at α = 0. This implies (u − u∗, v)H = 0.Conversely, assume (11.7) and write any other element v ∈ M as v = u∗ +
1 · (v−u∗). Then (11.7) implies that the quadrati funtion uu∗−v is minimalat α = 0, proving uu∗−v(1) = ‖u − v‖H ≥ uu∗−v(0) = ‖u − u∗‖H. If u∗ and
u∗∗ are two best approximations from M to u, then we an subtrat the twovariational identities (u− u∗, v)H − (u− u∗∗, v)H = (u∗∗ − u∗, v)H = 0 for all
v ∈ M and insert v = u∗∗ − u∗ to get u∗∗ = u∗. The third assertion is aspeialization of (11.7). This �nishes the real ase.For the omplex ase, we have to disuss
uv(α) := ‖u− u∗ + αv‖2H = ‖u− u∗‖2H + 2 Re (α(u− u∗, v)H) + |α|2‖v‖2Hfor all omplex α. If u∗ is a best approximation with (u − u∗, v)H 6= 0, wean take

α = t
(u− u∗, v)H
|(u− u∗, v)H|with some real t and do the same argument as above to prove (11.7). Theother onlusions work like in the real ase.Corollary 11.8. The �rst statement of Theorem 11.6 holds also in the aseof a positive semide�nite bilinear form. The Gram matrix in the �nite-dimensional ase now is only positive semide�nite.Corollary 11.9. Let λ1, . . . , λM be linear funtionals on a pre-Hilbert spae

H and let some u ∈ H be given. An element u∗ of H solves the problem
‖u∗‖H = inf

v ∈ H
λj(v) = λj(u)
1 ≤ j ≤M

‖v‖H,

i� the variational identity
(v, u∗)H = 0 for all v ∈ H with λj(v) = 0, 1 ≤ j ≤M.holds, or i� there are salars α1, . . . , αM suh that

(v, u∗)H =
M∑

j=1

αjλj(v) for all v ∈ H.
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Proof: Consider the subspae
M = { v ∈ H : λj(v) = 0, 1 ≤ j ≤M}and reformulate the problem by writing any v ∈ H with λj(v) = λj(u), 1 ≤

j ≤ M as v = u − w for w ∈ M. Then we have a problem of best approx-imation to u from M and an simply use Theorem 11.6 to prove the �rstassertion. We then have to prove that the �rst variational identity impliesthe seond. But this follows from a standard linear algebra argument thatwe inlude for ompleteness as the next lemma.Lemma 11.10. If A : X → Y and B : X → Z are linear maps betweenlinear spaes, and if B vanishes on the kernel kerA of A, then B fatorizesover A(X), i.e.: there is a map C : A(X) → Z suh that B = C ◦ A. If Zis normed and if Y is �nite-dimensional, then C is ontinuous.Proof: There is an isomorphism D : A(X) → X/ kerA, and one an de�ne
B̃ : X/ kerA→ Z by B̃(x+ kerA) := B(x) beause B(kerA) = {0}. Then
C := B̃ ◦D does the job, sine

C(A(x)) = B̃(D(A(x))) = B̃(x+ kerA) = B(x)for all x ∈ X . If Y is �nite-dimensional, the isomorphi spaes A(X) ⊆ Y and
X/ kerA must also be �nite-dimensional. Sine all linear mappings de�nedon �nite-dimensional linear spaes with values in normed linear spaes areontinuous, we are �nished.11.5 Hilbert SpaesSo far, Theorem 11.6 does not imply existene of best approximations fromsubspaes of in�nite dimension. It just haraterizes them. To get existene,we need that ertain nie sequenes atually have limits:De�nition 11.11. A pre-Hilbert spae H over K with inner produt (·, ·)His a Hilbert spae, if H is omplete under the norm ‖ · ‖H, i.e.: as anormed linear spae.We now prove the ruial projetion theorem in Hilbert spaes:Theorem 11.12. If H is a Hilbert spae with a losed subspae M, thenany element u ∈ H has a unique best approximation u∗M from M, and theelements u∗M and u − u∗M are orthogonal. The map ΠM : H → M with
ΠM(u) := u∗M is linear, has norm one if M is nonzero, and is a projetor,224



i.e. it is idempotent, meaning Π2
M = ΠM. If Id is the identity mapping,then Id− ΠM is another projetor, mapping H onto the orthogonal om-plement

M⊥ := { u ∈ H : (u, v)H = 0 for all v ∈ M }.of M. Finally, the deomposition
H = M+M⊥is a diret and orthogonal sum of spaes.Proof: The existene proof for approximations from �nite-dimensional sub-spaes is a onsequene of Theorem 11.6, and we postpone the general asefor a moment. The orthogonality statement follows in general from Theorem11.6, and it yields Pythagoras' theorem in the form

‖u‖2H = ‖u− u∗M‖2H + ‖u∗‖2H.This in turn proves that both projetors have a norm not exeeding one. Itis easy to prove that αu∗M + βv∗M is a best approximation to αu+ βv for all
α, β ∈ R and all u, v ∈ H, using the variational identity in Theorem 11.6. Toprove linearity of the projetors, we use uniqueness of the best approximation,as follows from Theorem 11.6. Finally, surjetivity of the projetors is easilyproven from the best approximation property of their de�nition.Thus we are left with the existene proof for the in�nite-dimensional ase.The nonnegative real number EM(u) an be written as the limit of a de-reasing sequene {‖u − vn‖H}n for ertain elements vn ∈ M, beause it isde�ned as an in�mum. Forming the subspaes

Mn := span {v1, . . . , vn} ⊆ Mand unique best approximations wn to u from Mn, we get
EM(u) ≤ ‖u− wn‖H ≤ ‖u− vn‖H,suh that the sequene {‖u− wn‖H}n onverges to EM(u), too. We now �xindies m ≥ n and use that (u − wm, wm − wn)H = 0 follows from the bestapproximation property of wm. Then we have

‖u− wn‖2H − ‖u− wm‖2H = ‖u− wm + wm − wn‖2H − ‖u− wm‖2H
= ‖u− wm‖2H + 2(u− wm, wm − wn)H

+‖wm − wn‖2H − ‖u− wm‖2H
= ‖wm − wn‖2H,225



and sine the sequene {‖u − wn‖2H}n is onvergent and thus a Cauhy se-quene, we get that {wn}n ⊂ M is a Cauhy sequene in M ⊆ H. Now theompleteness of H assures the existene of a limit w∗ ∈ H of this sequene,and sine M was assumed to be losed, the element w∗ must belong to M.The above identity an be used to let m tend to in�nity, and then we get
‖u− wn‖2H − ‖u− w∗‖2H = ‖w∗ − wn‖2H.This proves
EM(u) ≤ ‖u− w∗‖H ≤ ‖u− wn‖H,and sine the right-hand side onverges to EM(u), the element w∗ must bethe best approximation to u.We add two little appliations:Lemma 11.13. If an element f from a Hilbert spae H is orthogonal to H,it is zero.Proof: Take M = H in Theorem 11.12. The spae M⊥ ontains f , but itis neessarily zero, so that f is zero. But a more simple and diret proof justuses that f is orthogonal to itself:

‖f‖2H = (f, f)H = 0.Lemma 11.14. If M is a dense subspae of a Hilbert spae H, then thelosure of M is isometrially isomorphi to H.Proof: The losure of M an be identi�ed with a losed subspae N of H,and we assert that N = H. To this end, deompose H into H = N + N⊥and take an element u from N⊥. It must be orthogonal to all elements from
M, and by ontinuity of the funtional v 7→ (u, v)H it must be orthogonal toall of H. Thus it must be zero.11.6 Riesz Representation TheoremWe further need the Riesz representation theorem for ontinuous linearfuntionals. To this end, we reall that the dual N ∗ of a normed linear spae
N onsists of all ontinuous linear funtionals λ : N → R with dual norm

‖λ‖N ∗ := sup
f∈N ,f 6=0

λ(f)

‖f‖N
.It is a normed linear spae under this norm.226



Theorem 11.15. (Riesz representation theorem)Any ontinuous linear funtional λ on a Hilbert spae H an be written as
λ = (·, gλ)H (11.16)with a unique element gλ ∈ H satisfying ‖λ‖H∗ = ‖gλ‖H.Proof: If λ = 0, then gλ = 0 does the job and is unique. If λ 6= 0, the kernel

L of λ is not the full spae H. It is, however, a losed linear subspae, andthus there is some element hλ ∈ L⊥ with ‖hλ‖H = 1. Now for eah u ∈ Hthe element λ(u)hλ − λ(hλ)u must neessarily be in L and thus orthogonalto hλ. This means
0 = (λ(u)hλ − λ(hλ)u, hλ)H,

λ(u)(hλ, hλ)H = λ(hλ)(u, hλ)H,
λ(u) = (u, λ(hλ)hλ)Hand we an de�ne gλ := λ(hλ)hλ to get (11.16).The norm of λ is bounded by
‖λ‖H∗ := sup

u∈H\{0}

|λ(u)|
‖u‖H

≤ |λ(hλ)|due to Cauhy-Shwarz, but using u = hλ in the de�nition of the norm yieldsequality. Sine we set gλ := λ(hλ)hλ, we get ‖λ‖H∗ = ‖gλ‖H. Uniqueness of
gλ satisfying (11.16) is easy to prove, beause for any other g̃λ with (11.16)we have

(gλ − g̃λ, f)H = λ(f)− λ(f) = 0 for all f ∈ H,and thus gλ − g̃λ = 0 beause it is orthogonal to the full spae.De�nition 11.17. The map
R : H∗ → H with λ 7→ gλ for all λ ∈ H∗on the dual H∗ of a Hilbert spae H is alled the Riesz map. Another de-sription is
(f, R(λ))H = λ(f) for all λ ∈ H∗, f ∈ H.
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Theorem 11.18. The Riesz map is an antilinear isometri bijetion betweena Hilbert spae H and its dual H∗. In partiular, the dual norm an be writtenas a Hilbert spae norm based on an inner produt (., .)H∗ satisfying
(R(λ), R(µ))H = (µ, λ)H∗ for all λ, µ ∈ H∗.Thus any Hilbert spae is isometrially isomorphi to its dual via the Rieszmap.Proof: We already know that the Riesz map is well�de�ned and satis�es

‖R(λ)‖H = ‖λ‖H∗ . It also is antilinear due to
(f, R(aλ + bµ))H = (aλ+ bµ)(f)

= aλ(f) + bµ(f)
= a(f, R(λ))H + b(f, R(µ))H
= (f, a · R(λ) + b ·R(µ))H for all f ∈ H, a, b ∈ Rbeause this implies that R(aλ+ bµ)− (a ·R(λ) + b ·R(µ)) is orthogonal toall of H, thus zero.We already have

λ(f) = (f, R(λ))H for all f ∈ H, λ ∈ H∗.But now we use f = R(µ) and get
λ(R(µ)) = (R(µ), R(λ))H = µ(R(λ)) for all λ, µ ∈ H∗.We de�ne a �new� bilinear form

(λ, µ)∗ := λ(R(µ)) = (R(µ), R(λ))H = µ(R(λ)) for all λ, µ ∈ H∗onH∗ whih learly is positive de�nite and sequilinear, thus an inner produt.It generates the same norm as ‖.‖H∗ due to ‖λ‖H∗ = ‖R(λ)‖H for all λ ∈ H∗,and we an rewrite it in the notation (., .)∗ = (., .)H∗ .Altogether, we now have that R is an injetive isometri antilinear map from
H∗ to H onserving the inner produt. To prove that it is surjetive, we antake any f ∈ H and generate a funtional λf with

λf(g) := (g, f)H for all g ∈ H.This funtional learly is ontinuous due to
|λf(g)| = |(g, f)H| ≤ ‖f‖H‖g‖H for all g ∈ H.by Cauhy�Shwarz, and we ompare f now with R(λf) to get
(g, f − R(λf))H = (g, f)H − (g, R(λf))H

= (g, f)H − λf(g)
= (g, f)H − (g, f)H = 0for all g ∈ H, proving f = R(λf). 228



11.7 Reproduing Kernel Hilbert SpaesAs an important appliation of the Riesz theorem, we onsider a Hilbert spae
H with an inner produt (., .)H and assume that H onsists of real�valuedfuntions on a set Ω. Furthermore, we assume that all point�evaluationfuntionals

δx ∈ H∗ : H → R, f 7→ f(x)for all x ∈ Ω are ontinuous, i.e.
|δx(f)| = |f(x)| ≤ ‖f‖H‖δx‖H∗ for all f ∈ H, x ∈ Ω.Then the Riesz map takes eah δx into a funtion

R(δx)(y) =: K(x, y) for all x, y ∈ Ω.This de�nes a kernel
K : Ω× Ω → Rwhih is Hermitian due to

K(x, y) := R(δx)(y)
= δy(R(δx))
= (δy, δx)H∗

= (δx, δy)H∗

= K(y, x).Furthermore, we have
f(x) = δx(f) = (f, R(δx))H = (f,K(x, ·))H for all x ∈ Ω, f ∈ H,and this is alled a reprodution equation. In partiular, when taking

f(·) = K(y, ·), we get
K(y, x) = (K(y, ·), K(x, ·))H for all x, y ∈ Ω.Then H is alled a reproduing kernel Hilbert spae with a reproduingkernel K. By the Riesz theorem, we have proven that all Hilbert spaes offuntions with ontinuous point evaluations have a reproduing kernel.11.8 Completion of Pre�Hilbert SpaesLike the transition from rational numbers to real numbers by �ompletion�,we an perform a transition from pre�Hilbert spaes to Hilbert spaes by avery similar tehnique via equivalene lasses of Cauhy sequenes.229



Theorem 11.19. Let H be a pre-Hilbert spae with inner produt (·, ·)H.Then there is a Hilbert spae J and an isometri embedding J : H → Jsuh that the following is true:1. J(H) is dense in J .2. Any ontinuous mapping A : H → N with values in a Banah spae
N has a unique ontinuous extension B : J → N suh that B◦J = A.3. The Hilbert spae J is unique up to a Hilbert spae isometry.Proof: We �rst form the spae of all Cauhy sequenes in H, whih learlyis a linear spae over R. Two suh sequenes are alled equivalent, if theirdi�erene is a sequene in H onverging to zero. The spae J now is de�nedas the spae of equivalene lasses of Cauhy sequenes in H modulo zerosequenes. These lasses learly form a vetor spae under the usual opera-tions on sequenes. If we use an overstrike to stand for �lass of�, we writean element of J as {un}n for a Cauhy sequene {un}n ∈ H. Now it is timeto de�ne an inner produt

({un}n, {vn}n)J := lim
n→∞(un, vn)Hon J and the embedding J via the onstant Cauhy sequenes

Ju := {u}n := {un = u}nfor eah u ⊂ H. Then
(Ju, Jv)J = (u, v)Hmakes sure that J is an isometry and injetive. But we still have to showthat the inner produt on J is well-de�ned and positive de�nite. If {un}nand {vn}n are Cauhy sequenes in H, then

|‖un‖H − ‖um‖H| ≤ ‖un − um‖Himplies that the sequenes {‖un‖H}n and {‖vn‖H}n are Cauhy sequenes in
R, and thus onvergent and bounded by onstants Cu and Cv. But then
(un, vn)H − (um, vm)H = (un, vn)H − (un, vm)H − (um, vm)H + (un, vm)H

= (un, vn − vm)H − (um − un, vm)H
≤ Cu‖vn − vm‖H + Cv‖um − un‖Hproves that {(un, vn)H}n is a Cauhy sequene in R and thus onvergent.Two representatives of a lass {un}n di�er just by a zero sequene that doesnot a�et the inner produt's value. The proof of de�niteness again uses that230



zero sequenes represent zero in J . This �nishes the proof of well-de�nednessof the new inner produt.Thus J is another pre-Hilbert spae that ontains an isometri image of H,and we �rst want to prove that J(H) is dense in J . Let us take an element
{un}n ∈ J and use the fat that for eah ǫ > 0 there is some K(ǫ) suh thatfor all n,m ≥ K(ǫ) we have

‖un − um‖H ≤ ǫ.Now take m ≥ K(ǫ) and the �xed Cauhy sequene {um}n = J(um). Then
‖J(um)− {un}n‖J = lim

n→∞ ‖um − un‖H ≤ ǫproves the density assertion.We now proeed to prove ompleteness of J . To do this we have to forma Cauhy sequene {{u(m)
n }n}m of equivalene lasses {u(m)

n }n of Cauhy se-quenes {u(m)
n }n ⊂ H. For eah m ∈ N we an use the density property of Hin J to �nd an element vm ∈ H suh that

‖{u(m)
n }n − J(vm)‖J ≤ 1/m.Due to

‖vn − vm‖H = ‖J(vn)− J(vm)‖J
≤ ‖J(vn)− {u(n)n }n‖J+

+‖{u(n)n }n − {u(m)
n }n‖J + ‖{u(m)

n }n − J(vm)‖J
→ 0for n,m→ ∞, the sequene {vm}m is a Cauhy sequene in H. We now form

‖{u(k)n }n − {vn}n‖J ≤ ‖{u(k)n }n − J(vk)‖J + ‖J(vk)− {vn}n‖J
≤ 1/k + lim

n→∞ ‖vk − vn‖H
→ 0for k → ∞, proving onvergene towards {vn}n.Now let A : H → N be a linear ontinuous mapping with values in aomplete normed linear spae N . If {un}n is an element of J , we de�ne theextension B on {un}n by
B({un}n) := lim

n→∞A(un). (11.20)231



Sine A is ontinuous, it is bounded and due to
‖A(um)−A(un)‖N ≤ ‖A‖‖um − un‖Hthe sequene {Aun}n is a Cauhy sequene inN . But asN is a Banah spae,the sequene is onvergent and (11.20) is well-de�ned. ClearlyB◦J = A holdsby de�nition. Any two suh extensions must agree on the dense subspae

A(H) of J , and sine they are ontinuous, they must agree on all of J .Finally, if there are two ompletions J and J̃ , we apply the �rst parts of thetheorem to the embeddings
J : H → J
J̃ : H → J̃This leads to two ontinuous maps

B : J → J̃ , B ◦ J = J̃

B̃ : J̃ → J , B̃ ◦ J̃ = J
(11.21)and we onlude

B̃ ◦B = Id on J(H)

B ◦ B̃ = Id on J̃(H)and this extends ontinuously to the ompletion, thus
B̃ ◦B = Id on J
B ◦ B̃ = Id on J̃ .But then we have isomorphisms between J and J̃ whih must be isometridue to (11.21). The isometry property follows �rst on the dense subspaes

J(H) and J̃(H), but then also on the ompletions J and J̃ .11.9 AppliationsAs an appliation, onsider a pre�Hilbert spae H of funtions on some set
Ω having a reproduing kernel K : Ω× Ω → R in the sense

f(x) = (f,K(x, ·))H for all f ∈ H, x ∈ Ω.We now go to the ompletion J with the embedding J : H → J . Thelinear funtionals
δx : f 7→ f(x) and λx : f 7→ (f,K(x, ·))H232



oinide on H and are ontinuous there. Thus there is an extension
λ̃x : J → Rwith

λ̃x(J(f)) = λx(f) = (f,K(x, ·))H = f(x) for all x ∈ Ω.On general elements g ∈ J we an de�ne the funtional
g 7→ λ̃x(g)− (g, J(K(x, ·)))Jwhih is in J ∗ and vanishes on the dense subset J(H) due to

(J(f), J(K(x, ·)))J = (f,K(x, ·))H
= f(x)

= λ̃x(J(f)) for all f ∈ H, x ∈ Ω.Thus the funtional is zero, proving the identity
λ̃x(g) = (g, J(K(x, ·)))J for all g ∈ J , x ∈ Ω.This equation an be interpreted as follows. Eah abstrat element g ∈ J isa funtion on Ω in the sense that
g(x) := λ̃x(g) = (g, J(K(x, ·)))J for all x ∈ Ω.Via

K̃(x, ·) := J(K(x, ·)) for all x ∈ Ωwe get a kernel K̃ suh that the reprodution equation
g(x) = (g, K̃(x, ·))J for all x ∈ Ω, g ∈ Jholds on J . This proves that the original kernel, when embedded into theompletion J of H, still works as a reproduing kernel in the ompletion,and the ompletion is not just an abstrat onstrution, but rather a Hilbertspae of funtions on Ω.Let us now look at sequene spaes from subsetion 11.3. They an beviewed as spaes of funtions on I with a ontinuous point evaluation whihwe simply de�ne for a sequene ξ = {ξi}i∈I as

ξ(i) = ξi, i ∈ I.The pre�Hilbert spae S0,λ,I under its inner produt (., .)λ,I has a reproduingkernel
K(i, j) :=

δij
λi
, i, j ∈ I233



sine
ξ(j) =

∑

i∈I
λiξiK(j, i) = (ξ,K(j, ·))λ,I for all ξ ∈ S0,λ,I , j ∈ I.By ompletion of S0,λ,I under its inner produt, we get some Hilbert spae

S with a ontinuous embedding J : S0,λ,I → S, and it is a sequene spaebeause we have a reprodution equation using the extended kernel. Sinewe have an isometri embedding of S0,λ,I into the spae Sλ,I of (11.4), we getthat S must be isometrially embedded in Sλ,I . To prove that Sλ,I = S, wetake an arbitrary element ξ ∈ Sλ,I whih is orthogonal to the subspae S0,λ,I .But then
ξi = (ξ,K(i, ·))λ,I = 0 for all i ∈ Iproves ξ = 0. Note that this avoids a diret proof that the spae Sλ,I is aHilbert spae, using ompletion arguments instead.Thus we see that Sλ,I of (11.4) is the Hilbert spae ompletion of S0,λ,I , andit is a reproduing kernel Hilbert spae with the kernel K de�ned as above.The Riesz map

R : S1/λ,I = S∗
λ,I → Sλ,Iomes out as

R({µi}i∈I) :=
{
µi

λi

}

i∈I
for all {µi}i∈I ∈ S1/λ,Iand the kernel is the Riesz representer of the point evaluation funtional, asreaders will quikly verify.12 Required Results from Real AnalysisHere, we provide some material that is often not ontained in standardourses on Analysis or on Numerial Methods. But we assume readers tobe familiar with multiindex notation and partial derivatives.12.1 Multivariate Taylor FormulaTheorem 12.1. Let x and y be two points in Rd, and assume that a d�variate real�valued funtion f is m�times ontinuously di�erentiable on theline segment [x, y] onneting x and y. With the Taylor polynomial

Tx(f)(y) :=
m−1∑

|α|=0

Dαf(x)
(y − x)α

α!234



we then have
|f(y)− Tx(f)(y)| ≤ ‖y − x‖m∞

∑

|α|=m

1

α!
|Dαf(ξ(x, y, α))|with ertain points ξ(x, y, α) on the line segment between x and y.Proof: We onsider the univariate funtion

g(t) := f(x+ t(y − x)), 0 ≤ t ≤ 1on [0, 1] and write down its standard univariate Taylor representation as
f(y) = g(1)

=
m−1∑

j=0

g(j)(0)
1j

j!
+
∫ 1

0
g(m)(s)

(1− s)m−1

(m− 1)!
ds.We now prove that the derivatives of g are

g(j)(t) =
∑

|α|=j

(
j

α

)
Dαf(x+ t(y − x))(y − x)α.This is learly true for j = 0, and we proeed by indution via

g(j+1)(t) =
d

dt

∑

|α|=j

(
j

α

)
Dαf(x+ t(y − x))(y − x)α

=
∑

|α|=j

(
j

α

)(
d∑

k=1

Dα+ekf(x+ t(y − x))(yk − xk)

)
(y − x)α

=
∑

|α|=j

(
j

α

)
d∑

k=1

Dα+ekf(x+ t(y − x))(y − x)α+ek .All multiindies α+ ek now have |α+ ek| = j + 1, but we want to rearrangethem into multiindies β with |β| = j + 1. The number of possibilities suha β an be written as β = α + ek is
∑

β = α + ek
|α| = j

1 ≤ k ≤ d

(
j

α

)
=

d∑

k=1,βk>0

(
j

β − ek

)

=

(
j + 1

β

)
d∑

k=1

βk
j + 1

=

(
j + 1

β

)235



�nishing the indution. Now Taylor's formula yields
f(y)

=
m−1∑

j=0

∑

|α|=j

(
j

α

)
Dαf(x)(y − x)α

1j

j!

+
∫ 1

0

(1− s)m−1

(m− 1)!

∑

|α|=m

(
m

α

)
Dαf(x+ s(y − x))(y − x)αds

=
m−1∑

|α|=0

Dαf(x)
(y − x)α

α!

+m
∫ 1

0
(1− s)m−1

∑

|α|=m

Dαf(x+ s(y − x))
(y − x)α

α!
dsand the residual has the bound

|f(y)− Tx(f)(y)|

≤ m
∫ 1

0
(1− s)m−1

∣∣∣∣∣∣
∑

|α|=m

Dαf(x+ s(y − x))
(y − x)α

α!

∣∣∣∣∣∣
ds

≤ m
∫ 1

0
(1− s)m−1

∑

|α|=m

|Dαf(x+ s(y − x))|‖y − x‖m∞
α!

ds

≤ ‖y − x‖m∞ sup
0≤s≤1

∑

|α|=m

1

α!
|Dαf(x+ s(y − x))|

= ‖y − x‖m∞
∑

|α|=m

1

α!
|Dαf(ξ(x, y, α))|with ertain points ξ(x, y, α) on the line segment between x and y.12.2 Lebesgue Integration12.2.1 L2 spaesLemma 12.2. The shift operator Sz : f(·) 7→ f(· − z) is a ontinuousfuntion of z near zero in the following sense: for eah given u ∈ L2(R

d) andeah given ǫ > 0 there is some δ > 0 suh that
‖Sz(u)− u‖L2(Rd) ≤ ǫfor all ‖z‖2 ≤ δ.Proof: to be supplied later....We now want to prove that the spae S of tempered test funtions is densein L2(R

d). For this, we have to study funtions like (12.13) in some more236



detail. They are in S for all positive values of ǫ, and Lemma 12.14 tells usthat the operation
f 7→Mǫ(f) :=

∫

Rd
f(y)ϕ(ǫ, · − y)dymaps eah ontinuous L1 funtion f to a "molli�ed" funtion Mǫ(f) suhthat

lim
ǫ→0

Mǫ(f)(x) = f(x)uniformly on ompat subsets of Rd.It is ommon to replae the Gaussian in (12.16) by an in�nitely di�erentiablefuntion with ompat support, e.g.
ϕ(ǫ, x) =

{
c(ǫ) exp(−1/(ǫ2 − ‖x‖22)) ‖x‖2 < ǫ

0 ‖x‖2 ≥ ǫ

} (12.3)where the onstant c(ǫ) is suh that
∫

Rd
ϕ(ǫ, x)dx = 1holds for all ǫ > 0. This Friedrih's molli�er an also be used in thede�nition of Mǫ. It has the advantage that Lemma 12.14 holds for moregeneral funtions, i.e.: for funtions whih are in L1 only loally.We now want to study the ation of Mǫ on L2 funtions. Let u ∈ L2(R

d) begiven, and apply the Cauhy-Shwarz inequality to
Mǫ(f)(x) =

∫

Rd
(f(y)

√
ϕ(ǫ, x− y))

√
ϕ(ǫ, x− y)dyto get

|Mǫ(f)(x)|2 ≤ ∫
Rd |f(y)|2ϕ(ǫ, x− y)dy

∫
Rd ϕ(ǫ, x− y)dy

=
∫
Rd |f(y)|2ϕ(ǫ, x− y)dyand

∫

Rd
|Mǫ(f)(x)|2dx ≤

∫

Rd

∫

Rd
|f(y)|2ϕ(ǫ, z)dydz =

∫

Rd
|f(y)|2dysuh that Mǫ has norm less than or equal to one in the L2 norm. It is evenmore simple to prove the identity

(f,Mǫg)L2(Rd) = (Mǫf, g)L2(Rd)237



for all f, g ∈ L2(R
d) by looking at the integrals. Here, we used the Fubinitheorem on Rd whih requires some are, but there are no problems beauseeverything an either be done with a Friedrih's molli�er, or be done onsu�iently large ompat sets �rst, letting the sets tend to Rd later.We now use a Friedrih's molli�er to study the L2 error of the molli�a-tion. This is very similar to the arguments we already know. The error isrepresentable pointwise as

f(x)−Mǫ(f)(x) =
∫

Rd
(f(x)− f(y))ϕ(ǫ, x− y)dyand we an use the Cauhy-Shwarz inequality to get

|f(x)−Mǫ(f)(x)|2 ≤
∫

‖x−y‖2<ǫ
|f(x)− f(y)|2ϕ(ǫ, x− y)dy.This an be integrated to get

∫

Rd
|f(x)−Mǫ(f)(x)|2dx ≤

∫

‖z‖2<ǫ
ϕ(ǫ, z)

∫

Rd
|f(y + z)− f(y)|2dydz,and we use the ontinuity of the shift operator as proven in Lemma 12.2 tomake this as small as we want by piking a suitably small ǫ. This shows

lim
ǫ→0

‖f −Mǫ(f)‖L2(Rd) = 0and provesLemma 12.4. The spae S of test funtions is dense in L2(R
d).Lemma 12.5. The spae C∞

0 (Rd) of ompatly supported in�nitely di�eren-tiable funtions is dense in L2(R
d).Proof: We an use a standard density lemma to go over from an f ∈ 2(R

d)to a ompatly supported funtion, and then we an use Friedrih's molli�erto generate an in�nitely di�erentiable funtion. Both proesses work witharbitrarily small L2 errors.12.3 Fourier Transforms on R
dThis setion onerns an important tool for analysis of kernels on Rd. Thereare two major possibilities to pik a spae S of test funtions on R

d to startwith, and we take the tempered test funtions forming Shwartz spae
S that are verbally de�ned as omplex-valued funtions on Rd whose partialderivatives exist for all orders and deay faster than any polynomial towardsin�nity. 238



De�nition 12.6. For a test funtion u ∈ S, the Fourier transform is
û(ω) := (2π)−d/2

∫

Rd
u(x)e−ix·ωdx, (12.7)where ω varies in Rd and x ·ω is shorthand for the salar produt xTω = ωTxto avoid the T symbol in the exponent. Sine the de�nition even works forgeneral u ∈ L1(R

d), it is well-de�ned on S and learly linear. Note that weuse the symmetri form of the transform and do not introdue a fator 2πin the exponent of the exponential. This sometimes makes omparisons toother presentations somewhat di�ult.To get used to alulations of Fourier transforms, let us start with the Gaus-sian uγ(x) = exp(−γ‖x‖22) for γ > 0, whih learly is in the spae of testfuntions, sine all derivatives are polynomials multiplied with the Gaussianitself. As a byprodut we shall get that the Gaussian is positive de�nite on
Rd. Fortunately, the Gaussian an be written as a d-th power of the entireanalyti funtion exp(−γz2), and we an thus work on Cd instead of Rd. Wesimply use substitution in

ûγ(iω) = (2π)−d/2
∫
Rd e−γ‖x‖2

2ex·ωdx

= (2π)−d/2e‖ω‖
2
2
/4γ
∫
Rd e−‖√γx−ω/2

√
γ‖2

2dx

= (2πγ)−d/2e‖ω‖
2
2
/4γ
∫
Rd e−‖y‖2

2dyand are done up to the evaluation of the dimension-dependent onstant
∫

Rd
e−‖y‖22dy =: cdwhih is a d-th power, beause the integrand fatorizes niely. We alulate

c2 by using polar oordinates and get
c2 =

∫
R2 e−‖y‖2

2dy

=
∫ 2π
0

∫∞
0 e−r2r dr dϕ

= 2π
∫∞
0 e−r2r dr

= −π ∫∞0 (−2r)e−r2 dr

= π.This proves the �rst assertion of 239



Theorem 12.8. The Gaussian
uγ(x) = exp(−γ‖x‖22)has Fourier transform

ûγ(ω) = (2γ)−d/2e−‖ω‖2
2
/4γ (12.9)and is unonditionally positive de�nite on Rd.To understand the seond assertion, we addDe�nition 12.10. A real-valued funtion

Φ : Ω× Ω → Ris a positive de�nite funtion on Ω, i� for any hoie of �nite subsets
X = {x1, . . . , xM} ⊆ Ω of M di�erent points the matrix

AX,Φ = (Φ(xk, xj))1≤j,k≤Mis positive de�nite.At �rst sight it seems to be a mirale that a �xed funtion Φ should besu�ient to make all matries of the above form positive de�nite, no matterwhih points are hosen and no matter how many. It is even more astonishingthat one an often pik radial funtions like Φ(x, y) = exp(‖x − y‖22) to dothe job, and to work for any spae dimension.Proof of the theorem: Let us �rst invert the Fourier transform by setting
β := 1/4γ in (12.9):

exp(−β‖ω‖22) = (4πβ)−d/2
∫
Rd e−‖x‖2

2
/4βe−ix·ωdx

= (2π)−d/2
∫
Rd(2β)−d/2e−‖x‖2

2
/4βe+ix·ωdx.Then take any set X = {x1, . . . , xM} ⊂ R

d of M distint points and anyvetor α ∈ RM to form
αTAX,uγα =

M∑

j,k=1

αjαk exp(−γ‖xj − xk‖22)

=
M∑

j,k=1

αjαk(4πγ)
−d/2

∫

Rd
e−‖x‖2

2
/4γe−ix·(xj−xk)dx

= (4πγ)−d/2
∫

Rd
e−‖x‖2

2
/4γ

M∑

j,k=1

αjαke
−ix·(xj−xk)dx

= (4πγ)−d/2
∫

Rd
e−‖x‖2

2
/4γ

∣∣∣∣∣∣

M∑

j=1

αje
−ix·xj

∣∣∣∣∣∣

2

dx ≥ 0.240



This proves positive semide�niteness of the Gaussian. To prove de�niteness,we an assume
f(x) :=

M∑

j=1

αje
−ix·xj = 0for all x ∈ Rd and have to prove that all oe�ients αj vanish. Takingderivatives at zero, we get

0 = Dβf(0) =
M∑

j=1

αj(−ixj)β,and this is a homogeneous system for the oe�ients αj whose oe�ientmatrix is a generalized Vandermonde matrix, possibly transposed and withsalar multiples for rows or olumns. This proves the assertion in one dimen-sion, where the matrix orresponds to the lassial Vandermonde matrix.The multivariate ase redues to the univariate ase by piking a nonzerovetor y ∈ Rd that is not orthogonal to any of the �nitely many di�erenes
xj −xk for j 6= k. Then the real values y ·xj are all distint for j = 1, . . . ,Mand one an onsider the univariate funtion

g(t) := f(ty) =
M∑

j=1

αje
−ity·xj = 0whih does the job in one dimension.Note that the Gaussian is mapped to itself by the Fourier transform, if wepik γ = 1/2. We shall use the Gaussian's Fourier transform in the proof ofthe fundamental Fourier Inversion Theorem:Theorem 12.11. The Fourier transform is bijetive on S, and its inverseis the transform

ǔ(x) := (2π)−d/2
∫

Rd
u(ω)eix·ωdω. (12.12)Proof: The multivariate derivative Dα of û an be taken under the integralsign, beause u is in S. Then

(Dαû)(ω) = (2π)−d/2
∫

Rd
u(x)(−ix)αe−ix·ωdx,and we multiply this by ωβ and use integration by parts

ωβ(Dαû)(ω) = (2π)−d/2
∫
Rd u(x)(−ix)α(i)β(−iω)βe−ix·ωdx

= (2π)−d/2
∫
Rd u(x)(−ix)α(i)β dβ

dxβ e
−ix·ωdx

= (2π)−d/2(−1)|α|+|β|iα+β
∫
Rd e−ix·ω dβ

dxβ (u(x)x
α)dx241



to prove that û lies in S, beause all derivatives deay faster than any polyno-mial towards in�nity. The seond assertion follows from the Fourier inversionformula
u(x) := (2π)−d/2

∫

Rd
û(ω)eix·ωdωthat we now prove for all u ∈ S. This does not work diretly if we naivelyput the de�nition of û into the right-hand-side, beause the resulting multipleintegral does not satisfy the assumptions of Fubini's theorem. We have to doa regularization of the integral, and sine this is a standard trik, we write itout in some detail:

(2π)−d/2
∫
Rd û(ω)eix·ωdω = (2π)−d

∫
Rd

∫
Rd u(y)ei(x−y)·ωdydω

= lim
ǫց0

(2π)−d
∫

Rd

∫

Rd
u(y)ei(x−y)·ω−ǫ‖ω‖2

2dydω

= lim
ǫց0

(2π)−d
∫

Rd

(∫

Rd
ei(x−y)·ω−ǫ‖ω‖2

2dω
)
u(y)dy

= lim
ǫց0

∫

Rd
ϕ(ǫ, x− y)u(y)dywith

ϕ(ǫ, z) := (2π)−d
∫

Rd
eiz·ω−ǫ‖ω‖22dω. (12.13)The proof is ompleted by appliation of the following result that is usefulin many ontexts:Lemma 12.14. The family of funtions ϕ(ǫ, z) of (12.13) approximates thepoint evaluation funtional in the sense

u(x) = lim
ǫց0

∫

Rd
ϕ(ǫ, x− y)u(y)dy (12.15)for all funtions u that are in L1(R

d) and ontinuous around x.Proof: We �rst remark that ϕ is a disguised form of the inverse Fouriertransform equation of the Gaussian. Thus we get
ϕ(ǫ, x) = (4πǫ)−d/2e−‖x‖2

2
/4ǫ (12.16)and ∫

Rd
ϕ(ǫ, x)dx = (4πǫ)−d/2

∫

Rd
e−‖x‖2

2
/4ǫdx = 1.To prove (12.15), we start with some given δ > 0 and �rst �nd some ball

Bρ(x) of radius ρ(δ) around x suh that |u(x)− u(y)| ≤ δ/2 holds uniformly242



for all y ∈ Bρ(x). Then we split the integral in
|u(x)− ∫

Rd ϕ(ǫ, x− y)u(y)dy| = | ∫
Rd ϕ(ǫ, x− y)(u(x)− u(y))dy|

≤ ∫
‖y−x‖2≤ρ ϕ(ǫ, x− y)|u(x)− u(y)|dy
+
∫
‖y−x‖>ρ ϕ(ǫ, x− y)|u(x)− u(y)|dy

≤ δ/2 + (4πǫ)−d/2e−ρ2/4ǫ2‖u‖1
≤ δfor all su�iently small ǫ.Due to the Fourier inversion formula, we now know that the Fourier transformis bijetive on S.We now relate the Fourier transform to the L2 inner produt, but we haveto use the latter over C to aount for the possibly omplex values of theFourier transform. We de�ne the inner produt as

(f, g)L2(Rd) :=
∫

Rd
f(x)g(x)dx (12.17)without fators that sometimes are used.Fubini's theorem easily proves the identity

(v, û)L2(Rd) = (2π)−d/2
∫

Rd
v(x)

∫

Rd
u(y)e+ix·ydydx = (v̌, u)L2(Rd)for all test funtions u, v ∈ S. Setting v = ŵ we get the Planherel equa-tion

(ŵ, û)L2(Rd) = (w, u)L2(Rd) (12.18)for the Fourier transform on S, proving that the Fourier transform is isometrion S as a subspae of L2(R
d).12.4 Fourier Transform in L2(R

d)The test funtions from S are dense in L2(R
d) (see Lemma 12.4 for details),and thus we haveTheorem 12.19. The Fourier transform has an L2-isometri extension fromthe spae S of tempered test funtions to L2(R

d). The same holds for theinverse Fourier transform, and both extensions are inverses of eah other in
L2(R

d). Furthermore, Pareval's equation (12.18) holds in L2(R
d).243



Note that this result does not allow to use the Fourier transform formula (orits inverse) in the natural pointwise form. For any f ∈ L2(R
d) one �rst hasto provide a sequene of test funtions vn ∈ S that onverges to f in the

L2 norm for n → ∞, and then, by ontinuity, the image f̂ of the Fouriertransform is uniquely de�ned almost everywhere by
lim
n→∞ ‖f̂ − v̂n‖L2(Rd) = 0.This an be done via Friedrih's molli�ers as de�ned in (12.3), replaing theGaussian in the representation (12.16) by a ompatly supported in�nitelydi�erentiable funtion.A more useful haraterization of f̂ is the variational equation
(f̂ , v)L2(Rd) = (f, v̌)L2(Rd)for all test funtions v ∈ S, or, by ontinuity, all funtions v ∈ L2(R

d).12.5 Poisson Summation FormulaThis omes in several forms:
(2π)−d/2

∑

k∈Zd

û(k) =
∑

j∈Zd

u(2πj)

(2π)−d/2
∑

k∈Zd

û(k)eik
Tx =

∑

j∈Zd

u(x+ 2πj)

(2π)−d/2
∑

k∈Zd

u(k)e−ikTω =
∑

j∈Zd

û(ω + 2πj)

(2π)−d/2
∑

k∈Zd

u(hk)e−ihkTω = h−d
∑

j∈Zd

û
(
ω +

2πj

h

)but we shall have to assure in whih sense and under whih assumptions itholds. The �rst learly is a onsequene of the seond, if the seond holdspointwise. But we shall not disuss this here. The �nal two are variations ofthe seond, as follows from standard transformations.Thus we fous on the seond one �rst and see it as an equation in L2(R
d).Both sides are 2π-periodi, and the left-hand side an be viewed as the Fourierseries representation of the right-hand side. Thus we assume that the right-hand side is a pointwise absolutely onvergent series whih is also onvergentin L2[−π, π]d. To make the left-hand side meaningful, we assume that u isin L1(R

d). 244



If we write the Fourier analysis of a d-variate 2π-periodi funtion f(x) as
f(x) =

∑

k∈Zd

cke
ikTx, ck = (2π)−d

∫

[−π,π]d
f(x)e−ikTxdx,we an apply this to the right-hand side f of the seond form of the Poissonsummation formula. We get the oe�ient

ck = (2π)−d
∫

[−π,π]d
f(x)e−ikT xdx

= (2π)−d
∫

[−π,π]d

∑

j∈Zd

u(x+ 2πj)e−ikTxdx

= (2π)−d
∫

[−π,π]d

∑

j∈Zd

u(x+ 2πj)e−ikT (x+2πj)dx

= (2π)−d
∫

Rd
u(t)e−ikT tdt

= (2π)−d/2û(k)under our assumptions. Note that the above argument uses only L2�ontinuoustransformations. This proves the seond equation.The third form an be dedued exatly like the seond one, if we also in-terhange the role of u and û in the assumptions. Formally, we an use theseond for û instead of u and apply
ˆ̂u(k) = û∨(−k) = u(−k).The �nal form takes v(x) := u(hx) and applies the third inequality with

v̂(ω) = h−dû
(
ω

h

)following from
v̂(ω) = (2π)−d/2

∫
v(x)e−ixTωdx

= (2π)−d/2
∫
u(hx)e−ihxTω/hdx

= h−d(2π)−d/2
∫
u(y)e−iyTω/hdx

= h−dû
(
ω
h

)
.245



This yields
(2π)−d/2

∑

k∈Zd

v(k)e−ikT η =
∑

j∈Zd

v̂(η + 2πj)

(2π)−d/2
∑

k∈Zd

u(hk)e−ikT η = h−d
∑

j∈Zd

û
(
η + 2πj

h

)

(2π)−d/2
∑

k∈Zd

u(hk)e−ihkTω = h−d
∑

j∈Zd

û
(
ω +

2πj

h

)for η =: hω. But note that the above form is badly saled. It should read
hd/2

∑

k∈Zd

u(hk)e−ihkTω =
(
2π

h

)d/2 ∑

j∈Zd

û
(
ω +

2πj

h

)in order to represent the fat that the left-hand side is a summation overgridpoints with spaing h, while the right-hand side is a summation over agrid with spaing 2π
h
.12.6 Fourier Transforms of FuntionalsWith Planherel's equation in mind, let us look at the linear funtional

λu(v) := (u, v)L2(Rd)on S. We see that
λû(v) = (û, v)L2(Rd) = (u, v̌)L2(Rd) = λu(v̌)holds. A proper de�nition of the Fourier transform for funtionals λu shouldbe in line with the funtions u that represent them, and thus we should de�ne

λ̂u := λûor in more generality
λ̂(v) := λ(v̌)for all v ∈ S. Sine the spae S of test funtions is quite small, its dual, thespae of linear funtionals on S, is quite large. In partiular, the funtionalsof the form λu are de�ned on all of S, if u is a tempered funtion. Thelatter form the spae K of all ontinuous funtions on R

d that grow at mostpolynomially for arguments tending to in�nity.246



De�nition 12.20. The Fourier transform of a linear funtional λ on S isthe linear funtional λ̂ on S de�ned by
λ̂(v) := λ(v̌) or λ̂(v̂) := λ(v)for all v ∈ S. If the latter an be represented in the form λw with a temperedfuntion w ∈ K, we say that w is the Fourier transform of λ and write w = λ̂.The generalized Fourier transform of a tempered funtion u ∈ K is theFourier transform λ̂u of the funtional λu.Example 12.21The funtional δx(v) := v(x) has the form

δx(v) = v(x) = (2π)−d/2
∫

Rd
v̂(ω)e+ix·ωdω,and its Fourier transform is of the form λux with

ux(ω) = δ̂x(ω) = e−ix·ω.Here, the normalization of the L2 inner produt (12.17) pays o�. Note thatthe Fourier transform is not a test funtion, but rather a tempered funtionfrom K and in partiular a bounded funtion. The funtional δ := δ0 has theFourier transform u0 = 1.Example 12.22A very important lass of funtionals for our purposes onsists of the spae
P⊥

Ω = L of funtionals of the form
λa,X :=

∑

xj∈X
ajf(xj) (12.23)for �nite sets X ⊂ Ω and a ∈ R|X| that vanish on Pd

m. Their ation on a testfuntion v is
λa,X(v) =

M∑

j=1

ajv(xj)

= (2π)−d/2
∫

Rd
v̂(ω)

M∑

j=1

aje
ixj ·ωdω

= λ̂a,X(v̂)247



suh that the Fourier transform of the funtional λa,X is the funtional gen-erated by the bounded funtion
λ̂a,X(ω) = pa,X(ω) :=

M∑

j=1

aje
−ixj ·ω.If we expand the exponential into its power series, we see that

λ̂a,X(ω) =
∞∑

k=0

M∑

j=1

aj(−ixj · ω)k/k!

=
∞∑

k=m

M∑

j=1

aj(−ixj · ω)k/k!sine the funtional vanishes on Pd
m. Thus λ̂a,X(ω) has a zero of order atleast m in the origin. If the funtional λa,X itself were representable by afuntion u, the funtion u should be L2-orthogonal to all polynomials from

Pd
m. We shall use both of these fats later.Example 12.24The monomials xα are in the spae K, and thus they should at least havegeneralized Fourier transforms in the sense of funtionals. This an easily beveri�ed via

(
−i d

dx

)α
v(x) =

(
−i d

dx

)α
(2π)−d/2

∫
Rd v̂(ω)e+ix·ωdω

= (2π)−d/2
∫
Rd v̂(ω)(−i · iω)αe+ix·ωdω

= (2π)−d/2
∫
Rd v̂(ω)ωαe+ix·ωdω,and the assoiated funtional is

v 7→
(
−i d
dx

)α

v(x)at x = 0.12.7 Speial Funtions and TransformsThis is intended as a referene and tutorial for lassial formulas involvingspeial funtions (e.g.: Gamma, Beta, and Bessel funtions) and their trans-forms. Results on Fourier transforms in general are in setion 12.3. Thissetion, so far, is in raw and unsorted form, beause all required formulaeare just olleted here. 248



12.7.1 Gamma FuntionThe Gamma funtion is de�ned by
Γ(z) =

∫ ∞

0
tz−1e−tdt (12.25)and has the properties

Γ(z + 1) = zΓ(z), z /∈ −N

Γ(k + 1) = k!, k ∈ N

Γ(1/2) =
√
π.The equation ∫ 1

0
ux−1(1− u)y−1du =

Γ(x)Γ(y)

Γ(x+ y)
(12.26)for any x, y > 0 will be useful.12.7.2 Volumes and Surfae IntegralsThe volume of the d-dimensional ball

Br(0) := { x ∈ R
d : ‖x‖2 ≤ r }of radius r is vol Br(0) =
rdπd/2

Γ(1 + d/2)
. (12.27)The surfae area σd−1 of the d− 1-dimensional sphere in Rd for d ≥ 1 is

σd−1 = vol (Sd−1) = 2πd/2/Γ(d/2). (12.28)This follows for d > 2 from the representation
dσ =

d−1∏

j=1

(sinϕj)
d−1−jdϕjof the surfae element dσ in terms of the angles

ϕj ∈ [0, π], 1 ≤ j ≤ d− 2, ϕd−1 ∈ [0, 2π]and univariate integration, while d = 1, 2 are standard.
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12.7.3 Bessel FuntionsFor Bessel funtions, the standard soure of information is [Wat95℄.We onsider the funtion F (r‖ω‖2, d) de�ned by the integral
F (t, d) :=

∫

‖y‖2=1
e−ity·zdy (12.29)over the surfae of the unit ball in Rd for t ≥ 0, d ≥ 2, and some ‖z‖2 =

1, z ∈ R
d. This integral is invariant under orthogonal transformations Q of

Rd, as is easily obtainable from replaement of z by Qz. Thus the integral isindependent of z, as already indiated by the notation, and we an assume
z = (−1, 0, . . . , 0) for its evaluation. Let σd−1 be the surfae area of the d−1-sphere, i.e.: the boundary of the unit ball in Rd. We now assume d ≥ 3 andintegrate over the surfae of the d− 1-sphere by summing up the integralsover surfaes of (d−2)-spheres, splitting y = (y1, u) and setting z · y = cosϕ.This yields

F (t, d) =
∫

‖y‖2=1
eity·zdy

=
∫ π

0
eit cosϕ

∫

‖u‖2
2
=1−y2

1

dudϕ

= σd−2

∫ π

0
eit cosϕ(sin(ϕ))d−2dϕ

= σd−2

∫ 1

−1
eits(1− s2)(d−3)/2dsand ontains an instane of the Bessel funtion

Jν(t) =
(t/2)ν

Γ(2ν+1
2

)Γ(1
2
)

∫ 1

−1
eits(1− s2)

2ν−1

2 ds (12.30)whih is well-de�ned for Re (ν) > −1
2
. We end up with ν = d−2

2
and get

F (t, d) = σd−2

Γ(d−1
2
)Γ(1

2
)

(t/2)(d−2)/2
J(d−2)/2(t)

= 2πd/2(t/2)−(d−2)/2J(d−2)/2(t).

(12.31)Diret integration shows that this is also valid for d = 2 or ν = 0, using
σ0 = 2.12.7.4 Power Series of Bessel FuntionsThe Bessel funtion of (12.30) has the power series representation

Jν(t) =
(
t

2

)ν ∞∑

j=0

(
− t2

4

)j

j!Γ(ν + j + 1)
(12.32)250



that is valid for all t ∈ C \ {0} and all ν ∈ C. The integral representation(12.30) is �rst proven to be idential to the power series representation (12.32)on its domain of de�nition. Sine the power series is onvergent everywhere,the general de�nition of Jν an then be done by (12.32). We �rst expand theexponential in
∫ 1

−1
eits(1− s2)(2ν−1)/2ds =

∞∑

j=0

(it)j

j!

∫ 1

−1
sj(1− s2)(2ν−1)/2ds

=
∞∑

j=0

(it)2j

2j!

∫ 1

−1
s2j(1− s2)(2ν−1)/2dsand use symmetry to anel the odd powers. The equation (12.26) will omein handy after the substitution s2 = u. Then

∞∑

j=0

(it)2j

2j!

∫ 1

−1
s2j(1− s2)(2ν−1)/2ds =

∞∑

j=0

(it)2j

2j!

∫ 1

0
uj−1/2(1− u)(2ν−1)/2du

=
∞∑

j=0

Γ(j + 1
2
)Γ(2ν+1

2
)

Γ(j + ν + 1)

(it)2j

2j!

=
∞∑

j=0

Γ(1
2
)Γ(2ν+1

2
)

j!Γ(j + ν + 1)

(
−t

2

4

)juses the same split of Γ(j+ 1
2
) as before. This an be put int (12.30) to yieldthe power series representation.Looking at (12.32), we an de�ne a funtion Hν by

(
z
2

)−ν
Jν(z) =: Hν(z

2/4) =
∞∑

k=0

(−z2/4)k
k!Γ(k + ν + 1)

(12.33)for ν ∈ C. This funtion often ours in the text.In a very speial situation the power series representation (12.32) implies
J−1/2(t) =

(
t

2

)−1/2 ∞∑

j=0

(
− t2

4

)j

j!Γ(j + 1/2)

=
(
t

2

)−1/2 ∞∑

j=0

(−1)jt2j

22jj!((j − 1)/2)((j − 3)/2) . . . (1/2)
√
π

=
(
t

2

)−1/2 ∞∑

j=0

(−1)jt2j

(2j)!
√
π

=
(
t

2

)−1/2 1√
π
cos(t)

=

√
2

π

cos(t)√
t
,

(12.34)
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and the other Bessel funtions with half-integer order are similarly obtainableas linear ombinations of elementary funtions.12.7.5 Relations Between Bessel FuntionsBy di�erentiation of the Hν funtion from (12.33) we get
− d

dt
Hν(rt) = − d

dt

∞∑

k=0

(−rt)k
k!Γ(ν + k + 1)

= r
∞∑

k=1

(−rt)k−1

(k − 1)!Γ(ν + k + 1)

= r
∞∑

k=0

(−rt)k
k!Γ(ν + k + 2)

= rHν+1(rt).

(12.35)
and

d

dt
tνHν(rt) = d

dt

∞∑

k=0

(−rt)ktν
k!Γ(ν + k + 1)

= r
∞∑

k=0

(−r)k(ν + k)tν+k−1

k!Γ(ν + k + 1)

=
∞∑

k=0

(−rt)ktν−1

k!Γ(ν − 1 + k + 1)

= tν−1Hν−1(rt).

(12.36)
We further need a speial identity for Bessel funtions:
Jµ+ν+1(t) =

tν+1

2νΓ(ν + 1)

∫ 1

0
Jµ(ts)s

µ+1(1− s2)νds, t > 0, ν > −1, µ > −1

2
.(12.37)
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Sine the integral is �nite, we an simply insert the power series and get
∫ 1

0
Jµ(ts)s

µ+1(1− s2)νds =
∫ 1

0



(
ts

2

)µ ∞∑

j=0

(
− (ts)2

4

)j

j!Γ(µ+ j + 1)


 sµ+1(1− s2)νds

=
∞∑

j=0

(−1)j( t
2
)µ+2j

j!Γ(µ+ j + 1)

∫ 1

0
s2µ+2j+1(1− s2)νds

=
∞∑

j=0

(−1)j( t
2
)µ+2j

j!Γ(µ+ j + 1)

1

2

∫ 1

0
rµ+j(1− r)νdr

=
∞∑

j=0

(−1)j( t
2
)µ+2j

j!Γ(µ+ j + 1)

1

2

Γ(µ+ j + 1)Γ(ν + 1)

Γ(µ+ ν + j + 2)

=




∞∑

j=0

(−1)j( t
2
)µ+ν+1+2j

j!Γ(µ+ ν + j + 2)


 2Γ(ν + 1)

tν+1

=
2Γ(ν + 1)

tν+1
Jµ+ν+1(t).There is a speial appliation in the text for ν = 0 and µ = (d− 2)/2, with

Jd/2(t) = t
∫ 1

0
J(d−2)/2(ts)s

d/2ds. (12.38)12.7.6 Bounds on Bessel FuntionsWe ontinue with two properties of Bessel funtions from [NW91b℄:
J2
d/2(z) ≤ 2d+2

πz , z > 0 (12.39)
lim
z→0

z−dJ2
d/2(z) =

1

2dΓ2 (1 + d/2)
. (12.40)The seond of these follows easily from the power series expansion, sine

lim
z→0

(
z

2

)−ν

Jν(z) =
1

Γ(1 + ν)

lim
z→0

z−νJν(z) =
2−ν

Γ(1 + ν)

lim
z→0

(
z−νJν(z)

)2
=

2−2ν

Γ(1 + ν)2
.Unfortunately, equation (12.39) is muh more di�ult and must (for now)be left to the ited literature. Similarly, there is a weaker, but more generalbound

|Jν(x)| ≤ 1 (12.41)253



for all x ∈ R and ν ≥ 0 ([AS70℄, 9.1.60, p. 362). Both of the above boundsshould ombine into the general inequality
|Jν(|x|)| ≤ ≀(|x|−1/2), x→ ∞ (12.42)in view of [AS70℄, 9.2.1, p. 364. These things will be added later.12.7.7 Integrals Involving Bessel FuntionsFrom [AS70℄ 11.4.16, p. 486 we take the moment equations

∫ ∞

0
tµJν(t)dt = 2µ

Γ((ν + µ+ 1)/2)

Γ((ν − µ+ 1)/2)
(12.43)whih are valid for Re (ν + µ) > −1, Re (µ) < 1/2. We now use these toderive similar equations for the Hν funtions by

∫ ∞

0
sρHν(s)ds =

∫ ∞

0
(z2/4)ρHν(z

2/4)(z/2)dz

=
∫ ∞

0
(z2/4)ρ(z/2)−νJν(z)(z/2)dz

= 2ν−1−2ρ
∫ ∞

0
z2ρ−ν+1Jν(z)dz

=
Γ(ρ+ 1)

Γ(ν − ρ)

(12.44)
for ρ > −1 and ν > 2ρ+ 1

2
.Another itation from [AS70℄ 11.4.41, p. 487 is the Weber-Shafheitlinintegral

∫ ∞

0
tµ−ν+1Jµ(at)Jν(bt)dt

=





0 0 < b < a
2µ−ν+1aµ(b2 − a2)ν−µ−1

bνΓ(ν − µ)
0 < a < b



(12.45)for Re ν > Re µ > −1 and a 6= b > 0.12.7.8 Bessel Funtions of Third KindThe Bessel funtion Kν of third kind (alias Mdonald funtion) is de�ned as

Kν(z) :=
∫ ∞

0
ez cosh t cosh(νt) (12.46)254



for z 6= 0, | arg z| < π/2 and all ν ∈ C. From this it follows that
Kν = K−ν (12.47)holds and that Kν is positive for real parameters ν, z. For the speial aseRe ν > −1/2 there is an integral representation

Kν(z) =
π1/2(z/2)ν

Γ(ν + 1/2)

∫ ∞

1
e−zt(t2 − 1)ν−1/2dt. (12.48)Its asymptotis near zero is

Kν(z) =
(z/2)−ν

Γ(ν)
+ O(1) (12.49)for ν > 0 and real, while it behaves like

Kν(z) =

√
π√
2z
e−z(1 + ≀(z−1)), (12.50)near in�nity for |ν| ≥ 1/2. The asymptotis of K0 near zero are like

K0(r) =
1

e
− log(r/2) + O(1) for r → 0.Due to [AS70℄, 11.4.44, p.488 it is related to the Jν Bessel funtions via theidentity ∫ ∞

0

tν+1Jν(at)

(t2 + z2)µ+1
dt =

aµzν−µ

2µΓ(µ+ 1)
Kν−µ(az) (12.51)for a, z > 0, −1 < ν < 2µ+ 3/2. It satis�es the di�erential equations

K ′
ν(z) = Kν−1(z)−

ν

z
Kν(z)

d

dz
(zνKν(z)) = −zνKν−1(z).

(12.52)The seond equation, ombined with (12.47), proves that the funtionsKν(x)x
νfor x > 0, ν ≥ 0 are nondereasing for x > 0 with exponential deay at in-�nity. These funtions our as reproduing kernels of Sobolev spaes andare often alled Matérn kernels or Sobolev kernels.
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