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Prefa
eThis is a text intended for use with my le
ture �Approximationsverfahren II�in winter 2010/2011. Though the basi
 ba
kground material is in the book[Wen05℄ of Holger Wendland, some additional stu� is ne
essary at 
ertainpla
es. The text is an update of of a 2005 le
ture handout. It is under
onstru
tion at various marked pla
es, and it will evolve during the term.Readers might 
onsult the books or surveys [Aro50, Mes62, BCR84, Sas94,S
h97b, BS00, Buh03, Wen05, SW06, Fas07℄ (in 
hronologi
al order) for ad-ditional material. Single papers will be 
ited where needed, but a few thingspresented here 
annot be found elsewhere.Göttingen, February 1, 2011R. S
haba
k
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1 Introdu
tionThis text provides some basi
 material on kernels. It turns out that kernelsarise very naturally in Applied Mathemati
s, in various pla
es, and for difer-ent purposes. To give the reader an impression of the kernels that are inour fo
us, we �rst list the most important 
ases without referring to spe
i�
properties.1.1 Radial KernelsIn a sense that 
an be spe
i�ed, the Gaussian
K(x, y) := exp(−‖x− y‖2/2) for all x, y ∈ R

d or Cd (1.1)is the mother of many kernels. We shall use the notation K in the following,standing for either R or C.In general, our notion of kernels will use the followingDe�nition 1.2. Let Ω be an arbitrary nonempty set. A fun
tion
K : Ω× Ω → K, i.e. R or Cis 
alled a (real� or 
omplex�valued) kernel on Ω. We 
all K a Hermitiankernel if

K(x, y) = K(y, x) for all x, y ∈ Ω.If the kernel is real�valued, this property de�nes a symmetri
 kernel.Sin
e the Gaussian (1.1) 
an be written as a fun
tion
φ(r) = K(‖x− y‖2), φ : [0,∞) → Kof the Eu
lidean distan
e r = ‖x − y‖2, it is traditionally 
alled a radialbasis fun
tion (RBF). There are other prominent kernels of this type, e.g.the multiquadri
s

φ(r) = (1 + r2)β/2.For negative β, they are often 
alled inverse multiquadri
s.Other kernels are the powers
φ(r) = rβ, β /∈ 2Z.1



−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Gaussian kernels, scaled

Figure 1: Gaussian kernels
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Figure 2: Inverse multiquadri
sThe latter are part of an important family 
alled polyharmoni
 for a reasonto be explained later, and the other kernels of this family take the form
φ(r) = rβ log(r), β ∈ 2Z2
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Figure 3: Multiquadri
swith the spe
ial 
ase
φ(r) = r2 log(r)
alled the thin�plate spline be
ause of its 
onne
tion to the partial di�er-ential equation des
ribing the bending of thin plates.
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Figure 4: Polyharmoni
 kernels3



The zoo of radial kernels also 
ontains 
ompa
tly supported kernels likeWendland's [Wen95℄ kernel
φ3,1(r) = (1− r)4+(1 + 4r)with the 
uto� fun
tion
(x)+ :=

{
x x ≥ 0,
0 x < 0,
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Figure 5: Some C2 Wendland kernelsFor reasons that 
ome up later, a parti
ularly important family of kernels
φ(r) = rβ Kβ(r)is related to Matérn or Sobolev. It uses the Bessel fun
tions Kν of third kind,see the se
tion 12.7 on Spe
ial Fun
tions.1.2 Stationary, Periodi
, and Zonal KernelsTo get away from radial kernels, we 
an fo
us on translation�invariant orstationary kernels that are fun
tions

K(x, y) = Φ(x− y)4
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Figure 6: Sobolev/Matérn kernelsof di�eren
es, if the domain Ω allows an additive group operation. This, forinstan
e, applies to periodi
 fun
tions as well, and there we have exampleslike the Diri
hlet kernel
D(ϕ) :=

1

2
+

N∑

j=1

cos(j ϕ) =
1

2

sin
((
n+ 1

2

)
ϕ
)

sin
(
ϕ
2

)whi
h is applied to di�eren
es ϕ = α − β of angles or of 2π�periodi
 argu-ments. This kernel plays a dominat role in Fourier series theory, be
ause itallows to write a Fourier partial sum as an integral.Other non�radial kernels are fun
tions of inner produ
ts, like
K(x, y) = exp(xT y) for all x, y ∈ R

d.Su
h kernels are parti
ularly important when working on the unit sphere,sin
e then xT y is the 
osine of the angle between the two ve
tors x and y,and thus the kernel 
an be represented as a fun
tion of an angle. Histori-
ally, these kernels are 
alled zonal. There are many papers on kernel�basedmethods on the sphere, but no 
omprehensive book, so far.At this point, we omit the general 
ase of kernels on (semi�) groups [BCR84℄or on Riemannian manifolds [Nar95℄. But we remark that kernels 
an alwaysbe restri
ted to subsets of their domain without losing essential properties.This applies when de�ning kernels on embedded manifolds, e.g. the sphere.5
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Figure 7: Diri
hlet kernels1.3 Kernels in Ma
hine LearningRemember that Ω does not 
arry any stru
ture at all. It 
an 
ontain texts andimages, for instan
e, and it will often be in�nite. Some readers may 
onsiderthis as being far too general. However, in the 
ontext of learning algorithms,the set Ω de�nes the possible learning inputs. Thus Ω should be generalenough to allow Shakespeare texts or X-ray images, i.e. Ω should betterhave no prede�ned stru
ture at all. Thus the kernels o

urring in ma
hinelearning [CST00, SS02, STC04℄ are extremely general, but still they take aspe
ial form whi
h 
an be tailored to meet the demands of appli
ations.This starts from de�ning the set Ω of obje
ts one wants to learn about.Then an appli
ation-dependent feature map Φ : Ω → F with values ina Hilbert �feature� spa
e F is de�ned. It should provide for ea
h x ∈ Ωa large 
olle
tion Φ(x) of features of x whi
h are 
hara
teristi
 for x andwhi
h live in the Hilbert spa
e F of high or even in�nite dimension. Notethe F has plenty of useful stru
ture, while Ω has not. Feature maps Ω → Fallow to apply linear te
hniques in their range F , while their domain Ω isan unstru
tured set. They should be 
hosen 
arefully in an appli
ation-dependent way, 
apturing the essentials of elements of Ω.With a feature map Φ at hand, there is a kernel
K(x, y) := (Φ(x),Φ(y))F for all x, y ∈ Ω (1.3)6



whi
h is automati
ally Hermitian. If the feature spa
e is �nite�dimensionalor a sequen
e spa
e, the resulting kernel is an expansion kernel. These willbe dealt with in Se
tion 1.6 and Chapter 4.1.4 Spa
es of Trial Fun
tionsA kernel K on Ω de�nes a fun
tion K(x, ·) for all �xed x ∈ Ω. This allowsto generate and manipulate spa
es
K0 := span {K(x, ·) : x ∈ Ω}. (1.4)of fun
tions on Ω. In Learning Theory, the fun
tion K(x, ·) = (Φ(x),Φ(·))Frelates ea
h other input obje
t to a �xed obje
t x via its essential features.But in general K0 just provides a handy linear spa
e of trial fun
tions on

Ω whi
h is extremely useful for most appli
ations of kernels, e.g. when Ω
onsists of texts or images. For example, in meshless methods for solvingpartial di�erential equations, 
ertain �nite-dimensional subspa
es of K0 areused as trial spa
es to furnish good approximations to the solutions.1.5 Convolution KernelsIn 
ertain other 
ases, the set Ω 
arries a measure µ, and then, under rea-sonable assumptions like f, K(y, ·) ∈ L2(Ω, µ), the generalized 
onvolution
K ∗Ω f :=

∫

Ω
f(x)K(·, x)dµ(x) (1.5)de�nes an integral transform f 7→ K ∗Ω f whi
h 
an be very useful. Notethat Fourier or Hankel transforms arise this way, and re
all the r�le of theDiri
hlet kernel in Fourier analysis of univariate periodi
 fun
tions. Theabove approa
h to kernels via 
onvolution works on lo
ally 
ompa
t topolog-i
al groups using Haar measure, but we do not want to pursue this detourinto abstra
t harmoni
 analysis too far. See [BCR84℄ and the dissertation[S
h09b℄ for kernels on rotation groups.Note that dis
retization of the integral in the 
onvolution transform leadsto fun
tions in the spa
e K0 from (1.4). Using kernels as trial fun
tions
an be viewed as a dis
retized 
onvolution. This is a very useful fa
t in thetheoreti
al analysis of kernel-based te
hniques.
7



1.6 Expansion KernelsIntegral operators (1.5) often have eigenfun
tion expansions of the form
K(x, y) =

∞∑

i∈I
λiϕi(x)ϕi(y) (1.6)that go under the names of Hilbert�S
hmidt or Mer
er or Karhunen�Loéve, using a general index set I whi
h usually is 
ountable. We shall usethe name expansion kernels for these, even if there is no integral operatorbehind them. Then they just are a series of the above form, with 
ertainfun
tions ϕi : Ω → R, i ∈ I, 
ertain positive weights λi, i ∈ I and anindex set I su
h that the summability 
onditions

K(x, x) :=
∑

i∈I
λi|ϕi(x)|2 <∞ (1.7)hold for all x ∈ Ω. Note that this o

urs in ma
hine learning, if the fun
tions

ϕi ea
h des
ribe a feature of x, and if the feature spa
e is the weighted
ℓ2 spa
e

ℓ2,I,λ := {{ξi}i∈I :
∑

i∈I
λi|ξi|2 <∞} (1.8)of sequen
es with indi
es in I.Note further that the summability 
ondition (1.7) guarantees the well�de�nednessof the kernel by the Cau
hy�S
hwarz inequality

|K(x, y)| =
∣∣∣∣∣
∑

i∈I

(√
λiϕi(x)

)
·
(√

λiϕi(y)
)∣∣∣∣∣ ≤

√
K(x, x)K(y, y) for all x, y ∈ Ω.But there are many other kernels that have the above form. For instan
e,the univariate Gaussian kernel is

K(x, y) := exp(−(x− y)2)
= exp(−x2) exp(2xy) exp(−y2)
= exp(−x2)

( ∞∑

n=0

2n

n!
xnyn

)
exp(−y2)

=
∞∑

n=0

2n

n!
xn exp(−x2)︸ ︷︷ ︸

=:ϕn(x)

yn exp(−y2)︸ ︷︷ ︸
=:ϕn(y)

=
∞∑

n=0

2n

n!
ϕn(x)ϕn(y) for all x, y ∈ R

(1.9)
without summability problems. But we shall postpone the 
onstru
tion oflarge 
lasses of kernels to a later 
hapter.8



1.7 Kernels from TransformsA variation of the 
onvolution and the expansion kernels are kernels obtainedfrom transforms, e.g. Fourier series, Fourier transforms, or other instan
esof harmoni
 analysis. The basi
 prin
iple is the representation
K(x, y) =

∫

T
g(ω, x)g(ω, y)dµ(ω) (1.10)where integration or summation takes pla
e with respe
t to a nonnegativemeasure µ on a transform domain T . In 
ase of Fourier series,

K(ϕ, ψ) :=
∑

n∈Z
K̂(n) exp(in(ϕ− ψ))with nonnegative real numbers K̂(n). These are examples of expansion ker-nels. In 
ase of Fourier transforms in d variables,

K(x, y) = (2π)−d/2
∫

Rd
K̂(ω) exp(iωT (x− y))dωwith a nonnegative transform fun
tion K̂ on Rd. We shall use this extensivelyin Se
tion 9.3.Theorem 1.11. If a kernel K is de�ned via (1.10), it is Hermitian andpositive semide�nite. If for all pairwise distin
t points xk ∈ Ω the fun
tions

g(·, xk) are linearly independent on at least a set of positive measure, thekernel is positive de�nite.Proof: The standard quadrati
 form is
N∑

j,k=1

ajakK(xj , xk)

=
N∑

j,k=1

ajak

∫

T
g(ω, xj)g(ω, xk)dµ(ω)

=
∫

T

∣∣∣∣∣
N∑

k=1

akg(ω, xk)

∣∣∣∣∣

2

dµ(ω) ≥ 0.If the form vanishes, the linear 
ombination of the g(·, xk) vanishes on allsets of positive measure. This proves the se
ond assertion.
9



1.8 Spe
ial KernelsAnother sour
e of kernels are di�erential equations. Typi
al examples areGreen's fun
tions or fundamental solutions, or singular kernels like the single�layer or double�layer potential. We shall tou
h these 
ases here or there.But there also are kernels whi
h are spe
ially tailored for use with PDEs,e.g. harmoni
 kernels [S
h09a, HS10℄ ormatrix�valued kernels [NW94,Low05a, Low05b, Fus08a℄ that allow to generate divergen
e�free ve
tor�elds [NWW07, Fus08b℄Finally, kernels often arise as 
ovarian
e kernels in sto
hasti
 models. If forevery t in some set Ω we have a random variable Xt with existing se
ondmoments, we 
an de�ne the 
ovarian
e kernel
K(s, t) := Cov(Xs, Xt), Ω× Ω → R (1.12)and analyze its properties. It turns out that the statisti
al estimation te
h-niques 
alled Kriging in Geostatisti
s are algorithmi
ally identi
al to inter-polation with translates of kernels in Numeri
al Analysis, and a large partof this text will study these methods in detail. The 
onne
tion of 
ovarian
ekernels to learning is obvious: two learning inputs x and y from Ω should bevery similar, if they are 
losely �
orrelated�, if they have very similar features,or if (1.3) takes large positive values.At this point, we leave out various other o

urren
es of kernels in the math-emati
al literature and in appli
ations (see the survey arti
le [SW06℄). Justkeep in mind that kernels have three major appli
ation �elds: they gener-ate 
onvolutions, trial spa
es, and 
ovarian
es. The �rst two are related bydis
retization.RS: the se
tion on PDE-related kernels needs extension.2 Kernels from Hilbert Spa
esFrom here on, we des
ribe a 
ommon framework for most of the kernels thatwe saw in the previous se
tion. We start with noting that all Hilbert spa
eslead to � reprodu
ing� kernels, and in the next 
hapter we shall see that mostkernels lead to �native� Hilbert spa
es in whi
h they are reprodu
ing.2.1 Reprodu
ing Kernel Hilbert Spa
esAs Numeri
al Analysts, we want to work with real� or 
omplex�valued fun
-tions on domains Ω. For ea
h x ∈ Ω and ea
h fun
tion f we 
onsider, we10



want that the evaluation
x 7→ f(x) ∈ K, i.e. R or Cis a reasonable operation. It depends on both f and x, and it should bestably 
omputable.But we shall pla
e more emphasis on f than on x, be
ause the set Ω is
ompletely unstru
tured in various appli
ations, e.g. in Ma
hine Learning.If we pla
e plenty of stru
ture on the spa
e H of fun
tions we want to workwith, we 
an assume H to be a Hilbert spa
e with an inner produ
t (., .)H.See Se
tion 11 for a basi
 a

ount of Hilbert spa
e theory.For later use, we allow ourselves to 
onsider arbitrary Hilbert spa
es as well,without being spa
es of fun
tions on some set. But this is no generalization,be
ause any Hilbert spa
e H is a Hilbert spa
e of fun
tions on its own dual

H∗ via
f(µ) := µ(f) for all f ∈ H, µ ∈ H∗. (2.1)In parti
ular, the dual spa
e now 
onsists 
ompletely of point evaluationfun
tionals, where �points� are fun
tionals themselves. We shall 
ome ba
kto this.Continuity of point evaluation fun
tionals

δx : f 7→ f(x), x ∈ Ωthen means that these fun
tionals are in the topologi
al dual H∗ of H andsatisfy
|δx(f)| = |f(x)| ≤ ‖δx‖H∗‖f‖H for all x ∈ Ω, f ∈ H.Furthermore, the Riesz isometry

R : H∗ → H, λ(f) = (f, R(λ))H for all f ∈ H, λ ∈ H∗maps δx into a fun
tion
K(x, ·) := R(δx) ∈ H for all x ∈ Ωthat is a kernel a

ording to De�nition 1.2. Then

δy(f) = f(y) = (f, R(δy))H = (f,K(y, ·))H for all f ∈ H, y ∈ Ω (2.2)is a reprodu
tion equation for values of fun
tions from the inner produ
t.It is 
lear that any kernel K(x, ·) satisfying the reprodu
tion equation must11



be the Riesz representer of the point evaluation fun
tional δx. Thus thereprodu
ing kernel is unique.Spe
ializing to f = K(x, ·) ∈ H we get
K(x, y) = (K(x, ·), K(y, ·))H = (δy, δx)H∗ for all x, y ∈ Ω. (2.3)This is one of the various o

urren
es of kernels in Mathemati
s. We shallsee a number of 
ases later. Note that in the right�hand side the points xand y are inter
hanged. This is due to the antilinearity of the Riesz map inthe 
omplex 
ase, leading to the isometry property in the sense

(R(λ), R(µ))H = (µ, λ)H∗ for all λ, µ ∈ H∗.See se
tion 11.6 for details on Hilbert spa
es and Riesz maps.Theorem 2.4. Ea
h Hilbert spa
e H of real� or 
omplex�valued fun
tions onsome set Ω with 
ontinuous point evaluation fun
tionals is a reprodu
ingkernel Hilbert spa
e (RKHS) with a unique kernel
K : Ω× Ω → Ksatisfying the reprodu
tion equation (2.2) and the representation (2.3).The above kernel K is Hermitian in the sense K(x, y) = K(y, x). In par-ti
ular, K(x, x) is always real. Note that K(x, ·) is a fun
tion in H, butnot ne
essarily K(·, x), unless K is real�valued and thus symmetri
, i.e.

K(x, y) = K(y, x). This is related to the fa
t that ve
tor spa
es over Cneed not have the property that they are 
losed under taking the 
omplex
onjugate or taking the real or imaginary parts.The values of su
h kernels 
an always be bounded by
|K(x, y)|2 ≤ K(x, x)K(y, y) for all x, y ∈ Ω (2.5)due to (2.3), but we shall generalize this property later in Theorem 3.7 onpage 42.As a warm�up we stateTheorem 2.6. All Hilbert spa
es H of fun
tions on some set Ω with a re-produ
ing kernel K 
oin
ide with the 
losure of the linear 
ombinations offun
tions K(y, ·) for all y ∈ Ω. 12



Proof: Assume that some f ∈ H is orthogonal to all K(y, ·). Then (2.2)proves that f is zero as a fun
tion on Ω.Theorem 2.7. If a Hilbert (sub�) spa
e of fun
tions on Ω has a �nite or-thonormal basis v1, . . . , vN the reprodu
ing kernel is
KN(x, ·) =

N∑

j=1

vj(x)vj(·) for all x ∈ Ω.In 
ase of a subspa
e, we have
KN(x, x) =

N∑

j=1

|vj(x)|2 ≤ K(x, x) for all x ∈ Ω.Proof: Whatever the (always existing) kernel looks like, it must have arepresentation
KN (x, ·) =

N∑

j=1

(KK(x, ·), vj)vj(·)

=
N∑

j=1

vj(x)vj(·)in the orthonormal basis. We 
ould postpone the se
ond assertion to Theo-rem 2.19, but here is another proof. Consider
KN(x, x) = (KN(x, ·), KN(x, ·))H

= (KN(x, ·), K(x, ·))Hyielding
KN(x, x) ≤

√
KN(x, x)

√
K(x, x) for all x ∈ Ω.The se
ond assertion is somewhat surprising for an orthonormal basis, sin
eit means that for in
reasing N the fun
tions vN must get small in spite oftheir normalization being independent of N . But in many 
ases the Hilbertspa
e norm also in
ludes derivatives, and sin
e these are kept at bay bynormalization, it is no mira
le that the basis fun
tions, exhibiting sharpspikes, tend to be small in their fun
tion values.Corollary 2.8. If a Hilbert (sub�) spa
e with 
ontinuous point evaluationhas a 
omplete orthonormal basis, then Theorem 2.7 also holds for N = ∞.13



Proof: Just use a series expansion in the above proof. There are no 
onver-gen
e problems, be
ause the Bessel inequality yields
∞∑

j=1

|(K(x, ·), vj)H|2 =
∞∑

j=1

|vj(x)|2 = ‖K(x, ·)‖2H = K(x, x) <∞,proving via the Cau
hy�S
hwarz inequality that the series
K(x, y) =

∞∑

j=1

vj(x)vj(y)
onverges pointwise and absolutely.Note that all orthonormal bases give the same result. A 
hange of basis willnot 
hange the kernel, only the representation will 
hange.2.2 The Dual Spa
eFor later use, we need some information about the dual spa
e of a reprodu
ingkernel Hilbert spa
e. The reason is that one often knows the spa
e and thekernel, the latter as an expli
it formula. But then one wants to know whi
hlinear fun
tionals λ : H → K are in the dual of the Hilbert spa
e. Here andelsewhere, we use supers
ript arguments to indi
ate the a
tion of variables,i.e. λx means the a
tion of λ with respe
t to the variable x.Theorem 2.9. The dual spa
e H∗ of a reprodu
ing kernel Hilbert spa
e offun
tions on some set Ω is the 
losure of the span of all point evaluationfun
tionals δx for x ∈ Ω. For ea
h pair λ, µ of fun
tionals from the dual H∗of H, one 
an de�ne λx(µyK(x, y)) uniquely via Cau
hy sequen
es to yield
λx(µyK(x, y)) = (λ, µ)H∗ for all λ, µ ∈ H∗ (2.10)as a generalization of (2.3). In parti
ular, the Riesz representer of a fun
-tional λ ∈ H∗ is λxK(·, x), and this fun
tion lies in H.Proof: Clearly, the �rst assertion is just the dual form of Theorem 2.6.The identity (2.10) holds for all linear 
ombinations of point evaluation fun
-tionals, and by 
ontinuity it 
arries over to all limits of Cau
hy sequen
es,i.e. to all fun
tionals in the dual. For linear 
ombinations of point evaluationfun
tionals (and thus later for all fun
tionals), the reprodu
tion equation is

λ(f) = (f, λxK(·, x))Hproving R(λ) = λxK(·, x).Roughly speaking, the dual spa
e 
onsists of a fun
tionals whi
h14



• 
an be obtained via sequen
es of linear 
ombinations of point evaluationfun
tionals
• su
h that their appli
ation in the limit is possible for both argumentsof K independently.To make this more pre
ise, we 
onsider fun
tionals that have a meaningoutside the Hilbert spa
e in question. Examples are fun
tionals like

f 7→ (∆f)(x), f 7→
∫

Ω
f(t)dt.We want to have a su�
ient 
ondition for these to lie in H∗.Theorem 2.11. Assume that the kernel K of a reprodu
ing kernel Hilbertspa
e H of fun
tions on some set Ω is expli
itly known as a fun
tion on Ω×Ω,and assume it allows the a
tion of a general fun
tional λ to both arguments,i.e. λyλxK(y, x) ∈ K exists. Furthermore, assume that there is a sequen
e

{λn}n∈N of linear 
ombinations of point evaluation fun
tionals on points of
Ω su
h that for all ǫ > 0 there is an N ∈ N su
h that for all n,m ≥ N wehave ∣∣∣λynλxmK(y, x)− λyλxK(y, x)

∣∣∣ ≤ ǫ. (2.12)Finally, assume
lim
n→∞λ

y
nK(x, y) = λyK(x, y) for all x ∈ Ω. (2.13)Then λ lies in H∗ and is the limit of the Cau
hy sequen
e {λn}n∈N in H∗.Proof: We �rst want to show that {λn}n∈N is a Cau
hy sequen
e in H∗.This follows immediately from

‖λn − λm‖2H2 = ‖λn‖2H2 + ‖λm‖2H2 − (λn, λm)H∗ − (λm, λn)H∗

= λynλ
x
nK(y, x) + λymλ

x
mK(y, x)

−λynλxmK(y, x)− λymλ
x
nK(y, x)

≤ 4ǫfor all n,m ≥ N . Now the sequen
e must have a limit λ̃ ∈ H∗, and we haveto show that λ = λ̃ as fun
tionals on H. From (2.13) we get
lim
n→∞λ

y
nK(x, y) = λ̃yK(x, y) = λyK(x, y) for all x ∈ Ω.By Theorem 2.6, this extends to all of H.15



2.3 Impli
ations for ΩWe �rst look at the situation where the Hilbert spa
e H is invariant under agroup T of transformations Ω 7→ Ω in the sense that
f(T (·)) ∈ H for all f ∈ H, T ∈ T
(f, g)H = (f(T (·)), g(T (·)))H for all f, g ∈ H, T ∈ T .Theorem 2.14. If H is invariant in the above sense under transformations,so is the reprodu
ing kernel, i.e.
K(x, y) = K(T (x), T (y)) for all x, y ∈ Ω, T ∈ T .Proof: Just 
onsider

f(T (x)) = (f,K(T (x), ·))H
= (f(T (·)), K(T (x), T (·)))Hand introdu
e g := f(T (·)) to get

g(x) = (g,K(T (x), T (·)))H for all g ∈ H,to see that the point evaluation fun
tional δx is also represented byK(T (x), T (·)).Theorem 2.14 is behind many simpli�ed kernels. Translation�invarian
e on
Ω = Rd is indu
ed by invarian
e under shifts, while radial kernels arisefrom invarian
e under both shifts, rotations, and re�e
tions, i.e. rigid�bodymotions. Zonal kernels on the sphere arise from rotational invarian
e.The mapping δ : x 7→ δx takes Ω into H∗. If it is not inje
tive, wehave a nontrivial equivalen
e relation x ∼ y on Ω de�ned by δx = δy or
f(x) = f(y) for all f ∈ H. In view of the Stone�Weierstraÿ theorem, and toavoid the above e�e
t, there isDe�nition 2.15. A spa
e H of fun
tions on a set Ω separates points of Ωif for every pair x 6= y of di�erent points in Ω there is a fun
tion f ∈ H with
f(x) 6= f(y).If H separates points of Ω, we have inje
tivity of δ. Otherwise, we mighteliminate this by going over to the fa
tor set Ω̃ := Ω/ ∼ instead of Ω.Under the hypotheses of Theorem 2.4 we 
an de�ne

d(x, y) := ‖δx − δy‖H∗ for all x, y ∈ Ω (2.16)16



with the expli
itly available representation
d(x, y)2 = K(x, x) +K(y, y)−K(x, y)−K(y, x) for all x, y ∈ Ω. (2.17)This is a nonnegative symmetri
 fun
tion that satis�es the triangle inequal-ity, but it 
an vanish for x 6= y in 
ase that f(x) = f(y) for all f ∈ H or

x ∼ y. If this is assumed, the above fun
tion is a true metri
 on the oth-erwise unstru
tured set Ω, and the kernel 
ould be rede�ned as a fun
tion
K∗(δx, δy) = (δx, δy)H∗ = K(x, y) on Ω∗ × Ω∗ using the set

Ω∗ := {δx : x ∈ Ω}that is the image of the embedding from Ω into H∗ via x 7→ δx. The kernelin this form is nothing than the restri
tion of the inner produ
t on H∗ ×H∗.In the 
ir
umstan
es of (2.1), the kernel is the inner produ
t itself, and themetri
 on Ω = H∗ is the usual metri
 indu
ed by the norm.Aiming at 
ontinuity of fun
tions, we 
an look at
|f(x)− f(y)|2 = |(δx − δy)(f)|2

≤ ‖f‖2H ‖δx − δy‖2H∗

= ‖f‖2H d(x, y)2

= ‖f‖2H (K(x, x)−K(x, y)−K(y, x) +K(y, y))
= ‖f‖2H (K(x, x)− 2 Re (K(x, y)) +K(y, y))to seeTheorem 2.18. Fun
tions from H are always Lips
hitz 
ontinuous with re-spe
t to d, and if K is 
ontinuous on Ω × Ω, the fun
tions in H are also
ontinuous on Ω.But note that talking about 
ontinuity on Ω needs a topology there, and wehave not �xed a topology other than the one indu
ed by d.2.4 Kernels for Subspa
esLet H0 be a 
losed subspa
e of a Hilbert spa
e H of fun
tions on Ω. As su
h,it is a Hilbert spa
e itself, and it has its own reprodu
ing kernel K0. Withthe proje
tor Π0 : H → H0 we haveTheorem 2.19. The subspa
e kernel is

K0(x, ·) = Π0(K0(x, ·)) for all x ∈ Ω,and the reprodu
ing kernel for the orthogonal 
omplement H⊥
0 is K −K0.17



Proof: We 
an de
ompose the identity on H into the orthogonal proje
tors
I = Π0 + (I − Π0) =: Π0 +Π⊥

0and apply this to the reprodu
tion equation (2.2). Then
f(y) = (Π0f)(y) + (Π⊥

0 f)(y)
= (f,K(y, ·))H
= (Π0f +Π⊥

0 f,Π0K(y, ·) + Π⊥
0K(y, ·))H

= (Π0f,Π0K(y, ·))H + (Π⊥
0 f,Π

⊥
0K(y, ·))H.Spe
ializing this to f ∈ H0 or to f ∈ H⊥

0 proves the assertions.In parti
ular,
f(y) = (Π0f)(y) + (f − Π0f,Π

⊥
0 K(y, ·))H
an in some instan
es be the Taylor formula, as we shall see.The upshot here is that orthogonal spa
e de
ompositions 
orrespond to ad-ditive kernel de
ompositions using the appropriate proje
tors.2.5 Subspa
es from Point SetsFor what follows, we �x a nonempty subset X ⊆ Ω of Ω and 
onsider thesubspa
e

HX := 
los span {K(x, ·) : x ∈ X} ⊆ H (2.20)of H. It is 
losed by de�nition, and we haveTheorem 2.21.
H⊥

X = {f : f ∈ H, f(X) = {0}}.Proof: If f(X) = {0}, then f ∈ H⊥
X by the reprodu
tion formula (2.2), and
onversely.From standard results in Hilbert spa
es, we know that there is a proje
tor

ΠX from H to HX . With the shorthand notation fX := ΠX(f) we getTheorem 2.22. Ea
h fun
tion f ∈ H has an orthogonal de
omposition
f = fX + f⊥

X18



with fX ∈ HX and f⊥
X ∈ H⊥

X . This means that ea
h fun
tion f ∈ H has aninterpolant fX ∈ HX re
overing the values of f on X. Furthermore,
‖f − fX‖H = inf

g∈HX

‖f − g‖H (2.23)and
‖fX‖ = inf

f(x) = g(x)
∀x ∈ Ω
g ∈ H

‖g‖H = inf
v∈H⊥

X

‖f − v‖F (2.24)
due to orthogonality of the de
omposition.Note that Theorem 2.22 
overs trans�nite interpolation and provides twooptimality prin
iples known from spline theory. Be
ause of their importan
e,we restate them asCorollary 2.25. The interpolant fX ∈ HX to a fun
tion f on X is at thesame time the best approximation to f from all fun
tions in HX .Proof: This is (2.23).Corollary 2.26. The interpolant fX ∈ HX to a fun
tion f on X is mini-mizes the norm under all interpolants from the full spa
e H.Proof: This is (2.24).A third optimality property will follow in Se
tion 2.8.De�ning f∅ = 0, f⊥

∅ = f and H∅ = {0} with H⊥
∅ = H for 
ompleteness, we
an note a few simple observations:Corollary 2.27. For all sets X ⊆ Y ⊆ Ω and all f ∈ H we have

‖fX‖H ≤ ‖fY ‖H ≤ ‖f‖Hand
‖f‖H ≥ ‖f − fX‖H ≥ ‖f − fY ‖H.2.6 Power Fun
tionWe now spe
ialize to f = K(x, ·) for a �xed x ∈ Ω.De�nition 2.28. The fun
tion
PX(x) := ‖K(x, ·)−K(x, ·)X‖H, x ∈ Ωis 
alled the Power Fun
tion with respe
t to the set X and the kernel K.19



This is nonstandard in the trans�nite 
ase, so far. The error fun
tional
ǫx,X : f 7→ f(x)− (ΠX(f))(x)is well�de�ned and in H∗. Thus another de�nition of the Power Fun
tion
ould be
PX(x) := ‖ǫx,X‖H∗ for all x ∈ Ω.Theorem 2.29. These de�nitions are equivalent. The Power Fun
tion hasthe properties

PX(x) = 0 for all x ∈ X
P∅(x)2 = K(x, x) for all x ∈ Ω
PΩ(x) = 0 for all x ∈ Ω

0 = PΩ(x) ≤ PY (x) ≤ PX(x) ≤ P∅(x) for all x ∈ Ω, X ⊆ Y ⊆ Ω,
PX(x) = inf

g∈HX

‖K(x, ·)− g‖H for all x ∈ Ω

PX(x) = sup
f ∈ H

‖f‖H ≤ 1
f(X) = {0}

f(x) for all x ∈ Ω

but the most important is the error bound
|f(x)− fX(x)| = |f⊥

X(x)| ≤ PX(x)‖f⊥
X‖H = PX(x)‖f − fX‖H ≤ PX(x)‖f‖H(2.30)for all x ∈ Ω, f ∈ H.Proof: For the equivalen
e, we have to prove that the Riesz representer of

δx ◦ ΠX is K(x, ·)X . This follows from
(f, R(δx ◦ ΠX))H = (δx ◦ ΠX)(f)

= fX(x)
= (fX , K(x, ·))H
= (fX , K(x, ·)X +K(x, ·)⊥X)H
= (fX , K(x, ·)X)H
= (f − f⊥

X , K(x, ·)X)H
= (f,K(x, ·)X)Husing the various orthogonalities.The �rst �ve listed properties are easy 
onsequen
es of De�nition 2.28 andthe previous results. The error bound follows as well from what we alreadyknow, but we 
an also use the error representation

f(x)− fX(x) = f⊥
X (x)

= (f⊥
X , K(x, ·))H

= (f⊥
X , K(x, ·)−K(x, ·)X)H20



be
ause f⊥
X is orthogonal to K(x, ·)X .We are left with the sixth, the �dual� representation of the Power Fun
tion.From the �rst inequality of the error bound, we see that

PX(x) ≥ sup
‖f⊥

X‖H≤1

f⊥
X (x)and equality must hold if we insert the representer of ǫx,X .The �fth property of the previous theorem has another equivalent formula-tion. Consider the subspa
e

H∗
X := 
los span {δx : x ∈ X}of the dual spa
e H∗. Then the property has the dual form of the �fthproperty of Theorem 2.29, i.e.
PX(x) = inf

λ∈H∗
X

‖δx − λ‖H∗ (2.31)for all x ∈ Ω, and it indi
ates how well the point evaluation fun
tional δx 
anbe approximated by arbitrary linear 
ombinations of the point fun
tionalsfor points of X .2.7 Interpolants on Finite SetsWe now 
onsider �nite sets X = {x1, . . . , xN} ⊆ Ω. For ea
h f ∈ H we 
anwrite fX as a linear 
ombination
fX =

N∑

j=1

αjK(xj , ·) (2.32)with 
oe�
ients αj ∈ R or C, but note that the 
oe�
ients might not beunique, sin
e we do not assume that the K(xj , ·) are linearly independent.Sin
e we know that fX must interpolate f on X , we haveTheorem 2.33. For ea
h f ∈ H, the linear system
N∑

j=1

αjK(xj , xk) = fk, 1 ≤ k ≤ N (2.34)with the Hermitian kernel matrix
A = (K(xj , xk))1≤k,j≤N (2.35)is solvable. 21



This is somewhat surprising, sin
e the kernel matrix 
an be singular underthe assumptions we made fo far.Theorem 2.36. In reprodu
ing kernel Hilbert spa
es, the kernel matrix fora �nite set X is positive semide�nite. It is positive de�nite if the pointevaluation fun
tionals δx for x ∈ X or, equivalently, the fun
tions K(x, ·)for x ∈ X are linearly independent.Proof: This follows be
ause any kernel matrix on a �nite setX = {x1, . . . , xN}is a Gramian matrix for the fun
tionals δxj
or the fun
tions K(xj , ·) due tothe representation equation (2.3).The upshot of Theorem 2.33 is that the right�hand side is always in the spanof the 
olumns of the matrix. Users must bear in mind that the system 
anbe unsolvable for general right�hand sides.Note that in the de�nition (2.35) of the kernel matrix, the row index k runsover the se
ond argument of K(xj , xk) to turn (2.32) into the interpolationsystem (2.34). For later use, we introdu
eDe�nition 2.37. A kernel on Ω × Ω is Hermitian and positive semidef-inite, if all kernel matri
es for all �nite point sets of Ω are Hermitian andpositive semide�nite.Then Theorem 2.36 isTheorem 2.38. All reprodu
ing kernels of Hilbert spa
es are Hermitian andpositive semide�nite.We mention this expli
itly here, be
ause we shall prove the 
onverse in thenext 
hapter:Theorem 2.39. Every Hermitian and positive de�nite kernel has a �native�Hilbert spa
e in whi
h it is reprodu
ing.This means that there is a one�to�one relation between Hilbert spa
es andHermitian positive semide�nite kernels.Now we spe
ialize Theorem 2.33 to f = K(x, ·). Then we know that

K(x, xk) =
N∑

j=1

uj(x)K(xj , xk), 1 ≤ k ≤ N (2.40)
22



has a solution uj(x) as a fun
tion on Ω. Note that this also follows when
al
ulating the optimal solution of (2.31). Furthermore, we now know that
K(x, ·)X(z) =

N∑

j=1

uj(x)K(xj , z) (2.41)holds for all x, z ∈ Ω. Note that the fun
tions uj need not be 
ontained in
HX at this point.Theorem 2.42. They are in HX and a Lagrange basis, i.e.

uj(xk) = δjk, 1 ≤ j, k ≤ Nif the kernel matrix is nonsingular. In general, we still have
fX =

N∑

j=1

uj(·)f(xj). (2.43)Proof: The �rst assertion follows from (2.40), and it is now 
lear why weused the 
omplex 
onjugates there. To prove the se
ond assertion, we startfrom (2.32) and pro
eed via
fX =

N∑

k=1

αkK(xk, ·)

=
N∑

k=1

αk

N∑

j=1

uj(·)K(xj , xk)

=
N∑

j=1

uj(·)
N∑

k=1

αkK(xk, xj)

=
N∑

j=1

uj(·)f(xj).2Going ba
k to (2.41), we getTheorem 2.44. The Power Fun
tion has the expli
it representation
P 2
X(x) = K(x, x)−

N∑

j=1

uj(x)K(x, xj)−
N∑

j=1

uj(x)K(xj , x)

+
N∑

j=1

N∑

k=1

uj(x)uk(x)K(xj , xk)

= K(x, x)−K(x, ·)X(x).23



Proof: The Power Fun
tion is the norm of K(x, ·)−K(x.·)X . From (2.41)we then get the �rst assertion by dire
t 
al
ulation. Inserting (2.40), thethird and fourth term 
an
el, and the se
ond is K(x, ·)X(x) by (2.41).Going into the se
ond part of Theorem 2.42 with f = K(x, ·), we get
K(x, ·)X(z) =

N∑

j=1

uj(z)K(x, xj)

=
N∑

j=1

uj(x)K(xj , z)and see that this quantity is real in 
ase x = z.If the kernel matrix is singular, the point evaluation fun
tionals at the pointsof x are not linearly independent. But then one 
an sele
t a maximal linearlyindependent subset of those fun
tionals and restri
t oneself to the subset Yof X 
onsisting of the evaluation points of the sele
ted fun
tionals. Fun
tionvalues of all fun
tions of F on the dis
arded points are 
ompletely determinedby the values on Y by an expli
it linear dependen
e whi
h is the same forall fun
tions, and the same applies to the interpolant on Y . Thus it su�
esto pose the interpolation problem on Y and ignore the other points. Theinterpolant on Y will automati
ally interpolate all fun
tions from H on Xas well. And then one 
an use the Lagrange basis for the points on Y . Notethat this argument fails if the data are not from a fun
tion in the Hilbertspa
e.We shall make this point sele
tion pro
ess more pre
ise in Se
tion 2.10 onpage 27 and 
ombine it with a numeri
al 
onstru
tion of an orthonormalbasis.2.8 Best Linear EstimationFrom the above dis
ussion, we know that fX with the representation (2.43)is the interpolant to f on the set X of data lo
ations. We also have all theba
kground material that allows us to 
on
lude that (2.43) at some point
x is the best linear predi
tor for f(x) in a way that we now des
ribe. Inparti
ular, this is important if the kernel 
omes from a 
ovarian
e (1.12).Consider 
ompletely arbitrary estimation formulas

(x, f) 7→
N∑

j=1

vj(x)f(xj)24



where no assumptions are made on the x�dependent s
alar 
oe�
ients vj(x).These are linear in f , and for x �xed, their error fun
tional is
f 7→ f(x)−

N∑

j=1

vj(x)f(xj) =


δx −

N∑

j=1

vj(x)δxj


 (f).To let the estimation be optimal for all f , we should 
hoose the vj(x) tominimize

VX,v(x) :=

∥∥∥∥∥∥
δx −

N∑

j=1

vj(x)δxj

∥∥∥∥∥∥
H∗

.But from (2.31) we know the solution: it is what we have already with ourfun
tions uj, and the optimal error is des
ribed by the Power Fun
tion.Theorem 2.45. In the above sense, kernel�based interpolation yields the bestlinear predi
tor of unknown fun
tion values f(x) from known fun
tion values
f(xj) at points xj , 1 ≤ j ≤ N .Let us spe
ialize to the sto
hasti
 setting of (1.12) for a moment, with real�valued random variables Xt with mean zero and bounded varian
e. Theabove numeri
al estimation te
hnique is then 
alled Kriging, and V 2

X,v isthe varian
e of the predi
tion error, whi
h is minimized if we pro
eed like inthe previous se
tion.To supply the ne
essary details, we denote the error of the general linearpredi
tor at x by
ǫx,X,v := Xx −

N∑

j=1

vj(x)Xxj
.It has zero mean, and varian
e

E

(
ǫ2x,X,v

)
= Cov(Xx, Xx)− 2

N∑

j=1

vj(x)Cov(Xx, Xxj
)

+
N∑

j=1

N∑

k=1

vj(x)vk(x)Cov(Xxj
, Xxk

)

= K(x, x)− 2
N∑

j=1

vj(x)K(x, xj)

+
N∑

j=1

N∑

k=1

vj(x)vk(x)K(xj , xk)

= V 2
X,v.Note that there is no apparent Hilbert spa
e here, but we shall see later thatthere is one behind the s
ene. 25



2.9 Power Fun
tion and StabilityIt is a general observation that kernel matri
es are often badly 
onditioned,and the 
ondition is parti
ularly poor in 
ases where the Power Fun
tion issmall, i.e. when the interpolation error is small. This is kind of an Un
er-tainty Prin
iple:It is impossible to make the Power Fun
tion and the 
ondition of thekernel matrix small at the same time.We shall analyze this e�e
t now, following [S
h95℄.The basi
 tri
k is to express the Power Fun
tion via the kernel matrix. Inaddition to the point set X = {x1, . . . , xN}, we denote another point x by
x0 := x and de�ne u0(·) := −1. Then we de�ne the extended kernel matrix
Ã with entries K(xj , xk), 0 ≤ j, k ≤ N and the ve
tor

u := (u0(x), u1(x), . . . , uN(x))
T = (−1, u1(x), . . . , uN(x))

Tto 
onsider the quadrati
 form
uT Ã u =

N∑

j=0

N∑

k=0

uj(x)uk(x)K(xj , xk)

= K(x, x)−
N∑

j=1

uj(x)K(x, xj)−
N∑

j=1

uj(x)K(xj , x)

+
N∑

j=1

N∑

k=1

uj(x)uk(x)K(xj , xk)

= P 2
X(x)using Theorem 2.44. The matrix Ã is Hermitian and positive semide�nite.Thus it has N + 1 nonnegative real eigenvalues

λ0 ≥ λ1 ≥ . . . ≥ λN ≥ 0and we get the inequality
P 2
X(x) ≥ λN+1


1 +

N∑

j=1

|uj(x)|2

 ≥ λN+1from the usual bound

λN+1‖u‖22 ≤ uT Ã u ≤ λ0‖u‖22.We 
an eliminate the spe
ial r�le of the point x:26



Theorem 2.46. The kernel matrix for N points x1, . . . , xN forming a set Xhas a smallest eigenvalue λ bounded above by
λ ≤ min

1≤j≤N
PX\{xj}(xj).This implies that in settings where the Power Fun
tion still is small after onepoint is left out, the kernel matrix must be ill�
onditioned.But note that the kernel matrix is dire
tly 
onne
ted to the span of translates

K(xj , ·), and therefore the ill�
onditioning may be a 
onsequen
e of a bad
hoi
e of the basis. This is indeed the 
ase, sin
e one 
an prove under ad-ditional assumptions that the fun
tions uj are uniformly bounded [DMS10℄.We shall 
ome ba
k to stability questions later.2.10 Newton BasesThe above dis
ussion shows that one should avoid �nearly dupli
ate� points,or those whose omission does not let the Power Fun
tion or the Krigingvarian
e in
rease too mu
h. This 
an be 
ast into an adaptive algorithm[DMSW05, MS09℄ that we des
ribe now. It 
onstru
ts an orthonormal basisin a subspa
e of HX , whi
h, for 
ertain reasons, 
an be 
alled a Newtonbasis.We assume that we are given a fairly large and unordered set X of N pointsto work with. We start with X0 := ∅ and have P 2
∅ (x) = K(x, x) due toTheorem 2.29. We evaluate and store the N values P 2
∅ (x) = K(x, x) for the

x from X .We introdu
e an integer k ≥ 0 and assume that we have already 
hosen anordered subset Xk := {x1, . . . , xk} of X with linearly independent point fun
-tionals δx1
, . . . , δxk

. Furthermore, we assume that we have an orthonormalbasis v1, . . . , vk of the spa
e HXk
with vj+1 ∈ HXj+1

∩H⊥
Xj
, 0 ≤ j ≤ k−1. Weassume that we have the values of these fun
tions on X in storage, togetherwith the values of PXk

(x)2 for all x ∈ X . So far, this uses O(N(k + 1))storage.To perform the next step, we 
an stop if X \Xk is empty. Then we 
he
k thevalues of PXk
on X . If they are all zero or smaller than a 
hosen toleran
e, westop. Otherwise we pi
k some xk+1 ∈ X with PXk

(xk+1) > 0. For a spe
ial�greedy� strategy we 
ould also 
hoose
xk+1 := arg max {PXk

(x) : x ∈ X \Xk}. (2.47)27



If PXk
(x) = 0 for all x ∈ X , we stop sin
e there is nothing to gain by 
on-tinuing.Now we have PXk

(xk+1) > 0 and form Xk+1 = Xk ∪ {xk+1}. If δxk+1
werelinearly dependent on the fun
tionals δx1

, . . . , δxk
, we would have PXk

(x) =
PXk+1

(x) for all x ∈ Ω due to Theorem 2.29 and HXk
= HXk+1

, but then
PXk

(xk+1) = PXk+1
(xk+1) = 0 is a 
ontradi
tion.Then we go for vk+1 ∈ HXk+1

∩ H⊥
Xk

with norm one. The standard way todo this is to ignore normalization �rst, an to make a fun
tion
wk+1 := K(xk+1, ·)−

k∑

j=1

αjvjorthogonal to all v1, . . . , vk. This means
.

(vi, K(xk+1, ·))H = vi(xk+1)

=
k∑

j=1

αj(vi, vj)H

= αi, 1 ≤ i ≤ k

(2.48)as simple evaluations of the fun
tions vi. We already have these values, butwe need the additional n values K(xk+1, x) for x ∈ X to 
al
ulate wk+1 on
X by O(Nk) operations. Note that vk+1 ∈ H⊥

Xk
implies that vk(xj) = 0, 1 ≤

j ≤ k, but we do not let these 
onditions enter into the 
al
ulation.The norm of wk+1 is also easy to 
al
ulate via the orthonormal de
omposition
K(xk+1, ·)− wk+1 =

k∑

j=1

αjvjleading to
k∑

j=1

|αj|2 = ‖K(xk+1, ·)− wk+1‖2H
= K(xk+1, xk+1)− (K(xk+1, ·), wk+1)H

−(wk+1, K(xk+1, ·))H + ‖wk+1‖2H
= K(xk+1, xk+1)− 2 Re (wk+1(xk+1)) + ‖wk+1‖2H.We 
an now de�ne

vk+1(x) :=
wk+1(x)

‖wk+1‖28



and 
al
ulate its values on X . Finally, we need the Power Fun
tion P 2
Xk+1

on
X . To this end, we use Theorem 2.44 in the form

P 2
Xk+1

(x) = K(x, x)−K(x, ·)Xk+1
(x)and take advantage of our orthonormal basis:

K(x, ·)Xk+1
(z) =

k+1∑

j=1

(K(x, ·), vj)Hvj(z)

=
k+1∑

j=1

vj(x)vj(z),

K(x, ·)Xk+1
(x) =

k+1∑

j=1

|vj(x)|2to arrive at the surprisingly simple re
ursion
P 2
Xk+1

(x) = K(x, x)−K(x, ·)Xk+1
(x)

= K(x, x)−
k+1∑

j=1

|vj(x)|2

= P 2
Xk

(x)− |vk+1(x)|2.

(2.49)We see that we are 
onstru
ting in
reasing ordered sets of points where theasso
iated point evaluation fun
tionals are linearly independent, and thus allkernel matri
es here are positive de�nite. Furthermore, we have a sequen
eof orthonormal fun
tions v1, v2, . . . with the property
vk(xj) = 0, 1 ≤ j < k (2.50)like the basis
vk(x) =

k−1∏

j=1

(x− xj)for the univariate interpolating polynomial in Newton form. This is why we
all the vj a Newton basis. We summarize:Theorem 2.51. The above adaptive algorithm sele
ts for 0 ≤ k ≤ N an or-dered subsequen
e of points x1, . . . , xk of an N�point set X su
h that the pointevaluation fun
tionals δx1
, . . . , δxk

are linearly independent. In addition, anorthonormal basis v1, . . . , vk of HXk
is 
onstru
ted with the Newton property(2.50). The overall storage is O(Nk), while 
omputational operations are

O(Nk2). The original N ×N kernel matrix is never formed or stored. Thealgorithm produ
es and monitors monotoni
ally de
reasing power fun
tionswith (2.49). It should be stopped when these are small on X.29



So far, the algorithm only produ
es the values of the basis on X . In pra
ti
e,one 
an often let N and X be as large as needed for plotting and fun
tionevaluation, stopping the method at reasonably small values of k. This impliesthat additional evaluations are not ne
essary at all. But if evaluation at some
x is ne
essary, it 
an be done at O(k2) 
ost as follows. We start with

v1(x) =
K(x1, x)√
K(x1, x1)and work our way up to vk(x) using

vj(x) =
wj(x)

‖wj‖Hand
wj(x) = K(xj , x)−

j−1∑

i=1

vi(xj)vi(x)using (2.48).Theorem 2.52. The Newton basis fun
tions have the additional property
k∑

j=1

|vj(x)|2 ≤ K(x, x) for all x ∈ Ω.and for the �greedy� variation also
|vj(x)| ≤ |vj(xj+1)| = PXj

(xj+1) for all x ∈ X.Proof: The �rst property follows from Theorem 2.7 be
ause we 
onstru
tedan orthonormal basis of HXk
. For the se
ond, the �greedy� sele
tion of xj+1implies

|vj(x)|2 ≤ PXj
(x)2 ≤ PXj

(xj+1)
2 = |vj(xj+1)|2using that PXj+1

(xj+1) = 0 due to Theorem 2.29.The se
ond property guarantees that the Newton basis has no higher maximathan the 
ontrolled one at xj+1.By orthonormality, we 
an write the interpolants fXk
=: fk on Xk in theform

fk =
k∑

j=1

(f, vj)vj , (2.53)30



and if we do so, we need the 
oe�
ients
λj(f) := (f, vj), 1 ≤ j ≤ k.This means that the vj are the Riesz representers of the fun
tionals λj. Con-sequently,Theorem 2.54. The fun
tionals λj for the Newton basis are orthonormal,and their Riesz representers are the Newton basis fun
tions. In parti
ular,
k∑

j=1

|λj(f)|2 ≤ ‖fk‖2H ≤ ‖f‖2H.Looking at the numeri
al evaluation of (2.53) at some point x, given that wehave both the vj(x) and the λj(f), we get
|fk(x)|2 ≤




k∑

j=1

|λj(f)|2





k∑

j=1

|vj(x)|2

 ≤ ‖fk‖2HK(x, x).The outer part is not surprising, but the message here is that both innerfa
tors stay bounded. This is in sharp 
ontrast to (2.32), where in mostappli
ations the 
oe�
ients αj are large in absolute value, leading to severe
an
ellation when forming the sum.2.11 Kernel Re
ursions and ExpansionsWe need not always assume the spe
ial 
hoi
e (2.47) for the next point. Towhat we do now, it su�
es to guarantee PXk

(xk+1) > 0 throughout. In viewof the re
ursion (2.49) for the Power Fun
tion, we de�ne kernels
Kk(x, y) :=

k∑

j=1

vj(x)vj(y) for all x, y ∈ Ω (2.55)and
K⊥

k (x, y) := K(x, y)−Kk(x, y) for all x, y ∈ Ωwith the re
ursion
Kk+1(x, y) = Kk(x, y) + vk+1(x)vk+1(y). (2.56)Theorem 2.57. The kernel Kk is reprodu
ing on HXk

, while K⊥
k is repro-du
ing on H⊥

Xk
. As reprodu
ing kernels in Hilbert spa
es, they are Hermitianand positive semide�nite by Theorem 2.38. Furthermore,

P 2
Xk

(x) = K⊥
k (x, x) for all x ∈ Ω.31



Proof: Ea
h fun
tion in HXk
is of the form (2.53), and this means

fk(x) =
k∑

j=1

(fk, vj)vj(x)

= (fk,
k∑

j=1

vj(x)vj)H

= (fk, Kk(x, ·))H
= (f,Kk(x, ·))Hwhere the last equality holds for all fun
tions f that fk interpolates on Xk.Ea
h fun
tion in H⊥

Xk
is of the form g = f − fk, and then

g(x) = f(x)− fk(x)
= (f,K(x, ·))H − (f,Kk(x, ·))H
= (f,K⊥

k (x, ·))H
= (g + fk, K

⊥
k (x, ·))H

= (g,K⊥
k (x, ·))H.Finally, (2.49) implies the rest.The adaptive matrix�free algorithm of the previous se
tion is nothing elsethan a pivoted Cholesky de
omposition:Theorem 2.58. If stopped after k steps, the algorithm for the Newton basishas produ
ed a Cholesky de
omposition Ak = LLT of the kernel matrix

Ak for HXk
. The matrix L has the entries vj(xi), 1 ≤ i, j ≤ k.Proof: From (2.55) we get that the kernel matrix entries are
K(xi, xj) = Kk(xi, xj) + 0

=
k∑

j=1

vj(xi)vj(xj) for all x, y ∈ Ω.If we go from Xk one step further, we have the starting step of the algorithmagain, but now a
ting on Kk. This means
vk+1(x) =

Kk(xk+1, x)√
Kk(xk+1, xk+1)and we get the re
ursions

Kk+1(x, y) = Kk(x, y) +
Kk(x, xk+1)Kk(xk+1, y)

Kk(xk+1, xk+1)

K⊥
k+1(x, y) = K⊥

k (x, y)−
Kk(x, xk+1)Kk(xk+1, y)

Kk(xk+1, xk+1)32



from (2.56) whi
h does not 
ontain the Newton basis anymore.But the main point of this dis
ussion is that one 
an pass to the limit k →
∞ if there is an in�nite set X and if the 
al
ulation does not break downprematurely, then leading to a �nite�dimensional subspa
e HX of H. In fa
t,the kernels are pointwise absolutely summable via (2.5) and

Kk(x, x) = K(x, x)− P 2
Xk

(x) ≤ K(x, x)for all k.De�nition 2.59. A subset X ⊆ Ω is unisolvent for a spa
e of fun
tions Fon a set Ω, if a fun
tion f ∈ F vanishing on X must be zero on all of Ω.Note that we did not use Hilbert spa
e stru
ture here. But in our standardHilbert spa
e 
ontext, we 
an apply se
tions 2.5 and 2.6 to getTheorem 2.60. If X is an unisolvent set for a Hilbert spa
e H of fun
-tions on Ω with 
ontinuous point evaluation, then HX = H and H⊥
X = {0}.Furthermore, PX = 0.At this point, one 
an ask whether �dense� point sets X are unisolvent, butwe have only the distan
e (2.16) of Se
tion 2.3 at our disposal.Theorem 2.61. If X is dense in the distan
e (2.16), i.e. if for all points

y ∈ Ω and all ǫ > 0 there is a point x ∈ X with d(x, y) < ǫ, then X isunisolvent for H.Proof: From (2.31) we know that
PX(y) ≤ inf

x∈X
‖δy − δx‖H∗ for all y ∈ Ω,and this implies PX(y) = 0 under the assumptions of the theorem.2.12 General InterpolantsWe now depart from point evaluation fun
tionals. We �x a subset Λ ofthe dual H∗ that generalizes the set X we had before, and want to 
onsiderinterpolation using the data λ(f) for all λ ∈ Λ. This repla
es point evaluationfun
tionals by general fun
tionals, and goes ba
k to [Wu92℄.In standard spe
ial 
ases, these fun
tionals 
an 
ontain derivatives, e.g.
λ(f) =

∂f

∂tj
|z33



for the j�th partial derivative of a d�variate fun
tion f at a point z, or
λ(f) =

∫

T
f(t)v(t)dtfor a lo
al integral over a subdomain T against a weight or �test� fun
tion

v. Interpolation of general fun
tionals λ1, . . . , λN usually is a mess, be
auseone wants to use interpolants from a span of fun
tions u1, . . . , uN and has no
han
e to make sure that the matrix with entries λk(uj) is nonsingular. Evenfor univariate polynomials, the fully general Hermite�Birkho� interpo-lation problem has no apparent and simple solution. In this situation, oneresorts to Hermite interpolation requiring all ne
essary lower derivatives,too. In multivariate appli
ations, things are even more 
ompli
ated, butfor kernel�based interpolation there is a solution we des
ribe now. It is thestarting point for various meshless methods for solving partial di�erentialequations.We have already derived it without knowing. In fa
t, we 
an deal withthis seemingly more general situation by temporarily dropping the kernel K
ompletely, using the kernel
K∗(λ, µ) := (λ, µ)H∗ for all λ, µ ∈ H∗instead of K with
K(x, y) = (δy, δx)H∗ = K∗(δy, δx)H∗ .This means that we simply redo the previous paragraphs using Ω = H∗and repla
ing points x and xj by fun
tionals λ and λj , while K∗ repla
es Kwith swapped arguments. At the same time, this allows us to work in Hilbertspa
es where users 
annot rely on point evaluation and have to resort to weakmethods. This applies to Hilbert spa
es like Wm

2 (Ω) for domains Ω ⊂ Rdwith m ≤ d/2. The most important of su
h 
ases arises for d = 2 and
m = 1. But we 
an also deal with fairly general Hilbert spa
es H that arenot ne
essarily a spa
e of fun
tions on some spe
i�
 set Ω 6= H∗. Readersshould note that in the sense of (2.1) on page 11 the fun
tionals o

ur in atwofold way, namely as arguments of fun
tions in H and as fun
tionals onelements of H.Given a subset Λ of the dual H∗, we de�ne

HΛ := 
los span {R(λ) : λ ∈ Λ}.34



To see the 
onne
tion to (2.20), we 
onsider
(R(λ))(µ) = µ(R(λ))

= (R(λ), R(µ))H
= (µ, λ)H∗

= K∗(µ, λ) for all λ ∈ H∗, µ ∈ H∗su
h that R(λ)(·) = K∗(·, λ).If the original kernel K is still there, readers 
an be trapped by assumingthat R(δx)(y) = K(x, y) generalizes to R(λ)(y) = λ(K(·, y)), but the a
tionof fun
tionals to the �rst argument of the kernel is unde�ned if we are in thetruly 
omplex 
ase. Instead, the property K(x, y) = R(δx)(y) generalizes to
R(λ)(x) = (R(λ), K(x, ·))H

= (K(x, ·), R(λ))H
= λyK(x, y)where λy denotes a
tion of λ with respe
t to y. If we let another fun
tional

µ a
t with respe
t to x on this, we get
µ(R(λ)) = µx(λyK(x, y)) = (µ, λ)H∗.Thus entries of generalized kernel matri
es are

(λj, λk)H∗ = λxj (λ
y
kK(x, y)) (2.62)if the kernel K is still present.Dropping K again, we generalize Theorem 2.21 toTheorem 2.63.

H⊥
Λ = {f ∈ H : λ(f) = 0 for all λ ∈ Λ}.A new proof is not ne
essary, but we 
an translate the original proof. Ea
h

f ∈ H⊥
Λ is 
hara
terized by (f, R(λ))H = 0 for all λ ∈ Λ, and this means

λ(f) = 0 for all λ ∈ Λ.Again, we de�ne a proje
tor ΠΛ onto HΛ and denote fΛ := ΠΛ(f). ThenTheorem 2.22 generalizes to
35



Theorem 2.64. Ea
h element f ∈ H has an orthogonal de
omposition
f = fΛ + f⊥

Λwith fλ ∈ HΛ and f⊥
Λ ∈ H⊥

Λ . Then fΛ interpolates f in the sense
λ(f) = λ(fΛ) for all λ ∈ Λ.Furthermore,
‖f − fΛ‖H = inf

g∈HΛ

‖f − g‖Hand
‖fΛ‖H = inf

g ∈ H
λ(f) = λ(g)for all λ ∈ Λ

‖g‖H.

This performs trans�nite interpolation by general sets of fun
tionals. Mono-toni
ity like in Corollary 2.27 also prevails, and we have the optimality prin-
iples from the 
orollaries following Theorem 2.22.To evaluate the error, we 
annot use point evaluation fun
tionals. Instead,we take an �evaluation� fun
tional µ ∈ H∗ repla
ing a point x and 
onsiderthe error fun
tional
µ(f − fΛ) = (µ− µ ◦ ΠΛ)(f)The generalization of the Power Fun
tion then is

PΛ(µ) := ‖µ− µ ◦ ΠΛ‖H∗ for all µ ∈ H∗.and we leave it to the reader to generalize Theorem 2.29, where the �fthproperty should be repla
ed by its dual form (2.31). The numeri
al 
on-stru
tion of interpolants for �nite sets Λ = {λ1, . . . , λn} generalizes similarly.Instead of (2.32) we have
fΛ =

n∑

j=1

αjR(λj),and we impose the interpolation 
onditions to get
λk(fΛ) = λk(f) =

n∑

j=1

αjλk(R(λj)), 1 ≤ k ≤ n.36



The kernel matrix is repla
ed by the Gramian with elements
λk(R(λj)) = (R(λj), R(λk))H = (λk, λj)H∗ .Note that in presen
e of the original kernel K one has to 
al
ulate this using(2.62).To generalize the system (2.40) we pi
k f = R(µ) to obtain

λk(R(µ)Λ) = λk(R(µ)) = (λk, µ)H∗

=
n∑

j=1

uj(µ)(λk, λj)H∗ , 1 ≤ k ≤ nwhere we 
annot say that the uj are elements of H unless the fun
tionalsin Λ are linearly independent. But in the latter 
ase, we have that they arelinear 
ombinations of
λk(R(µ)) = (µ, λk) = R(λk)(µ)as fun
tions of µ, i.e. the uj are in HΛ. This is in line with Theorem 2.42.In general, the solution of the interpolation problem 
an be written as

fΛ =
n∑

j=1

λj(f)ujin the sense that
µ(fΛ) =

n∑

j=1

λj(f)uj(µ)for all µ ∈ H∗. Also, the 
onne
tion between the Power Fun
tion and stabilitygeneralizes toTheorem 2.65. The kernel matrix for N fun
tionals λ1, . . . , λN forming aset Λ has a smallest eigenvalue λ bounded above by
λ ≤ min

1≤j≤N
PΛ\{λj}(λj).Finally, we note that also the 
onstru
tion of the Newton basis generalizesverbatim.For what follows, we 
an always sti
k to point evaluation, going ba
k to

Ω = H∗ and K∗ if we want to deal with general fun
tionals.37



2.13 Fa
tor Spa
esRS: Still somewhat in
omplete, De
. 2010In 
ertain important situations 
onne
ted to the notion of 
onditional posi-tive de�niteness (see Se
tion 5), there is no reprodu
ing kernel Hilbert spa
eof fun
tions on Ω at �rst sight. Instead, there is a spa
e H of K�valued fun
-tions on Ω 
arrying a semi�inner produ
t with a 
losed nullspa
e P ⊂ H,i.e.
(x, y)H = 0 for all y ∈ H holds i� x ∈ P,su
h that the fa
tor spa
e H/P is a Hilbert spa
e under the inner produ
t

([f ], [g]) := (f, g)H for all f, g ∈ H,where we adopt the notation [f ] for the 
lass f + P represented by some f .Note that we now have a Hilbert spa
e again, but the elements are equivalen
e
lasses modulo some subspa
e P. With a linear proje
tor Π onto P we assumethat the fun
tionals
µx : f 7→ f(x)− (Π(f))(x) for all x ∈ Ω, f ∈ H (2.66)are 
ontinuous in the seminorm or on H/P, i.e.

|µx(f)| ≤ Cx‖[f ]‖H = Cx‖[f ]‖ for all f ∈ H.Then µx has a Riesz representer [K(x, ·)] in H/P with some K(x, ·) ∈ Hwhi
h is for ea
h x nonunique up to fun
tions in P. Then
µx(f + P) = f(x)− (Π(f))(x) = ([f ], [K(x, ·)]) = (f,K(x, ·))Hholds for all x ∈ Ω, f ∈ H. This yields a Taylor�type representation formula

f(x) = (Π(f))(x) + (f,K(x, ·))H (2.67)for all f ∈ H, x ∈ Ω, repla
ing the reprodu
tion equations we had so far.Sin
e for ea
h x ∈ Ω we are free to 
hange K(x, ·) by some fun
tion in P,we 
an assume that Π(K(x, ·)) = 0 for all x ∈ Ω, e.g. by going over to
K(x, y)−Π(K(x, ·))(y). Then the reprodu
tion formula leads to

K(y, x) = (K(y, ·), K(x, ·))H for all x, y ∈ Ω. (2.68)This yields a positive semide�nite Hermitian kernel, but note that it dependson the 
hosen proje
tor Π. 38



But we do not want to work with equivalen
e 
lasses. If we want to re
overfun
tions from their values at points of a set X = {x1, . . . , xN} ⊂ Ω, we
annot use the data dire
tly, be
ause point evaluation fun
tionals δx are notwell de�ned. We have to use fun
tionals µxj
instead. Thus we should startfrom a 
lass [f ] and 
onsider the problemarg min {

‖[s]‖ : s ∈ H, µxj
(s) = µxj

(f), 1 ≤ j ≤ N
}
.This 
learly has a minimizer in the fa
tor spa
e, and we know it is a lin-ear 
ombination of the Riesz representers of the µxj

whi
h are the 
lasses
[K(xj , ·)]. Thus the fun
tion

s0(x) =
N∑

j=1

αjK(xj , x)represents the solution 
lass. We also have
µxk

(s0) = µxk
(f) = 0+

N∑

j=1

αjµxk
(K(xj , ·)) =

N∑

j=1

αjK(xj , xk) + 0, 1 ≤ k ≤ N.This system is 
learly solvable, but we do not have interpolation of f onall data. We have only 
ared for data de�ned by [f ], but we also have thesame interpolation properties so far, if we 
hange s0 by some fun
tion p ∈ P.Considering s = s0 + p with some p ∈ P, we get
f(xk) = µxk

(f) + Π(f)(xk)
= µxk

(s0) + Π(f)(xk)
= µxk

(s) + Π(f)(xk)
= s(xk)− Π(s)(xk) + Π(f)(xk), 1 ≤ k ≤ N.and see that we should 
hange s0 into s + p in su
h a way that Π(s) =

Π(s0 + p) = Π(p) = Π(f). Thus the fun
tion s0 + Π(f) solves the fullinterpolation problem. We summarize:Theorem 2.69. Let H be a spa
e of fun
tions on Ω whi
h 
arries a semi�inner produ
t with a 
losed nullspa
e P su
h that the fa
tor spa
e H/P isa Hilbert spa
e. Assume further that the fun
tionals (2.66) are 
ontinuousin the seminorm, and denote a �xed proje
tor onto P by Π. Then one 
ande�ne a Hermitian kernel K on Ω × Ω su
h that the reprodu
tion equation(2.67) and the standard identity (2.68) hold together with Π(K(x, ·)) = 0 forall x ∈ Ω. Furthermore, interpolation of data of fun
tions of H is alwayspossible and has 
ertain optimality properties in the fa
tor spa
e.Note that we have used a good deal of freedom to de�ne a kernel that suitedour needs. When going ba
kwards in Se
tion 5, starting from a given 
ondi-tionally positive de�nite kernel and pro

eding towards a Hilbert spa
e, wewill not be free to 
hange the kernel.39



3 Hilbert Spa
es from KernelsWe now go ba
k the the abstra
t de�nition 1.2 on page 1 of kernels on generalsets Ω. We shall 
onstru
t a Hilbert spa
e in whi
h the kernel is reprodu
ing.This will then allow us to apply everything we did in the previous 
hapter.3.1 Positive De�nitenessIf we have no hypotheses to start with, we 
annot expe
t to be able todevelop a reasonable theory for kernels. The basi
 assumption we shall needis positive semide�niteness, as already de�ned in De�nition 2.37. We giveanother motivation for it here.If we have an arbitrary set X = {x1, . . . , xN} of N distin
t elements of Ω anda symmetri
 or Hermitian kernel K on Ω, we 
an form linear 
ombinations
s(x) :=

N∑

j=1

ajK(xj , x), x ∈ Ω, ak ∈ K (3.1)of �translates� of the kernel, a
ting as trial fun
tions like we did in Se
tion1.4 already. This is a very 
onvenient te
hnique to generate fun
tions on anotherwise unstru
tured set Ω. It will be 
lear later why we take the 
omplex
onjugate of the 
oe�
ients in (3.1).With su
h a set X = {x1, . . . , xN} we 
an form the symmetri
 N×N kernelmatrix
A := (K(xj , xk))1≤j,k≤N (3.2)and pose the interpolation problem

yk = s(xk), 1 ≤ k ≤ N

yk =
N∑

j=1

ajK(xj , xk), 1 ≤ k ≤ N.
(3.3)for s from (3.1). In matrix notation, this is an N ×N linear system

Aa = y.In general, solvability of su
h a system is a serious problem, but one of the
entral features of kernels and radial basis fun
tions is to make this problemobsolete via 40



De�nition 3.4. (see also De�nition 2.37)A Hermitian kernel K on Ω with values in K is 
alled positive (semi�)de�nite, if for all sets X = {x1, . . . , xN} of N distin
t elements of Ω andall N the N ×N kernel matrix (3.2) is positive (semi�) de�nite.This means that the Hermitian quadrati
 form
a ∈ K

n 7→
N∑

j,k=1

ajakK(xj , xk) =
N∑

j,k=1

ajakK(xk, xj)has nonnegative real values. In the positive de�nite 
ase, it additionally iszero only if the ve
tor a is zero.Theorem 3.5. Expansion kernels of the form (1.6) are positive semide�nite.Also, kernels arising from feature maps via (1.3) are positive semide�nite.Proof: The se
ond statement is obvious, be
ause kernels from feature mapsgenerate kernel matri
es that are Gramian matri
es, and these are alwayspositive semide�nite. To prove the �rst part, one 
an write the expansionvia a suitable feature map with values in a weighted sequen
e spa
e. To givean expli
it proof whi
h is typi
al for mu
h more general 
ases, the quadrati
form 
orresponding to the kernel matrix 
an be written as
aT Aa =

N∑

j,k=1

ajakK(xj , xk)

=
N∑

j,k=1

ajak
∑

i∈I
λiϕi(xj)ϕi(xk)

=
∑

i∈I
λi

N∑

j=1

ajϕi(xj)
N∑

k=1

akϕi(xk)

=
∑

i∈I
λi

∣∣∣∣∣
N∑

k=1

akϕi(xk)

∣∣∣∣∣

2

≥ 0for all ve
tors a ∈ KN .Note that this applies to the univariate Gaussian via (1.9).At this point, we sti
k to positive semide�niteness, but later we shall turn topositive de�nite kernels.The basi
 
onne
tion of positive semide�nite kernels to a representation (1.6)is Mer
er's 41



Theorem 3.6. Suppose K is a 
ontinuous symmetri
 positive semide�nitekernel on a 
losed bounded interval Ω := [a, b] ⊂ R. Then there is an or-thonormal basis {ϕi}i∈N of L2[a, b] 
onsisting of eigenfun
tions of the linearintegral operator de�ned by K su
h that the 
orresponding sequen
e of eigen-values λi is nonnegative. This means
∫ b

a
K(x, y)ϕi(y)dy = λiϕi(x) for all x ∈ [a, b], i ∈ N.The eigenfun
tions 
orresponding to non-zero eigenvalues are 
ontinuous on

[a, b] and K has the representation (1.6), where the 
onvergen
e is absoluteand uniform.This theorem is 
ontained in all reasonable books on Integral Equations orFun
tional Analysis. The ba
kground fa
t is that the operator
ϕ 7→

∫ b

a
K(x, y)ϕ(y)dyis a 
ompa
t �positive � integral operator on L2[a, b], and Mer
er's theoremis a 
onsequen
e of standard spe
tral theory in Hilbert spa
es. Furthermore,all of this generalizes to domains and kernels in more than one dimension.3.2 General RulesWe state some useful results on positive (semi)�de�nite kernels on some do-main Ω.Theorem 3.7. Let K be a positive semide�nite kernel on Ω. Then

K(x, x) ≥ 0 for all x ∈ Ω,

K(y, x) = K(x, y) for all x, y ∈ Ω,
|K(x, y)|2 ≤ K(x, x) ·K(y, y) for all x, y ∈ Ω,
2|K(x, y)|2 ≤ K(x, x)2 +K(y, y)2 for all x, y ∈ Ω.Furthermore, any �nite linear 
ombination of positive semide�nite kernelswith nonnegative 
oe�
ients yields a positive de�nite kernel (this means thatpositive de�nite kernels form a 
onvex 
one). If one of the kernels is positivede�nite, and if its fa
tor is positive, the superposition of kernels is positivede�nite. Finally, the produ
t of two positive semide�nite kernels is positivesemide�nite.
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Proof: For the �rst property, use X = {x} in De�nition 3.4. The se
ondproperty restates that our kernels will always be Hermitian. Sin
e determi-nants of positive semide�nite Hermitian quadrati
 forms must be nonnega-tive, the third property follows if we take a setX = {x, y}. The �nal propertyfollows from the third, using the standard inequality
2ab ≤ a2 + b2for nonnegative real numbers a, b. The statements on nonnegative linearsuperposition are very easy to see.Thus we are left with the �nal assertion, whi
h is nontrivial. Assume twopositive semide�nite kernels K and L to be given, and take a set X of Npoints of Ω and a 
oe�
ient ve
tor a ∈ CN . We have to prove nonnegativityof the quadrati
 form

Q :=
N∑

j,k=1

ajakK(xj , xk)L(xj , xk).Sin
e the kernel matrix A for K is positive semide�nite, we 
an transformit to a diagonal matrix with nonnegative diagonal entries λ1, . . . , λN by aunitary matrix S. This means that
K(xj , xk) =

N∑

m=1

λmsj,msk,mwith 
omplex sj,k and we 
an insert this into our quadrati
 form to get
Q =

N∑

j,k=1

ajakL(xj , xk)
N∑

m=1

λmsj,msk,m

=
N∑

m=1

λm
N∑

j,k=1

ajsj,m︸ ︷︷ ︸
=:bj,m

aksk,mL(xj , xk)

=
N∑

m=1

λm
N∑

j,k=1

bj,mbk,mL(xj , xk)

︸ ︷︷ ︸
≥0

≥ 0.

We leave it to the reader to use some linear algebra to proveCorollary 3.8. The produ
t of two positive de�nite kernels is positive de�-nite. 43



For later use, we add another superposition prin
iple, applying generalized
onvolution. If
L : Ω× Z → Cis an arbitrary fun
tion, and if we take any set of points z1, . . . , zm ∈ Z, we
an form a kernel

K(x, y) :=
m∑

ℓ=1

cℓL(x, zℓ)L(y, zℓ)when taking nonnegative real 
oe�
ients c1, . . . , cm. The kernel K will behermitian, and positive semide�nite due to
N∑

j,k=1

ajakK(xj , xk)

=
N∑

j,k=1

ajak
m∑

ℓ=1

cℓL(xj , zℓ)L(xk, zℓ)

=
m∑

ℓ=1

cℓ
N∑

j,k=1

ajL(xj , zℓ)akL(xk, zℓ)

=
m∑

ℓ=1

cℓ

∣∣∣∣∣∣

N∑

j=1

ajL(xj , zℓ)

∣∣∣∣∣∣

2

≥ 0.This generalizes easily to 
ases where the sum 
an be repla
ed by an integral,e.g.
K(x, y) :=

∫

Z
c(z)L(x, z)L(y, z)dz, x, y ∈ Ωwith a nonnegative fun
tion c, provided that the above is well�de�ned and�nite. This holds whenever

K(x, x) =
∫

Z
c(z)|L(x, z)|2dzis well�de�ned and �nite for all x ∈ Ω, due to the Cau
hy�S
hwarz inequality.Applying measure theory, on 
an also go over to

K(x, y) :=
∫

Z
L(x, z)L(y, z)dµ(z), x, y ∈ Ωwith a nonnegative measure µ on Z, using

K(x, x) =
∫

Z
|L(x, z)|2dµ(z)as a su�
ient 
ondition for well�de�nedness of the new kernel.44



But note that the above argument is nothing else than the transition to asuitable feature spa
e. If
Φ(x) := L(x, ·)maps Ω into a suitable fun
tion spa
e F 
onsisting of fun
tions on Z as afeature spa
e, we 
an write ea
h instan
e of the above 
onstru
tion in theform (1.3). Thus positive semide�niteness of su
h kernels is no mira
le.3.3 Inner Produ
tThe following 
onstru
tion is of utmost importan
e for kernel�based te
h-niques. We assume K to be a Hermitian real� or 
omplex�valued positivesemide�nite kernel on Ω, and we form the linear spa
e

H := span {K(x, ·) : x ∈ Ω} (3.9)of all �nite linear 
ombinations of generalized translates of the kernel. Simi-larly, we de�ne the linear spa
e
L := span {δx : x ∈ Ω, δx : H → K} (3.10)of all �nite linear 
ombinations of point evaluation fun
tionals a
ting onfun
tions inH . Note that we restri
t the a
tion of the fun
tionals to fun
tionsin H .Now all elements from L or H take the form

λa,X :=
N∑

j=1

ajδxj
, fa,X(x) := λya,XK(x, y) =

N∑

j=1

ajK(xj , x) (3.11)with a ∈ KN while X = {x1, . . . , xN} ⊂ Ω, but di�erent N and all pointsets X are allowed. We introdu
ed 
omplex 
onjugates in the se
ond form,be
ause we want to end up with fa,X = R(λa,X) for the antilinear Riesz map
R. Note that fa,X(·) = 0 or λa,X(·) = 0 do not imply a = 0, for
ing us to be
areful.On L we 
an de�ne a sesquilinear form

(λa,X , λb,Y )L :=
M∑

j=1

N∑

k=1

ajbkK(yk, xj)

= λxa,Xλ
y
b,YK(x, y)

= λa,X(fb,Y ).

(3.12)
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It is well�de�ned, be
ause the se
ond form in (3.12) is obtained by an a
tionof the fun
tionals, thus it is independent of their representation. Further-more, we have a positive semide�nite form due to the positive semide�nite-ness of all kernel matri
es.Then we have
|λa,X(fb,Y )| = |(λa,X , λb,Y )L|

≤ ‖λa,X‖L‖λb,Y ‖L (3.13)where we may still have just a seminorm, not a norm.Strangely enough, the sesquilinear form is even positive de�nite:Theorem 3.14. If K is a positive semide�nite Hermitian kernel on Ω, thesesquilinear form (., .)L of (3.12) is positive de�nite on the spa
e L of (3.10)as a spa
e of fun
tionals de�ned on fun
tions on Ω. Thus L is a pre�Hilbertor Eu
lidean spa
e of fun
tions on Ω.Proof: Assume that
(λa,X , λa,X)L =

N∑

j,k=1

ajakK(xj , xk) = λxa,Xλ
y
a,XK(x, y) = λa,X(fa,X) = 0for a ∈ KN and X = {x1, . . . , xN} ⊂ Ω. Then by (3.13) we have λa,X = 0 asa fun
tional on H . Here it pays o� to have the fun
tionals in L restri
ted tofun
tions in H . Note that we do not need or get a = 0.Theorem 3.15. The mapping

R : λa,X 7→ fa,X := λya,XK(·, y)is antilinear and bije
tive from L onto H. Thus
(fa,X , fb,Y )H := (λb,Y , λa,X)L = (R(λa,X), R(λb,Y ))His an inner produ
t on H, and R a
ts as the Riesz map.Proof: If some fb,Y = R(λb,Y ) ∈ H vanishes, (3.12) implies that λb,Y isorthogonal to all of L, thus zero due to Theorem 3.14. The Riesz propertyis already in (3.12) sin
e

(λa,X , λb,Y )L = (R(λb,Y ), R(λa,X))H
= (fb,Y , R(λa,X))H
= λa,X(fb,Y ).46



When spe
ializing (3.12) to λ1,x for a point x ∈ Ω, we get the reprodu
tionequation
(λ1,x, λb,Y )L = fb,Y (x)

= (R(λb,Y ), R(λ1,x))H
= (fb,Y , R(λ1,x))H
= (fb,Y , K(x, ·))H

(3.16)in H . Finally, (2.3) follows if we set λb,Y = λ1,y above.3.4 Native Spa
eWe now know that H is an inner�produ
t or semi�Hilbert spa
e of fun
tionson Ω under the inner produ
t (., .)H , provided that K is a positive semide�-nite Hermitian kernel on Ω. Furthermore, we also have L as its dual, and wehave the Riesz map R.Then we 
an invoke a 
lassi
al argument from Hilbert spa
e theory to goover the 
losure H of H under (., .)H . This is an abstra
t spa
e de�ned byequivalen
e 
lasses of Cau
hy sequen
es in H , but it is a 
omplete spa
e(thus a Hilbert spa
e), and ea
h 
ontinuous map from H to a Bana
h spa
e
Y extends uniquely to the 
losure.Theorem 3.17. Ea
h symmetri
 positive semide�nite kernel K on a set Ωis the reprodu
ing kernel of a Hilbert spa
e 
alled the native spa
e H := NKof the kernel. This Hilbert spa
e is unique, and it is a spa
e of fun
tions on
Ω. The kernel K is a reprodu
ing kernel of NK in the sense

(f,K(y, ·))H = f(y) for all y ∈ Ω, f ∈ NKgeneralizing (3.16).Proof: The existen
e of the native spa
e follows from standard Hilbert spa
earguments we do not repeat here, see se
tion 11.8. Sin
e (3.16) is an equationwith both sides being 
ontinuously dependent on f ∈ H , it 
arries over tothe 
losure and thus to the native spa
e, proving the reprodu
tion formulaabove. But then it explains how an abstra
t element f of the native spa
e
an be interpreted as a fun
tion: just use the left�hand side as a de�nitionof the right�hand side.If K is reprodu
ing in a possibly di�erent Hilbert spa
e T with an analogousreprodu
tion equation, we 
an use (2.3) and the reprodu
tion equation in Tto 
on
lude
K(x, y) = (K(x, ·), K(y, ·))H = (K(x, ·), K(y, ·))T ,47



and this proves that the inner produ
ts of T and NK 
oin
ide on H . Sin
e
T is a Hilbert spa
e, it must then 
ontain the 
losure NK of H as a 
losedsubspa
e. If T were larger than NK , there must be a nonzero element f ∈ Hwhi
h is orthogonal to NK and in parti
ular to H . But then

f(y) = (f,K(y, ·))T = 0 for all y ∈ Ωis a 
ontradi
tion.To mark the dependen
e of the native Hilbert spa
e on the kernel K westarted with, we prefer the notation NK over the notation H we used inChapter 2.Note that usually the Hilbert spa
e 
losure of an inner�produ
t spa
e is 
on-siderably �larger� than the spa
e itself. This is very mu
h like the transitionfrom rational numbers to real numbers.4 Expansion KernelsThe previous two 
hapters showed that we 
an start from Hilbert spa
esto arrive at positive semide�nite Hermitian kernels, but we also 
an startfrom the kernels and 
onstru
t 
orresponding Hilbert spa
es. This 
hapterillustrates this 
orresponden
e for the spe
ial 
ase of expansion kernels.4.1 Kernels from Orthonormal BasesLet us start from Hilbert spa
es �rst, and work our way towards kernels. We
onsider the fairly general �separable� 
ase where a Hilbert spa
e H has a
omplete orthonormal basis {ϕn}n∈N. The model situation is the spa
e ℓ2 ofquadrati
ally summable sequen
es. A pra
ti
ally important 
ase are trigono-metri
 polynomials in the spa
e of square�integrable 2π�periodi
 fun
tions,or any spa
e of fun
tions spanned by orthogonal polynomials. A third exam-ple is the spa
e Bh of univariate bandlimited fun
tions on R with spe
trum in
[−π/h, π/h] with the orthonormal basis of shifted and s
aled sinc fun
tions

sinc(x) =
sin(π x)

π x
, x ∈ Ras used in the Shannon�Whittaker�Kotelnikov theorem representingfun
tions f ∈ Bh as

f(x) =
∑

k∈Z
f(kh)sinc

(
x− kh

h

)
.48



Another expansion kernel is given by the well�known formula
exp

(
−x

2t2 − 2txy + y2t2

2(1− t2)

)
=

√
1− t2

∞∑

n=0

Hn(x)Hn(y)
tn

n!of Mehler (
f. [Wat33℄) with x, y ∈ R. It 
onsists of a weighted expansion intoHermite polynomialsHn on R, whi
h are orthogonal with weight exp(−x2/2).But �rst we stay general and note that we have not restri
ted ourselves tospa
es of fun
tions, so far.Ea
h f ∈ H has a unique expansion
f =

∑

n∈N
(f, ϕn)Hϕn (4.1)with the Parseval equation

‖f‖2H =
∑

n∈N
(f, ϕn)

2
H <∞.This is �ne in the Hilbert spa
e 
ontext, but even if all ϕn 
an be interpretedas fun
tions on a domain Ω, it is not 
lear if an expression like

f(x) =
∑

n∈N
(f, ϕn)Hϕn(x)makes sense. In fa
t, in many 
ases, in
luding trigonometri
 or orthogo-nal algebrai
 polynomials, the expansions of fun
tions in H do not 
onvergepointwise, but only in the Hilbert spa
e norm. Thus point�evaluation fun
-tionals are not 
ontinuous on H. As we have seen in Se
tion 2.12, theseHilbert spa
es 
an always be interpreted as spa
es of fun
tions on their owndual, but this viewpoint is too theoreti
al at this point.As well�known from Fourier series, the situation is better if the 
oe�
ients ofthe expansion satisfy a de
ay 
ondition. We mimi
 this in general by formallyintrodu
ing positive and uniformly bounded weights λn into the above sum,leading to

f(x) =
∑

n∈N

(f, ϕn)H√
λn

√
λnϕn(x)and the bound

|f(x)|2 ≤

∑

i∈N

|(f, ϕn)H|2
λn




∑

i∈N
λn|ϕn(x)|2


49



if we assume that both fa
tors on the right are bounded. We see that we are
oming ba
k towards (1.7) on page 8, but we have no kernel yet. We simplyassume the summability 
ondition
∑

i∈N
λn|ϕn(x)|2 <∞ for all x ∈ Ω (4.2)and de�ne the fun
tion spa
e by

H1 := {f : (4.1) with ∑

i∈N

|(f, ϕn)H|2
λn

<∞}. (4.3)The inner produ
t of two fun
tions in H1 then is de�ned as
(f, g)H1

:=
∑

n∈N

(f, ϕn)H(g, ϕn)H
λn

. (4.4)Uniform boundedness of the weights implies that H1 ⊂ H with boundedembedding, and sin
e we have a spa
e that 
an be isometri
ally mapped to
ℓ2 via 
oe�
ients, we have a Hilbert spa
e. Thus H1 is a 
losed subspa
e of
H, and we have made sure that point evaluation fun
tionals are 
ontinuouson H1.From the de�nition (4.4) of the inner produ
t on H1 we see that the ϕn areorthogonal, but not orthonormal in H1. But the fun
tions √λnϕn are.Now Theorem 2.4 on page 12 implies that H1 has a reprodu
ing kernel Ksu
h that K(x, ·) is the Riesz representer of δx. We assert that

K(x, y) :=
∑

n∈N
λnϕn(x)ϕn(y) (4.5)does the job. The expansion 
oe�
ients of K(x, ·) in H are

(K(x, ·), ϕn)H = λnϕn(x),and they satisfy
∑

∈N

λ2n|ϕn(x)|2
λn

≤
∑

i∈N
λn|ϕn(x)|2 <∞,proving K(x, ·) ∈ H1. Furthermore,

(f,K(x, ·))H1
=

∑

n∈N

(f, ϕn)H(K(x, ·), ϕn)H
λn

=
∑

n∈N
(f, ϕn)Hϕn(x)

= f(x) for all x ∈ Ωproves the reprodu
tion equation, with absolute summability of the series.50



Theorem 4.6. If a Hilbert spa
e H of fun
tions on Ω has a 
ountable or-thonormal basis {ϕn}n∈N, ea
h summability property of the form (1.7) leadsto a reprodu
ing expansion kernel (4.5) for a suitable subspa
e H1 with (4.3)of fun
tions with 
ontinuous point evaluation. In the spa
e H1, the fun
tions√
λnϕn are orthonormal.Note that the reprodu
tion equation uses the inner produ
t (., .)H1

. Themapping
x 7→ (f,K(x, ·))Hdoes not yield f(x), but rather something like a 
onvolution (f ∗K)(x). Weevaluate it as

(f,K(x, ·))H =
∑

n∈N
(f, ϕn)H(K(x, ·), ϕn)H

=
∑

n∈N
λn(f, ϕn)Hϕn(x)and this fun
tion lies in

H2 := {f : (4.1) with ∑

i∈N

|(f, ϕn)H|2
λ2n

<∞}.Thus we get a s
ale of spa
es
Hm := {f : (4.1) with ∑

i∈N

|(f, ϕn)H|2
λmn

<∞}.with
H =: H0 ⊃ H1 ⊃ H2 ⊃ . . .whi
h are 
onne
ted by the 
onvolution map f 7→ f ∗K. They 
arry innerprodu
ts

(f, g)Hm :=
∑

n∈N

(f, ϕn)H(g, ϕn)H
λmn

,and have reprodu
ing kernels
Km(x, y) :=

∑

n∈N
λmn ϕn(x)ϕn(y).Note that the map f 7→ f ∗ K = (f,K(x, ·))H 
oin
ides with the integraloperator de�ned by a kernel, if it exists, and if the Mer
er theorem holds.This is easy to see, sin
e both operators a
t on expansions by 
oe�
ient�wisemultipli
ation with the weights, i.e. they are multipliers. An integral or a
onne
tion to an L2 spa
e is not ne
essary.51



Just for 
uriosity, let us ignore 
ontinuity of point evaluation for a moment.For linear fun
tionals λ, µ ∈ H∗ we have square summability of the sequen
es
λ(ϕn), µ(ϕn) and

(λ, µ)H∗ =
∑

n∈N
λ(ϕn)µ(ϕn).The kernel

K0(x, y) :=
∑

n∈N
ϕn(x)ϕn(y)makes no pointwise sense, but it satis�es

λx(µyK0(x, y)) =
∑

n∈N
λx(ϕn(x))µy(ϕn(y))

= (λ, µ)H∗i.e. it makes perfe
t sense in view of (2.62) if fun
tionals are applied to thearguments. Again, we used a supers
ript x at λx to denote that λ a
ts withrespe
t to the variable x.We �nish this se
tion with an approximation result. Let K be an expansionkernel asso
iated to a 
omplete set of orthonormal fun
tions ϕn as above,and let fN be the orthogonal proje
tion of some element f ∈ H to the spanof ϕ1, . . . , ϕN in the original inner produ
t. Be
ause proje
tions have normone, one 
annot assert a 
onvergen
e rate fN → f in the Hilbert spa
e normwhi
h is better than the usual summability property
‖f − fN‖2H =

∞∑

j=N+1

|(f, ϕn)|2.Things are better if we go to weighted kernels and 
onsider pointwise 
on-vergen
e:Theorem 4.7. Let K be an expansion kernel as above, and let fN be theorthogonal proje
tion of some element f ∈ H to the span of ϕ1, . . . , ϕN inthe original inner produ
t. Then
|f(x)− fN (x)|2 ≤ ‖f − fN‖2H(K(x, x)−KN(x, x)) (4.8)where KN is the trun
ated kernel

KN(x, y) :=
N∑

n=1

λnϕn(x)ϕn(y).
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Proof:
|f(x)− fN(x)|2 =

∣∣∣∣∣∣

∞∑

n=N+1

(f, ϕn)ϕn(x)

∣∣∣∣∣∣

2

≤



∞∑

n=N+1

|(f, ϕn)|2
λn






∞∑

n=N+1

λn|ϕn(x)|2



= ‖f − fN‖2H(K(x, x)−KN(x, x)).Consequently, if KN 
onverges qui
kly to K for N → ∞, this qui
k 
onver-gen
e goes over to the pointwise 
onvergen
e of the proje
tions.Example 4.9Consider the Gaussian kernel expansion (1.9) on Ω = [−1, 1] ∈ R. Then
K(x, x)−KN(x, x) = exp(−x2 − y2)

∞∑

n=N+1

2n

n!
(xy)n

≤ 2N+1

(N + 1)!
= λN+1

(4.10)via the residual of Taylor's formula. Thus
|f(x)− fN(x)|2 ≤ ‖f − fN‖2H

2N+1

(N + 1)!
≤ ‖f‖2H

2N+1

(N + 1)!is a stunningly fast 
onvergen
e rate, but only for fun
tions in the (small)native spa
e H.Note that the error bound in Theorem 4.7 is sharp, be
ause equality is at-tained for f(x) = K(y, x), leading to the inequality (2.5) for K −KN , whi
his sharp for x = y. Thus the 
onvergen
e rates implied by Theorem 4.7 arewhat one should go for using interpolation.4.2 Shannon KernelTo understand the kernel theory behind the Shannon�Whittaker�Kotelnikovtheorem, we 
an use an expansion into an orthonormal basis in L2(R). It
an be proven (dire
tly or via Fourier transforms) that the fun
tions
sk(x) =

1√
h
sinc

(
x− kh

h

) for all k ∈ Z53



are orthonormal in L2(R), i.e. under the inner produ
t
(f, g)L2(R) :=

∫

R

f(t)g(t)dt.Thus we 
an write down the expansion kernel
K(x, y) :=

1

h

∑

k∈Z
sinc

(
x− kh

h

)
sinc

(
y − kh

h

)to get the reprodu
tion equation
f(x) = (f,K(x, ·))L2(R) for all x ∈ Rbut this does not hold for all fun
tions in L2(R), but rather for fun
tions fwith ∑

k∈Z
|(f, sk)L2(R)|2 = h

∑

k∈Z
|f(kh)|2 <∞whi
h form a Hilbert spa
e that needs Fourier transforms to be analyzed.It turns out to be the spa
e of fun
tions bandlimited to [−π/h, π/h], i.e.whose Fourier transforms exist in L2(R) but vanish outside that interval.Su
h fun
tions are ne
essarily in�nitely often di�erentiable, and pointwiseevaluation of the fun
tion and all derivatives is 
ontinuous.For these fun
tions, the inner produ
t takes the se
ond form

(f, g)L2(R) =
∫

R

f(t)g(t)dt = h
∑

k∈Z
f(kh)g(kh).Sin
e for ea
h �xed x the fun
tion

Sx(y) =
1

h
sinc((x− y)/h)is in that spa
e, we 
an write the inner produ
t with f in two ways:

(f, Sx)L2(R) =
∑

k∈Z
f(kh)sinc((x− kh)/h)

= f(x)to see that the series kernel K(x, y) is identi
al to Sx(y), i.e.
K(x, y) =

1

h

∑

k∈Z
sinc

(
x− kh

h

)
sinc

(
y − kh

h

)
=

1

h
sinc

(
x− y

h

)
.54



This ni
e summation formula 
an also be proven by using the fa
t that thespa
e is translation�invariant, so that the kernel must also be translation�invariant by Theorem 2.14 from page 16.By the above dis
ussion, we also see that the set hZ ⊂ Ω = R is unisolventfor H in the sense of De�nition 2.59 on page 33.A generalization to higher dimensions leads to the radial Bessel kernels
φν(r) = r−νJν(r),see Theorem 9.17 on page 181. The 
ase ν = 1/2 is the sin
 kernel, and someothers are in Figure 29 on page 182. These kernels were studied in [FLW06℄.4.3 Trigonometri
 KernelsLet us look at trigonometri
 series

f(x) =
a0
2

+
∞∑

n=1

(an cos(nx) + bn sin(nx)) (4.11)as an example. The basi
 spa
e H is the spa
e of 2π�periodi
 square inte-grable fun
tions with the inner produ
t
(f, g)H :=

1

π

∫ π

−π
f(t)g(t)dtand with the orthonormal fun
tions

1√
2
, cos(nx), sin(nx), n ∈ N.We 
an write these via the index set

J := (0, 0) ∪ (N, 0) ∪ (0,N)and
ϕj(x) :=





1√
2

j = (0, 0)

cos(nx) j = (n, 0), n ≥ 1
sin(nx) j = (0, n), n ≥ 1as
f =

∑

j∈J
(f, ϕj)Hϕjin the sense of 
onvergen
e in H. 55



Note that all fun
tions ϕj are uniformly bounded, su
h that the summability
ondition (1.7) is satis�ed whenever the weights are summable. This workswhen the weights are n−2, and thus we start with
K1(x, y) :=

1√
2
+

∞∑

n=1

n−2 (cos(nx) cos(ny) + sin(nx) sin(ny))

=
1√
2
+

∞∑

n=1

n−2 cos(n(x− y)).In view of the previous se
tion, where we had a sequen
e of kernels withweights λmn , we de�ne
λn :=





1 i = (0, 0)
n−2m i = (n, 0), n ≥ 1
n−2m i = (0, n), n ≥ 1to get the expansion kernels

K2m(x, y) :=
1√
2
+

∞∑

n=1

n−2m (cos(nx) cos(ny) + sin(nx) sin(ny))

=
1√
2
+

∞∑

n=1

n−2m cos(n(x− y)) (4.12)whi
h must be positive semide�nite on Ω = [0, 2π). Plotting the kernel K2(see top left of Figure 8) reveals that it is a 
ontinuous pie
ewise parabola,and from K ′′
2m = −K2m−2 for large m we see that K2m must be a pie
ewisepolynomial of degree 2m whi
h is still 2m − 2 times 
ontinuously di�eren-tiable.To verify this by elementary means, we suspe
t K2 to be something like

g(t) := (π − t)2 on [0, π] with periodi
 
ontinuation to an even 2π�periodi
fun
tion. We 
al
ulate the even Fourier 
oe�
ients as
(g(t), cos(nt))H

=
2

π

∫ π

0
(π − t)2 cos(nt)dt

=
[
2

nπ
(π − t)2 sin(nt)

]π

0
+

4

nπ

∫ π

0
(π − t) sin(nt)dt

= 0 +
4

n2π
[−(π − t) cos(nt)]π0 −

4

n2π

∫ π

0
cos(nt)dt

=
4

n2 56



and
(g(t),

1√
2
)H

=
2

π

∫ π

0
(π − t)2

1√
2
dt

=

√
2π2

3su
h that we get
K2(t) =

1

4
g(t) +

1√
2
− π2

12
.We note that periodi
 fun
tions of this form arise in the 
ontext of Rombergintegration.In more generality, the fun
tions

∞∑

n=1

1

n2k
cos(n t) (4.13)represent polynomials of degree 2k on [0, 2π]. To see this, 
onsider Hurwitz-Fourier expansions

Bm(x) = − m!

(2πi)m

+∞∑

n=−∞, n 6=0

n−me2πinxof the Bernoulli polynomials1 Bm of degree m on [0, 1]. If we set t = 2πxand m = 2k, we get
B2k(

t
2π
) = (−1)k+1 (2k)!

(2π)2k

+∞∑

n=−∞, n 6=0

n−2k(cos(nt) + i sin(nt))

= 2(−1)k+1 (2k)!

(2π)2k

+∞∑

n=1

n−2k cos(nt)that proves our 
laim. The native spa
e for K2m 
ontains all fun
tions withFourier series 
oe�
ients satisfying the summability 
ondition in Hλ, whi
hin 
ase of (4.11) and K2m takes the form
∑

n∈N
n2m

(
a2n + b2n

)
<∞.Thus the fun
tions in the native spa
e for K2m get more and more smooth forin
reasing m. Readers familiar with Sobolev spa
es will re
ognize that K2m1http://mathworld.wolfram.com/BernoulliPolynomial.html57
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Figure 8: Periodi
 kernelsis the reprodu
ing kernel of the Sobolev spa
e of order 2m for univariate
2π�periodi
 fun
tions.From Anette Meyenburg's thesis [Mey96℄ we 
ite the in�nitely di�erentiableperiodi
 kernels

∞∑

n=0

1

n!
cos(nx) = cos(sin(x)) · exp(cos(x))

∞∑

n=0

1

2n
cos(nx) =

1− 1
2
cos(x)

1− cos(x) + 1
4

.

(4.14)Their proofs are easy, if the 
osines of the left�hand side are written asexponentials. They are plotted in Fig. 8 on the top right and bottom left,respe
tively. Without any further work we know that their native spa
es
onsist of 2π�periodi
 fun
tions whose Fourier 
oe�
ients de
ay like 1
n!

or
1
2n
, respe
tively.
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By standard Fourier analysis, one also gets [Mey96℄
exp(−2|x|) =

4

π

∞∑

n=0

1− (−1)ne−2π

4 + n2
cos(nx), x ∈ [−π, π],

K(x) :=





4− x 0 ≤ x ≤ 2π − 4
8− 2π 2π − 4 < x < 4

4− 2π + x 4 ≤ x ≤ 2π

=
16

π
+

∞∑

n=1

4 sin2(2n)

πn2
cos(nx).The �nal one is plotted in the bottom right of Fig. 8.We now want to apply Theorem 4.7 to Fourier series. We have to evaluatethe errors of the trun
ated kernels. In 
ase of λn = n−2m we have to bound

K(x, x)−KN−1(x, x) =
∞∑

n=N

1

n2m

=
∞∑

p=1

N−1∑

q=0

1

(pN + q)2m

≤ 1

N2m−1

∞∑

p=1

1

p2m

=
ζ(2m)

N2m−1
.

(4.15)
Now Theorem 4.7 impliesTheorem 4.16. In the native Hilbert spa
es

Hm :=

{
f : (4.11), ∞∑

n=0

(a2n + b2n)n
2m <∞

} (4.17)for the expansion kernels of (4.12), the pointwise 
onvergen
e rate of par-tial sums of trigonometri
 series (4.11) trun
ated at n = N has the behavior
O(N−m+1/2) for N → ∞ and �xed m ≥ 1. The kernels of (4.14) lead to point-wise 
onvergen
e rates O( 1√

N !
) and O(2−N/2), respe
tively, in their asso
iatednative Hlbert spa
es de�ned via (4.3).Note that all trigonometri
 kernels in 
osine form 
an be transformed by thestandard transformation x = cos(ϕ) into series of Chebyshev polynomials on

[−1, 1]. For instan
e, the kernel
K(x, y) :=

∞∑

n=0

1

n!
Tn(x)Tn(y)59



on [−1, 1] 
an be transformed by substitution x = cos(ϕ), y = cos(ψ) into
∞∑

n=0

1

n!
cos(nϕ) cos(nψ)

=
1

2

∞∑

n=0

1

n!
(cos(n(ϕ+ ψ)) + cos(n(ϕ− ψ)))

=
1

2
[cos(sin(ϕ+ ψ)) · exp(cos(ϕ+ ψ)) + cos(sin(ϕ− ψ)) · exp(cos(ϕ− ψ))].4.4 Taylor KernelsThere is still another variation on the theme of periodi
 kernels. For all
omplex�valued fun
tions whi
h are holomorphi
 on the interior of the unitdis
 and still L2 on the unit 
ir
le C, we 
an de�ne an inner produ
t by
(f, g)H :=

1

2π

∫ 2π

0
f(eiϕ)g(eiϕ)dϕ =

1

2πi

∫

C

f(z)g(z)

z
dz.This generates the Hardy spa
e2 H2, and 
omplex polynomials zn are or-thonormal in this spa
e for n ≥ 0. Consequently, we 
an 
onsider expansionkernels

K(u, z) :=
∞∑

n=0

λnu
nzn =: Φ(uz). (4.18)with nonnegative and absolutely summable weights λn. All power series withnonnegative 
oe�
ients and 
onvergen
e radius at least 1 provide examplesof expansion kernels. If we 
on�ne the fun
tions to the unit 
ir
le, we 
anset u = exp(iψ) and z = exp(iϕ) to get periodi
 
omplex�valued expansionkernels

K(ψ, φ) :=
∞∑

n=0

λn exp(in(ϕ− ψ)) =: Φ(ϕ− ψ) (4.19)and if we fo
us on real�valued kernels, we are ba
k to the 
osine series westarted with.But there is no need to 
on�ne everything to the unit 
ir
le, sin
e we knowthat the fun
tions have unique extensions to the full dis
, determined bytheir values on the 
ir
le. Cau
hy's integral formula
f(z) =

1

2πi

∫

C

f(ζ)

ζ − z
dζ2http://en.wikipedia.org/wiki/Hardy_space60
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then is a reprodu
tion formula, and its kernel is the Szegö kernel
K(u, z) =

1

1− uz
=

∞∑

n=0

unzn.This kernel 
annot be evaluated when both arguments are on the 
ir
le,whi
h is to be expe
ted be
ause fun
tions in Hardy spa
e have no 
ontinuouspoint evaluation on the 
ir
le itself. Interpolation of fun
tions on point sets
Z = {z1, . . . , zN} inside the unit dis
 are no problem, and the result is alinear 
ombination of rational fun
tions

K(zj , z) =
1

1− zjzwhi
h have �mirror� singularities at z = zj/|zj|2 outside the dis
. The inter-polant is an optimal re
overy of fun
tions from Hardy spa
e, in
luding beingnorm�minimal in L2 on the 
ir
le among all other 
on
eivable interpolants.But this it not all we 
an say, by far. Clearly, the fun
tions we want to
onsider here have expansions in Taylor series
f(z) =

∞∑

n=0

f (n)(0)

n!
znwith at least 
onvergen
e radius 1. We 
an view this as an expansion intothe orthonormal basis, with

(f, zn)H =
f (n)(0)

n!
.If we de�ne a weighted kernel by (4.18), Theorem 4.6 shows that it reprodu
esin the Hilbert subspa
e of fun
tions with the summability 
ondition

∞∑

n=0

|(f, zn)H |2
λn

=
∞∑

n=0

|f (n)(0)|2
(n!)2λn

.and the inner produ
t
(f, g)λ :=

∞∑

n=0

f (n)(0)g(n)(0)

λn(n!)2
.Theorem 4.20. In all of these 
ases, independent of the weights used, thereprodu
tion formula is the Taylor formula. The 
orresponding Hilbertspa
es 
an be 
alled Taylor spa
es. 61



Proof: We just work it out by �rst 
al
ulating
dj

dzj |0
K(u, z) = λjj!u

j , j ≥ 0and then
f(u) = (f,K(u, ·))

=
∞∑

n=0

λn
f (n)(0)λnn!u

n

λn(n!)2

=
∞∑

n=0

f (n)(0)

n!
un.This gives a whole range of spe
i�
 kernels and asso
iated Hilbert subspa
esof the Hardy spa
e. See Table 1 for a list in the notation of (4.18), where weintrodu
ed subsets N of N in order to 
are for expansions in even and oddterms. If the kernels exist for |z| = 1, they 
an be brought to the unit 
ir
leand used for periodi
 fun
tions via (4.19).

Φ(z) =
∑

j∈N λjz
j N λj

(1− z)−1,−1 < |z| < 1 N 1
(1− z2)−1,−1 < |z| < 1 2N 1

(1− z)−α, α ∈ N,−1 < |z| < 1 N
(α + j − 1)!

(α− 1)!j!

− log(1− z)

z
,−1 < |z| < 1 N

1

j + 1
exp(z) N 1/j!

(1− z2)−α, α ∈ N,−1 < |z| < 1 2N
(α + j − 1)!

(α− 1)!j!
sinh(z) 2N+ 1 1/j!

sinh(z)/z 2N 1
(j+1)!

cosh(z) 2N 1/j!

z−αIα(z) 2N
1

j!4jΓ(j + α + 1)Table 1: Kernels for Taylor Spa
esA more detailed analysis of Taylor spa
es is in a preprint [ZS10℄.4.5 Native Spa
es of Expansion KernelsWe now want to turn the above situation upside down, starting with anexpansion kernel and nothing else. We want to arrive at a Hilbert spa
e62



of fun
tions on Ω with 
ontinuous point evaluation su
h that the expansionkernel is reprodu
ing. Note that this is the standard 
ase in Ma
hine Learningwith kernels.Thus we start with an expansion kernel (1.6) on page 8 with the summability
ondition (1.7) to make it pointwise well�de�ned. We want to write the kernelvia a feature spa
e, and this leads to the feature spa
e ℓ2,λ,I of (1.8) underthe inner produ
t
({ξi}i∈I , {ηi}i∈I)λ,I :=

∑

i∈I
λiξiηi.The dual spa
e then is ℓ2,1/λ,I , and the a
tion of a fun
tional µ ∈ ℓ2,1/λ,I ona sequen
e c ∈ ℓ2,λ,I is de�ned as

µ(c) :=
∑

i∈I
µici.With this de�nition, the Riesz map is

R : ℓ2,1/λ,I → ℓ2,λ,I , R(µ) = {µi/λi}i∈I . (4.21)More details on sequen
e spa
es are in Se
tion 11.3 on page 220.The feature map
Φ(x) := {ϕi(x)}i∈I ∈ ℓ2,λ,I for all x ∈ Ωtakes Ω into a set Φ(Ω) ⊆ ℓ2,λ,I , and the kernel we expe
t is

K(x, y) =
∑

i∈I
λiϕi(x)ϕi(y) = (Φ(y),Φ(x))λ,I for all x, y ∈ Ω,but we have no Hilbert spa
e and no reprodu
tion formula yet.If the ϕn are linearly independent, one 
an go easily over to the native spa
evia sequen
e spa
es of expansion 
oe�
ients, using the spa
es and inner prod-u
ts of Se
tion 4.1. But if linear independen
e of the ϕi is not guaranteed, we
annot work with 
oe�
ients of expansions into the ϕi in a simple way. Thereis a workaround by R. Opfer [Opf06℄ using frames, but this is unne
essarily
ompli
ated. Instead, we dire
tly work in subspa
es of sequen
e spa
es. The�fun
tions� will be sequen
es in ℓ2,1/λ,I , while �fun
tionals� will be in ℓ2,λ,I .We de�ne point evaluations of �fun
tions� c = {ci}i ∈ ℓ2,1/λ,I via

δx(c) :=
∑

i

ciϕi(x),63



and they are 
ontinuous due to
|δx(c)|2 ≤

(∑

i

|ci|2
λi

)(∑

i

|ϕi(x)|2λi
)
= ‖c‖2ℓ2,1/λ,IK(x, x).Their Riesz images are sequen
es

R(δx) = {ϕi(x)λi}i(note that we go in the reverse dire
tion of (4.21)) as �fun
tions�, su
h thattheir evaluation at y is
δy(R(δx)) =

∑

i

ϕi(y)ϕi(x)λi = K(x, y)as expe
ted. The reprodu
tion equation is
(c, R(δx)) = δx(c)by de�nition. But not all of the sequen
e spa
es 
ome out to be allowed.The dual of the native spa
e will be

L := 
los span {δx : x ∈ Ω}while the native spa
e H is the 
losure of the span all sequen
es R(δx) for
x ∈ Ω. This makes perfe
t sense, but it is not so easy to evaluate thesespa
es for spe
i�
 appli
ations. In parti
ular, it is not guaranteed that the
ϕi are in the native spa
e. And, they 
annot be an orthonormal system likein our starting point in Se
tion 4.1, be
ause they need not even be nonzeroor linearly independent at this point.But there is a formal tri
k to 
ome ba
k to the orthonormal basis. Wearti�
ially extend Ω by the index set I and postulate fun
tion values

ϕk(j) = δjk, j, k ∈ Ithere, leaving the values on Ω un
hanged, and doing no harm to the summa-bility 
ondition. Now we 
an use the reprodu
tion equation for
(c, R(δj)) = cj for all j ∈ Iand

λjϕj(y) = δy(R(δj)) = K(j, y)to see that the ϕj are in the native spa
e now. Their inner produ
t there is
(K(j, y), K(k, y))H = K(j, k) = λjδjk for all j, k ∈ I,64



as expe
ted from Se
tion 4.1. In the unweighted spa
e ℓ2,1,I their sequen
erepresentations are the unit sequen
es, thus they are orthonormal there. Wedo not assume 
ontinuous point evaluation on �fun
tions� in the full spa
e
ℓ2,1,I , sin
e we have posed our spe
ial summability 
ondition that for
es usto use weights. We summarize:Theorem 4.22. The native spa
e for an expansion kernel on Ω with weights
λi, i ∈ I and features ϕi, i ∈ I is isometri
ally isomorphi
 to a 
losedsubspa
e of ℓ2,1/λ,I , while its dual is a 
losed subspa
e of ℓ2,λ,I in Riesz relation,being the 
losure of all point evaluation fun
tionals. By a suitable formalextension of Ω one 
an 
ome ba
k to the situation in Theorem 4.6 on page51.The problem is to 
hara
terize the spa
es H and L in more detail. But thisis dependent on the spe
i�
 example.4.6 Error Analysis of Expansion KernelsRS: this is still under resear
h, as of February 1, 2011.Theorem 4.23. For any �nite set X = {x1, . . . , xN} ⊆ Ω and an expansionkernel K with the summability 
ondition (4.2), the pointwise norm of theerror fun
tional has the form

∥∥∥∥∥∥
δx −

N∑

j=1

uj(x)δxj

∥∥∥∥∥∥

2

H∗

=
∑

n

λn

∣∣∣∣∣∣
ϕn(x)−

N∑

j=1

uj(x)ϕn(xj)

∣∣∣∣∣∣

2

≥ P 2
X(x)If this is minimized over all uj(x) ∈ K, the Power Fun
tion P 2

X(x) results,and the (existing) optimal solution u∗j(x) satis�es the linear system
K(xk, x) =

N∑

j=1

u∗j(x)K(xk, xj), 1 ≤ k ≤ N.Proof: The identity follows from dire
t 
al
ulation, the inequality via thede�nition of the Power Fun
tion, and the linear system follows from standardorthogonality properties of the optimum.If an interpolation pro
ess for a set X yields a small power fun
tion, andif the weights λn de
rease rapidly, then there must ne
essarily be a good65



re
overy of the �rst ϕn from the data. More pre
isely,
∣∣∣∣∣∣
ϕn(x)−

N∑

j=1

u∗j(x)ϕn(xj)

∣∣∣∣∣∣

2

≤ P 2
X(x)

λnfor all n.Theorem 4.24. Assume that a set X ⊂ Ω is unisolvent for a spa
e PM :=span {ϕ1, . . . , ϕM} of fun
tions on Ω. Then interpolation on X with valuesin PM is possible by a linear pro
ess, and it re
overs fun
tion from PM exa
tly.Proof: This should be well�known, but we give a proof here. Consider theevaluation map EX with
EX(f) := (f(x1), . . . , f(xN))

T ∈ K
N .By unisolven
y, it is inje
tive on PM , and thus there is an inverse map ba
kto PM on the range EX(PM). This means that interpolation on X 
an bewritten as a map

I(f)(x) =
N∑

j=1

uj(x)f(xj)whi
h is the identity on PM , and where the fun
tions uj are in PM .In our 
ontext, this works like Shannon's theorem. If high�frequen
y partsof f are missing, re
overy 
an be exa
t.We add another triviality:Theorem 4.25. Oversampling 
an be used to stabilize linear interpolationpro
esses on unisolvent sets for �xed trial spa
es.Proof: If we work with the notation of the previous theorem, oversamplingmeans that N >> M , and the fun
tions uj are not unique. Thus one 
anminimize norms like
‖u(x)‖22 =

N∑

j=1

|uj(x)|2 (4.26)over N variables under the M 
onstraints
ϕk(x) =

N∑

j=1

uj(x)ϕk(xj), 1 ≤ k ≤M
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for ea
h �xed x. By standard arguments of quadrati
 optimization, thesolution has the form
uj(x) =

M∑

k=1

vk(x)ϕk(xj), 1 ≤ j ≤ Nwhere the fun
tions vk satisfy the normal equations
ϕm(x) =

M∑

k=1

vk(x)
N∑

j=1

ϕk(xj)ϕm(xj), 1 ≤ m ≤ M.In
reasing the number N of data points yields more degreees of freedom forthe minimization, and thus the optimal value of (4.26) gets smaller if N isin
reased while PM is �xed.Theorem 4.27. Let X be unisolvent for PM , and let uMj (x) be the re
overyfun
tions on PM from values on X, possibly with quite some stability, i.e. areasonably bounded value (4.26) due to oversampling. Then
P 2
X(x) ≤


1 +

N∑

j=1

|uMj (x)|2

 ·

·

K(x, x)−KM(x, x) +

N∑

j=1

(K(xj, xj)−KM(xj , xj))


.Proof: Just 
onsider

P 2
X(x) ≤

∞∑

n=M+1

λn

∣∣∣∣∣∣
ϕn(x)−

N∑

j=1

uMj (x)ϕn(xj)

∣∣∣∣∣∣

2

≤

1 +

N∑

j=1

|uMj (x)|2



∞∑

n=M+1

λn


|ϕn(x)|2 +

N∑

j=1

|ϕn(xj)|2



=


1 +

N∑

j=1

|uMj (x)|2



K(x, x)−KM(x, x)

+
N∑

j=1

(K(xj , xj)−KM(xj , xj))


 .If the λn are de
reasing qui
kly, one 
an have K − KM very small or evennumeri
ally zero for reasonably small M . Then the above result says that if

X is large enough to be unisolvent on PM and to allow enough oversamplingto let the �rst fa
tor in the bound be not too large, the interpolation errorusing the kernel K will be small.Example 4.28 67



Consider the kernel
K(x, y) = exp(2xy) =

∞∑

n=0

2n

n!
xnynarising within the expansion (1.9) on Ω = [−1, 1] ∈ R. It has a similar boundlike (4.10). For point sets X = XM , we 
hoose theM zeros or extrema of theappropriate Chebyshev polynomials, and 
onsider re
overy of polynomials.Then it is well�known that the standard Lebesgue 
onstants and thus alsothe absolute maxima of the uj behave like log(M), leading to a O(log(M))bound of (4.26). Consequently,

P 2
XM

(x) ≤ C log(M)
2M

M !
for all x ∈ [−1, 1].RS: the plots are to be 
hanged, they still belong to the GaussianFigure 9 shows the ϕn, the Power Fun
tion and its upper bound of Theorem4.23 , the Lagrange bases using either kernel translates or polynomials, andthe 
orresponding Lebesgue fun
tions (4.26) for M = 12, in reading order.The a
tual bounds are

λ12 ≤ 4.3 · 10−6

K −K12 ≤ 1.0 · 10−7

P 2
X12

≤ 6.0 · 10−13

‖u(x)‖22 ≤ 1.3.The bound in Theorem 4.23 is quite sharp, while the upper bound of Theorem4.27 has some leeway in the se
ond inequality sign in the proof.Example 4.29Let us 
onsider the Taylor spa
es of Se
tion 4.4 whi
h have the Taylor seriesas a reprodu
tion formula and 
omplex�valued kernels
K(u, z) :=

∞∑

n=0

λnu
nznin the unit dis
. We 
onsider their restri
tion to a real interval Ω = [−R,R]with 0 < R < 1 and assume that the λn de
rease with in
reasing n. Thenthe trun
ated kernels 
an be bounded by

K(x, x)−KM(x, x) =
∑

n>M

λn|x|2n

≤ λM+1

∑

n>M

|x|2n

≤ λM+1
R2M+2

1− R2
.68
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Polynomial Lebesgue functionFigure 9: Gaussian Expansion Kernel PlotsNow we 
onsider interpolation in N +1 ≥M +1 points of [−R,R] su
h thatpolynomials up to degree M are re
overed. The power fun
tion will then bebounded by

P 2
X(x) ≤ λM+1

(M + 2)R2M+2

1− R2


1 +

N∑

j=0

|uNj (x)|2

with the appropriate re
overy fun
tions u0, . . . , uN . Note that this will yieldgeometri
 
onvergen
e forM → ∞, if (4.26) 
an be kept under 
ontrol, whi
his a nontrivial problem.If we take N+1 =M+1 equidistant points, the standard Lebesgue 
onstantwill be

M∑

j=0

|uMj (x)| ≤ C
2M+1

eM log(M)su
h that
1 +

M∑

j=0

|uMj (x)|2 ≤ C
22M+2

M2 log2(M)with a 
onstant C whi
h is independent of M . This yields
P 2
X(x) ≤ CλM+1

(M + 2)R2M+2

1− R2

22M+2

M2 log2(M)69



and leads to geometri
 
onvergen
e to zero if R < 1/2 even for the Szegökernel.If M + 1 Chebyshev nodes are used, the standard Lebesgue 
onstant will beof order log(M), and then
1 +

M∑

j=0

|uMj (x)|2 ≤ C log2(M)with a 
onstant C whi
h is independent of M . Thus
P 2
X(x) ≤ CλM+1

(M + 2)R2M+2

1− R2
log2(M)implies geometri
 
onvergen
e for all R < 1 and all kernels 
onsidered.Let us rewrite this in terms of the �ll distan
e

h := max
−R≤y≤R

min
xj∈X

|y − xj |of a subset X . For M + 1 Chebyshev zeros on [−1, 1], the �ll distan
e isbounded above by h = π/(M + 1), but we 
an make it easier by pi
king
M = ⌈π

h
⌉ for a given h. Then

R2M = (R2)⌈
π
h
⌉

= exp
(
2⌈π

h
⌉ log(R)

)and
P 2
X(x) ≤ Cλ⌈π

h
⌉+1

(⌈π
h
⌉+ 2)R2

1− R2
log2(⌈π

h
⌉) exp

(
2⌈π
h
⌉ log(R)

)
. (4.30)Even for the Szegö kernel, this is a 
onvergen
e rate of the form

P 2
X(x) ≤ C exp(−c/h) for h→ 0with 
ertain positive 
onstants C, c.Theorem 4.31. If a Taylor kernel with de
aying λn is given and if one worksin [−R,R] for some 0 < R < 1, one 
an �nd for all h > 0 a point set X with�ll distan
e at most h su
h that (4.30) holds.
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We now start with an arbitrary pres
ribed point set X with �ll distan
e hand N + 1 points, but now we employ oversampling. We pi
k the smallest
M with 2M2 ≥ 1/h, i.e.

M =

⌈
1√
2h

⌉
,and then we know by Theorem 8.41 on page 151 that we get

N∑

j=0

|uj(x)| ≤ 2,leading to
1 +

N∑

j=0

|uj(x)|2 ≤ 5.Consequently, we get the bound
P 2
X(x) ≤ 5λM+1

(M + 2)R2M+2

1−R2and 
an insert our 
hoi
e of M for
P 2
X(x) ≤ 5λ

1+

⌈
1√
2h

⌉

(
2 +

⌈
1√
2h

⌉)
R2

1− R2
R

2

⌈
1√
2h

⌉ (4.32)whi
h is a 
onvergen
e result of the form
P 2
X(x) ≤ C exp(−c/

√
h) (4.33)with positive and expli
itly obtainable 
onstants.Theorem 4.34. For all kernels of Taylor spa
es with de
aying λn, and forall point sets X ⊂ [−R,R] with �ll distan
e h and 0 < R < 1, the PowerFun
tion is bounded by (4.32) and has exponential 
onvergen
e to zero for

h→ 0 with a law like (4.33).Note that the proof implies that su
h sets have N + 1 points with at least
hN ≥ 2R, but the polynomial re
overy used in the bound will only beexa
t up to degree M with 2hM2 ≥ 1. This is a 
onsiderable amount ofoversampling, but the proof requires it only for going to the general 
ase
0 < R < 1. The proof for the 
ase R < 1/2 does not need oversampling.RS: Open: what happens in pra
ti
e? Is the proof still too weak?RS: To Do: better 
onvergen
e if λn de
ay fast71



Let us 
onsider the 
ase of real�valued 2π�periodi
 trigonometri
 kernelsfrom (4.12) and interpolate in the usual 2N +1 equidistant points in [−π, π]su
h that we have a �ll distan
e of h = π/(2N + 1). Then we know that theLebesgue 
onstants behave like O(log(N)), and we 
an use (4.15) in Theorem4.27 forTheorem 4.35. If the trigonometri
 kernels (4.12) are used whose nativespa
es (4.17) are of Sobolev type, and if interpolation in 2N + 1 equidistantpoints is performed, the pointwise error de
ays at least like O(N−m+1 log(N)) =
O(hm−1| log(h)|) for N → ∞ or h→ 0.4.7 Finite CaseWe now spe
ialize to the 
ontext of learning models on a �nite set Ω 
on-sisting of N = |Ω| points and a �nite�dimensional feature spa
e. Insteadof using point notation for Ω, we 
an identify Ω with the set Ω = {1, . . . , N}and use index notation instead, and we assume the feature spa
e to be KLfor simpli
ity. Expansion kernels (1.6)

K(j, k) :=
L∑

ℓ=1

λℓϕℓ(j)ϕℓ(k)then 
an be written as Hermitian positive semide�nite matri
es K with en-tries K(j, k), 1 ≤ j, k ≤ N as
K = Φ∗ ΛΦwith an L × L diagonal matrix Λ 
ontaining positive weights λ1, . . . , λL onits diagonal, while Φ is a L× N matrix 
onsisting of entries ϕℓ(r), 1 ≤ ℓ ≤

L, 1 ≤ r ≤ N .The feature map j 7→ Φ(j) := {ϕℓ(j)}ℓ ∈ KL maps to the N 
olumns of Φ,and thus L is the subspa
e of KL spanned by the 
olumns of Φ. In most
ases, it will be all of KL, but not ne
essarily so. Anyway, ea
h element of Lis of the form Φz with z ∈ K
N . Then µz := R−1(Φz) will be µz = ΛΦz andthe elements of H are ve
tors with elements

T (µz)(j) =
L∑

ℓ=1

ϕℓ(j)µzℓ =
L∑

ℓ=1

ϕℓ(j)λℓ
N∑

k=1

ϕℓ(k)zk = eTj Kz,i.e. linear 
ombinations of rows of K. Thus H is the row span of K, whi
h isalso evident from the fa
t that the native spa
e should be the 
losure of the
K(j, ·). Ea
h fun
tion f in H thus is a linear 
ombination of rows of K, and72



thus it has the form fa := KTa with a ve
tor a ∈ KN . The inner produ
tthen is
(fa, fb)H = aTKb = aTΦ∗ΛΦb for all a, b ∈ K

N .The well�de�nedness of the inner produ
t 
an here be 
he
ked easily, sin
efor KTa = KT ã and KT b = KT b̃ we get
(fa, fb)K = aTKb

= ãTKb

= ãTKb̃
= (fã, fb̃)K .Also, the positive de�niteness of the inner produ
t is simple to see, be
ausefrom ‖fa‖2K = aTKa = 0 we �rst get Φa = 0 from

0 = aTKa = aTΦ∗ΛΦa = aTΦ∗√Λ
√
ΛΦa = ‖

√
ΛΦa‖22with the nonsingular diagonal matrix √

Λ de�ned in an obvious way. But
Φa = 0 implies fa = KTa = (Φ∗ΛΦ)Ta = ΦTΛΦa = 0.In pra
ti
al 
ases, the matri
es Φ and K are mu
h too large to be handled,but there are e�
ient methods for the redu
tion of dimensions via prin
ipal
omponent analysis or singular value de
omposition. We des
ribethe basi
 prin
iple now, but remark that pra
ti
al appli
ations will deal withsquare submatri
es of equal row/
olumn sele
tions of the matrix K, i.e. withminors of it, while the kernel is un
hanged..A singular value de
omposition splits the kernel matrix K into a produ
t

K = Φ∗ΛΦ = U∗ΣUwith a unitary N × N matrix U and a real diagonal N × N matrix Σ ofsingular values of K, i.e. the nonnegative eigenvalues of K∗K. Note thatthis amounts to 
onsider an equivalent setting with now L = N, U = Φ, and
Λ = Σ, but now the diagonal of Σ may 
ontain zero entries. The unitarymatrix U just is a 
oordinate 
hange in the native spa
e, and the new Nfeature fun
tions are orthonormal, but only L of them are used. The kernelgets the equivalent form

K(j, k) =
L∑

ℓ=1

σℓuℓ(j)uℓ(k)with the uℓ being orthonormal ve
tors. If small singular values o

ur here,they 
an be ignored, thus redu
ing the kernel's 
omplexity.73



5 Conditionally Positive De�nite KernelsSo far, we looked at positive semide�nite symmetri
 kernels. But this is notthe end of the story. We need the more general notion of 
onditional pos-itive (semi�) de�nite kernels, and there are several ways to introdu
e them.They do not fall dire
tly out of a simple (non�distributional) Hilbert spa
esetting, be
ause otherwise they would be un
onditionally positive semide�-nite. Instead, the most important 
onditionally positive de�nite kernels likethe thin�plate spline K(x, y) = log(‖x − y‖22) arise dire
tly from appli-
ations, or as 
ertain fundamental solutions of partial di�erential equations.Thus we have to begin with kernels �rst and then work our way towards aHilbert spa
e. For 
ertain reasons to be
ome apparent later, we shall post-pone 
ompletion as far as possible.5.1 Unisolven
yTo de�ne a su�
iently general notion of 
onditional positive (semi�) de�-niteness, we �x a �nite�dimensional spa
e P of fun
tions on a set Ω, denoteits dimension by Q and sele
t a basis p1, . . . , pQ. The 
ase of (un
onditional)positive (semi�) de�niteness, as in De�nitions 2.37 and 3.4 refers to the spe-
ial 
ase Q = 0 and P = {0}.De�nition 5.1. A subset X = {x1, . . . , xN} of Ω is 
alled P�unisolvent,if zero is the only fun
tion in P that vanishes on X.Looking at the matrix PX of values pj(xk), 1 ≤ j ≤ Q, 1 ≤ k ≤ N , we seethat it must have rank Q for unisolven
y, thus N ≥ Q must hold. Thereforewe assume Ω to have at least Q points and 
ontain a unisolvent set. Fromnow on, all subsets X of Ω we shall 
onsider must be P�unisolvent and thushave at least Q points. Later, we shall needTheorem 5.2. Ea
h P�unisolvent set X has a unisolvent subset of Q points.Proof: Just sele
t a nonsingular Q×Q submatrix of PX . .
P�unisolven
y means that fun
tions from P are 
ompletely determined bytheir values on X . Therefore we 
an have a re
overy formula

p(x) =
N∑

j=1

p(xj)uj(x) for all p ∈ P, x ∈ Ωwith a suitable set of fun
tions u1, . . . , uN spanning P. If |X| = Q, the ujwill be a Lagrange basis with uj(xk) = δjk, 1 ≤ j, k ≤ Q.74



It is instru
tive to 
onsider minimal P�unisolvent sets for spa
es of poly-nomials over R in d variables and of degree n. In one dimension, ea
h setof n + 1 distin
t points is unisolvent and minimal, due to the FundamentalTheorem of Algebra. In d real dimensions, minimal unisolvent sets for linearreal�valued polynomials are the nondegenerate simpli
es 
onsisting of d+ 1points not on a hyperplane. In geometry, 
ertain 
on�gurations of unisol-vents sets are 
alled �in general position�. For instan
e, minimal unisolventsets for quadrati
 polynomials on R
2 
onsist of 6 points not lying on a 
oni
.But the 
onne
tion of unisolvent sets to geometry 
annot be pursued hereany further.5.2 Conditional Positive De�nitenessDe�nition 5.3. Let a �nite�dimensional spa
e P of real�valued fun
tionson a set Ω be given. A Hermitian kernel K : Ω × Ω → K is 
alled P�
onditionally positive (semi�) de�nite, if for all P�unisolvent subsets

X = {x1, . . . , xN} of Ω the kernel matri
es with entries K(xj , xk), 1 ≤ j, k ≤
N ≥ Q are positive (semi�) de�nite on the subspa
e of KN of ve
tors a ∈ KNwith the moment 
onditions

N∑

j=1

ajp(xj) = 0 for all p ∈ P. (5.4)If the spa
e P 
onsists of all polynomials of order (=degree −1) m on Ω,the kernel is 
onditionally positive (semi�) de�nite of order m, if it is P�
onditionally positive (semi�) de�nite.There are some highly important 
onditionally positive de�nite kernels, inparti
ularmultivariate ones, whi
h we shall handle in detail later. These areradial kernels K(x, y) = φ(‖x− y‖2) with s
alar fun
tions φ : [0.∞) → Rand orders of 
onditional positive de�niteness given by Table 2. Like theKernel φ(r), r = ‖x− y‖2 Order Conditions Name
(−1)⌈β/2⌉(c2 + r2)β/2 ⌈β/2⌉ β > 0, β /∈ 2N Multiquadri
s

(−1)⌈β/2⌉rβ ⌈β/2⌉ β > 0, β /∈ 2N polyharmoni
 splines
(−1)k+1r2k log r k + 1 k ∈ N thin�plate splinesTable 2: Orders of 
onditional positive de�nitenessspe
ial univariate spline kernels we shall en
ounter later, su
h kernels arisenaturally and are not dire
tly identi�able as reprodu
ing kernels of 
ertainHilbert spa
es, be
ause otherwise they would be un
onditionally positive75



semide�nite. Thus they have no dire
t link to Hilbert spa
e theory, and wehave to repeat the 
onstru
tion of se
tions 3.3 and 3.4 to see their 
onne
-tion to Hilbert spa
es. Note that (un
onditionally) positive (semi�) de�nitekernels are P�
onditionally positve (semi�) de�nite for all �nite�dimensionalspa
es P.5.3 Interpolation ProblemsThe standard te
hnique to set up an interpolation problem on a P�unisolventpoint set X = {x1, . . . , xN} in Ω for a P�
onditionally positive kernel K isto use a linear 
ombination
s(y) := sX,a,b(y) :=

N∑

j=1

ajK(xj , y) +
Q∑

m=1

bmpm(y) for all y ∈ Ω (5.5)using 
oe�
ient ve
tors a = (a1, . . . , aN)
T ∈ KN and b = (b1, . . . , bQ)

T ∈ KQ,but with a satisfying the moment 
onditions (5.4). Interpolation of data
f1, . . . , fN in X then poses the (N +Q)× (N +Q) linear system

s(xk) =
N∑

j=1

ajK(xj , xk) +
Q∑

m=1

bmpm(xk) = fk, 1 ≤ k ≤ N,

N∑

j=1

ajpn(xj) + 0 = 0, 1 ≤ n ≤ Q

(5.6)with a Hermitian 
oe�
ient matrix.Theorem 5.7. If X is P�unisolvent and K is P�
onditionally positive def-inite, the system (5.6) is uniquely solvable.Proof: Assume a homogeneous system of the same form and sum the �rst
N equations up with weights ak. Then

N∑

j,k=1

ajakK(xj , xk) +
Q∑

m=1

bm
N∑

k=1

akpm(xk) = 0,and by P�
onditional positive de�niteness, the ve
tor a must vanish. Butthen the �rst N equations are
Q∑

m=1

bmpm(xk) = 0, 1 ≤ k ≤ N,and P�unisolven
y of X implies b = 0.76



In view of Theorem 2.33 on page 21, we would like to prove that for P�
onditional positive semide�nite kernels, the system is solvable if the data
ome from a fun
tion in the native spa
e, but we have no native spa
e yet.Readers will have to wait for Se
tion 5.7. But there is something simpler:Theorem 5.8. If X is P�unisolvent and K is P�
onditionally positive semidef-inite, the system (5.6) is solvable with a = 0 if the data 
ome from fun
tionsin P.Proof: We set a = 0 from the start, and use that, by P�unisolven
y of X ,ea
h fun
tion from P 
an be uniquely re
overed from its values on X .5.4 Inner Produ
tWe now pro
eed like in Se
tion 3.3, �x Ω, P, and K and de�ne the set
M :=

{
(a,X) : X ⊆ Ω, P�unisolvent, |X| =: N, a ∈ K

N , P T
Xa = 0

}of ve
tor/set pairs that satisfy the moment 
ondition (5.4) in the form
P T
Xa = 0 with the matrix P T

X = (pj(xk))1≤j≤Q, 1≤k≤N .In parti
ular, we have to assume that Ω has at least one P�unisolvent set inorder to let M be nonempty.Then we de�ne the spa
e of fun
tions
H := {λya,XK(·, y), (a,X) ∈M} (5.9)and the spa
e of fun
tionals

L := {f 7→ λa,X(f) :=
N∑

j=1

ajf(xj) : (a,X) ∈M, f ∈ H}.It is easy to see that L is a linear spa
e, sin
e we already know this withoutusing the moment 
onditions, and adding two fun
tionals vanishing on P willyield a fun
tional vanishing on P. We 
an argue similarly for H .We 
an now follow the pattern of Se
tion 3.3 to de�ne a sesquilinear form(3.12) on L, where we just have to additionally obey the moment 
onditions.Theorems 3.14 and 3.15 
arry over verbatim, but we 
annot use fun
tionals
δx = λ1,x for providing 
ontinuous point evaluation, be
ause they are notne
essarily in L. We are left with the Riesz map

R : L→ H, R(λa,X)(y) = λxa,XK(y, x) =: fa,X(y) (5.10)77



and the identities
(λa,X , λb,Y )L = (fb,Y , fa,X)H = λa,X(fb,Y ) (5.11)for all (a,X), (b, Y ) ∈M .Theorem 5.12. The sum of spa
es P + H is dire
t, if the kernel K is P�
onditionally positive semide�nite.Proof: Consider a fun
tion p ∈ P and a fun
tional λb,Y ∈ L with

p(x) = λyb,YK(x, y) for all x ∈ Ω.Then
λa,X(p) = 0 = (λa,X , λb,Y )Lfor all λa,X ∈ L, in parti
ular for λb,Y . Thus λb,Y = 0 as a fun
tional on H ,but b = 0 holds only in 
ase of de�niteness. By antilinearity of the Rieszmap, we 
on
lude in the general 
ase that fb,Y is zero and thus also p.5.5 Proje
tionsTo see how interpolation works under the inner produ
t of the previous se
-tion, we �x a �nite P�unisolvent set X ⊆ Ω and de�ne a subspa
e

HX :=
{
λya,XK(·, y) : (a,X) ∈M,X �xed } (5.13)of H for ea
h �xed X .Theorem 5.14. The orthogonal 
omplement of HX in H is

H⊥
X = {f ∈ H : λa,X(f) = 0 for all (a,X) ∈ M,X �xed }.Now we 
an de�ne a proje
tor ΠX onto HX . Note that we let HX to be�nite�dimensional here. Exa
tly like in Theorem 2.22 on page 18 we getTheorem 5.15. For ea
h f ∈ H and ea
h �xed P�unisolvent set X ⊂ Ωthere is an interpolant ΠX(f) ∈ HX with the somewhat nonstandard interpo-lation 
onditions

λb,X(f) = λb,X (ΠX(f)) for all (b,X) ∈M.It is the best approximation to f from HX and attains the minimal norm in
H under all fun
tions in H satisfying the same interpolation problem.78



To see the 
onne
tion to what we did in Se
tion 5.3, we should interpolatean abstra
t element f = p + g from P + H on X . Then the above theoryapplies only to g, and the interpolant in the above sense must have the form
s0(x) = (ΠX(g))(x) =

N∑

j=1

ajK(xj , x)with a ve
tor a satisfying the moment 
ondition, i.e. (a,X) ∈ M . Theinterpolation 
onditions are
N∑

k=1

bks0(xk) = λb,X(s0) = λb,X(g)for all (b,X) ∈M . Of 
ourse, adding fun
tions from P to either g or s0 willnot 
hange these interpolation 
onditions, due to the moment 
onditions.Theorem 5.16. Under the above 
onditions, there is a fun
tion p ∈ P with
p(xk) = g(xk)− (ΠX(g))(xk), 1 ≤ k ≤ N.Proof: Clearly, h := g − ΠX(g) lies in H⊥

X , and we know that λb,X(h) = 0for all (b,X) ∈M . Splitting KN into the subspa
es
TX := {(p(x1), . . . , p(xN ))T : p ∈ P} and T⊥

X ,we see that the ve
tor (h(x1), . . . , h(xN ))T is orthogonal to all b ∈ T⊥
X , thusin TX . .The data of f = g + p 
an now be interpolated on X by s = s0 + q, where qinterpolates the data of g − s0 + p = g − ΠX(g) + p on X . In fa
t,

f(xk) = g(xk) + p(xk)
= g(xk)− s0(xk) + p(xk) + s0(xk)
= q(xk) + s0(xk)
= s(xk), 1 ≤ k ≤ N.De�nition 5.17. For a P�
onditionally positive de�nite Kernel K, the pre�native spa
e is

NK := P +Hwhere H is the pre�Hilbert spa
e of (5.9) under the inner produ
t de�ned via(5.11).Of 
ourse, we 
an extend the inner produ
t on H to a semi�inner produ
ton NK by de�ning it to be zero if one of the arguments is in P. This is the�rst part of 79



Theorem 5.18. The pre�native spa
e NK 
arries a semi�inner produ
twhi
h vanishes if one of the arguments is in P, and it is an inner prod-u
t on H. Ea
h fun
tion in NK 
an be interpolated on any P�unisolvent set
X by a fun
tion sf,X from P +HX with HX from (5.13). The 
onstru
tion
an be performed along the lines of Se
tion 5.3. The fun
tion sf,X mini-mizes the seminorm under all other interpolants from NK , and it is the bestapproximation to f in the seminorm from all fun
tions in P +HX .Proof: We only need to prove the �nal senten
e, and we 
an use Theorem5.15 for that purpose. In the 
ontext of Se
tion 5.3 and the splitting NK =
P + H we 
an split sf,X = pf,X + fa,X with pf,X ∈ P and fa,X ∈ H . Then
fa,X ......RS: gap here, to be done...Theorem 5.18 extends Theorem 5.7 to let the system (5.6) be solvable, if thedata 
ome from fun
tions in the pre�native spa
e.5.6 Conditional Lagrange BasisWe now pro
eed towards a Lagrange�type basis. We need the system (5.6)for this, but we know solvability only if the data on the right�hand side arefrom a fun
tion in the pre�native spa
e, or if the kernel is de�nite. We shallgo for the �rst 
ase.Starting with a P�unisolvent set X , we 
an add another point y ∈ Ω andstill know that the set X ∪ {y} is P�unisolvent. This means that we 
anhave a formula

(Pu)(y) :=
N∑

j=1

u(xj)pj(y) (5.19)whi
h reprodu
es fun
tions from P, but yields fun
tions in P if applied togeneral fun
tions. With this at hand, the fun
tional
µy : f 7→ f(y)− (Pf)(y) = f(y)−

N∑

j=1

pj(y)f(xj) (5.20)lies in L and the fun
tion
R(µy) = µz

yK(·, z) = K(y, ·)−
N∑

j=1

pj(y)K(xj , ·)
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lies in H . If we use its values on X as a right�hand side in the system (5.6)and write the 
oe�
ients as fun
tions of y, we get
N∑

j=1

aj(y)pn(xj) = 0, 1 ≤ n ≤ Qand
N∑

j=1

aj(y)K(xj , xk) +
Q∑

m=1

bm(y)pm(xk)

= K(y, xk)−
N∑

j=1

pj(y)K(xj , xk)whi
h turns into
N∑

j=1

uj(y)K(xj , xk) +
Q∑

m=1

bm(y)pm(xk) = K(y, xk), 1 ≤ k ≤ N.with
uj(y) = aj(y) + pj(y), 1 ≤ j ≤ Nand

N∑

j=1

uj(y)p(xj) =
N∑

j=1

aj(y)p(xj) +
N∑

j=1

pj(y)p(xj) = 0 + p(y) for all p ∈ P.This is usually 
ombined into the system
N∑

j=1

K(xk, xj)uj(y) +
Q∑

m=1

bm(y)pm(xk) = K(xk, y), 1 ≤ k ≤ N

N∑

j=1

uj(y)p(xj) + 0 = p(y), p ∈ P (5.21)whi
h is solvable and has the same 
oe�
ient matrix as (5.6), but a right�hand side that is not ne
essarily in the native spa
e. If the kernel is de�nite,the fun
tions uj are a Lagrange basis, and the fun
tions bm satisfy bm(xj) =
0, 1 ≤ j ≤ N, 1 ≤ m ≤ Q. This follows from uniqueness, setting y = xi.Theorem 5.22. The overall solution of the interpolation for data f(xj) fora fun
tion f from P +H takes the form

s(y) =
N∑

j=1

uj(y)f(xj).81



Proof: We write s in the form (5.5) and insert the two above equations intothe right�hand side. Then
s(y) =

N∑

k=1

akK(xk, y) +
Q∑

n=1

bnpn(y)

=
N∑

k=1

ak




N∑

j=1

K(xk, xj)uj(y) +
Q∑

m=1

bm(y)pm(xk)


+

Q∑

n=1

bn
N∑

j=1

uj(y)pn(xj)

=
N∑

j=1

uj(y)




N∑

k=1

akK(xk, xj) +
Q∑

n=1

bnpn(xj)


+ 0

=
N∑

j=1

uj(y)f(xj), 1 ≤ j ≤ N.5.7 Native Spa
eWe now use the te
hnique of the previous se
tion to arrive at reprodu
tionformulae and ar a proper de�nition of the netive spa
e. Again, X is P�reprodu
ing, and we use the fun
tionals µy ∈ L of (5.20) applied to fun
tions
f ∈ H . This yields

µy(f) = (f, R(µy)) =


f,K(y, ·)−

N∑

j=1

pj(y)K(xj , ·)



Hwhere we 
annot split the inner produ
t, be
ause terms like (f,K(x, ·))H areunde�ned. For fun
tions f ∈ H we 
an split the left�hand side as
µy(f) = f(y)−

N∑

j=1

f(xj)pj(y),and this gives us a reprodu
tion formula
f(y)−

N∑

j=1

f(xj)pj(y) =


f,K(y, ·)−

N∑

j=1

pj(y)K(xj , ·)



H
(5.23)that holds on H , while the right�hand term 
an be dropped for f ∈ P. Bothsides have limits when we go to the 
ompletion of H .But the assignment of single fun
tion values to elements of the 
ompletionis still to be done. We want to 
omplete H into an abstra
t Hilbert spa
e

H and de�ne the native spa
e formally as P ×H and assign values to a pair
(p, f) on Ω 
onsistently, i.e. without dependen
e on P�unisolvent sets X .82



To start with a unique value assignment, we �x a minimal P�unisolventset Ξ = {ξ1, . . . , ξQ} with exa
tly Q Lagrange basis fun
tions of P we 
all
π1, . . . , πQ. Then, given f ∈ H and p ∈ P, we use (5.23) for X = Ξ to assignfun
tion values as
(p, f)Ξ(y) :=

Q∑

m=1

p(ξm)πm(y) +


f,K(y, ·)−

Q∑

m=1

πm(y)K(ξm, ·)



H
. (5.24)To show that this de�nition is 
onsistent with what we have in (5.23), we�rst note that the inner produ
t above vanishes for y = ξn, su
h that therewe have (p, f)Ξ(ξn) = p(ξn), 1 ≤ n ≤ Q. This shows that the above formulais 
onsistent with (5.23) and makes sense for the 
ompletion.To 
ompare this with the situation on a general set, we denote the valuesneeded in (5.23) by fX and �rst evaluate

(p, f)Ξ(xj) =
Q∑

m=1

p(ξm)πm(xj) +


f,K(xj , ·)−

Q∑

m=1

πm(xj)K(ξm, ·)



H
.Then

N∑

j=1

pj(y)(p, f)Ξ(xj)

=
N∑

j=1

pj(y)
Q∑

m=1

p(ξm)πm(xj)

+


f,

N∑

j=1

pj(y)


K(xj , ·)−

Q∑

m=1

πm(xj)K(ξm, ·)





H

=
N∑

j=1

pj(y)
Q∑

m=1

p(ξm)πm(xj)

+


f,

N∑

j=1

pj(y)K(xj , ·)−K(y, ·) +K(y, ·)−
Q∑

m=1

K(ξm, ·)πm(y)



H

=
Q∑

m=1

p(ξm)πm(y) + (p, f)Ξ(y)−
Q∑

m=1

p(ξm)πm(y)

+
N∑

j=1

pj(y)fX(xj)− fX(y)proves
(p, f)Ξ(y)−

N∑

j=1

pj(y)(p, f)Ξ(xj) = fX(y)−
N∑

j=1

pj(y)fX(xj),83



i.e. our value assignment is 
onsistent. From (5.24) we also see that
(p, f)Ξ(y) = (p, 0)Ξ(y) + (0, f)Ξ(y) for all f ∈ H, p ∈ P, y ∈ Ωimplies that we 
an form P +H in a 
onsistent way. We summarize:De�nition 5.25. The native spa
e for a P�
onditionally positive semidef-inite kernel K 
an be de�ned as P×H or P+H with a 
onsistent assignmentof fun
tion values on Ω to make all reprodu
tion equations (5.23) meaningful.A 
onsistent de�nition of values needs �xing a minimal P�unisolvent set Ξ,and the de�nition of values will depend on that set. The native spa
e 
arriesa seminorm with kernel P whi
h is an inner produ
t on H.We now look ba
k at Se
tion 5.5 and 
onsider the Hilbert spa
e 
ompletion.We now 
an go over to the 
ompletion in the pre�native spa
e P +H , whi
hwas impossible until we knew how to add these spa
es. Thus we get aftershort inspe
tion of what we did there,Theorem 5.26. The interpolation problem for P�
onditionally positive de�-nite kernels on P�unisolvent sets is solvable, if the data 
ome from a fun
tionin the native spa
e of the kernel.The extension of Theorems 5.15 and 5.16 to the native spa
e isTheorem 5.27. If sf,X is the interpolant to a fun
tion f of the native spa
eof a P�
onditionally positive semide�nite kernel K on a P�unisolvent set

X, then sf,X minimizes the seminorm under all other interpolants from thenative spa
e. Furthermore, it provides the best approximation to f from HXin the seminorm.5.8 Power Fun
tionTo generalize the Power Fun
tion to the 
onditionally positive semide�nite
ase, let K be a P�
onditionally positive semide�nite kernel on Ω and let
X = {x1, . . . , xN} be a P�unisolvent subset of Ω. We 
onsider general re-produ
tion formulae of the form

P (f)(x) :=
N∑

j=1

uj(x)f(xj) (5.28)whi
h should re
over fun
tions from P, i.e. the fun
tionals
µx(f) := f(x)−

N∑

j=1

uj(x)f(xj) =


δx −

N∑

j=1

uj(x)δxj


 (f)84



are in L. Then we de�ne the Power Fun
tion as
PX(x) := inf

u(x)∈KN





∥∥∥∥∥∥
δx −

N∑

j=1

uj(x)δxj

∥∥∥∥∥∥
L

: p(x) =
N∑

j=1

uj(x)p(xj) for all p ∈ P


.(5.29)The norms 
an be expli
itly evaluated via

‖µx‖2L = µu
xµ

v
xK(x, v)

= µv
xK(x, v)−

N∑

j=1

uj(x)µv
xK(xj , v)

= K(x, x)−
N∑

k=1

uk(x)K(xk, x)−
N∑

j=1

uj(x)K(x, xj)

+
N∑

j=1

N∑

k=1

uj(x)uk(x)K(xk, xj)

(5.30)
and are upper bounds for P 2

X(x). This will be useful for error bounds, sin
ewe haveTheorem 5.31. If interpolation of a fun
tion f in the native spa
e NK fora P�
onditionally positive semide�nite kernel K on Ω is performed on a P�unisolvent set X and solved by some fun
tion s of the form (5.5), then thereis an error bound
|f(x)− s(x)| ≤ PX(x)‖f‖NK

for all x ∈ Ω, f ∈ NK . (5.32)For ea
h re
overy formula (5.28) whi
h is exa
t on P, the Power Fun
tionhas the upper bound
P 2
X(x) ≤ ‖µx‖2Lwith (5.30). Equality is attained if the uj(x) are the Lagrange�type re
on-stru
tion fun
tions of Se
tion 5.6 de�ned by the system (5.21).Proof: We only have to prove the �nal statement. For the uj(x) of (5.21)and the asso
iated fun
tional µx we then have to prove that

(µx, λb,X)L = 0 for all λb,X ∈ L,
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be
ause these λb,X are the admissible perturbations. This is
(µx, λb,X)L = µx(fb,X)

= fb,X(x)−
N∑

j=1

uj(x)fb,X(xj)

=
N∑

k=1

bkK(xk, x)−
N∑

j=1

uj(x)
N∑

k=1

bkK(xk, xj)

=
N∑

k=1

bk


K(xk, x)−

N∑

j=1

uj(x)K(xk, xj)




=
Q∑

m=1

bm(y)
N∑

k=1

bkpm(xk)

= 0due to (5.21).5.9 Redu
ed KernelsHere, we des
ribe a pra
ti
al tri
k that allows a simple transition from a P�
onditionally positive (semi�) de�nite kernel to an un
onditionally positive(semi�) de�nite kernel.Repeating what we needed in the previous se
tion to de�ne fun
tion valuesfor the abstra
t elements of the native spa
e, we �x a minimal P�unisolventset Ξ ⊂ Ω of size |Ξ| = Q. Every p ∈ P 
an then be reprodu
ed by aLagrange basis π1, . . . , πQ with πj(ξk) = δjk, 1 ≤ j, k ≤ Q, i.e. we 
anwithout loss of generality assume that
p(x) =

Q∑

m=1

p(ξm)πm(x) =: (ΠΞ(p))(x) for all x ∈ Ω, p ∈ Pafter 
hanging to the Lagrange basis. This de�nes a linear proje
tor ΠΞ onto
P that extends to general fun
tions on Ω as

(ΠΞ(f))(x) :=
Q∑

m=1

f(ξm)πm(x) for all x ∈ Ω, f : Ω → K. (5.33)This implies that the fun
tionals
µx := δx −

Q∑

m=1

πm(x)δξm86



satisfy the moment 
onditions, and we de�ne the redu
ed kernel
K̃(x, y) := (µx, µy)L

= µs
yµ

t
xK(s, t)

= K(x, y)−
Q∑

m=1

πm(x)K(ξm, y)

−
Q∑

n=1

πn(y)K(x, ξn) +
Q∑

m=1

Q∑

n=1

πm(x)πn(y)K(ξm, ξn)

(5.34)
for all x, y ∈ Ω.Theorem 5.35. The redu
ed kernel is Hermitian and un
onditionally pos-itive semide�nite on Ω. It vanishes, if one of the arguments is in Ξ. If Kis P�
onditionally positive de�nite on Ω, then K̃ is un
onditionally positivede�nite on Ω \ Ξ. Quadrati
 forms with moment 
onditions will be the samefor K and K̃.Proof: The �rst statement follows from the de�nition via an inner produ
tof fun
tionals. The se
ond follows from µx = 0 for x ∈ Ξ. Sin
e the µfun
tionals annihilate fun
tions in P, quadrati
 forms for K and K̃ must
oin
ide, if they satisfy moment 
onditions.If we have a set X = {x1, . . . , xN} ⊆ Ω \ Ξ and a ve
tor a ∈ KN , then wehave to look at the quadrati
 form

N∑

j,k=1

ajakK̃(xj, xk)

=
N∑

j,k=1

ajakK(xj , xk)

−
N∑

k=1

ak

Q∑

m=1

K(ξm, xk)
N∑

j=1

ajπm(xj)

−
N∑

j=1

aj

Q∑

n=1

K(xj , ξn)
N∑

k=1

akπn(xk)

+
Q∑

m=1

Q∑

n=1

K(ξm, ξn)
N∑

j=1

ajπm(xj)
N∑

k=1

akπn(xk).If we de�ne
βn := −

N∑

k=1

akπn(xk), 1 ≤ n ≤ Q,87



then this turns into
N∑

j,k=1

ajakK̃(xj , xk)

=
N∑

j,k=1

ajakK(xj , xk) +
N∑

k=1

ak

Q∑

m=1

K(ξm, xk)βm

+
N∑

j=1

aj

Q∑

n=1

K(xj , ξn)βn +
Q∑

m=1

Q∑

n=1

K(ξm, ξn)βmβnwhi
h is a Hermitian quadrati
 form for the set X ∪ Ξ. Che
king moment
onditions on this set for πm ∈ P, we get
N∑

k=1

akπm(xk) +
Q∑

n=1

βnπm(ξn)

N∑

k=1

ak

Q∑

n=1

πm(ξn)πn(xk)−
Q∑

n=1

N∑

k=1

akπn(xk)πm(ξn) = 0.IfK is 
onditionally positive de�nite on Ω, and if the form for K̃ onX ⊂ Ω\Ξvanishes for a 
oe�
ient ve
tor a, then the form for K vanishes on X ∪ Ξand we get a = 0.We now 
an resort to the un
onditionally positive semide�nite 
ase and knowfrom Theorem 3.17 on page 47 that K̃ is the reprodu
ing kernel of a Hilbertspa
e H̃ of fun
tions vanishing on Ξ. Ea
h fun
tion f̃ ∈ H̃ has the repro-du
tion formula
f̃(x) = (f̃ , K̃(x, ·))H̃ for all x ∈ Ω, f ∈ H̃.Sin
e the fun
tions of H̃ vanish on Ξ, and the fun
tions of P are determinedby their values on Ξ, we 
an add the spa
e P to H̃ without overlap. Wede�ne the sum

Ĥ := P + H̃whi
h is dire
t, and we use the proje
tor ΠΞ from (5.33). Then
f − ΠΞ(f) ∈ H̃ for all f ∈ Ĥ.Inserting this as f̃ into the reprodu
tion formula in H̃, we get the Taylor�typereprodu
tion formula

f(x) = ΠΞ(f)(x) + (f − ΠΞ(f), K̃(x, ·))H̃ for all f ∈ Ĥ, x ∈ Ω. (5.36)88



By setting
(f, g)Ĥ := (f −ΠΞ(f), g − ΠΞ(g))H̃ for all f, g ∈ Ĥwe get a semi�inner produ
t on Ĥ that vanishes if one of the arguments isin P. And we 
an use

ΠΞ(K̃(x, ·)) = 0 for all x ∈ Ωfor
(K̃(x, ·), K̃(y, ·))Ĥ = K̃(x, y) for all x, y ∈ Ω. (5.37)Theorem 5.38. The native spa
e of the given P�
onditionally positive semidef-inite kernel K 
oin
ides as a spa
e of fun
tions with Ĥ := P + H̃, where H̃is the native spa
e for the redu
ed kernel K̃.Proof: By Theorem 5.35 we 
an use K̃ instead of K when we do the 
on-stru
tion of se
tions 5.4 and 5.7, sin
e the quadrati
 forms will not 
hange.The 
hange is only modulo P. This implies that the resulting spa
e H willautomati
ally 
onsist of fun
tions vanishing on Ξ, and the equations (5.36)and (5.24) 
oin
ide. Thus we get a spe
ial instan
e of value assignment thatis 
onsistent with De�nition 5.25.In Theorem 5.7 of Se
tion 5.3 we saw that we 
an do interpolation on P�unisolvent sets X = {x1, . . . , xN}, if the kernel K is P�
onditionally positivede�nite. We did this without using Hilbert spa
e stru
ture, but now wewant to link this with our Hilbert spa
e ba
kground. Given a fun
tion f in

H and a P�unisolvent set X on whi
h we want to interpolate f by a fun
tion
s ∈ H, we 
annot expe
t f and s to 
oin
ide on Ξ. Formally, we take thedata µxj

(f), 1 ≤ j ≤ N and interpolate these data �rst by some
s0(x) :=

N∑

j=1

αjK̃(xj , x)that vanishes on Ξ. We then have
µxk

(f) = f(xk)− (ΠΞ)(f)(xk)

= f(xk)−
Q∑

m=1

πm(xk)f(ξm)

= µxk
(s0)

= s0(xk), 1 ≤ k ≤ Nand see that we should use
s := (ΠΞ)(f) + s089



to get a full interpolant on X .But we have to 
he
k in whi
h fun
tion span this interpolant lies. We seethat
s0(x) =

N∑

j=1

αjK̃(xj , x)

=
N∑

j=1

αjK(xj , x)−
Q∑

m=1

K(ξm, x)
N∑

j=1

αjπm(xj)

−
Q∑

n=1

πn(x)
N∑

j=1

αjK(xj , ξn) +
Q∑

m=1

Q∑

n=1

πm(x)K(ξm, ξn)
N∑

j=1

αjπn(xj)still 
ontains fun
tions of the formK(ξm, ·) if there are no moment 
onditionswith respe
t to Ξ. This means that we have an interpolant that is possiblydi�erent from what we had before.But if Ξ is a subset of a P�unisolvent data set on whi
h we want to interpo-late, we have no problem at all and just perform the previous algorithms ina di�erent way. We use the redu
ed kernel on X \ Ξ for data of f − ΠΞ(f)there, and then add the interpolant in P to ΠΞ(f), whi
h is ΠΞ(f) itself.We now show how this 
an be done in pra
ti
e. Assume Ξ ⊆ X and de�ne
Y := X \ Ξ with |Y | = N − Q. We sort the points su
h that the �rst Qpoints of X are the points of Ξ. Then we write down the linear system (5.6)in (Q,N −Q,Q) blo
k form as



AΞ,Ξ AΞ,Y IQ×Q

A∗
Ξ,Y AY,Y B
I B∗ 0Q×Q






aΞ
aY
b


 =




fΞ
fY
0Q×1


using the fa
t that the matrix of values πm(xj) 
onsists of IQ×Q for the Ξpart and a (N − Q) × Q matrix B for the points of Y , sin
e the πm are aLagrangian basis on Ξ. We know that the system is solvable, and we use thethird and �rst part to get

aΞ = −B∗aY ,
b = fΞ − AΞ,ΞaΞ −AΞ,Y aY

= fΞ + (AΞ,ΞB
∗ − AΞ,Y ) aY .

(5.39)We insert this into the se
ond part. Then
fY = A∗

Ξ,Y aΞ + AY,Y aY +Bb
= −A∗

Ξ,YB
∗aY + aY +B (fΞ + (AΞ,ΞB

∗ − AΞ,Y ) aY ) ,90



gives the solvable system
fY − BfΞ =

(
AY,Y − A∗

Ξ,YB
∗ − BAΞ,Y +BAΞ,ΞB

∗
)
aY .On
e this is solved, we use (5.39) to get the remaining parts of the solution.Writing the above system in detail, we get

f(xk)−
Q∑

m=1

πm(xk)f(ξm)

=
N∑

j=Q+1


K(xj , xk)−

Q∑

m=1

K(ξm, xk)πm(xj)−
Q∑

n=1

πn(xj)K(xk, ξn)

+
Q∑

m,n=1

πn(xj)πm(xj)K(ξm, ξn)


 ajfor Q + 1 ≤ k ≤ N . This is

µxk
=

N∑

j=Q+1

K̃(xj , xk)aj , Q + 1 ≤ k ≤ N,i.e. a redu
ed system using the redu
ed kernel.Readers should note that this is a variation of a S
hur 
omplement argument.For appli
ations, we need to know whi
h fun
tionals 
an be used for general-ized interpolation, provided that we have a P�
onditionally positive semidef-inite kernel K that is expli
itly known as a fun
tion on Ω × Ω. This willamount to generalize Theorem 2.11 to the P�
onditionally positive semidef-inite 
ase. We 
an avoid a new theorem by applying Theorem 2.11 to theredu
ed kernel.5.10 Extended KernelsThe previous se
tions showed that in the P�
onditionally positive (semi)�de�nite 
ase we have a dire
t sum P + H as a native spa
e, with an innerprodu
t only on the H part. But in order to arrive at an inner produ
t on thewhole spa
e, we 
an extend the redu
ed kernel (5.34) to get the extendedkernel
K†(x, y) := K̃(x, y) +

Q∑

m=1

πm(x)πm(y)

= K(x, y) +
Q∑

m=1

πm(x)πm(y)−
Q∑

m=1

πm(x)K(ξm, y)

−
Q∑

n=1

πn(y)K(x, ξn) +
Q∑

m=1

Q∑

n=1

πm(x)πn(y)K(ξm, ξn)

(5.40)
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for all x, y ∈ Ω, using the Lagrange basis π1, . . . , πQ of P again. The ad-ditional part 
learly is an un
onditionally positive semide�nite kernel itself.Regarding the results of Se
tion 5.7, we here �x X = Ξ like in Se
tion 5.9and getTheorem 5.41. If K is a P�
onditionally positive semide�nite kernel on
Ω, the extended kernel K† is an un
onditionally positive semide�nite kernelon Ω whose native spa
e H† 
oin
ides with the native spa
e of K as a ve
torspa
e. The subspa
e

H†
Ξ := {f ∈ H† : f(Ξ) = {0}}is isometri
ally isomorphi
 toH and orthogonal to P in the new inner produ
tindu
ed by K†. If K is de�nite, so is K†.Proof: The kernel K† 
learly is Hermitian and un
onditionally positivesemide�nite on Ω due to its de�nition and Theorem 5.35. We note in passingthat

K†(x, ξm) = πm(x), K
†(ξm, y) = πm(y) for all 1 ≤ m ≤ Q, x, y ∈ Ω.The proje
tor ΠΞ onto P is (5.33), and thus

K†(x, y)− ΠΞ(K
†(x, ·))(y) = K†(x, y)−

Q∑

m=1

πm(y)K
†(x, ξm)

= K†(x, y)−
Q∑

m=1

πm(x)πm(y)

= K̃(x, y) for all x, y ∈ Ω.The translates K†(x, ·) are in P +H , and to ea
h translate K̃(x, ·) we 
anadd an element of P to get K†(x, ·). Thus, without going to 
losures, we nowwork in P +H without loss of generalization, unless we go to 
losures.We �rst assert that the inner produ
t (., .)† on the native spa
e of K†, ne
-essarily satisfying (2.3), is the same as
(f, g)†† :=

Q∑

m=1

f(ξm)g(ξm) + (f −ΠΞ(f), g − ΠΞ(g))H for all f, g ∈ P +H.
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We only have to 
he
k this on translates of K†. This is
(K†(x, ·), K†(y, ·))††

=
Q∑

m=1

K†(x, ξm)K†(y, ξm)

+
(
K†(x, ·)−ΠΞ(K

†(x, ·)), K†(y, ·)−ΠΞ(K
†(y, ·))

)
H

=
Q∑

m=1

πm(x)πm(y) + (K̃(x, ·), K̃(y, ·))H
= K†(x, y)− K̃(x, y) + (K̃(x, ·), K̃(y, ·))H
= K†(x, y)due to (5.37). In this inner produ
t, the spa
es P and H are orthogonal.Furthermore, we have the reprodu
tion equation

f(x) = (ΠΞ(f))(x) +
(
f −ΠΞ(f), K̃(x, ·)

)
H

=
Q∑

m=1

f(ξm)πm(x) +
(
f − ΠΞ(f), K̃(x, ·)

)
H

=
Q∑

m=1

f(ξm)K†(x, ξm) +
(
f −ΠΞ(f), K

†(x, ·)− ΠΞ(K
†(x, ·))

)
H

= (f,K†(x, ·))††
= (f,K†(x, ·))† for all f ∈ P +H, x ∈ Ω.Going to the 
losure now is no problem at all. Sin
e it is 
lear that

(f, g)H = (f, g)†for all f, g in P + H that vanish on Ξ, the Hilbert spa
e topologies on Hfor the redu
ed kernel and on the subspa
e H†
Ξ of P + H for the extendedkernel are isometri
. We now are exa
tly in the situation of Theorem 2.19on page 17. The spa
e P is orthogonal to H in the new inner produ
t, andthe extended kernel re�e
ts this orthogonal de
omposition.Using the extended kernel, one 
an bypass all the hassles indu
ed by 
on-ditional positive de�niteness, when it 
omes to numeri
al 
al
ulations. Buteverything will depend on Ξ, and if interpolations on di�erent P�unisolventsets X are performed and 
ompared, one must keep Ξ �xed throughout.However, results will be di�erent from what we did in Se
tion 5.3, if Ξ is not
ontained in the set X used for interpolation. The reason is that translatesof K̃ and K† will usually 
ontain translates at the points of Ξ.93



6 SplinesThe following is a somewhat nonstandard introdu
tion to splines, modeledfor extensions to general multivariate kernel-based fun
tion spa
es.First we �x a positive integer k and denote the spa
e of real�valued poly-nomials with order (= degree -1) at most k by Pk. In the d�variate 
asewe shall use the notation Pd
k .6.1 Semi�inner produ
tAs a fun
tion spa
e, we start with the ve
tor spa
e Ck[a, b] of all real-valuedfun
tions f with pie
ewise 
ontinuous k-th derivatives for whi
h

|f |2k :=
∫ b

a

(
dkf(t)

dtk

)2

dt (6.1)is �nite. We leave it to the reader that this de�nes a reasonable ve
tor spa
eof fun
tions on [a, b].Equation (6.1) de�nes a semi-norm, i.e. it has the properties of a norm ex
eptfor the de�niteness, and there is a semi-inner produ
t
(f, g)k :=

∫ b

a

dkf(t)

dtk
dkg(t)

dtk
dt.Lemma 6.2. The seminorm |f |k is zero if and only if f is a polynomial oforder at most k.Proof: Clearly, the seminorm |f |k is zero if f is a polynomial of order at most

k. Conversely, if the seminorm |f |k is zero for some fun
tion f ∈ Ck[a, b],then f (k) is zero ex
ept for its points of dis
ontinuity. Then f 
onsists ofpolynomial pie
es of order at most k whi
h are glued together in su
h away that the (k − 1)st derivative still is 
ontinuous. But then f is a globalpolynomial of order at most k.6.2 Taylor's FormulaWe want to align the above starting point with what we know about positivesemide�nite kernels and reprodu
ing kernel Hilbert spa
es, but so far wehave no inner produ
t and no kernel. But we 
an go for a reprodu
tionproperty whi
h everybody should be well a
quainted with.94



Every fun
tion f on [a, b] with k 
ontinuous derivatives satis�es
f(x) =

k−1∑

j=0

f (j)(a)

j!
(x− a)j +

∫ x

a
f (k)(t)

(x− t)k−1

(k − 1)!
dt, x ∈ [a, b]and this generalizes to fun
tions in Ck[a, b] (without proof here). This is areprodu
tion formula, and in the integral we 
an see what 
ould later be akernel, but we still have to work a little.The upper bound x of the integral 
an be eliminated by de�ning the trun-
ated power as

(z)k+ :=





zk z > 0
0 z < 0
1
2

z = 0, k = 0
0 elseto get

f(x) =
k−1∑

j=0

f (j)(a)

j!
(x− a)j +

∫ b

a
f (k)(t)

(x− t)k−1
+

(k − 1)!
dt, x ∈ [a, b].With the kernel fun
tion

Kk,a(x, t) := (−1)k
(x− t)2k−1

+

(2k − 1)!the above equation takes the form
f(x) =

k−1∑

j=0

f (j)(a)

j!
(x− a)j

︸ ︷︷ ︸
=:(Pk,af)(x)

+(f,Kk,a(x, ·))k

= (Pk,af)(x) + (f,Kk,a(x, ·))k, x ∈ [a, b].

(6.3)This is a reprodu
tion formula, i.e. it allows f to be reprodu
ed from f (k)in [a, b] and the derivatives at a up to order k − 1. We also have a kernelnow, but it is unsymmetri
, and thus it does not �t into our framework.6.3 Taylor's Formula SymmetrizedBut note that we have ta
kled a symmetri
 problem in an unsymmetri
 way,whi
h is a mathemati
al 
rime. We should also use Taylor's formula at b.95



This is
f(x) =

k−1∑

j=0

f (j)(b)

j!
(x− b)j +

∫ x

b
f (k)(t)

(x− t)k−1

(k − 1)!
dt, x ∈ [a, b]

=: (Pk,bf)(x) +
∫ b

x
f (k)(t)(−1)k

(t− x)k−1

(k − 1)!
dt

= (Pk,bf)(x) + (f,Kk,b(x, ·))kwith
Kk,b(x, y) = (−1)k

(y − x)2k−1
+

(2k − 1)!
.To get something symmetri
, we take the mean of the two Taylor formulae.This is

f(x) = 1
2
(Pk,af)(x) +

1
2
(Pk,bf)(x) +

1
2
(f,Kk,a(x, ·) +Kk,b(x, ·))k

=: (Rkf)(x) + (f,Kk(x, ·))k (6.4)with
(Rkf)(x) := 1

2
(Pk,af)(x) +

1
2
(Pk,bf)(x)

=
1

2

k−1∑

j=0

f (j)(a)

j!
(x− a)j +

1

2

k−1∑

j=0

f (j)(b)

j!
(x− b)j

Kk(x, t) := 1
2
(−1)k

|x− t|2k−1

(2k − 1)!
.Note that the two reprodu
tion formulae (6.3) and (6.4) 
an both be usedto our 
onvenien
e. The di�erent kernels are linked to di�erent polynomialproje
tors.We have three reprodu
tion formulas and three kernels, so far. But we alsowant to have (2.3), and this will not hold for either of these kernel. We boldlyde�ne

Φk(x, y) := (Kk(x, ·), Kk(y, ·))k for all x, y ∈ [a, b]and see what this new symmetri
 kernel is. We use (6.4) for f(y) := Kk(x, y)to �nd
Φk(x, y)

= (Kk(x, ·), Kk(y, ·))k
= Kk(x, y)− Rk(Kk(x, ·))(y)
= Kk(x, y)− 1

2
(Pk,aKk(x, ·))(y)− 1

2
(Pk,bKk(x, ·))(y)

= Kk(x, y)−
1

2
(−1)k

k−1∑

j=0

(x− a)2k−1−j

(2k − 1− j)!
(−1)j(y − a)j

−1

2
(−1)k

k−1∑

j=0

(b− x)2k−1−j

(2k − 1− j)!
(y − b)j .96



Sin
e both Φk and Kk are symmetri
, so is the polynomial on the right�handside. This means that it must be a polynomial of degree at most k − 1 inboth x and y by some hidden 
an
ellation. But as these kernels di�er onlyby fun
tions in Pk, we have
Φk(x, y) = (Φk(x, ·),Φk(y, ·))k for all x, y ∈ [a, b] (6.5)and the reprodu
tion equation

f(x) =: (Rkf)(x) + (f,Φk(x, ·))k for all f ∈ Ck[a, b], x ∈ [a, b]. (6.6)To illustrate the hidden 
an
ellation, we 
onsider k = 1. Then
Φ1(x, y)

= K1(x, y) +
1

2
(x− a) +

1

2
(b− x)

= −1
2
|x− y|+ a+b

2
.Readers might 
he
k the 
an
ellation for k = 2.6.4 Conditional Positive De�nitenessAs readers will already expe
t, we haveTheorem 6.7. The kernel Φk is un
onditionally positive semide�nite. Allspline kernels we have 
onsidered so far are Pk�
onditionally positive de�nite.Proof: The �rst statement follows immediately from (6.5), but note that itdoes not hold for the other kernels. For the 
onditional positive de�niteness,we take the kernel Φk, a Pk�unisolvent set X and a 
oe�
ient ve
tor a withmoment 
onditions, and then we have to prove that if the fun
tion

f(t) :=
N∑

j=1

ajΦk(xj , t) (6.8)is in Pk, then all 
oe�
ients vanish. For these 
oe�
ients, we look at
λa,X(v) =

N∑

j=1

ajv(xj)

=
N∑

j=1

aj(v(xj)− (Rkv)(xj))

=


v,

N∑

j=1

ajΦk(xj , ·)



k

= 0 97



for all fun
tions v that we 
an insert into the Taylor formula. By 
hoosing aLagrange polynomial basis for interpolation on X , we get that all 
oe�
ientsmust vanish. This �nishes the proof for Φk, but the same argument worksfor all other 
ombinations of kernels and proje
tors that we have seen so farand that lead to a Taylor formula.6.5 Native Spa
e for Spline KernelsTheorem 6.7 allows for two paths towards a native spa
e:1. for Φk as an un
onditionally positive semide�nite kernel,2. for Φk or other kernels as Pk�
onditionally positive de�nite kernels.We shall see that we get di�erent results. If we use Φk as an un
onditionallypositive semide�nite kernel, the native spa
e will 
onsist of the 
losure oftranslates Φk(x, ·) under an inner produ
t that also allows (6.5). But thenthis inner produ
t, sin
e it 
oin
ides with (., .)k on the �generators� Φk(x, ·)must be identi
al to (., .)k. This is puzzling at �rst sight, be
ause in general
(., .)k vanishes on Pk, i.e. it is not positive de�nite. But if a linear 
ombina-tion (6.8) without moment 
onditions is in Pk, we 
an plug it into (6.6) toget

(f,Φk(x, ·))k =
N∑

j=1

aj (Φk(xj , ·),Φk(x, ·))k =
N∑

j=1

ajΦk(xj , x) = f(x) = 0for all x ∈ Ω, proving that (., .)k is positive de�nite on the span of thetranslates of Φk. If we take another look at (6.5) and (6.6), we see that alltranslates of Φk ne
essarily are in the kernel of the proje
tor Rk, and we havethe standard reprodu
tion formula
f(x) = (f,Φk(x, ·))kfor all f in the native spa
e H generated by the translates of Φk, as is to beexpe
ted. But this spa
e 
onsists of fun
tions f with Rk(f) = 0, i.e. it isnot exa
tly what we want, sin
e the spa
e Pk has fallen out. Of 
ourse, we
ould get it ba
k in by going over to an extended kernel, but this would yieldanother native spa
e.We now 
he
k what we get if we 
onsider Φk as a Pk�
onditionally positivede�nite kernel. The native spa
e will then 
onsist of the dire
t sum of Pkwith a Hilbert spa
e H generated by fun
tions

fa,X(y) :=
N∑

j=1

ajΦk(x, y)98



where the 
oe�
ients satisfy moment 
onditions and X is Pk�unisolvent.The inner produ
t on H is
(fa,X , fb,Y )H =

N∑

j=1

M∑

i=1

aibjΦk(xi, yj)

=
N∑

j=1

M∑

i=1

aibj(Φk(xi, ·),Φk(yj, ·))k
= (fa,X , fb,Y )kby (6.5), and it is positive de�nite there, as we know. Clearly, all fa,X are inthe Beppo�Levi spa
e

BLk[a, b] := {f : [a, b] → R : f (k) ∈ L2[a, b]}be
ause their k�th derivatives are pie
ewise 
ontinuous or even smoother,and they lie in the subspa
e of the f with Rk(f) = 0. This is 
lear, be
ausefor ea
h fun
tion f ∈ BLk[a, b] we have the reprodu
tion formula (6.6) asan instan
e of a symmetrized Taylor formula. The semi�inner produ
t (., .)kis positive de�nite on that subspa
e, and thus we 
an de
ompose BLk[a, b]into BLk[a, b] = Pk + kerRk with kerRk being a Hilbert spa
e isometri
allyisomorphi
 to L2[a, b] via the map f 7→ f (k) from BLk[a, b] to L2[a, b].We now assertTheorem 6.9. The native spa
e for Φk as a Pk�
onditionally positive de�-nite kernel is the Beppo�Levi spa
e BLk[a, b].Proof: We know that all fa,X are in kerRk, and thus we only need to provethat the 
losure of these fun
tions under (., .)k is not larger than kerRk.Assume that some g ∈ kerRk is orthogonal to all fa,X . This implies
0 = (g, fa,X)k

=
N∑

j=1

aj(g,Φk(xj , ·))k

=
N∑

j=1

aj (g(xj)− Rk(g)(xj))

=
N∑

j=1

ajg(xj)and we use the argument at the start of the proof of Theorem 5.16 on page79 to 
on
lude that the ve
tor of values g(x1), . . . , g(xN) 
an be viewed as a99



ve
tor of values of a polynomial in Pk. Sin
e this holds for all Pk�unisolventsets X , the fun
tion g must itself be a polynomial, and vanish sin
e it is
kerRk.We now 
an apply everything we know from Chapter 5 about 
ondition-ally positive de�nite kernels. The interpolation systems of Se
tion 5.3 arenonsingular, and we have the same optimality results.7 Pra
ti
al Observations.... in
omplete...In parti
ular, I should add all the MATLAB programming hints that I gavefor the exer
ises.This 
hapter is from a draft of a book, and it is not yet linked intothis text properly. Quite some 
ross�referen
es are hanging in the air,in parti
ular those leading to methods for solving partial di�erentialequations. Furthermore, this 
hapter fo
uses on radial basis fun
tionsand ignores more general kernels.Before we go on with serious theory, we should present some experimentalresults.7.1 Lagrange InterpolationIn Figure 10 we have 150 s
attered data points in [−3, 3]2 in whi
h we in-terpolate the MATLAB peaks fun
tion (top right). The next row shows theinterpolant using Gaussians, and the absolute error. The lower row showsMATLAB's standard te
hnique for interpolation of s
attered data using thegriddata 
ommand. The results are typi
al for su
h problems: radial basisfun
tion interpolants re
over smooth fun
tions very well from a sample ofs
attered values, provided that the values are noiseless and the underlyingfun
tion is smooth.The ability of radial basis fun
tions to deal with arbitrary point lo
ationsin arbitrary dimensions is very useful when geometri
al obje
ts have to be
onstru
ted, parametrized, or warped, see e.g. [ADR94, CFB97, NFN00,CBC+01, OBS03, RTSD03, WK05, BK05℄. In parti
ular, one 
an use su
htransformations to 
ouple in
ompatible �nite element 
odes [ABW06℄.Furthermore, interpolation of fun
tions has quite some impa
t on methodssolving partial di�erential equations.100



Figure 10: Interpolation by radial basis fun
tionsAnother important issue is the possibility to parametrize spa
es of trans-lates of kernels not via 
oe�
ients, but via fun
tion values at the translation
enters. This simpli�es meshless methods �
onstru
ting the approximationentirely in terms of nodes� [BKO+96℄. Sin
e kernel interpolants approximatehigher derivatives well, lo
al fun
tion values 
an be used to provide good esti-mates for derivative data [WHW05℄. This has 
onne
tions to pseudospe
tralmethods [Fas06℄.7.2 Interpolation of Mixed DataIt is quite easy to allow mu
h more general data for interpolation by radialbasis fun
tions. For example, 
onsider re
overy of a multivariate fun
tion ffrom data in
luding the values ∂f

∂x2
(z),

∫

Ω
f(t)dt. The basi
 tri
k, due toZ.M. Wu [Wu92℄, is to use spe
ial trial fun
tions

∂φ(‖x− z‖2)
∂x2

for ∂f

∂x2
(z)

∫

Ω
φ(‖x− t‖2)dt for ∫

Ω
f(t)dtto 
ope with these requirements. In general, if a linear fun
tional λ de-�nes a data value λ(f) for a fun
tion f as in the above 
ases with λ1(f) =101



∂f

∂x2
(z), λ2(f) =

∫

Ω
f(t)dt, the spe
ial trial fun
tion uλ(x) to be added is
uλ(x) := λtφ(‖x− t‖2) for λt(f(t))where the upper index denotes the variable the fun
tional a
ts on. If m = nfun
tionals λ1, . . . , λm are given, the span (3.1) of trial fun
tions is to berepla
ed by

u(x) =
n∑

k=1

akλ
t
kφ(‖x− t‖2).The interpolation system (3.3) turns into

λju =
n∑

k=1

akλ
t
kλ

x
jφ(‖x− t‖2), 1 ≤ j ≤ n (7.1)with a symmetri
 matrix 
omposed of λtkλxjφ(‖x− t‖2), 1 ≤ j, k ≤ n whi
h ispositive de�nite if the fun
tionals are linearly independent and φ is positivede�nite.
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Figure 11: Generalized interpolant to Neumann dataTo give an example with general fun
tionals, Figure 11 shows an interpolationto Neumann data +1 and -1 on ea
h half of the unit 
ir
le, respe
tively, inaltogether 64 points by linear 
ombinations of properly s
aled Gaussians.102



In 
ase of 
onditionally positive de�nite radial basis fun
tions, the span of(??) or (??) turns into
u(x) :=

n∑

k=1

akλ
t
kφ(‖x− t‖2) +

q∑

ℓ=1

bℓpℓ(x)while the additional 
ondition (5.4) is repla
ed by
n∑

k=1

αkλ
t
kpℓ(t) = 0, 1 ≤ ℓ ≤ qand the interpolation problem is solvable, if the additional 
ondition

λtkp(t) = 0 for all 1 ≤ k ≤ n and p ∈ P d
Q−1 implies p = 0is imposed, repla
ing (5.4) and P�unisolven
y.Another example of re
overy from non-Lagrange data is the 
onstru
tion ofLyapounov basins from data 
onsisting of orbital derivatives [GW07℄.The �exibility to 
ope with general data is the key to various appli
ations ofradial basis fun
tions within methods solving partial di�erential equations.Collo
ation te
hniques, as treated in books on numeri
al methods for solvingpartial di�erential equations, solve partial di�erential equations numeri
allyby interpolation of values of di�erential operators and boundary 
onditions.Another important aspe
t is the possibility to implement additional linear
onditions or 
onstraints like

λ(u) :=
∫

Ω
u(x)dx = 1on a trial fun
tion. For instan
e, this allows to handle 
onservation laws andis inevitable for �nite-volume methods. A 
onstraint like the one above,when used as additional data, adds another degree of freedom to the trialspa
e by addition of the basis fun
tion uλ(x) := λtφ(‖x − t‖2), and at thesame time it uses this additional degree of freedom to satisfy the 
onstraint.This te
hnique deserves mu
h more attention in appli
ations.7.3 Error BehaviorIf exa
t data 
ome from smooth fun
tions f , and if smooth kernels K orradial basis fun
tions φ are used for interpolation, users 
an expe
t verysmall interpolation errors. In parti
ular, the error goes to zero when thedata samples are getting dense. The a
tual error behavior is limited by thesmoothness of both f and φ. Quantitative error bounds 
an be obtained103



from the standard literature [Buh03, Wen05℄ and re
ent papers [NWW06℄.They are 
ompletely lo
al, and they are in terms of the �ll distan
e
h := h(X,Ω) := sup

y∈Ω
min
x∈X

‖x− y‖2 (7.2)of the dis
rete set X = {x1, . . . , xn} of 
enters with respe
t to the domain
Ω where the error is measured. The interpolation error 
onverges to zerofor h → 0 at a rate di
tated by the minimum smoothness of f and φ. Forin�nitely smooth radial basis fun
tions like the Gaussian or multiquadri
s,
onvergen
e even is exponential [MN92, Yoo01℄ like exp(−c/h). Derivativesare also 
onvergent as far as the smoothness of f and φ allows, but at a smallerrate, of 
ourse. This is parti
ularly important when appli
ations require goodreprodu
tions of derivatives, e.g. velo
ity �elds or stress tensors.
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Figure 12: Nonstationary interpolation to a smooth fun
tion as a fun
tionof �ll distan
eFor interpolation of the smooth peaks fun
tion provided by MATLAB andused already in Figure 10, the error behavior on [−3, 3]2 as a fun
tion of �lldistan
e h is given by Figure 12. It 
an be 
learly seen that smooth φ yieldsmaller errors with higher 
onvergen
e rates. In 
ontrast to this, Figure 13shows interpolation to the nonsmooth fun
tion
f(x, y) = 0.03 ∗max(0, 6− x2 − y2)2, (7.3)104



on [−3, 3]2, where now the 
onvergen
e rate is di
tated by the smoothnessof f instead of φ and is thus more or less �xed. Ex
essive smoothness of φnever spoils the error behavior, but indu
es ex
essive instability, as we shallsee later.
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Figure 13: Nonstationary interpolation to a nonsmooth fun
tion as a fun
tionof �ll distan
e7.4 StabilityBut there is a serious drawba
k when using radial basis fun
tions on densedata sets, i.e. with small �ll distan
e. The 
ondition of the matri
es usedin (3.3) and (7.1) will get extremely large if the separation distan
e
S(X) :=

1

2
min

1≤i<j≤n
‖xi − xj‖2of points of X = {x1, . . . , xn} gets small. Figure 14 shows this e�e
t in thesituation of Figure 12.If points are distributed well, the separation distan
e S(X) will be propor-tional to the �ll distan
e h(X,Ω) of (7.2). In fa
t, sin
e the �ll distan
e isthe radius of the largest ball with arbitrary 
enter in the underlying domain

Ω without any data point in its interior, the separation distan
e S(X) is theradius of the smallest ball anywhere without any data point in its interior,105
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Figure 14: Condition as fun
tion of separation distan
ebut with at least two points of X on the boundary. Thus for 
onvex domainsone always has S(X) ≤ h(X,Ω). But sin
e separation distan
e only dependson the 
losest pair of points and ignores the rest, it is reasonable to avoidunusually 
lose points leading to some S(X) whi
h is 
onsiderably smallerthan h(X,Ω). Consequently, a distribution of data lo
ations in X is 
alledquasi�uniform if there is a positive uniformity 
onstant γ ≤ 1 su
h that
γ h(X,Ω) ≤ S(X) ≤ h(X,Ω). (7.4)To maintain quasi-uniformity, it su�
es in most 
ases to delete �dupli
ates�.Furthermore, there are sophisti
ated �thinning� te
hniques [FI98, DDFI05,WR05℄ to keep �ll and separation distan
e proportional, i.e. to assure quasi-uniformity at multiple s
aling levels.7.5 Un
ertainty Prin
ipleUnless radial basis fun
tions are res
aled in a data-dependent way, it 
an beproven [S
h95℄ that there is a 
lose link between error and stability, even if�ll and separation distan
e are proportional. In fa
t, both are tied to thesmoothness of φ, letting stability be
ome worse and errors be
ome smallerwhen taking smoother radial basis fun
tions. This is kind of anUn
ertaintyPrin
iple: 106



It is impossible to 
onstru
t radial basis fun
tions whi
h guarantee goodstability and small errors at the same time.
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Figure 15: Squared L∞ error times 
ondition as a fun
tion of �ll distan
eWe illustrate this by an example. Sin
e [S
h95℄ proves that the square of the
L∞ error roughly behaves like the smallest eigenvalue of the interpolationmatrix, Figure 15 plots the produ
t of the MATLAB 
ondition estimate
ondest with the square of the L∞ error for the nonstationary interpolationof the MATLAB peaks fun
tion, used already for Figures 12, 22, and 14 toshow the error and 
ondition behavior there. Note that the 
urves do notvary mu
h if 
ompared to Figure 14.Thus smoothness of radial basis fun
tions must be 
hosen with some 
are,and 
hosen dependent on the smoothness of the fun
tion to be approximated.From the point of view of reprodu
tion quality, smooth radial basis fun
tions
an well re
over nonsmooth fun
tions, as proven by papers 
on
erning errorbounds [NWW06℄. On the other hand, non-smooth radial basis fun
tions willnot a
hieve high 
onvergen
e rates when approximating smooth fun
tions[SW02℄. This means that using too mu
h smoothness in the 
hosen radialbasis fun
tion is not 
riti
al for the error, but rather for the stability. Butin many pra
ti
al 
ases, the 
hoi
e of smoothness is not as sensible as the
hoi
e of s
ale, as dis
ussed in se
tion 7.6.107



7.6 S
alingIf radial basis fun
tions are used dire
tly, without any additional tri
ks andtreats, users will qui
kly realize that s
aling is a 
ru
ial issue. The literaturehas two equivalent ways of s
aling a given radial basis fun
tion φ, namelyrepla
ing it by either φ(‖x − y‖2/c) or by φ(ǫ‖x − y‖2) with c and ǫ beingpositive 
onstants. Of 
ourse, these s
alings are equivalent, and the 
ase
ǫ → 0, c → ∞ is 
alled the �at limit [DF02℄. In numeri
al methods forsolving di�erential equations, the s
ale parameter c is preferred, and it is
alled shape fa
tor there. Readers should not be irritated by slightly otherways of s
aling, e.g.

φc(‖x‖2) :=
√
c2 + ‖x‖22 = c ·

√

1 +
‖x‖22
c2

= c · φ1

(
‖x‖2
c

) (7.5)for multiquadri
s, be
ause the outer fa
tor c is irrelevant when forming trialspa
es from fun
tions (3.1). Furthermore, it should be kept in mind thatonly the polyharmoni
 spline and its spe
ial 
ase, the thin-plate splinegenerate trial spa
es whi
h are s
ale-invariant.Like the tradeo� between error and stability when 
hoosing smoothness (seethe pre
eding se
tion), there often is a similar tradeo� indu
ed by s
aling:a �wider� s
ale improves the error behavior but indu
es instability. Clearly,radial basis fun
tions in the form of sharp spikes will lead to nearly diagonaland thus well-
onditioned systems (3.3), but the error behavior is disastrous,be
ause there is no reprodu
tion quality between the spikes. The opposite
ase of extremely ��at� and lo
ally 
lose to 
onstant radial basis fun
tionsleads to nearly 
onstant and thus badly 
onditioned matri
es, while manyexperiments show that the reprodu
tion quality is even improving when s
alesare made wider, as far as the systems stay solvable.For analyti
 radial basis fun
tions ( i.e. in C∞ with an expansion into apower series), this behavior has an explanation: the interpolants often 
on-verge towards polynomials in spite of the degeneration of the linear systems[DF02, S
h05, LF05, LYY05, S
h06a℄. This has impli
ations for many exam-ples in this text whi
h approximate analyti
 solutions of partial di�erentialequations by analyti
 radial basis fun
tions like Gaussians or multiquadri
s:whatever is 
al
ulated is 
lose to a good polynomial approximation to thesolution. Users might suggest to use polynomials right away in su
h 
ir
um-stan
es, but the problem is to pi
k a good polynomial basis. For multivariateproblems, 
hoosing a good polynomial basis must be data-dependent, and itis by no means 
lear how to do that. It is one of the intriguing propertiesof analyti
 radial basis fun
tions that they automati
ally 
hoose good data-dependent polynomial bases when driven to their ��at limit�. There are new108
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Figure 16: Error as fun
tion of relative s
ale, smooth 
asete
hniques [LF03, FW04℄ whi
h 
ir
umvent the instability at large s
ales,but these are still under investigation.Figure 16 shows the error for interpolation of the smooth MATLAB peaksfun
tion on a �xed data set, when interpolating radial basis fun
tions φ areused with varying s
ale relative to a φ-spe
i�
 starting s
ale given in thelegend. Only those 
ases are plotted whi
h have both an error smaller than1 and a 
ondition not ex
eeding 1012. Sin
e the data 
ome from a fun
tionwhi
h has a good approximation by polynomials, the analyti
 radial basisfun
tions work best at their 
ondition limit. But sin
e the peaks fun
tionis a superposition of Gaussians of di�erent s
ales, the Gaussian radial basisfun
tion still shows some variation in the error as a fun
tion of s
ale.Interpolating the nonsmooth fun
tion (7.3) shows a di�erent behavior (seeFigure 17), be
ause now the analyti
 radial basis fun
tions have no advantagefor large s
ales. In both 
ases one 
an see that the analyti
 radial basisfun
tions work well only in a rather small s
ale range, but there they beatthe other radial basis fun
tions. Thus it often pays o� to sele
t a good s
aleor to 
ir
umvent the disadvantages of large s
ales [LF03, FW04℄.Like in �nite element methods, users might want to s
ale the basis fun
tionsin a data-dependent way, making the s
ale c in the sense of using φ(‖x −
y‖2/c) proportional to the �ll distan
e h as in (7.2). This is often 
alled astationary setting, e.g. in the 
ontext of wavelets and quasi-interpolation.109
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Figure 17: Error as fun
tion of relative s
ale, nonsmooth 
aseIf the s
ale is �xed, the setting is 
alled nonstationary, and this is whatwe were 
onsidering up to this point. Users must be aware that the errorand stability analysis, as des
ribed in the previous se
tions, apply to thenonstationary 
ase, while the stationary 
ase will not 
onverge for h → 0in 
ase of un
onditionally positive de�nite radial basis fun
tions [Buh88,Buh90℄. But there is a way out: users 
an in�uen
e the �relative� s
ale of cwith respe
t to h in order to a
hieve a good 
ompromise between error andstability. The positive e�e
t of this 
an easily be observed [S
h97a℄, and forspe
ial situations there is a sound theoreti
al analysis 
alled approximateapproximation [MS96℄. Figure 18 shows the stationary error behavior forinterpolation of the smooth MATLAB peaks fun
tion when using di�erentradial basis fun
tions φ at di�erent starting s
ales. It 
an be 
learly seen howthe error goes down to a 
ertain small level depending on the smoothness of
φ, and then stays roughly 
onstant. Using larger starting radii de
reasesthese saturation levels, as Figure 19 shows.Due to the importan
e of relative s
aling, users are strongly advised to alwaysrun their programs with an adjustable s
ale of the underlying radial basisfun
tions. Experimenting with small systems at di�erent s
ales give a feelingof what happens, and users 
an �x the relative s
ale of c versus h rather
heaply. Final runs on large data 
an then use this relative s
aling. In many
ases, given problems show a 
ertain �intrinsi
� preferen
e for a 
ertain s
ale,110
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Figure 18: Stationary interpolation to a smooth fun
tion at small startings
alesas shown in Figure 17, but this is an experimental observation whi
h still iswithout proper theoreti
al explanation.7.7 Pra
ti
al RulesIf users adjust the smoothness and the s
aling of the underlying radial basisfun
tion along the lines of the previous se
tions, 
han
es are good to getaway with relatively small and su�
iently stable systems. The rest of thetext 
ontains plenty of examples for this observation.For 
ompleteness, we add a few rules for S
ienti�
 Computing with radialbasis fun
tions, in parti
ular 
on
erning good 
hoi
es of s
ale and smooth-ness. Note that these apply also to methods for solving partial di�erentialequations in later 
hapters.
• Always allow a s
ale adjustment.
• If possible, allow di�erent RBFs to 
hoose from.
• Perform some experiments with s
aling and 
hoi
e of RBF before youturn to tough systems for �nal results.111
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Figure 19: Stationary interpolation to a smooth fun
tion at wider startings
ales
• If you do not apply iterative solvers, do not worry about large 
onditionnumbers, but use a stabilized solver, e.g. based on Singular ValueDe
omposition (SVD). Remember that unless you apply 
ertain tri
ks,getting a good reprodu
tion quality will always require bad 
ondition.If you need k de
imal digits of �nal a

ura
y for an appli
ation, do notbother about 
ondition up to 1012−k.
• If you use 
ompa
tly supported radial basis fun
tions, do not expe
tthem to work well when ea
h support 
ontains less than about 50 neigh-bors. This means that the bandwidth of large sparse systems shouldnot be below 50. In
reasing bandwidth will usually improve the qualityof the results at the expense of 
omputational 
omplexity.
• When using either 
ompa
tly supported or qui
kly de
aying radial basisfun
tions of high smoothness, the theoreti
al support and the pra
ti
alsupport do not 
oin
ide. In su
h 
ases one should enfor
e sparsity by
hopping the radial basis fun
tions, in spite of losing positive de�nite-ness properties. But this should be done with 
are, and obeying the�50 neighbors� rule above.
• If systems get large and ill-
onditioned, and if 
hange of s
ale and RBFdo not improve the situation, try methods des
ribed in the following112



se
tion.
• Use blo
kwise iteration (�domain de
omposition�) �rst, be
ause it issimple and often rather e�
ient.
• Blo
kwise iteration 
an be speeded up by pre
al
ulation of LR de
om-positions of blo
ks.
• If all of this does not work, try partitions of unity, multilevel methods,or spe
ial pre
onditioning te
hniques. You are now at 
urrent resear
hlevel, and you should look into the next se
tion.7.8 Sensitivity to NoiseSo far, the dis
ussion fo
used on noiseless data, with the ex
eption of Fig-ure 23. If users expe
t noise in the data, an interpolatory re
overy is notappropriate, be
ause it treats noise as data. In most of the later se
tions ofthis text, data are right-hand sides or boundary values for partial di�erentialequations, and they usually are given as noiseless fun
tions whi
h 
an beevaluated anywhere. Thus the rest of the text does not treat noisy inputs indetail. But at this point, some remarks are appropriate.In all noisy situations, interpolation should be repla
ed by approximation.This 
an be done in various ways leading to stabilization.A primitive, but often quite su�
ient te
hnique is to run a smoothing pro
esson the raw data and to re
over the unknown fun
tion from the smoothed datainstead of the raw data.Another standard tri
k is to solve (3.3) in the L2 sense with oversampling, ifonly n << m trial points xj are used for m data points yk. The trial points
an then be pla
ed rather freely with a large separation distan
e, while asmall separation distan
e of data points will not have a dramati
 e�e
t onstability any more. However, there is not very mu
h theoreti
al and pra
ti
alwork done on unsymmetri
 re
overy te
hniques [S
h06b, S
h07℄.A third possibility is the old Levenberg-Marquardt tri
k of adding a pos-itive value λ into the diagonal of the kernel matrix of (3.3) with entries

φ(‖xj−xk‖2). As is well-known from literature on spline smoothing, this leadsto an approximant a
hieving a tradeo� between smoothness and reprodu
tionquality whi
h 
an be 
ontrolled by λ. If a sto
hasti
 ba
kground is available,there are methods to estimate λ properly, e.g. by 
ross-validation. How-ever, in most 
ases users adjust λ experimentally. This te
hnique also helpsto �ght instability when working on irregularly distributed data [WR05℄,be
ause it is able to shift the stability from dependen
e on the separationdistan
e to dependen
e on the �ll distan
e (see se
tion 7.4).113



A fourth possibility is regularization, for example using a singular-valuede
omposition as des
ribed in se
tion 7.10.In general, one 
an repla
e the system (3.3) by an optimization methodwhi
h penalizes the reprodu
tion error on one hand and either a 
omplexity orsmoothness 
riterion on the other, allowing a fair amount of 
ontrol over thetradeo� between error and stability. Penalties for the dis
rete reprodu
tionerror 
an be made in various dis
rete norms, the ℓ1 and ℓ∞ 
ase having theadvantage to lead to linear optimization restri
tions, while the dis
rete ℓ2norm leads to quadrati
 ones. For radial basis fun
tions of the form (3.1) or(??), the quadrati
 form
‖u‖2φ :=

n∑

j,k=1

αjαkφ(‖xj − xk‖2) (7.6)is a natural 
andidate for penalizing high derivatives without evaluating any.This is due to the standard fa
t that the above expression is a squared norm ina native spa
e of fun
tions with about half the smoothness of φ, penalizingall available derivatives there. For details, we have to refer to basi
 literature[Buh03, Wen05℄ on the theory of radial basis fun
tions. But even though weskip over native spa
es here, all users should be aware that they always lurein the theoreti
al ba
kground, and that all methods based on radial basisfun
tions impli
itly minimize the above quadrati
 form under all fun
tionsin the native spa
e having the same data. This has a strong regularizatione�e
t whi
h is the ba
kground reason why radial basis fun
tion or more gen-eral kernel methods work well for many ill-posed and inverse problems[HW03, Li04, TWN04, CC05b, CC05a, HW05, JZ05, Li05, Sai05, Nas06℄.The above strategy of minimizing the quadrati
 form (7.6) also is 
entral formodern methods of ma
hine learning, but we 
annot pursue this subje
tin detail here [CST00, SS02, STC04℄.Let us use minimization of the quadrati
 form (7.6) to provide an example forthe tradeo� between error and 
omplexity. Again, the basi
 situation is inter-polation to the MATLAB peaks fun
tion, this time in 14×14=196 regularlydistributed points in [−3, 3]2 by Gaussians of s
ale 1. The global L∞[−3, 3]2error of the exa
t interpolation on these data is 0.024, evaluated on a �negrid with 121×121=14641 points. But now we minimize the quadrati
 form(7.6) under the 
onstraints
− ǫ ≤

n∑

j=1

αjφ(‖xj − xk‖2)− f(xk) ≤ ǫ, 1 ≤ k ≤ n (7.7)for positive ǫ. The 
ase of ǫ = 0 is exa
t interpolation using all 196 datapoints and trial fun
tions. For positive ǫ, the usual Karush-Kuhn-Tu
ker114
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Figure 20: Conne
tion between ǫ and the number n(ǫ) of ne
essary points
onditions imply that only those points xk are a
tually used where one of thebounds in (7.7) is attained with equality. The number n(ǫ) of required pointsgrows up to the maximally possible n(0) = 196 when ǫ de
reases. Figure 20shows this for the 
ase of exa
t and noisy data.But even more interesting is the behavior of the global L∞[−3, 3]2 error E(ǫ)as a fun
tion of ǫ. Figure 21 shows that E(ǫ) roughly follows the behaviorof ǫ when plotted as a fun
tion of the required points n(ǫ). Both 
urves areexperimentally available, and one 
an read o� that the optimal 
hoi
e of ǫin the noisy 
ase is at the point where the 
urve takes its L-turn, i.e. atthe point of largest 
urvature around n = 40. This 
an be viewed as anexperimental method to determine the noise level. Note that it does notpay o� to use more points, and note the similarity to the L-
urve te
hnique[HO93℄.But also for exa
t data, these 
urves are useful. Sin
e the maximum valueof the peaks fun
tion is about 8.17, one 
an get a relative global a

ura
y of1% using roughly 60 points for exa
t data. It makes no sense to use the full196 points, even for exa
t data, if exa
t results are not required. Of 
ourse,larger noise levels lead to smaller numbers of required points, but a thoroughinvestigation of these tradeo� e�e
ts between error and 
omplexity is still a
hallenging resear
h topi
..... in
omplete... 115
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Figure 21: Error E(ǫ) as a fun
tion of the number n(ǫ) of ne
essary pointsDemos on power fun
tions and on point sele
tion.... in
omplete...7.9 Cal
ulationWe now want to take a 
loser look at the systems (??) or (??). To this end,we perform a singular�value�de
omposition of the kernel matrix as
A = UΣUTwith an orthogonal matrix U and a diagonal matrix with nonnegative entries

σ1, . . . , σN . We fo
us on (??) as minimization of a quadrati
 form. The latteris
0 ≤ Q(a) = K(x, x)− 2

N∑

j=1

ajK(x.xj) +
N∑

j,k=1

ajakK(xj , xk)

= K(x, x)− 2aTKX(x) + aTAa with
KX(x) := (K(x1, x), . . . , K(xN , x))

T

116



and 
an be rewritten as
Q(a) = K(x, x)− 2aTUUTKX(x) + aTUUTAUUTa

= K(x, x)− 2aTU UTKX(x)︸ ︷︷ ︸
=:z(x)

+aTUΣUT a︸ ︷︷ ︸
=:b

= R(b) := K(x, x)− 2bT z(x) + bTΣb

= K(x, x) +
N∑

j=1

(
b2jσj − 2bjzj(x)

)
.We know that this quadrati
 form is always nonnegative, and we 
an mini-mize it now by taking derivatives with respe
t to ea
h bj . The optimal values

b∗j (x) have to satisfy
b∗j (x)σj = zj(x), 1 ≤ j ≤ N.This leads to
b∗j (x) :=

zj(x)

σj
for σj > 0.In 
ase of σj = 0 we must (in theory) have zj(x) = 0 be
ause otherwise thequadrati
 form 
ould take on negative values. For these j we 
an take any

b∗j (x), and we formally write
b∗j (x) :=





zj(x)

σj
σj > 0

λjzj(x) σj = 0with arbitrary λj for the j with σj = 0. Thus we 
an write
b∗(x) = Dz(x)with a diagonal matrix D = D(σ, λ) having the entries
1

σj
for σj > 0

λj for σj = 0on the diagonal. This yields the representation
a∗(x) = Ub∗(x) = UDz(x) = UDUTKX(x)of the total solution, but we already know that this solution also arises as

u∗j(x) = a∗j (x) in the system (??) and the Lagrange type formula (??). Butin the above form we see that the solution 
an in spite of the singular systembe written in su
h a way that it lies in SX and thus in the native spa
e.117



In pra
ti
al situations, the right�hand side of a system (??) will not ne
es-sarily 
onsist of values of a fun
tion from the native spa
e. In su
h a 
ase thesystem might be unsolvable, and this then proves that the data indeed do not
ome from a fun
tion in the native spa
e. But one 
an always go for a quasi�interpolant of the form (??) with the u∗j(x) 
onstru
ted as above. This willnot ne
essarily interpolate the data, but probably be a good re
onstru
tionstrategy anyway.7.10 RegularizationLet A be an m× n matrix and 
onsider the linear system
Ax = b ∈ R

m (7.8)whi
h is to be solved for a ve
tor x ∈ Rn. The system may arise fromany method using kernels, in
luding (??) and (??), but we allow for moreequations than unknowns here. Then the system will have m ≥ n and itusually is overdetermined. Furthermore, for later 
ases, we allow the matrix
A to be unsymmetri
.The previous se
tion told us that even in the 
ase m = n with a positivesemide�nite matrix, 
han
es are good there is an approximate solution x̂whi
h at least yields ‖Ax̂ − b‖2 ≤ η with a small toleran
e η, and whi
hhas a 
oe�
ient ve
tor x̂ representable on a standard 
omputer. Note that
η may also 
ontain noise of a 
ertain unknown level. The 
entral problem isthat there are many ve
tors x̂ leading to small values of ‖Ax̂− b‖2, and thesele
tion of just one of them is an unstable pro
ess. But the reprodu
tionquality is mu
h more important than the a
tual a

ura
y of the solutionve
tor x̂, and thus questions like the nonsingularity or the 
ondition of thematrix are not the right aspe
ts here.Clearly, any reasonably well-programmed least-squares solver [GvL96℄ shoulddo the job, i.e. produ
e a numeri
al solution x̃ whi
h solves

min
x∈Rn

‖Ax− b‖2 (7.9)or at least guarantees ‖Ax̃−b‖2 ≤ η. It should at least be able not to overlookor dis
ard x̂. This regularization by optimization works in many pra
ti
al
ases, but we shall take a 
loser look at the joint error and stability analysis,be
ause even an optimizing algorithm will re
ognize that it has problems todetermine x̂ reliably if 
olumns of the matrix A are 
lose to being linearlydependent. 118



By singular-value de
omposition [GvL96℄, the matrix A 
an be de
om-posed into
A = UΣV T (7.10)where U is an m × m orthogonal matrix, Σ is an m × n matrix with zerosex
ept for singular values σ1, . . . , σn on the diagonal, and where V T is an

n × n orthogonal matrix. Due to some sophisti
ated numeri
al tri
ks, thisde
omposition 
an under normal 
ir
umstan
es be done with ≀(mn2 + nm2)
omplexity, though it needs an eigenvalue 
al
ulation. One 
an assume
σ2
1 ≥ σ2

2 ≥ . . . ≥ σ2
n ≥ 0,and the σ2

j are the nonnegative eigenvalues of the positive semide�nite n×nmatrix ATA.The 
ondition number of the non-square matrix A is then usually de�nedto be σ1/σn. This is in line with the usual spe
tral 
ondition number
‖A‖2‖A−1‖2 for the symmetri
 
ase m = n. The numeri
al 
omputation of
U and V usually is rather stable, even if the total 
ondition is extremelylarge, but the 
al
ulation of small singular values is hazardous. Thus thefollowing arguments 
an rely on U and V , but not on small singular values.Using (7.10), the solution of either the minimization problem (7.9) or, in the
ase m = n, the solution of (7.8) 
an be obtained and analyzed as follows.We �rst introdu
e new ve
tors

c := UT b ∈ R
m and y := V Tx ∈ R

nby transforming the data and the unknowns orthogonally. Sin
e orthogonalmatri
es preserve Eu
lidean lengths, we rewrite the squared norm as
‖Ax− b‖22 = ‖UΣV Tx− b‖22

= ‖ΣV Tx− UT b‖22
= ‖Σy − c‖22
=

n∑

j=1

(σjyj − cj)
2 +

m∑

j=n+1

c2jwhere now y1, . . . , yn are variables. Clearly, the minimum exists and is givenby the equations
σjyj = cj , 1 ≤ j ≤ n,but the numeri
al 
al
ulation runs into problems when the σj are small andimpre
ise in absolute value, be
ause then the resulting yj will be large andimpre
ise. The �nal transition to the solution x = V y by an orthogonaltransformation does not improve the situation.119



If we assume existen
e of a good solution 
andidate x̂ = V ŷ with ‖Ax̂−b‖2 ≤
η, we have

n∑

j=1

(σj ŷj − cj)
2 +

m∑

j=n+1

c2j ≤ η2. (7.11)A standard regularization strategy to 
onstru
t a reasonably stable ap-proximation y is to 
hoose a positive toleran
e ǫ and to de�ne
yǫj :=

{ cj
σj

|σj| ≥ ǫ

0 |σj| < ǫi.e. to ignore small singular values, be
ause they are usually polluted byroundo� and hardly dis
ernible from zero. This is 
alled the trun
atedsingular value de
omposition (TSVD). Fortunately, one often has small
c2j whenever σ2

j is small, and then 
han
es are good that
‖Axǫ − b‖22 =

∑

1 ≤ j ≤ n
|σj| ≥ ǫ

c2j +
m∑

j=n+1

c2j ≤ η2holds for xǫ = V yǫ.
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Figure 22 is an example interpolating the MATLAB peaks fun
tion in m =
n = 441 regular points on [−3, 3]2 by Gaussians with s
ale 1, using the stan-dard system (??). Following a �xed 441× 441 singular value de
omposition,we trun
ated after the k largest singular values, thus using only k degrees offreedom (DOF). The results for 1 ≤ k ≤ 441 show that there are low-ranksubsystems whi
h already provide good approximate solutions.
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tion of regularization parameter δ2But now we pro
eed with our analysis. In 
ase of large cj for small σj ,trun
ation is insu�
ient, in parti
ular if the dependen
e on the unknownnoise level η 
omes into fo
us. At least, the numeri
al solution should notspoil the reprodu
tion quality guaranteed by (7.11), whi
h is mu
h moreimportant than an exa
t 
al
ulation of the solution 
oe�
ients. Thus one
an minimize ‖y‖22 subje
t to the essential 
onstraint

n∑

j=1

(σjyj − cj)
2 +

m∑

j=n+1

c2j ≤ η2, (7.12)but we suppress details of the analysis of this optimization problem. Another,more popular possibility is to minimize the obje
tive fun
tion
n∑

j=1

(σjyj − cj)
2 + δ2

n∑

j=1

y2j121
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Figure 24: Coe�
ients |cj| as fun
tion of jwhere the positive weight δ allows to put more emphasis on small 
oe�
ientsif δ is in
reased. This is 
alled Tikhonov regularization.The solutions of both settings 
oin
ide and take the form
yδj :=

cjσj
σ2
j + δ2

, 1 ≤ j ≤ ndepending on the positive parameter δ of the Tikhonov form, and for xδ :=
V yδ we get

‖Axδ − b‖22 =
n∑

j=1

c2j

(
δ2

δ2 + σ2
j

)2

+
m∑

j=n+1

c2j ,whi
h 
an me made smaller than η2 for su�
iently small δ. The optimalvalue δ∗ of δ for a known noise level η in the sense of (7.12) would be de�nedby the equation ‖Axδ∗ − b‖22 = η2, but sin
e the noise level is only rarelyknown, users will be satis�ed to a
hieve a tradeo� between reprodu
tionquality and stability of the solution by inspe
ting ‖Axδ − b‖22 for varying δexperimentally.We now repeat the example leading to Figure 22, repla
ing the trun
ationstrategy by the above regularization. Figure 23 shows how the error ‖Axδ −
b‖∞,X depends on the regularization parameter δ. In 
ase of noise, users 
anexperimentally determine a good value for δ even for an unknown noise level.The 
ondition of the full matrix was 
al
ulated by MATLAB as 1.46 · 1019,122
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urve for the same problembut it may a
tually be higher. Figure 24 shows that the 
oe�
ients |cj| areindeed rather small for large j, and thus regularization by trun
ated SVDwill work as well in this 
ase.From Figures 24 and 23 one 
an see that the error ‖Axδ − b‖ takes a sharpturn at the noise level. This has led to the L-
urve method for determiningthe optimal value of δ, but the L-
urve is de�ned di�erently as the 
urve

δ 7→ (log ‖yδ‖22, log ‖Axδ − b‖22).The optimal 
hoi
e of δ is made where the 
urve takes its turn, if it doesso, and there are various way to estimate the optimal δ, see [Han92, Han94,Han00℄ in
luding a MATLAB software pa
kage.Figure 25 shows the typi
al L-shape of the L-
urve in 
ase of noise, while inthe 
ase of exa
t data there is no visible sharp turn within the plot range.The ba
kground problem is the same as for the previous �gures.Consequently, users of kernel te
hniques are strongly advised to take some
are when 
hoosing a linear system solver. The solution routine should in-
orporate a good regularization strategy or at least automati
ally proje
tto stable subspa
es and not give up qui
kly due to bad 
ondition. Furtherexamples for this will follow in later 
hapters.But for large systems, the above regularization strategies are debatable. Asingular-value de
omposition of a large system is 
omputationally expensive,123



and the solution ve
tor will usually not be sparse, i.e. the evaluation ofthe �nal solution at many points is 
ostly. In many 
ases, linear systemsarising from kernels often have good approximate solutions with only fewnonzero 
oe�
ients, and the 
orresponding numeri
al te
hniques are other,and possibly preferable regularizations whi
h still are under investigation.8 Error AnalysisThis se
tion is the 
ore for any error analysis of interpolation or approxima-tion methods. There are essentially two possible approa
hes:1. via upper bounds on the power fun
tion and2. via �sampling inequalities�.These share some 
ommon tools. e.g. the 
on
ept of stable lo
al polynomialapproximation. The se
ond alternative is more modern, but, as the other one,it is hard
ore mathemati
s and involves quite some work. Sin
e the 
urrentforms of sampling inequalities 
ontain a good deal of 
on
ealed oversampling,it will hopefully worthwhile to start slowly and exhibit the pla
es whereoversampling ki
ks in. Thus we shall �rst fo
us on motivating and explainingthe important ingredients to error bounds in general, before we reprodu
ethe 
urrent state�of�the art.8.1 General ConsiderationsFor simpli
ity, we start with an un
onditionally or P�
onditionally real�valued positive de�nite symmetri
 kernel K on a s set Ω. This means thatwe rule out the truly 
omplex�valued and the positive semide�nite 
ase.The reason is that we want to work with a true Lagrange basis u∗1, . . . , u∗Nwhenever we have a P�unisolvent set X = {x1, . . . , xN} of points of Ω, andwe want to postpone extensions to a later version of the text.We assume that we want to re
over an unknown fun
tion f from the nativespa
e N of K from its given data f(x1), . . . , f(xN) on X , and we shall fo
uson interpolation by kernel translates and fun
tions from P. This means thatthe interpolant s = sX,f,K exists and is uniquely de�ned by its representation
s(x) =

N∑

j=1

u∗j(x)f(xj)124



in terms of the Lagrange basis. This is the same for the un
onditionally andthe P�
onditionally positive de�nite 
ase, though the 
onstru
tions of theLagrange bases in (2.41) and (5.21) are di�erent.The error bounds we are looking for are of the form
|f(x)− s(x)| ≤?for arbitrary fun
tions f ∈ N and arbitrary points x ∈ Ω. We have thestandard bound

|f(x)− s(x)| ≤ PX(x)‖f‖Nfrom (2.30) and (5.32) via the Power Fun
tion at our disposal. This ni
elysplits the e�e
t of f and X into two independent fa
tors, and we 
an usethe optimality property of the Power Fun
tion from (2.31) and (5.29) forgetting upper bounds on it. We shall pursue this line of argument later,sin
e it gives a lot of information. Furthermore, in the 
ase of kernels 
omingfrom 
ovarian
es, the natural notion of an error bound is given by the PowerFun
tion itself, be
ause it des
ribes the varian
e of the Kriging estimationerror, and leads to 
on�den
e bands in the 
ase of Gaussian pro
esses.But in may 
ases, e.g. for the Gaussian kernel, the native spa
e is far toosmall to be useful, and thus one wants to extend these error bounds to largerfun
tion spa
es. This is where the quest for sampling inequalities started.8.2 Sampling InequalitiesThe basi
 idea of sampling inequalities is to forget about kernels and theirsometimes exoti
 native spa
es. Assume that a fun
tion s approximates orinterpolates a fun
tion f on a dis
rete subset X of its domain Ω. Then f − sis small or even zero on X . How large 
an the error fun
tion f − s beoutside of X? If, for instan
e, any dire
tional derivative of both f and s isbounded above by some 
onstant C, we 
an write
|f(x)− s(x)| ≤ |f(xj)− s(xj)|+ 2C · ‖x− xj‖2if the line 
onne
ting x and xj ∈ X is in Ω and if we integrate the dire
tionalderivative along the line. If we de�ne the �ll distan
e

h := h(X,Ω) := sup
x∈Ω

min
xj∈X

‖x− xj‖2of X in Ω and if Ω is 
onvex, this yields the simple error bound
‖f − s‖∞,Ω ≤ 2C · h,125



but we need to have C under 
ontrol, i.e. in terms of some tri
ky high�ordernorm ‖f‖ of f .Here is a more general des
ription of the above argument, applied to theerror fun
tion:If a smooth fun
tion has a bound on its highest derivatives, and if it issmall on a large set of points whi
h ��lls� the domain, then it shouldbe small everywhere.This 
an be 
ast into a more general bound like
‖f‖∞,Ω ≤ F (h(X,Ω))|f |F + C · ‖f‖∞,X (8.1)with F (h) → 0 for h → 0, and holding for all f in some fun
tion spa
e Fwith a (semi�) norm |f |F . This is a spe
ial 
ase of a sampling inequality.Its appli
ation to error fun
tions f − s of interpolants on X works whenever

f and s are in F via
‖f − s‖∞,Ω ≤ F (h(X,Ω))|f − s|F + C · ‖f − s‖∞,X

= F (h(X,Ω))|f − s|F
≤ F (h(X,Ω))(|f |F + |s|F).At this point, one has to take into a

ount that |s|F will still depend on Xand thus also on h(X,Ω), but in many 
ases one 
an infer a stability boundof the form

|s|F ≤ C|f |Fwith a 
onstant independent of X , e.g. when we have the usual optimalityprin
iple for interpolants in native spa
es. This leads to
‖f − s‖∞,Ω ≤ (1 + C)F (h(X,Ω))|f |F (8.2)with F (h) → 0 for h→ 0 and works for general fun
tion spa
es, 
ir
umvent-ing the restri
tion to native Hilbert spa
es.8.3 Simple Bounds for Power Fun
tionsIn the un
onditional 
ase, we 
an use Theorem 2.29 on page 20 for somesimple upper bounds. For X ⊆ Y ⊆ Ω we have PY (x) ≤ PX(x) for all x ∈ Ω.And if we have two native spa
es H1 and H2 with asso
iated kernels K1 and

K2, respe
tively, su
h that for the unit balls we have an in
lusion
f ∈ H1, ‖f‖H1

≤ 1 ⇒ f ∈ H2, ‖f‖H2
≤ 1,126



then
PX,K1

(x) ≤ PX,K2
(x) for all x ∈ Ω.This generalizes to the 
ase of bounded in
lusions. Assume two un
onditionalkernels K1, K2 with native spa
es H1, H2 su
h that

f ∈ H1 ⇒ f ∈ H2, ‖f‖H2
≤ C‖f‖H1

.Then
PX,H1

(x) = sup
f∈H1,f(X)={0},‖f‖H1

≤1
f(x)

≤ sup
f∈H2,f(X)={0},‖f/C‖H2

≤1
f(x)

≤ C sup
g∈H2,g(X)={0},‖g‖H2

≤1
g(x)

= C PX,H2
(x)allows to 
arry all upper bounds on PX,H2
over to upper bounds on PX,H1

upto a 
onstant fa
tor.Roughly speaking: larger native spa
es in the sense of unit ball in
lusion orbounded in
lusion lead to larger Power Fun
tions.Other upper bounds for the Power Fun
tion are based on (2.31) and (5.29).There, a set of fun
tions u1, . . . , uN o

ur whi
h in 
ase of P�
onditionalpositive de�niteness must additionally re
over fun
tions from P in the senseof the se
ond set of equations in (5.21). Then the upper bounds are of theform
P 2
X(x) ≤ K(x, x)− 2

N∑

j=1

uj(x)K(xj , x)

+
N∑

j,k=1

uj(x)uk(x)K(xj , xk).

(8.3)The simplest 
ase uses nearest�neighbor re
onstru
tion. Assume thatfor ea
h x ∈ Ω we pi
k a single xk(x) ∈ X and de�ne
uj(x) :=

{
1 j = k(x)
0 else }

.Then
P 2
X(x) ≤ K(x, x)− 2K(xk(x), x) +K(xk(x), xk(x)) = d(x, xk(x))

2with the distan
e de�ned in (2.17). This shows that one should pi
k xk(x) ∈ X
losest to x in that distan
e. Sin
e this re
overy pro
ess reprodu
es 
onstants,we have 127



Theorem 8.4. If K is un
onditionally positive semide�nite or 
onditionallypositive semide�nite with respe
t to the spa
e of 
onstant fun
tions, the PowerFun
tion on nonempty sets X of interpolation points satis�es
PX(x) ≤ min

xj∈X
d(x, xj)with the distan
e de�ned in (2.17).Note that this simple result does not assume any smoothness of K or anystru
ture on Ω.If the domainΩ lies in Rd, we 
an use bary
entri
 
oordinates u0(x), . . . , ud(x)if the point x lies in a nondegenerate simplex with verti
es x0, . . . , xd. Thisyields a pro
ess that re
overs all linear polynomials. We set uj(x) = 0 forall other indi
es j. Then by standard arguments on the �linear pre
ision� ofbary
entri
 
oordinates, and for twi
e 
ontinuously di�erentiable fun
tions

f ,
|f(x)−

d∑

j=0

uj(x)f(xj)| ≤ C(f)ǫ(x)2if ǫ(x) is the diameter of the simplex, and with a 
onstant C(f) that involvesthe se
ond derivatives of f in su
h a way that it a
ts like a seminorm thatvanishes on all polynomials of degree at most 1.We now assume that the native spa
e N of the kernel K is 
ontained in thespa
e of twi
e di�erentiable fun
tions in the sense that there is a boundedimmersion, i.e. there is a bound
|f(x)−

d∑

j=0

uj(x)f(xj)| ≤ C(f)ǫ(x)2 ≤ c ǫ(x)2|f |N for all f ∈ N (8.5)with a 
onstant c independent of f and X . By Theorem 5.31 we then get
PX(x) ≤ ‖δx −

d∑

j=0

uj(x)δxj
‖L

≤ c ǫ(x)2with an even easier argument in 
ase of un
onditional positive semide�nite-ness via (2.31).Theorem 8.6. Assume that Ω is a 
ompa
t domain in Rd and the kernel Kis 128



1. un
onditionally positive semide�nite or2. 
onditionally positive semide�nite with respe
t to polynomials of degreeat most one,3. and has a native spa
e whi
h is 
ontinuously embedded in the spa
e oftwi
e 
ontinuously di�erentiable fun
tions in the sense of (8.5).If an arbitrary point x ∈ Ω lies in a nondegenerate simplex of diameter ǫ(x)spanned by d + 1 data points of some interpolation set X, then the PowerFun
tion 
an be bounded at x by
PX(x) ≤ cǫ(x)2.Note that this applies to smooth un
onditionally positive semi�de�nite ker-nels, but the 
onne
tion to thin�plate splines is not obvious at this point. Itmimi
s the error bounds for pie
ewise linear interpolation on simpli
es, i.e.for the simplest �nite element spa
es.Clearly, this argument generalizes to orders larger than 2 in (8.5) and Theo-rem 8.6, provided that ǫ(x) is repla
ed by some other useful quantity E(x, h)whi
h is small if the point x is surrounded by su�
iently many well�pla
edpoints of X . Note that it uses lo
al error bounds for lo
al re
overy pro
essesto prove lo
al error bounds for global pro
esses of an order that is not worsethan the order of the best possible lo
al re
overy. But it turns out to be notso easy to �nd the right quantity E(x, h) and the right notions for �su�
ientlymany� and �well�pla
ed� in more general situations.Let us have a short look at ne
essary 
onditions for good bounds on thePower Fun
tion. Assume that we 
an prove something like
PX(x) ≤ CE(x, h)for all data sets X with �ll distan
e at most h. This implies

∣∣∣∣∣∣
f(x)−

N∑

j=1

u∗j(x)f(xj)

∣∣∣∣∣∣
≤ CE(x, h)‖f‖H for all f ∈ H, x ∈ Ωfor the Lagrange�type basis asso
iated to the kernel and the data set X .Thus there is a 
ontinuously embedded subspa
e H of H (here: H itself) anda set of reprodu
tion fun
tions uj su
h that

∣∣∣∣∣∣
f(x)−

N∑

j=1

uj(x)f(xj)

∣∣∣∣∣∣
≤ CE(x, h)‖f‖H for all f ∈ H, x ∈ Ω..129



If we try to prove upper bounds for the Power Fun
tion via �nding instan
eswhere the above inequality holds, we have not departed from the main road.We just have to �nd the best of all su
h re
onstru
tion pro
esses, and issueslike oversampling or stability are not ne
essarily on our way.To do the more general 
ase, we 
an simplify the upper bound (8.3) byintrodu
ing the error operator
Ey

x(f(y)) := f(x)−
N∑

j=1

uj(x)f(xj)to get
P 2
X(x) ≤ K(x, x)− 2

N∑

j=1

uj(x)K(xj , x)

+
N∑

j,k=1

uj(x)uk(x)K(xj , xk)

= K(x, x)−
N∑

j=1

uj(x)K(xj , x)

+
N∑

j=1

uj(x)

(
N∑

k=1

uk(x)K(xj , xk)−K(xj , x)

)

= Ez
xK(z, x)−

N∑

j=1

uj(x)E
z
xK(z, xj)

= Ey
xE

z
xK(y, z).Our basi
 te
hnique will be to use a bound of the form

|Ey
x(f(y))| :=

∣∣∣∣∣∣
f(x)−

N∑

j=1

uj(x)f(xj)

∣∣∣∣∣∣
≤ ǫX,K(h)‖Lf‖ (8.7)with some linear di�erential opperator L with values on some normed spa
e.We then 
an bound the Power Fun
tion by

P 2
X(x) ≤ |Ey

xE
z
xK(y, z)|

≤ ǫX,K(h)‖LyEz
xK(y, z)‖

≤ ǫ2X,K(h)‖Ly‖LzK(y, z)‖‖
(8.8)if the �nal expression makes sense.
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8.4 Univariate CaseLet us look at the univariate 
ase �rst, using a 
ompa
t interval Ω = [a, b]and a �nite subset X = {x1, . . . , xN} thereof. Of 
ourse, we would �x a point
x ∈ [a, b] and then sele
t a �lo
al� subset

Xx := {xj ∈ X : j ∈ N(x) ⊆ {1, . . . , N}}of points of X whi
h are �su�
iently many� and �well�pla
ed� near x. Of
ourse, to keep things elementary, we would like to work with lo
al poly-nomial re
overies. Thus we �x a positive integer k and work lo
ally withpolynomials of order at most k. The simplest idea would be to pi
k the k
losest neighbors to x within X and to perform lo
al Lagrange interpolationby some polynomial px of order at most k at these points. If we go for anerror bound of the form (8.5), we 
an take the error formula for interpolationin Newton form as
f(y)− px(y) = [y,Xx]f

∏

xj∈Xx

(y − xj) for all y ∈ [a, b]where [y,Xx]f is the divided di�eren
e on the points of Xx ∪ {y} applied to
f . If we assume f to be 
ontinuously k�times di�erentiable, we get the lo
alerror bound

|f(x)− px(x)| ≤
‖f (k)‖∞,[a,b]

k!

∏

xj∈Xx

|x− xj |.This is of the form (8.7), if we use the fa
t that1. the �rst nearest neighbor to x is at distan
e at most h,2. the se
ond nearest neighbor to x is at distan
e at most 3h,3. the third nearest neighbor to x is at distan
e at most 5h,4. the k�th nearest neighbor to x is at distan
e at most (2k − 1)hand thus
∏

xj∈Xx

|x− xj | ≤ hk
(2k)!

2kk!
.leading to

|Ey
xf(y)| ≤ hk

(2k)!

2k(k!)2
‖f (k)‖∞,[a,b].
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Now we use a univariate kernel K whi
h has k 
ontinuous and independentderivatives with respe
t to both variables. Then we 
an use (8.8) to get
P 2
X(x) ≤

(
hk

(2k)!

2k(k!)2

)2

sup
a≤z≤b

sup
a≤y≤b

∣∣∣∣∣
∂k

∂zk
∂k

∂yk
K(z, y)

∣∣∣∣∣whi
h altogether leads toTheorem 8.9. Assume a positive semide�nite kernel K on [a, b]×[a, b] whi
his k times 
ontinuously and independently di�erentiable with respe
t to botharguments. Then, with the 
onstant
ck =

(2k)!

2k(k!)2

√√√√ sup
a≤z≤b

sup
a≤y≤b

∣∣∣∣∣
∂k

∂zk
∂k

∂yk
K(z, y)

∣∣∣∣∣,for every point set X ⊂ [a, b] 
onsisting of at least k points and with �lldistan
e at most h, the Power Fun
tion 
an be bounded in the form
PX(h)(x) ≤ ckh

k for all x ∈ Ω.Example 8.10Let us 
he
k this for the Gaussian
K(x, y) = exp(−(x− y)2/2)on the interval [−1, 1]. The derivatives are linked to Hermite polynomials

Hn by
dn

dtn
exp(−t2/2) = (−1)n exp(−t2/2)Hn(t).To take derivatives with respe
t to both arguments, we set t := x − y anduse

∂k

∂xk
∂k

∂yk
K(x, y) = (−1)k

d2k

dt2k |t=x−y

exp(−t2/2)
= (−1)k exp(−(x− y)2/2)H2k(x− y)This is a Hermite fun
tion with a well�known, but 
ompli
ated extremalbehavior. For x, y ∈ [−1, 1], we 
an pro
eed 
rudely by bounding H2k(x− y)via bounds on Hermite polynomials on [−2, 2] using the re
ursion

Hn+1(x) = xHn(x)− nHn−1(x)and H0 = 1, H1(t) = t. We assert
‖Hn‖∞,[−2,2] ≤ 3n n!132



and get indu
tively
‖Hn+1‖∞,[−2,2] ≤ 2‖Hn‖∞,[−2,2] + n‖Hn−1‖∞,[−2,2]

≤ 2 · 3n n! + n3n−1 (n− 1)!
= 7 · 3n−1 n!

=
7

9(n + 1)
· 3n+1 (n+ 1)!

≤ 3n+1 (n+ 1)!Thus ∣∣∣∣∣
∂k

∂xk
∂k

∂yk
K(x, y)

∣∣∣∣∣ ≤ 32k (2k)!on [−1, 1] and
c2k ≤

((2k)!)332k

22k(k!)4
.Up to �xed multipli
ative 
onstants independent of k, we 
an apply Stirling'sasymptoti
s

n! ≈ nne−n
√
nto get the bound

c2k ≤ C
((2k)2ke−2k

√
2k)332k

22k(kke−k
√
k)4

≈ C
(2k)6ke−6kk3/232k

22kk4ke−4kk2

≤ C

(
23k3e−33

2k2e−2

)2k

= C (12e−1k)
2k
.This 
ombines into

PX ≤ C
(
12he−1k

)kWe now 
ouple k to h via requiring
k =

⌊
1

12h

⌋su
h that we get
12he−1k ≤ e−1 < 1and the exponential rate

PX ≤ C exp
(
k log e−1

)
≈ C exp(−1/(12h)).But we should 
he
k if we need oversampling here. For a �ll distan
e of hwith N points in [−1, 1], we need at least N ≈ 1/h points, pla
ing the innerones at distan
e 2h from ea
h other and the outer ones at −1 + h and 1− h.Thus we need no oversampling for the exponential rate.133



Theorem 8.11. If a kernel on domains in Rd is radial, i.e. it is a fun
tion
K(x, y) = φ(‖x− y‖2) = g(‖x− y‖22/2), x, y ∈ R

d,and if in the above representation the fun
tion g is k�times 
ontinuouslydi�erentiable, then K has 
ontinuous partial derivatives up to order k, irre-spe
tive whi
h partial derivatives are taken.Proof: If we set r := ‖x− y‖2, then
∂

∂xj
r =

xj
r
,

∂

∂xj
(r2/2) = xj , 1 ≤ j ≤ d.Consequently,

∂

∂xj
g(r2/2) = g′(r2/2)xj,and repeated appli
ation of this simple rule shows that ea
h partial derivativerequires a derivative of g and produ
es a fa
tor xj or yk. Altogether, a mixedderivative of total order m is a linear 
ombination of derivatives of g at r2/2up to order m, multiplied by polynomials in x and y of degree up to m. .This result 
an be applied easily to various kernels. Examples are the Wend-land kernels or the Whittle/Matern/Sobolev kernels.Example 8.12Let us look at the latter, i.e. rνKν(r) =: gν(r

2/2) for ν > 0 with the Besselfun
tion of se
ond kind. It has the property
K ′

ν(z) = −Kν+1(z) +
ν

z
Kν(z) = −Kν−1(z)−

ν

z
Kν(z)and we need

gν(s) := φν(
√
2s) = Kν(

√
2s)(

√
2s)νand (

√
2s)′ = 1√

2s
. Then

g′ν(s) = K ′
ν(
√
2s)

1√
2s

(
√
2s)ν +Kν(

√
2s)ν(

√
2s)ν−1 1√

2s
= K ′

ν(
√
2s)(

√
2s)ν−1 + νKν(

√
2s)(

√
2s)ν−2

=

(
−Kν−1(

√
2s)− ν√

2s
Kν(

√
2s)

)
(
√
2s)ν−1 + νKν(

√
2s)(

√
2s)ν−2

= −Kν−1(
√
2s)(

√
2s)ν−1

= −gν−1(s).Thus the radial kernel rνKν(r) =: gν(r
2/2) has partial derivatives of total or-der 2k for ν > 2k, and then we have 
onvergen
e of order hk in the univariate
ase. 134



Example 8.13Another 
ase is the kernel r3, whi
h is 
onditionally positive de�nite of order2. We have g(s) = s3/2 up to a fa
tor, and at �rst sight we 
annot take twoderivatives. But in 1D and in general we have
∂2

∂x∂y
g(r2/2) = x y g′′(r2/2)and in our 
ase

∂2

∂x∂y
g(r2/2) =

3

4
xy(r2/2)−1/2 =

3
√
2

4

xy

rwhi
h has no singularity at zero. Thus the 
onvergen
e of interpolation is atleast like O(h). With better methods we get O(h3/2).It is tempting to generalize all of this dire
tly to the multivariate setting.But the main problem o

urs right at the beginning, sin
e it is a problemto prove error bounds for multivariate polynomial interpolation on irregulardata sets. Even more, it is highly nontrivial to �nd good su�
ient 
onditionsfor unisolven
y.8.5 Conditions for Unisolven
yWe now want to derive su�
ient and (if possible) ne
essary 
onditions forsets X = {x1, . . . , xN} to be unisolvent on sets Ω ⊂ Rd with respe
t to linearspa
es P = span {p1, . . . , pQ} of dimension Q ≤ N on Ω.To begin with, it is 
lear that unisolven
y is equivalent to the existen
e offun
tions u1, . . . , uN on Ω su
h that the reprodu
tion equations
pk(x) =

N∑

j=1

uj(x)pk(xj), x ∈ Ω, 1 ≤ k ≤ Q (8.14)hold. But note that at this point it is not 
lear whether we have uj ∈ P.For what follows, we should introdu
e the sampling map
T : C(Ω) → K

N , f 7→ (f(x1), . . . , f(xN))
Tand the ve
tor

u(x) := (u1(x), . . . , uN(x))
T ∈ K

N .135



Then we have a stability inequality of the form
|p(x)| ≤ ‖u(x)‖q‖T (p)‖r for all p ∈ P, x ∈ Ωwith q, r�norms on K

N satisfying 1/q + 1/r = 1. For all p ∈ P \ {0}, all
u(x) ∈ KN and all x ∈ Ω this implies

|p(x)|
‖T (p)‖r

≤ sup
p 6=0

|p(x)|
‖T (p)‖r

≤ inf
u(x)∈KN ,(8.14) ‖u(x)‖q ≤ ‖u(x)‖q.This suggests that the two inner optimization problems are in weak duality.Theorem 8.15. Assume that X = {x1, . . . , xN} ⊆ Ω is unisolvent for P =span {p1, . . . , pQ} of dimension Q ≤ N on Ω. and let x ∈ Ω be �xed. Thenthe middle inequality in the above display is an equality, i.e.

sup
p 6=0

|p(x)|
‖T (p)‖r

= inf
u(x)∈KN ,(8.14) ‖u(x)‖q =: C∗(x)and

|p(x)| ≤ C∗(x)‖T (p)‖r for all x ∈ Ω, p ∈ P,
‖u(x)‖q ≥ C∗(x) for all x ∈ Ω, u(x) with (8.14)and there is an optimal re
overy de�ned by some u∗(x) ∈ KN with ‖u∗(x)‖q =

C∗(x) satisfying (8.14).Proof: For ea
h u(x) ∈ KN with (8.14) we 
onsider the linear fun
tional
µx : T (p) 7→

N∑

j=1

uj(x)p(xj) for all p ∈ P.This is well�de�ned on the subspa
e T (P) ⊆ KN in the r�norm, and bythe Hahn�Bana
h theorem there is an extension to all of KN with the samenorm in the dual. Thus there is a ve
tor û(x) := (û1(x), . . . , ûN(x))
T ∈ KNextending the fun
tional, i.e. it also satis�es (8.14), and its norm satis�es

‖û(x)‖q = ‖µx|T (P)
‖(KN )∗ = sup

p∈P, p 6=0

|µx(T (p))|
‖T (p)‖r

= sup
p∈P, p 6=0

|p(x)|
‖T (p)‖rproving the assertion.RS: ToDo: do this as duality in 
onvex optimization...This implies that �nding a re
overy via u(x) with (8.14) and the smallestpossible Lebesgue fun
tion value ‖u(x)‖q is the same as �nding the smallestpossible 
onstant C(x) in a stability inequality

|p(x)| ≤ C(x)‖T (p)‖r for all p ∈ P,136



and the minimal 
onstant C∗(x) is equal to the smallest possible value
‖u∗(x)‖q of the Lebesgue fun
tion.Towards Moving Least Squares, we 
an spe
ialize the above theorem toweighted ℓ2 norms.Corollary 8.16. Assume that X = {x1, . . . , xN} ⊆ Ω is unisolvent for P =span {p1, . . . , pQ} of dimension Q ≤ N on Ω. and let x ∈ Ω be �xed. Thenthe minimization of

‖u(x)‖22,w :=
N∑

j=1

|u2j(x)|2wjwith positive weights w1, . . . , wN is equivalent to solving
sup
p 6=0

|p(x)|
‖T (p)‖2,1/w

,and the resulting optimal re
overy u∗(x) satis�es the stability inequality
|p(x)| ≤ ‖u∗(x)‖2,w‖T (p)‖2,1/w.In the 
lassi
al theory of Lebesgue fun
tions, users will 
hoose r = ∞ and

q = 1. This leads to a very useful result:Corollary 8.17. Let Ω ⊂ Rd be 
ompa
t, and let the fun
tions of P be
ontinuous. If for all p ∈ P with ‖p‖∞,Ω = 1 we have ‖p‖∞,X ≥ 1/C with
C ≥ 1, then X is P�unisolvent and there is a re
overy with ‖u(x)‖1 ≤ C forall x ∈ Ω.Proof: Take an arbitrary p ∈ P with ‖p‖∞,Ω = 1. Then

‖p‖∞,X ≥ 1

C
=

1

C
‖p‖∞,Ωimplies via res
aling that for all x ∈ Ω and all p ∈ P we have

|p(x)| ≤ ‖p‖∞,Ω ≤ C‖p‖∞,X.This implies unisolven
y, and the rest follows from Theorem 8.15.There also is a 
onverse:Corollary 8.18. Let Ω ⊂ Rd be 
ompa
t, and let the fun
tions of P be
ontinuous. If X is P�unisolvent, then there is a 
onstant C ≥ 1 su
h thatfor all p ∈ P with ‖p‖∞,Ω = 1 we have ‖p‖∞,X ≥ 1/C. Furthermore, there isa re
overy with ‖u(x)‖1 ≤ C with the same 
onstant.137



Proof: If we parametrize fun
tions in P via a basis, we see that the valuesat maxima are 
ontinuously dependent on the 
oe�
ients, and thus
sup

p∈P,p 6=0

‖p‖∞,Ω

‖p‖∞,X
an be 
al
ulated via 
oe�
ients on a sphere, and thus the supremum is a�nite number C ≥ 1. All the rest follows from what we know already.To illustrate this for the Eu
lidean 
ase, we provideTheorem 8.19. Assume that X = {x1, . . . , xN} ⊆ Ω is unisolvent for P =span {p1, . . . , pQ} of dimension Q ≤ N on Ω. and let x ∈ Ω be �xed. In the
ase r = q = 2 the re
overy
p(x) =

N∑

j=1

uj(x)p(xj) for all p ∈ P (8.20)with minimal
‖u(x)‖22 :=

N∑

j=1

|uj(x)|2 (8.21)has the form
u∗j(x) =

Q∑

k=1

a∗k(x)pk(xj)with uniquely de�ned 
oe�
ients a∗k(x) satisfying
pm(x) =

Q∑

k=1

a∗k(x)
N∑

j=1

pk(xj)pm(xj) =
N∑

j=1

u∗j(x)pm(xj), 1 ≤ m ≤ Q. (8.22)Both the a∗k and the u∗j are in P.Proof: By unisolven
y, the system (8.22) is uniquely solvable, the u∗j(x) arewell-de�ned and provide the reprodu
tion. To see that they minimize (8.21),we have to prove that the ve
tor with 
omponents u∗j(x) is orthogonal to thea�ne subspa
e de�ned by (8.20). This means that we have to take vj(x)with
0 =

N∑

j=1

vj(x)p(xj) for all p ∈ Pand prove
N∑

j=1

u∗j(x)vj(x)

=
Q∑

k=1

a∗k(x)
N∑

j=1

pk(xj)vj(x) = 0.138



Now we de�ne
p∗x :=

Q∑

k=1

a∗k(x)pk ∈ Pand take an arbitrary p ∈ P to get
|p(x)|2 =

∣∣∣∣∣∣

N∑

j=1

u∗j(x)p(xj)

∣∣∣∣∣∣

2

≤



N∑

j=1

|u∗j(x)|2





N∑

j=1

|p(xj)|2

.

(8.23)We assert that equality is attained for px. For this, look at (8.22) and seethat there is a reprodu
tion
pm(x) =

N∑

j=1

p∗x(xj)pm(xj), 1 ≤ m ≤ Q. x ∈ Ω,whi
h in parti
ular yields
px(x) =

N∑

j=1

p∗x(xj)px(xj) =
N∑

j=1

|px(xj)|2and by optimality of the u∗j(x) we have
px(x) =

N∑

j=1

|p∗x(xj)|2 ≥
N∑

j=1

|u∗j(x)|2.Now we 
he
k (8.23) for px and get that it is attained with equality, and inparti
ular
px(x) =

N∑

j=1

p∗x(xj)px(xj) =
N∑

j=1

|px(xj)|2 =
N∑

j=1

|u∗j(x)|2.For later use with Moving Least Squares, we add another property of re
on-stru
tions whi
h are optimally oversampled in the ℓ2 sense. It turns out thatthe ℓ2�optimally stable reprodu
tion guarantees an optimal least�squaresdata error at the same time.Theorem 8.24. Let X be P�unisolvent, and 
onsider a weighted minimiza-tion of
‖u(x)‖2w :=

N∑

j=1

|uj(x)|2wj139



with positive weights wj under the reprodu
tion 
onstraints (8.20). Denotethe solution by u∗(x). For all weighted least�squares problems minimizing
N∑

j=1

|f(xj)− p(xj)|2/wjunder all p ∈ P , the solution p∗f ∈ P satis�es
p∗f (x) =

N∑

j=1

u∗j(x)f(xj).Proof: Denoting the diagonal matrix with weights wj by Dw, and the Q×Nmatrix of values pm(xj) by A, and P (x) := (p1(x), . . . , pQ(x))
T , the solution

u∗(x) of the �rst problem minimizes the penalized quadrati
 form
uT (x)Dwu(x) + zT (P (x)− Au(x))leading to

(u∗)T (x)Dw = z(x)TA, or Dwu
∗(x) = A∗z(x).Equation (8.20) then leads to

Au∗(x) = AD−1
w A∗z(x) = P (x),

z(x) = (AD−1
w A∗)−1P (x)

Dwu
∗(x) = A∗(AD−1

w A∗)−1P (x)and ends up with
u∗(x) = D−1

w A∗(AD−1
w A∗)−1P (x).For the se
ond problem, write

p(x) = (p1(x), . . . , pQ(x)) cand use T : F 7→ (f(x1), . . . , f(xN))
T again, to let the problem take theform

min ‖T (f)− T (p)‖21/w = min ‖T (f)−AT c‖21/w.Then by similar reasoning, we get
(T (f)−AT c∗f )

TD−1
w A∗ = 0,

T (f)TD−1
w A∗ = (AT c∗f )

TD−1
w A∗

AD−1
w T (f) = AD−1

w AT c∗f
c∗f = (AD−1

w AT )−1AD−1
w T (f)140



and
T (f)Tu∗(x) = T (f)TD−1

w A∗(AD−1
w A∗)−1P (x)

= ((AD−1
w AT )−1AD−1

w T (f))TP (x)
= (c∗f )

TP (x) = p∗f (x).RS: There seems to be a similar theorem for general q, r�norms.We now pro
eed towards �nding P�unisolvent subsets of setsX = {x1, . . . , xN}of s
attered points in a 
ompa
t domain Ω ⊂ Rd with some �ll distan
e h.We assume P to 
onsist of 
ontinuous fun
tions. The goal is to prove P�unisolven
y for arbitrary sets with su�
iently small h. We might later restri
tourselves to small subsets of Ω, but this is a later issue, sin
e at this point Ωmight be just a small ball.We want to use Corollary 8.17 for our purpose. This means that we startwith some p ∈ P with ‖p‖∞,Ω = 1, and we 
an sele
t an x ∈ Ω with p(x) = 1without loss of generalization. If we 
an manage to show that there is an
xj ∈ X ∩Ω with p(xj) ≥ 1/C > 0, we are done after appli
ation of Corollary8.17. If h is small enough, we 
an surely �nd su
h points xj , and they willbe 
lose to x, but we do not know how fast p falls when we go from x to xj .To get this under 
ontrol, we must 
ontrol di�eren
es of p�values at di�erentpoints. This means that we have to 
ontrol derivatives.8.6 Stable Polynomial Reprodu
tionTo do this for spa
es Pd

m of d�variate polynomials of order m, we fo
us �rston polynomials in P1
m on [−1, 1]. There, the 
lassi
al Bernstein�Markovinequality is

‖q′‖∞,[−1,1] ≤ (m− 1)2‖q‖∞,[−1,1] for all q ∈ P1
m.This turns into the form we need in 1D, if we work along

|q(s)− q(t)| ≤ |q′(τ)||s− t|
≤ (m− 1)2‖q‖∞,[−1,1]|s− t|for all s, t ∈ [−1, 1], q ∈ P1

m. This looks �ne, but remember that we have qde�ned and bounded on all of [−1, 1] while we use it only between s and t.In what follows, we 
an assume m ≥ 2 throughout, be
ause the 
ase m = 0is empty and the 
ase m = 1 is trivial.To apply this argument for a generalized Bernstein�Markov inequality on a
onvex set, we are tempted to 
onne
t x and xj by a line, but in view of141



the 1D 
ase we will need that we have to be able to evaluate and boundthe polynomials on more than just the se
tion of the line between x and
xj . In a more expli
it form, the drawba
k is that if we rewrite the 
lassi
alBernstein�Markov inequality for a small interval [−α, α], we get

‖q′‖∞,[−α,α] ≤
(m− 1)2

α
‖q‖∞,[−α,α] for all q ∈ P1

mby plugging q(α t) into the inequality on [−1, 1]. Thus it will not pay o� tohave something like α = ‖x− xj‖2. We need that we 
an draw a su�
ientlylong line from all points x ∈ Ω through at least one point xj ∈ X , the lengthof the line segment 
ontained in Ω being larger than h or ‖x−xj‖2. The wayout is the interior 
one 
ondition that we now des
ribe.De�nition 8.25. A 
one with vertex x, axis dire
tion z with ‖z‖2 = 1, height
H, and angle θ ∈ (0, π/2) is the set

{x+ λy : 0 ≤ λ ≤ H, y ∈ R
d, ‖y‖2 = 1, zT y ≥ cos θ}.To understand this, note that the angle between z and y should be at most

θ. Sin
e the 
osine is de
reasing, this means cos∠(y, z) = zT y ≥ cos θ.De�nition 8.26. A set Ω ⊂ Rd has an interior 
one 
ondition of angle
θ ∈ (0, π/2) and height H > 0, if for ea
h x ∈ Ω there is a 
one with height atleast H, angle at least θ and arbitrary axis z(x) whi
h is 
ompletely 
ontainedin Ω. This means that the 
ones

{x+ λy : 0 ≤ λ ≤ H, y ∈ R
d, ‖y‖2 = 1, yTz(x) ≥ cos θ}.are all 
ontained in Ω for all x ∈ Ω and a sele
tion of unit axis ve
tors z(x).These 
ones 
ontain balls of the form B(x + tz(x), r(t)) with radii r(t) ≤

t sin(θ) for t ≤ H
1+sin(θ)

. This follows easily from a litte drawing of the situa-tion. Furthermore, the above balls do not 
ontain x if t > 0. Finally, if some
v = x+ λy lies in the 
one above, then the whole ray from x to x+Hy liesin the 
one.Theorem 8.27. Assume that a 
ompa
t domain Ω ⊂ Rd satis�es an interior
one 
ondition of angle θ ∈ (0, π/2) and height H > 0. Then for all �nitesets X ⊂ Ω with �ll distan
e h satisfying

h ≤ h0 :=
H sin(θ)

1 + sin(θ)

1

4(m− 1)2the set X is Pd
m�unisolvent, and there is a re
overy u(x) with ‖u(x)‖1 ≤ 2.142



Proof: We again start with a p ∈ Pd
m with ‖p‖∞,Ω = 1 and p(x) = 1 forsome x ∈ Ω. Then we use the 
one at x to work on. If we take

t :=
h

sin θ
≤ H

1 + sin(θ)and 
onsider the ball B(x+ tz(x), r(t)), we 
an take r(t) := t sin(θ) = h and
an �nd an xj ∈ X in that ball. The ray from x through xj 
an be extendedup to the point zj := x+H(x− xj)/‖x− xj‖, and we have x 6= xj sin
e wehave t > 0. Furthermore,
‖x− xj‖2 ≤ t + r(t)

= t(1 + sin(θ))

= h
1 + sin(θ)

sin(θ)
≤ H.We now apply the 1D Bernstein�Markov inequality along the line se
tionfrom x to zj via xj , setting

q(t) := p(x+ t(xj − x)/‖xj − x‖), 0 ≤ t ≤ H.Then the s
aled version of the Bernstein�Markov inequality is
‖q′‖∞,[0,H] =

2(m− 1)2

H
‖q‖∞,[0,H].This yields

|p(x)− p(xj)| = |q(0)− q(‖x− xj‖2)|
≤ ‖x− xj‖2

2(m− 1)2

H
‖q‖∞,[0,H]

≤ h
1 + sin(θ)

sin(θ)

2(m− 1)2

H

≤ 1

2
,leading to

p(xj) = p(xj)− p(x) + 1

≥ 1

2
.This result still is not lo
al. We would like to apply it in sets Ω∩B(x, r) forarbitrary x ∈ Ω and 
ertain ball radii r.Theorem 8.28. Assume that a 
ompa
t domain Ω ⊂ Rd satis�es an interior
one 
ondition of angle θ ∈ (0, π/2) and height H > 0. Then for all r with

0 < r ≤ H and all x ∈ Ω the set Ω∩B(x, r) 
ontains a ball of radius at least
r sin(θ)/(1 + sin(θ). 143



Proof: Let x ∈ Ω be arbitrary. We 
an have a 
one C ⊂ Ω of height H andangle θ with vertex x. Interse
ting it with B(x, r) with some r ≤ H , we havethat the ball B(x+ z(x)r/(1 + sin θ), r sin θ/(1 + sin θ)) is in the 
one and inthe ball B(x, r).Then we just need unisolven
y 
onditions on balls. Via a small drawing, wegetTheorem 8.29. Assume Ω = B(0, r) with some radius r > 0. Then Ωsatis�es an interior 
one 
ondition with height r and angle θ with θ = π/3.Proof: On the unit 
ir
le, pi
k the point x = (−1, 0) and its 
one pointingto the right with a 60 degree angle and radius 1. Moving that 
one with x tothe right shows that a 
one of this size works for all x between (−1, 0) and
(0, 0), thus for all points in the 
ir
le.Theorem 8.30. Assume that a 
ompa
t domain Ω ⊂ Rd satis�es an interior
one 
ondition of angle θ ∈ (0, π/2) and height H > 0. De�ne

c0 :=
4(2 +

√
3)(m− 1)2(1 + sin(θ))√

3 sin(θ)
.Then for all �nite sets X ⊂ Ω with �ll distan
e h satisfying

h ≤ h0 :=
H

c0the set X ∩ B(x, c0h) is Pd
m�unisolvent, and there is a re
overy u(x) with

‖u(x)‖1 ≤ 2 based only on points in X ∩B(x, c0h).Proof: We start with the 
one 
ondition at some arbitrary x ∈ Ω. Thus we
an �nd a ball with radius r sin(θ)/(1+sin(θ)) that is still in B(x, r)∩Ω for all
0 ≤ r ≤ H . For this ball, we know by Theorem 8.29 that it satis�es an interior
one 
ondition of height r sin(θ)

1+sin(θ)
and angle α = π/3 with sin(π/3) =

√
3/2.Then the h0 of Theorem 8.27 for this ball is

h0(r) =
r sin(θ)

√
3

(2 +
√
3)(1 + sin(θ))

1

4(m− 1)2
=

r

c0and we now know that every set X with �ll distan
e h ≤ h0(r) has a unisol-vent subset in that ball. We now turn this upside down, starting with someset X with �ll distan
e h ≤ H
c0
. We then take r(h) := c0h ≤ H and see that

h0(r(h)) = h, leading to unisolven
y.144



De�nition 8.31. A 
ompa
t domain Ω ⊂ Rd allows uniformly stablelo
al polynomial reprodu
tion of order m ≥ 1, if there are positive 
on-stants c, C, h0 su
h that for all �nite sets X = {x1, . . . , xN} with �ll distan
e
h ≤ h0 there are s
alars u1(x), . . . , uN(x) su
h that

N∑

j=1

uj(x)p(xj) = p(x) for all p ∈ Pd
m, x ∈ Ω,

N∑

j=1

|uj(x)| ≤ C for all x ∈ Ω,

uj(x) = for all xj with ‖x− xj‖ ≤ c0 h.Note that we have proven this for 
ompa
t domains in R
d satisfying aninterior 
one 
ondition with height H and angle θ, where the 
onstants aregiven above.To arrive at an error bound for these reprodu
tions on fun
tions f with
ontinuous derivatives up to order m on Ω, we apply the Taylor formula fromTheorem 12.1 on page 234 of Se
tion 12.1. We �x a point x ∈ Ω with the
one C ⊂ Ω of the proof of Theorem 8.28 and work on points y ∈ C∩B(x, c0r)with c0 from Theorem 8.30. Both the Taylor polynomial Tx(f) of f at x ∈ Ωand the lo
al polynomial reprodu
tion

sx(f)(y) :=
N∑

j = 1
‖x− xj‖ ≤ c0h

uj(y)f(xj),are in Pd
m, and for the latter we are using only those data at the points

xj ∈ X with ‖x − xj‖2 ≤ c0h that we used in the proof of Theorem 8.30.These have the property that all line segments from x to xj lie 
ompletely in
Ω, together with the line segments from x to all y ∈ C ∩B(x, c0h). Thus we
an apply the Taylor bound

|f(z)− Tx(f)(z)| ≤ ‖z − x‖m2
∑

|α|=m

1

α!
‖Dαf‖∞,Ω

︸ ︷︷ ︸
=:|f |m

≤ c0h
m|f |m
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for z = y and all z = xj for these j. This yields
|f(y)− sx(f)(y)| ≤ |f(y)− Tx(f)(y)|+ |Tx(f)(y)− sx(f)(y)|

= |f(y)− Tx(f)(y)|+ |sx(Tx(f))(y)− sx(f)(y)|

≤ |f(y)− Tx(f)(y)|+
∣∣∣∣∣∣

N∑

j=1

uj(y)(Tx(f)(xj)− f(xj))

∣∣∣∣∣∣

≤

1 +

N∑

j=1

|uj(y)|

 cm0 h

m|f |m
≤ 3cm0 h

m|f |m.We now 
an go ba
k to (8.8) and getTheorem 8.32. Under the assumptions and notations of Theorem 8.30, andif we have a 
onditionally positive semide�nite kernel of order at most mwith 
ontinuous derivatives up to order m independently in both variables,the Power Fun
tion for re
overy on Pd
m�unisolvent sets X with �ll distan
e

h ≤ h0 is bounded by
P 2
X(x) ≤ 9c20h

2m sup
y,z∈Ω

∑

|α|,|β|=m

1

α!β!
|Dα,yDβ,zK(y, z)|.RS: This is still open�ended. The �nal goal is to prove more general stabilityresults in 
onne
tion with oversampling.RS; In
omplete here, as of February 1, 20118.7 Univariate Sampling InequalitiesSin
e the forth
oming mathemati
al analysis is quite hard, let us �rst startwith the mu
h simpler univariate 
ase. We shall work on a bounded interval

I := [a, b] ⊂ R, and there we shall de�ne the (semi�) inner produ
ts and(semi�) norms
(f, g)j :=

∫

I
f (j)(t)g(j)(t)dt for all f, g ∈ Cj(I)

|f |∞,X := sup
t∈X

|f(t)| for all f ∈ C(I), X ⊂ I,

|f |22,X := h(X,Ω)
∑

x∈X
f 2(x) for all f ∈ C(I), X ⊂ I, |X| <∞.Throughout, we shall 
on�ne ourselves to subsets X ⊂ [a, b] with �ll distan
e

h = h(X, [a, b]). 146



Lemma 8.33. Given g ∈ C1(I) and a subset X of [a, b] with �ll distan
e h.Then we have
‖g‖0 ≤ h |g|1 +

√
2|g|2,X,

‖g‖0 ≤ h |g|1 +
√
2(b− a)|g|∞,X,

‖g‖∞,I ≤ h ‖g′‖∞,I +|g|∞,X,

‖ g‖∞,I ≤
√
h |g|1 +|g|∞,X.

(8.34)Proof: For all x ∈ I we 
an take its 
losest neighbor xj ∈ X with distan
e
|x− xj | ≤ h. Then

g(x) = g(xj) +
∫ x

xj

g′(τ)dτ

|g(x)| ≤ |g(xj)|+
∫ x

xj

|g′(τ)|dτ
‖g‖∞,I ≤ h ‖g′‖∞,I + |g|∞,Xfor all x ∈ I. With the Cau
hy�S
hwarz inequality we we get

|g(x)| ≤ |g(xj)|+
∣∣∣∣∣

∫ x

xj

12dτ

∣∣∣∣∣

1/2

·
∣∣∣∣∣

∫ x

xj

(g′(τ))2dτ

∣∣∣∣∣

1/2

(x ∈ I)

≤ |g(xj)|+ |x− xj |1/2 ·
∣∣∣∣∣

∫ x

xj

(g′(τ))2dτ

∣∣∣∣∣

1/2

,

‖ g‖∞,I ≤
√
h |g|1 + |g|∞,X.By taking squares and the usual tri
k

(a + b)2 ≤ a2 + b2 + 2|ab| ≤ 2a2 + 2b2we see that
g(x)2 ≤ 2g(xj)

2 + 2|x− xj | ·
∫ x

xj

(g′(τ))2dτand by integration we �nd
∫ x
xj
g(t)2dt ≤ 2|x− xj |g(xj)2 +

∫ x

xj

2|t− xj | ·
∫ t

xj

(g′(τ))2dτdt

= 2|x− xj |g(xj)2 +
∫ x

xj

(g′(τ))2
∫ τ

x
2|t− xj |dtdτ

≤ 2|x− xj |g(xj)2 + |x− xj |2 ·
∫ x

xj

(g′(τ))2dτ.From here on we superimpose di�erent integrals of this form to a full integralover [a, b] to end up with
‖g‖20 ≤ h2 |g|21 + 2(b− a)|g|2∞,X

‖g‖0 ≤ h |g|1 +
√
2(b− a)|g|∞,X147



where we used √
a2 + b2 ≤ a+b for a, b > 0. If we sum up the dis
rete values,we arrive at

‖g‖20 ≤ h2 |g|21 + 2h
N∑

j=1

g(xj)
2

‖g‖0 ≤ h |g|1 +
√
2|g|2,X.8.8 Example: Univariate SplinesIn the notation of the text on splines, we haveTheorem 8.35. Let f ∈ Ck[a, b] be interpolated by s∗ in N ≥ k data with a�ll distan
e

h := sup
x∈[a,b]

min
xj

|x− xj |.Then there is a 
onstant ck depending only on k and [a, b], but not on f orthe data or h, su
h that
‖f − s∗‖L2[a,b] ≤ ckh

k|f − s∗|k ≤ 2ckh
k|f |k,

‖f − s∗‖L∞[a,b] ≤ ckh
k−1/2|f − s∗|k ≤ 2ckh

k−1/2|f |k.Proof: Note that the zeros of f − s∗ have a distan
e of at most 2h betweenea
h other and of at most h ≤ 2h to the boundary. By Rolle's theorem, thereare zeros of (f − s∗)′ with distan
e of at most 4h between ea
h other and
3h to the boundary. This means that we 
an use the �ll distan
e 4h for thezeros of the �rst derivative. This works up to the derivative of order k − 1,whi
h has zeros with distan
e of at most 4k−1h between ea
h other and tothe boundary. Using indu
tion on the previous Lemma yields

‖f − s∗‖L2[a,b] ≤ h · 4h · · · 4k−1h|f − s∗|k =: ckh
k|f − s∗|kand the left�hand parts of the assertions follow.For the right-hand parts we use the optimality 
ondition |s∗|k ≤ |f |k.If some additional boundary 
onditions are satis�ed, the 
onvergen
e orderdoubles.Theorem 8.36. If, in addition, f ∈ C2k[a, b] and if (f − s∗)(j) vanishes at aand b for j = 0, . . . , k − 1, then

‖f − s∗‖L2[a,b] ≤ c2kh
2k|f |2k.

‖f − s∗‖L∞[a,b] ≤ c̃2kh
2k−1|f |2k.148



Proof: We 
an use the orthogonality relation
(f − s∗, s∗)k = 0and do integration by parts via

|f − s∗|2k = (f − s∗, f − s∗)k
= (f − s∗, f)k

=
∫ b

a
(f − s∗)(k)(t)f (k)(t)dt

= (−1)k
∫ b

a
(f − s∗)(0)(t)f (2k)(t)dt

≤ ‖f − s∗‖L2[a,b]|f |2k.Then
‖f − s∗‖2L2[a,b]

≤ c2kh
2k|f − s∗|2k

≤ c2kh
2k‖f − s∗‖L2[a,b]|f |2k

‖f − s∗‖L2[a,b] ≤ c2kh
2k|f |2k.Similarly,

‖f − s∗‖2L∞[a,b] ≤ c2kh
2k−1|f − s∗|2k

≤ c2kh
2k−1‖f − s∗‖L2[a,b]|f |2k

≤
√
b− ac2kh

2k−1‖f − s∗‖L∞[a,b]|f |2k
‖f − s∗‖L∞[a,b] ≤ c̃2kh

2k−1|f |2k.Note that the above argument used Rolle's theorem, whi
h does not hold inmultivariate settings. Thus we 
annot generalize this approa
h dire
tly tofun
tions of several variables.8.9 Univariate Polynomial Reprodu
tionOur goal is to prove a multivariate version of a sampling inequality. Butalready in the univariate 
ase, a general inequality like
‖u‖∞,[a,b] ≤ C

(
hk−1/2|u|k + |u|∞,X

)means that for all polynomials p ∈ Pk we have
‖p‖∞,[a,b] ≤ C|p|∞,X. (8.37)Then X must be unisolvent, but this is not enough. If we take X to 
ontainexa
tly k points, an equality of the above form 
annot hold. To see this,�x k − 1 zeros and pres
ribe 1 at a point whi
h moves 
lose to a zero. The149



resulting Lagrange basis polynomial will 
onverge to in�nity ex
ept at thezeros.But if we take many more than k points, i.e. we do some oversampling,
han
es are better to get something like (8.37). If we extend (8.37) triviallyto the right, we get
‖p‖∞,[a,b] ≤ C|p|∞,X ≤ C‖p‖∞,[a,b]and see that X must guarantee norm equivalen
e of a dis
rete norm with a�
ontinuous� norm. We 
ould 
all X a �norming set�, but there is a moregeneral de�nition of that notion, and we provide it later.To move 
loser to (8.37), let us �x a polynomial p ∈ Pk with ‖p‖∞,[a,b] = 1.We need to show that su
h a polynomial 
annot be too small on a nontrivialset X , but we want to get away with a smallest possible set X . For simpli
ity,we take a t ∈ [a, b] with |p(t)| = 1 and ask: How far must we go to let |p|drop below 1/2? Fortunately, we have a bound on the derivative:Theorem 8.38. Any univariate polynomial of degree n satis�es Markov'sinequality

‖p′‖∞,[−1,1] ≤ n2‖p‖∞,[−1,1].We skip over the proof, but by norm equivalen
e there must be an n�dependent 
onstant that does the job. The only problem is to prove thatthe 
onstant is n2.Now we know that our spe
ial polynomial has a derivative ‖p′‖∞,[−1,1] ≤ n2if we assume that the interval is [−1, 1]. Thus, in order to let p go down to
1/2 we need to go at least a distan
e 1/2n2. If we know that X has a �lldistan
e

h ≤ 1

2n2we 
an be sure that we 
annot rea
h a point with absolute value of p smallerthan 1/2 when starting from t. This means that
|p|∞,X ≥ 1

2and 
onsequently ‖p‖∞,[−1,1] ≤ 2|p|∞,X. Thus we haveTheorem 8.39. If X ⊂ [−1, 1] is a set of �ll distan
e h ≤ 1
2n2 , then

‖p‖∞,[−1,1] ≤ 2|p|∞,Xfor all polynomials of degree at most n.150



From now on we assume that the hypothesis of Theorem 8.39 is satis�ed.Then X 
learly is unisolvent, and we know that we 
an reprodu
e all poly-nomials p ∈ Pn by a nonunique formula like
p(x) =

∑

xj∈X
uj(x)p(xj). (8.40)In our old notation, this is an under-determined linear system

PX · u(x) = p(x)and one 
an impose additional 
onditions. In fa
t, there are e�
ient numeri-
al te
hniques (e.g. moving least squares whi
h produ
e useful admissiblesolutions.Theorem 8.41. Under all possibilities to satisfy (8.40) under the 
onditionsof Theorem 8.39 there is one whi
h has a uniformly bounded Lebesgue fun
-tion ∑

xj∈X
|uj(x)| ≤ 2 for all x ∈ [−1, 1].Proof: This statement is not at all evident, and for now we have to do anabstra
t existen
e proof. We de�ne the sampling operator

TX : f 7→ (f(x1), . . . , f(xN))
T ∈ R

N ,whi
h is 
ontinuous on C[−1, 1] with the ‖.‖∞ norm and invertible on T (Pn) ⊂
RN . It has a bounded inverse

S : T (Pn) → Pn ⊂ C[−1, 1].For ea
h ve
tor y ∈ T (Pn) ⊂ RN there is a unique p ∈ Pn with su
h y =
(p(x1), . . . , p(xN))

T , and thus for ea
h x ∈ [−1, 1] we have a linear fun
tional
λx : y = (p(x1), . . . , p(xN ))

T 7→ p(x)on T (Pn). By the Hahn�Bana
h theorem it has a norm�preservingextension to all of RN , and this is the abstra
t and non-
onstru
tive part ofthe argument. As a fun
tional on all of RN it 
an be written as
λx(y) :=

N∑

j=1

uj(x)yjwith 
ertain real values uj(x), and its norm must be
‖λx‖1 :=

∑

xj∈X
|uj(x)| = sup

y∈RN\{0}

∣∣∣
∑

xj∈X uj(x)yj
∣∣∣

‖y‖∞151



be
ause the dual of RN under the ‖.‖∞ norm is RN with the L1 norm. Butsin
e the extension is norm�preserving, this norm is equal to the norm of thefun
tional on the subspa
e T (Pn). There it has the form λx = δx ◦ S, andthus
‖λx‖1 ≤ ‖δx‖ · ‖S‖with operator norms

‖δx‖ = sup
f∈C[−1,1]\{0}

|f(x)
‖f‖∞

≤ 1and
‖S‖ := sup

T (p)∈T (Pn)\{0}

|p(x)|
‖T (p)‖∞

≤ 2.Thus we get the assertion.
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Figure 26: Minimal Lebesgue fun
tion for 17 equidistant points in [−1, 1]and polynomial degree n = 3It is an easy task to �nd fun
tions uj(x) for whi
h the Lebesgue fun
tionis pointwise minimal, while a 
ertain polynomial reprodu
tion of a degree nis required. It boils down to an L1 optimization problem, be
ause we 
anwrite ea
h uj(x) as uj(x) = aj − bj with nonnegative variables to arrive atthe linear optimization problemMinimize 1TN(a+ b) under PX(a− b) = p(x)152
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Figure 27: Fun
tions uj for the same 
ase as in the previous �gurein normal form with nonnegative variables a, b ∈ R
N . This 
an be solvedpointwise, but the solution is rather strange, see �gures 27 and 26. Thetheory of linear optimization implies that at a 
ertain point x there 
an beat most 2(n+1) nonzero uj(x), but the fun
tions uj are not lo
alized around

xj , as Figure 28 shows.Thus it is an additional problem to �nd a stable solution whi
h is lo
alizedin the sense that uj(x) vanishes if x is �far� from xj . But this 
an be doneby lo
alizing the above argument. However, we shall not do this at thispoint. Instead, we start with the general multivariate 
ase and 
are for bothlo
alization and a bounded Lebesgue fun
tion.8.10 Norming SetsAs a little digression, we generalize the above 
onstru
tion, following an ideaof Jetter, Stö
kler, and Ward.... in
omplete here.....
153
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Figure 28: Derivative of u1 for the same 
ase as in the previous �gure8.11 Multivariate Polynomial Reprodu
tionIn the multivariate setting, we should go for sampling inequalities of the form
‖u‖Wm

2
(Ω) ≤ C

(
hM−m|u|WM

2
(Ω) + h−m‖u‖∞,Xh

)

‖Dαu‖L∞(Ω) ≤ C
(
hM−|α|−d/2|u|WM

2
(Ω) + h−m‖u‖∞,Xh

) (8.42)for all fun
tions in the Sobolev spa
e WM
2 (Ω) with the inner produ
t

(f, g)WM
2

(Ω) :=
M∑

j=0

(f, g)j

(f, g)j :=
∑

|α|=j

∫

Ω
DαfDαgand (semi�)norms

‖f‖2
WM

2
(Ω)

:= (f, f)WM
2

(Ω)

|f |2
WM

2
(Ω)

:= (f, f)M =
∑

|α|=j

∫

Ω
|Dαf |2where we use standard multivariate notation. If u is a polynomial of orderat most M , then |u|2WM(Ω) = |u|M = 0 and our equations take a spe
ial form

‖p‖L2(Ω) ≤ C‖p‖∞,Xh

‖p‖L∞(Ω) ≤ C‖p‖∞,Xh154



for all p ∈ PM , i.e. there is stable polynomial reprodu
tion in the senseof (8.37). But we also want this reprodu
tion to be lo
al and it should beguaranteed via Lagrange�type fun
tions uj. We thus formulate the followinggoal:De�nition 8.43. Let Ω ⊂ Rd be a domain and �x a number k ∈ N. If thereare positive numbers h0, c1, c2 depending on k and Ω su
h that for ea
h�nite subset X = {x1, . . . , xN} ⊂ Ω with �ll distan
e h(X,Ω) ≤ h0 there arefun
tions uX1 , . . . , uXN on Ω su
h that
.

N∑

j=1

uXj (x)p(xj) = p(x) for all p ∈ Pk, x ∈ Ω

N∑

j=1

|uXj (x)| ≤ c1 for all x ∈ Ω

‖x− xj‖2 > c2h ⇒ uXj (x) = 0 for all x ∈ Ω, 1 ≤ j ≤ N

(8.44)then we say that the quasi�interpolation pro
ess
f 7→ QX(f)(·) :=

N∑

j=1

uXj (·)f(xj) for all f : Ω → Rde�ned for all su
h X provides stable lo
al polynomial reprodu
tion oforder k.Then we have a rather simple lo
al error bound:Theorem 8.45. Assume that Ω ⊂ Rd is bounded and admits stable lo
alpolynomial reprodu
tion of order k. Then there is a 
onstant C with
|f(x)−QX(f)(x)| ≤ Chk+1|f |k+1,Ω∗for all x ∈ Ω and all f ∈ Ck+1(Ω∗) on the extended domain

Ω∗ :=
⋃

x∈Ω
B(x, c2h0)where B(x, r) is the open ball with 
enter at x and radius r.Proof: See Wendland's book [Wen05℄, p. 25/26. The basi
 tri
k is tointrodu
e the lo
al Taylor expansion at x whi
h has the same error boundand is reprodu
ed by the quasi�interpolant. Then use the boundedness ofthe Lebesgue fun
tion to show that the error of the lo
al Taylor expansion
arries over to the quasi�interpolant. .155



Inspe
tion of the proof shows that the extended domain is not ne
essary forall forms of lo
al bounds.To pro
eed towards an existen
e proof of stable lo
al polynomial reprodu
-tion on nondegenerate domains, we repeat our argument from the univariate
ase, but we 
an fo
us on k > 1 be
ause stable polynomial reprodu
tion by
onstants is trivial, using the nearest neighbor of X to ea
h x ∈ Ω. Another
hoi
e for stable lo
al approximation of order one is Shepard approxima-tion, whi
h we shall des
ribe in the next se
tion.It does not su�
e to use Pk�unisolvent subsets, be
ause they will not havebounded Lebesgue fun
tions. We thus �rst aim at a proof of an inequalitylike
‖p‖∞,Ω ≤ c2‖p‖∞,X for all p ∈ Pkfor suitable domains Ω and �nite sets X ⊂ Ω . We start with a polynomial

p ∈ Pk with p(x) = ‖p‖∞,Ω = 1 and see how fast it 
an go down when movingaway from x. On a ray going from x to some other point z, the polynomial
q(t) := p (x+ t(z − x)), t ∈ [0, 1]is univariate and of order at most k. We have

|p (x+ t(z − x))− p(x)| = |q(t)− q(0)| =
∣∣∣∣
∫ t

0
q′(t)dt

∣∣∣∣ ≤ t‖q′‖∞,[−1,1]and use Markov's inequality to get
|p (x+ t(z − x))− p(x)| ≤ t(k − 1)2‖q‖∞,[−1,1] ≤ t(k − 1)2‖p‖∞,Ωfor all t ∈ [0, 1]. But for our 
hoi
e of 1 = p(x) = ‖p‖∞,Ω we get

p


x+ t(z − x)︸ ︷︷ ︸

=:yt


 = q(t) ≥ 1− 2t(k − 1)2leading to p(yt) ≥ 1/2 for all yt on the ray with t = ‖x− yt‖2 ≤ 1

4(k−1)2
. Forall �nite sets X with

min
z∈X

‖x− z‖2 ≤
1

4(k − 1)2this implies
|p|∞,X ≥ 1

2
=

1

2
p(x).This argument needs that the ray from x to z is 
ontained in the domain wewant to fo
us on. 156



De�nition 8.46. A set Ω ⊂ Rd is 
onvex, if for all points x, y ∈ Ω the line
[x, y] := {λx+ (1− λ)y : λ ∈ [0, 1]}
onsisting of all 
onvex 
ombinations of x and y belongs to Ω.Thus the argument works for all 
losed bounded 
onvex sets Ω and we haveTheorem 8.47. If X is a �nite subset with �ll distan
e

h ≤ 1

4(k − 1)2
=: h1in a 
losed bounded 
onvex set Ω ⊂ Rd, then the inequality

‖p‖∞,Ω ≤ 2‖p‖∞,Xholds for all polynomials p ∈ Pk.Note that this result is independent of the size of Ω, but it requires 
onvexity,be
ause we need the rays from any point x ∈ Ω to any point z ∈ X .To pro
eed towards the argument providing the fun
tions uXj , we look at thesampling operator
TX(f) := (f(x1), . . . , f(xN))

Tmapping fun
tions on Ω into RN for ea
h set X = {x1, . . . , xN} ⊂ Ω. Underthe assumptions of Theorem 8.47, this map is inje
tive on V := Pk, and we
an pro
eed exa
tly as in the univariate 
ase to getTheorem 8.48. If X is a �nite subset with �ll distan
e
h ≤ 1

4(k − 1)2
=: h1in a 
losed bounded 
onvex set Ω ⊂ Rd, then there are fun
tions uXj on Ω thatrealize stable polynomial reprodu
tion in the sense of the �rst two equationsof (8.44) with c2 = 2.The remaining problem is lo
alization together with elimination of 
onvexity.But the problem is that, for instan
e with gridded data, there may be 
onvexsubdomains whi
h 
ontain no point ofX at all, and a fortiori there are 
onvexsubdomains where a set X with �ll distan
e h1 with respe
t to Ω has a lo
al�ll distan
e larger than h1. We thus have to fo
us on domains where we have157



positive 
onstants h0 ≤ h1 and c1 su
h that ea
h point of Ω belongs to a
onvex subset Ω̃ of Ω in whi
h any dis
rete set with �ll distan
e h ≤ h0 withrespe
t to Ω still has a �ll distan
e h̃ ≤ c1h0 ≤ h1 with respe
t to Ω̃. In this
ase, given a point x, we just work on the subdomain Ω̃ 
ontaining x andrestri
t ourselves to points in X ∩ Ω̃ to prove (8.44). This will turn out towork for domains satisfyingDe�nition 8.49. A domain Ω ⊂ Rd satis�es an interior 
one 
onditionwith angle α and radius r su
h that for ea
h x ∈ Ω there is a normalized
one axis zx with ‖zx‖2 = 1 su
h that the 
one
{x+ λy : λ ∈ [0, r], ‖y‖2 = 1, yTzx ≥ cos(α)}of height r > 0 and opening angle 2α > 0 is still 
ontained in Ω.... missing pi
ture...We restri
t ourselves to domains with 0 < α < π and r ≤ 1 in order toavoid di�
ulties. In fa
t, if a domain satis�es a 
one 
ondition with angle

α > 0 and r > 0, it satis�es a 
ondition also for all smaller positive α and
r. We shall 
over the domain by 
ones of the above form, and thus we onlyhave to prove that su
h 
ones have the property we mentioned, i.e. anydis
rete set with �ll distan
e h ≤ h0 with respe
t to Ω still has a �ll distan
e
h̃ ≤ c1h0 ≤ h1 with respe
t to su
h a 
one, where we 
an de�ne h0 and c1 interms of α and r.In su
h a 
one, the point x has distan
e z = r

1+sinα
from a ball of radius

r sinα
1+sinα

whi
h still is in the 
one.... missing pi
ture...If
h0 ≤

r sinα

1 + sinαwe have at least one point of X in the ball. Sin
e the maximal distan
e of xto this point is r, we get that X has �ll distan
e at most
r ≥ 1 + sinα

sinα
h0with respe
t to that 
one. But we have to aim at a �ll distan
e h̃ ≤ c1h0 ≤ h1,and we 
an get away with

c1 :=
1 + sinα

sinα
≥ 1

h0 :=
1

c1
min(r, h1).158



In fa
t, this implies c1h0 ≤ h1, and any set X with �ll distan
e h ≤ h0 withrespe
t to Ω will have a �ll distan
e at most c1h0 with respe
t to any of our
ones, be
ause we 
an use r̃ = c1h0 ≤ r in the interior 
one 
ondition.Theorem 8.50. In bounded domains in Rd with interior 
one 
ondition withangle 0 < α < π and radius r ≤ 1 there is stable lo
al polynomial reprodu
tionof order k with the 
onstants given above.8.12 Moving Least SquaresThe above theory does not provide a pra
ti
al way to 
onstru
t fun
tions
uXj with the required properties. But there is a 
onstru
tive way to generatestable lo
al polynomial reprodu
tion 
onstru
tively.The easiest 
ase is Shepard approximation. Take a nonnegative nontrivialkernel in translation�invariant form, e.g. K(x, y) = Φ(x−y) with Φ : Rd →
R and 
onsider the fun
tion

SX(f)(x) :=
∑

xj∈X
f(xj)

Φ(x− xj)∑
xk∈X Φ(x− xk)for any �nite set X and any fun
tion f . If the quotient is unde�ned for
ertain ex
eptional 
ases, e.g. when the support of Φ is very small and theset X has large �ll distan
e, the quotient 
an be de�ned to be zero. Thisapproximant preserves 
onstant, be
ause it uses a partition of unity, i.e.a set of nonnegative fun
tions that sum up to one. It 
learly is stable withLebesgue fun
tion bounded by one, and it 
an be made lo
al if the supportof the kernel is proportional to the �ll distan
e h of the set X .Motivated by this 
ase, we introdu
e a s
aling into the kernel by de�ning

Φδ(x) := Φ(x/δ) for all x ∈ R
d, δ > 0and take a nonnegative kernel with pre
ise support in the unit ball B(0, 1),i.e.

Φ(x) = 0 for x ∈ R
d if and only if ‖x‖2 ≥ 1.Then the kernel Φδ has support in the ball B(0, δ) with 
enter 0 and radius

δ.When 
onstru
ting an approximation at some point x based on fun
tionvalues f(xj) at 
ertain points xj of a �nite set X , we use the kernel as aweight fun
tion to let the points xj ∈ X 
loser to x have more importan
e159



than those further away. If Φ is smooth, there is some hope that the resultingfun
tion of x 
an be de�ned to be 
ontinuous or even di�erentiable, be
ausethe weights of the used points are varying smoothly. Furthermore, one 
anhope to get a fully lo
al method, if the support radius δ is s
aled like δ =
c1h and thus 
onne
ted to the �ll distan
e h of X . Finally, polynomialreprodu
tion should be built into the method by adding equations like (8.40)as 
onstraints and allowing enough oversampling to let them be satis�ed upto a 
ertain order.Put together, all of this suggests the following pointwise de�nition of amov-ing least�squares approximation:Minimize ∑

xj∈Xx,δ

(f(xj)− p(xj))
2Φδ(x− xj) over all p ∈ Pkfor �xed x and sets X := {x1, . . . , xN}, and 
all the resulting fun
tion value

MLS(x) := MLS(f,XΦδ)(x) := p∗(x) when p∗ is the optimal polynomial.Note that we restri
ted the sum in the obje
tive fun
tion to
Xx,δ := {xk ∈ X : ‖x− xk‖2 < δ}
Jx,δ := {j : xj ∈ Xx,δ} (8.51)des
ribing the points of X 
lose enough to x to enter into the 
al
ulation.For 
onvenien
e, we use the shorthand notation J := Jx,δ, and we shouldrewrite the problem in terms of a polynomial basis and in matrix�ve
torform. Then it is Minimize ‖√W (F − Pb)‖22 over b ∈ R

Qwhere
F := (f(xj), j ∈ J)T ∈ R|Xx,δ|

P := (pℓ(xj))j∈J, 1≤ℓ≤Q

b := (b1, . . . , bQ)
T ∈ RQ

W := (δjkΦδ(x− xk))j,k∈Jand it is a standard least�squares problem approximationg√WfX by√WPXbfor b ∈ RQ. In theory, the solution satis�es the normal equations
P T
XWF = P T

XWPXband is unique if the rank of P T
XWPX is Q. This requires Q ≤ |Xx,δ| ≤ N and

Pk�unisolven
e of Xx,δ. With this assumption, we 
an 
al
ulate the uniquesolution of the problem by standard least�squares te
hniques, but we have160



no information about stability or polynomial reprodu
tion. To this end, one
an try to rewrite the problem as one in the lo
alized quasi�interpolant form
MLS(x) =

∑

j∈J
a∗j (x)f(xj)where we already inserted the optimal values a∗j (x) for �xed x without know-ing how to set up an equivalent optimization problem. Anyway, we shouldimpose the polynomial reprodu
tion 
onstraints

p(x) =
∑

j∈J
aj(x)p(xj) for all p ∈ Pk (8.52)restri
ting the variables aj(x) for j ∈ J . But we still have nothing to optimize.Clearly, we should make sure that a∗j (x) gets small if xj is just about to leavethe in�uen
e region for x, i.e. if ‖x − xj‖2 is 
lose to δ, or if Φδ(x − xj) issmall. This suggests to minimize

∑

j∈J
a2j(x)

1

Φδ(x− xj)
. (8.53)Theorem 8.54. If the set Xx,δ of (8.51) is Pk�unisolvent, the moving least�squares problem has a unique solution. It 
oin
ides with the solution of theminimization of (8.53) under the 
onstraints (8.52) and thus has polynomialreprodu
tion of order k.Proof: We already have the �rst part of the theorem. If we take the optimalsolution ve
tor b∗ ∈ RQ of the �rst form of the problem, we 
an write theoptimal polynomial

p∗(x) :=
Q∑

ℓ=1

b∗ℓpℓ(x)in terms of the basis p1, . . . , pQ of Pk we used in de�ning the matrix PX .Sin
e we know that we have a unisolvent set, we 
an rewrite the polynomialat arbitrary points y ∈ Rd as
p∗(y) =

Q∑

ℓ=1

b∗ℓpℓ(y) =
∑

j∈J
âj(y)p

∗(xj)with 
ertain nonunique 
oe�
ients âj(y). Thus the 
onstraints (8.52) 
anbe satis�ed, but our 
hoi
e of the âj may not be the optimal ones for mini-mization of erefeqMLSobjfun. The diagonalized quadrati
 form of (8.53) is161



positive de�nite, and thus it attains its unique minimum on all a�ne sub-spa
es like the one de�ned by (8.52). Thus there is a solution ve
tor a∗j (x),and we have to prove that the equation
N∑

j∈J
a∗j (x)f(xj) = p∗(x) =

Q∑

ℓ=1

b∗ℓpℓ(x) =
∑

j∈J
âj(x)p

∗(xj)holds. The new problem takes the formMinimize ‖√W−1a(x)‖22 = a(x)TW−1a(x) under P T
Xa(x) = p(x)with p(x) := (p1(x), . . . , pQ(x))

T as in (??). By the standard �parabola�argument for solutions of quadrati
 problems with a�ne�linear 
onstraints,we know that a(x)TW−1c = 0 for all c ∈ R|J | with P T
Xc = 0, and by thefa
torization lemma 11.10 we get Lagrange multipliers λ(x) ∈ RQ with

a(x)TW−1c = λT (x)P T
Xc for all c ∈ R|J |. This proves that a∗(x) =WPXλ(x)and from P T

Xa
∗(x) = p(x) we get p(x) = P T

XWPXλ(x). But then
p∗(x) = pT (x)b∗ = λT (x)P T

XWPXb
∗ = λT (x)P T

XWF = F Ta∗(x)proves the assertion.For further analysis, we note some results of the above argument. First, theequation a∗(x) = WPXλ(x) is
a∗j (x) = Φδ(x− xj)

Q∑

k=1

λk(x)pk(xj), j ∈ J,and p(x) = P T
XWPXλ(x) shows that the λk(x) satisfy the system

pℓ(x) =
Q∑

k=1

λk(x)
∑

j∈J
pk(xj)Φδ(x− xj)pℓ(xj), 1 ≤ ℓ ≤ Q.This is another way to 
al
ulate the solution, and it only requires a Q × Qsystem whose entries 
an be 
al
ulated with 
omplexity |J | ea
h.From the �rst equation we get that the a∗j are as smooth as the fun
tions Φδand λk allow. But the se
ond system 
an be written as

pℓ(x) =
Q∑

k=1

λk(x)
N∑

j=1

pk(xj)Φδ(x− xj)pℓ(xj), 1 ≤ ℓ ≤ Q,and thus we have 162



Corollary 8.55. If all sets Xx,δ for arbitrary x ∈ Ω and �xed δ are Pk�unisolvent, then the solution of the moving least�squares appro
imation is assmooth as the kernel Φδ.Proof: Due to global Pk�unisolven
e of all sets Xx,δ, the 
oe�
ient matrix isglobally nonsingular and has a determinant as smooth as the kernel itself.To align moving least�squares with our previous theory of stable lo
al poly-nomial reprodu
tion, we should �x δ to be c1h for a �xed set X with �lldistan
e h. Then we have unisolven
e of ea
h set Xx,δ and lo
al polyno-mial reprodu
tion. The main problem is stability, and for this we shall needquasi�uniformity in the sense that the separation distan
e q and the �lldistan
e h are related by qc3 ≥ h for some positive 
onstant c3.For stability, we bound the fa
tors of

∑

j∈J
|a∗j (x)|




2

≤

∑

j∈J

|a∗j(x)|2
Φδ(x− xj)




∑

j∈J
Φδ(x− xj)


separately. The �rst is the obje
tive fun
tion of the se
ond form of ourminimization, and thus it 
an be bounded by any stable solution uj(x) wehave from the previous theory. To have some leeway, we make δ larger, takingit as 2c1h, while we use the uj for c1h. Thus

∑

j∈J

|a∗j(x)|2
Φδ(x− xj)

≤
∑

j∈J

|uj(x)|2
Φδ(x− xj)

≤ 1

infz∈B(0,1/2) Φ(z)

∑

j∈J
|uj(x)|2

≤ C


∑

j∈J
|uj(x)|




2

≤ 4C.The se
ond fa
tor 
an be dealt with a 
ounting argument, sin
e it is boundedby a 
onstant times the number |J |. Ea
h point of Xx,δ has a ball of radius
q/2 around it with no other point of X . Sin
e all of these disjoint balls lie inthe ball B(x, δ + q/2), we have

|J |vol(B(xj, q/2)) ≤ vol(B(x, δ + q/2))and
|J |q

d

2d
≤ (δ + q/2)d ≤ (2c1h + q/2)d ≤ (2c1c3q + q/2)d163



leading to
|J | ≤ (4c1c3 + 1)d.Altogether, we see that moving least�squares realize stable lo
al polynomialreprodu
tion.8.13 Bramble�Hilbert LemmaWe now leave the stable lo
al polynomial reprodu
tion part and go ba
k to(8.42). We now have to 
are for the part varying with h, but we alreadyknow something about stable lo
al polynomial re
overy, i.e. we have
‖p‖∞,Ω ≤ C‖p‖∞,Xhfor all p ∈ PM and all set Xh with h ≤ h0. For 
onvenien
e, we restri
t ourattention to the L∞ norm, and fo
us on the remaining part

‖u‖L∞(Ω) ≤ ChM−d/2|u|WM
2

(Ω).Clearly, an inequality like this 
annot hold unless the fun
tion u is repla
edby something like u− p∗ for some polynomial p∗ ∈ PM , be
ause if the right�hand side is zero, the left�hand side must be zero. Thus we go for somethinglike
‖u− p∗‖L∞(Ω) ≤ ChM−d/2|u|WM

2
(Ω)and inequalities like this are well-known in simple 
ases like the univariateones. We already did that for M = d = 1, and it also is easy for univariate
ases of higher order when p∗ is the Taylor polynomial and if the basis intervalis of length h.This observation is the 
lue for what we are doing next. Let us 
onsider asimple 
ase �rst, whi
h is a variation of a Poin
aré�Friedri
hs inequality.Lemma 8.56. Let Ω be a bounded 
ube in Rd of maximal sidelength s. Thenfor ea
h fun
tion u in W 1

2 (Ω) there is a 
onstant γ(u) su
h that
‖u− γ(u)‖L2(Ω) ≤ s|u|W 1

2
(Ω) (8.57)and the 
onstant 
an be taken as the mean value of u over Ω.Proof: We �rst prove the assertion for smooth fun
tions, and then we goto the 
ompletion limit. There is a point x where u(x) = γ(u). We set

v := u− γ(u). As in the univariate 
ase we now integrate from x to any z in164



the 
ube, but we �rst integrate along the �rst 
oordinate only, i.e. we take
z = x+ τe1 and get

v(z) =
∫ τ

0

∂v

∂x1
(x+ te1)dt

|v(z)|2 ≤
∣∣∣∣∣∣
τ
∫ τ

0

(
∂v

∂x1
(x+ te1)

)2

dt

∣∣∣∣∣∣
≤ s

∣∣∣∣∣∣

∫ τ

0

(
∂v

∂x1
(x+ te1)

)2

dt

∣∣∣∣∣∣
.We integrate this over the full line L of length s through x and z along the�rst 
oordinate to get

∫
L |v(y)|2dy ≤ s2

∫

L

(
∂v

∂x1
(y)

)2

dy.be
ause the right�hand side is independent of z and the length |τ | of inte-gration towards z 
annot be greater than s. If we integrate both sides overthe other dimensions as well, we get
‖v‖2L2(Ω) ≤ s2

∫

Ω

(
∂v

∂x1
(y)

)2

dy = s2|v|21.Now the assertion follows when inserting v = u− γ(u) and when going overto the Hilbert spa
e 
losure.A more standard and 
lassi
al version of this, named after Poin
aré andFriedri
hs, does the same thing without γ(u), but with the assumption that
u vanishes somewhere on the boundary. The proof is the same.Unfortunately, we 
annot sum up the inequalities (8.57) when 
ombining alarger domain from 
ube subdomains, be
ause the 
onstants will be di�erentin ea
h subdomain. But we 
an pro
eed on 
ube subdomains Ωs like

‖u‖L2(Ωs) ≤ ‖u− γ(u)‖L2(Ωs) + ‖γ(u)‖L2(Ωs)

≤ s|u|W 1
2
(Ωs) + |γs(u)|

√
vol(Ωs)

‖u‖2L2(Ωs)
≤ 2s2|u|2W 1

2
(Ωs)

+ 2|γs(u)|2vol(Ωs)and we 
an sum this up for a domain Ω 
omposed of su
h subdomains. Theresult is
‖u‖2L2(Ω) ≤ 2s2|u|2W 1

2
(Ω) + 2vol(Ω)

∑

Ωs

|γs(u)|2

‖u‖L2(Ω) ≤
√
2s|u|W 1

2
(Ω) +

√
2vol(Ω)

√∑

Ωs

|γs(u)|2165



and 
an be viewed as our �rst full�size sampling inequality.Having understood the basi
 logi
, readers 
an now imagine that a general-ization of Lemma 8.56 isLemma 8.58. (�Lo
al� Bramble�Hilbert Lemma)Let Ω be a ni
e domain of diameter s, e.g. a 
ube, a ball, or a 
onvex ora star�shaped set. Then there is a 
onstant C su
h that for all fun
tions
u ∈ WM

2 (Ω) with M ≥ 1 there is a polynomial p(u) ∈ PM su
h that
‖u− p(u)‖L2(Ω) ≤ CsM |u|WM

2
(Ω).The polynomial 
an be 
hosen as an averaged Taylor polynomial, and the
onstant is only dependent on the dimension d and the type of �ni
e� domain.We just had the 
ase M = 1 for 
ubes, but we want to avoid a full proof (see[BS02℄ for the star�shaped 
ase, and 
ertain papers for other 
ases). Themain argument �rst works on a domain of diameter 1 and bounds the errorof the averaged Taylor polynomials uniformly by

‖u− p(u)‖L2(Ω) ≤ C|u|WM
2

(Ω) for all u ∈ WM
2 (Ω).Roughly, this is a result of the fa
torization lemma 11.10, be
ause the oper-ator Id − TM with TM being the Taylor proje
tor of order M , vanishes onthe kernel PM of the linear map

LM : u 7→ (Dαu, |α| =M)and thus must be fa
torizable over the range of LM , implying that it 
an bebounded by the derivatives Dαu with |α| =M alone.The next step in this rough proof sket
h is a plain s
aling argument. Wenow take u ∈ WM
2 (Ωs) and de�ne v(x) := u(x · s) to get some v ∈ WM

2 (Ω1).Then
s−d‖u− p(u)‖2L2(Ωs) = ‖v − p(v)‖2L2(Ω) ≤ C2|v|2WM

2
(Ω) = C2s2Ms−d|u|2WM

2
(Ωs)does the job, provided that we also have the s
ale invarian
e

p(v)(x) = pt(u(t · s))(x) = p(u)(s · x).
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But this holds for standard Taylor polynomials at zero
TM(v)(x) =

M−1∑

j=0

∑

|α|=j

vα(0)

α!
xα

=
M−1∑

j=0

∑

|α|=j

uα(0)s|α|

α!
xα

=
M−1∑

j=0

∑

|α|=j

uα(0)

α!
(xs)α

= TM(u)(xs)and 
arries over to the averaged ones.For the L∞ norm, the 
orrespondent result is
‖u− TM(u)‖L∞(Ω) ≤ CsM−d/2|u|WM

2
(Ω) (8.59)under the restri
tion M > d/2 be
ause otherwise we have no 
ontinuouspoint evaluation. here, we wrote the averaged Taylor proje
tor TM . We 
analso sket
h the idea that leads to (8.59). By a fa
torization argument, one
an get a result like

‖u− TM (u)‖L∞(Ω) ≤ C|u|WM
2

(Ω)for a �ni
e� domain of diameter one. This time, one 
an also work with thestandard Taylor proje
tor. The next step is again a s
aling argument likethe one above, using v(x) = u(x · s) 
onne
ting v on Ω1 with u on Ωs withdiameter s. The s
aling now gives
‖u− TM(u)‖2L∞(Ωs) = ‖v − TM(v)‖2L∞(Ω) ≤ C|v|2WM

2
(Ω) = Cs2M−d|u|2WM

2
(Ωs)whi
h is what we need. Note that this argument is a lo
al proof of Sobolev'simbedding inequality, sin
e it implies that C(Ωs) is 
ontinuously embeddedin WM

2 (Ωs) for M > d/2.8.14 GlobalizationFrom (8.59) and stable polynomial reprodu
tion f 7→ QM(f) of order Mfrom values on a set X we 
an pro
eed to a lo
al sampling inequality on�ni
e� domains of diameter s. This starts from bounding the Taylor operatorin terms of data on X via
‖TMu‖∞,Ω ≤ C‖TMu‖∞,X

≤ C (‖TMu− u‖∞,X + ‖u‖∞,X)
≤ C (‖TMu− u‖∞,Ω + ‖u‖∞,X)

≤ C
(
CsM−d/2|u|WM

2
(Ω) + ‖u‖∞,X

)167



and pro
eeds via
‖u‖L∞(Ω) ≤ ‖u− TMu‖L∞(Ω) + ‖TMu‖L∞(Ω)

≤ CsM−d/2|u|WM
2

(Ω) + C
(
CsM−d/2|u|WM

2
(Ω) + ‖u‖∞,X

)

≤ C
(
sM−d/2|u|WM

2
(Ω) + ‖u‖∞,X

)with generi
 
onstants. This is perfe
tly �ne for �ni
e� domains of diameter sproportional to h su
h that a global set X restri
ted to Ω still has �ll distan
e
h. In fa
t, this 
an be done at the expense of 
hanging the 
onstants, andit 
an be done uniformly for arbitrary domains with a �xed 
one 
ondition.We do not want to do this in full detail, be
ause it is rather te
hni
al andprovides no new insights.But we state the �nal results for sampling inequalities, as they are providednow by the literature. In all 
ases, the domain Ω ⊂ Rd has to be boundedwith a Lips
hitz boundary and an interior 
one 
ondition, and the order mhas to be �xed beforehand, together with real numbers 1 ≤ p, q ≤ ∞. Thenthere exist 
onstants C, h0 > 0 su
h that the following inequalities hold forall fun
tions u in m�th order Sobolev spa
e and all dis
rete sets Xh ⊂ Ωwith �ll distan
e h ≤ h0:

• Nar
owi
h, Ward, & Wendland MC 2005 [NWW06℄
|u|

W
|α|
q

≤ chm−|α|−d(1/p−1/q)+ |u|Wm
p
, u(Xh) = {0}for 0 ≤ |α| ≤ m > d/p,

• Wendland & Rieger Num. Math. 2005 [WR05℄
|u|

W
|α|
q

≤ C
(
hm−|α|−d(1/p−1/q)+ |u|Wm

p
+ h−|α|‖u‖∞,Xh

)for 0 ≤ |α| ≤ m > d/p,

• Mady
h JAT 2006 [Mad06℄
‖u‖Lq ≤ C

(
hm−d(1/p−1/q)+ |u|Wm

p
+ hd/max(p.q)‖u‖ℓp,Xh

)for 0 ≤ m > d/p.Finally, there is a more sophisti
ated inequality due to Christian Riegerand Barbara Zwi
knagl [RZ06℄. It holds on Hilbert spa
es H of fun
tionson bounded Lips
hitz domains Ω ⊂ Rd with interior 
one 
ondition pro-vided that the Hilbert spa
es are uniformly and 
ontinuously embedded inall Sobolev spa
es Wm
2 (Ω) for all m ∈ N, i.e.
‖u‖Wm

2
(Ω) ≤ C‖u‖H for all u ∈ H.Then for all 1 ≤ q ≤ ∞ and m ≥ 0 there exist 
onstants C, h0 > 0 su
h that

‖u‖Wm
q (Ω) ≤ C

(
exp

(
c1
log(c2h)√

h

)
‖u‖H + h−|α|‖u‖ℓq(Xh)

) (8.60)168



holds for all fun
tions u in H, all dis
rete sets Xh ⊂ Ω with �ll distan
e
h ≤ h0. The proof of this is based in the Wendland�Rieger form of the�xed�order sampling inequality, but tra
ks the 
onstants 
arefully in termsof the order m. Then the used m is 
onne
ted to h in su
h a way that thenew sampling inequality is obtained.8.15 Error BoundsWe now 
an use the sampling inequalities for error bounds 
on
erning kernelinterpolation in Sobolev spa
es. As we pointed out before, we only need thatthe native spa
e N for a kernel K is 
ontinuously embedded in some Sobolevspa
e of order m, i.e.

‖u‖Wm
2

(Ω) ≤ C‖u‖N for all u ∈ N . (8.61)If we take a set Xh with �ll distan
e h ≤ h0 in one of the above situations,we 
an use the minimum norm property of the interpolation operator QXhto get
‖QXh

u‖Wm
2

(Ω) ≤ C‖QXh
u‖N ≤ C‖u‖N for all u ∈ N ,and we use Sobolev embedding from (8.61) in one of the sampling inequalitiesof 8.14 when applying them to the di�eren
e u − QXh

u. This yields in the�rst 
ase
|u−QXh

u|
W

|α|
q

≤ chm−|α|−d(1/2−1/q)+ |u−QXh
u|Wm

p

≤ chm−|α|−d(1/2−1/q)+‖u−QXh
u‖N

≤ Chm−|α|−d(1/2−1/q)+‖u‖Nfor all 0 ≤ |α| ≤ m > d/2, 1 ≤ q ≤ ∞ and thus also in the full Sobolev norm
‖u−QXh

u‖Wµ
q

≤ Chm−µ−d(1/2−1/q)+‖u‖Nfor all 0 ≤ µ ≤ m > d/2, 1 ≤ q ≤ ∞.Using Mady
h's form we get
‖u−QXh

u‖Lq(Ω) ≤ Chm−d(1/2−1/q)+ |u−QXh
u|Wm

2

≤ Chm−d(1/2−1/q)+‖u‖Wm
2

≤ Chm−d(1/2−1/q)+‖u‖Nfor 0 ≤ m > d/2, 1 ≤ q ≤ ∞.In the situation of the re�ned inequality (8.60), the 
orrespondent errorbaound
‖u−QXh

u‖Wm
q (Ω) ≤ C exp

(
c1
log(c2h)√

h

)
‖u‖Hyields exponential 
onvergen
e of the error.169



9 Constru
tion of KernelsFor this se
tion, we only present some additional material. The standardpro
edure will be like the one in the book [Wen05℄ of Holger Wendland, butwith several omittan
es. This theory heavily relies on Fourier transforms,the essentials of whi
h are 
overed by an appendix in se
tion 12.3.9.1 General Constru
tion Te
hniquesThis se
tion is planned to give an overview of methods for the 
onstru
tionof new kernels from existing ones. For the time being, we restri
t ourselvesto translation-invariant 
ases in Rd.9.1.1 Elementary OperationsIt is very easy to see that (
onditionally) positive (semi-) de�nite fun
tionson Ω form a 
one in the spa
e of all fun
tions on Ω × Ω. In parti
ular, if
Φ and Ψ are (
onditionally) positive (semi-) de�nite, so are αΦ + βΨ for
α, β > 0. Furthermore, if a family Φζ of (
onditionally) positive (semi-)de�nite fun
tions 
an be integrated against a positive fun
tion w(ζ), theresult

Φ(x, y) :=
∫
w(ζ)Φζ(x, y)dζwill again be (
onditionally) positive (semi-) de�nite.9.1.2 Auto
orrelation MethodIf we 
annot start with a (
onditionally) positive (semi-) de�nite fun
tion buthave an arbitrary fun
tion Ψ ∈ L2(R
d), we 
an form the auto
orrelationfun
tion

Φ(x, y) :=
∫

Rd
Ψ(x− z)Ψ(y − z)dz.This always yields a symmetri
 positive semide�nite fun
tion whi
h even ispositive de�nite, if all translates Φ(xj − ·) for di�erent points xj are linearlyindependent in L2(R

d).9.1.3 Integration MethodThe previous method easily generalizes for any Ω. For any fun
tion Ψ on
Ω× Π one 
an formally 
onsider

Φ(x, y) :=
∫

Π
Ψ(x, ζ)Ψ(y, ζ)w(ζ)dζ170



with a positive weight fun
tion w on Π. If the integral is well-de�ned, theresult will be a symmetri
 positive semide�nite fun
tion on Ω.9.2 Spe
ial Kernels on R
dIn Ma
hine Learning, the polynomial kernels

Kn(x, y) = (xTy)n for all n ≥ 0, x, y ∈ Rdor Kn(x, y) = (1 + xTy)n for all n ≥ 0, x, y ∈ Rdare often used. Due to Theorem 3.7, they are positive semide�nite when thekernel K(x, y) = xT y is, but this is easy to see.Clearly, their translates generate polynomials of degree at most n of d vari-ables, su
h that the native spa
e of the kernels must be a subspa
e of thispolynomial spa
e. However, the geometry of Ω will determine the nativespa
e.For illustration, 
onsider the kernel K1(x, y) = xTy. It generates fun
tions
g(y) :=




N∑

j=1

ajxj




T

y, y ∈ R
d.Ea
h su
h fun
tion lies in the subspa
e

NΩ := {fa : y → aTy : a ∈ LH(Ω)} (9.1)of (RN )∗ where LH(Ω) is the linear hull of Ω, i.e.
LH(Ω) := span {x ∈ Ω}.If Ω lies in a k�dimensional subspa
e of Rd, the spa
e NΩ 
annot be morethan k�dimensional. The inner produ
t in the native spa
e is de�ned asusual, and it turns out easily that it 
oin
ides with the usual dual innerprodu
t on (RN)∗ in the notation of (9.1) as

(fa, fb) := aT b for all a, b ∈ R
N .It is now an interesting exer
ise to see what happens if we solve a systemwith the usual kernel matrix for K1 on any 
hoi
e of N points, but we skipover details.To Do: Insert details 171



The kernel K1 has an analogon in the periodi
 
ase, i.e. the kernel K(x, y) =
cos(x− y). It is an easy exer
ise to see that it is positive semide�nite. Thisworks similarly for the kernels Kα(x, y) := cos(α(x− y)).To Do: Insert detailsInspired by the previous example, we 
an 
onsider kernels in polar 
oordi-nates (r, ϕ) in R2. If we des
ribe two variables inR2 via two polar 
oordinates
(r, ϕ) and (s, ψ), the kernels

Kα((r, ϕ), (s, ψ)) := rαsα cos(α(ϕ− ψ))are positive semide�nite and harmoni
, i.e. they satisfy the homogeneousLapla
e equation ∆u = 0 in both arguments.To Do: Insert detailsThese examples are 
losely related to the 
omplex�valued 
ase
Kn(z, u) := (zu)n, z, u ∈ C, n ∈ N0.To Do: Insert detailsFrom these kernels, we 
an generate new kernels by additive superposition.Let us do a simple example by taking

K(x, y) :=
n∑

n=0

(xTy)n

n!
= exp(xTy), x, y ∈ R

d.It is well�de�ned sin
e the series is absolutely 
onvergent everywhere, and itis positive semide�nite due to Theorem 3.7. By an easy additional argumentthis proves that the Gaussian kernel
G(x, y) := exp(−‖x− y‖22), x, y ∈ R

dis positive semide�nite.To Do: Insert details
172



9.3 Translation�Invariant Kernels on RdWe now go ba
k to se
tion 3.2 and de�ne kernels on Ω := Rd by the featuremap
Φ(x) := exp(−ixT ·) for all x ∈ R

dinto a weighted L2 feature spa
e
Fc := {g : R

d → C, (2π)−d/2
∫

Rd
|g(ω)|2c(ω)dω <∞}for a nonnegative and integrable weight fun
tion c on Rd. This de�nes akernel Kc in translation�invariant form via

Kc(x− y) := (2π)−d/2
∫

Rd
exp(−i(x− y)Tω)c(ω)dωand this 
oin
ides with c∧(x − y) sin
e the Fourier transform c∧ of c existspointwise under the above assumption. If c is even in the sense c(ω) = c(−ω),the Fourier transform and the kernel are real�valued.Theorem 9.2. If c is a nonnegative even and integrable fun
tion on Rd, itsFourier transform is a real�valued symmetri
 translation�invariant positivesemide�nite kernel Kc on Rd.This is the easiest approa
h to translation�invariant kernels on Rd, and it israther 
lose to the general situation due to the famous but di�
ultTheorem 9.3. (Bo
hner)A 
ontinuous 
omplex�valued translation�invariant kernel on Rd is positivesemide�nite if and only if it is the Fourier transform of a nonnegative Borelmeasure µ on Rd, i.e.

K(x, y) := (2π)−d/2
∫

Rd
exp(i(x− y)Tω)dµ(ω).Sin
e we omitted measure theory in this text, we do not want to proveBo
hner's theorem, but the reader should be aware that the 
onne
tion be-tween the above theorems is via the 
ase that the measure µ has density c,i.e. dµ(ω) = c(ω)dω.The above 
onstru
tion immediately implies that the Gaussian is positivesemide�nite on all Rd. It even is positive de�nite, but we shall prove thissoon in more generality. 173



In fa
t, we should take a general nonnegative even and integrable fun
tion con Ω and ask for su�
ient 
onditions to make the kernel Kc positive de�nite.As always, we 
onsider the quadrati
 form
N∑

j,k=1

ajakK(xj , xk)

= (2π)−d/2
∫

Rd

N∑

j,k=1

ajake
i(xj−xk)

Tωc(ω)dω

= (2π)−d/2
∫

Rd

∣∣∣∣∣∣

N∑

j=1

aje
ixT

j ω

∣∣∣∣∣∣

2

c(ω)dω ≥ 0and assume that it vanishes. Then the produ
t of the generalized trigono-metri
 polynomial
p(ω) := pa,X(ω) :=

N∑

j=1

aje
ixT

j ω (9.4)with c vanishes almost everywhere. But we 
an expe
t that su
h polynomials
annot vanish on reasonable sets without being identi
ally zero and havingzero 
oe�
ients. More pre
isely:Lemma 9.5. If a generalized trigonometri
 polynomial of the above formvanishes on an open set in Rd, it has zero 
oe�
ients.Proof: By a simple shift (whi
h multiplies ea
h 
oe�
ient with a nonzero
omplex number) we 
an assume that the open set 
ontains the origin in itsinterior. Then all derivatives of p at zero must vanish. This implies that all
omplex numbers
Dβp(0) =

N∑

j=1

aj(ixj)
β, β ∈ N

d
0vanish, and this means that all

N∑

j=1

ajx
β
j , β ∈ N

d
0are zero. If we pi
k a single index j, 1 ≤ j ≤ N , we 
an �nd a multivariatepolynomial qj(x) with the Lagrange property qj(xk) = δjk, 1 ≤ j, k ≤ N , forinstan
e

qj(x) :=
∑

k 6=j

‖x− xk‖22
‖xj − xk‖22

=:
∑

β

b
(j)
β xβ
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for �nitely many nonzero 
oe�
ients b(j)β . Then we get
aj =

N∑

k=1

akqj(xk)

=
N∑

k=1

ak
∑

β

b
(j)
β xβk

=
∑

β

b
(j)
β

N∑

k=1

akx
β
k

= 0for all j, 1 ≤ j ≤ N .Theorem 9.6. If c is a nonnegative even and integrable fun
tion on Rd whi
his positive on an open set, its Fourier transform is a real�valued symmetri
translation�invariant positive de�nite kernel Kc on R
d.This now implies that the Gaussian is positive de�nite, be
ause its inverseFourier transform is never zero.Furthermore, sin
e both the kernel and its inverse Fourier transform arereal�valued and symmetri
, we 
an ignore the di�eren
e between inverse andforward Fourier transform in this 
ontext.We 
an turn the above theorem upside�down to getTheorem 9.7. Let K be a translation�invariant symmetri
 real�valued ker-nel on R

d whose Fourier transform exists, is even and nonnegative and inte-grable on Rd and positive on an open set. Then K is positive de�nite.This gives us plenty of leeway to 
onstru
t positive de�nite kernels. However,we are interested in expli
itly known kernels only, and then we have to 
he
ktheir Fourier transforms. For instan
e, Wendland's kernel
K(x− y) = (1− ‖x− y‖2)4+(1 + 4‖x− y‖2), x, y ∈ R

dhas positive Fourier transform in Rd for d ≤ 3, but this is not at all 
lear.We postpone su
h kernels for a while.9.4 Global Sobolev Kernels on R
dClearly, we should look for the reprodu
ing kernel of global Sobolev spa
e

Wm
2 (Rd). This is de�ned as the spa
e of fun
tions with generalized derivativesup to order m being in L2(R

d), and we 
an 
ast this into a 
ondition on175



Fourier transforms. If f is a smooth fun
tion on Rd, we know that theFourier transform of the derivative Dαf is the fun
tion ω 7→ (iω)αf̂(ω), andthis is in L2(R
d) if the integral

∫

Rd
|Dαf |2(x)dx =

∫

Rd
|(iω)αf̂(ω)|2dω =

∫

Rd
|ωα|2|f̂(ω)|2dωis �nite. Thus Sobolev spa
e Wm

2 (Rd) 
an be de�ned via the inner produ
t
(f, g)Wm

2
(Rd) :=

m∑

j=0

(
m

j

) ∑

|α|=j

(
j

α

)∫

Rd
Dαf(x)Dαg(x)dx

=
m∑

j=0

(
m

j

) ∑

|α|=j

(
j

α

)∫

Rd
|ωα|2f̂(ω)ĝ(ω)dω

=
∫

Rd

(
1 + ‖ω‖22

)m
f̂(ω)ĝ(ω)dωand 
onsists of all fun
tions f on Rd with

‖f‖2Wm
2

(Rd) =
∫

Rd

(
1 + ‖ω‖22

)m |f̂(ω)|2dω <∞.We now look for the kernel K whi
h will be reprodu
ing in Sobolev spa
e
Wm

2 (Rd). We write it in di�eren
e form right away, and we need the relation
f(x) = (f,K(x− ·))Wm

2
(Rd) for all x ∈ R

d, f ∈ Wm
2 (Rd).We formally see that

(K̂(x− ·))(ω) = e−ixTωK̂(ω)and �nd that we have to satisfy
f(x) = (f,K(x− ·))Wm

2
(Rd)

= (2π)−d/2
∫

Rd
f̂(ω)

(
1 + ‖ω‖22

)m
e+ixTωK̂(ω)dωwhi
h works if we 
an set

K̂(ω) =
(
1 + ‖ω‖22

)−mand if K and f are inverse Fourier�transformable.Sin
e we now have an idea what the kernel should be, we de�ne it as
K(x− y) := (2π)−d/2

∫

Rd

(
1 + ‖ω‖22

)−m
ei(x−y)Tωdω (9.8)176



This integral is well�de�ned if −2m < −d or m > d/2, whi
h is the usualsu�
ient 
ondition for an embedding of C(Ω) into Wm
2 (Ω). Thus the kernelexists pointwise, and we have to 
he
k whether K(x− ·) lies in Wm

2 (Ω). Tothis end, we 
he
k the Fourier transform 
ondition
(2π)−d/2

∫

Rd

(
1 + ‖ω‖22

)m |(K̂(x− ·))(ω)|2dω
= (2π)−d/2

∫

Rd

(
1 + ‖ω‖22

)m
K̂(ω)2dω

= (2π)−d/2
∫

Rd

(
1 + ‖ω‖22

)−m
dωwhi
h is �nite and equal to K(0), again due to the 
ondition m > d/2.What is left is the inverse Fourier transformability of f , sin
e we 
an formthe right�hand side of the reprodu
tion equation, and it is

(2π)−d/2
∫

Rd
eix

Tωf̂(ω)dω.This integral is 
lassi
ally integrable be
ause of
∫

Rd
|f̂(ω)|dω

=
∫

Rd

(
1 + ‖ω‖22

)m/2 |f̂(ω)|
(
1 + ‖ω‖22

)−m/2
dω

≤
√∫

Rd
(1 + ‖ω‖22)m |f̂(ω)|2dω

√∫

Rd
(1 + ‖ω‖22)−m

dω

≤ C‖f‖Wm
2

(Ω)K(0)and thus it represents f(x). We haveTheorem 9.9. The reprodu
ing kernel for Sobolev spa
e Wm
2 (Rd) for m >

d/2 is given by (9.8) and turns out to have the expli
it radial representation
21−m

(m− 1)!
‖x− y‖m−d/2

2 K−m+d/2(‖x− y‖2) (9.10)where Kν is the modi�ed Bessel fun
tion of order ν.We postpone the expli
it 
al
ulation ending with the above formula, but inFigure 6 on page 5 we already presented a plot of the kernels rνKν(r) after ares
aling to attain 1 at zero. In se
tion 12.7.8 we provide some properties ofthese fun
tions. In parti
ular, they de
rease monotoni
ally away from zero,and they have exponential de
ay towards in�nity. At zero, they have limitedsmoothness. 177



9.5 Native Spa
es of Translation�Invariant KernelsAfter we have seen the spe
ial 
ase of a kernel that dire
tly leads to a globalSobolev spa
e, we now go ba
k to the more general situation of a translation�invariant kernel Kc generated from an even, nonnegative, and summableFourier transform c = K̂c. We want to 
al
ulate the native spa
e of thekernel, but in order to be aligned with our error analysis, we have to do thison a bounded domain Ω ⊂ Rd. We 
an drop c and work with K and K̂dire
tly.The inner produ
t in the native spa
e is de�ned for typi
al fun
tions fa,X asin (3.11) in se
tion 3.3. But we 
an now use Fourier transforms on it and get�rst
(f̂a,X)(ω) = (2π)−d/2

∫

Rd
fa,X(x)e

−ixTωdx

= (2π)−d/2
M∑

j=1

aje
−ixT

j ω
∫

Rd
K(x− xj)e

i(xj−x)Tωdx

= K̂(ω)
M∑

j=1

aje
−ixT

j ω

=: K̂(ω) pa,X(ω)and then
(fa,X , fb,Y ) =

M∑

j=1

N∑

k=1

ajbkK(yk, xj)

= (2π)−d/2
M∑

j=1

N∑

k=1

ajbk

∫

Rd
K̂(ω)ei(yk−xj)

Tωdω

= (2π)−d/2
∫

Rd
K̂(ω)

M∑

j=1

aje
−ixT

j ω
N∑

k=1

bke
iyTk ωdω

= (2π)−d/2
∫

Rd

f̂a,X(ω)f̂b,Y (ω)

K̂(ω)
dω.Thus we 
an read o� the right inner produ
t of the native spa
e. We de�ne

FK := {f ∈ L2(R
d) :

∫

Rd

|f̂(ω)|2
K̂(ω)

dω <∞}and see that this spa
e 
ontains the native spa
e for K be
ause it 
ontainsit as a set and has the same topology. Sin
e, by de�nition as a 
losure, thenative spa
e for K is 
losed, it is a 
losed subspa
e of FK . We now look at178



its orthogonal 
omplement. For this, we take any f ∈ FK and evaluate theinner produ
t
(f, fa,X)K = (2π)−d/2

∫

Rd

f̂(ω)f̂a,X(ω)

K̂(ω)
dω

= (2π)−d/2
∫

Rd
f̂(ω)pa,X(ω)dω

= (2π)−d/2
∫

Rd
f̂(ω)

M∑

j=1

aje
ixT

j ωdω

=
M∑

j=1

ajf(xj)whi
h implies that K is the reprodu
ing kernel in FK on the full domain Rd.If f is orthogonal to all fa,X with X ⊂ Ω for a bounded domain Ω ⊂ Rd, wesee that f(Ω) = {0}, and 
onversely.Theorem 9.11. The native spa
e for a general translation�invariant sym-metri
 positive de�nite kernel K on a domain Ω is the orthogonal subspa
eof the spa
e of fun
tions in FK vanishing on Ω, where orthogonality is un-derstood in FK.We now 
he
k for whi
h m we have a 
ontinuous embedding of the nativespa
e NK of K into Wm
2 (Ω). We take an f ∈ NK and note �rst that it is in

FK , whi
h means that it has a global extension and satis�es
∫

Rd

|f̂(ω)|2
K̂(ω)

dω <∞.We now 
he
k if we 
an prove f ∈ Wm
2 (Rd). This would work if we get

∫

Rd
|f̂(ω)|2(1 + ‖ω‖22)mdω

=
∫

Rd

|f̂(ω)|2
K̂(ω)

K̂(ω)(1 + ‖ω‖22)mdω

≤
(
sup
ω∈Rd

K̂(ω)(1 + ‖ω‖22)m
)
·
∫

Rd

|f̂(ω)|2
K̂(ω)

dω <∞under the hypothesis
sup
ω∈Rd

K̂(ω)(1 + ‖ω‖22)m ≤ C <∞or
K̂(ω) ≤ C(1 + ‖ω‖22)−m for all ω ∈ R

d. (9.12)179



Theorem 9.13. If a translation�invariant symmetri
 positive de�nite kernel
K on Rd satis�es (9.12) for some m > d/2, then its native spa
e NK is
ontinuously embedded in Wm

2 (Rd), and its restri
tion to a domain Ω is in
Wm

2 (Ω). Furthermore, interpolation on subsets X of Ω with �ll distan
e
h ≤ h0(m,Ω) has 
onvergen
e order hm−d/2 for h → 0 in the L∞ norm on
Ω.Note that the 
ondition (9.12) is 
losely related to the smoothness of thekernel K in the global L2(R

d) sense. Roughly spoken, it means that thekernel itself is in Sobolev spa
e W n
2 (R

d) for all n < 2m− d/2.9.6 Constru
tion of Positive De�nite Radial Fun
tionson RdThis subse
tion 
ontains tools from [Wu95℄ as generalized in [SW96℄ for the
onstru
tion of positive de�nite radial fun
tions on Rd. We start with thestandard redu
tion of d-variate Fourier transforms of radial fun
tions to Han-kel transforms of univariate fun
tions. Introdu
ing t = r2/2 as a new vari-able, two su
h transforms for di�erent spa
e dimensions are related to ea
hother by a simple univariate di�erential or integral operator that preserves
ompa
t supports. This fundamental tri
k of Z. Wu then opens up the wayfor the easy derivation of various 
ompa
tly supported radial basis fun
tions.9.6.1 Hankel TransformsWe assume a radial fun
tion Φ(·) = φ(‖ · ‖2) to be given su
h that φ :
R>0 → R has some de
ay towards in�nity that we are going to quantifylater. Let us formally look at the Fourier transform formula and simplify it,using radiality, and introdu
ing polar 
oordinates for x:

Φ̂(ω) = (2π)−d/2
∫

Rd
Φ(x)e−ix·ωdx

= (2π)−d/2
∫

Rd
φ(‖x‖2)e−ix·ωdx

= (2π)−d/2
∫ ∞

0
φ(r)rd−1

∫

‖y‖2=1
e
−ir‖ω‖2y· ω

‖ω‖2 dydr.This 
ontains the fun
tion F (r‖ω‖2, d) de�ned in (12.29) by the integral
F (t, d) :=

∫

‖y‖2=1
e−ity·zdy
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for t ≥ 0 and some ‖z‖2 = 1, z ∈ Rd. Using its representation (12.31) via aBessel fun
tion, we get the very important equation
Φ̂(ω) = (2π)−d/2σd−2

∫ ∞

0
φ(r)rd−1 Γ(d−1

2
)Γ(1

2
)

(r‖ω‖2/2)(d−2)/2
J(d−2)/2(r‖ω‖2)dr

= ‖ω‖−(d−2)/2
2

∫ ∞

0
φ(r)rd/2J(d−2)/2(r‖ω‖2)dr. (9.14)that allows the Fourier transform of a radial fun
tion to be written as aunivariate Hankel transform. Equation (9.14) implies that the Fouriertransform of a radial fun
tion Φ is again a radial fun
tion. It holds also for

d = 1, as 
an be proven by dire
t 
al
ulation and
√
π

2z
J−1/2(z) =

cos z

z
. (9.15)This equation is not dire
tly 
ompatible with (12.30), be
ause the latter doesnot exist for ν = −1/2. But we 
an use the usual power series representation(12.32) of Bessel fun
tions to get (9.15) from (12.34).9.6.2 Bessel KernelsWe apply the Hankel transform for evaluating the Fourier transform of the
hara
teristi
 fun
tion χ1 of the unit ball in Rd. This is needed in the proofof a theorem tn stability theory, but it also yields useful new kernels.In parti
ular, we apply (12.38) and get

χ̂1(ω) = ‖ω‖−(d−2)/2
2

∫ 1

0
rd/2J(d−2)/2(r‖ω‖2)dr

= ‖ω‖−d/2
2 Jd/2(‖ω‖2).

(9.16)Considered as a univariate radial fun
tion, this is an entire analyti
 fun
tionof exponential type that we shall meet again later. Figure 29 shows thekernels r−νJν(r) for various ν after res
aling to have value 1 at zero. For ν ∈
Z/2 they are positive de�nite on R

d for d ≤ 2ν, sin
e they are positive de�niteon Rd for d = 2ν and all smaller dimensions. Sin
e their Fourier transform is
ompa
tly supported, they are band�limited and they generalize the usual
sinc fun
tion.Theorem 9.17. [FLW06℄. The Bessel kernel r−νJν(r) when a
ting as aradial kernel K(x, y) := ‖x − y‖−ν

2 Jν(‖x − y‖2) on Rd is positive de�nite if
2Z ∋ ν ≥ d/2. The kernel r−d/2Jd/2(r) generates the spa
e of bandlimitedfun
tions on Rd with L2 Fourier transforms supported in the unit ball of
Rd. 181
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Figure 29: The Bessel kernels r−νJν(r)From (12.31) we know that F (r, d) behaves like r−νJν(r) for ν = (d−2)/2 for
d > 1. Its Fourier transform on Rd is not positive on an open set, and thus wehave to invest some work in order to prove positive de�niteness on Rd, whileTheorem 9.17 guarantees positive de�niteness only on R

k for 0 ≤ k ≤ d− 2.This was �rst observed in [FLW06℄.Theorem 9.18. The Bessel kernel r−νJν(r) for ν = (d − 2)/2 is positivede�nite on Rd for d > 1.Proof: With our standard argument we have to prove that a generalizedpolynomial p = pa,X of the form (9.4) has zero 
oe�
ients, if it vanishes on thesphere. If we single out any two 
oordinates of Ω, we have an analyti
 fun
tionwhi
h vanishes on a 
ir
le, thus it vanishes for all arguments. Repeating thisfor all 
ombinations of two variables, we see that the polynomial must vanishon all of Rd, and then we 
an pro
eed as before to prove positive de�nitenessof the kernel.From [FLW06℄ we also take the interesting observation that the kernel (cr)−(d−2)/2J(d−2)/2(rc)satis�es the Lapla
e eigenvalue equation (or the Helmholtz equation)
∆u+ c2u = 0 for d > 1 dimensions.A se
ond appli
ation of the Hankel transform is the proof of (9.10) in Theo-rem 9.9. A more expli
it and dire
t proof is in [Wen05℄ on pages 76�77, but182



we 
ite (12.51) with
ν =

d− 2

2
, µ = m− 1, t = r, a = ‖ω‖2, z = cto get

∫ ∞

0

rd/2J(d−2)/2(r‖ω‖2)
(r2 + c2)m

dr =
‖ω‖m−1

2 c−m+d/2

2m−1Γ(m)
K−m+d/2(c‖ω‖2).Combining with (9.14) applied to φ(r) = (r2 + c2)−m this yields

Φ̂(ω) =
‖ω‖m−1−(d−2)/2

2 c−m+d/2

2m−1Γ(m)
K−m+d/2(c‖ω‖2)

=

(
‖ω‖2
c

)m−d/2
21−m

(m− 1)!
K−m+d/2(c‖ω‖2).9.6.3 Change of VariablesWe now introdu
e t = r2/2 as a new variable, writing a radial basis fun
tion

Φ as
Φ(·) = φ(‖ · ‖2) = f(‖ · ‖22/2), (9.19)and we shall use Latin 
hara
ters f, g, . . . to distinguish the transformedfun
tions from the original ones φ, ψ, et
. Note that going over from Φ to φand further to f loses the information on the dimension of the spa
e that wewant to work on. But we 
an take advantage of this loss and write dimension-dependent operations like Fourier transforms as univariate operations with as
alar parameter d.We keep the dimension d in mind and rewrite the d-variate Fourier transformequation (9.14) in terms of the transformed fun
tion f to get

Φ̂(ω) = ‖ω‖−
d−2

2

2

∫ ∞

0
f(s2/2)sd/2J d−2

2

(s · ‖ω‖2)ds

=
∫ ∞

0
f
(
s2

2

)(
s2

2

) d−2

2
(
s · ‖ω‖2

2

)− d−2

2

J d−2

2

(s · ‖ω‖2)s ds

=
∫ ∞

0
f
(
s2
2

)(
s2
2

) d−2

2

H d−2

2

(
s2
2 · ‖ω‖

2
2

2

)
s dswith the fun
tions Jν and Hν de�ned by

(
z
2

)−ν
Jν(z) = Hν(z

2/4) =
∞∑

k=0

(−z2/4)k
k!Γ(k + ν + 1)183



for ν ∈ C as in (12.33). If we substitute t = s2/2, we �nd
Φ̂(ω) =

∫ ∞

0
f(t)t

d−2

2 H d−2

2

(
t · ‖ω‖

2

2

)
dt

=:
(
F d−2

2

f
)
(‖ω‖2/2)

(9.20)with the general operator
(Fνf)(r) :=

∫ ∞

0
f(t)tνHν(tr)dt. (9.21)Theorem 9.22. The d�variate Fourier transform of a radial kernel φ with

φ(r) = f(r2/2) is given by
F(d−2)/2(f)(‖ω‖22/2).The operator Fν is formally de�ned for all ν > −1 and su�
iently ni
efun
tions f , but we 
an extend it to all ν ∈ R, if we omit terms in the seriesof Hν that have a singularity of the Gamma fun
tion in their denominator.However, we want to 
he
k its domain of de�nition with respe
t to fun
tions

f on R>0 for ν > −1. Near zero, the fun
tion f(t)tν should be absolutelyintegrable, be
ause the analyti
ity of Hν 
auses no problems at zero. Forlarge ν this allows a moderate singularity of f at zero. Near in�nity we haveto 
he
k the de
ay of Hν . But sin
e the Bessel fun
tions Jν have a ≀(t−1/2)behaviour for t→ ∞ due to (12.42), we see that Hν(t) de
ays like t−ν/2−1/4.Thus we require integrability of f(t)tν/2−1/4 at in�nity for ν > −1. Sin
e wedo not need the weakest 
onditions, we 
an simply assume
f(t)tν ∈ L1(R>0). (9.23)Note that both Fν and Hν generalize to arbitrary ν ∈ R, provided that
ertain restri
tions on f like (9.23) hold. Furthermore, by symmetry of radialfun
tions and our de�nition of Fourier transforms we have

F−1
d−2

2

= F d−2

2

for d ∈ Non su�
iently smooth fun
tions with su�
ient de
ay. We shall see laterthat this generalizes to F−1
ν = Fν for all ν ∈ R, wherever both operatorsare de�ned. Please keep in mind that the parameter ν is related to thespa
e dimension d via ν = (d − 2)/2. We shall work with ν instead of

d for notational simpli�
ation. Furthermore, we 
onsider a spa
e Srad oftempered radial fun
tions. It 
ould be de�ned as a subspa
e of the spa
e
S of d-variate tempered test fun
tions, 
omprising all radial test fun
tions184



after introdu
ing ‖x‖22/2 as a new variable. However, we prefer to de�ne it asthe spa
e of real-valued fun
tions on [0,∞) that are in�nitely di�erentiablesu
h that all derivatives vanish faster than any polynomial at in�nity. Takingderivatives of (9.19), one 
an easily see that this yields a subspa
e of radialtest fun
tions on Rd for all spa
e dimensions d. Conversely, any radial testfun
tion Φ in the form (9.19) yields a fun
tion f that is in Srad. To see thisone 
an pro
eed indu
tively, using
∂m

∂ωm
j

Φ(ω) = f (m)(‖ω‖22/2)ωm
j + lower derivatives with polynomial fa
tors.Thus the two notions of S 
oin
ide, and ea
h radial fun
tion whi
h yields atest fun
tion for a spe
i�
 spa
e dimension will provide a test fun
tion forany dimension. Thus Srad is the proper spa
e to de�ne the operators Fν on,and it 
learly 
ontains e−r, whi
h 
an easily proven to be a �xed point of any

Fν , using the de�nitions (12.33) of Hν and (12.25) of the Gamma fun
tion.9.6.4 Cal
ulus on the Hal�ineIn the spa
e Srad we 
an introdu
e a quite useful generalization of the 
lassi
al
al
ulus operations. We start with the family of operators
Iα(f)(r) :=

∫ ∞

0
f(s)

(s− r)α−1
+

Γ(α)
ds (9.24)on Srad for all α > 0. The simplest spe
ial 
ase is

I1(f)(r) :=
∫ ∞

r
f(s)dswith the inverse

I−1(f)(r) := −f ′(r).Note that this operation implies that the resulting fun
tion vanishes at in�n-ity, and thus there is no additive 
onstant in the integration. Furthermore,the identity
Id = In1 ◦ In−1is Taylor's formula at in�nity, as follows from (9.24). The identity (12.26)allows a dire
t proof of the property
Iα ◦ Iβ = Iα+β (9.25)for all α, β > 0 by appli
ation of Fubini's theorem. Di�erentiation andintegration by parts imply

In−1 ◦ Iα = Iα−n 0 < α < n
In+α ◦ In−1 = Iα α > 0, n > 0.185



By Iα = Iα ◦ In ◦ In−1 = In ◦ Iα ◦ In−1 we get
In−1 ◦ Iα = Iα ◦ In−1,and this su�
es to prove that (9.25) holds for all α, β ∈ R if we de�ne
I0 := Id
I−n := In−1, n > 0
Iα := Iα−⌊α⌋ ◦ I⌊α⌋for the remaining 
ases of α. Altogether, we haveTheorem 9.26. The operators Iα on Srad form an abelian group under 
om-position whi
h is isomorphi
 to R under �+� via α 7→ Iα.Proof: The remaining things are easy to prove using the above rules.Let us do some simple examples of di�erentiation and integration of fra
tionalorder. The independent variable will be denoted by t, and we indi
ate thedomain of validity of the di�erent 
ases, be
ause we do not restri
t ourselvesto tempered radial fun
tions.

Iα(f(t+ x))(r) = Iα(f(t))(r + x) α ∈ R, x ≥ 0
Iα(f(tx))(r) = x−αIα(f(t))(rx) α ∈ R, x ≥ 0
Iα(e

−st)(r) = s−αe−sr α ∈ R, s > 0
Iα(t

−βΓ(β))(r) = r−(β−α)Γ(β − α) β > 0, α < β
Iα((x+ t)−βΓ(β))(r) = (x+ r)−(β−α)Γ(β − α) β > 0, α < β, x > 0

Iα

(
(s− t)β−1

+

Γ(β)

)
(r) =

(s− r)α+β−1
+

Γ(α + β)
β > 0, α + β > 0We shall make spe
i�
 use of the �semi-integration� operator and its inverse,the �semi-di�erentiation�, as given by

I1/2(f)(r) =
∫ ∞

r

f(s)√
π(s− r)

ds

I−1/2(f)(r) = −
∫ ∞

r

f ′(s)√
π(s− r)

ds

= I1/2 ◦ I−1(f)(r),

(9.27)that are inverses of ea
h other.A very simple representation of the operators Iα is possible via the Lapla
etransform
L(ϕ)(r) :=

∫ ∞

0
ϕ(s)e−rsds (9.28)186



whi
h exists 
lassi
ally for any 
ontinuous fun
tion ϕ on [0,∞) that grows atmost polynomially towards in�nity. For the time being, we ignore the moregeneral de�nitions of Lapla
e transforms and observe that the a
tion of Iα
an be written down as
Iα(L(ϕ)(·)) := L(ϕ(·)(·)−α),where all real α are formally possible (provided that ϕ behaves ni
ely enough).9.6.5 Basi
 TransitionsThe main advantage of Srad and the de�nition (9.21) of the radial Fouriertransform using (9.20) is that we 
an 
ompare Fourier transforms for variousdimensions, while working on a simple spa
e of univariate fun
tions. But themost surprising fa
t, as dis
overed by Wu, shows up when we simply takethe derivative of Fν(f)(r). We use (12.35) to get

− d

dr
Fν(f)(r) = (I−1 ◦ Fν)(f)(r)

= − d

dr

∫ ∞

0
f(t)tνHν(rt)dt

= −
∫ ∞

0
f(t)tν

d

dr
Hν(rt)dt

=
∫ ∞

0
f(t)tν+1Hν+1(rt)dt

= Fν+1(f)(r).

(9.29)
Going ba
k to ν = (d−2)/2, we see that the (d+2)-variate Fourier transformof a radial fun
tion after the substitution (9.19) is nothing else than thenegative univariate derivative of the d-variate Fourier transform after (9.19).We shall generalize the above identity later to Iα ◦ Fν = Fν−α on R, but wealready know that I1◦Fν = Fν+1 allows to pro
eed from (d+2)-variate radialFourier transforms to d-variate Fourier transforms by univariate integration.Let us apply (12.36) to get another identity on tempered fun
tions:

Fν(−f ′)(r) =
∫ ∞

0
−f ′(s)sνHν(sr)ds

=
∫ ∞

0
f(s)sν−1Hν−1(sr)dsdt

= = Fν−1(f)(r).

(9.30)
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This will generalize to Fν ◦ Iα = Fν+α and is a trivial 
onsequen
e of Iα ◦
Fν+α = Fν and F 2

µ = Id, if the latter holds in general.Note that in both 
ases we have operators that preserve 
ompa
t supports.The integral operator even preserves nonegativity (it is a monotone op-erator). The expli
it 
onstru
tion of 
ompa
tly supported radial fun
tionsrelies heavily on these features. But we also want to pro
eed from d-variateFourier transforms to (d+1)- or (d−1)-variate Fourier transforms. This willbe a
hieved by the operator I1/2 and its inverse from (9.27). We shall treatthis problem in general, 
omparing two arbitrary instan
es Fν and Fµ.9.6.6 Identities for Transforms, First VersionWe 
an easily evaluate the a
tion of the Fourier operator on the Lapla
etransform as
Fν(L(ϕ))(r) =

∫ ∞

0
sνHν(sr)

∫ ∞

0
ϕ(t)e−stdtds

=
∫ ∞

0
ϕ(t)

∫ ∞

0
sνHν(sr)e

−stdsdt

=
∫ ∞

0
ϕ(t)t−ν−1

∫ ∞

0
xνHν(xr/t)e

−xdxdt

=
∫ ∞

0
ϕ(t)t−ν−1e−r/tdt

=
∫ ∞

0
ϕ(1/s)sν−1e−srds

= L (ϕ(1/·)(·)ν−1) .Then, again as formal operations,
Fν(L(ϕ(·))) = L (ϕ(1/·)(·)ν−1)

= Iµ−νL (ϕ(1/·)(·)µ−1)
= Iµ−νFµ(L(ϕ(·)),

Fν(Fµ(L(ϕ(·)))) = Fν (L (ϕ(1/·)(·)µ−1))
= L (ϕ(·)(·)−µ+1(·)ν−1)
= Iµ−ν(L(ϕ(·))),as expe
ted. Note that this implies F 2

ν = Id for all ν. All of these identitiesare valid at least on Lapla
e transforms of fun
tions ϕ that vanish faster thanany polynomial at zero and at in�nity, but 
ontinuity arguments 
an be usedto enlarge the s
opes. 188



9.6.7 Identities for Transforms, Se
ond VersionThe previous se
tion showed that the identity
Fν ◦ Fµ = Iµ−νholds for all µ, ν ∈ R on a small spa
e of fun
tions, and where Iα is anoperator that roughly does α-fold integration for α ∈ R. We now want tomake this more pre
ise and expli
it. In parti
ular, we assert F 2

ν = Id forall ν, whi
h we only know for ν ∈ 1
2
Z>−2. Furthermore, we want to use ourexpli
it representations for the operators Iα.To pro
eed towards inversion of the operator Fν , let us start 
al
ulatingthe Fourier transform of the simplest 
ompa
tly supported fun
tion, i.e.: atrun
ated power. The out
ome is somewhat surprising, be
ause we run intothe fun
tion Hν again:Lemma 9.31. For ν > µ > −1 and all s, r ≥ 0 we have

Fµ

(
s−ν(s− ·)ν−µ−1

+

Γ(ν − µ)

)
(r) = Hν(rs).Proof: We dire
tly 
al
ulate the assertion and use (12.37) from page 252.In detail,

Fµ

(
s−ν(s− ·)ν−µ−1

+

Γ(ν − µ)

)
(r)

=
∫ ∞

0
tµ
s−ν(s− t)ν−µ−1

+

Γ(ν − µ)
Hµ(tr)dt

= s−ν

Γ(ν − µ)

∫ s

0
tµ(s− t)ν−µ−1Hµ(tr)dt

= s−ν

Γ(ν − µ)

∫ s

0
tµ(s− t)ν−µ−1Jµ(2

√
rt)(rt)−µ/2dt,and by substitution t = su2, we get

= s−ν

Γ(ν − µ)

∫ 1

0
sµu2µsν−µ−1(1− u2)ν−µ−1Jµ(2

√
rsu)(rsu2)−µ/22sudu

=
2(rs)−µ/2

Γ(ν − µ)

∫ 1

0
uµ+1(1− u2)ν−µ−1Jµ(2

√
rsu)du

=
2(rs)−µ/2

Γ(ν − µ)
2ν−µ−1Γ(ν − µ)
(2
√
rs)−ν−µ Jν(2

√
rs)

= (
√
rs)−νJν(2

√
rs)

= Hν(rs). 189



We would like to invert the Fourier transform in the above assertion, butthe de
ay of Hν is not su�
ient to see dire
tly that Fµ is appli
able at all.However, we 
an resort to spe
i�
 tools from Spe
ial Fun
tions to getLemma 9.32. For ν > µ > −1 and all r, s > 0 we have
(FµHν(s·))(r) = s−ν(s− r)ν−µ−1

+

Γ(ν − µ)
.Proof: The assertion is a 
onsequen
e of theWeber�S
hafheitlin integral(see (12.45) or [AS70℄ p. 487, 11.4.41) after substitutions of the type t = s2/2.In detail, we have

(
FµHν

(
u2
2 ·

))(
r2
2

)

=
∫ ∞

0
tµHµ

(
r2
2 t

)
Hν

(
u2
2 t

)
dt

=
∫ ∞

0

(
s2
2

)µ

· s ·Hµ

(
r2
2 · s

2

2

)
Hν

(
u2
2 · s

2

2

)
ds

=
∫ ∞

0
2−µs2µ+1

(
rs
2

)
−µ
(
us
2

)
−νJν(us)ds

= 2νr−µr−ν
∫ ∞

0
sµ−ν+1Jµ(rs)Jν(us)ds

=
2νr−µu−ν2µ−ν+1rµ(u2 − r2)ν−µ−1

+

uνΓ(ν − µ)

= 1
Γ(ν − µ)

(
u2

2

)
−ν

(
u2

2 − r2

2

)
ν−µ−1
+ .The above result 
an be used to derive the d�variate Fourier transform ofthe kernel

K(x, y) := Hν

(
c2‖x− y‖22

4

)
=

(
c‖x− y‖2

4

)−ν

Jν

(
c‖x− y‖2

2

) (9.33)We have to rewrite this kernel as φ(r) = f(r2/2) and get
f(t) = Hν

(
c2

2
t

)
.190



Then the above lemma yields
(
F(d−2)/2Hν

(
c2

2
·
))(

‖ω‖22
2

)
=

(
c2

2

)−ν (
c2

2
− ‖ω‖22

2

)ν−d/2

+

Γ(ν − d/2 + 1)
(9.34)provingTheorem 9.35. If 2ν+2 > d holds, the s
aled Bessel kernel (9.33) is positivede�nite on Rd and has the 
ompa
tly supported Fourier transform (9.34) dueto Theorems 9.22 and 9.7.We now know that Fν ◦ Fν = Id holds on Lapla
e transforms, on trun
atedpowers, and on fun
tions of the form Hµ(s·). But before we generalize thisto a larger 
lass of fun
tions, we generalize it to other Fµ operators:Theorem 9.36. Let ν > µ > −1. Then for all tempered radial test fun
tions

f ∈ Srad we have
Fµ ◦ Fν = Iν−µ (9.37)where the integral operator Iα is given by

(Iαf)(r) =
∫ ∞

0
f(s)

(s− r)α−1
+

Γ(α)
ds, r > 0, α > 0.Proof: For any tempered radial test fun
tion f ∈ Srad we evaluate (Fµ ·

Fν)f(r) by means of Lemma 9.32 to obtain
∫ ∞

0
Hµ(tr)t

µ
∫ ∞

0
Hν(st)s

νf(s)dsdt

=
∫ ∞

0
sνf(s)

∫ ∞

0
tµHµ(tr)Hν(ts)dt ds

=
∫ ∞

0
sνf(s) · Fµ(Hν(s·))(r)ds

=
∫ ∞

0
f(s)

(s− r)ν−µ−1
+

Γ(ν − µ)
ds = (Iν−µf)(r).By the above theorems it is easy to see that

IαHν = Hν−αfor all α < ν + 1, generalizing (12.35).191



9.6.8 Wendland's Fun
tionsDue to a result of Askey [Ask73℄ the radial trun
ated power fun
tion
Aµ(·) := (1− ‖ · ‖2)µ+is positive de�nite on R

d for µ ≥ ⌊d/2⌋+1, be
ause it has a stri
tly positiveradial Fourier transform in this 
ase.In
omplete: add proof see [Wen05℄Its radial form after substitution is (1−√
2r)µ+, and due to its �nite supportwe 
an apply any Fν operator for ν > −1. We use the identity Fν+α = Fν ◦Iαfrom (9.30) for this fun
tion and get

Fν+kAµ = Fν(Ik(Aµ)), k ∈ N,where the left-hand side is stri
tly positive whenever
µ ≥ ⌊d/2⌋+ 1 + k. (9.38)Thus the fun
tion Ik(Aµ) is positive de�nite on Rd for the same range ofparameters. Sin
e the Ik operators preserve 
ompa
t supports, the resultingfun
tions

ψµ,k(r) := Ik(Aµ(r
2/2))lead to 
ompa
tly supported positive de�nite fun
tions

Ψµ,k(·) = ψµ,k(‖ · ‖2) = Ik(Aµ(‖ · ‖22/2))on Rd under the 
ondition (9.38). Let us do a straightforward evaluation.This yields
IkAµ(r) =

∫ ∞

0
(1−

√
2s)µ+

(s− r)k−1
+

(k − 1)!

=
∫ 1

√
2r
t(1− t)µ

(t2/2− r)k−1
+

(k − 1)!

=
∫ 1

x
t(1− t)µ

(t2 − x2)k−1
+

(k − 1)!2k−1

(9.39)
for 0 ≤ r ≤ 1/2 or 0 ≤ x =

√
2r ≤ 1. If µ is an integer, the resulting fun
tionis a single polynomial of degree µ+2k in the variable x = ‖·‖2 on its support.192



The 
ase k = 1 is parti
ularly simple. We get the expli
it representation
I1Aµ(x

2/2) =
∫ 1

x
t(1− t)µdt

=
x(1− x)µ+1

µ+ 1
+

(1− x)µ+2

(µ+ 1)(µ+ 2)

=
(1− x)µ+1

+

(µ+ 1)(µ+ 2)
(1 + (µ+ 1)x) .The smallest possible integer µ for d ≤ 3 and k = 1 is µ = 3, when
e

I1A3(x
2/2) =

1

20
(1− x)4+(1 + 4x).In addition to Ak,µ := IkAµ let us de�ne

Bk,µ :=
∫ 1

x
(1− t)µ

(t2 − x2)k−1
+

(k − 1)!2k−1and split the integral de�ning Ak,µ via t = (t− 1) + 1 into
Ak,µ = −Bk,µ+1 +Bk,µ.Then do integration by parts for Bk,µ and k > 1 to get
Bk,µ =

1

µ+ 1
Ak−1,µ+1.Thus we have the re
urren
e relation

Ak,µ = − 1

µ+ 2
Ak−1,µ+2 +

1

µ+ 1
Ak−1,µ+1.Looking at our result for k = 1 we see that we 
an assume

Ak,µ(x
2/2) = (1− x)µ+kCk,µ(x)with the re
ursion

Ck,µ(x) =
(x− 1)

µ+ 2
Ck−1,µ+2(x) +

1

µ+ 1
Ck−1,µ+1(x),for k ≥ 1, starting with

C0,µ(x) = 1.193



Thus the polynomials Ck,µ have degree k with a positive leading 
oe�
ient.The number of 
ontinuous derivatives of Ak,µ(x
2/2) at x = 1 thus is µ+k−1 ≥

2k + ⌊d/2⌋ ≥ 2k. To get the number of derivatives at zero we apply thebinomial theorem to the last fa
tor in the integrand. Then
Ak,µ(x

2/2) =
k−1∑

j=0

(
k − 1
j

)
(−1)jx2j

(k − 1)!

∫ 1

x
t(1 − t)µt2k−2−2jdt

qµ,k−j(x) :=
∫ 1

x
t(1− t)µt2k−2−2jdt

= qµ,k−j(1)−
∫ x

0
t(1− t)µt2k−2−2jdt

= qµ,k−j(1)−
x2k−2j

2k − 2j
+ higher-order termsshows that the �rst odd monomial o

urring in Ak,µ(x

2/2) 
annot have anexponent smaller than 2k+1. Thus the fun
tion has 2k 
ontinuous derivativesat zero, and we get 2n−1 = 2k+1 in the 
ontext of Wendland's fun
tions. Interms of 
ontinuity requirements, we get overall C2k 
ontinuity at a minimaldegree µ + 2k = ⌊d/2⌋ + 3k + 1, and Wendland proves in [Wen95℄ that thisdegree is minimal, if we ask for a single polynomial pie
e on [0, 1] that indu
esa positive de�nite radial fun
tion whi
h is C2k and positive de�nite on Rd.Note that the order of smoothness at the boundary of the support is ⌊d/2⌋larger than the smoothness at zero, whi
h has a positive e�e
t on the visualappearan
e of the reprodu
ed fun
tions.We end this by giving the C4 
ase for all dimensions d, where µ = ⌊d/2⌋+3:
A2,µ(x

2/2)

=
(1− x)µ+2

+

(µ+ 1)(µ+ 2)(µ+ 3)(µ+ 4)
(x2(µ+ 1)(µ+ 3) + 3x(µ+ 2) + 3)and the most frequent 
ase for d ≤ 3 is

A2,4(x
2/2) =

(1− x)6+
1680

(35x2 + 18x+ 3).The Fourier transforms are
FνIkAµ = Fν+kAµ194



and thus for r = x2/2 of the form
Fν+kAµ(r) =

∫ 1/2

0
(1−

√
2s)µsν+kHν+k(rs)ds

=
x−ν−k

2ν+k

∫ 1

0
(1− t)µtν+k+1Jν+k(xt)dt

=
x−µ−2ν−2k−2

2ν+k

∫ x

0
(x− u)µuν+k+1Jν+k(u)du.Due to a result of Gasper [Gas75℄, the above integral 
an be written as apositive sum of squares of Bessel fun
tions, at least in the odd-dimensional
ase d = 2n−1 with µ = n+k+1, whi
h leads to ν = m−1/2 and µ = m+1for m = n+k ≥ n. Results of Wendland [Wen95℄ then imply the asymptoti
behaviour

FνIkAµ(r
2/2) = Fν+kAµ(r

2/2) ≥ cr−d−2k−1for the ne
essary values of µ from (9.38).9.7 Conditionally Positive De�nite KernelsWe now go over to the treatment of general un
onditionally positive de�nitekernels. To do this, we shall introdu
e Fourier transforms in a somewhat moregeneral way that will later save us quite some work. The dire
t atta
k is im-possible, be
ause some of the most important 
onditionally positive de�nitefun
tions on Rd are radial fun
tions Φ(·) = φ(‖ · ‖2) that grow towards in�n-ity, e.g.: thin-plate splines φ(r) = r2 log r or multiquadri
s φ(r) = √
r2 + c2.These do not have 
lassi
al Fourier transforms, but sin
e they grow at mostpolynomially, they indu
e fun
tionals on the S
hwartz spa
e S. Thus theyhave generalized Fourier transforms de�ned via the Fourier transforms ofthe fun
tionals that they indu
e on S. These generalized Fourier transformsare not straightforward to handle and require quite some ma
hinery fromdistribution theory.We go a di�erent way by pi
king a very spe
i�
 set of assumptions to startwith, and then we 
an work our way without distributions. We do noteven assume Φ to be a 
onditionally positive de�nite fun
tion; this will be a
onsequen
e of our assumptions and lead to an important te
hnique to prove
onditional positive de�niteness for spe
i�
 examples.In what follows, re
all the notation used in se
tion 5.4, but here we �x thespa
e P to be the spa
e Pd

m of d�variate polynomials of order at mostm. Fur-195



thermore, we use the notion of Fourier transforms of fun
tionals as providedin se
tion 12.6.Assumption 9.40. Let Φ : R
d → R be even and 
ontinuous. Furthermore,let there be a 
ontinuous nonnegative fun
tion

Φ̂ : R
d \ {0} → Rwhi
h is positive on at least an open set. It may possibly have an algebrai
singularity

Φ̂(ω) = ≀(‖ω‖−d−β0) (9.41)with some real value β0 for ω near zero, and it must have the behavior
Φ̂ ∈ L1 near in�nity. (9.42)Then de�ne m := max(0, ⌊β0⌋) ≥ 0 to get the restri
tion

β0 < 2m (9.43)that will often o

ur later. Finally, let the usual bilinear form on L be repre-sentable by
(λa,X , λb,Y )Φ = (2π)−d/2

∫

Rd
Φ̂(ω)

M∑

j=1

N∑

k=1

ajbke
i(xj−yk)·ωdω, (9.44)where the fun
tionals λa,X ∈ L satisfy the moment 
onditions (5.4) in theform

λa,X(Pd
m) = {0}, (9.45)and thus we may use the notation (Pd
m)

⊥
Rd for L.Lemma 9.46. The fun
tionals λa,X ∈ L have Fourier transforms

λ̂a,X(ω) = pa,X(ω) =
N∑

j=1

aje
−ixT

j ωwith zeros of order at least m in the origin.Proof: Sin
e we have (9.45), we 
an use Example 12.22 to get our result.Theorem 9.47. Under the above assumptions the fun
tion Φ(x− y) is 
on-ditionally positive de�nite of order ≥ m on Rd.196



Proof: From the previous lemma we know that the fun
tionals λa,X ∈ Lhave Fourier transforms with zeros of order at least m in the origin. Thusthe integrand in (9.44) is of order ≀(‖ω‖2m−d−β0) near zero, and the integralis well-de�ned due to (9.43) and (9.42). Nonnegativity of Φ̂ proves that thebilinear form is positive semide�nite. The rest is as in the proofs of Theorems9.6 and 12.8.The reader should be aware that we did not assume Φ̂ to be the usual Fouriertransform. We thus 
annot use equations (12.7) or (12.12), but we have thegeneral identity
M∑

j=1

N∑

k=1

ajbkΦ(xj − yk) = (2π)−d/2
∫

Rd
Φ̂(ω)

M∑

j=1

N∑

k=1

ajbke
i(xj−yk)·ωdω.that is identi
al to (9.44) and is valid for all fun
tionals in L due to Assump-tion 9.40. It will ni
ely serve as a substitute for (12.12), but note that it doesnot allow single point-evaluation fun
tionals in the left-hand side.9.8 ExamplesWe now present spe
ial 
ases of (9.44) for radial kernels

K(x, y) = Φ(x− y) = φ(‖x− y‖2), x, y ∈ R
dwhere we get a resulting generalized d�variate Fourier transform in radialform whi
h we denote by φ̂.The �rst example generalizes the inverse multiquadri
s to general multi-quadri
s. If we set

φ(r) := (c2 + r2)β/2, r ≥ 0, c > 0, β ∈ R \ 2N0we get the fun
tion
φ̂(s) =

21+β/2

Γ(−β/2)
(
s

c

)−β+d
2

Kβ+d
2

(cs), s ∈ Rwhile the order of 
onditional positive de�niteness turns out to be
m = max(0, ⌈β/2⌉).Note that for positive β the denominator has the sign (−1)⌈β/2⌉. Thus we haveto multiply φ for positive β with this fa
tor to get a 
onditionally positivede�nite fun
tion. 197



The proof idea is quite ni
e. Ea
h side of the standard Fourier transformidentity (9.44), in
luding the quadrati
 form and holding �rst for negative
β is proven to be an analyti
 fun
tion of β. Under the additional moment
onditions, both sides also make sense for general β, and they 
an be 
on-ne
ted by analyti
 
ontinuation with the 
ase for negative β by a detour over
omplex β avoiding passing through the origin. Thus the Fourier transformequation also holds for the other β.The next example 
on
erns the power fun
tions, and this is the limit of theprevious 
ase for c→ 0. If we set

φ(r) := (−1)⌈β/2⌉rβ, r ≥ 0, β ∈ R>0 \ 2Nwe get the positive fun
tion
φ̂(s) =

2β+d/2Γ((β + d)/2)

(−1)⌈β/2⌉Γ(−β/2) s
−β−d, s ∈ Rwhile the order of 
onditional positive de�niteness turns out to be

m = ⌈β/2⌉.This proof works from the previous 
ase for positive β by letting c tend tozero, 
he
king 
arefully how the Bessel fun
tion intera
ts with the premulti-plied rational fun
tion.The �nal 
ase is 
onne
ted to β being an even integer. If we set
φ(r) := (−1)k+1r2k log r, r ≥ 0, k ∈ Nwe get

φ̂(s) = 22k−1+d/2s−2k−d, s ∈ Rwhile the order of 
onditional positive de�niteness turns out to be
m = k + 1.The last two 
ases are 
alled polyharmoni
, be
ause they are homogeneoussolutions of a power of the Lapla
ian. This is due to the fa
t that theirgeneralized Fourier transform is a plain negative power. The last 
ase is
alled the thin�plate spline.
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9.9 Conne
tion to L2(R
d)We now go ba
k to De�nition ?? of the native spa
e via (??) and Corollary??as

NK,Ξ := Pd
m +G = Pd

m + F .This de�nition is very general, and we want to re�express the native spa
evia Fourier transforms. We do this using a detour over weighted L2 spa
es.The spa
e L of se
tion 5.4 
onsists of fun
tionals λa,X with the moment
ondition (a,X) ∈ M . These fun
tionals have Fourier transforms λ̂a,X withthe property
λa,X(f) = (2π)−d/2(f̂ , λ̂a,X)L2(Rd), (λ̂a,X)(ω) =

N∑

j=1

aje
−ixT

j ω.Assumption 9.40 makes sure that the mapping
L : λ 7→ λ̂

√
Φ̂, L = (Pd

m)
⊥
Rd → L2(R

d)is well-de�ned. Indeed, the fun
tion L(λ) is in L2 near in�nity due to (9.42),and it is 
ontinuous around zero due to (9.43), sin
e λ̂ has a zero of order atleast m at the origin.With the results of the previous se
tion, (9.44) takes the form
(λa,X , λb,Y )Φ = (2π)−d/2(Lλa,X ,Lλb,Y )L2(Rd). (9.48)Theorem 9.49. Let Assumption 9.40 be satis�ed, and let m be minimal withrespe
t to (9.43). Then the map L extends by 
ontinuity to 
los (L), and ityields an isometry between 
los (L) and all of L2(R

d).Proof: It is evident from (9.44) that L is isometri
, and thus L extends to
los (L) by 
ontinuity. But the density of L( 
los (L)) in L2(R
d) does notfollow from abstra
t Hilbert spa
e arguments. We thus need an additionalanalyti
 argument. We �rst prove the assertion for 
ontinuous Φ̂ with Φ̂ > 0on Rd \ {0}.Let some fun
tion f ∈ L2(R

d) and some ε > 0 be given. Then there is a
ompa
tly supported C∞ fun
tion g ∈ L2(R
d) su
h that ‖f − g‖2 ≤ ε due toLemma 12.5. Now de�ne û := g/

√
Φ̂ on Rd, where the (possible) singularityof Φ̂ at zero does no harm. Clearly û is 
ontinuous and 
ompa
tly supported,thus in L2(R

d) and u is band�limited, of exponential type, and in L2(R
d).199



We now invoke the multivariate sampling theorem to re
over u exa
tly fromits fun
tion values on a grid in Rd with spa
ing h, where h is su�
ientlysmall and related to the support of û.Thus we have
u(x) =

∑

j∈Zd

u(jh) Sincd

(
x− jh

h

)
, x ∈ R

dwhere
Sincd(x1, . . . , xd) =

d∏

j=1

sin πxj
πxj

,and
û(ω) =

∑

j∈Zd

u(jh)eihj·ω, ω ∈ R
dhas the form û = λ̂u for the fun
tional

λu(v) =
∑

j∈Zd

v(jh)u(jh).We now have to make sure that λu ∈ 
los (L). If this is done, we are �nishedbe
ause of L(λu) = g and
‖f −

√
Φ̂λ̂u‖2 = ‖f − g‖2 ≤ ε.For all p ∈ Pd

m we have to show that λu(p) = 0. By a standard argument inFourier analysis this requires a zero of order at least m of û at zero. But ourassumption (9.41) on Φ̂ and the minimality of m in (9.43) imply that û hasa zero of order at least
1

2
(d+ β0) >

1

2
(d+ 2m− 2) = m− 1 +

d

2
,thus of order ≥ m.We then evaluate the norm formally as

‖λu‖2Φ = ‖
√
Φ̂ · λ̂u‖22 = ‖

√
Φ̂û‖22 = ‖g‖22 <∞.Now we 
an pro
eed to prove that λu lies in 
los (L) by de�ning the fun
tion

fλu(x) := (λu, δx,Ξ)Φ, x ∈ R
d200



via the expli
it form of the inner produ
t, and using the �niteness of thenorm ‖λu‖Φ to show that the de�nition is valid. Then for all λY,N,β ∈ L weget
λY,N,β(fλu) = (λu, λY,N,β)Φand this proves that fλu ∈ F . Finally, we get λu = F−1(fλu) by 
he
king

(λu, λY,N,β)Φ = λY,N,β(fλu)

= (λY,N,βF
−1fλu))Φfor all λY,N,β ∈ L, and this 
on
ludes the proof in 
ase of Φ̂ > 0.Now let Φ̂ be positive up to a set of Lebesgue measure zero. We 
over the setof zeros by intervals Ik, where k varies over some index set K and the totalarea ∑k |Ik| is less than some given δ. Now let Φ̂δ(ω) ≥ Φ̂(ω) be a stri
tlypositive 
ontinuous fun
tion that di�ers from Φ̂ only on the Ik. Then Φ̂δ willalso satisfy our assumptions, and we 
an use (9.44) in the form

(µ, λ)Φδ
:= (2π)−d/2

∫

Rd
Φ̂δ(ω)λ̂(ω)µ̂(ω)dωas a de�nition of an inner produ
t, but we do not need Φδ expli
itly.Now we approximate a given f ∈ L2(R

d) by some √Φ̂δ · λ̂ up to ε/2 in the
L2 norm, pi
king a suitable λ for ea
h δ and ε. Then

‖f −
√
Φ̂λ̂‖2 ≤ ‖f − λ̂

√
Φ̂δ‖2 + ‖λ̂(

√
Φ̂δ −

√
Φ̂)‖2and

‖λ̂(
√
Φ̂δ −

√
Φ̂)‖22 = ‖λ̂ ·

√
Φ̂δ(1−

√
Φ̂/Φ̂δ)‖22

≤
∑

k

∫

Ik

|λ̂(ω)|2Φ̂δ(ω)dω.The full integral ∫

Rd
|λ̂(ω)|2Φ̂δ(ω)dω = ‖λ̂ ·

√
Φ̂δ‖22
an be bounded independent of δ, be
ause it approximates ‖f‖22. Thus weare able to pi
k δ small enough to guarantee

∑

k

∫

Ik

|λ̂(ω)|2Φ̂δ(ω)dω ≤ ε/2yielding an overall bound ‖f −
√
Φ̂λ̂‖2 ≤ ε.201



9.10 Chara
terization of Native Spa
esWe now 
an re�express the native spa
e NK,Ξ := Pd
m + G = Pd

m + F . viaFourier transforms.Theorem 9.50. The native spa
e NK,Ξ := Pd
m+G for a 
onditionally positivede�nite fun
tion of order m on Rd satisfying Assumption 9.40 
oin
ides withthe spa
e of all fun
tions f on Rd that 
an be written as

fh(x) = (2π)−d/2
∫

Rd
ĥ(ω)

√
Φ̂(ω)


eix·ω −

Q∑

j=1

pj(x)e
iξj ·ω


 dω (9.51)plus polynomials from Pd

m and where ĥ ∈ L2(R
d). The above fun
tions arespanning the spa
e G. The bilinear form on G 
an be rewritten as

(fg, fh)Φ = (2π)−d/2(g, h)L2(Rd). (9.52)Proof: We �rst fo
us on (9.51). Starting with an arbitrary h ∈ L2(R
d) anda �xed Pd

m-unisolvent set Ξ ⊂ Rd, we mimi
 the te
hnique of Riesz maps tode�ne a fun
tion
fh(x) := (ĥ,Lδ(x))L2(Rd). (9.53)This is (9.51). Sin
e
λfh = (ĥ,Lλ)L2(Rd)follows easily from (9.53) for all λ ∈ L, we 
an transform this equation furtherinto
λfh = (ĥ,Lλ)L2(Rd)

= (L−1ĥ, λ)Φ.By the previous se
tion, (9.48) with Theorem 9.49 yields that L−1 maps
L2(R

d) isometri
ally ba
k to L. But L is isometri
 to G via the extension Rof the Riesz map R : L→ G we had in se
tion ??. Thus the above identity
an be extended to
λfh = (ĥ,Lλ)L2(Rd)

= (L−1ĥ, λ)Φ
= (RL−1ĥ,Rλ)Φ for all λ ∈ Lproving

fh = RL−1ĥ ∈ G.By (9.52) we also get 202



Corollary 9.54. The mapping
F = RL−1 : h 7→ fhis isometri
 between L2(R

d) and G.Note that we avoided to use the Fourier transform of fh. In 
ase that √Φ̂ĥ =:
gh is an absolutely integrable fun
tion, the right�hand side of (9.51) is

fh(x) = g∨h (x)−
Q∑

j=1

pj(x)g
∨
h (ξj)su
h that we see that a polynomial variation of fh has a Fourier transformwhi
h is √Φ̂ĥ.But we 
an also work via the F part of the native spa
e. It is the 
losure ofall fun
tions

fa,X(x) := λta,XΦ(x− t),and if the fun
tional is su
h that Fourier tyransforms 
an be taken, we get
f̂a,X = Φ̂λ̂a,X =

√
Φ̂Lλa,Xsu
h that

f̂a,X√
Φ̂

= Lλa,X ∈ L2(R
d).This 
an also be written as

R(λ)∧ = λ̂ =

√
Φ̂L(λ)if all transforms exist, and this is a third reason to de�ne

f̂h :=

√
Φ̂ĥas a generalized Fourier transform of fh, but the use of standard Fouriertransform equations is forbidden without additional argumants along theabove lines.
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9.11 Conne
tion to Sobolev Spa
esTo make error bounds appli
able, we need in
lusion theorems for nativespa
es in Sobolev spa
es. Sin
e polynomials are not 
ontained in globalSobolev spa
es, we 
an only expe
t the G part of the native spa
e to be
ontained in a global Sobolev spa
e W τ
2 (R

d), while polynomials are always
ontained in lo
al Sobolev spa
es W τ
2 (Ω) for bounded domains. Thus we
annot work as easily as in the un
onditionally positive de�nite 
ase.Let us 
he
k the di�erentiability of the fun
tions from (9.51). Under su�
ientregularity of √Φ̂ĥ =: gh, we take a derivative Dα of fh of order α with

|α| ≥ m. It will have Fourier transform (iω)α
√
Φ̂(ω)ĥ(ω) and we 
he
k whenit is well�de�ned and globally in L2. This is the 
ase when ‖ω‖2|α|Φ̂(ω) isglobally bounded. Sin
e we only use L2 arguments for this result, we 
anignore the additional regularity assumptions on √Φ̂ĥ =: gh by an additionaldensity argument.Near zero, the boundedness of ‖ω‖2|α|Φ̂(ω) follows for

2|α| ≥ d+ β0be
ause
‖ω‖2|α|Φ̂(ω) ≤ ≀(‖ω‖2|α|−d−β0).Near in�nity, we have not yet made any assumptions about the behavior of

Φ̂. For simpli
ity, we mimi
 (9.41) as
Φ̂(ω) ≤ ≀(‖ω‖−d−β∞) near ∞. (9.55)Then a su�
ient 
ondition for boundedness at in�nity is

2|α| ≤ d+ β∞.Altogether, we get that the derivative Dαfh is de�ned and globally in L2 atleast for
|α| ≥ m, β0 + d ≤ 2|α| ≤ β∞ + d.This is quite su�
ient for the multiquadri
 
ase, be
ause there β∞ is arbi-trarily large. For the thin�plate spline and the polyharmoni
 splines, we have

β0 = β∞ and see that we 
an still work with generalized derivatives of order
m = |α| = d/2 + β∞/2 = d/2 + β0/2 > d/2 if this is an integer.In all of these 
ases we 
an take the maximum possible |α| and get 
onver-gen
e of interpolants like h|α|−d/2 in the L∞ norm when the data are from a204



fun
tion in the native spa
e. This yields in�nite order for the multiquadri
sand 
onvergen
e like hβ0/2 = hβ∞/2 for the thin�plate spline and the poly-harmoni
 spline provided that d+ β0 = d+ β∞ is even.in
omplete here...10 Stability TheoryIt would be very desirable to have re
overy methods with small errors andgood stability. However, these two goals 
annot be met at the same time,sin
e there is a 
onne
tion between them that implies bad stability wheneverthe a-priori error bound is very small.10.1 Un
ertainty RelationLet us look at this 
onne
tion in the Lagrange interpolation setting and 
on-sider optimal re
overy of a fun
tion g ∈ N in a Hilbert spa
e N whi
h is thenative spa
e of a reprodu
ing kernel K on a domain Ω ⊂ Rd. This re
overyshould use data g(xj), 1 ≤ j ≤ M for a �nite set X = {x1, . . . , xM} ⊂ Ω ⊂
Rd.We add a variable point x to X and de�ne the kernel matrix

Ax,X :=




Φ(x, x) Φ(x, x1) . . . Φ(x, xM )
Φ(x1, x) Φ(x1, x1) . . . Φ(x1, xM)... ... ...
Φ(xM , x) Φ(xM , x1) . . . Φ(xM , xM)


and the ve
tor

(u∗X)
T (x) := (1,−u∗1(x), . . . ,−u∗M(x))T ∈ R

M+1with the Lagrange basis of (??) and get the spe
ial form
P 2
X(x) = K(x, x)− 2

N∑

j=1

u∗j(x)K(xj , x) +
N∑

j,k=1

u∗j(x)u
∗
k(x)K(xj , xk)

= (u∗X)
T (x)Ax,X(u

∗
X)(x)

≥ σ(Ax,X)


1 +

M∑

j=1

|u∗j(x)|2



≥ σ(Ax,X) (10.1)205



of the power fun
tion (??), where σ(Ax,X) is the minimal eigenvalue of Ax,X .Note that both sides are 
ontinuous fun
tions of x and X (or Λ standing for
X) that vanish whenever x tends to points in X .Theorem 10.2. The error of kernel interpolation 
an only be small if the
ondition of the kernel matrix is large. In parti
ular,

P 2
X(x) ≥ σ(Ax,X)holds for the power fun
tion P 2
X in terms of the smallest eigenvalue σ(Ax,X)of the kernel matrix Ax,X .We 
an 
all the above observation anUn
ertainty Prin
iple or a Tradeo�prin
iple.The interpretation of the above result is as follows. Assume we have a re-
overy pro
ess with a very good error bound (??) via the power fun
tion.Then Ax,X must have a very small eigenvalue. The largest eigenvalue of Ax,X
an only be as large as a 
onstant times N , thus it is not very relevant forthe 
ondition of Ax,X, whi
h is the quotient of the largest by the smallesteigenvalue, if the 
ondition is taken in the spe
tral norm. Thus the 
onditionof Ax,X is large whenever the re
overy error is small. But Ax,X is itself akernel matrix, if we view x as the � `next� interpolation point. Or, when we
hange the meaning of x and X somewhat, we 
an rewrite the above resultas

min
1≤j≤N

P 2
X\xj

(xj) ≥ σ(AX),bounding the smallest eigenvalue of a kernel matrix via the �leave�one�out�power fun
tion.We now 
an give some hints to the results that follow in later se
tions. TheUn
ertainty Relation in the form (10.1) suggests to bound P 2 from aboveand σ from below, in order to have both upper bounds on the attainableerror and on the numeri
al stability, measured by 1/σ. We have seen in theprevious 
hapter that upper bounds for P 2 take the form
P 2
Xh

(x) ≤ F (hX,Ω) for all x ∈ Ω (10.3)where F is a monotoni
 fun
tion of the �ll distan
e hX,Ω de�ned in (7.2). Onthe other hand, the lower bounds for σ whi
h we shall prove in this 
hapter,will be of the form
σ(AX) ≥ G(qX) for all X = {x1, . . . , xM} ⊂ Ω (10.4)206



with the separation distan
e
q := qX := min

1≤i 6=j≤M
‖xi − xj‖2. (10.5)For gridded data on ǫZd ∩ Ω we 
an roughly expe
t hX,Ω = qX

√
d, and thenthe Un
ertainty Relation ne
essarily implies

F (t
√
d) ≥ G(t) (10.6)for all t ≥ 0. This allows to 
he
k the quality of the bounds (10.3) and (10.4),sin
e the lowest possible bounds F and the largest possible bounds G mustne
essarily satisfy (10.6) and are optimal, if they turn (10.6) into an equality.This opens the ra
e for optimal bounds of the form (10.3) and (10.4), andthis text will des
ribe the 
urrent state-of-the-art. To 
ut the story short,we shall prove that F and G just di�er by a fa
tor in 
ase of kernels of �nitesmoothness, i.e. (10.6) is extended to

F (t
√
d) ≥ G(t) ≥ C · F (c · t) (10.7)for all t ≥ 0, proving that the square of the power fun
tion and the minimaleigenvalue of the kernel matrix are roughly proportional in all 
ases of �nitesmoothness.10.2 Lower Bounds on EigenvaluesThis se
tion uses Fourier transform te
hniques to prove results 
on
erningthe 
ondition of the matri
es that o

ur in the basi
 equations (??) and (??)for optimal re
overy. This requires upper bounds for the largest, and lowerbounds for the smallest eigenvalue. We start with the latter and restri
t our-selves to the Lagrange 
ase. The bounds should (if possible) should neitherdepend on the spe
i�
 data lo
ations X = {x1, . . . , xM}, nor on the num-ber M of data points, but rather on 
ertain real-valued quantities like theseparation distan
e (10.5).We generalize the te
hnique of Nar
owi
h and Ward [NW91a℄ [NW91b℄ for
al
ulating stability bounds, but we introdu
e Fourier transforms right fromthe start, whi
h makes it mu
h easier to treat large values of m, the order of
onditional positive de�niteness of Φ.The starting point is that any 
onditionally positive de�nite fun
tion Φ oforder m satisfying Assumption 9.40 allows the formula

M∑

j=1

M∑

k=1

αjαkΦ(xj − xk) = (2π)−d/2
∫

Rd
Φ̂(ω)

∣∣∣∣∣∣

M∑

j=1

αje
ixj ·ω

∣∣∣∣∣∣

2

dω (10.8)207



for all Pd
m�nondegenerate sets X = {x1, . . . , xM} and all ve
tors α ∈ RMsu
h that λX,M,α is a fun
tional that annihilates Pd

m. This is just anotherway of writing (9.44).The left�hand side of (10.8) is the quantity αTAX,Φα that we want to boundfrom below, and we 
an do this by any minorant Ψ̂ on Rd \ {0} of Φ̂ thatsatis�es
Φ̂(ω) ≥ Ψ̂(ω) on R

d \ {0} (10.9)and that itself leads to a similar quadrati
 form
M∑

j=1

M∑

k=1

αjαkΨ̂(xj − xk) = (2π)−d/2
∫

Rd
Ψ̂(ω)

∣∣∣∣∣∣

M∑

j=1

αje
ixj ·ω

∣∣∣∣∣∣

2

dω (10.10)for another basis fun
tion Ψ̂ and a weaker 
onstraint on α ∈ R
M (or none atall). Furthermore, there should be an easy lower bound

αTAX,Ψα ≥ σ‖α‖22for the left�hand side αTAX,Ψα of (10.10). Then 
learly for all α ∈ R
M thatare admissible,

αTAX,Φα ≥ αTAX,Ψα ≥ σ‖α‖22,as required. The basi
 tri
k of Nar
owi
h and Ward now is to make AX,Ψdiagonally dominant, while Ψ̂ is obtained by 
hopping o� Φ̂ appropriatelynear in�nity.Before we pro
eed any further, here is the main result:Theorem 10.11. Let Φ be a 
onditionally positive de�nite fun
tion on Rdthat satis�es Assumption 9.40. Furthermore, let X = {x1, . . . , xM} ⊂ Rd beany set of Lagrange data lo
ations having separation distan
e (10.5). Withthe fun
tion
φ0(r) := inf

‖ω‖∞≤2r
Φ̂(ω), (10.12)the smallest eigenvalue σ of the quadrati
 form asso
iated to the matrix

AX,Φ = (Φ(xj − xk))1≤j,k≤M ,restri
ted as usual to the subspa
e of RM that 
ontains the 
oe�
ient ve
tors
α of fun
tionals λX,M,α ∈ P⊥

Ω has the lower bound
σ ≥ 1

2

φ0(K)

Γ (d/2 + 1)

(
K√
2

)d (10.13)208



for any K > 0 satisfying
K ≥ 4

q

(
2πΓ2 (d/2 + 1)

) 1

d+ 1 (10.14)or, a fortiori,
K ≥ 9.005 d

q
. (10.15)Proof: We start with any K > 0 and the 
hara
teristi
 fun
tion

χK(x) =





1 ‖x‖2 ≤ K

0 else 

of the L2 ball BK(0) in Rd with radius K. Then we de�ne

Ψ̂(ω) := Ψ̂K(ω) :=
φ0(K)Γ (d/2 + 1)

Kd πd/2
(χK ∗ χK)(ω)and immediately see that the support issupp (Ψ̂K) =

{
x ∈ R

d : ‖x‖2 ≤ 2K
}
=: B2K(0).We now use the formula (12.27) for the volume of the unit ball to get the

L∞ bound
‖χK ∗ χK‖∞ ≤ vol(BK(0)) = Kd πd/2

Γ (d/2 + 1)via the usual 
onvolution integral. We adjusted the fa
tors in the de�nitionof Ψ̂ to guarantee (10.9) on all of Rd.This is part of what we wanted, but we still have to evaluate Ψ itself or atleast to show diagonal dominan
e of AX,Ψ. The radial basis fun
tion ΨK
orresponding to Ψ̂K is obtained via the inverse Fourier transform as
χ̌K(x) = χ̌1(·/K)(x)

= Kdχ̌1(Kx)

= Kd(K‖x‖)−d/2 Jd/2(K · ‖x‖2)

=

(
K

‖x‖

)d/2

Jd/2(K · ‖x‖2)209



using s
aling of Fourier transforms and (9.16). Then we apply the Fouriertransform to the 
onvolution to get
ΨK(x) = φ0(K)Γ (d/2 + 1)K−dπ−d/2(χK ∗ χK)

∨(x)

= φ0(K)Γ
(
d
2 + 1

)
2d/2‖x‖−dJ2

d/2(K · ‖x‖).Equation (12.40) yields
ΨK(0) =

φ0(K)

Γ (d/2 + 1)

(
K√
2

)dand we assert diagonal dominan
e of the quadrati
 form in (10.10) by asuitable 
hoi
e of K. We have
αTAX,Ψα ≥ ‖α‖22


ΨK(0)− max

1≤j≤M

M∑

k=1

k 6=j

ΨK(xj − xk)


by Gers
hgorin's theorem, and the �nal bound will be of the form

σ ≥ 1

2
ΨK(0) =

φ0(K)

2Γ (d/2 + 1)

(
K√
2

)d

,be
ause we shall 
hoose K su
h that
max

1≤j≤M

∑

k=1

k 6=j

ΨK(xj − xk) ≤
1

2
ΨK(0). (10.16)This is done by a tri
ky summation argument of Nar
owi
h andWard [NW91b℄using (12.39) whi
h proves (10.16) for K satisfying (10.14). Sin
e the te
h-nique is ni
e and instru
tive, we repeat it here in full detail.To pro
eed towards diagonal dominan
e of the matrix, we should �x a point

xj ∈ X = {x1, . . . , xM} and exploit the observation that many of the dis-tan
es xj − xk to the remaining points should be large, if the separationdistan
e q > 0 does not let two points to be too near to ea
h other. But thenumber of far-away points will strongly depend on the spa
e dimension d,and we need a pre
ise argument to put the above reasoning on a solid basis.To this end, de�ne the sets
En := { xk ∈ X : nq ≤ ‖xj − xk‖2 < (n + 1)q }210



for all n ∈ N and observe that E1 is empty due to the de�nition of theseparation distan
e q, whi
h implies
‖xj − xk‖2 ≥ 2q for all 1 ≤ j 6= k ≤M.Now we 
an put a little ball Bq(xk) of radius q around ea
h of the xk ∈ En.Any two of these balls 
annot overlap due to the de�nition of q. Sin
e noneof the xk is farther away from xj than (n + 1)q, the balls are all 
ontainedin the ball B(n+2)q(xj) of radius (n+ 2)q around xj . But all of the xk are atleast nq away from xj , su
h that their surrounding balls 
annot interse
t thesmaller ball B(n−1)q(xj) around xj of radius (n− 1)q. Adding their volumesusing (12.27) we get the bound

|En|
qdπd/2

Γ(1 + d/2)
≤ (q(n+ 2))dπd/2

Γ(1 + d/2)
− (q(n− 1))dπd/2

Γ(1 + d/2)

|En| ≤ (n+ 2)d − (n− 1)d.for the number |En| of elements of En. If both terms on the right-hand sideare expanded with the binomial formula, the leading positive term is 3nd−1,and all the terms must 
ombine into powers of n with nonnegative fa
tors.Thus we arrive at
|En| ≤ 3nd−1.For points xk ∈ En we 
an bound the values of Ψ via (12.39) as follows:

ΨK(xj − xk) = φ0(K)Γ
(
d
2 + 1

)
2d/2‖xj − xk‖−dJ2

d/2(K · ‖xj − xk‖)

= φ0(K)Γ
(
d
2 + 1

)
2d/2K−1‖xj − xk‖−d−1

·(K · ‖xj − xk‖2)J2
d/2(K · ‖xj − xk‖)

≤ φ0(K)Γ
(
d
2 + 1

)
2d/2K−1((n− 1)q)−d−12

d+2

π

= ΨK(0)

(
4

K(n− 1)q

)d+1

π−1Γ2

(
d
2 + 1

)
.Now it is time to do the summation over all k 6= j, and this summation 
an

211



be done by summing the points in the sets En. This yields
∑

k 6=j

ΨK(xj − xk) =
∞∑

n=2

∑

xk∈En

Ψ(xj − xk)

≤ ΨK(0)

(
4

Kq

)d+1

π−1Γ2

(
d
2 + 1

) ∞∑

n=2

3nd−1(n− 1)−d−1

≤ ΨK(0)

(
4

Kq

)d+1

π−1Γ2

(
d
2 + 1

)
6

∞∑

n=2

(n− 1)−2

≤ ΨK(0)

(
4

Kq

)d+1

π−1Γ2

(
d
2 + 1

)
π2

= ΨK(0)

(
4

Kq

)d+1

πΓ2

(
d
2 + 1

)

≤ 1
2
ΨK(0)if we 
hoose K a

ording to (10.16).It remains to show that (10.15) implies (10.14). We use a variation of Stir-ling's formula in the form

Γ(1 + x) ≤
√
2πxxxe−xe1/12x, x > 0to get

2πΓ2 (d/2 + 1) ≤ 2π2dd+1(2e)−de1/3d,

(2πΓ2 (d/2 + 1))
1

d+ 1 ≤ d

2e

(
4eπ2

) 1

d+ 1 e

1

3d(d+ 1)

≤ d
π√
e
· e1/6 ≤ d · 2.2511su
h that

K ≥ 9.005

qdis satisfa
tory for all 
ases.We now want to look at the spe
i�
 
ases for appli
ations. From (10.13) and(10.14) we see that
σ = σ(q) =≥ ≀

(
q−dφ0(cd/q)

)with some positive 
onstant c. Thus we only need to look at the de
ay ofthe Fourier transforms to get the asymptoti
s of σ with respe
t to q → 0,212



keeping the spa
e dimension d �xed. Our known Fourier transforms thenyield the results of Table 3.
φ(r) Lower Bound in ≀ form for q → 0
rβ qβ

rβ log r qβ

(r2 + γ2)β/2 q−d exp(−c/q), c > 0

e−βr2 q−d exp(−c/q2), c > 0
rνKν(r) q2ν

(1− r)2+(2 + r) q
(1− r)4+(1 + 4r) q3Table 3: Lower Bounds of Smallest Eigenvalue Based on Lagrange Data withSeparation Distan
e q10.3 Stability in Fun
tion Spa
eThis text is from a re
ent preprint with Stefano deMar
hi, and needs somebrushing�up.10.3.1 Lebesgue ConstantsGiven a positive de�nite kernel Φ : Ω×Ω → R, the re
overy of fun
tions fromfun
tion values f(xj) on the set X = {x1, ..., xN} ⊂ Ω ⊆ Rd of N di�erentdata sites 
an be done via interpolants of the form

sf,X :=
N∑

j=1

αjΦ(·, xj) . (10.16)This interpolant, as in 
lassi
al polynomial interpolation, 
an also be writtenin terms of 
ardinal fun
tions uj ∈ VX := span{Φ(·, x) : x ∈ X} su
h that
uj(xk) = δj,k. Then, the interpolant (10.16) takes the usual Lagrangian form

sf,X =
N∑

j=1

f(xj)uj. (10.16)As in the (univariate) polynomial 
ase, based on the representation (10.16)we 
onsider the Lebesgue fun
tion
λN(x) :=

N∑

j=1

|uj(x)| .213



Its maximum value, ΛN := maxx∈Ω λN(x) is referred to as the asso
iatedLebesgue 
onstant and gives the norm of the interpolating proje
tor PX :
C(Ω) → VX ⊆ VΩ, with VΩ = span{Φ(·, x) : x ∈ Ω}, both spa
es equippedwith the sup-norm. As well-known in the polynomial 
ase, either in the uni-variate and in the bivariate 
ase, there exist upper bounds for the Lebesguefun
tion. Moreover, many authors fa
ed the problem of �nding near-optimalpoints for polynomial interpolation. All these near-optimal sets of N pointshave a Lebesgue fun
tion that behaves in 1D like log(N) while as log2(N) in2D (
f. [℄ and referen
es therein).We want to bound the Lebesgue 
onstant and the Lebesgue fun
tion forinterpolation proje
tors using (10.16). For a rather large 
lass of kernel-basedmultivariate interpolants, we 
an prove that the Lagrange basis fun
tionsfor N well-distributed data lo
ations in a bounded Lips
hitz domain withan interior 
one 
ondition are uniformly bounded, and thus the Lebesgue
onstant grows only linearly with N , irrespe
tive of the spa
e dimension andthe kernel used.For 
onditionally positive de�nite kernels with �nite smoothness, sharperresults are possible. The 
lassi
al Lebesgue 
onstants grow only like √

N ,and the generalized L2 Lebesgue 
onstants, de�ned as the norms of the in-terpolation proje
tors between R
N under a s
aled ℓ2 norm and L2(Ω) areuniformly bounded, provided that the data lo
ations are well-distributed.Spe
i�
 estimates for general s
attered data lo
ations are also available, andsome numeri
al examples in the next se
tion show that the results are real-isti
.We shall 
onsider interpolation of d-variate fun
tions on a bounded Lips
hitzdomain Ω ⊂ R

d with an outer 
one 
ondition [Wen05℄. Interpolation is doneon a set X = {x1, . . . , xN} of N s
attered data lo
ations or 
enters. Theirgeometri
 relation to the domain Ω is des
ribed by the �ll distan
e ormeshnorm
hX,Ω = sup

x∈Ω
min
xj∈X

‖x− xj‖2and the separation distan
e
qX =

1

2
min

xi, xj ∈ X
xi 6= xj

‖xi − xj‖ .These parameters are used for standard error and stability estimates for mul-tivariate interpolants, and they will be also of inportan
e here. The inequality
qX ≤ hX,Ω will hold in most 
ases, but if points of X nearly 
oales
e, qX 
an214



be mu
h smaller than hX,Ω, 
ausing ionstability of the standard solution pro-
ess. Point sets X are 
alled quasi�uniform with uniformity 
onstant
γ > 1, if the inequality

1

γ
qX ≤ hX,Ω ≤ γqXholds. Later, we shall 
onsider arbitrary sets of arbitrary 
ardinality, butwith uniformity 
onstants bounded above by a �xed number. Note that hX,Ωand qX play an important role in �nding good points for radial basis fun
tioninterpolation, as re
ently studied in [FI96, DMSW05℄.To generate interpolants, we allow 
onditionally positve de�nite translation-invariant kernels Φ of the form

(x, y) 7→ Φ(x− y), x, y ∈ R
dwhi
h have generalized Fourier transforms on Rd [Wen05℄.For reasons to be
ome apparent later, we 
onsider two di�erent 
lasses of ker-nels. First, there are kernels of limited smoothness measured by a parameter

τ with
0 < c(1 + ‖ω‖22)−τ ≤ Φ̂(ω) ≤ C(1 + ‖ω‖22)−τ (10.16)at in�nity. This in
ludes polyharmoni
 splines, thin-plate splines, the Sobolev/Maternkernel, and Wendland's 
ompa
tly supported kernels. Se
ond, there are ker-nels with unlimited smoothness where the Fourier transform de
ays exponen-tially at in�nity, e.g. the Gaussian and various multiquadri
s.10.3.2 Results for Limited SmoothnessUnder the assumption (10.16) the spa
e VX will be a subspa
e of Sobolevspa
e W τ

2 (Ω). Our 
entral result then isTheorem 10.17. The 
lassi
al Lebesgue 
onstant for interpolation with Φ on
N data lo
ations X = {x1, . . . , xn} in a bounded domain Ω ⊆ Rd satisfyingan outer 
one 
ondition has a bound of the form

λN ≤ C
√
N

(
hX,Ω

qX

)τ−d/2

.For quasi-uniform sets with bounded uniformity γ, this simpli�es to
λN ≤ C

√
N.Ea
h single 
ardinal fun
tion is bounded by

‖uj‖L∞(Ω) ≤ C

(
hX,Ω

qX

)τ−d/2

,215



whi
h in the quasi-uniform 
ase simpli�es to
‖uj‖L∞(Ω) ≤ C.There also is an L2 analog of this. We 
ompare the L2(Ω) norm of f withits dis
rete 
ounterpart hd/2X,Ω‖f|X‖2 and note that the latter 
onverges to amultiple of the former, if f is smooth and if the dis
rete setX is quasi-uniformand asymptoti
ally dense. The generalized L2 Lebesgue 
onstant 
an then bede�ned as the norm of the map

f|X 7→ sf,X , R
N → L2(Ω)if the above norms are 
hosen.Theorem 10.18. Under the above assumptions,

‖sf,X‖2(Ω) ≤ C

(
hX,Ω

qX

)τ−d/2

h
d/2
X,Ω‖f‖2,X ,and for quasi-uniform data lo
ations with bounded uniformity γ the general-ized L2 Lebesgue 
onstant is uniformly bounded. The 
ardinal fun
tions havea bound

‖uj‖L2(Ω) ≤ C

(
hX,Ω

qX

)τ−d/2

h
d/2
X,Ωand for quasi-uniform data lo
ations they behave like

‖uj‖L2(Ω) ≤ Ch
d/2
X,Ω.10.3.3 L∞ BoundsOur most important tool for the proof of Theorem 10.17 is the samplinginequality (
f. [WR05, Th. 2.6℄)

‖u‖L∞(Ω) ≤ C
(
h
τ−d/2
X,Ω ‖u‖W τ

2
(Ω) + ‖u‖∞,X

)
, ∀u ∈ W τ

2 (Ω), (10.18)where X ⊂ Ω is a dis
rete set of points in Ω with �ll distan
e hX,Ω. This isindependent of kernels.We 
an apply the sampling inequality in two ways
‖sf,X‖L∞(Ω) ≤ C

(
h
τ−d/2
X,Ω ‖sf,X‖W τ

2
(Ω) + ‖sf,X‖∞,X

)

≤ C
(
h
τ−d/2
X,Ω ‖sf,X‖W τ

2
(Ω) + ‖f‖∞,X

)
,

‖uj‖L∞(Ω) ≤ C
(
h
τ−d/2
X,Ω ‖uj‖W τ

2
(Ω) + ‖uj‖∞,X

)

≤ C
(
h
τ−d/2
X,Ω ‖uj‖W τ

2
(Ω) + 1

)216



sin
e we know that the spa
e VX is 
ontained in W τ
2 (Ω). To get a bound oneither the Lebesgue 
onstant or the norm of a 
ardinal fun
tion, we have to�nd bounds of the form

‖s‖W τ
2
(Ω) ≤ C(X,Ω,Φ)‖s‖∞,Xfor arbitrary elements s ∈ VX . Su
h bounds are available from [SW02℄, butwe repeat the basi
 notation here. Let Φ satisfy (10.16). Then [SW02℄ has

‖s‖2W τ
2
(Ω) ≤ Cq−2τ+d

X ‖s‖22,X ≤ CNq−2τ+d
X ‖s‖2∞,X for all s ∈ VXwith a di�erent generi
 
onstant. If we apply this to uj, we get

‖uj‖L∞(Ω) ≤ C



(
hX,Ω

qX

)τ−d/2

+ 1


 ,while appli
ation to sf,X yields

‖sf,X‖L∞(Ω) ≤ C



(
hX,Ω

qX

)τ−d/2

‖f‖2,X + ‖f‖∞,X


 ≤ C



√
N

(
hX,Ω

qX

)τ−d/2

+ 1


 ‖f‖∞,X.Then the assertions of Theorem 10.17 follow. 2.10.3.4 L2 BoundsFor the L2 
ase 
overed by Theorem 10.18, we take the sampling inequality

‖f‖L2(Ω) ≤ C
(
hτX,Ω‖f‖W τ

2
(Ω) + ‖f‖ℓ2(X)h

d/2
X,Ω

)
, ∀f ∈ W τ

2 (Ω) (10.18)of [Mad06, Thm. 3.5℄. We 
an apply the sampling inequality as
‖sf,X‖L2(Ω) ≤ C

(
hτX,Ω‖sf,X‖W τ

2
(Ω) + ‖sf,X‖ℓ2(X)h

d/2
X,Ω

)

≤ C
(
hτX,Ω‖sf,X‖W τ

2
(Ω) + ‖f‖ℓ2(X)h

d/2
X,Ω

)
,

≤ C
(
hX,Ω

qX

)τ−d/2 ‖f‖ℓ2(X)h
d/2
X,Ω,

‖uj‖L2(Ω) ≤ C
(
hτX,Ω‖uj‖W τ

2
(Ω) + ‖uj‖ℓ2(X)h

d/2
X,Ω

)

≤ C
(
h
τ−d/2
X,Ω ‖uj‖W τ

2
(Ω) + 1

)
h
d/2
X,Ω

≤ C
((

hX,Ω

qX

)τ−d/2
+ 1

)
h
d/2
X,ΩThis proves Theorem 10.18. 2217



11 Hilbert Spa
e TheoryThis is intended as a short tutorial on Hilbert spa
es as required in this text.We only require fundamentals on linear spa
es, bilinear forms, and norms.If a reader has problems with any of the stated fa
ts below, it is time to goba
k to an introdu
tory 
ourse on Cal
ulus and Numeri
al Analysis.11.1 Normed Linear Spa
esFor 
ompleteness, we re
all some basi
s from normed linear spa
es over a�eld K = R or C.1. A sequen
e {un}n∈N ⊂ N of a normed linear spa
e N with norm ‖ · ‖Nis a zero sequen
e in N , if the sequen
e {‖un‖N}n∈N 
onverges tozero in R.2. A sequen
e {un}n∈N ⊂ N is a 
onvergent sequen
e in N with limit
u, if the sequen
e {un − u}n is a zero sequen
e.3. A subspa
e M of N is a 
losed subspa
e, if for every 
onvergentsequen
e {un}n∈N ⊂ M ⊂ N with limit u one 
an 
on
lude that thelimit u also belongs to M.4. The normed linear spa
e N is 
omplete or a Bana
h spa
e, if everysequen
e whi
h is a Cau
hy sequen
e in the norm ‖ · ‖V is ne
essarily
onvergent in V.5. A 
omplete normed linear spa
e is 
losed, sin
e ea
h 
onvergent se-quen
e is a Cau
hy sequen
e.6. A subset M of a normed linear spa
e N is dense, if ea
h element of
N 
an be written as a limit of a 
onvergent sequen
e from M.7. A linear mapping (or operator) A : N → M with values in a normedlinear spa
e M with norm ‖ · ‖M is a 
ontinuous mapping or abounded mapping, if there is a 
onstant C su
h that

‖Ax‖M ≤ C‖x‖Nholds for all x ∈ N .8. The mapping A then has an operator norm
‖A‖N ,M := sup

x∈N\{0}

‖Ax‖M
‖x‖N

≤ C218



and the bound
‖Ax‖M ≤ ‖A‖N ,M‖x‖Nis best possible.9. The most important spe
ial 
ase arises for M = K, i.e. for linearfun
tionals λ : N → K. If they are 
ontinuous, they have anoperator norm

‖λ‖N ∗ := ‖λ‖N ,K := sup
x∈N\{0}

|λ(x)|
‖x‖N

≤ C.10. The spa
e of 
ontinuous linear fun
tionals on a normed linear spa
e Nis a normed linear spa
e under the above dual norm, and it is 
alledthe dual spa
e N ∗ to N .11. The kernel of a 
ontinuous linear map on a normed linear spa
e isalways a 
losed subspa
e.11.2 Pre�Hilbert Spa
esDe�nition 11.1. A set H and a mapping (·, ·)H : H × H → K form apre-Hilbert spa
e or a Eu
lidean spa
e over K, if the following holds:1. H is a ve
tor spa
e over K.2. (·, ·)H is a Hermitian positive de�nite inner produ
t, linear in the �rstand antilinear in the se
ond argument.Then
‖x‖2H := (x, x)H, x ∈ H (11.2)de�nes a norm on H, and we assume all readers to be familiar with thisnotion. Sometimes, we shall weaken the assumptions on (·, ·)H and onlyask for symmetry and positive semide�niteness. Even in this more generalsituation, we have the Cau
hy-S
hwarz inequality
|(u, v)H| ≤ |u|H|v|Hfor all u, v ∈ H, where we use the notation |x|2H := (x, x)H to denote aseminorm instead of a norm as in (11.2). To prove the Cau
hy-S
hwarzinequality for K = R as a warm-up, just 
onsider the quadrati
 fun
tion

ϕ(t) := |u+ tv|2H = |u|2H + 2t(u, v)H + t2|v|2H.219



It must be nonnegative, and thus it has none or a double real zero. Thisproperty is satis�ed for a general fun
tion ϕ(t) = at2 + 2bt + c, i� b2 ≤ acholds. But this is the square of the Cau
hy-S
hwarz inequality. An argumentlike the one above is very frequent, and we 
all it the �parabola argument�.In the 
omplex 
ase, the argument is similar. For real t, we get
ϕ(t) := |u+ tv|2H = |u|2H + 2t Re ((u, v)H) + t2|v|2Hand see that

| Re ((u, v)H)|2 ≤ |u|2H|v|2Hholds, Taking purely imaginary t leads to the same for the imaginary part,proving the 
omplex 
ase, too.Now we add some simple fa
ts about pre-Hilbert spa
es:1. For two nonzero elements x, y of H over R one 
an de�ne the 
osine ofthe angle ∠(x, y) as
cos(∠(x, y)) =

(x, y)H
‖x‖H‖y‖H

.2. Two elements x, y of H are orthogonal, if (x, y)H = 0. In that 
ase,the theorem of Pythagoras is
‖x+ y‖2H = ‖x‖2H + ‖y‖2Hand trivially proven by evaluating the left�hand side as

‖x+ y‖2H = (x+ y, x+ y)H = ‖x‖2H + (x, y)H + (y, x)H + ‖y‖2H.3. Two subspa
es U , V of a pre-Hilbert spa
e are orthogonal, if all ve
-tors u ∈ U , v ∈ V are orthogonal, i.e.: (u, v)H = 0.Roughly speaking, Eu
lidean geometry needs the de�nition of angles andorthogonality. This is why one 
an also use the notion of an Eu
lideanspa
e here, provided that we work over R.11.3 Sequen
e Spa
esFor illustration, we 
an look at sequen
e spa
es. Let I be a �nite or
ountably in�nite set, and take the spa
e
S0 := span {{ξi}i∈I : ξi 6= 0 for only �nitely many i ∈ I}. (11.3)220



Then take a sequen
e {λi}i∈I of positive numbers, and de�ne the inner prod-u
t
({ξi}i∈I , {ηi}i∈I)λ,I :=

∑

i∈I
λiξiηion S0. Then S0 is a pre�Hilbert spa
e with the above inner produ
t, andwe should 
all it S0,λ,I now to make the dependen
e on the topology on λiapparent. The dual of S0,λ,I is at least as large as the full sequen
e spa
e

S∞ := span {{µi}i∈I}be
ause we 
an let ea
h µ := {µi}i∈I ∈ S∞ a
t on ea
h ξ := {ξi}i∈I ∈ S0 via
µ(ξ) :=

∑

i∈I
ξiµibe
ause we only have �nitely many nonzero ξi.If we allow in�nite sequen
es, we have to be 
areful with 
onvergen
e andduality. But we 
an de�ne the spa
e

Sλ,I := span {{ξi}i∈I :
∑

i∈I
λi|ξi|2 <∞} (11.4)whi
h 
learly also has the above inner produ
t, and it 
ontains S0,λ,I . Weassert that its dual 
ontains S1/λ,I , and it 
an surely not be as large as S∞.We 
an let ea
h µ := {µi}i∈I ∈ S1/λ,I a
t on ea
h ξ := {ξi}i∈I ∈ Sλ,I via

µ(ξ) :=
∑

i∈I
ξiµibe
ause we 
an use the Cau
hy�S
hwarz inequality

|µ(ξ)|2 =

∣∣∣∣∣
∑

i∈I
ξiµi

∣∣∣∣∣

2

=

∣∣∣∣∣
∑

i∈I

√
λiξi

1√
λi
µi

∣∣∣∣∣

2

≤
(∑

i∈I
λi|ξi|2

)(∑

i∈I

1

λi
|µi|2

)

= ‖ξ‖2λ,I‖µ‖21/λ,I .The linear map
R : S1/λ,I → Sλ,I , µ 7→ {µi/λi}i221



has the properties
µ(ξ) =

∑

i

µiξi =
∑

i

λiξi
µi

λi
= (ξ, R(µ))λ,Iand

(R(ρ), R(µ))λ,I =
∑

i

λi
ρiµi

λ2i
= (µ, ρ)1/λ,I .We shall generalize this later, but note that R is an antilinear isometry.11.4 Best ApproximationsDe�nition 11.5. An element u∗ of a subspa
e M of a normed linear spa
e

N is a best approximation to a given element u ∈ N , if
‖u− u∗‖N = sup

v∈M
‖u− v‖N =: EM(u).Theorem 11.6. An element u∗ of a subspa
e M of a pre-Hilbert spa
e H isa best approximation to a given element u ∈ H, i� the variational identity

(u− u∗, v)H = 0 for all v ∈ M (11.7)holds. If it exists, the best approximation is unique. IfM is �nite-dimensionaland spanned by linearly independent elements u1 . . . , uM , then the 
oe�
ients
α∗ of the representation

u∗ =
M∑

j=1

α∗
jujare solutions of the normal equations

M∑

j=1

α∗
j (uj, uk)H = (u, uk)H, 1 ≤ k ≤M.The symmetri
 and positive de�nite matrix with entries (uj, uk)H in the abovesystem is 
alled a Gram matrix. In this spe
ial 
ase, the best approximationexists uniquely and 
an theoreti
ally be 
al
ulated via the normal equations.Proof: Let us 
onsider the 
ase K = R �rst. Let u∗ be a best approxima-tion to u. To have another instan
e of the parabola argument, 
onsider anarbitrary v ∈ M and form the quadrati
 fun
tion

uv(α) := ‖u− u∗ + αv‖2H = ‖u− u∗‖2H + 2α(u− u∗, v)H + α2‖v‖2H222



whose minimum must be attained at α = 0. This implies (u − u∗, v)H = 0.Conversely, assume (11.7) and write any other element v ∈ M as v = u∗ +
1 · (v−u∗). Then (11.7) implies that the quadrati
 fun
tion uu∗−v is minimalat α = 0, proving uu∗−v(1) = ‖u − v‖H ≥ uu∗−v(0) = ‖u − u∗‖H. If u∗ and
u∗∗ are two best approximations from M to u, then we 
an subtra
t the twovariational identities (u− u∗, v)H − (u− u∗∗, v)H = (u∗∗ − u∗, v)H = 0 for all
v ∈ M and insert v = u∗∗ − u∗ to get u∗∗ = u∗. The third assertion is aspe
ialization of (11.7). This �nishes the real 
ase.For the 
omplex 
ase, we have to dis
uss
uv(α) := ‖u− u∗ + αv‖2H = ‖u− u∗‖2H + 2 Re (α(u− u∗, v)H) + |α|2‖v‖2Hfor all 
omplex α. If u∗ is a best approximation with (u − u∗, v)H 6= 0, we
an take

α = t
(u− u∗, v)H
|(u− u∗, v)H|with some real t and do the same argument as above to prove (11.7). Theother 
on
lusions work like in the real 
ase.Corollary 11.8. The �rst statement of Theorem 11.6 holds also in the 
aseof a positive semide�nite bilinear form. The Gram matrix in the �nite-dimensional 
ase now is only positive semide�nite.Corollary 11.9. Let λ1, . . . , λM be linear fun
tionals on a pre-Hilbert spa
e

H and let some u ∈ H be given. An element u∗ of H solves the problem
‖u∗‖H = inf

v ∈ H
λj(v) = λj(u)
1 ≤ j ≤M

‖v‖H,

i� the variational identity
(v, u∗)H = 0 for all v ∈ H with λj(v) = 0, 1 ≤ j ≤M.holds, or i� there are s
alars α1, . . . , αM su
h that

(v, u∗)H =
M∑

j=1

αjλj(v) for all v ∈ H.
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Proof: Consider the subspa
e
M = { v ∈ H : λj(v) = 0, 1 ≤ j ≤M}and reformulate the problem by writing any v ∈ H with λj(v) = λj(u), 1 ≤

j ≤ M as v = u − w for w ∈ M. Then we have a problem of best approx-imation to u from M and 
an simply use Theorem 11.6 to prove the �rstassertion. We then have to prove that the �rst variational identity impliesthe se
ond. But this follows from a standard linear algebra argument thatwe in
lude for 
ompleteness as the next lemma.Lemma 11.10. If A : X → Y and B : X → Z are linear maps betweenlinear spa
es, and if B vanishes on the kernel kerA of A, then B fa
torizesover A(X), i.e.: there is a map C : A(X) → Z su
h that B = C ◦ A. If Zis normed and if Y is �nite-dimensional, then C is 
ontinuous.Proof: There is an isomorphism D : A(X) → X/ kerA, and one 
an de�ne
B̃ : X/ kerA→ Z by B̃(x+ kerA) := B(x) be
ause B(kerA) = {0}. Then
C := B̃ ◦D does the job, sin
e

C(A(x)) = B̃(D(A(x))) = B̃(x+ kerA) = B(x)for all x ∈ X . If Y is �nite-dimensional, the isomorphi
 spa
es A(X) ⊆ Y and
X/ kerA must also be �nite-dimensional. Sin
e all linear mappings de�nedon �nite-dimensional linear spa
es with values in normed linear spa
es are
ontinuous, we are �nished.11.5 Hilbert Spa
esSo far, Theorem 11.6 does not imply existen
e of best approximations fromsubspa
es of in�nite dimension. It just 
hara
terizes them. To get existen
e,we need that 
ertain ni
e sequen
es a
tually have limits:De�nition 11.11. A pre-Hilbert spa
e H over K with inner produ
t (·, ·)His a Hilbert spa
e, if H is 
omplete under the norm ‖ · ‖H, i.e.: as anormed linear spa
e.We now prove the 
ru
ial proje
tion theorem in Hilbert spa
es:Theorem 11.12. If H is a Hilbert spa
e with a 
losed subspa
e M, thenany element u ∈ H has a unique best approximation u∗M from M, and theelements u∗M and u − u∗M are orthogonal. The map ΠM : H → M with
ΠM(u) := u∗M is linear, has norm one if M is nonzero, and is a proje
tor,224



i.e. it is idempotent, meaning Π2
M = ΠM. If Id is the identity mapping,then Id− ΠM is another proje
tor, mapping H onto the orthogonal 
om-plement

M⊥ := { u ∈ H : (u, v)H = 0 for all v ∈ M }.of M. Finally, the de
omposition
H = M+M⊥is a dire
t and orthogonal sum of spa
es.Proof: The existen
e proof for approximations from �nite-dimensional sub-spa
es is a 
onsequen
e of Theorem 11.6, and we postpone the general 
asefor a moment. The orthogonality statement follows in general from Theorem11.6, and it yields Pythagoras' theorem in the form

‖u‖2H = ‖u− u∗M‖2H + ‖u∗‖2H.This in turn proves that both proje
tors have a norm not ex
eeding one. Itis easy to prove that αu∗M + βv∗M is a best approximation to αu+ βv for all
α, β ∈ R and all u, v ∈ H, using the variational identity in Theorem 11.6. Toprove linearity of the proje
tors, we use uniqueness of the best approximation,as follows from Theorem 11.6. Finally, surje
tivity of the proje
tors is easilyproven from the best approximation property of their de�nition.Thus we are left with the existen
e proof for the in�nite-dimensional 
ase.The nonnegative real number EM(u) 
an be written as the limit of a de-
reasing sequen
e {‖u − vn‖H}n for 
ertain elements vn ∈ M, be
ause it isde�ned as an in�mum. Forming the subspa
es

Mn := span {v1, . . . , vn} ⊆ Mand unique best approximations wn to u from Mn, we get
EM(u) ≤ ‖u− wn‖H ≤ ‖u− vn‖H,su
h that the sequen
e {‖u− wn‖H}n 
onverges to EM(u), too. We now �xindi
es m ≥ n and use that (u − wm, wm − wn)H = 0 follows from the bestapproximation property of wm. Then we have

‖u− wn‖2H − ‖u− wm‖2H = ‖u− wm + wm − wn‖2H − ‖u− wm‖2H
= ‖u− wm‖2H + 2(u− wm, wm − wn)H

+‖wm − wn‖2H − ‖u− wm‖2H
= ‖wm − wn‖2H,225



and sin
e the sequen
e {‖u − wn‖2H}n is 
onvergent and thus a Cau
hy se-quen
e, we get that {wn}n ⊂ M is a Cau
hy sequen
e in M ⊆ H. Now the
ompleteness of H assures the existen
e of a limit w∗ ∈ H of this sequen
e,and sin
e M was assumed to be 
losed, the element w∗ must belong to M.The above identity 
an be used to let m tend to in�nity, and then we get
‖u− wn‖2H − ‖u− w∗‖2H = ‖w∗ − wn‖2H.This proves
EM(u) ≤ ‖u− w∗‖H ≤ ‖u− wn‖H,and sin
e the right-hand side 
onverges to EM(u), the element w∗ must bethe best approximation to u.We add two little appli
ations:Lemma 11.13. If an element f from a Hilbert spa
e H is orthogonal to H,it is zero.Proof: Take M = H in Theorem 11.12. The spa
e M⊥ 
ontains f , but itis ne
essarily zero, so that f is zero. But a more simple and dire
t proof justuses that f is orthogonal to itself:

‖f‖2H = (f, f)H = 0.Lemma 11.14. If M is a dense subspa
e of a Hilbert spa
e H, then the
losure of M is isometri
ally isomorphi
 to H.Proof: The 
losure of M 
an be identi�ed with a 
losed subspa
e N of H,and we assert that N = H. To this end, de
ompose H into H = N + N⊥and take an element u from N⊥. It must be orthogonal to all elements from
M, and by 
ontinuity of the fun
tional v 7→ (u, v)H it must be orthogonal toall of H. Thus it must be zero.11.6 Riesz Representation TheoremWe further need the Riesz representation theorem for 
ontinuous linearfun
tionals. To this end, we re
all that the dual N ∗ of a normed linear spa
e
N 
onsists of all 
ontinuous linear fun
tionals λ : N → R with dual norm

‖λ‖N ∗ := sup
f∈N ,f 6=0

λ(f)

‖f‖N
.It is a normed linear spa
e under this norm.226



Theorem 11.15. (Riesz representation theorem)Any 
ontinuous linear fun
tional λ on a Hilbert spa
e H 
an be written as
λ = (·, gλ)H (11.16)with a unique element gλ ∈ H satisfying ‖λ‖H∗ = ‖gλ‖H.Proof: If λ = 0, then gλ = 0 does the job and is unique. If λ 6= 0, the kernel

L of λ is not the full spa
e H. It is, however, a 
losed linear subspa
e, andthus there is some element hλ ∈ L⊥ with ‖hλ‖H = 1. Now for ea
h u ∈ Hthe element λ(u)hλ − λ(hλ)u must ne
essarily be in L and thus orthogonalto hλ. This means
0 = (λ(u)hλ − λ(hλ)u, hλ)H,

λ(u)(hλ, hλ)H = λ(hλ)(u, hλ)H,
λ(u) = (u, λ(hλ)hλ)Hand we 
an de�ne gλ := λ(hλ)hλ to get (11.16).The norm of λ is bounded by
‖λ‖H∗ := sup

u∈H\{0}

|λ(u)|
‖u‖H

≤ |λ(hλ)|due to Cau
hy-S
hwarz, but using u = hλ in the de�nition of the norm yieldsequality. Sin
e we set gλ := λ(hλ)hλ, we get ‖λ‖H∗ = ‖gλ‖H. Uniqueness of
gλ satisfying (11.16) is easy to prove, be
ause for any other g̃λ with (11.16)we have

(gλ − g̃λ, f)H = λ(f)− λ(f) = 0 for all f ∈ H,and thus gλ − g̃λ = 0 be
ause it is orthogonal to the full spa
e.De�nition 11.17. The map
R : H∗ → H with λ 7→ gλ for all λ ∈ H∗on the dual H∗ of a Hilbert spa
e H is 
alled the Riesz map. Another de-s
ription is
(f, R(λ))H = λ(f) for all λ ∈ H∗, f ∈ H.
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Theorem 11.18. The Riesz map is an antilinear isometri
 bije
tion betweena Hilbert spa
e H and its dual H∗. In parti
ular, the dual norm 
an be writtenas a Hilbert spa
e norm based on an inner produ
t (., .)H∗ satisfying
(R(λ), R(µ))H = (µ, λ)H∗ for all λ, µ ∈ H∗.Thus any Hilbert spa
e is isometri
ally isomorphi
 to its dual via the Rieszmap.Proof: We already know that the Riesz map is well�de�ned and satis�es

‖R(λ)‖H = ‖λ‖H∗ . It also is antilinear due to
(f, R(aλ + bµ))H = (aλ+ bµ)(f)

= aλ(f) + bµ(f)
= a(f, R(λ))H + b(f, R(µ))H
= (f, a · R(λ) + b ·R(µ))H for all f ∈ H, a, b ∈ Rbe
ause this implies that R(aλ+ bµ)− (a ·R(λ) + b ·R(µ)) is orthogonal toall of H, thus zero.We already have

λ(f) = (f, R(λ))H for all f ∈ H, λ ∈ H∗.But now we use f = R(µ) and get
λ(R(µ)) = (R(µ), R(λ))H = µ(R(λ)) for all λ, µ ∈ H∗.We de�ne a �new� bilinear form

(λ, µ)∗ := λ(R(µ)) = (R(µ), R(λ))H = µ(R(λ)) for all λ, µ ∈ H∗onH∗ whi
h 
learly is positive de�nite and sequilinear, thus an inner produ
t.It generates the same norm as ‖.‖H∗ due to ‖λ‖H∗ = ‖R(λ)‖H for all λ ∈ H∗,and we 
an rewrite it in the notation (., .)∗ = (., .)H∗ .Altogether, we now have that R is an inje
tive isometri
 antilinear map from
H∗ to H 
onserving the inner produ
t. To prove that it is surje
tive, we 
antake any f ∈ H and generate a fun
tional λf with

λf(g) := (g, f)H for all g ∈ H.This fun
tional 
learly is 
ontinuous due to
|λf(g)| = |(g, f)H| ≤ ‖f‖H‖g‖H for all g ∈ H.by Cau
hy�S
hwarz, and we 
ompare f now with R(λf) to get
(g, f − R(λf))H = (g, f)H − (g, R(λf))H

= (g, f)H − λf(g)
= (g, f)H − (g, f)H = 0for all g ∈ H, proving f = R(λf). 228



11.7 Reprodu
ing Kernel Hilbert Spa
esAs an important appli
ation of the Riesz theorem, we 
onsider a Hilbert spa
e
H with an inner produ
t (., .)H and assume that H 
onsists of real�valuedfun
tions on a set Ω. Furthermore, we assume that all point�evaluationfun
tionals

δx ∈ H∗ : H → R, f 7→ f(x)for all x ∈ Ω are 
ontinuous, i.e.
|δx(f)| = |f(x)| ≤ ‖f‖H‖δx‖H∗ for all f ∈ H, x ∈ Ω.Then the Riesz map takes ea
h δx into a fun
tion

R(δx)(y) =: K(x, y) for all x, y ∈ Ω.This de�nes a kernel
K : Ω× Ω → Rwhi
h is Hermitian due to

K(x, y) := R(δx)(y)
= δy(R(δx))
= (δy, δx)H∗

= (δx, δy)H∗

= K(y, x).Furthermore, we have
f(x) = δx(f) = (f, R(δx))H = (f,K(x, ·))H for all x ∈ Ω, f ∈ H,and this is 
alled a reprodu
tion equation. In parti
ular, when taking

f(·) = K(y, ·), we get
K(y, x) = (K(y, ·), K(x, ·))H for all x, y ∈ Ω.Then H is 
alled a reprodu
ing kernel Hilbert spa
e with a reprodu
ingkernel K. By the Riesz theorem, we have proven that all Hilbert spa
es offun
tions with 
ontinuous point evaluations have a reprodu
ing kernel.11.8 Completion of Pre�Hilbert Spa
esLike the transition from rational numbers to real numbers by �
ompletion�,we 
an perform a transition from pre�Hilbert spa
es to Hilbert spa
es by avery similar te
hnique via equivalen
e 
lasses of Cau
hy sequen
es.229



Theorem 11.19. Let H be a pre-Hilbert spa
e with inner produ
t (·, ·)H.Then there is a Hilbert spa
e J and an isometri
 embedding J : H → Jsu
h that the following is true:1. J(H) is dense in J .2. Any 
ontinuous mapping A : H → N with values in a Bana
h spa
e
N has a unique 
ontinuous extension B : J → N su
h that B◦J = A.3. The Hilbert spa
e J is unique up to a Hilbert spa
e isometry.Proof: We �rst form the spa
e of all Cau
hy sequen
es in H, whi
h 
learlyis a linear spa
e over R. Two su
h sequen
es are 
alled equivalent, if theirdi�eren
e is a sequen
e in H 
onverging to zero. The spa
e J now is de�nedas the spa
e of equivalen
e 
lasses of Cau
hy sequen
es in H modulo zerosequen
es. These 
lasses 
learly form a ve
tor spa
e under the usual opera-tions on sequen
es. If we use an overstrike to stand for �
lass of�, we writean element of J as {un}n for a Cau
hy sequen
e {un}n ∈ H. Now it is timeto de�ne an inner produ
t

({un}n, {vn}n)J := lim
n→∞(un, vn)Hon J and the embedding J via the 
onstant Cau
hy sequen
es

Ju := {u}n := {un = u}nfor ea
h u ⊂ H. Then
(Ju, Jv)J = (u, v)Hmakes sure that J is an isometry and inje
tive. But we still have to showthat the inner produ
t on J is well-de�ned and positive de�nite. If {un}nand {vn}n are Cau
hy sequen
es in H, then

|‖un‖H − ‖um‖H| ≤ ‖un − um‖Himplies that the sequen
es {‖un‖H}n and {‖vn‖H}n are Cau
hy sequen
es in
R, and thus 
onvergent and bounded by 
onstants Cu and Cv. But then
(un, vn)H − (um, vm)H = (un, vn)H − (un, vm)H − (um, vm)H + (un, vm)H

= (un, vn − vm)H − (um − un, vm)H
≤ Cu‖vn − vm‖H + Cv‖um − un‖Hproves that {(un, vn)H}n is a Cau
hy sequen
e in R and thus 
onvergent.Two representatives of a 
lass {un}n di�er just by a zero sequen
e that doesnot a�e
t the inner produ
t's value. The proof of de�niteness again uses that230



zero sequen
es represent zero in J . This �nishes the proof of well-de�nednessof the new inner produ
t.Thus J is another pre-Hilbert spa
e that 
ontains an isometri
 image of H,and we �rst want to prove that J(H) is dense in J . Let us take an element
{un}n ∈ J and use the fa
t that for ea
h ǫ > 0 there is some K(ǫ) su
h thatfor all n,m ≥ K(ǫ) we have

‖un − um‖H ≤ ǫ.Now take m ≥ K(ǫ) and the �xed Cau
hy sequen
e {um}n = J(um). Then
‖J(um)− {un}n‖J = lim

n→∞ ‖um − un‖H ≤ ǫproves the density assertion.We now pro
eed to prove 
ompleteness of J . To do this we have to forma Cau
hy sequen
e {{u(m)
n }n}m of equivalen
e 
lasses {u(m)

n }n of Cau
hy se-quen
es {u(m)
n }n ⊂ H. For ea
h m ∈ N we 
an use the density property of Hin J to �nd an element vm ∈ H su
h that

‖{u(m)
n }n − J(vm)‖J ≤ 1/m.Due to

‖vn − vm‖H = ‖J(vn)− J(vm)‖J
≤ ‖J(vn)− {u(n)n }n‖J+

+‖{u(n)n }n − {u(m)
n }n‖J + ‖{u(m)

n }n − J(vm)‖J
→ 0for n,m→ ∞, the sequen
e {vm}m is a Cau
hy sequen
e in H. We now form

‖{u(k)n }n − {vn}n‖J ≤ ‖{u(k)n }n − J(vk)‖J + ‖J(vk)− {vn}n‖J
≤ 1/k + lim

n→∞ ‖vk − vn‖H
→ 0for k → ∞, proving 
onvergen
e towards {vn}n.Now let A : H → N be a linear 
ontinuous mapping with values in a
omplete normed linear spa
e N . If {un}n is an element of J , we de�ne theextension B on {un}n by
B({un}n) := lim

n→∞A(un). (11.20)231



Sin
e A is 
ontinuous, it is bounded and due to
‖A(um)−A(un)‖N ≤ ‖A‖‖um − un‖Hthe sequen
e {Aun}n is a Cau
hy sequen
e inN . But asN is a Bana
h spa
e,the sequen
e is 
onvergent and (11.20) is well-de�ned. ClearlyB◦J = A holdsby de�nition. Any two su
h extensions must agree on the dense subspa
e

A(H) of J , and sin
e they are 
ontinuous, they must agree on all of J .Finally, if there are two 
ompletions J and J̃ , we apply the �rst parts of thetheorem to the embeddings
J : H → J
J̃ : H → J̃This leads to two 
ontinuous maps

B : J → J̃ , B ◦ J = J̃

B̃ : J̃ → J , B̃ ◦ J̃ = J
(11.21)and we 
on
lude

B̃ ◦B = Id on J(H)

B ◦ B̃ = Id on J̃(H)and this extends 
ontinuously to the 
ompletion, thus
B̃ ◦B = Id on J
B ◦ B̃ = Id on J̃ .But then we have isomorphisms between J and J̃ whi
h must be isometri
due to (11.21). The isometry property follows �rst on the dense subspa
es

J(H) and J̃(H), but then also on the 
ompletions J and J̃ .11.9 Appli
ationsAs an appli
ation, 
onsider a pre�Hilbert spa
e H of fun
tions on some set
Ω having a reprodu
ing kernel K : Ω× Ω → R in the sense

f(x) = (f,K(x, ·))H for all f ∈ H, x ∈ Ω.We now go to the 
ompletion J with the embedding J : H → J . Thelinear fun
tionals
δx : f 7→ f(x) and λx : f 7→ (f,K(x, ·))H232




oin
ide on H and are 
ontinuous there. Thus there is an extension
λ̃x : J → Rwith

λ̃x(J(f)) = λx(f) = (f,K(x, ·))H = f(x) for all x ∈ Ω.On general elements g ∈ J we 
an de�ne the fun
tional
g 7→ λ̃x(g)− (g, J(K(x, ·)))Jwhi
h is in J ∗ and vanishes on the dense subset J(H) due to

(J(f), J(K(x, ·)))J = (f,K(x, ·))H
= f(x)

= λ̃x(J(f)) for all f ∈ H, x ∈ Ω.Thus the fun
tional is zero, proving the identity
λ̃x(g) = (g, J(K(x, ·)))J for all g ∈ J , x ∈ Ω.This equation 
an be interpreted as follows. Ea
h abstra
t element g ∈ J isa fun
tion on Ω in the sense that
g(x) := λ̃x(g) = (g, J(K(x, ·)))J for all x ∈ Ω.Via

K̃(x, ·) := J(K(x, ·)) for all x ∈ Ωwe get a kernel K̃ su
h that the reprodu
tion equation
g(x) = (g, K̃(x, ·))J for all x ∈ Ω, g ∈ Jholds on J . This proves that the original kernel, when embedded into the
ompletion J of H, still works as a reprodu
ing kernel in the 
ompletion,and the 
ompletion is not just an abstra
t 
onstru
tion, but rather a Hilbertspa
e of fun
tions on Ω.Let us now look at sequen
e spa
es from subse
tion 11.3. They 
an beviewed as spa
es of fun
tions on I with a 
ontinuous point evaluation whi
hwe simply de�ne for a sequen
e ξ = {ξi}i∈I as

ξ(i) = ξi, i ∈ I.The pre�Hilbert spa
e S0,λ,I under its inner produ
t (., .)λ,I has a reprodu
ingkernel
K(i, j) :=

δij
λi
, i, j ∈ I233



sin
e
ξ(j) =

∑

i∈I
λiξiK(j, i) = (ξ,K(j, ·))λ,I for all ξ ∈ S0,λ,I , j ∈ I.By 
ompletion of S0,λ,I under its inner produ
t, we get some Hilbert spa
e

S with a 
ontinuous embedding J : S0,λ,I → S, and it is a sequen
e spa
ebe
ause we have a reprodu
tion equation using the extended kernel. Sin
ewe have an isometri
 embedding of S0,λ,I into the spa
e Sλ,I of (11.4), we getthat S must be isometri
ally embedded in Sλ,I . To prove that Sλ,I = S, wetake an arbitrary element ξ ∈ Sλ,I whi
h is orthogonal to the subspa
e S0,λ,I .But then
ξi = (ξ,K(i, ·))λ,I = 0 for all i ∈ Iproves ξ = 0. Note that this avoids a dire
t proof that the spa
e Sλ,I is aHilbert spa
e, using 
ompletion arguments instead.Thus we see that Sλ,I of (11.4) is the Hilbert spa
e 
ompletion of S0,λ,I , andit is a reprodu
ing kernel Hilbert spa
e with the kernel K de�ned as above.The Riesz map

R : S1/λ,I = S∗
λ,I → Sλ,I
omes out as

R({µi}i∈I) :=
{
µi

λi

}

i∈I
for all {µi}i∈I ∈ S1/λ,Iand the kernel is the Riesz representer of the point evaluation fun
tional, asreaders will qui
kly verify.12 Required Results from Real AnalysisHere, we provide some material that is often not 
ontained in standard
ourses on Analysis or on Numeri
al Methods. But we assume readers tobe familiar with multiindex notation and partial derivatives.12.1 Multivariate Taylor FormulaTheorem 12.1. Let x and y be two points in Rd, and assume that a d�variate real�valued fun
tion f is m�times 
ontinuously di�erentiable on theline segment [x, y] 
onne
ting x and y. With the Taylor polynomial

Tx(f)(y) :=
m−1∑

|α|=0

Dαf(x)
(y − x)α

α!234



we then have
|f(y)− Tx(f)(y)| ≤ ‖y − x‖m∞

∑

|α|=m

1

α!
|Dαf(ξ(x, y, α))|with 
ertain points ξ(x, y, α) on the line segment between x and y.Proof: We 
onsider the univariate fun
tion

g(t) := f(x+ t(y − x)), 0 ≤ t ≤ 1on [0, 1] and write down its standard univariate Taylor representation as
f(y) = g(1)

=
m−1∑

j=0

g(j)(0)
1j

j!
+
∫ 1

0
g(m)(s)

(1− s)m−1

(m− 1)!
ds.We now prove that the derivatives of g are

g(j)(t) =
∑

|α|=j

(
j

α

)
Dαf(x+ t(y − x))(y − x)α.This is 
learly true for j = 0, and we pro
eed by indu
tion via

g(j+1)(t) =
d

dt

∑

|α|=j

(
j

α

)
Dαf(x+ t(y − x))(y − x)α

=
∑

|α|=j

(
j

α

)(
d∑

k=1

Dα+ekf(x+ t(y − x))(yk − xk)

)
(y − x)α

=
∑

|α|=j

(
j

α

)
d∑

k=1

Dα+ekf(x+ t(y − x))(y − x)α+ek .All multiindi
es α+ ek now have |α+ ek| = j + 1, but we want to rearrangethem into multiindi
es β with |β| = j + 1. The number of possibilities su
ha β 
an be written as β = α + ek is
∑

β = α + ek
|α| = j

1 ≤ k ≤ d

(
j

α

)
=

d∑

k=1,βk>0

(
j

β − ek

)

=

(
j + 1

β

)
d∑

k=1

βk
j + 1

=

(
j + 1

β

)235



�nishing the indu
tion. Now Taylor's formula yields
f(y)

=
m−1∑

j=0

∑

|α|=j

(
j

α

)
Dαf(x)(y − x)α

1j

j!

+
∫ 1

0

(1− s)m−1

(m− 1)!

∑

|α|=m

(
m

α

)
Dαf(x+ s(y − x))(y − x)αds

=
m−1∑

|α|=0

Dαf(x)
(y − x)α

α!

+m
∫ 1

0
(1− s)m−1

∑

|α|=m

Dαf(x+ s(y − x))
(y − x)α

α!
dsand the residual has the bound

|f(y)− Tx(f)(y)|

≤ m
∫ 1

0
(1− s)m−1

∣∣∣∣∣∣
∑

|α|=m

Dαf(x+ s(y − x))
(y − x)α

α!

∣∣∣∣∣∣
ds

≤ m
∫ 1

0
(1− s)m−1

∑

|α|=m

|Dαf(x+ s(y − x))|‖y − x‖m∞
α!

ds

≤ ‖y − x‖m∞ sup
0≤s≤1

∑

|α|=m

1

α!
|Dαf(x+ s(y − x))|

= ‖y − x‖m∞
∑

|α|=m

1

α!
|Dαf(ξ(x, y, α))|with 
ertain points ξ(x, y, α) on the line segment between x and y.12.2 Lebesgue Integration12.2.1 L2 spa
esLemma 12.2. The shift operator Sz : f(·) 7→ f(· − z) is a 
ontinuousfun
tion of z near zero in the following sense: for ea
h given u ∈ L2(R

d) andea
h given ǫ > 0 there is some δ > 0 su
h that
‖Sz(u)− u‖L2(Rd) ≤ ǫfor all ‖z‖2 ≤ δ.Proof: to be supplied later....We now want to prove that the spa
e S of tempered test fun
tions is densein L2(R

d). For this, we have to study fun
tions like (12.13) in some more236



detail. They are in S for all positive values of ǫ, and Lemma 12.14 tells usthat the operation
f 7→Mǫ(f) :=

∫

Rd
f(y)ϕ(ǫ, · − y)dymaps ea
h 
ontinuous L1 fun
tion f to a "molli�ed" fun
tion Mǫ(f) su
hthat

lim
ǫ→0

Mǫ(f)(x) = f(x)uniformly on 
ompa
t subsets of Rd.It is 
ommon to repla
e the Gaussian in (12.16) by an in�nitely di�erentiablefun
tion with 
ompa
t support, e.g.
ϕ(ǫ, x) =

{
c(ǫ) exp(−1/(ǫ2 − ‖x‖22)) ‖x‖2 < ǫ

0 ‖x‖2 ≥ ǫ

} (12.3)where the 
onstant c(ǫ) is su
h that
∫

Rd
ϕ(ǫ, x)dx = 1holds for all ǫ > 0. This Friedri
h's molli�er 
an also be used in thede�nition of Mǫ. It has the advantage that Lemma 12.14 holds for moregeneral fun
tions, i.e.: for fun
tions whi
h are in L1 only lo
ally.We now want to study the a
tion of Mǫ on L2 fun
tions. Let u ∈ L2(R

d) begiven, and apply the Cau
hy-S
hwarz inequality to
Mǫ(f)(x) =

∫

Rd
(f(y)

√
ϕ(ǫ, x− y))

√
ϕ(ǫ, x− y)dyto get

|Mǫ(f)(x)|2 ≤ ∫
Rd |f(y)|2ϕ(ǫ, x− y)dy

∫
Rd ϕ(ǫ, x− y)dy

=
∫
Rd |f(y)|2ϕ(ǫ, x− y)dyand

∫

Rd
|Mǫ(f)(x)|2dx ≤

∫

Rd

∫

Rd
|f(y)|2ϕ(ǫ, z)dydz =

∫

Rd
|f(y)|2dysu
h that Mǫ has norm less than or equal to one in the L2 norm. It is evenmore simple to prove the identity

(f,Mǫg)L2(Rd) = (Mǫf, g)L2(Rd)237



for all f, g ∈ L2(R
d) by looking at the integrals. Here, we used the Fubinitheorem on Rd whi
h requires some 
are, but there are no problems be
auseeverything 
an either be done with a Friedri
h's molli�er, or be done onsu�
iently large 
ompa
t sets �rst, letting the sets tend to Rd later.We now use a Friedri
h's molli�er to study the L2 error of the molli�
a-tion. This is very similar to the arguments we already know. The error isrepresentable pointwise as

f(x)−Mǫ(f)(x) =
∫

Rd
(f(x)− f(y))ϕ(ǫ, x− y)dyand we 
an use the Cau
hy-S
hwarz inequality to get

|f(x)−Mǫ(f)(x)|2 ≤
∫

‖x−y‖2<ǫ
|f(x)− f(y)|2ϕ(ǫ, x− y)dy.This 
an be integrated to get

∫

Rd
|f(x)−Mǫ(f)(x)|2dx ≤

∫

‖z‖2<ǫ
ϕ(ǫ, z)

∫

Rd
|f(y + z)− f(y)|2dydz,and we use the 
ontinuity of the shift operator as proven in Lemma 12.2 tomake this as small as we want by pi
king a suitably small ǫ. This shows

lim
ǫ→0

‖f −Mǫ(f)‖L2(Rd) = 0and provesLemma 12.4. The spa
e S of test fun
tions is dense in L2(R
d).Lemma 12.5. The spa
e C∞

0 (Rd) of 
ompa
tly supported in�nitely di�eren-tiable fun
tions is dense in L2(R
d).Proof: We 
an use a standard density lemma to go over from an f ∈ 2(R

d)to a 
ompa
tly supported fun
tion, and then we 
an use Friedri
h's molli�erto generate an in�nitely di�erentiable fun
tion. Both pro
esses work witharbitrarily small L2 errors.12.3 Fourier Transforms on R
dThis se
tion 
on
erns an important tool for analysis of kernels on Rd. Thereare two major possibilities to pi
k a spa
e S of test fun
tions on R

d to startwith, and we take the tempered test fun
tions forming S
hwartz spa
e
S that are verbally de�ned as 
omplex-valued fun
tions on Rd whose partialderivatives exist for all orders and de
ay faster than any polynomial towardsin�nity. 238



De�nition 12.6. For a test fun
tion u ∈ S, the Fourier transform is
û(ω) := (2π)−d/2

∫

Rd
u(x)e−ix·ωdx, (12.7)where ω varies in Rd and x ·ω is shorthand for the s
alar produ
t xTω = ωTxto avoid the T symbol in the exponent. Sin
e the de�nition even works forgeneral u ∈ L1(R

d), it is well-de�ned on S and 
learly linear. Note that weuse the symmetri
 form of the transform and do not introdu
e a fa
tor 2πin the exponent of the exponential. This sometimes makes 
omparisons toother presentations somewhat di�
ult.To get used to 
al
ulations of Fourier transforms, let us start with the Gaus-sian uγ(x) = exp(−γ‖x‖22) for γ > 0, whi
h 
learly is in the spa
e of testfun
tions, sin
e all derivatives are polynomials multiplied with the Gaussianitself. As a byprodu
t we shall get that the Gaussian is positive de�nite on
Rd. Fortunately, the Gaussian 
an be written as a d-th power of the entireanalyti
 fun
tion exp(−γz2), and we 
an thus work on Cd instead of Rd. Wesimply use substitution in

ûγ(iω) = (2π)−d/2
∫
Rd e−γ‖x‖2

2ex·ωdx

= (2π)−d/2e‖ω‖
2
2
/4γ
∫
Rd e−‖√γx−ω/2

√
γ‖2

2dx

= (2πγ)−d/2e‖ω‖
2
2
/4γ
∫
Rd e−‖y‖2

2dyand are done up to the evaluation of the dimension-dependent 
onstant
∫

Rd
e−‖y‖22dy =: cdwhi
h is a d-th power, be
ause the integrand fa
torizes ni
ely. We 
al
ulate

c2 by using polar 
oordinates and get
c2 =

∫
R2 e−‖y‖2

2dy

=
∫ 2π
0

∫∞
0 e−r2r dr dϕ

= 2π
∫∞
0 e−r2r dr

= −π ∫∞0 (−2r)e−r2 dr

= π.This proves the �rst assertion of 239



Theorem 12.8. The Gaussian
uγ(x) = exp(−γ‖x‖22)has Fourier transform

ûγ(ω) = (2γ)−d/2e−‖ω‖2
2
/4γ (12.9)and is un
onditionally positive de�nite on Rd.To understand the se
ond assertion, we addDe�nition 12.10. A real-valued fun
tion

Φ : Ω× Ω → Ris a positive de�nite fun
tion on Ω, i� for any 
hoi
e of �nite subsets
X = {x1, . . . , xM} ⊆ Ω of M di�erent points the matrix

AX,Φ = (Φ(xk, xj))1≤j,k≤Mis positive de�nite.At �rst sight it seems to be a mira
le that a �xed fun
tion Φ should besu�
ient to make all matri
es of the above form positive de�nite, no matterwhi
h points are 
hosen and no matter how many. It is even more astonishingthat one 
an often pi
k radial fun
tions like Φ(x, y) = exp(‖x − y‖22) to dothe job, and to work for any spa
e dimension.Proof of the theorem: Let us �rst invert the Fourier transform by setting
β := 1/4γ in (12.9):

exp(−β‖ω‖22) = (4πβ)−d/2
∫
Rd e−‖x‖2

2
/4βe−ix·ωdx

= (2π)−d/2
∫
Rd(2β)−d/2e−‖x‖2

2
/4βe+ix·ωdx.Then take any set X = {x1, . . . , xM} ⊂ R

d of M distin
t points and anyve
tor α ∈ RM to form
αTAX,uγα =

M∑

j,k=1

αjαk exp(−γ‖xj − xk‖22)

=
M∑

j,k=1

αjαk(4πγ)
−d/2

∫

Rd
e−‖x‖2

2
/4γe−ix·(xj−xk)dx

= (4πγ)−d/2
∫

Rd
e−‖x‖2

2
/4γ

M∑

j,k=1

αjαke
−ix·(xj−xk)dx

= (4πγ)−d/2
∫

Rd
e−‖x‖2

2
/4γ

∣∣∣∣∣∣

M∑

j=1

αje
−ix·xj

∣∣∣∣∣∣

2

dx ≥ 0.240



This proves positive semide�niteness of the Gaussian. To prove de�niteness,we 
an assume
f(x) :=

M∑

j=1

αje
−ix·xj = 0for all x ∈ Rd and have to prove that all 
oe�
ients αj vanish. Takingderivatives at zero, we get

0 = Dβf(0) =
M∑

j=1

αj(−ixj)β,and this is a homogeneous system for the 
oe�
ients αj whose 
oe�
ientmatrix is a generalized Vandermonde matrix, possibly transposed and withs
alar multiples for rows or 
olumns. This proves the assertion in one dimen-sion, where the matrix 
orresponds to the 
lassi
al Vandermonde matrix.The multivariate 
ase redu
es to the univariate 
ase by pi
king a nonzerove
tor y ∈ Rd that is not orthogonal to any of the �nitely many di�eren
es
xj −xk for j 6= k. Then the real values y ·xj are all distin
t for j = 1, . . . ,Mand one 
an 
onsider the univariate fun
tion

g(t) := f(ty) =
M∑

j=1

αje
−ity·xj = 0whi
h does the job in one dimension.Note that the Gaussian is mapped to itself by the Fourier transform, if wepi
k γ = 1/2. We shall use the Gaussian's Fourier transform in the proof ofthe fundamental Fourier Inversion Theorem:Theorem 12.11. The Fourier transform is bije
tive on S, and its inverseis the transform

ǔ(x) := (2π)−d/2
∫

Rd
u(ω)eix·ωdω. (12.12)Proof: The multivariate derivative Dα of û 
an be taken under the integralsign, be
ause u is in S. Then

(Dαû)(ω) = (2π)−d/2
∫

Rd
u(x)(−ix)αe−ix·ωdx,and we multiply this by ωβ and use integration by parts

ωβ(Dαû)(ω) = (2π)−d/2
∫
Rd u(x)(−ix)α(i)β(−iω)βe−ix·ωdx

= (2π)−d/2
∫
Rd u(x)(−ix)α(i)β dβ

dxβ e
−ix·ωdx

= (2π)−d/2(−1)|α|+|β|iα+β
∫
Rd e−ix·ω dβ

dxβ (u(x)x
α)dx241



to prove that û lies in S, be
ause all derivatives de
ay faster than any polyno-mial towards in�nity. The se
ond assertion follows from the Fourier inversionformula
u(x) := (2π)−d/2

∫

Rd
û(ω)eix·ωdωthat we now prove for all u ∈ S. This does not work dire
tly if we naivelyput the de�nition of û into the right-hand-side, be
ause the resulting multipleintegral does not satisfy the assumptions of Fubini's theorem. We have to doa regularization of the integral, and sin
e this is a standard tri
k, we write itout in some detail:

(2π)−d/2
∫
Rd û(ω)eix·ωdω = (2π)−d

∫
Rd

∫
Rd u(y)ei(x−y)·ωdydω

= lim
ǫց0

(2π)−d
∫

Rd

∫

Rd
u(y)ei(x−y)·ω−ǫ‖ω‖2

2dydω

= lim
ǫց0

(2π)−d
∫

Rd

(∫

Rd
ei(x−y)·ω−ǫ‖ω‖2

2dω
)
u(y)dy

= lim
ǫց0

∫

Rd
ϕ(ǫ, x− y)u(y)dywith

ϕ(ǫ, z) := (2π)−d
∫

Rd
eiz·ω−ǫ‖ω‖22dω. (12.13)The proof is 
ompleted by appli
ation of the following result that is usefulin many 
ontexts:Lemma 12.14. The family of fun
tions ϕ(ǫ, z) of (12.13) approximates thepoint evaluation fun
tional in the sense

u(x) = lim
ǫց0

∫

Rd
ϕ(ǫ, x− y)u(y)dy (12.15)for all fun
tions u that are in L1(R

d) and 
ontinuous around x.Proof: We �rst remark that ϕ is a disguised form of the inverse Fouriertransform equation of the Gaussian. Thus we get
ϕ(ǫ, x) = (4πǫ)−d/2e−‖x‖2

2
/4ǫ (12.16)and ∫

Rd
ϕ(ǫ, x)dx = (4πǫ)−d/2

∫

Rd
e−‖x‖2

2
/4ǫdx = 1.To prove (12.15), we start with some given δ > 0 and �rst �nd some ball

Bρ(x) of radius ρ(δ) around x su
h that |u(x)− u(y)| ≤ δ/2 holds uniformly242



for all y ∈ Bρ(x). Then we split the integral in
|u(x)− ∫

Rd ϕ(ǫ, x− y)u(y)dy| = | ∫
Rd ϕ(ǫ, x− y)(u(x)− u(y))dy|

≤ ∫
‖y−x‖2≤ρ ϕ(ǫ, x− y)|u(x)− u(y)|dy
+
∫
‖y−x‖>ρ ϕ(ǫ, x− y)|u(x)− u(y)|dy

≤ δ/2 + (4πǫ)−d/2e−ρ2/4ǫ2‖u‖1
≤ δfor all su�
iently small ǫ.Due to the Fourier inversion formula, we now know that the Fourier transformis bije
tive on S.We now relate the Fourier transform to the L2 inner produ
t, but we haveto use the latter over C to a

ount for the possibly 
omplex values of theFourier transform. We de�ne the inner produ
t as

(f, g)L2(Rd) :=
∫

Rd
f(x)g(x)dx (12.17)without fa
tors that sometimes are used.Fubini's theorem easily proves the identity

(v, û)L2(Rd) = (2π)−d/2
∫

Rd
v(x)

∫

Rd
u(y)e+ix·ydydx = (v̌, u)L2(Rd)for all test fun
tions u, v ∈ S. Setting v = ŵ we get the Plan
herel equa-tion

(ŵ, û)L2(Rd) = (w, u)L2(Rd) (12.18)for the Fourier transform on S, proving that the Fourier transform is isometri
on S as a subspa
e of L2(R
d).12.4 Fourier Transform in L2(R

d)The test fun
tions from S are dense in L2(R
d) (see Lemma 12.4 for details),and thus we haveTheorem 12.19. The Fourier transform has an L2-isometri
 extension fromthe spa
e S of tempered test fun
tions to L2(R

d). The same holds for theinverse Fourier transform, and both extensions are inverses of ea
h other in
L2(R

d). Furthermore, Par
eval's equation (12.18) holds in L2(R
d).243



Note that this result does not allow to use the Fourier transform formula (orits inverse) in the natural pointwise form. For any f ∈ L2(R
d) one �rst hasto provide a sequen
e of test fun
tions vn ∈ S that 
onverges to f in the

L2 norm for n → ∞, and then, by 
ontinuity, the image f̂ of the Fouriertransform is uniquely de�ned almost everywhere by
lim
n→∞ ‖f̂ − v̂n‖L2(Rd) = 0.This 
an be done via Friedri
h's molli�ers as de�ned in (12.3), repla
ing theGaussian in the representation (12.16) by a 
ompa
tly supported in�nitelydi�erentiable fun
tion.A more useful 
hara
terization of f̂ is the variational equation
(f̂ , v)L2(Rd) = (f, v̌)L2(Rd)for all test fun
tions v ∈ S, or, by 
ontinuity, all fun
tions v ∈ L2(R

d).12.5 Poisson Summation FormulaThis 
omes in several forms:
(2π)−d/2

∑

k∈Zd

û(k) =
∑

j∈Zd

u(2πj)

(2π)−d/2
∑

k∈Zd

û(k)eik
Tx =

∑

j∈Zd

u(x+ 2πj)

(2π)−d/2
∑

k∈Zd

u(k)e−ikTω =
∑

j∈Zd

û(ω + 2πj)

(2π)−d/2
∑

k∈Zd

u(hk)e−ihkTω = h−d
∑

j∈Zd

û
(
ω +

2πj

h

)but we shall have to assure in whi
h sense and under whi
h assumptions itholds. The �rst 
learly is a 
onsequen
e of the se
ond, if the se
ond holdspointwise. But we shall not dis
uss this here. The �nal two are variations ofthe se
ond, as follows from standard transformations.Thus we fo
us on the se
ond one �rst and see it as an equation in L2(R
d).Both sides are 2π-periodi
, and the left-hand side 
an be viewed as the Fourierseries representation of the right-hand side. Thus we assume that the right-hand side is a pointwise absolutely 
onvergent series whi
h is also 
onvergentin L2[−π, π]d. To make the left-hand side meaningful, we assume that u isin L1(R

d). 244



If we write the Fourier analysis of a d-variate 2π-periodi
 fun
tion f(x) as
f(x) =

∑

k∈Zd

cke
ikTx, ck = (2π)−d

∫

[−π,π]d
f(x)e−ikTxdx,we 
an apply this to the right-hand side f of the se
ond form of the Poissonsummation formula. We get the 
oe�
ient

ck = (2π)−d
∫

[−π,π]d
f(x)e−ikT xdx

= (2π)−d
∫

[−π,π]d

∑

j∈Zd

u(x+ 2πj)e−ikTxdx

= (2π)−d
∫

[−π,π]d

∑

j∈Zd

u(x+ 2πj)e−ikT (x+2πj)dx

= (2π)−d
∫

Rd
u(t)e−ikT tdt

= (2π)−d/2û(k)under our assumptions. Note that the above argument uses only L2�
ontinuoustransformations. This proves the se
ond equation.The third form 
an be dedu
ed exa
tly like the se
ond one, if we also in-ter
hange the role of u and û in the assumptions. Formally, we 
an use these
ond for û instead of u and apply
ˆ̂u(k) = û∨(−k) = u(−k).The �nal form takes v(x) := u(hx) and applies the third inequality with

v̂(ω) = h−dû
(
ω

h

)following from
v̂(ω) = (2π)−d/2

∫
v(x)e−ixTωdx

= (2π)−d/2
∫
u(hx)e−ihxTω/hdx

= h−d(2π)−d/2
∫
u(y)e−iyTω/hdx

= h−dû
(
ω
h

)
.245



This yields
(2π)−d/2

∑

k∈Zd

v(k)e−ikT η =
∑

j∈Zd

v̂(η + 2πj)

(2π)−d/2
∑

k∈Zd

u(hk)e−ikT η = h−d
∑

j∈Zd

û
(
η + 2πj

h

)

(2π)−d/2
∑

k∈Zd

u(hk)e−ihkTω = h−d
∑

j∈Zd

û
(
ω +

2πj

h

)for η =: hω. But note that the above form is badly s
aled. It should read
hd/2

∑

k∈Zd

u(hk)e−ihkTω =
(
2π

h

)d/2 ∑

j∈Zd

û
(
ω +

2πj

h

)in order to represent the fa
t that the left-hand side is a summation overgridpoints with spa
ing h, while the right-hand side is a summation over agrid with spa
ing 2π
h
.12.6 Fourier Transforms of Fun
tionalsWith Plan
herel's equation in mind, let us look at the linear fun
tional

λu(v) := (u, v)L2(Rd)on S. We see that
λû(v) = (û, v)L2(Rd) = (u, v̌)L2(Rd) = λu(v̌)holds. A proper de�nition of the Fourier transform for fun
tionals λu shouldbe in line with the fun
tions u that represent them, and thus we should de�ne

λ̂u := λûor in more generality
λ̂(v) := λ(v̌)for all v ∈ S. Sin
e the spa
e S of test fun
tions is quite small, its dual, thespa
e of linear fun
tionals on S, is quite large. In parti
ular, the fun
tionalsof the form λu are de�ned on all of S, if u is a tempered fun
tion. Thelatter form the spa
e K of all 
ontinuous fun
tions on R

d that grow at mostpolynomially for arguments tending to in�nity.246



De�nition 12.20. The Fourier transform of a linear fun
tional λ on S isthe linear fun
tional λ̂ on S de�ned by
λ̂(v) := λ(v̌) or λ̂(v̂) := λ(v)for all v ∈ S. If the latter 
an be represented in the form λw with a temperedfun
tion w ∈ K, we say that w is the Fourier transform of λ and write w = λ̂.The generalized Fourier transform of a tempered fun
tion u ∈ K is theFourier transform λ̂u of the fun
tional λu.Example 12.21The fun
tional δx(v) := v(x) has the form

δx(v) = v(x) = (2π)−d/2
∫

Rd
v̂(ω)e+ix·ωdω,and its Fourier transform is of the form λux with

ux(ω) = δ̂x(ω) = e−ix·ω.Here, the normalization of the L2 inner produ
t (12.17) pays o�. Note thatthe Fourier transform is not a test fun
tion, but rather a tempered fun
tionfrom K and in parti
ular a bounded fun
tion. The fun
tional δ := δ0 has theFourier transform u0 = 1.Example 12.22A very important 
lass of fun
tionals for our purposes 
onsists of the spa
e
P⊥

Ω = L of fun
tionals of the form
λa,X :=

∑

xj∈X
ajf(xj) (12.23)for �nite sets X ⊂ Ω and a ∈ R|X| that vanish on Pd

m. Their a
tion on a testfun
tion v is
λa,X(v) =

M∑

j=1

ajv(xj)

= (2π)−d/2
∫

Rd
v̂(ω)

M∑

j=1

aje
ixj ·ωdω

= λ̂a,X(v̂)247



su
h that the Fourier transform of the fun
tional λa,X is the fun
tional gen-erated by the bounded fun
tion
λ̂a,X(ω) = pa,X(ω) :=

M∑

j=1

aje
−ixj ·ω.If we expand the exponential into its power series, we see that

λ̂a,X(ω) =
∞∑

k=0

M∑

j=1

aj(−ixj · ω)k/k!

=
∞∑

k=m

M∑

j=1

aj(−ixj · ω)k/k!sin
e the fun
tional vanishes on Pd
m. Thus λ̂a,X(ω) has a zero of order atleast m in the origin. If the fun
tional λa,X itself were representable by afun
tion u, the fun
tion u should be L2-orthogonal to all polynomials from

Pd
m. We shall use both of these fa
ts later.Example 12.24The monomials xα are in the spa
e K, and thus they should at least havegeneralized Fourier transforms in the sense of fun
tionals. This 
an easily beveri�ed via

(
−i d

dx

)α
v(x) =

(
−i d

dx

)α
(2π)−d/2

∫
Rd v̂(ω)e+ix·ωdω

= (2π)−d/2
∫
Rd v̂(ω)(−i · iω)αe+ix·ωdω

= (2π)−d/2
∫
Rd v̂(ω)ωαe+ix·ωdω,and the asso
iated fun
tional is

v 7→
(
−i d
dx

)α

v(x)at x = 0.12.7 Spe
ial Fun
tions and TransformsThis is intended as a referen
e and tutorial for 
lassi
al formulas involvingspe
ial fun
tions (e.g.: Gamma, Beta, and Bessel fun
tions) and their trans-forms. Results on Fourier transforms in general are in se
tion 12.3. Thisse
tion, so far, is in raw and unsorted form, be
ause all required formulaeare just 
olle
ted here. 248



12.7.1 Gamma Fun
tionThe Gamma fun
tion is de�ned by
Γ(z) =

∫ ∞

0
tz−1e−tdt (12.25)and has the properties

Γ(z + 1) = zΓ(z), z /∈ −N

Γ(k + 1) = k!, k ∈ N

Γ(1/2) =
√
π.The equation ∫ 1

0
ux−1(1− u)y−1du =

Γ(x)Γ(y)

Γ(x+ y)
(12.26)for any x, y > 0 will be useful.12.7.2 Volumes and Surfa
e IntegralsThe volume of the d-dimensional ball

Br(0) := { x ∈ R
d : ‖x‖2 ≤ r }of radius r is vol Br(0) =
rdπd/2

Γ(1 + d/2)
. (12.27)The surfa
e area σd−1 of the d− 1-dimensional sphere in Rd for d ≥ 1 is

σd−1 = vol (Sd−1) = 2πd/2/Γ(d/2). (12.28)This follows for d > 2 from the representation
dσ =

d−1∏

j=1

(sinϕj)
d−1−jdϕjof the surfa
e element dσ in terms of the angles

ϕj ∈ [0, π], 1 ≤ j ≤ d− 2, ϕd−1 ∈ [0, 2π]and univariate integration, while d = 1, 2 are standard.
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12.7.3 Bessel Fun
tionsFor Bessel fun
tions, the standard sour
e of information is [Wat95℄.We 
onsider the fun
tion F (r‖ω‖2, d) de�ned by the integral
F (t, d) :=

∫

‖y‖2=1
e−ity·zdy (12.29)over the surfa
e of the unit ball in Rd for t ≥ 0, d ≥ 2, and some ‖z‖2 =

1, z ∈ R
d. This integral is invariant under orthogonal transformations Q of

Rd, as is easily obtainable from repla
ement of z by Qz. Thus the integral isindependent of z, as already indi
ated by the notation, and we 
an assume
z = (−1, 0, . . . , 0) for its evaluation. Let σd−1 be the surfa
e area of the d−1-sphere, i.e.: the boundary of the unit ball in Rd. We now assume d ≥ 3 andintegrate over the surfa
e of the d− 1-sphere by summing up the integralsover surfa
es of (d−2)-spheres, splitting y = (y1, u) and setting z · y = cosϕ.This yields

F (t, d) =
∫

‖y‖2=1
eity·zdy

=
∫ π

0
eit cosϕ

∫

‖u‖2
2
=1−y2

1

dudϕ

= σd−2

∫ π

0
eit cosϕ(sin(ϕ))d−2dϕ

= σd−2

∫ 1

−1
eits(1− s2)(d−3)/2dsand 
ontains an instan
e of the Bessel fun
tion

Jν(t) =
(t/2)ν

Γ(2ν+1
2

)Γ(1
2
)

∫ 1

−1
eits(1− s2)

2ν−1

2 ds (12.30)whi
h is well-de�ned for Re (ν) > −1
2
. We end up with ν = d−2

2
and get

F (t, d) = σd−2

Γ(d−1
2
)Γ(1

2
)

(t/2)(d−2)/2
J(d−2)/2(t)

= 2πd/2(t/2)−(d−2)/2J(d−2)/2(t).

(12.31)Dire
t integration shows that this is also valid for d = 2 or ν = 0, using
σ0 = 2.12.7.4 Power Series of Bessel Fun
tionsThe Bessel fun
tion of (12.30) has the power series representation

Jν(t) =
(
t

2

)ν ∞∑

j=0

(
− t2

4

)j

j!Γ(ν + j + 1)
(12.32)250



that is valid for all t ∈ C \ {0} and all ν ∈ C. The integral representation(12.30) is �rst proven to be identi
al to the power series representation (12.32)on its domain of de�nition. Sin
e the power series is 
onvergent everywhere,the general de�nition of Jν 
an then be done by (12.32). We �rst expand theexponential in
∫ 1

−1
eits(1− s2)(2ν−1)/2ds =

∞∑

j=0

(it)j

j!

∫ 1

−1
sj(1− s2)(2ν−1)/2ds

=
∞∑

j=0

(it)2j

2j!

∫ 1

−1
s2j(1− s2)(2ν−1)/2dsand use symmetry to 
an
el the odd powers. The equation (12.26) will 
omein handy after the substitution s2 = u. Then

∞∑

j=0

(it)2j

2j!

∫ 1

−1
s2j(1− s2)(2ν−1)/2ds =

∞∑

j=0

(it)2j

2j!

∫ 1

0
uj−1/2(1− u)(2ν−1)/2du

=
∞∑

j=0

Γ(j + 1
2
)Γ(2ν+1

2
)

Γ(j + ν + 1)

(it)2j

2j!

=
∞∑

j=0

Γ(1
2
)Γ(2ν+1

2
)

j!Γ(j + ν + 1)

(
−t

2

4

)juses the same split of Γ(j+ 1
2
) as before. This 
an be put int (12.30) to yieldthe power series representation.Looking at (12.32), we 
an de�ne a fun
tion Hν by

(
z
2

)−ν
Jν(z) =: Hν(z

2/4) =
∞∑

k=0

(−z2/4)k
k!Γ(k + ν + 1)

(12.33)for ν ∈ C. This fun
tion often o

urs in the text.In a very spe
ial situation the power series representation (12.32) implies
J−1/2(t) =

(
t

2

)−1/2 ∞∑

j=0

(
− t2

4

)j

j!Γ(j + 1/2)

=
(
t

2

)−1/2 ∞∑

j=0

(−1)jt2j

22jj!((j − 1)/2)((j − 3)/2) . . . (1/2)
√
π

=
(
t

2

)−1/2 ∞∑

j=0

(−1)jt2j

(2j)!
√
π

=
(
t

2

)−1/2 1√
π
cos(t)

=

√
2

π

cos(t)√
t
,

(12.34)
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and the other Bessel fun
tions with half-integer order are similarly obtainableas linear 
ombinations of elementary fun
tions.12.7.5 Relations Between Bessel Fun
tionsBy di�erentiation of the Hν fun
tion from (12.33) we get
− d

dt
Hν(rt) = − d

dt

∞∑

k=0

(−rt)k
k!Γ(ν + k + 1)

= r
∞∑

k=1

(−rt)k−1

(k − 1)!Γ(ν + k + 1)

= r
∞∑

k=0

(−rt)k
k!Γ(ν + k + 2)

= rHν+1(rt).

(12.35)
and

d

dt
tνHν(rt) = d

dt

∞∑

k=0

(−rt)ktν
k!Γ(ν + k + 1)

= r
∞∑

k=0

(−r)k(ν + k)tν+k−1

k!Γ(ν + k + 1)

=
∞∑

k=0

(−rt)ktν−1

k!Γ(ν − 1 + k + 1)

= tν−1Hν−1(rt).

(12.36)
We further need a spe
ial identity for Bessel fun
tions:
Jµ+ν+1(t) =

tν+1

2νΓ(ν + 1)

∫ 1

0
Jµ(ts)s

µ+1(1− s2)νds, t > 0, ν > −1, µ > −1

2
.(12.37)
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Sin
e the integral is �nite, we 
an simply insert the power series and get
∫ 1

0
Jµ(ts)s

µ+1(1− s2)νds =
∫ 1

0



(
ts

2

)µ ∞∑

j=0

(
− (ts)2

4

)j

j!Γ(µ+ j + 1)


 sµ+1(1− s2)νds

=
∞∑

j=0

(−1)j( t
2
)µ+2j

j!Γ(µ+ j + 1)

∫ 1

0
s2µ+2j+1(1− s2)νds

=
∞∑

j=0

(−1)j( t
2
)µ+2j

j!Γ(µ+ j + 1)

1

2

∫ 1

0
rµ+j(1− r)νdr

=
∞∑

j=0

(−1)j( t
2
)µ+2j

j!Γ(µ+ j + 1)

1

2

Γ(µ+ j + 1)Γ(ν + 1)

Γ(µ+ ν + j + 2)

=




∞∑

j=0

(−1)j( t
2
)µ+ν+1+2j

j!Γ(µ+ ν + j + 2)


 2Γ(ν + 1)

tν+1

=
2Γ(ν + 1)

tν+1
Jµ+ν+1(t).There is a spe
ial appli
ation in the text for ν = 0 and µ = (d− 2)/2, with

Jd/2(t) = t
∫ 1

0
J(d−2)/2(ts)s

d/2ds. (12.38)12.7.6 Bounds on Bessel Fun
tionsWe 
ontinue with two properties of Bessel fun
tions from [NW91b℄:
J2
d/2(z) ≤ 2d+2

πz , z > 0 (12.39)
lim
z→0

z−dJ2
d/2(z) =

1

2dΓ2 (1 + d/2)
. (12.40)The se
ond of these follows easily from the power series expansion, sin
e

lim
z→0

(
z

2

)−ν

Jν(z) =
1

Γ(1 + ν)

lim
z→0

z−νJν(z) =
2−ν

Γ(1 + ν)

lim
z→0

(
z−νJν(z)

)2
=

2−2ν

Γ(1 + ν)2
.Unfortunately, equation (12.39) is mu
h more di�
ult and must (for now)be left to the 
ited literature. Similarly, there is a weaker, but more generalbound

|Jν(x)| ≤ 1 (12.41)253



for all x ∈ R and ν ≥ 0 ([AS70℄, 9.1.60, p. 362). Both of the above boundsshould 
ombine into the general inequality
|Jν(|x|)| ≤ ≀(|x|−1/2), x→ ∞ (12.42)in view of [AS70℄, 9.2.1, p. 364. These things will be added later.12.7.7 Integrals Involving Bessel Fun
tionsFrom [AS70℄ 11.4.16, p. 486 we take the moment equations

∫ ∞

0
tµJν(t)dt = 2µ

Γ((ν + µ+ 1)/2)

Γ((ν − µ+ 1)/2)
(12.43)whi
h are valid for Re (ν + µ) > −1, Re (µ) < 1/2. We now use these toderive similar equations for the Hν fun
tions by

∫ ∞

0
sρHν(s)ds =

∫ ∞

0
(z2/4)ρHν(z

2/4)(z/2)dz

=
∫ ∞

0
(z2/4)ρ(z/2)−νJν(z)(z/2)dz

= 2ν−1−2ρ
∫ ∞

0
z2ρ−ν+1Jν(z)dz

=
Γ(ρ+ 1)

Γ(ν − ρ)

(12.44)
for ρ > −1 and ν > 2ρ+ 1

2
.Another 
itation from [AS70℄ 11.4.41, p. 487 is the Weber-S
hafheitlinintegral

∫ ∞

0
tµ−ν+1Jµ(at)Jν(bt)dt

=





0 0 < b < a
2µ−ν+1aµ(b2 − a2)ν−µ−1

bνΓ(ν − µ)
0 < a < b



(12.45)for Re ν > Re µ > −1 and a 6= b > 0.12.7.8 Bessel Fun
tions of Third KindThe Bessel fun
tion Kν of third kind (alias M
donald fun
tion) is de�ned as

Kν(z) :=
∫ ∞

0
ez cosh t cosh(νt) (12.46)254



for z 6= 0, | arg z| < π/2 and all ν ∈ C. From this it follows that
Kν = K−ν (12.47)holds and that Kν is positive for real parameters ν, z. For the spe
ial 
aseRe ν > −1/2 there is an integral representation

Kν(z) =
π1/2(z/2)ν

Γ(ν + 1/2)

∫ ∞

1
e−zt(t2 − 1)ν−1/2dt. (12.48)Its asymptoti
s near zero is

Kν(z) =
(z/2)−ν

Γ(ν)
+ O(1) (12.49)for ν > 0 and real, while it behaves like

Kν(z) =

√
π√
2z
e−z(1 + ≀(z−1)), (12.50)near in�nity for |ν| ≥ 1/2. The asymptoti
s of K0 near zero are like

K0(r) =
1

e
− log(r/2) + O(1) for r → 0.Due to [AS70℄, 11.4.44, p.488 it is related to the Jν Bessel fun
tions via theidentity ∫ ∞

0

tν+1Jν(at)

(t2 + z2)µ+1
dt =

aµzν−µ

2µΓ(µ+ 1)
Kν−µ(az) (12.51)for a, z > 0, −1 < ν < 2µ+ 3/2. It satis�es the di�erential equations

K ′
ν(z) = Kν−1(z)−

ν

z
Kν(z)

d

dz
(zνKν(z)) = −zνKν−1(z).

(12.52)The se
ond equation, 
ombined with (12.47), proves that the fun
tionsKν(x)x
νfor x > 0, ν ≥ 0 are nonde
reasing for x > 0 with exponential de
ay at in-�nity. These fun
tions o

ur as reprodu
ing kernels of Sobolev spa
es andare often 
alled Matérn kernels or Sobolev kernels.
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