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Preface

This is a text intended for use with my lecture “Approximationsverfahren IT”
in winter 2010/2011. Though the basic background material is in the book
[Wen05] of Holger Wendland, some additional stuff is necessary at certain
places. The text is an update of of a 2005 lecture handout. It is under
construction at various marked places, and it will evolve during the term.

Readers might consult the books or surveys [Aro50, Mes62, BCR&4, [Sas94,
[Sch97bl, BS00, Buh03l, Wen05), [SW06, [Fas07] (in chronological order) for ad-
ditional material. Single papers will be cited where needed, but a few things
presented here cannot be found elsewhere.

Gottingen, February 1, 2011

R. Schaback
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1 Introduction

This text provides some basic material on kernels. It turns out that kernels
arise very naturally in Applied Mathematics, in various places, and for difer-
ent purposes. To give the reader an impression of the kernels that are in
our focus, we first list the most important cases without referring to specific
properties.

1.1 Radial Kernels
In a sense that can be specified, the Gaussian
K(z,y) := exp(—||z — yl|2/2) for all 2,y € R or C* (1.1)

is the mother of many kernels. We shall use the notation K in the following,
standing for either R or C.

In general, our notion of kernels will use the following

Definition 1.2. Let Q) be an arbitrary nonempty set. A function
K :OxQ—K, ie RorC

is called a (real— or complez—valued) kernel on Q. We call K o Hermitian
kernel if
K(z,y) = K(y,x) for all z,y € Q.

If the kernel is real-valued, this property defines a symmetric kernel.
Since the Gaussian (LI]) can be written as a function
o(r) = K([lz = yll2), ¢ : [0,00) = K

of the Euclidean distance r = ||z — y||2, it is traditionally called a radial
basis function (RBF). There are other prominent kernels of this type, e.g.
the multiquadrics

o(r) = (14252,

For negative (3, they are often called inverse multiquadrics.

Other kernels are the powers

o(r) = rb, B ¢ 27.
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Figure 1: Gaussian kernels

Inverse multiquadric kernels
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Figure 2: Inverse multiquadrics

The latter are part of an important family called polyharmonic for a reason
to be explained later, and the other kernels of this family take the form

o(r) = 8 log(r), B € 2Z



Multiquadric kernels
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Figure 3: Multiquadrics

with the special case

¢(r) = r* log(r)
called the thin—plate spline because of its connection to the partial differ-
ential equation describing the bending of thin plates.

Polyharmonic kernels
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Figure 4: Polyharmonic kernels



The zoo of radial kernels also contains compactly supported kernels like
Wendland’s [Wen95] kernel

¢31(r)=(1— ’I“)i(l + 4r)

with the cutoff function

H. Wendlandi¢Y2s compactly supported radial 2 kernels
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Figure 5: Some C? Wendland kernels

For reasons that come up later, a particularly important family of kernels

o(r) =17 Kps(r)
is related to Matérn or Sobolev. It uses the Bessel functions K, of third kind,

see the section [[2.7 on Special Functions.

1.2 Stationary, Periodic, and Zonal Kernels

To get away from radial kernels, we can focus on translation—invariant or
stationary kernels that are functions

K(z,y) = ®(x —y)



Sobolev/Matern kernels, rescaled

Figure 6: Sobolev/Matérn kernels

of differences, if the domain €2 allows an additive group operation. This, for
instance, applies to periodic functions as well, and there we have examples
like the Dirichlet kernel

D(p) := % +3 cos(jp) = %Sm (S(lz Etez)) 2

]

which is applied to differences ¢ = o — [ of angles or of 2r—periodic argu-
ments. This kernel plays a dominat role in Fourier series theory, because it
allows to write a Fourier partial sum as an integral.

Other non-radial kernels are functions of inner products, like

K(z,y) = exp(z’ y) for all z,y € R™.

Such kernels are particularly important when working on the unit sphere,
since then 2”7y is the cosine of the angle between the two vectors = and y,
and thus the kernel can be represented as a function of an angle. Histori-
cally, these kernels are called zonal. There are many papers on kernel-based
methods on the sphere, but no comprehensive book, so far.

At this point, we omit the general case of kernels on (semi-) groups [BCR&4]
or on Riemannian manifolds [Nar95]. But we remark that kernels can always
be restricted to subsets of their domain without losing essential properties.
This applies when defining kernels on embedded manifolds, e.g. the sphere.
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Figure 7: Dirichlet kernels

1.3 Kernels in Machine Learning

Remember that 2 does not carry any structure at all. Tt can contain texts and
images, for instance, and it will often be infinite. Some readers may consider
this as being far too general. However, in the context of learning algorithms,
the set € defines the possible learning inputs. Thus €2 should be general
enough to allow Shakespeare texts or X-ray images, i.e. () should better
have no predefined structure at all. Thus the kernels occurring in machine
learning [CST00, [SS02| are extremely general, but still they take a
special form which can be tailored to meet the demands of applications.

This starts from defining the set 2 of objects one wants to learn about.
Then an application-dependent feature map & :  — F with values in
a Hilbert “feature” space F is defined. It should provide for each z € 2
a large collection ®(x) of features of x which are characteristic for x and
which live in the Hilbert space F of high or even infinite dimension. Note
the F has plenty of useful structure, while 2 has not. Feature maps 2 — F
allow to apply linear techniques in their range F, while their domain €2 is
an unstructured set. They should be chosen carefully in an application-
dependent way, capturing the essentials of elements of €.

With a feature map ® at hand, there is a kernel

K(z,y) := (®(z),®(y))z forall z,y € Q (1.3)

6



which is automatically Hermitian. If the feature space is finite-dimensional
or a sequence space, the resulting kernel is an expansion kernel. These will
be dealt with in Section and Chapter [l

1.4 Spaces of Trial Functions

A kernel K on () defines a function K(z,-) for all fixed z € Q. This allows
to generate and manipulate spaces

Ko := span {K(z,-) : = € Q}. (1.4)

of functions on €. In Learning Theory, the function K(z,-) = (®(z), ®(-)) ~
relates each other input object to a fixed object x via its essential features.
But in general Ky just provides a handy linear space of trial functions on
) which is extremely useful for most applications of kernels, e.g. when (2
consists of texts or images. For example, in meshless methods for solving
partial differential equations, certain finite-dimensional subspaces of Iy are
used as trial spaces to furnish good approximations to the solutions.

1.5 Convolution Kernels

In certain other cases, the set () carries a measure p, and then, under rea-
sonable assumptions like f, K(y,-) € L*(S, i), the generalized convolution

Ko fi= [ f@)K(.2)du() (1.5)

defines an integral transform f — K xq f which can be very useful. Note
that Fourier or Hankel transforms arise this way, and recall the role of the
Dirichlet kernel in Fourier analysis of univariate periodic functions. The
above approach to kernels via convolution works on locally compact topolog-
ical groups using Haar measure, but we do not want to pursue this detour
into abstract harmonic analysis too far. See [BCR84] and the dissertation
[Sch09b] for kernels on rotation groups.

Note that discretization of the integral in the convolution transform leads
to functions in the space Ky from ([L4)). Using kernels as trial functions
can be viewed as a discretized convolution. This is a very useful fact in the
theoretical analysis of kernel-based techniques.



1.6 Expansion Kernels

Integral operators (LI often have eigenfunction expansions of the form

= Z Aipi(@)pi(y) (1.6)
iel

that go under the names of Hilbert—Schmidt or Mercer or Karhunen—
Loéve, using a general index set I which usually is countable. We shall use
the name expansion kernels for these, even if there is no integral operator
behind them. Then they just are a series of the above form, with certain
functions ¢; : Q — R, ¢ € I, certain positive weights \;, ¢+ € I and an
index set [ such that the summability conditions

=> Nlpi(z)]? < o0 (1.7)

iel
hold for all x € Q2. Note that this occurs in machine learning, if the functions
p; each describe a feature of x, and if the feature space is the weighted

{5 space

£2I>\ - {{£Z i€l Z)‘ |£2|2 < OO} (18)

el

of sequences with indices in I.

Note further that the summability condition (7)) guarantees the well-definedness
of the kernel by the Cauchy—Schwarz inequality

(\/790@ )~(ﬁ%(y)) <

But there are many other kernels that have the above form. For instance,
the univariate Gaussian kernel is

|K (z,y)| = \/K(x,x)K(y,y) for all z,y € Q.

el

K(z,y) = exp(—(z—1y)?
= exp(—x?) exp(2zy) exp(—y?)
o0 2n
= exp(—a?) (Z —a"y )eXp(—yz)
n=0
% 9n (1.9)
= > " exp(—2”) y" exp(—y?)
n=0 =:pn(x) =:on(y)
= Z gpn (y) for all z,y € R

without summability problems. But we shall postpone the construction of
large classes of kernels to a later chapter.
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1.7 Kernels from Transforms

A variation of the convolution and the expansion kernels are kernels obtained
from transforms, e.g. Fourier series, Fourier transforms, or other instances
of harmonic analysis. The basic principle is the representation

K(x,y) = /;Fg(w,x)g(w,y)du(w) (1.10)

where integration or summation takes place with respect to a nonnegative
measure 4 on a transform domain 7'. In case of Fourier series,

K(p,9) := Y K(n) exp(in(p —¢))

~

with nonnegative real numbers K (n). These are examples of expansion ker-
nels. In case of Fourier transforms in d variables,

K(z,y) = (2m)™" [ K(w)exp(io (e - y)de

with a nonnegative transform function K on R%. We shall use this extensively
in Section 0.3

Theorem 1.11. If a kernel K is defined via (L10), it is Hermitian and
positive semidefinite. If for all pairwise distinct points x;, € € the functions
g(-,xy) are linearly independent on at least a set of positive measure, the
kernel is positive definite.

Proof: The standard quadratic form is

N
> GaK (), 2x)

J,k=1

> a—jak/Tg(T,xj)g(w,xk)du(w)

J,k=1

= /T iV: arg(w, Tx)

k=1
If the form vanishes, the linear combination of the g(-,x)) vanishes on all
sets of positive measure. This proves the second assertion. O

2

du(w) > 0.




1.8 Special Kernels

Another source of kernels are differential equations. Typical examples are
Green’s functions or fundamental solutions, or singular kernels like the single—
layer or double-layer potential. We shall touch these cases here or there.
But there also are kernels which are specially tailored for use with PDEs,
e.g. harmonic kernels [Sch(9al [HS10] or matrix—valued kernels [NW94!
Low(05al [Low05b), [FusO8a] that allow to generate divergence—free vector
fields [NWWO07, [Fus08b]

Finally, kernels often arise as covariance kernels in stochastic models. If for
every t in some set {2 we have a random variable X, with existing second
moments, we can define the covariance kernel

K(s,t) .= Cov(X,, Xy), 2 x Q=R (1.12)

and analyze its properties. It turns out that the statistical estimation tech-
niques called Kriging in Geostatistics are algorithmically identical to inter-
polation with translates of kernels in Numerical Analysis, and a large part
of this text will study these methods in detail. The connection of covariance
kernels to learning is obvious: two learning inputs x and y from €2 should be
very similar, if they are closely “correlated”, if they have very similar features,
or if (IL3)) takes large positive values.

At this point, we leave out various other occurrences of kernels in the math-
ematical literature and in applications (see the survey article [SW06]). Just
keep in mind that kernels have three major application fields: they gener-
ate convolutions, trial spaces, and covariances. The first two are related by
discretization.

RS: the section on PDE-related kernels needs extension.

2 Kernels from Hilbert Spaces

From here on, we describe a common framework for most of the kernels that
we saw in the previous section. We start with noting that all Hilbert spaces
lead to “ reproducing” kernels, and in the next chapter we shall see that most
kernels lead to “native” Hilbert spaces in which they are reproducing.

2.1 Reproducing Kernel Hilbert Spaces

As Numerical Analysts, we want to work with real- or complex—valued func-
tions on domains 2. For each x € {2 and each function f we consider, we

10



want that the evaluation
r— f(z) €K, ie. RorC

is a reasonable operation. It depends on both f and x, and it should be
stably computable.

But we shall place more emphasis on f than on x, because the set (2 is
completely unstructured in various applications, e.g. in Machine Learning.
If we place plenty of structure on the space H of functions we want to work
with, we can assume H to be a Hilbert space with an inner product (.,.)%.
See Section [[1] for a basic account of Hilbert space theory.

For later use, we allow ourselves to consider arbitrary Hilbert spaces as well,
without being spaces of functions on some set. But this is no generalization,
because any Hilbert space H is a Hilbert space of functions on its own dual
H* via

f(p) :==pu(f) forall feH, peH". (2.1)
In particular, the dual space now consists completely of point evaluation

functionals, where “points” are functionals themselves. We shall come back
to this.

Continuity of point evaluation functionals
de = [ flx), z€Q

then means that these functionals are in the topological dual H* of H and
satisfy

102(F)] = [ ()] <[]0

Furthermore, the Riesz isometry

3| fll forall z € Q, f € H.

R :H —H, ANf)=(f,R(\)y forall feH, Ne H"
maps Jd, into a function
K(z,-):= R(0,) € H for all z € Q
that is a kernel according to Definition Then

5y(f) = f(y> = (f7 R(éy))?ﬂ = (f7 K<y7 ))H for all f S H7 Yy c Q (22)

is a reproduction equation for values of functions from the inner product.
It is clear that any kernel K (x,-) satisfying the reproduction equation must

11



be the Riesz representer of the point evaluation functional ,. Thus the
reproducing kernel is unique.

Specializing to f = K(x,-) € H we get
K(:an) = (K(:Ea ')7 K(y7 ))H = (5317 5z)'H* for all T,y € Q. (23)

This is one of the various occurrences of kernels in Mathematics. We shall
see a number of cases later. Note that in the right-hand side the points x
and y are interchanged. This is due to the antilinearity of the Riesz map in
the complex case, leading to the isometry property in the sense

(R(A\), R(11))3 = (4, A)g+ for all A, € H*.

See section [[1.6] for details on Hilbert spaces and Riesz maps.

Theorem 2.4. Each Hilbert space H of real— or complex—valued functions on
some set Q) with continuous point evaluation functionals is a reproducing
kernel Hilbert space (RKHS) with a unique kernel

K :OxQ—=K

satisfying the reproduction equation (23) and the representation (2.3). O

The above kernel K is Hermitian in the sense K(z,y) = K(y,x). In par-
ticular, K (z,z) is always real. Note that K(z,-) is a function in H, but
not necessarily K(-,z), unless K is real-valued and thus symmetric, i.e.
K(z,y) = K(y,z). This is related to the fact that vector spaces over C
need not have the property that they are closed under taking the complex
conjugate or taking the real or imaginary parts.

The values of such kernels can always be bounded by
|K(z,y)|* < K(z,2)K(y,y) for all 2,y € Q (2.5)

due to (23), but we shall generalize this property later in Theorem B7 on
page

As a warm—up we state

Theorem 2.6. All Hilbert spaces H of functions on some set §2 with a re-
producing kernel K coincide with the closure of the linear combinations of
functions K(y,-) for all y € .

12



Proof: Assume that some f € H is orthogonal to all K(y,-). Then (2.2)
proves that f is zero as a function on €. O

Theorem 2.7. If a Hilbert (sub—) space of functions on Q has a finite or-
thonormal basis vy, ...,vy the reproducing kernel is

Zvj -) for all x € Q.
In case of a subspace, we have

N
Z|vj )W < K(x,7) for all z € Q.

Proof: Whatever the (always existing) kernel looks like, it must have a

representation
N

Ky(x,)) = ;(KK(SE,-),%)%(-)

= Zlmv]()

in the orthonormal basis. We could postpone the second assertion to Theo-
rem [Z19] but here is another proof. Consider

KN(.T},SL’) = (KN<5U7 )7K (.T, ))H
K

yielding

Kn(z,z) < \/KN(:U,J:)\/K(J:,:U) for all z € Q.
U

The second assertion is somewhat surprising for an orthonormal basis, since
it means that for increasing N the functions vy must get small in spite of
their normalization being independent of N. But in many cases the Hilbert
space norm also includes derivatives, and since these are kept at bay by
normalization, it is no miracle that the basis functions, exhibiting sharp
spikes, tend to be small in their function values.

Corollary 2.8. If a Hilbert (sub-) space with continuous point evaluation
has a complete orthonormal basis, then Theorem 2.7 also holds for N = cc.

13



Proof: Just use a series expansion in the above proof. There are no conver-
gence problems, because the Bessel inequality yields

SNE (@, ) v)ul* = (@) = [ K(z, )|}, = K(z, z) < o0,
j=1 j=1
proving via the Cauchy-Schwarz inequality that the series
K(z,y) = > vi(2)v;(y)
j=1

converges pointwise and absolutely. O

Note that all orthonormal bases give the same result. A change of basis will
not change the kernel, only the representation will change.

2.2 The Dual Space

For later use, we need some information about the dual space of a reproducing
kernel Hilbert space. The reason is that one often knows the space and the
kernel, the latter as an explicit formula. But then one wants to know which
linear functionals A : H — K are in the dual of the Hilbert space. Here and
elsewhere, we use superscript arguments to indicate the action of variables,
i.e. A¥ means the action of A with respect to the variable x.

Theorem 2.9. The dual space H* of a reproducing kernel Hilbert space of
functions on some set € is the closure of the span of all point evaluation
functionals 6, for x € Q. For each pair A\, p of functionals from the dual H*
of H, one can define N* (YK (z,y)) uniquely via Cauchy sequences to yield

N (WK (z,y)) = (A p)us for all X, p e H (2.10)

as a generalization of (2.3). In particular, the Riesz representer of a func-
tional A € H* is N*K (-, x), and this function lies in H.

Proof: Clearly, the first assertion is just the dual form of Theorem [2.6

The identity (Z.10) holds for all linear combinations of point evaluation func-
tionals, and by continuity it carries over to all limits of Cauchy sequences,
i.e. to all functionals in the dual. For linear combinations of point evaluation
functionals (and thus later for all functionals), the reproduction equation is

M) = (F A K G a))w
proving R(\) = XK (-, z). O

Roughly speaking, the dual space consists of a functionals which

14



e can be obtained via sequences of linear combinations of point evaluation
functionals

e such that their application in the limit is possible for both arguments
of K independently.

To make this more precise, we consider functionals that have a meaning
outside the Hilbert space in question. Examples are functionals like

f e (AD@). f o [ fa
We want to have a sufficient condition for these to lie in H*.

Theorem 2.11. Assume that the kernel K of a reproducing kernel Hilbert
space H of functions on some set €2 is explicitly known as a function on 2 x (),
and assume it allows the action of a general functional X to both arguments,
i.e. NX*K(y,x) € K exists. Furthermore, assume that there is a sequence
{An}nen of linear combinations of point evaluation functionals on points of
Q such that for all € > 0 there is an N € N such that for all n,m > N we
have

‘)\Z)\;’JHK(y,x) — AT K (y, x)‘ <e (2.12)

Finally, assume

lim MK (z,y) = WK (x,y) for all z € . (2.13)

n—oo
Then X lies in H* and is the limit of the Cauchy sequence {\, }nen in H*.

Proof: We first want to show that {\,},en is a Cauchy sequence in H*.
This follows immediately from

[An — Am”%—ﬂ = ”)‘an-ﬂ + ”)‘mHg{? — (A, A = (A An)ae
= MKy ) + ALK ()
< 4e

for all n,m > N. Now the sequence must have a limit ) € H*, and we have
to show that A = A as functionals on H. From (ZI3) we get
lim N K (z,y) = WK (z,y) = K (x,y) for all z € Q.

n—oo

By Theorem 2.6 this extends to all of H. O

15



2.3 Implications for ()

We first look at the situation where the Hilbert space H is invariant under a
group 7 of transformations {2 — §2 in the sense that

f(T() € Hiorall feH, TeT
(f)n = (F(TE),g(T()))yforall f,geM, TeT.

Theorem 2.14. If H is invariant in the above sense under transformations,
so is the reproducing kernel, i.e.

K(x,y) = K(T(x), T(y)) for allz,y € Q, T € T.

Proof: Just consider

f(T(x) = (f, K(T(x),))n
(F(T(C)), K(T(x), T(-)n

and introduce g := f(7'()) to get
g(x) = (9, K(T(x),T(:)))x for all g € A,

to see that the point evaluation functional 0, is also represented by K (T'(x), T'(+)).
0

Theorem is behind many simplified kernels. Translation-invariance on
) = R? is induced by invariance under shifts, while radial kernels arise
from invariance under both shifts, rotations, and reflections, i.e. rigid-body
motions. Zonal kernels on the sphere arise from rotational invariance.

The mapping 6 : =z — 0, takes 2 into H*. If it is not injective, we
have a nontrivial equivalence relation x ~ y on 2 defined by J, = J, or
f(z) = f(y) for all f € H. In view of the Stone-Weierstraf theorem, and to
avoid the above effect, there is

Definition 2.15. A space H of functions on a set §) separates points of )
if for every pair x # y of different points in Q) there is a function f € H with

f@) # fy).

If H separates points of (2, we have injectivity of . Otherwise, we might
eliminate this by going over to the factor set {2 := Q/ ~ instead of €.

Under the hypotheses of Theorem we can define

d(z,y) =[]0z — 0]

y+ forall x,y € Q (2.16)

16



with the explicitly available representation
d({L‘,y)Q = K($‘, ZL‘) + K(yay) - K(l‘, y) - K(y,l‘) for all T,y € Q. (217)

This is a nonnegative symmetric function that satisfies the triangle inequal-
ity, but it can vanish for  # y in case that f(x) = f(y) for all f € H or
x ~ y. If this is assumed, the above function is a true metric on the oth-
erwise unstructured set €2, and the kernel could be redefined as a function
K*(64,6y) = (05, 0y)2» = K(x,y) on * x Q* using the set

O ={5, : 2€Q}

that is the image of the embedding from €2 into H* via x + J,. The kernel
in this form is nothing than the restriction of the inner product on H* x H*.
In the circumstances of (2.I]), the kernel is the inner product itself, and the
metric on {2 = H* is the usual metric induced by the norm.

Aiming at continuity of functions, we can look at

[fx) = fW)I? = 100z = 3,)()
< N5 102 — 0yll3-
= /15 d(z,y)?
= |fIl5 (K(z,2) = K(z,y) — K(y,2) + K(y,9))
= |fI5 (K(z,2) =2 Re (K(z,y)) + K(y,y))
to see

Theorem 2.18. Functions from H are always Lipschitz continuous with re-
spect to d, and if K is continuous on ) x €0, the functions in H are also
continuous on ). ]

But note that talking about continuity on {2 needs a topology there, and we
have not fixed a topology other than the one induced by d.

2.4 Kernels for Subspaces

Let Hy be a closed subspace of a Hilbert space H of functions on €. As such,
it is a Hilbert space itself, and it has its own reproducing kernel K,. With
the projector Iy : H — Hy we have

Theorem 2.19. The subspace kernel is
K(](SL’, ) = Ho(Ko(.T, )) for all x € Q,

and the reproducing kernel for the orthogonal complement Hg is K — K.
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Proof: We can decompose the identity on H into the orthogonal projectors
I =TIy + (I —Tlp) =: o + T3

and apply this to the reproduction equation (2.2)). Then

fly) = Mof)(y)+ (U f)(y)
= (Iof + g f, oK (y, ) + g K(y, )
= (H0f7 HOK(ya))'H+ (Hé_fa H(J)_K(ya))’z'-l
Specializing this to f € Hg or to f € Hy proves the assertions. O

In particular,

Fly) = Mo f)(y) + (f = o f, Ty K (y, )
can in some instances be the Taylor formula, as we shall see.

The upshot here is that orthogonal space decompositions correspond to ad-
ditive kernel decompositions using the appropriate projectors.

2.5 Subspaces from Point Sets

For what follows, we fix a nonempty subset X C Q of {2 and consider the
subspace
Hx := clos span {K(x,) : € X} CH (2.20)

of H. Tt is closed by definition, and we have

Theorem 2.21.

Hy ={f : feH, f(X)={0}}.

Proof: If f(X) = {0}, then f € Hx by the reproduction formula [Z2), and
conversely. O

From standard results in Hilbert spaces, we know that there is a projector
[Ix from H to Hx. With the shorthand notation fx := IIx(f) we get

Theorem 2.22. Fach function f € H has an orthogonal decomposition

f=rIx+/fx

18



with fx € Hx and fx € Hx. This means that each function f € H has an
interpolant fx € Hx recovering the values of f on X. Furthermore,

If = Fxllw = mf 1If — gl (2.23)
and
Ifx]l = inf gl = inf |If =z (2.24)
f x)=g(x veEHy
Vz € Q)
geEH
due to orthogonality of the decomposition. ]

Note that Theorem 2.22] covers transfinite interpolation and provides two
optimality principles known from spline theory. Because of their importance,
we restate them as

Corollary 2.25. The interpolant fx € Hx to a function f on X is at the
same time the best approximation to f from all functions in Hx.

Proof: This is (2.23). 0

Corollary 2.26. The interpolant fx € Hx to a function f on X is mini-
mizes the norm under all interpolants from the full space H.

Proof: This is (2.24)). O
A third optimality property will follow in Section 2.8

Defining fy =0, fi- = f and Hy = {0} with Hj = H for completeness, we
can note a few simple observations:

Corollary 2.27. For all sets X CY C Q and all f € H we have

I fxllm < Ayl < N flln

and

[fllse = W = Ixllae 2 1f = Syl O

2.6 Power Function
We now specialize to f = K(z,-) for a fixed x € Q.
Definition 2.28. The function

Px(x) := [[K(z,-) = K(z,)x|ln, © € Q

is called the Power Function with respect to the set X and the kernel K.
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This is nonstandard in the transfinite case, so far. The error functional

ex 1 [ flx) — (Hx(f))(x)
is well-defined and in H*. Thus another definition of the Power Function

could be
w+ for all z € Q.

Px(z) = [léx x|
Theorem 2.29. These definitions are equivalent. The Power Function has
the properties

Px(z) = 0 forall x e X
Py(z)? = K(z,z) for all x € Q
Po(z) = 0 for all x € Q
0= Po(zr) < Py(z) < Px(x) < Py(x) forallz € Q, X CY CQ,
Px(z) = gier%lfx |K(z,:) —glln forallz e Q
Px(z) = sup flz)  forallz € Q
feH
I flle <1
f(X) = {0}

but the most important is the error bound

(@) = fx(@)] = |fx(2)] < Px(@)|| fxlln = Px(@)If = fxllu < Px(@)]| ]l
(2.30)

forallz e Q) feH.

Proof: For the equivalence, we have to prove that the Riesz representer of
0, oIllx is K(x,-)x. This follows from

(f,R(0z o lIx))n = (0z0Ilx)(f)
= fx(v)

using the various orthogonalities.

The first five listed properties are easy consequences of Definition 2.28] and
the previous results. The error bound follows as well from what we already
know, but we can also use the error representation

flz) = fx(z) = fx(z)
= (f)J(_aK(x’))’H
= (fx, K(z,)) — K(z,)x)n
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because fi is orthogonal to K (z,-)x.

We are left with the sixth, the “dual” representation of the Power Function.
From the first inequality of the error bound, we see that

Px(z) > sup fx(w)

Ifxlln<t

and equality must hold if we insert the representer of €, x. O

The fifth property of the previous theorem has another equivalent formula-
tion. Consider the subspace

Hy := clos span {J, : z € X}

of the dual space H*. Then the property has the dual form of the fifth
property of Theorem 2.29] i.e.

X

for all z € €2, and it indicates how well the point evaluation functional §, can
be approximated by arbitrary linear combinations of the point functionals
for points of X.

2.7 Interpolants on Finite Sets

We now consider finite sets X = {z1,...,zx} C Q. For each f € H we can
write fy as a linear combination

fx = ZjajK(a:j, ) (2.32)

with coefficients a; € R or C, but note that the coefficients might not be
unique, since we do not assume that the K (z;,-) are linearly independent.
Since we know that fy must interpolate f on X, we have

Theorem 2.33. For each f € H, the linear system
N
> ajK(zj,xp) = fr, 1<k<N (2.34)
j=1

with the Hermitian kernel matrix
A= (K(xj,Tr))1<kj<n (2.35)

18 solvable. O
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This is somewhat surprising, since the kernel matrix can be singular under
the assumptions we made fo far.

Theorem 2.36. In reproducing kernel Hilbert spaces, the kernel matriz for
a finite set X is positive semidefinite. It is positive definite if the point
evaluation functionals 6, for v € X or, equivalently, the functions K(z,-)
for x € X are linearly independent.

Proof: This follows because any kernel matrix on a finite set X = {z1,...,zx}
is a Gramian matrix for the functionals d,, or the functions K (z;,-) due to
the representation equation (2.3)). O

The upshot of Theorem [2.33is that the right-hand side is always in the span
of the columns of the matrix. Users must bear in mind that the system can
be unsolvable for general right—hand sides.

Note that in the definition (2.33]) of the kernel matrix, the row index k runs
over the second argument of K(x;, z;) to turn (232) into the interpolation
system (2.34). For later use, we introduce

Definition 2.37. A kernel on Q x Q is Hermitian and positive semidef-
inite, if all kernel matrices for all finite point sets of Q) are Hermitian and
positive semidefinite.

Then Theorem [2.36] is

Theorem 2.38. All reproducing kernels of Hilbert spaces are Hermitian and
positive semidefinite. ]

We mention this explicitly here, because we shall prove the converse in the
next chapter:

)

Theorem 2.39. Every Hermitian and positive definite kernel has a “native’
Hilbert space in which it is reproducing.

This means that there is a one-to—one relation between Hilbert spaces and
Hermitian positive semidefinite kernels.

Now we specialize Theorem 233/ to f = K(x,-). Then we know that

K(z,z) =Y uj(z)K(zj,z), 1 <k <N (2.40)

J=1




has a solution u;(x) as a function on 2. Note that this also follows when
calculating the optimal solution of (Z31]). Furthermore, we now know that

K(x Zu] K(zj,2) (2.41)
holds for all z,z € 2. Note that the functions u; need not be contained in
Hx at this point.

Theorem 2.42. They are in Hx and a Lagrange basis, i.e.
u](a:k) = Ojk, 1 Sj,k S N

if the kernel matriz is nonsingular. In general, we still have
N
fx = ui() fla)). (2.43)

Jj=1

Proof: The first assertion follows from (2.40), and it is now clear why we
used the complex conjugates there. To prove the second assertion, we start
from (2.32)) and proceed via

fx = D> apK (g, -)
N —_—
Z l‘],l‘k)

MZH MZ

Going back to (Z.41]), we get

Theorem 2.44. The Power Function has the explicit representation

P)%(x) = K($,$) — Zluj(l‘)K(fL‘,l‘]) — Zlu](;p)K(x]’x)
+Zl ]; wj(x)ug(x) K (z;, )



Proof: The Power Function is the norm of K(x,-) — K(x.-)x. From (241
we then get the first assertion by direct calculation. Inserting (2.40), the
third and fourth term cancel, and the second is K (z,-)x(z) by 241). O

Going into the second part of Theorem 242 with f = K(z,-), we get

M=

K(z,)x(2) = () K (z, 7))

<.
Il
—_

I
.MZ

I
A

i (0) K (25, 2)

J

and see that this quantity is real in case z = z.

If the kernel matrix is singular, the point evaluation functionals at the points
of x are not linearly independent. But then one can select a maximal linearly
independent subset of those functionals and restrict oneself to the subset Y
of X consisting of the evaluation points of the selected functionals. Function
values of all functions of F on the discarded points are completely determined
by the values on Y by an explicit linear dependence which is the same for
all functions, and the same applies to the interpolant on Y. Thus it suffices
to pose the interpolation problem on Y and ignore the other points. The
interpolant on Y will automatically interpolate all functions from H on X
as well. And then one can use the Lagrange basis for the points on Y. Note
that this argument fails if the data are not from a function in the Hilbert
space.

We shall make this point selection process more precise in Section 2.10 on
page and combine it with a numerical construction of an orthonormal
basis.

2.8 Best Linear Estimation

From the above discussion, we know that fx with the representation (243
is the interpolant to f on the set X of data locations. We also have all the
background material that allows us to conclude that (243) at some point
x is the best linear predictor for f(z) in a way that we now describe. In
particular, this is important if the kernel comes from a covariance ([L12]).

Consider completely arbitrary estimation formulas

(z, ) = > vi(x) f(z)

J=1
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where no assumptions are made on the z—dependent scalar coefficients v;(x).
These are linear in f, and for x fixed, their error functional is

[t Zvy (z;) = (595 - Zlvj(ﬂf)5mj) (f)

To let the estimation be optimal for all f, we should choose the v;(x) to
minimize

VXv

O —Zv]
H*

But from (Z31]) we know the solution: it is what we have already with our
functions u;, and the optimal error is described by the Power Function.

Theorem 2.45. In the above sense, kernel-based interpolation yields the best
linear predictor of unknown function values f(x) from known function values
f(z;) at points x;, 1 < j < N. O

Let us specialize to the stochastic setting of (IL12]) for a moment, with real-
valued random variables X; with mean zero and bounded variance. The
above numerical estimation technique is then called Kriging, and V¢, is
the variance of the prediction error, which is minimized if we proceed like in
the previous section.

To supply the necessary details, we denote the error of the general linear
predictor at x by

N
€z, Xv = X:v — Z’UJ(.T)X

j=1
It has zero mean, and variance

E (Ei,x,u)

Cov(X,, Xy) 221)] )Cov( Xy, Xy;)

+22v3 2)op(x)Cov(X,,, Xo,)

j=1k=1
- K(:L‘,l‘)—2;0j(:[)K(x,xj)
+; Z vj(x)o(z) K (2, k)
= V2,

Note that there is no apparent Hilbert space here, but we shall see later that
there is one behind the scene.
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2.9 Power Function and Stability

It is a general observation that kernel matrices are often badly conditioned,
and the condition is particularly poor in cases where the Power Function is
small, i.e. when the interpolation error is small. This is kind of an Uncer-
tainty Principle:

It is impossible to make the Power Function and the condition of the
kernel matrix small at the same time.

We shall analyze this effect now, following [Sch95].

The basic trick is to express the Power Function via the kernel matrix. In
addition to the point set X = {x,..., 25}, we denote another point x by

xo := x and define ug(-) := —1. Then we define the extended kernel matrix
A with entries K(z;,zx), 0 < j,k < N and the vector
u = (uo(x),ur(2),...,un(x)’ = (=1, u(2),...,un(z))”"

to consider the quadratic form

T Au = 33 ujuc(a)K (a;. )
= K(z,z)— ;u](:p)K(x,xj) — Zlu](;p)K(x],x)
+;;uj(x)uk(x)l((:pj,xk)

using Theorem 244l The matrix A is Hermitian and positive semidefinite.
Thus it has N + 1 nonnegative real eigenvalues

MM 2>...2Av >0
and we get the inequality
N
Pi() = A (14 (@) | 2 A
j=1
from the usual bound
Avllull} < 7 Au < doflull

We can eliminate the special role of the point x:
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Theorem 2.46. The kernel matrixz for N points x1,...,xN forming a set X
has a smallest eigenvalue X\ bounded above by

< 1 ;
A< Bin, Px\(o;3(75). O
This implies that in settings where the Power Function still is small after one
point is left out, the kernel matrix must be ill-conditioned.

But note that the kernel matrix is directly connected to the span of translates
K(z;,-), and therefore the ill-conditioning may be a consequence of a bad
choice of the basis. This is indeed the case, since one can prove under ad-
ditional assumptions that the functions u; are uniformly bounded [DMS10].
We shall come back to stability questions later.

2.10 Newton Bases

The above discussion shows that one should avoid “nearly duplicate” points,
or those whose omission does not let the Power Function or the Kriging
variance increase too much. This can be cast into an adaptive algorithm
[DMSWO05, IMS09] that we describe now. It constructs an orthonormal basis
in a subspace of Hy, which, for certain reasons, can be called a Newton
basis.

We assume that we are given a fairly large and unordered set X of N points
to work with. We start with X, := 0 and have Pj(z) = K(z,z) due to
Theorem 229 We evaluate and store the N values Pj(z) = K(z, ) for the
x from X.

We introduce an integer £ > 0 and assume that we have already chosen an
ordered subset Xy := {x1,..., 2} of X with linearly independent point func-
tionals d;,,...,0,,. Furthermore, we assume that we have an orthonormal
basis vy, ..., vy, of the space Hx, with v € Hx, F‘I’H)L(j, 0<j7<k—-1. We
assume that we have the values of these functions on X in storage, together
with the values of Px, (x)? for all z € X. So far, this uses O(N(k + 1))

storage.

To perform the next step, we can stop if X \ Xy is empty. Then we check the
values of Py, on X. If they are all zero or smaller than a chosen tolerance, we
stop. Otherwise we pick some 44, € X with Py, (xr41) > 0. For a special
“oreedy” strategy we could also choose

Tp+1 = arg max {Px,(z) : v € X\ Xi}. (2.47)
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If Px,(z) =0 for all x € X, we stop since there is nothing to gain by con-
tinuing.

Now we have Px,(7r4+1) > 0 and form Xy = X U {zpq1}. If 0y, were
linearly dependent on the functionals d,,,...,d,,, we would have Py, (z) =
Px,.,(z) for all z € Q due to Theorem and Hx, = Hx,,,, but then
Px,(k41) = Px,.,(zg+1) = 0 is a contradiction.

Then we go for vy11 € Hx,,, N ”H)L(k with norm one. The standard way to
do this is to ignore normalization first, an to make a function

Wit = K 'Tk+17 Z QU5
orthogonal to all vy, ..., v;. This means
(vi, K(Tpy1,))n = viTrs1)
k
= > aj(vi,v)u (2.48)
= o, 1<i<k

as simple evaluations of the functions v;. We already have these values, but
we need the additional n values K(zg,1,z) for z € X to calculate wg, 1 on
X by O(NE) operations. Note that v41 € Hy, implies that vg(z;) =0, 1 <
J < k, but we do not let these conditions enter into the calculation.

The norm of w1 is also easy to calculate via the orthonormal decomposition

K(Tpq1,7) — Why1 = Z Q;v;

leading to

k
Dol = K @k, ) — w3
=1

= K<5L’k+1, 36’k+1) - <K<xk+17 ')7 wk+1)?-£
—(Wry1, K (g1, )0 + ”wk‘+1”%—£
= K(Try1, Trs1) — 2 Re (wipr(Th41)) + [[wrgallF

We can now define ()
L W\ T
Pl =
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and calculate its values on X. Finally, we need the Power Function P)2<k+1 on
X. To this end, we use Theorem [2.44] in the form

P)2(k+1 (SL’) = K(I, ZL’) - K(I, ')Xk+1 (.T)

and take advantage of our orthonormal basis:

k+1

K(x,)x.(2) = Y (K(x,),01)n0;(2)

j=1
k+1

= 2 vi(@)v;(2),
j=1
k+1

K(z,)x. (@) = ;Ivj(x)l2

to arrive at the surprisingly simple recursion

Py, () = K(%x)—f{gww)xm(ﬂf)

= K(z,z)— Z |vj(x)|2 (2.49)

j=1
= P(@) = o (@)

We see that we are constructing increasing ordered sets of points where the
associated point evaluation functionals are linearly independent, and thus all
kernel matrices here are positive definite. Furthermore, we have a sequence

of orthonormal functions vy, vs, ... with the property
vp(z;) =0,1<j<k (2.50)
like the basis
k—1
vp(z) = [T (= — )
j=1

for the univariate interpolating polynomial in Newton form. This is why we
call the v; a Newton basis. We summarize:

Theorem 2.51. The above adaptive algorithm selects for 0 < k < N an or-
dered subsequence of points x1, ..., x, of an N —point set X such that the point
evaluation functionals o, ..., 0., are linearly independent. In addition, an
orthonormal basis vy, ..., v, of Hx, is constructed with the Newton property
(250). The overall storage is O(Nk), while computational operations are
O(NK?). The original N x N kernel matriz is never formed or stored. The
algorithm produces and monitors monotonically decreasing power functions
with (2.49). It should be stopped when these are small on X. O
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So far, the algorithm only produces the values of the basis on X. In practice,
one can often let N and X be as large as needed for plotting and function
evaluation, stopping the method at reasonably small values of k. This implies
that additional evaluations are not necessary at all. But if evaluation at some
T is necessary, it can be done at O(k?) cost as follows. We start with

K(xq,x)

vl(x) N K(ZL‘l,l‘l)

and work our way up to vg(z) using

oy wi(=)
%) = e
and

wj(r) = K(zj,2) = 3 vi(a;)vi(z)

using (2.48)).

Theorem 2.52. The Newton basis functions have the additional property
k
> lvi(@))? < K(z,z) for all x € .
j=1

and for the “greedy” variation also
lvi(x)| < |vj(xj41)| = Px,;(zj11) for allx € X.

Proof: The first property follows from Theorem 2.7 because we constructed
an orthonormal basis of Hx,. For the second, the “greedy” selection of x;;
implies

|vj(@)|* < Px,(2)* < Px,(2j41)* = [v(251)]

using that P, (7;41) = 0 due to Theorem 2.29 O

The second property guarantees that the Newton basis has no higher maxima
than the controlled one at ;4.

By orthonormality, we can write the interpolants fx, =: fi on Xj in the
form
k
fre =2 (f,v5)v, (2.53)
j=1
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and if we do so, we need the coefficients

A(f) = (fv), 1< <k

This means that the v; are the Riesz representers of the functionals \;. Con-
sequently,

Theorem 2.54. The functionals \; for the Newton basis are orthonormal,
and their Riesz representers are the Newton basis functions. In particular,

k
2 (NI < I fullse < 115

Looking at the numerical evaluation of (2.53) at some point x, given that we
have both the v;(x) and the X\;(f), we get

|fu(@)” < (lekj(f)lz) (Zlm-(x)lz) < I fell3 K (, ).

The outer part is not surprising, but the message here is that both inner
factors stay bounded. This is in sharp contrast to (2.32)), where in most
applications the coefficients a; are large in absolute value, leading to severe
cancellation when forming the sum.

2.11 Kernel Recursions and Expansions

We need not always assume the special choice (2.47) for the next point. To
what we do now, it suffices to guarantee Py, (zr41) > 0 throughout. In view
of the recursion (Z49) for the Power Function, we define kernels

k
Ki(z,y) =Y _vj(z)v;(y) for all z,y € (2.55)
j=1
and
K (z,y) = K(z,y) — Ki(z,y) for all 2,y € Q
with the recursion
Kiy1(z,y) = Ki(2, y) + vi1 () vk () (2.56)

Theorem 2.57. The kernel Ky, is reproducing on Hx, , while Kj- is repro-
ducing on ,H)l(k As reproducing kernels in Hilbert spaces, they are Hermitian
and positive semidefinite by Theorem [2.38. Furthermore,

Pt (2) = Ki (z,2) for all z € Q.
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Proof: Each function in Hy, is of the form (2.53)), and this means
k
fe(z) = Z i vj)vj(x

= (f& ZUJ

= (fkaKk( ))n
= (faKk( L, ))H

where the last equality holds for all functions f that fj interpolates on Xj.

Each function in ’H)L(k is of the form g = f — fi, and then

g(x) = [flx) = fulz)
= (/i K(z, )y — (f, Kp(z,))n
= (LK}, )
= (9+ fr, K (z, )
= (9. K (2, )
Finally, (Z49) implies the rest. O

The adaptive matrix—free algorithm of the previous section is nothing else
than a pivoted Cholesky decomposition:

Theorem 2.58. If stopped after k steps, the algorithm for the Newton basis
has produced o Cholesky decomposition A, = L LT of the kernel matriz
Ay, for Hx,. The matriz L has the entries v;(x;), 1 <i,j <k.

Proof: From (Z.53) we get that the kernel matrix entries are
K(zi, ;) = Kz, z;) +0
k
= Y wvj(zi)vj(z;) for all z,y € Q. O
=1

If we go from X, one step further, we have the starting step of the algorithm
again, but now acting on K. This means

Ki (11, 7)
\/Kk(xk+17 Thi1)

Vg1 () =

and we get the recursions

Kk<x7 karl)Kk(karh y)

Kiyp(®pg1, Tps)
Ki(z, vpr1) Ki(2r41,9)

Ki(Tg41, Trt1)

Kk-l—l(xay) = Kk(l',’y)“F

Kli—Jrl(x?y) = K,i‘(l‘,y)—
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from (2.56]) which does not contain the Newton basis anymore.

But the main point of this discussion is that one can pass to the limit £ —
oo if there is an infinite set X and if the calculation does not break down
prematurely, then leading to a finite-dimensional subspace H x of H. In fact,
the kernels are pointwise absolutely summable via (2.5]) and

for all k.

Definition 2.59. A subset X C Q2 is unisolvent for a space of functions F
on a set Q, if a function f € F vanishing on X must be zero on all of €.

Note that we did not use Hilbert space structure here. But in our standard
Hilbert space context, we can apply sections and to get

Theorem 2.60. If X is an unisolvent set for a Hilbert space H of func-
tions on Q with continuous point evaluation, then Hx = H and Hx = {0}.
Furthermore, Px = 0. ]

At this point, one can ask whether “dense” point sets X are unisolvent, but
we have only the distance (2Z.I6) of Section 23 at our disposal.

Theorem 2.61. If X is dense in the distance (218), i.e. if for all points
y € Q and all € > 0 there is a point x € X with d(x,y) < €, then X is
unisolvent for H.

Proof: From (231)) we know that

Px(y) < 12)f( |0, — 0z ||3+ for all y € €,

and this implies Px(y) = 0 under the assumptions of the theorem. O

2.12 General Interpolants

We now depart from point evaluation functionals. We fix a subset A of
the dual H* that generalizes the set X we had before, and want to consider
interpolation using the data A(f) for all A € A. This replaces point evaluation
functionals by general functionals, and goes back to [Wu92].

In standard special cases, these functionals can contain derivatives, e.g.

_of

A(f) - 8t] z
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for the j—th partial derivative of a d—variate function f at a point z, or

MF) = [ fpar

for a local integral over a subdomain 7" against a weight or “test” function
v. Interpolation of general functionals \q, ..., Ay usually is a mess, because
one wants to use interpolants from a span of functions uq, ..., uy and has no
chance to make sure that the matrix with entries A;(u;) is nonsingular. Even
for univariate polynomials, the fully general Hermite—Birkhoff interpo-
lation problem has no apparent and simple solution. In this situation, one
resorts to Hermite interpolation requiring all necessary lower derivatives,
too. In multivariate applications, things are even more complicated, but
for kernel-based interpolation there is a solution we describe now. It is the
starting point for various meshless methods for solving partial differential
equations.

We have already derived it without knowing. In fact, we can deal with
this seemingly more general situation by temporarily dropping the kernel K
completely, using the kernel

K*(A\ p) := (A, pu)g= for all A\, € H*
instead of K with
K<x7y) = (5?/7 51)7—[* = K*<5yv 51)7—[*-

This means that we simply redo the previous paragraphs using 2 = H*
and replacing points « and z; by functionals A and \A;, while K replaces K
with swapped arguments. At the same time, this allows us to work in Hilbert
spaces where users cannot rely on point evaluation and have to resort to weak
methods. This applies to Hilbert spaces like Wi (Q) for domains Q C R?
with m < d/2. The most important of such cases arises for d = 2 and
m = 1. But we can also deal with fairly general Hilbert spaces H that are
not necessarily a space of functions on some specific set 2 # H*. Readers
should note that in the sense of (2.I)) on page [I1] the functionals occur in a
twofold way, namely as arguments of functions in H and as functionals on
elements of H.

Given a subset A of the dual H*, we define

Hp = clos span {R(\) : A € A},
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To see the connection to (2.20), we consider

(BA) (1) = n(B(A))
= (R, R(p))n
K*(u, \) for all A\ € H*, € H*

such that R(\)(-) = K*(-, A).

If the original kernel K is still there, readers can be trapped by assuming
that R(d,)(y) = K(x,y) generalizes to R(\)(y) = A(K(+,y)), but the action
of functionals to the first argument of the kernel is undefined if we are in the
truly complex case. Instead, the property K(z,y) = R(d,)(y) generalizes to

RA)(z) = (RO, K(z,-))

H
(K(SL’, )7 R<)‘>>H
MK (2,y)

where \Y denotes action of A\ with respect to y. If we let another functional
it act with respect to x on this, we get

WRO)) = 1" (WK (2,y)) = (1, e
Thus entries of generalized kernel matrices are
(Aj, Mg = XK (z,9)) (2.62)
if the kernel K is still present.
Dropping K again, we generalize Theorem 2.21] to
Theorem 2.63.
Hy={f€H : Mf)=0 forall A\ € A}.

A new proof is not necessary, but we can translate the original proof. Each
f € Hy is characterized by (f, R(A\))y = 0 for all A € A, and this means
A(f) =0 for all A € A. O

Again, we define a projector 115 onto H, and denote fp := II5(f). Then
Theorem 2.22] generalizes to
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Theorem 2.64. Each element f € ‘H has an orthogonal decomposition
f=I+ 1
with fy € Ha and fi € Hi. Then fa interpolates f in the sense

A f) = A(fa) for all X € A.

Furthermore,
1 = Jalle = inf [1f = glln
and
[ fallae = inf gl O
geH
A(f) = Alg)
for all A € A

This performs transfinite interpolation by general sets of functionals. Mono-
tonicity like in Corollary 2.27] also prevails, and we have the optimality prin-
ciples from the corollaries following Theorem [2.22]

To evaluate the error, we cannot use point evaluation functionals. Instead,
we take an “evaluation” functional p € H* replacing a point x and consider
the error functional

p(f = fa) = (p—poTla)(f)

The generalization of the Power Function then is

Pr(p) :=||pp — p o |3+ for all u € H*.
and we leave it to the reader to generalize Theorem [2.29, where the fifth
property should be replaced by its dual form (23I)). The numerical con-

struction of interpolants for finite sets A = {1, ..., \,} generalizes similarly.
Instead of (232) we have

n
fa=2_aR(N),
j=1
and we impose the interpolation conditions to get

M(a) = M) = S a(RO), 1< k<,
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The kernel matrix is replaced by the Gramian with elements
Ae(R(A)) = (R(A), R(OA))w = (Aks Ao

Note that in presence of the original kernel K one has to calculate this using

2.62).
To generalize the system (2.40) we pick f = R(u) to obtain

M(B()a) = Af(R(u)) ks )3
= Z 1) (A, Aj)as, 1<k <n

where we cannot say that the wu; are elements of H unless the functionals
in A are linearly independent. But in the latter case, we have that they are
linear combinations of

Me(R(p)) = (1, Ar) = R(Ax) (1)

as functions of p, i.e. the u; are in H,. This is in line with Theorem [2.42]
In general, the solution of the interpolation problem can be written as

in the sense that

for all € H*. Also, the connection between the Power Function and stability
generalizes to

Theorem 2.65. The kernel matriz for N functionals A1, ..., Ay forming a
set A has a smallest eigenvalue A bounded above by

A S 1IST;1SIIN PA\{)\j}()\j)- O

Finally, we note that also the construction of the Newton basis generalizes
verbatim.

For what follows, we can always stick to point evaluation, going back to
Q =H* and K* if we want to deal with general functionals.
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2.13 Factor Spaces
RS: Still somewhat incomplete, Dec. 2010

In certain important situations connected to the notion of conditional posi-
tive definiteness (see Section [l), there is no reproducing kernel Hilbert space
of functions on (2 at first sight. Instead, there is a space ‘H of K-valued func-
tions on ) carrying a semi—inner product with a closed nullspace P C H,
ie.

(z,y)3 = 0 for all y € H holds iff z € P,
such that the factor space H /P is a Hilbert space under the inner product

([f],[g]) == (f, 9)n for all f,g € H,

where we adopt the notation [f] for the class f + P represented by some f.
Note that we now have a Hilbert space again, but the elements are equivalence
classes modulo some subspace P. With a linear projector II onto P we assume
that the functionals

pe - f = flx)— (T(f)(z) forallz € Q, feH (2.66)
are continuous in the seminorm or on H /P, i.e.

()] < Calllf]ll3 = Call[f11] for all f € H.

Then p, has a Riesz representer [K(z,-)] in H/P with some K(x,:) € H
which is for each x nonunique up to functions in P. Then

pa(f +P) = f(x) = (L) () = ([f], [K(z,)]) = (f, K(z,))n
holds for all z € ), f € H. This yields a Taylor-type representation formula
fla) = () () + (f, K(z,-))n (2.67)

for all f € H, x € Q, replacing the reproduction equations we had so far.
Since for each x € Q we are free to change K(x,-) by some function in P,
we can assume that II(K(z,-)) = 0 for all z € €, e.g. by going over to
K(z,y) — II(K(x,-))(y). Then the reproduction formula leads to

K(y,z) = (K(y,-), K(x,-))y for all z,y € Q. (2.68)

This yields a positive semidefinite Hermitian kernel, but note that it depends
on the chosen projector II.
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But we do not want to work with equivalence classes. If we want to recover
functions from their values at points of a set X = {xy,...,zxy} C Q, we
cannot use the data directly, because point evaluation functionals ¢, are not
well defined. We have to use functionals fi,; instead. Thus we should start
from a class [f] and consider the problem

arg min {[[s)ll : s € H, pa)(s) = pra, (f), 1< j < N}
This clearly has a minimizer in the factor space, and we know it is a lin-

ear combination of the Riesz representers of the p,, which are the classes
[K(zj,-)]. Thus the function

so(w) = Y oK (xj, x)

=1

represents the solution class. We also have

N N
Nﬂﬁk(so) = Mﬂﬁk(f) = O+Za_j:uxk(K(xj7 )) = ZQ_JK(I],Ik) +0, 1<k <N
j=1 j=1
This system is clearly solvable, but we do not have interpolation of f on
all data. We have only cared for data defined by [f], but we also have the
same interpolation properties so far, if we change s by some function p € P.
Considering s = so + p with some p € P, we get

flzr) = pa, (f) + T(f) ()
= My, (80) + II(f) (zx)
= fizy (8) + II(f) (1)
= s(zy) — U(s)(zg) + I(f)(zg), 1 <k < N.

and see that we should change sq into s 4+ p in such a way that Il(s) =
II(sp + p) = H(p) = II(f). Thus the function sy + II(f) solves the full
interpolation problem. We summarize:

Theorem 2.69. Let H be a space of functions on ) which carries a semi—
inner product with a closed nullspace P such that the factor space H/P is
a Hilbert space. Assume further that the functionals (2.68) are continuous
in the seminorm, and denote a fized projector onto P by II. Then one can
define a Hermitian kernel K on € x Q such that the reproduction equation
(2.67) and the standard identity (2.68) hold together with II(K (z,-)) = 0 for
all x € Q. Furthermore, interpolation of data of functions of H is always
possible and has certain optimality properties in the factor space. ]

Note that we have used a good deal of freedom to define a kernel that suited
our needs. When going backwards in Section 5], starting from a given condi-
tionally positive definite kernel and procceding towards a Hilbert space, we
will not be free to change the kernel.
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3 Hilbert Spaces from Kernels

We now go back the the abstract definition[[.21on page[lof kernels on general
sets 2. We shall construct a Hilbert space in which the kernel is reproducing.
This will then allow us to apply everything we did in the previous chapter.

3.1 Positive Definiteness

If we have no hypotheses to start with, we cannot expect to be able to
develop a reasonable theory for kernels. The basic assumption we shall need
is positive semidefiniteness, as already defined in Definition .37 We give
another motivation for it here.

If we have an arbitrary set X = {x1,...,zx} of N distinct elements of 2 and
a symmetric or Hermitian kernel K on €2, we can form linear combinations

N
s(z) :==> a;K(z;,z), z€Q, a €K (3.1)
=1

of “translates” of the kernel, acting as trial functions like we did in Section
[[4] already. This is a very convenient technique to generate functions on an
otherwise unstructured set €. It will be clear later why we take the complex
conjugate of the coefficients in (3.)).

With such a set X = {z1,...,zy} we can form the symmetric N x N kernel
matrix

A= (K('rj7'rk)>1§j,k§N (3.2)

and pose the interpolation problem

s(xy),
N

ye = > G K(zj,ar), 1<k<N.
j=1

for s from (B.I)). In matrix notation, this is an N x NN linear system

Aa=y.

In general, solvability of such a system is a serious problem, but one of the
central features of kernels and radial basis functions is to make this problem
obsolete via
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Definition 3.4. (see also Definition [2.37)

A Hermitian kernel K on Q with values in K is called positive (semi—)
definite, if for all sets X = {z1,...,xn} of N distinct elements of Q0 and
all N the N x N kernel matrix (32) is positive (semi-) definite.

This means that the Hermitian quadratic form

N N
a € K" — > @apK(zj,z) = > ajapK (zy, z5)
jk=1 jk=1

has nonnegative real values. In the positive definite case, it additionally is
zero only if the vector a is zero.

Theorem 3.5. Ezrpansion kernels of the form (I.8) are positive semidefinite.
Also, kernels arising from feature maps via (I.3) are positive semidefinite.

Proof: The second statement is obvious, because kernels from feature maps
generate kernel matrices that are Gramian matrices, and these are always
positive semidefinite. To prove the first part, one can write the expansion
via a suitable feature map with values in a weighted sequence space. To give
an explicit proof which is typical for much more general cases, the quadratic
form corresponding to the kernel matrix can be written as

N
a' Aa = > @apK(zj, zy)
k=1
N —_—
= Y aar Y Nigi(x) i)
k=1 il
N
= X Y api(as) Y argi(ay)
el =1 =1
N 2
= i) appi(zg)] >0
iel k=1
for all vectors a € KV. O

Note that this applies to the univariate Gaussian via (L.J).

At this point, we stick to positive semidefiniteness, but later we shall turn to
positive definite kernels.

The basic connection of positive semidefinite kernels to a representation (LG
is Mercer’s
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Theorem 3.6. Suppose K is a continuous symmetric positive semidefinite
kernel on a closed bounded interval Q := [a,b] C R. Then there is an or-
thonormal basis {@;}ien of Lala,b] consisting of eigenfunctions of the linear
integral operator defined by K such that the corresponding sequence of eigen-
values \; is nonnegative. This means

b
| K@y)eiy)dy = xgi(a) for all w € [a,b], i €N.

The eigenfunctions corresponding to non-zero eigenvalues are continuous on
[a,b] and K has the representation (I.6), where the convergence is absolute
and uniform.

This theorem is contained in all reasonable books on Integral Equations or
Functional Analysis. The background fact is that the operator

o [ K)oy

I

is a compact “positive ” integral operator on Ls[a, b], and Mercer’s theorem
is a consequence of standard spectral theory in Hilbert spaces. Furthermore,
all of this generalizes to domains and kernels in more than one dimension.

3.2 General Rules

We state some useful results on positive (semi)-definite kernels on some do-
main €.

Theorem 3.7. Let K be a positive semidefinite kernel on ). Then

K(z,x) > 0 for all v € Q,
K(y,x) = K(x,y) for all z,y € Q,
|K(z,y)]? < K(z,2)-K(y,y)  foralzye,
2K (x,y)*? < K(z,2)*+ K(y,y)* forallxz,y € Q.

Furthermore, any finite linear combination of positive semidefinite kernels
with nonnegative coefficients yields a positive definite kernel (this means that
positive definite kernels form a convex cone). If one of the kernels is positive
definite, and if its factor is positive, the superposition of kernels is positive
definite. Finally, the product of two positive semidefinite kernels is positive
semidefinite.
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Proof: For the first property, use X = {z} in Definition The second
property restates that our kernels will always be Hermitian. Since determi-
nants of positive semidefinite Hermitian quadratic forms must be nonnega-
tive, the third property follows if we take a set X = {x, y}. The final property
follows from the third, using the standard inequality

2ab < a? + b?

for nonnegative real numbers a,b. The statements on nonnegative linear
superposition are very easy to see.

Thus we are left with the final assertion, which is nontrivial. Assume two
positive semidefinite kernels K and L to be given, and take a set X of N
points of 2 and a coefficient vector a € CV. We have to prove nonnegativity
of the quadratic form

N
Q=Y GarK(zj,z)L(x;, zp).

J,k=1

Since the kernel matrix A for K is positive semidefinite, we can transform
it to a diagonal matrix with nonnegative diagonal entries \i,..., Ay by a
unitary matrix S. This means that

N
K(xj,xp) = Z AmSjmSkm

m=1

with complex s;; and we can insert this into our quadratic form to get

N N
Q = Z ajapL(x;, wy) Z AmSjmSkm
Ji.k=1 m=1

I

(=
>

3

@;Sj.m LSk mL (T, Tp)

{

1
=:bj,m

bj,mm[/(xja .T}k) Z 0.
1

I

M=

>~

3 <.
M= 7=

i
—
.
Bl
Il

>0
We leave it to the reader to use some linear algebra to prove

Corollary 3.8. The product of two positive definite kernels is positive defi-
nite. ]



For later use, we add another superposition principle, applying generalized
convolution. If
L:QxZ—-C

is an arbitrary function, and if we take any set of points z1,...,2,, € Z, we
can form a kernel

K(z,y) = i coeL(x, 2z0) L(y, 20)

when taking nonnegative real coefficients cy,...,¢,. The kernel K will be
hermitian, and positive semidefinite due to

N

Z a;a K (), )

jik=1
N m

= Z a_jakZCgL(l’j,Zg)L(Ik,Zg)
—1

1

.
Bl
Il

a; L(x;, zo)ar L(xg, 20)
1

I
NE

Cy
1 g

~
Il

2

Cy > 0.

M=M=

Il
—

I
NE

ajL(zj, z)

~
Il
—

J

This generalizes easily to cases where the sum can be replaced by an integral,
e.g.
K(w,y) = [ e(z)L(w,2)Lly, 2)dz, 2,y € Q
z

with a nonnegative function ¢, provided that the above is well-defined and
finite. This holds whenever

K(z,2) = /Z e(2)|L(x, 2)|*d=

is well-defined and finite for all z € €2, due to the Cauchy-Schwarz inequality.
Applying measure theory, on can also go over to

K(z,y) = /ZL(x, 2)L(y, z)du(z), z,y € Q

with a nonnegative measure y on Z, using

K(@,2) = [ L, 2)duz)

as a sufficient condition for well-definedness of the new kernel.
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But note that the above argument is nothing else than the transition to a
suitable feature space. If
B(z) = L(x, )

maps () into a suitable function space F consisting of functions on Z as a
feature space, we can write each instance of the above construction in the
form (L3)). Thus positive semidefiniteness of such kernels is no miracle.

3.3 Inner Product

The following construction is of utmost importance for kernel-based tech-
niques. We assume K to be a Hermitian real— or complex—valued positive
semidefinite kernel on €2, and we form the linear space

H := span {K(z,) : v €Q} (3.9)

of all finite linear combinations of generalized translates of the kernel. Simi-
larly, we define the linear space

L:= span {0, : v €Q, 6, : H—-K} (3.10)

of all finite linear combinations of point evaluation functionals acting on
functions in H. Note that we restrict the action of the functionals to functions
in H.

Now all elements from L or H take the form

N
)\a,X = Z ajéxj7 fa,X<x> = )‘g,XK('rv y) = _jK<xj7 ZL’) (3'11)
i=1 '

Jj=1

with ¢ € KY while X = {z1,...,zy} C ©, but different N and all point
sets X are allowed. We introduced complex conjugates in the second form,
because we want to end up with f, x = R(\, x) for the antilinear Riesz map
R. Note that f, x(-) = 0 or A\, x(-) = 0 do not imply a = 0, forcing us to be
careful.

On L we can define a sesquilinear form

M N
(Aa,Xa)\b,Y>L = ZzajkaQkaxj)
J=1k:;7 (3.12)
= )‘g,XAb,YK(xay)

- )\a,X(fb,Y)'
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It is well-defined, because the second form in ([B.12)) is obtained by an action
of the functionals, thus it is independent of their representation. Further-
more, we have a positive semidefinite form due to the positive semidefinite-
ness of all kernel matrices.

Then we have

[ Aax (fo,r)] [(Aaxs Avy )L

< JAaxlzlXeyllz

where we may still have just a seminorm, not a norm.

(3.13)

Strangely enough, the sesquilinear form is even positive definite:

Theorem 3.14. If K is a positive semidefinite Hermitian kernel on €2, the

sesquilinear form (.,.)p of (313) is positive definite on the space L of (310)
as a space of functionals defined on functions on Q). Thus L is a pre—Hilbert
or Fuclidean space of functions on €.

Proof: Assume that
N —_—
()‘G,X7 )‘G,X)L = Z aja_kK<xj7 xk) = )‘i,X)‘z,XK<x7 y) = Aa,X(fa,X) =0
j k=1

fora € KN and X = {zy,...,zx} C Q. Then by (BI3) we have A\, x = 0 as
a functional on H. Here it pays off to have the functionals in L restricted to
functions in H. Note that we do not need or get a = 0. O

Theorem 3.15. The mapping
R:)\aXHfaX:—)\ XK( )
15 antilinear and bijective from L onto H. Thus

(fax> foy)m = Moy, Aax) = (R(Aax), R(Avy))m
s an inner product on H, and R acts as the Riesz map.

Proof: If some f,y = R(\,y) € H vanishes, (812) implies that A,y is
orthogonal to all of L, thus zero due to Theorem [3.14l The Riesz property
is already in (B.12) since

(Aaxs My)e = (R(Ay), R(Aax))u
(fors R(Aax))
- )\aX(.be)
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When specializing (3.12]) to A, for a point = € 2, we get the reproduction
equation

(Aes Aoy)e = foy(o)
(R(Aoy), R(A1a))m
(fb,Ya R()‘l,z>>H
(fb,Y7 K(SL’, ))H

in H. Finally, (23)) follows if we set A,y = A1, above.

(3.16)

3.4 Native Space

We now know that H is an inner—product or semi—Hilbert space of functions
on € under the inner product (.,.)y, provided that K is a positive semidefi-
nite Hermitian kernel on 2. Furthermore, we also have L as its dual, and we
have the Riesz map R.

Then we can invoke a classical argument from Hilbert space theory to go
over the closure 1 of H under (.,.)y. This is an abstract space defined by
equivalence classes of Cauchy sequences in H, but it is a complete space
(thus a Hilbert space), and each continuous map from H to a Banach space
Y extends uniquely to the closure.

Theorem 3.17. Each symmetric positive semidefinite kernel K on a set €2
is the reproducing kernel of a Hilbert space called the native space H := N
of the kernel. This Hilbert space is unique, and it is a space of functions on
Q. The kernel K is a reproducing kernel of N in the sense

(f, K(y, ) = [(y) for ally € Q, | € Nk
generalizing (316]).

Proof: The existence of the native space follows from standard Hilbert space
arguments we do not repeat here, see section [IT.8 Since (B.I6]) is an equation
with both sides being continuously dependent on f € H, it carries over to
the closure and thus to the native space, proving the reproduction formula
above. But then it explains how an abstract element f of the native space
can be interpreted as a function: just use the left—hand side as a definition
of the right—hand side.

If K is reproducing in a possibly different Hilbert space T" with an analogous
reproduction equation, we can use (2.3) and the reproduction equation in T
to conclude

K(l’,y) = (K(SL’, ')7K(y7 ))H = (K(I, ')7K<y7 '))Ta
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and this proves that the inner products of 7" and Nk coincide on H. Since
T is a Hilbert space, it must then contain the closure N of H as a closed
subspace. If T were larger than Ny, there must be a nonzero element f € H
which is orthogonal to Nk and in particular to H. But then

f(y):(f,K<y,))T:0fOI‘ allyEQ

is a contradiction. O

To mark the dependence of the native Hilbert space on the kernel K we
started with, we prefer the notation N over the notation H we used in
Chapter 2L

Note that usually the Hilbert space closure of an inner—product space is con-
siderably “larger” than the space itself. This is very much like the transition
from rational numbers to real numbers.

4 Expansion Kernels

The previous two chapters showed that we can start from Hilbert spaces
to arrive at positive semidefinite Hermitian kernels, but we also can start
from the kernels and construct corresponding Hilbert spaces. This chapter
illustrates this correspondence for the special case of expansion kernels.

4.1 Kernels from Orthonormal Bases

Let us start from Hilbert spaces first, and work our way towards kernels. We
consider the fairly general “separable” case where a Hilbert space H has a
complete orthonormal basis {¢, }nen. The model situation is the space ¢y of
quadratically summable sequences. A practically important case are trigono-
metric polynomials in the space of square—integrable 27—periodic functions,
or any space of functions spanned by orthogonal polynomials. A third exam-
ple is the space B), of univariate bandlimited functions on R with spectrum in
[—7/h,m/h] with the orthonormal basis of shifted and scaled sinc functions
sinc(z) = M, reR
T

as used in the Shannon—Whittaker—Kotelnikov theorem representing
functions f € By as

)= 3 fonysine (251,

kEZ
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Another expansion kernel is given by the well-known formula

2t2 oy 2t2 o0 tn
exp (‘x & ) =V1-83 Hy()Hu(y)
n=0

2(1 — 12) n!

of Mehler (cf. [Wat33]) with z,y € R. It consists of a weighted expansion into
Hermite polynomials H,, on R, which are orthogonal with weight exp(—xz2/2).

But first we stay general and note that we have not restricted ourselves to
spaces of functions, so far.

Each f € H has a unique expansion

F =Y (. ¢en)nen (4.1)

neN

with the Parseval equation

1£15 = > (f: en)3 < 0o

neN

This is fine in the Hilbert space context, but even if all ,, can be interpreted
as functions on a domain €, it is not clear if an expression like

f(:L’) = Z <f7 SOn)?-LSOn(I)

neN

makes sense. In fact, in many cases, including trigonometric or orthogo-
nal algebraic polynomials, the expansions of functions in H do not converge
pointwise, but only in the Hilbert space norm. Thus point—evaluation func-
tionals are not continuous on H. As we have seen in Section 2.12] these
Hilbert spaces can always be interpreted as spaces of functions on their own
dual, but this viewpoint is too theoretical at this point.

As well-known from Fourier series, the situation is better if the coefficients of
the expansion satisfy a decay condition. We mimic this in general by formally
introducing positive and uniformly bounded weights )\, into the above sum,
leading to

flz) = Z % AnPn()

and the bound

F@) < (Z M) (Z Anwn(x)ﬁ)

ieN n 1€N
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if we assume that both factors on the right are bounded. We see that we are
coming back towards (I.7)) on page 8 but we have no kernel yet. We simply
assume the summability condition

> Anlen(2)]? < 0o for all z € © (4.2)
ieN
and define the function space by

)2l?

Hqi:={f : (@I with ZW%<

1€N n

o0} (4.3)

The inner product of two functions in H; then is defined as

(f’ g)?—[l — Z (.fa Son)H(ga 9071)7-[ . (44)

neN )\”

Uniform boundedness of the weights implies that H; C H with bounded
embedding, and since we have a space that can be isometrically mapped to
{5 via coefficients, we have a Hilbert space. Thus H; is a closed subspace of
H, and we have made sure that point evaluation functionals are continuous

on Hl.

From the definition (£4)) of the inner product on #H; we see that the p,, are
orthogonal, but not orthonormal in H;. But the functions v/, ¢, are.

Now Theorem on page implies that H; has a reproducing kernel K
such that K(z,-) is the Riesz representer of §,. We assert that

) = Z An¢n—@)¢n(y) (4'5)

neN

does the job. The expansion coefficients of K(x,-) in H are
(K(l‘, ')a Son)H = )\ngon(x)a
and they satisfy

Anlon(2)?

eN ’LGN

proving K(z,-) € H;. Furthermore,

(f,K(;p’.))Hl _ Z(fa%pn)H<K(x7.)’gon)H

neN )\n
= Z (f7 (Pn>7{90n<x>
neN

= f(z) forall z € Q

proves the reproduction equation, with absolute summability of the series.
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Theorem 4.6. If a Hilbert space H of functions on €2 has a countable or-
thonormal basis {pn tnen, each summability property of the form (IL7) leads
to a reproducing expansion kernel ({{.9) for a suitable subspace Hy with ({{-3)
of functions with continuous point evaluation. In the space H,, the functions
VAn@n are orthonormal. O

Note that the reproduction equation uses the inner product (.,.)z,. The
mapping

does not yield f(z), but rather something like a convolution (f * K)(z). We
evaluate it as

(fa K(ZE, ))’H = Z(fa Qpn)H(K(xa ')7 @n)H

neN

= Z )‘n(fa Qpn)HSOn<x>

neN

and this function lies in

Hy = {f (EI])Wlch'fi;‘ |<oo}.

ieN

Thus we get a scale of spaces

p— (m)w1thz|ff; ul < oo},

€N
with
H=HoeDHiDHsD ...
which are connected by the convolution map f — f % K. They carry inner
products

(f’ g)?—[m — Z (.fa @n)?iga 9071)7-[’

neN

and have reproducing kernels

Z)‘nSOn Pn )

neN

Note that the map f — f* K = (f, K(z,-))y coincides with the integral
operator defined by a kernel, if it exists, and if the Mercer theorem holds.
This is easy to see, since both operators act on expansions by coefficient—wise
multiplication with the weights, i.e. they are multipliers. An integral or a
connection to an L, space is not necessary.
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Just for curiosity, let us ignore continuity of point evaluation for a moment.
For linear functionals A, u € H* we have square summability of the sequences
A(en), p(pn) and

s e = D Mpn)ia(on)

neN

=Y on(x)en(y)

neN

The kernel

makes no pointwise sense, but it satisfies

N(wKo(z,y)) = D A (en(@)p¥(en(y))

neN

= ()‘7 u)?—l*

i.e. it makes perfect sense in view of ([2.62)) if functionals are applied to the
arguments. Again, we used a superscript x at A* to denote that \ acts with
respect to the variable x.

We finish this section with an approximation result. Let K be an expansion
kernel associated to a complete set of orthonormal functions ¢, as above,
and let fy be the orthogonal projection of some element f € H to the span
of v1,...,¢n in the original inner product. Because projections have norm
one, one cannot assert a convergence rate fy — f in the Hilbert space norm
which is better than the usual summability property

[e o]

If = fnlee = >0 1(fr o)l

i=N+1

Things are better if we go to weighted kernels and consider pointwise con-
vergence:

Theorem 4.7. Let K be an expansion kernel as above, and let fy be the

orthogonal projection of some element f € H to the span of ©1,..., N in
the original inner product. Then
f(x) = fn(@)]? < (I = el (K (2, 2) = Kn(x,2)) (4.8)

where Ky is the truncated kernel

= Zl Angpn(x)@n(y)'
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Proof:

@) = @ = | S (fe)enls)
n=N+1
< (x> LAl s Anwn(xﬂ?)

= |If = Inl5(K(z, 2) = Ky(z,2)). O

Consequently, if Ky converges quickly to K for N — oo, this quick conver-
gence goes over to the pointwise convergence of the projections.

Example 4.9

Consider the Gaussian kernel expansion (L9) on 2 = [—1,1] € R. Then

Kao) ~ Kx(r,a) = ep(-a?—y2) 3 (ey)
n=N+1"" (4.10)

2N+1
7(N+ 1)! = AN+1

via the residual of Taylor’s formula. Thus

, , 2N+ , 2N+
_ < _ N -
@) = Sx@F <17 = Il < My
is a stunningly fast convergence rate, but only for functions in the (small)
native space H.

Note that the error bound in Theorem [£.7] is sharp, because equality is at-
tained for f(z) = K(y,x), leading to the inequality (23] for K — K, which
is sharp for x = y. Thus the convergence rates implied by Theorem are
what one should go for using interpolation.

4.2 Shannon Kernel

To understand the kernel theory behind the Shannon-Whittaker-Kotelnikov
theorem, we can use an expansion into an orthonormal basis in Ly(R). It
can be proven (directly or via Fourier transforms) that the functions

1 — kh
sk(r) = —=sinc (I ; ) for all k € Z
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are orthonormal in Ly(R), i.e. under the inner product

(/. Deay = [ F(2)a

Thus we can write down the expansion kernel

Z sinc (;1: — kh) sinc <y—7hkh>

kEZ

to get the reproduction equation
f(z) = (f, K(, '))LQ(R) forallz € R

but this does not hold for all functions in Ly(R), but rather for functions f

with
Yo Afs) @l =h Y 1 f(kh)[?

k€eZ keZ

which form a Hilbert space that needs Fourier transforms to be analyzed.
It turns out to be the space of functions bandlimited to [—m/h,7/h], i.e
whose Fourier transforms exist in Lo(R) but vanish outside that interval.
Such functions are necessarily infinitely often differentiable, and pointwise
evaluation of the function and all derivatives is continuous.

For these functions, the inner product takes the second form

(D) = [ F@g(t)dt = hY Fkh)g(kh).

keZ

Since for each fixed z the function

I
Suly) = 3sine((z — y)/h)
is in that space, we can write the inner product with f in two ways:

(f.Se)a@y = > f(kh)sinc((z — kh)/h)
kEZ
= f(2)
to see that the series kernel K (z,y) is identical to S,(y), i.e.

Z a:—kh ) y—kh\ 1. <a:—y>
sinc sinc . = psine ( —— ).

kEZ
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This nice summation formula can also be proven by using the fact that the
space is translation—invariant, so that the kernel must also be translation—
invariant by Theorem 2.14] from page [16]

By the above discussion, we also see that the set hZ C 2 = R is unisolvent,
for H in the sense of Definition 2.59 on page B3]

A generalization to higher dimensions leads to the radial Bessel kernels

Gu(r) =171, (r),

see Theorem [0.17 on page I8 The case v = 1/2 is the sinc kernel, and some
others are in Figure 29 on page [I82l These kernels were studied in [FLWO06].

4.3 Trigonometric Kernels

Let us look at trigonometric series

50 Z ay, cos(nz) + b, sin(nz)) (4.11)

as an example. The basic space H is the space of 2r—periodic square inte-
grable functions with the inner product

wi== [ ot

and with the orthonormal functions

1
\/é’

We can write these via the index set

cos(nz),sin(nx), n € N.

J :=(0,0)U(N,0)U (0,N)

and .
V2 (0’ O)
@;j(z) =14 cos(nz) =(n,0), n>1
sin(nz) j=(0,n), n>1
as

= (frei)up;

jed

in the sense of convergence in H.
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Note that all functions ¢; are uniformly bounded, such that the summability
condition (L7) is satisfied whenever the weights are summable. This works
when the weights are n=2, and thus we start with

Ki(z,y) = 7 + Z n~? (cos(nzx) cos(ny) + sin(nz) sin(ny))
= ﬁJrn;ln_ cos(n(z —y)).

In view of the previous section, where we had a sequence of kernels with
weights A", we define

to get the expansion kernels

Kop(z,y) = —= + Z n~ =™ (cos(nx) cos(ny) + sin(nz) sin(ny))

= 7—1—2712 cos(n(x —y))
(4.12)

which must be positive semidefinite on 2 = [0, 27). Plotting the kernel K,
(see top left of Figure [) reveals that it is a continuous piecewise parabola,
and from KJ = —K,,, o for large m we see that K5, must be a piecewise
polynomial of degree 2m which is still 2m — 2 times continuously differen-
tiable.

To verify this by elementary means, we suspect K, to be something like

g(t) :== (m — t)? on [0, 7] with periodic continuation to an even 27-periodic
function. We calculate the even Fourier coefficients as

(9(1), cos(nt) )

_ 2 /Oﬂ(ﬂ — t)* cos(nt)dt

= [%(7‘(‘ —t)? sin(mﬁ)]7r + % /OW(W — t) sin(nt)dt
= 0+ % [—(m —t) cos(nt)]y — % /07r cos(nt)dt
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and
1

(9(t), E)H

_ % [- t)Q%dt
V272

such that we get

K(t) = 300+ 25 = I3

We note that periodic functions of this form arise in the context of Romberg
integration.

In more generality, the functions

1
> —pcos(nt) (4.13)
n=1

represent polynomials of degree 2k on [0, 27]. To see this, consider Hurwitz-
Fourier expansions

B (.T) —— m! —ii nfme27rin:v
" (27m)m n=—00,n#0

of the Bernoulli polynomiald] B,, of degree m on [0,1]. If we set t = 27z
and m = 2k, we get

400
Bo(y;) = (=1 (<22:))2'k _72 ) n~?*(cos(nt) + i sin(nt))
SR
= 2(—1)k+! ((227T))2k n;ln_ ¥ cos(nt)

that proves our claim. The native space for Ks,, contains all functions with
Fourier series coefficients satisfying the summability condition in H,, which
in case of ([AI1)) and K5, takes the form

> (ai + bi) < 0.
neN

Thus the functions in the native space for K, get more and more smooth for
increasing m. Readers familiar with Sobolev spaces will recognize that K,

"http://mathworld.wolfram.com/BernoulliPolynomial.html
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Figure 8: Periodic kernels

is the reproducing kernel of the Sobolev space of order 2m for univariate
2m—periodic functions.

From Anette Meyenburg’s thesis [Mey96] we cite the infinitely differentiable
periodic kernels

io:o % cos(nx) = cos(sin(z)) - exp(cos(x))

. (4.14)
=01 1 — 5 cos(x)
> —cos(nx) = T
=2 1 —cos(z) + 4

Their proofs are easy, if the cosines of the left-hand side are written as
exponentials. They are plotted in Fig. § on the top right and bottom left,

respectively. Without any further work we know that their native spaces

consist of 2r—periodic functions whose Fourier coefficients decay like # or

1 .
5w, respectively.
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By standard Fourier analysis, one also gets [Mey96]|

4 21— _1n727r
exp(—2|z|) = WZ z(1+2126 cos(nx), x € [—m, 7],
0< z <27r—4
8—27T 2rn—4 < z <4
4 —-2n+x 4 < z <27
16 >4 (2
= — Mcos(n:c)
T

n:l

The final one is plotted in the bottom right of Fig. [8l

We now want to apply Theorem to Fourier series. We have to evaluate
the errors of the truncated kernels. In case of \,, = n™2™ we have to bound

1
K(z,x) — Ky_1(z,z) = Z ——

n=N
B iN—l 1

=1 =0 (PN +q)*" (4.15)
< 1 i 1
= No2m-1 = p2m
- ¢(@2m)
- N2m—1

Now Theorem (.7l implies

Theorem 4.16. In the native Hilbert spaces

{7 @ S e <] (4.17)

for the expansion kernels of (4.13), the pointwise convergence rate of par-
tial sums of trigonometric series ({.11)) truncated at n = N has the behavior
o(N=™+1/2) for N — oo and fired m > 1. The kernels of ([7-14) lead to point-
wise convergence rates O(ﬁ) and o(27N/2), respectively, in their associated

native Hlbert spaces defined via (7.3). O

Note that all trigonometric kernels in cosine form can be transformed by the
standard transformation x = cos(y) into series of Chebyshev polynomials on
[—1,1]. For instance, the kernel

1
_l

-2
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n [—1,1] can be transformed by substitution x = cos(¢), y = cos()) into

i) % cos(ny) cos(ny)
33 o (cos(nlip + ) + cos(nlip = )

= ; cos(sin(y + 1)) - exp(cos(¢ + 1)) + cos(sin(¢ — 1)) - exp(cos(p — ¥))].

4.4 Taylor Kernels

There is still another variation on the theme of periodic kernels. For all
complex—valued functions which are holomorphic on the interior of the unit
disc and still Ly on the unit circle C', we can define an inner product by

1 J(2)g(z)
i ip eup /
(o= [ Fe)gledo= -
This generates the Hardy space@ H?, and complex polynomials z" are or-
thonormal in this space for n > 0. Consequently, we can consider expansion
kernels

Z A" 2" =: ®(uz). (4.18)

with nonnegative and absolutely summable weights \,. All power series with
nonnegative coefficients and convergence radius at least 1 provide examples
of expansion kernels. If we confine the functions to the unit circle, we can
set u = exp(i)) and z = exp(ip) to get periodic complex—valued expansion
kernels

K(,6)i= 3 hexplin(o — ) = Blp—v)  (119)

and if we focus on real-valued kernels, we are back to the cosine series we
started with.

But there is no need to confine everything to the unit circle, since we know
that the functions have unique extensions to the full disc, determined by
their values on the circle. Cauchy’s integral formula

1 / f(©)

2mi c(—=z

fz) = —d¢

Zhttp://en.wikipedia.org/wiki/Hardy_space
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then is a reproduction formula, and its kernel is the Szeg6 kernel

1 oo
S
—uz n=0

K(u,z):1

This kernel cannot be evaluated when both arguments are on the circle,
which is to be expected because functions in Hardy space have no continuous
point evaluation on the circle itself. Interpolation of functions on point sets
Z = {z,...,zy} inside the unit disc are no problem, and the result is a
linear combination of rational functions

K<zjvz> =

1—zjz

which have “mirror” singularities at z = z;/|z;|* outside the disc. The inter-
polant is an optimal recovery of functions from Hardy space, including being
norm—minimal in Ly on the circle among all other conceivable interpolants.

But this it not all we can say, by far. Clearly, the functions we want to
consider here have expansions in Taylor series

with at least convergence radius 1. We can view this as an expansion into
the orthonormal basis, with

_ ™)

If we define a weighted kernel by (£I8)), Theorem [£.6]shows that it reproduces
in the Hilbert subspace of functions with the summability condition

Z |(f, zn )u| Z £ )i

and the inner product
f™(0)g™(0)
f g A= Z T

Theorem 4.20. In all of these cases, independent of the weights used, the
reproduction formula is the Taylor formula. The corresponding Hilbert
spaces can be called Taylor spaces.
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Proof: We just work it out by first calculating
— K(u,2) = \jw, j >0

and then

n=0
This gives a whole range of specific kernels and associated Hilbert subspaces
of the Hardy space. See Table [Tl for a list in the notation of (£.I8]), where we
introduced subsets N of N in order to care for expansions in even and odd
terms. If the kernels exist for |z| = 1, they can be brought to the unit circle
and used for periodic functions via (ZI9).

‘ (I)(Z) = Zje/\/)‘jzj ‘ N ‘ )‘j ‘
1-2)-1<|z|<1 N 1
1=zt -1<|z]<1 2N 1

—1)!
(1—2)*aeN -1<]z|]<1 N M
(o — D)Iy!
log(1 — 1
z 7+1
exp(z) N 1/4!
— 1)1
(1-22)%aeN -1<|z/<1| 2N latj— 1!
(o — 1D)!5!
sinh(z) 2N +1 1/4!
sinh(z)/z 2N ﬁ
cosh(z) 2N 1/1]'!
1, 2N —
i (2) JUIT(G+a+1)

Table 1: Kernels for Taylor Spaces
A more detailed analysis of Taylor spaces is in a preprint [ZS10].

4.5 Native Spaces of Expansion Kernels

We now want to turn the above situation upside down, starting with an
expansion kernel and nothing else. We want to arrive at a Hilbert space
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of functions on 2 with continuous point evaluation such that the expansion
kernel is reproducing. Note that this is the standard case in Machine Learning
with kernels.

Thus we start with an expansion kernel (.6) on page[§ with the summability
condition (I7) to make it pointwise well-defined. We want to write the kernel
via a feature space, and this leads to the feature space ¢ ; of (L8) under

the inner product
({&}icr, Aniticr)as =D Ni&iThi-
i€l
The dual space then is £5 /) 7, and the action of a functional pi € 5,5 on
a sequence c € {5 1 is defined as

plc) =" pic;.

iel
With this definition, the Riesz map is
R lyayng — Lo, R(p) = {7/ Nitier- (4.21)
More details on sequence spaces are in Section [[1.3] on page
The feature map
O (z) = {pi(x) }ier € o g for all z € Q)

takes € into a set ®(§2) C 5, 1, and the kernel we expect is

K(z,y) =3 Avi(@)ei(y) = (2(y), ®(2)as for all z,y € O,

iel
but we have no Hilbert space and no reproduction formula yet.

If the ¢, are linearly independent, one can go easily over to the native space
via sequence spaces of expansion coefficients, using the spaces and inner prod-
ucts of Section [l But if linear independence of the ¢; is not guaranteed, we
cannot work with coefficients of expansions into the ¢; in a simple way. There
is a workaround by R. Opfer [Opf06] using frames, but this is unnecessarily
complicated. Instead, we directly work in subspaces of sequence spaces. The
“functions” will be sequences in fy /) 7, while “functionals” will be in /5 ;.
We define point evaluations of “functions” ¢ = {¢;}; € €21/ via

dz(c) == Z cipi(T),
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and they are continuous due to

() < (z o ) (Z |soi<x>|2Ai> — el . K (o).

Their Riesz images are sequences

R(0:) = {wi(®)\i}i

(note that we go in the reverse direction of ([£21])) as “functions”, such that
their evaluation at y is

0y(R(32)) = > piw)@i(w)hi = K(x,y)

as expected. The reproduction equation is
(¢, R(d:)) = du(c)

by definition. But not all of the sequence spaces come out to be allowed.
The dual of the native space will be

L := clos span {0, : = € Q}

while the native space H is the closure of the span all sequences R(d,) for
x € ). This makes perfect sense, but it is not so easy to evaluate these
spaces for specific applications. In particular, it is not guaranteed that the
@; are in the native space. And, they cannot be an orthonormal system like
in our starting point in Section [£1] because they need not even be nonzero
or linearly independent at this point.

But there is a formal trick to come back to the orthonormal basis. We
artificially extend €2 by the index set I and postulate function values

there, leaving the values on €2 unchanged, and doing no harm to the summa-
bility condition. Now we can use the reproduction equation for

(¢, R(d;)) =cjforall j eI

and
Ajpiy) = 0,(R(6;)) = K(j, )

to see that the ¢; are in the native space now. Their inner product there is

<K<j7 y)7K<k7y))H = K(]v k) = )‘jajk fOI‘ all juk S [7
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as expected from Section [4.Il In the unweighted space {5, ; their sequence
representations are the unit sequences, thus they are orthonormal there. We
do not assume continuous point evaluation on “functions” in the full space
U1 1, since we have posed our special summability condition that forces us
to use weights. We summarize:

Theorem 4.22. The native space for an expansion kernel on Q with weights
Ai, © € I and features @;, © € I s isometrically isomorphic to a closed
subspace of €31/ 1, while its dual is a closed subspace of {3 5 1 in Riesz relation,
being the closure of all point evaluation functionals. By a suitable formal
extension of  one can come back to the situation in Theorem [{.6] on page

(21

The problem is to characterize the spaces H and £ in more detail. But this
is dependent on the specific example.

4.6 Error Analysis of Expansion Kernels

RS: this is still under research, as of February 1, 2011.

Theorem 4.23. For any finite set X = {x1,...,znx} C Q and an expansion
kernel K with the summability condition ({-3), the pointwise norm of the
error functional has the form

0y — Z u;(x)o

2
= Z)‘n‘wn Z z)ion(25)

> Px(x)

If this is minimized over all u;(z) € K, the Power Function P%(x) results,
and the (existing) optimal solution w}(x) satisfies the linear system

N
K(xg,x Z K(zg,xj), 1 <k <N.

Proof: The identity follows from direct calculation, the inequality via the
definition of the Power Function, and the linear system follows from standard
orthogonality properties of the optimum. O

If an interpolation process for a set X yields a small power function, and
if the weights )\, decrease rapidly, then there must necessarily be a good
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recovery of the first ¢, from the data. More precisely,

2

N
7 = L @) < =5

for all n.

Theorem 4.24. Assume that a set X C € is unisolvent for a space Py =
span {1, ..., oM} of functions on Q. Then interpolation on X with values
in Py is possible by a linear process, and it recovers function from Py exactly.

Proof: This should be well-known, but we give a proof here. Consider the
evaluation map Ex with

EX(f) = (f(xl)v c '7f<xN))T S KN'

By unisolvency, it is injective on Py, and thus there is an inverse map back
to Py on the range Fx(Py). This means that interpolation on X can be
written as a map

N
= Zuj<x)f<x])
j=1
which is the identity on Py, and where the functions u; are in Pyy. O

In our context, this works like Shannon’s theorem. If high—frequency parts
of f are missing, recovery can be exact.

We add another triviality:

Theorem 4.25. Quversampling can be used to stabilize linear interpolation
processes on unisolvent sets for fized trial spaces.

Proof: If we work with the notation of the previous theorem, oversampling
means that N >> M, and the functions u; are not unique. Thus one can
minimize norms like

lu(@)]5 = 2_:1 Juj () * (4.26)

over NN variables under the M constraints

Zu] z)pp(x;), 1 <k<M
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for each fixed x. By standard arguments of quadratic optimization, the
solution has the form

M
= > w(2)pr(r;), 1<j< N
where the functions vy satisfy the normal equations

) = ];vk@) > i) pm(xy), 1 <m < M.

Increasing the number N of data points yields more degreees of freedom for
the minimization, and thus the optimal value of (£26) gets smaller if N is
increased while Py, is fixed. OJ

Theorem 4.27. Let X be unisolvent for Py, and let ujw(x) be the recovery
functions on Py from values on X, possibly with quite some stability, i.e. a
reasonably bounded value ({{.26) due to oversampling. Then

Pi(z) < (1+;|u§”(:c)|2)~
| K(z,2) — Ky(z,2) + (K (zj, z5) KM<SL’j,SL’j))).

Jj=1

Proof: Just consider

N
Pi(z) < Z An |on(@ Zu;\/l T)en(;)
n=M+1 j=1
N
< |1+ (@) Z An | loon(z \2+Z\<Pn ;)"
j=1 n=M+1 j=1
N
= (1+ X[ @) ) | K(z,2) — Ky(2,2)
j=1

2_: (5, 25) KM(%#%‘))) :

If the )\, are decreasing quickly, one can have K — Kj; very small or even
numerically zero for reasonably small M. Then the above result says that if
X is large enough to be unisolvent on P,; and to allow enough oversampling
to let the first factor in the bound be not too large, the interpolation error
using the kernel K will be small.

Example 4.28
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Consider the kernel

OO2TL

K(r,y) = exp(2ry) = 3 2oy
n=0 """
arising within the expansion (L9) on Q = [—1,1] € R. It has a similar bound

like (£I0). For point sets X = X, we choose the M zeros or extrema of the
appropriate Chebyshev polynomials, and consider recovery of polynomials.
Then it is well-known that the standard Lebesgue constants and thus also
the absolute maxima of the wu; behave like log(A/), leading to a O(log(M))
bound of ([#26]). Consequently,

2M
P;. (z) < Clog(M)M for all z € [—1,1].

RS: the plots are to be changed, they still belong to the Gaussian

Figure [@ shows the ¢, the Power Function and its upper bound of Theorem
423, the Lagrange bases using either kernel translates or polynomials, and
the corresponding Lebesgue functions (£26) for M = 12, in reading order.
The actual bounds are

4.3-107
1.0-1077
6.0-10713

1.3.

A1z

K — Ky

P)2(12

Ju(@)|3

The bound in Theorem 4.23is quite sharp, while the upper bound of Theorem
has some leeway in the second inequality sign in the proof.

VARVANIVAN

IN

Example 4.29

Let us consider the Taylor spaces of Section [4.4] which have the Taylor series
as a reproduction formula and complex—valued kernels

K(u,z) =Y A\u"z"
n=0

in the unit disc. We consider their restriction to a real interval Q = [—R, R|
with 0 < R < 1 and assume that the A, decrease with increasing n. Then
the truncated kernels can be bounded by

K(ZL‘,.I’)—KM(ZL‘,.I’) = Z )‘n|x|2n

n>M

< Aur Y |z

n>M
R2M+2

1— R?*

IN

)\M—i—l
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Figure 9: Gaussian Expansion Kernel Plots

Now we consider interpolation in N +1 > M + 1 points of [—R, R] such that

polynomials up to degree M are recovered. The power function will then be
bounded by

(M + 2)R2M+2 N
Pia) < Mmoo (14 ZO [u ()
]:
with the appropriate recovery functions uyg, ..., uy. Note that this will yield

geometric convergence for M — oo, if (£.26)) can be kept under control, which
is a nontrivial problem.

If we take N+1 = M +1 equidistant points, the standard Lebesgue constant

will be
M " 2M+1
! < -
jzo |u3 (@)l < CeMlog(M)

such that
92M+2

= M2?log?(M)
with a constant C' which is independent of M. This yields

M
1+ ) [ (@)P < ©
=0

(M + 2)R2M+2 22M+2
1—- R M?2log*(M)

Py (z) < Chyp
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and leads to geometric convergence to zero if R < 1/2 even for the Szego
kernel.

If M + 1 Chebyshev nodes are used, the standard Lebesgue constant will be
of order log(M), and then

M
1+ [ul(2)]* < Clog*(M)
=0

with a constant C' which is independent of M. Thus

(M + 2) R?M+2

Pi(z) < CAprpa 11— 2

log?(M)

implies geometric convergence for all R < 1 and all kernels considered.
Let us rewrite this in terms of the fill distance

h:= max min |y — ;]
—R<y<Rz;eX

of a subset X. For M + 1 Chebyshev zeros on [—1,1], the fill distance is
bounded above by h = 7/(M + 1), but we can make it easier by picking
M = [7] for a given h. Then

RQM — (RQ)]'%]
= exp (251 log(R))
and

™

log*([ 7 ) exp (2(7 1 log(R)).  (430)
Even for the Szego kernel, this is a convergence rate of the form

P3(z) < Cexp(—c/h) for h — 0
with certain positive constants C, c.

Theorem 4.31. If a Taylor kernel with decaying A, is given and if one works
in [—R, R| for some 0 < R < 1, one can find for all h > 0 a point set X with
fill distance at most h such that (£.30) holds. O
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We now start with an arbitrary prescribed point set X with fill distance A
and N + 1 points, but now we employ oversampling. We pick the smallest
M with 2M? > 1/h, i.e.

- []

and then we know by Theorem [8.4T] on page 51l that we get

N
> lu(@)] <2,
=0

leading to

N
L4 (@) < 5.
=0

Consequently, we get the bound

(M + 2)R2M+2

Pi(z) < B5Aug [ — 2

and can insert our choice of M for

V2h

which is a convergence result of the form

P2(z) < Cexp(—c/Vh) (4.33)

Pi(z) < 5)\1% K w <2+1{V122J>R232L/12_J (4.32)

with positive and explicitly obtainable constants.

Theorem 4.34. For all kernels of Taylor spaces with decaying N\,, and for
all point sets X C [—R, R] with fill distance h and 0 < R < 1, the Power
Function is bounded by ({.33) and has exponential convergence to zero for
h — 0 with a law like ({.33). O

Note that the proof implies that such sets have N + 1 points with at least
hN > 2R, but the polynomial recovery used in the bound will only be
exact up to degree M with 2hM? > 1. This is a considerable amount of
oversampling, but the proof requires it only for going to the general case
0 < R < 1. The proof for the case R < 1/2 does not need oversampling.

RS: Open: what happens in practice? Is the proof still too weak?

RS: To Do: better convergence if X\, decay fast
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Let us consider the case of real-valued 27—periodic trigonometric kernels
from (£I2) and interpolate in the usual 2N 4 1 equidistant points in [—, 7]
such that we have a fill distance of h = 7/(2N +1). Then we know that the
Lebesgue constants behave like O(log(N)), and we can use (4.I5]) in Theorem
for

Theorem 4.35. If the trigonometric kernels ({{-13) are used whose native
spaces ([({-17) are of Sobolev type, and if interpolation in 2N + 1 equidistant

points is performed, the pointwise error decays at least like O(N~""log(N)) =
O(h™ | 1og(h)|) for N — oo or h — 0.

4.7 Finite Case

We now specialize to the context of learning models on a finite set ) con-
sisting of N = || points and a finite—dimensional feature space. Instead
of using point notation for {2, we can identify Q with the set Q = {1,..., N}
and use index notation instead, and we assume the feature space to be K
for simplicity. Expansion kernels (L)

K(j, k) =Y Xepe(§)e(k)
=

then can be written as Hermitian positive semidefinite matrices X with en-
tries K(j, k), 1 <j,k < N as

K=o"Ad

with an L x L diagonal matrix A containing positive weights Ay,..., A, on
its diagonal, while ® is a L x N matrix consisting of entries @,(r), 1 < £ <
L, 1<r<N.

The feature map j — ®(j) := {¢/(j)}¢+ € K* maps to the N columns of @,
and thus £ is the subspace of K spanned by the columns of ®. In most
cases, it will be all of KZ, but not necessarily so. Anyway, each element of £
is of the form ®z with 2z € K¥. Then yu, := R~!(®z) will be p, = APz and
the elements of H are vectors with elements

N

T(p2)(4) = ; Pe(J)zg = ; W(j))\zkz: po(k)z, = €] Kz,

=1

i.e. linear combinations of rows of K. Thus H is the row span of K, which is
also evident from the fact that the native space should be the closure of the
K(j,-). Each function f in # thus is a linear combination of rows of K, and
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thus it has the form f, := K”a with a vector a € K". The inner product
then is B )
(far )2 = a" Kb = a"®* ADb for all a,b € K.

The well-definedness of the inner product can here be checked easily, since
for K'a = KTa and K'b = K”b we get

(faafb)K - aTK§
dTKZZ
a’ Kb
= (fa,fg)K-

Also, the positive definiteness of the inner product is simple to see, because
from || f,||% = a” Ka = 0 we first get ®a = 0 from

0=a"Ka = a"® Ada = " ®*VAVADa = ||/ ADal?

with the nonsingular diagonal matrix v/A defined in an obvious way. But
®a = 0 implies f, = KTa = (®*A®)Ta = dTAda = 0.

In practical cases, the matrices ® and K are much too large to be handled,
but there are efficient methods for the reduction of dimensions via principal
component analysis or singular value decomposition. We describe
the basic principle now, but remark that practical applications will deal with
square submatrices of equal row/column selections of the matrix K, i.e. with
minors of it, while the kernel is unchanged..

A singular value decomposition splits the kernel matrix K into a product
K=0"A®=U"3U

with a unitary N x N matrix U and a real diagonal N x N matrix X of
singular values of K, i.e. the nonnegative eigenvalues of K*K. Note that
this amounts to consider an equivalent setting with now L = N, U = &, and
A = 3, but now the diagonal of ¥ may contain zero entries. The unitary
matrix U just is a coordinate change in the native space, and the new N
feature functions are orthonormal, but only L of them are used. The kernel
gets the equivalent form

K(j, k)= ; opue(j)ue(k)

with the u, being orthonormal vectors. If small singular values occur here,
they can be ignored, thus reducing the kernel’s complexity.
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5 Conditionally Positive Definite Kernels

So far, we looked at positive semidefinite symmetric kernels. But this is not
the end of the story. We need the more general notion of conditional pos-
itive (semi-) definite kernels, and there are several ways to introduce them.
They do not fall directly out of a simple (non—distributional) Hilbert space
setting, because otherwise they would be unconditionally positive semidefi-
nite. Instead, the most important conditionally positive definite kernels like
the thin—plate spline K(z,y) = log(||[z — y||3) arise directly from appli-
cations, or as certain fundamental solutions of partial differential equations.
Thus we have to begin with kernels first and then work our way towards a
Hilbert space. For certain reasons to become apparent later, we shall post-
pone completion as far as possible.

5.1 Unisolvency

To define a sufficiently general notion of conditional positive (semi-) defi-
niteness, we fix a finite—dimensional space P of functions on a set €2, denote
its dimension by @ and select a basis py, ..., pg. The case of (unconditional)
positive (semi-) definiteness, as in Definitions 237 and B4l refers to the spe-
cial case Q = 0 and P = {0}.

Definition 5.1. A subset X = {z1,...,zn} of Q is called P—unisolvent,
if zero is the only function in P that vanishes on X.

Looking at the matrix Px of values pj(zy), 1 <7< Q, 1 <k < N, we see
that it must have rank @ for unisolvency, thus N > () must hold. Therefore
we assume €2 to have at least () points and contain a unisolvent set. From
now on, all subsets X of 2 we shall consider must be P-unisolvent and thus
have at least () points. Later, we shall need

Theorem 5.2. Each P-unisolvent set X has a unisolvent subset of Q) points.

Proof: Just select a nonsingular () x ) submatrix of Py. 1.

P—unisolvency means that functions from P are completely determined by
their values on X. Therefore we can have a recovery formula

N

p(x) = plx;)uj(z) forallp e P, x € Q
j=1
with a suitable set of functions wy,...,uy spanning P. If | X| = @, the u;

will be a Lagrange basis with u;(xy) = 01, 1 < j, k < Q.
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It is instructive to consider minimal P—unisolvent sets for spaces of poly-
nomials over R in d variables and of degree n. In one dimension, each set
of n 4+ 1 distinct points is unisolvent and minimal, due to the Fundamental
Theorem of Algebra. In d real dimensions, minimal unisolvent sets for linear
real-valued polynomials are the nondegenerate simplices consisting of d + 1
points not on a hyperplane. In geometry, certain configurations of unisol-
vents sets are called “in general position”. For instance, minimal unisolvent
sets for quadratic polynomials on R? consist of 6 points not lying on a conic.
But the connection of unisolvent sets to geometry cannot be pursued here
any further.

5.2 Conditional Positive Definiteness

Definition 5.3. Let a finite—dimensional space P of real-valued functions
on a set Q) be given. A Hermitian kernel K : Q x Q — K s called P—
conditionally positive (semi—) definite, if for all P-unisolvent subsets
X ={z1,...,xn} of Q the kernel matrices with entries K(xj, xy), 1 < j, k <
N > Q are positive (semi—) definite on the subspace of KY of vectors a € KV
with the moment conditions

N
> ajp(z;) =0 for allp € P. (5.4)

J=1

If the space P consists of all polynomials of order (=degree —1) m on €,
the kernel is conditionally positive (semi-) definite of order m, if it is P—
conditionally positive (semi—) definite.

There are some highly important conditionally positive definite kernels, in
particular multivariate ones, which we shall handle in detail later. These are
radial kernels K(x,y) = ¢(||x — y||2) with scalar functions ¢ : [0.00) — R
and orders of conditional positive definiteness given by Table Like the

| Kernel ¢(r), r = [lz — y|[> | Order | Conditions | Name

(D)2 (2 +r2)P2 1 [3/2] | B> 0, B ¢ 2N | Multiquadrics

(_1)[6 21,8 [B/2] | B >0, 8¢ 2N | polyharmonic splines

(=) r*logr | k+1 | keN thin-—plate splines

Table 2: Orders of conditional positive definiteness
special univariate spline kernels we shall encounter later, such kernels arise

naturally and are not directly identifiable as reproducing kernels of certain
Hilbert spaces, because otherwise they would be unconditionally positive
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semidefinite. Thus they have no direct link to Hilbert space theory, and we
have to repeat the construction of sections B.3] and B.4 to see their connec-
tion to Hilbert spaces. Note that (unconditionally) positive (semi-) definite
kernels are P—conditionally positve (semi-) definite for all finite-dimensional
spaces P.

5.3 Interpolation Problems

The standard technique to set up an interpolation problem on a P—unisolvent
point set X = {x1,...,zx} in Q for a P-conditionally positive kernel K is
to use a linear combination

N Q
s(y) = sx.ap(y) = Y GK(x5,y) + Y bupm(y) forally € Q. (5.5)
j=1

m=1

using coefficient vectors a = (ay,...,ay)T € KN and b= (by,...,bg)T € K@,
but with a satisfying the moment conditions (5.4]). Interpolation of data
fi,..., fv in X then poses the (N 4+ Q) x (N + @) linear system

N Q
s(zr) =Y G (xj,28) + D bupm(zr) = fr, 1<k<N,
= m=1 (5.6)
Y apalz;) + 0 =0, 1<n<Q
j=1

with a Hermitian coefficient matrix.

Theorem 5.7. If X is P—unisolvent and K is P—conditionally positive def-
inite, the system (2.0) is uniquely solvable.

Proof: Assume a homogeneous system of the same form and sum the first
N equations up with weights a;. Then

N Q N
Z ajap K (), vp) + Z bm, Z agpm(zr) =0,
j.k=1 m=1 k=1

and by P—conditional positive definiteness, the vector ¢ must vanish. But
then the first NV equations are

Q

m=1

and P—unisolvency of X implies b = 0. O
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In view of Theorem 2.33] on page Il we would like to prove that for P—
conditional positive semidefinite kernels, the system is solvable if the data
come from a function in the native space, but we have no native space yet.
Readers will have to wait for Section 5.7l But there is something simpler:

Theorem 5.8. If X is P—unisolvent and K is P—conditionally positive semidef-
inite, the system (2.6) is solvable with a = 0 if the data come from functions
n P.

Proof: We set a = 0 from the start, and use that, by P—unisolvency of X,

each function from P can be uniquely recovered from its values on X. O

5.4 Inner Product
We now proceed like in Section B.3] fix €2, P, and K and define the set

M = {(a,X) : X CQ, P-unisolvent, |X| = N, a € K, Pfa =0}
of vector/set pairs that satisfy the moment condition (5.4]) in the form
P;a = O Wlth the rnatriX PT = (p](xk)hg]g@ 1<k<N-

In particular, we have to assume that (2 has at least one P—unisolvent set in
order to let M be nonempty.

Then we define the space of functions
H = {N xK(-y), (a,X) € M} (5.9)

and the space of functionals
N
L:={f = Ax(f) =) _a;f(z;) : (a,X) €M, f€H}.
j=1

It is easy to see that L is a linear space, since we already know this without
using the moment conditions, and adding two functionals vanishing on P will
yield a functional vanishing on P. We can argue similarly for H.

We can now follow the pattern of Section 3.3 to define a sesquilinear form
(BI2) on L, where we just have to additionally obey the moment conditions.
Theorems and carry over verbatim, but we cannot use functionals
0y = A1 for providing continuous point evaluation, because they are not
necessarily in L. We are left with the Riesz map

R L= H, Rax)(y) = Nox Ky, 2) = fax(y) (5.10)
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and the identities

(Aaxs Moy ) = (fovs fox)m = Aax(foy) (5.11)
for all (a, X), (b,Y) € M.

Theorem 5.12. The sum of spaces P + H is direct, if the kernel K is P—
conditionally positive semidefinite.

Proof: Consider a function p € P and a functional A,y € L with
p(x) = Ny K(z,y) for all z € Q.

Then
)\a,X (p) =0= <)\a,X7 >\b,Y)L

for all A\, x € L, in particular for A\yy. Thus A\yy = 0 as a functional on H,
but b = 0 holds only in case of definiteness. By antilinearity of the Riesz
map, we conclude in the general case that f;,y is zero and thus also p. O

5.5 Projections

To see how interpolation works under the inner product of the previous sec-
tion, we fix a finite P—unisolvent set X C 2 and define a subspace

Hy:= {N K(,y) : (a,X) € M, X fixed } (5.13)
of H for each fixed X.
Theorem 5.14. The orthogonal complement of Hx in H 1is
Hy ={f€H : \x(f)=0 forall (a,X) € M, X fized }. O

Now we can define a projector Iy onto Hx. Note that we let Hx to be
finite—dimensional here. Exactly like in Theorem [2.22] on page [I8 we get

Theorem 5.15. For each f € H and each fized P-unisolvent set X C 2
there is an interpolant I x (f) € Hx with the somewhat nonstandard interpo-
lation conditions

Nox(F) = Mox (T (f)) for all (b, X) € M.

It is the best approzimation to f from Hx and attains the minimal norm in
H under all functions in H satisfying the same interpolation problem. ]
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To see the connection to what we did in Section 5.3 we should interpolate
an abstract element f = p+ ¢ from P + H on X. Then the above theory
applies only to g, and the interpolant in the above sense must have the form

so(z) = (Ilx Z% (), %

with a vector a satisfying the moment condition, i.e. (a,X) € M. The
interpolation conditions are

]; bkso(ﬂfk) = )\b,X<30> = )\b,X (g)

for all (b, X') € M. Of course, adding functions from P to either g or sy will
not change these interpolation conditions, due to the moment conditions.

Theorem 5.16. Under the above conditions, there is a function p € P with

p(xr) = g(ax) — (x(9))(2x), 1 <k <N,

Proof: Clearly, h := g — [Ix(g) lies in Hy, and we know that A\, x(h) = 0
for all (b, X) € M. Splitting KV into the subspaces

Tx = {(p(z1),...,p(xy))" : p€ P} and Ty,

we see that the vector (h(zy),...,h(zy))T is orthogonal to all b € T, thus
in Tx. 0.

The data of f = g+ p can now be interpolated on X by s = sg + ¢, where ¢
interpolates the data of g — so +p =g — IIx(g) + p on X. In fact,

flzx) = g(y) + p(og)

= g(xr) — so(zr) + p(wx) + so(wk)
= q(wx) + so(wx)

= s(zg), 1< k<N,

Definition 5.17. For a P—conditionally positive definite Kernel K, the pre—

native space is
Nk =P+ H

where H is the pre—Hilbert space of (5:9) under the inner product defined via

(5.11).

Of course, we can extend the inner product on H to a semi-inner product
on Nk by defining it to be zero if one of the arguments is in P. This is the
first part of
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Theorem 5.18. The pre—native space Ni carries a semi—inner product
which vanishes if one of the arguments is in P, and it is an inner prod-
uct on H. FEach function in Ng can be interpolated on any P—-unisolvent set
X by a function sy x from P+ Hx with Hx from (3.13). The construction
can be performed along the lines of Section [5.3  The function s;x mini-
mizes the seminorm under all other interpolants from Ng, and it is the best
approximation to f in the seminorm from all functions in P+ Hx.

Proof: We only need to prove the final sentence, and we can use Theorem
5.15] for that purpose. In the context of Section (5.3 and the splitting Ny =
P + H we can split sy x = prx + fox With psx € P and f, x € H. Then

fax oo
RS: gap here, to be done...

Theorem (.18 extends Theorem (.7 to let the system (5.6 be solvable, if the
data come from functions in the pre-native space.

5.6 Conditional Lagrange Basis

We now proceed towards a Lagrange-type basis. We need the system (5.0)
for this, but we know solvability only if the data on the right-hand side are
from a function in the pre—native space, or if the kernel is definite. We shall
go for the first case.

Starting with a P—unisolvent set X, we can add another point y €  and
still know that the set X U {y} is P-unisolvent. This means that we can
have a formula

(Pu)(y) = ; u(;)p;(y) (5.19)

which reproduces functions from P, but yields functions in P if applied to
general functions. With this at hand, the functional

my o [ fly)—(Pf)ly) = f(y)-—-zg:zy(y)f(xj) (5.20)

lies in L and the function

R(py) = p2K (-, 2) = K(y,-) = >_pi(y) K (2;, )

J=1
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lies in H. If we use its values on X as a right—hand side in the system (5.6)
and write the coefficients as functions of y, we get

N
Za](y>pn<xj) = 0,1<n<@Q
j=1
and
N Q
J=1 N m=1
= K(y,zx) — Y pi(y)K(z), zx)
j=1
which turns into
N Q
S ou()K (2, 20) + Y b (y)pm(xr) = K(y,21), 1 <k < N.
j=1 m=1
with
ui(y) = a;(y) +pi(y), 1 <j <N
and

Z: u;(y)p(x;) = z_: a;(y)p(z;) + ij(y)p(ﬂfj) =0+ p(y) for all p € P.

This is usually combined into the system

N Q
> Klwwz)us(y) + 3 bm(@)pmler) = Klony), 1<k<N
%uy(y)p(ﬂfj) + 0 = p(y), peP

(5.21)
which is solvable and has the same coefficient matrix as (5.6]), but a right—
hand side that is not necessarily in the native space. If the kernel is definite,
the functions u; are a Lagrange basis, and the functions b,, satisfy b,,(z;) =
0, 1<7 <N, 1<m <. This follows from uniqueness, setting y = x;.

Theorem 5.22. The overall solution of the interpolation for data f(x;) for
a function [ from P + H takes the form

s(y) = ;Uj(y)f(xj)-
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Proof: We write s in the form (5.5) and insert the two above equations into
the right—hand side. Then

Mz

s(y) = K(xp,y +anpn

b
Il
—

Q N

bm(y)pm(ﬂfk)> + 200 > ui(y)pa(z;)

n=1 j=1

=

M@

1

m

(; K (w,2;)u5(y) +

y)(
k

f(l‘]) <j<N. O

Mz
Mo

1

3
Il
—

Il
HMZ HMZ M=

5.7 Native Space

We now use the technique of the previous section to arrive at reproduction
formulae and ar a proper definition of the netive space. Again, X is P—
reproducing, and we use the functionals i, € L of (5.20) applied to functions
f € H. This yields

py(f) = (f, R(y)) = (f K(y,-) ij xj,-)

H

where we cannot split the inner product, because terms like (f, K (z,-))y are
undefined. For functions f € H we can split the left-hand side as

N

my(f) = fy) = 2 flap)p;(y)

and this gives us a reproduction formula

ivj f(z5)p;(y (f K(y,-) ij K(z;,- ) (5.23)

H

that holds on H, while the right—hand term can be dropped for f € P. Both
sides have limits when we go to the completion of H.

But the assignment of single function values to elements of the completion
is still to be done. We want to complete H into an abstract Hilbert space
‘H and define the native space formally as P x H and assign values to a pair
(p, f) on Q consistently, i.e. without dependence on P—unisolvent sets X.
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To start with a unique value assignment, we fix a minimal P—unisolvent
set = = {&,...,&} with exactly () Lagrange basis functions of P we call
T, ..., 7. Then, given f € H and p € P, we use (5.23)) for X = E to assign
function values as

Q

<p7 E Z p gm 7Tm )_'_ (fu K(?Ja ) - Z m[((§mu )) . (5'24)
H

m=1

To show that this definition is consistent with what we have in (5.23), we
first note that the inner product above vanishes for y = &,,, such that there
we have (p, f)=(&,) = p(&,), 1 <n < Q. This shows that the above formula
is consistent with (£.23]) and makes sense for the completion.

To compare this with the situation on a general set, we denote the values
needed in (5:23) by fx and first evaluate

Q Q
(p, flz(z;) = le(§m)7fm(ﬂfj)+(f,K(SUja')—Zlﬂm(xj)f((§m,')) :
ij fz(z;)
- a0 zlp@m)wm(:cj)

N Q
+(fazpj(y) ( xja' Zﬂ-m gma)))
7=1 m=1 H
Q

N

= ij(y) Z P(§m)Tm(7;)

proves

=2 Piy)p, )=, ij ) Fx (),
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i.e. our value assignment is consistent. From (5.24]) we also see that

(p: f)=(y) = (p,0)=(y) + (0, f)=(y) for all f € H, pe P, y € Q
implies that we can form P + H in a consistent way. We summarize:

Definition 5.25. The native space for a P-conditionally positive semidef-
inite kernel K can be defined as P xH or P+H with a consistent assignment
of function values on Q to make all reproduction equations (2.23) meaningful.
A consistent definition of values needs fixing a minimal P—unisolvent set =,
and the definition of values will depend on that set. The native space carries
a seminorm with kernel P which is an inner product on H.

We now look back at Section and consider the Hilbert space completion.
We now can go over to the completion in the pre—native space P + H, which
was impossible until we knew how to add these spaces. Thus we get after
short inspection of what we did there,

Theorem 5.26. The interpolation problem for P—conditionally positive defi-
nite kernels on P-unisolvent sets is solvable, if the data come from a function
in the native space of the kernel. ]

The extension of Theorems [5.15] and [(.16] to the native space is

Theorem 5.27. If sy x is the interpolant to a function f of the native space
of a P—conditionally positive semidefinite kernel K on a P—-unisolvent set
X, then sy x minimizes the seminorm under all other interpolants from the
native space. Furthermore, it provides the best approximation to f from Hx
in the seminorm. ]

5.8 Power Function

To generalize the Power Function to the conditionally positive semidefinite
case, let K be a P—conditionally positive semidefinite kernel on €2 and let
X = {x1,...,zn} be a P-unisolvent subset of (2. We consider general re-
production formulae of the form

P(f)(z) = ;uj(x)f(%‘) (5.28)

which should recover functions from P, i.e. the functionals
N N
pa(f) = fl) = D u(@) flag) = | 6o — D uy(2)da, | (f)
j=1 j=1
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are in L. Then we define the Power Function as

Px(z) := inf { 0y — ;uj(x)cS

Zu] p(x;) for allpGP}.

u(z)eKN .
(5.29)
The norms can be explicitly evaluated via
el = pgppK(z,v)
= pK(z,v) - Zu] 2)uy K (2, )
7j=1

N N
5.30
= K(z,2) = > wp(z)K(zy, 2 Z K(z, ;) (5.30)

k=1

Z Z uj(z)ug () K (2x, 5)

and are upper bounds for P%(z). This will be useful for error bounds, since
we have

Theorem 5.31. If interpolation of a function f in the native space Ny for
a P—conditionally positive semidefinite kernel K on ) is performed on a P—
unisolvent set X and solved by some function s of the form (5.17), then there
s an error bound

[f(2) = s(z)] < Px(2)|[fllnz for all z € Q, f € Ni. (5.32)

For each recovery formula ([5.28) which is exact on P, the Power Function
has the upper bound

Py(x) < |lpall7
with (5.30). Equality is attained if the u;(x) are the Lagrange—type recon-
struction functions of Section 5.6 defined by the system (52.21)).

Proof: We only have to prove the final statement. For the u;(x) of (5.21])
and the associated functional p, we then have to prove that

([LJ;, )\b,X)L =0 for all )\b,X €L,
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because these A\, x are the admissible perturbations. This is

(Nm)\b,X)L = Ug (be)
- .be Zu] l’) b, X l’]

= ];_kK(:pk,x) — ;uj@)kz_kK(fEkax])
= ];_k (K(Sck,%) - ;uj(x)K(l’k’%))
Q N
= Z_ b (y) > bipm (i
= 0 B

due to (5:21). O

5.9 Reduced Kernels

Here, we describe a practical trick that allows a simple transition from a P—
conditionally positive (semi-) definite kernel to an unconditionally positive
(semi-) definite kernel.

Repeating what we needed in the previous section to define function values
for the abstract elements of the native space, we fix a minimal P—unisolvent
set = C  of size |Z| = Q. Every p € P can then be reproduced by a
Lagrange basis 7y,...,mg with 7;(&) = 0, 1 < j,k < @, i.e. we can
without loss of generality assume that

Q
- Z p(&m)mm () =: (IIz(p))(x) for all x € Q, p € P

after changing to the Lagrange basis. This defines a linear projector Iz onto
P that extends to general functions on € as

Q
(T=(f Z f&m)mm(z) forallz € Q, f : Q= K. (5.33)
m=1

This implies that the functionals



satisfy the moment conditions, and we define the reduced kernel

MM):WMQ_
= gl K(s,t)Q
_ Z T (@) K (& y) (5.34)
_Zlﬁn(y)K(:p L&) + Zl lem T (Y) K (§ms &n)

for all x,y € Q.

Theorem 5.35. The reduced kernel is Hermitian and unconditionally pos-
itive semidefinite on . It vanishes, if one of the arqguments is in =. If K
is P—conditionally positive definite on Q, then K is unconditionally positive
definite on Q\ Z. Quadratic forms with moment conditions will be the same

for K and K.

Proof: The first statement follows from the definition via an inner product
of functionals. The second follows from p, = 0 for x € =. Since the u
functionals annihilate functions in P, quadratic forms for K and K must
coincide, if they satisfy moment conditions.

If we have a set X = {z1,...,zx} C 2\ Z and a vector a € KV, then we
have to look at the quadratic form

N ~
> GapK (), 2k

j k=1
N
= Y gapK(z;, 1)
jk=1
N Q N
—ZakZKSm,ﬁk > @ ()
k=1 Jj=1
N Q N
=3 > K(x,6) Y arma(wy)
j=1 n=1 k=1
Q Q N N
+ Z K(fma gn) Za_ﬂrm(l}) Z akwn(xk)
m=1n=1 7j=1 k=1
If we define N
ﬁn = _Z akﬂﬁ(l‘k)a 1<n< Q)
k=1
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then this turns into

N ~
Z a’_ja’kK('r% 'rk‘)

]k 1
N Q L
- Z aJakK x]"rk‘ Z Ak Z K émaxk
k k=1 m=1
"y 3 o
DD CHAN b S NS e
=1 n=1 m=1n=1

which is a Hermitian quadratic form for the set X U =. Checking moment
conditions on this set for m,, € P, we get

N

Z A Tm xk + Z Bnﬂ-m gn)

N Q Q N

Z Z gn 7Tn xk Z Z kﬂ-n xk Tm fn) = 0.

If K is conditionally positive definite on €2, and if the form for K on X C O\=
vanishes for a coefficient vector a, then the form for K vanishes on X U =
and we get a = 0. U

We now can resort to the unconditionally positive semidefinite case and know
from Theorem 317 on page A7 that K is the reproducing kernel of a Hilbert
space H of functions vanishing on Z. Each function f € H has the repro-
duction formula

fla) = (f.K(z,-)g forallz € Q, f € H.

Since the functions of H vanish on Z, and the functions of P are determined
by their values on =, we can add the space P to H without overlap. We
define the sum

H=P+H

which is direct, and we use the projector Iz from (2.33). Then
f—T=(f) € H for all f e H.

Inserting this as f into the reproduction formula in H, we get the Taylor—type
reproduction formula

flx) =T=(f)(x) + (f = O=(f), K(z,-)5 forall fe H, z € Q. (5.36)
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By setting
(f, g)ﬁ = (f—-1I=(f),9 — HE(Q))?—] for all f,g € A

we get a semi-inner product on H that vanishes if one of the arguments is
in P. And we can use

M=(K(z,-)) =0 for all z € Q

for
(K(2,-),K(y,)s; = K(x,y) forallz,yecQ. (5.37)

Theorem 5.38. The native space of the given P—conditionally positive semidef-
inite kernel K coincides as a space of functions with H =P +H, where H
is the native space for the reduced kernel K.

Proof: By Theorem we can use K instead of K when we do the con-
struction of sections B.4] and 5.7 since the quadratic forms will not change.
The change is only modulo P. This implies that the resulting space H will
automatically consist of functions vanishing on =, and the equations (2.30])
and (5.24) coincide. Thus we get a special instance of value assignment that
is consistent with Definition O

In Theorem [B.7] of Section we saw that we can do interpolation on P—
unisolvent sets X = {x1,...,xy}, if the kernel K is P—conditionally positive
definite. We did this without using Hilbert space structure, but now we
want to link this with our Hilbert space background. Given a function f in
‘H and a P-unisolvent set X on which we want to interpolate f by a function
s € H, we cannot expect f and s to coincide on =. Formally, we take the
data p,,(f), 1 <j < N and interpolate these data first by some

N ~
=Y oK(zj,x
j=1
that vanishes on =. We then have

pay (f) = S () = (H=)(f) ()

= so(zp), 1<k<N
and see that we should use

s = (Hz)(f) + so
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to get a full interpolant on X.

But we have to check in which function span this interpolant lies. We see
that

so(z) = Y aiK(zj )

N Q N
- ZajK Zj, T Z K gma Za]ﬂ'm X
j=1 m=1 j= 1
Q N Q
_ZW"@)ZO‘ 'rﬁgn + Z Z émagn Zajﬂ-n .CL’]
n=1 j=1 m=1n=1

still contains functions of the form K (¢,,, -) if there are no moment conditions
with respect to =. This means that we have an interpolant that is possibly
different from what we had before.

But if Z is a subset of a P—unisolvent data set on which we want to interpo-
late, we have no problem at all and just perform the previous algorithms in
a different way. We use the reduced kernel on X \ = for data of f — Il=(f)
there, and then add the interpolant in P to IIz(f), which is IIz(f) itself.

We now show how this can be done in practice. Assume = C X and define
Y = X\ 2 with |[Y| = N — Q. We sort the points such that the first @
points of X are the points of Z. Then we write down the linear system (5.6)
in (Q, N — @, Q) block form as

A== Asy Ioxo a= J=
Ay Avy B ay | =1 Jfv
I B*  0Ogxq b 0gx1

using the fact that the matrix of values m,,(z;) consists of Ig«q for the =
part and a (N — @) X @ matrix B for the points of Y, since the =, are a
Lagrangian basis on =. We know that the system is solvable, and we use the
third and first part to get

az = —DB*ay,

= = z, (5.39)
= f=+ (A==B* - Azy

o~ [

=~
1]
|

s
al]

=0 |
|

I
1]
}.<

q
N— P~<

We insert this into the second part. Then

fY = AE7yE+ AY,YW+ Bb
= —ALyB*ay +ay + B(fz + (Az=B" — Azy)@y) ,
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gives the solvable system
fy = Bfz= (Ayy - AE,YB* — BAzy + BAEEB*) ay.

Once this is solved, we use (5.39) to get the remaining parts of the solution.
Writing the above system in detail, we get

Q
faw) = > mm(@e) £ (6m)

A Q Q
= % (K(xjaxk) - Z K (&my 21)mm (25) — Zﬂn(l‘])K(xk,gn)
J=Q+1 m=1 n=1
Q
+ zlmxj)wm@jw@m,gn)) 5

for Q+1 <k < N. This is

N
fo, = Y, K(j,2)q, Q+1<k <N,
=@+

i.e. a reduced system using the reduced kernel.
Readers should note that this is a variation of a Schur complement argument.

For applications, we need to know which functionals can be used for general-
ized interpolation, provided that we have a P—conditionally positive semidef-
inite kernel K that is explicitly known as a function on Q x 2. This will
amount to generalize Theorem [2.11] to the P—conditionally positive semidef-
inite case. We can avoid a new theorem by applying Theorem 2.11] to the
reduced kernel.

5.10 Extended Kernels

The previous sections showed that in the P-conditionally positive (semi)-
definite case we have a direct sum P + H as a native space, with an inner
product only on the H part. But in order to arrive at an inner product on the
whole space, we can extend the reduced kernel (0.34]) to get the extended
kernel

Q
K'(z,y) = K(x,y)+ > mm(x)mn(y)




for all z,y € Q, using the Lagrange basis m,...,mg of P again. The ad-
ditional part clearly is an unconditionally positive semidefinite kernel itself.
Regarding the results of Section (.7, we here fix X = = like in Section

and get

Theorem 5.41. If K is a P-conditionally positive semidefinite kernel on
Q, the extended kernel KT is an unconditionally positive semidefinite kernel
on Q whose native space H' coincides with the native space of K as a vector
space. The subspace

HL = {feH! : f(2)={0}}

is isometrically isomorphic to H and orthogonal to P in the new inner product
induced by K1. If K is definite, so is KT.

Proof: The kernel KT clearly is Hermitian and unconditionally positive
semidefinite on €2 due to its definition and Theorem [5.351 We note in passing
that

K'(2,&n) = mn(2), K'(&nyy) = mn(y) forall 1 <m < Q, a,y € Q.

The projector Iz onto P is (5.33), and thus

Q
Kf(w,y) - T=(K'(z,)(y) = K'(z,y) = > mn(y)K' (2, &)

= K(z,y) for all z,y € Q.
The translates Kf(z,-) are in P + H, and to each translate K (z,-) we can
add an element of P to get KT(z,-). Thus, without going to closures, we now

work in P + H without loss of generalization, unless we go to closures.

We first assert that the inner product (.,.); on the native space of KT, nec-
essarily satisfying (2.3)), is the same as

Q -
(fs 9 == Z f(&m)g(Em) + (f —1=(f), g —1l=(g))y, for all f,g € P+ H.
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We only have to check this on translates of K. This is

(KT( D Ky, )t
_ Z K1 (2, &) KT(y, )
(KT( ) = Tz(K'(z,), K'(y, ) — T=(K'(y, )
S )+ (R (), K, )
_ 7Ex, y) = K(x,y) + (K(2,-), K(y,))n

(z,

H

3

|
=

due to (5.37). In this inner product, the spaces P and H are orthogonal.
Furthermore, we have the reproduction equation

flo) = M=())@)+ (f - T=(f), K(z,-)),,
Q

= 3 (o) + (= TI=(), K ()

H

H

Q
= 2 A& KT &) + (£ = =), K@) = Ta(K (@)

= (/K.
= (f,Kf(z,)); forall fe P+ H, x€Q.

Going to the closure now is no problem at all. Since it is clear that

(fag)H = (fvg>T

for all f,g in P + H that vanish on =, the Hilbert space topologies on H
for the reduced kernel and on the subspace HL of P + H for the extended
kernel are isometric. We now are exactly in the situation of Theorem
on page [[71 The space P is orthogonal to H in the new inner product, and
the extended kernel reflects this orthogonal decomposition. O

Using the extended kernel, one can bypass all the hassles induced by con-
ditional positive definiteness, when it comes to numerical calculations. But
everything will depend on =, and if interpolations on different P—unisolvent
sets X are performed and compared, one must keep = fixed throughout.
However, results will be different from what we did in Section 5.3} if = is not
contained in the set X used for interpolation. The reason is that translates
of K and K will usually contain translates at the points of Z.
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6 Splines

The following is a somewhat nonstandard introduction to splines, modeled
for extensions to general multivariate kernel-based function spaces.

First we fix a positive integer k and denote the space of real-valued poly-
nomials with order (= degree -1) at most k by Pj. In the d—variate case
we shall use the notation Pg.

6.1 Semi—inner product

As a function space, we start with the vector space C¥[a, b] of all real-valued
functions f with piecewise continuous k-th derivatives for which

fI7 = /ab (dkdjilgt)>2dt (6.1)

is finite. We leave it to the reader that this defines a reasonable vector space
of functions on [a, b].

Equation (6.1)) defines a semi-norm, i.e. it has the properties of a norm except
for the definiteness, and there is a semi-inner product

o rdh ) dig(t)
(Fahi= | =g g

Lemma 6.2. The seminorm ||y is zero if and only if f is a polynomial of
order at most k.

Proof: Clearly, the seminorm | f| is zero if f is a polynomial of order at most
k. Conversely, if the seminorm |f|; is zero for some function f € C*[a, b],
then f%®) is zero except for its points of discontinuity. Then f consists of
polynomial pieces of order at most k& which are glued together in such a
way that the (K — 1)st derivative still is continuous. But then f is a global
polynomial of order at most k. O

6.2 Taylor’s Formula

We want to align the above starting point with what we know about positive
semidefinite kernels and reproducing kernel Hilbert spaces, but so far we
have no inner product and no kernel. But we can go for a reproduction
property which everybody should be well acquainted with.
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Every function f on [a,b] with k continuous derivatives satisfies

(x —a) +/f k>_1dtx€[ab]

1o-% 5

and this generalizes to functions in C*[a,b] (without proof here). This is a
reproduction formula, and in the integral we can see what could later be a
kernel, but we still have to work a little.

The upper bound x of the integral can be eliminated by defining the trun-
cated power as

k z>0
ko 0 2 <0
(2)3 = s 2=0,k=0
0 else
to get
. k) i
:Z (x —a) +/f 71)dt:c€[ab]
With the kernel function
(a =

Kpalw,t) = (—1)F

the above equation takes the form

D (& af +(f, Krale, )

k=1 ¢(4)
flz) = Zf
j=0

=:(Pg,of)(x)
= (Pk,af)(x) + (f7 Kk@(l‘, ))k7 VIS [a’ b]

(6.3)

This is a reproduction formula, i.e. it allows f to be reproduced from f®*)
in [a,b] and the derivatives at a up to order k& — 1. We also have a kernel
now, but it is unsymmetric, and thus it does not fit into our framework.

6.3 Taylor’s Formula Symmetrized

But note that we have tackled a symmetric problem in an unsymmetric way,
which is a mathematical crime. We should also use Taylor’s formula at b.
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This is

@) = i

a:—b +/ FE(t %dt,xe[a,b]

t_l,)k 1

(k—1)

————dt

Py bf)('r) (fa Kk,b< Z, ))k

with -
Kiafog) = (-0

To get something symmetric, we take the mean of the two Taylor formulae.

This is

fl@) = 3(Paf)(@) + 5(Pesf)(@) + 5(f, Kial@, ) + Kip(z, ) (6.4)

with
(Rif)(x) = %(Ek,af()gx)+%(Pk,bf)($)k .
1Y) ;L LS 90 j
= 5]:0 A (x —a) +§]:0 7 (x —b)
1 ple =t
Ki(z,t) = 5(-1) o

Note that the two reproduction formulae (6.3) and (6.4) can both be used
to our convenience. The different kernels are linked to different polynomial
projectors.

We have three reproduction formulas and three kernels, so far. But we also
want to have (2.3)), and this will not hold for either of these kernel. We boldly
define

Oy (x,y) = (Ki(z,-), Ki(y, ) for all z,y € [a, ]

and see what this new symmetric kernel is. We use (6.4)) for f(y) := Ki(z,y)
to find

O (z,y)
= (Kk(xa)aKk( a))k
= Ki(z,y) - é(Pk,aK:yf,- )y ;kgffk,ka(x, ) (y)
- Ko 50 G D )
1 k—1 (b— x)Qk—l—j ;



Since both &, and K} are symmetric, so is the polynomial on the right—hand
side. This means that it must be a polynomial of degree at most k£ — 1 in
both x and y by some hidden cancellation. But as these kernels differ only
by functions in Py, we have

Oy (x,y) = (Pr(z, ), Pi(y, -))x for all x,y € [a,b] (6.5)
and the reproduction equation
f(z) = (Rif)(x) + (f, ®(x, )i for all f € C*[a,b], x € [a,b]. (6.6)

To illustrate the hidden cancellation, we consider kK = 1. Then

(I)1<.le,y> 1 1
= Ki(z,y)+ 5(:1: —a)+ §<b — )
Lo —y| + =L,

Readers might check the cancellation for k£ = 2.

6.4 Conditional Positive Definiteness
As readers will already expect, we have

Theorem 6.7. The kernel ®; is unconditionally positive semidefinite. All
spline kernels we have considered so far are Py —conditionally positive definite.

Proof: The first statement follows immediately from (6.3]), but note that it
does not hold for the other kernels. For the conditional positive definiteness,
we take the kernel @y, a P,—unisolvent set X and a coefficient vector a with
moment conditions, and then we have to prove that if the function

f(t) = ;ajcbk(:cj,t) (6.8)

is in Py, then all coefficients vanish. For these coefficients, we look at

Aax(v) = ;ajv(%‘)



for all functions v that we can insert into the Taylor formula. By choosing a
Lagrange polynomial basis for interpolation on X, we get that all coefficients
must vanish. This finishes the proof for ®;, but the same argument works
for all other combinations of kernels and projectors that we have seen so far
and that lead to a Taylor formula. O

6.5 Native Space for Spline Kernels

Theorem allows for two paths towards a native space:

1. for ¢, as an unconditionally positive semidefinite kernel,

2. for ®, or other kernels as P,—conditionally positive definite kernels.

We shall see that we get different results. If we use @, as an unconditionally
positive semidefinite kernel, the native space will consist of the closure of
translates @y (x,-) under an inner product that also allows (6.3). But then
this inner product, since it coincides with (.,.); on the “generators” &y (z, )
must be identical to (.,.),. This is puzzling at first sight, because in general
(.,.)r vanishes on Py, i.e. it is not positive definite. But if a linear combina-
tion (6.8) without moment conditions is in Py, we can plug it into (6.6]) to
get

(f, Pz

\\Mz

i (Pu(wj, ), Qulz, ), = ;ajq)k(ﬂfjafﬁ) = f(z) =0

for all z € Q, proving that (.,.)x is positive definite on the span of the
translates of ®,. If we take another look at (6.35) and (6.6]), we see that all
translates of ®; necessarily are in the kernel of the projector Ry, and we have
the standard reproduction formula

f(@) = (f, Pi(, )k

for all f in the native space H generated by the translates of ®;, as is to be
expected. But this space consists of functions f with Ry(f) = 0, i.e. it is
not exactly what we want, since the space P, has fallen out. Of course, we
could get it back in by going over to an extended kernel, but this would yield
another native space.

We now check what we get if we consider ®; as a Pr—conditionally positive
definite kernel. The native space will then consist of the direct sum of P
with a Hilbert space ‘H generated by functions

faX Zaqu)k X y)

7=1
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where the coefficients satisfy moment conditions and X is P,—unisolvent.
The inner product on H is

(foxs fov)n = a;bj Py (s, y;)

™ =
M=

<
Il
—_
-
Il
—

Il
™=
™M=

aibj(%(xi, ), Pu (s ) )
== J(fa Xafb Y)

by (6.5), and it is positive definite there, as we know. Clearly, all f, x are in
the Beppo—Levi space

BL*[a,b) == {f : [a,b] = R : f® € Ly[a,b]}

because their k—th derivatives are piecewise continuous or even smoother,
and they lie in the subspace of the f with Ry(f) = 0. This is clear, because
for each function f € BL*[a,b] we have the reproduction formula (6.6) as
an instance of a symmetrized Taylor formula. The semi-inner product (.,.)g
is positive definite on that subspace, and thus we can decompose BL*[a, b]
into BL*[a,b] = Py + ker Ry, with ker R}, being a Hilbert space isometrically
isomorphic to Ly[a,b] via the map f + f*) from BL*[a,b] to Ls|a,b].

We now assert

Theorem 6.9. The native space for ®; as a Pr—conditionally positive defi-
nite kernel is the Beppo—Levi space BL*[a,b).

Proof: We know that all f, x are in ker Ry, and thus we only need to prove
that the closure of these functions under (.,.); is not larger than ker Ry.
Assume that some g € ker Ry, is orthogonal to all f, x. This implies

0 = <g7fa,X)k
= Z%(gaq)k(x]v'))k

a;g(z;)

= (0l - Relo)w,)
2

and we use the argument at the start of the proof of Theorem [5.16l on page
[[9 to conclude that the vector of values g(x1),...,g(zxn) can be viewed as a
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vector of values of a polynomial in P,. Since this holds for all P,—unisolvent

sets X, the function ¢ must itself be a polynomial, and vanish since it is
ker Ry,. O

We now can apply everything we know from Chapter B about condition-
ally positive definite kernels. The interpolation systems of Section 0.3 are
nonsingular, and we have the same optimality results.

7 Practical Observations
. incomplete...

In particular, I should add all the MATLAB programming hints that I gave
for the exercises.

This chapter is from a draft of a book, and it is not yet linked into
this text properly. Quite some cross—references are hanging in the air,
in particular those leading to methods for solving partial differential
equations. Furthermore, this chapter focuses on radial basis functions
and ignores more general kernels.

Before we go on with serious theory, we should present some experimental
results.

7.1 Lagrange Interpolation

In Figure [0l we have 150 scattered data points in [—3,3]? in which we in-
terpolate the MATLAB peaks function (top right). The next row shows the
interpolant using Gaussians, and the absolute error. The lower row shows
MATLAB’s standard technique for interpolation of scattered data using the
griddata command. The results are typical for such problems: radial basis
function interpolants recover smooth functions very well from a sample of
scattered values, provided that the values are noiseless and the underlying
function is smooth.

The ability of radial basis functions to deal with arbitrary point locations
in arbitrary dimensions is very useful when geometrical objects have to be
constructed, parametrized, or warped, see e.g. [ADR94. [CFB97, NENOO,
CBC™01, [OBS03, RTSD03, WKO05, BK05]. In particular, one can use such
transformations to couple incompatible finite element codes [ABWO06].
Furthermore, interpolation of functions has quite some impact on methods
solving partial differential equations.
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Figure 10: Interpolation by radial basis functions

Another important issue is the possibility to parametrize spaces of trans-
lates of kernels not via coefficients, but via function values at the translation
centers. This simplifies meshless methods “constructing the approximation
entirely in terms of nodes’ [BKOT96|. Since kernel interpolants approximate
higher derivatives well, local function values can be used to provide good esti-
mates for derivative data [WHWO5|. This has connections to pseudospectral
methods [Fas06].

7.2 Interpolation of Mixed Data

It is quite easy to allow much more general data for interpolation by radial

basis functions. For example, consider recovery of a multivariate function f
of

from data including the values —— / f(t)dt. The basic trick, due to

0%
Z.M. Wu [Wu92], is to use special trlal functions

(||$—Z|| ) of
= for 8x2<

/(b”:c—tH )it for /f

to cope with these requirements. In general, if a linear functional A de-
fines a data value A(f) for a function f as in the above cases with A\;(f) =
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af

P —(2), Xa(f) = /Qf(t)dt, the special trial function uy(x) to be added is
2

ux(@) == No([|lz — tll2) for X'(f(t))

where the upper index denotes the variable the functional acts on. If m =n
functionals A;,..., A, are given, the span (B.J)) of trial functions is to be
replaced by

ZGM ¢l —tl2).

The interpolation system (3.3) turns into
A= 3 N (l— ), 1<) <n (1)
k=1

with a symmetric matrix composed of \pAT¢(||z —t|l2), 1 < 4,k < n which is
positive definite if the functionals are linearly independent and ¢ is positive
definite.

v" ”;0 "l 957
‘M"WN' i
‘o‘\! o‘o’w,,, ,:/

Figure 11: Generalized interpolant to Neumann data

To give an example with general functionals, Figure[IIlshows an interpolation
to Neumann data +1 and -1 on each half of the unit circle, respectively, in
altogether 64 points by linear combinations of properly scaled Gaussians.
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In case of conditionally positive definite radial basis functions, the span of
(??) or (??) turns into

n q
u(@) =3 apdd(llr = tll2) + > bepe()
k=1 =1
while the additional condition (5.4 is replaced by

> aNpe(t) =0, 1<0<q
k=1

and the interpolation problem is solvable, if the additional condition
Nep(t)=0forall 1 <k<nandpe qu implies p = 0

is imposed, replacing (5.4]) and P—unisolvency.

Another example of recovery from non-Lagrange data is the construction of
Lyapounov basins from data consisting of orbital derivatives [GW07].
The flexibility to cope with general data is the key to various applications of
radial basis functions within methods solving partial differential equations.
Collocation techniques, as treated in books on numerical methods for solving
partial differential equations, solve partial differential equations numerically
by interpolation of values of differential operators and boundary conditions.
Another important aspect is the possibility to implement additional linear
conditions or constraints like

A(u) == /Qu(a:)da: =1

on a trial function. For instance, this allows to handle conservation laws and
is inevitable for finite-volume methods. A constraint like the one above,
when used as additional data, adds another degree of freedom to the trial
space by addition of the basis function uy(z) := MNo(||z — t||2), and at the
same time it uses this additional degree of freedom to satisfy the constraint.
This technique deserves much more attention in applications.

7.3 FError Behavior

If exact data come from smooth functions f, and if smooth kernels K or
radial basis functions ¢ are used for interpolation, users can expect very
small interpolation errors. In particular, the error goes to zero when the
data samples are getting dense. The actual error behavior is limited by the
smoothness of both f and ¢. Quantitative error bounds can be obtained
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from the standard literature [Buh03, Wen05] and recent papers [NWWO06].
They are completely local, and they are in terms of the fill distance

h:= h(X, ) :=supmin ||z — yl|2 (7.2)
yeQ zeX
of the discrete set X = {x1,...,2,} of centers with respect to the domain

2 where the error is measured. The interpolation error converges to zero
for h — 0 at a rate dictated by the minimum smoothness of f and ¢. For
infinitely smooth radial basis functions like the Gaussian or multiquadrics,
convergence even is exponential [MN92| [Yoo01] like exp(—c/h). Derivatives
are also convergent as far as the smoothness of f and ¢ allows, but at a smaller
rate, of course. This is particularly important when applications require good
reproductions of derivatives, e.g. velocity fields or stress tensors.
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Figure 12: Nonstationary interpolation to a smooth function as a function
of fill distance

For interpolation of the smooth peaks function provided by MATLAB and
used already in Figure [[0} the error behavior on [—3,3]? as a function of fill
distance h is given by Figure [[2l It can be clearly seen that smooth ¢ yield
smaller errors with higher convergence rates. In contrast to this, Figure [13]
shows interpolation to the nonsmooth function

f(z,y) = 0.03 x max(0,6 — 2% — y*)?, (7.3)
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on [—3,3]?, where now the convergence rate is dictated by the smoothness
of f instead of ¢ and is thus more or less fixed. Excessive smoothness of ¢
never spoils the error behavior, but induces excessive instability, as we shall
see later.
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Figure 13: Nonstationary interpolation to a nonsmooth function as a function
of fill distance

7.4 Stability

But there is a serious drawback when using radial basis functions on dense

data sets, i.e. with small fill distance. The condition of the matrices used

in (3.3) and (7.1 will get extremely large if the separation distance
S(X):=

1 .

3 19595 s = ]2

of points of X = {x1,...,x,} gets small. Figure [[4 shows this effect in the
situation of Figure

If points are distributed well, the separation distance S(X) will be propor-
tional to the fill distance h(X,Q) of (Z2). In fact, since the fill distance is
the radius of the largest ball with arbitrary center in the underlying domain
Q2 without any data point in its interior, the separation distance S(X) is the
radius of the smallest ball anywhere without any data point in its interior,
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Figure 14: Condition as function of separation distance

but with at least two points of X on the boundary. Thus for convex domains
one always has S(X) < h(X, Q). But since separation distance only depends
on the closest pair of points and ignores the rest, it is reasonable to avoid
unusually close points leading to some S(X) which is considerably smaller
than h(X,2). Consequently, a distribution of data locations in X is called
quasi—uniform if there is a positive uniformity constant v < 1 such that

v h(X,Q) < S(X) < h(X, Q). (7.4)

To maintain quasi-uniformity, it suffices in most cases to delete “duplicates”.
Furthermore, there are sophisticated “thinning” techniques [FI98 [DDFT05,
WRD05| to keep fill and separation distance proportional, i.e. to assure quasi-
uniformity at multiple scaling levels.

7.5 Uncertainty Principle

Unless radial basis functions are rescaled in a data-dependent way, it can be
proven [Sch95| that there is a close link between error and stability, even if
fill and separation distance are proportional. In fact, both are tied to the
smoothness of ¢, letting stability become worse and errors become smaller
when taking smoother radial basis functions. This is kind of an Uncertainty
Principle:
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It is impossible to construct radial basis functions which guarantee good
stability and small errors at the same time.
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Figure 15: Squared L, error times condition as a function of fill distance

We illustrate this by an example. Since [Sch95] proves that the square of the
L., error roughly behaves like the smallest eigenvalue of the interpolation
matrix, Figure plots the product of the MATLAB condition estimate
condest with the square of the L., error for the nonstationary interpolation
of the MATLAB peaks function, used already for Figures [[2] P2 and [I4] to
show the error and condition behavior there. Note that the curves do not
vary much if compared to Figure

Thus smoothness of radial basis functions must be chosen with some care,
and chosen dependent on the smoothness of the function to be approximated.
From the point of view of reproduction quality, smooth radial basis functions
can well recover nonsmooth functions, as proven by papers concerning error
bounds [NWW(0Q6]. On the other hand, non-smooth radial basis functions will
not achieve high convergence rates when approximating smooth functions
[SW02]. This means that using too much smoothness in the chosen radial
basis function is not critical for the error, but rather for the stability. But
in many practical cases, the choice of smoothness is not as sensible as the
choice of scale, as discussed in section [Z.6l

107



7.6 Scaling

If radial basis functions are used directly, without any additional tricks and
treats, users will quickly realize that scaling is a crucial issue. The literature
has two equivalent ways of scaling a given radial basis function ¢, namely
replacing it by either ¢(||z — yl||2/c) or by ¢(e||z — y||2) with ¢ and € being
positive constants. Of course, these scalings are equivalent, and the case
e > 0, ¢ = oo is called the flat limit [DF02]. In numerical methods for
solving differential equations, the scale parameter c is preferred, and it is
called shape factor there. Readers should not be irritated by slightly other
ways of scaling, e.g.

2
ullele) = /@ + el =e-yf1+ B2 =g, (”gﬂh) (7.5)

for multiquadrics, because the outer factor c is irrelevant when forming trial
spaces from functions (3. Furthermore, it should be kept in mind that
only the polyharmonic spline and its special case, the thin-plate spline
generate trial spaces which are scale-invariant.

Like the tradeoff between error and stability when choosing smoothness (see
the preceding section), there often is a similar tradeoff induced by scaling:
a “wider” scale improves the error behavior but induces instability. Clearly,
radial basis functions in the form of sharp spikes will lead to nearly diagonal
and thus well-conditioned systems (B.3]), but the error behavior is disastrous,
because there is no reproduction quality between the spikes. The opposite
case of extremely “flat” and locally close to constant radial basis functions
leads to nearly constant and thus badly conditioned matrices, while many
experiments show that the reproduction quality is even improving when scales
are made wider, as far as the systems stay solvable.

For analytic radial basis functions ( i.e. in C* with an expansion into a
power series), this behavior has an explanation: the interpolants often con-
verge towards polynomials in spite of the degeneration of the linear systems
[IDF02] [Sch05), LE05, LYY05, [Sch06al. This has implications for many exam-
ples in this text which approximate analytic solutions of partial differential
equations by analytic radial basis functions like Gaussians or multiquadrics:
whatever is calculated is close to a good polynomial approximation to the
solution. Users might suggest to use polynomials right away in such circum-
stances, but the problem is to pick a good polynomial basis. For multivariate
problems, choosing a good polynomial basis must be data-dependent, and it
is by no means clear how to do that. It is one of the intriguing properties
of analytic radial basis functions that they automatically choose good data-
dependent polynomial bases when driven to their “flat limit”. There are new
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Figure 16: Error as function of relative scale, smooth case

techniques |[LF03, [FW04| which circumvent the instability at large scales,
but these are still under investigation.

Figure [I6] shows the error for interpolation of the smooth MATLAB peaks
function on a fixed data set, when interpolating radial basis functions ¢ are
used with varying scale relative to a ¢-specific starting scale given in the
legend. Only those cases are plotted which have both an error smaller than
1 and a condition not exceeding 102. Since the data come from a function
which has a good approximation by polynomials, the analytic radial basis
functions work best at their condition limit. But since the peaks function
is a superposition of Gaussians of different scales, the Gaussian radial basis
function still shows some variation in the error as a function of scale.
Interpolating the nonsmooth function (7.3) shows a different behavior (see
Figure[IT), because now the analytic radial basis functions have no advantage
for large scales. In both cases one can see that the analytic radial basis
functions work well only in a rather small scale range, but there they beat
the other radial basis functions. Thus it often pays off to select a good scale
or to circumvent the disadvantages of large scales [LE03] [FW04].

Like in finite element methods, users might want to scale the basis functions
in a data-dependent way, making the scale ¢ in the sense of using ¢(||x —
yll2/c) proportional to the fill distance h as in (T2]). This is often called a
stationary setting, e.g. in the context of wavelets and quasi-interpolation.
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Figure 17: Error as function of relative scale, nonsmooth case

If the scale is fixed, the setting is called nonstationary, and this is what
we were considering up to this point. Users must be aware that the error
and stability analysis, as described in the previous sections, apply to the
nonstationary case, while the stationary case will not converge for h — 0
in case of unconditionally positive definite radial basis functions [Buh88|
Buh90]. But there is a way out: users can influence the “relative” scale of ¢
with respect to h in order to achieve a good compromise between error and
stability. The positive effect of this can easily be observed [Sch97al, and for
special situations there is a sound theoretical analysis called approximate
approximation [MS96|. Figure [I8 shows the stationary error behavior for
interpolation of the smooth MATLAB peaks function when using different
radial basis functions ¢ at different starting scales. It can be clearly seen how
the error goes down to a certain small level depending on the smoothness of
¢, and then stays roughly constant. Using larger starting radii decreases
these saturation levels, as Figure [[9 shows.

Due to the importance of relative scaling, users are strongly advised to always
run their programs with an adjustable scale of the underlying radial basis
functions. Experimenting with small systems at different scales give a feeling
of what happens, and users can fix the relative scale of ¢ versus h rather
cheaply. Final runs on large data can then use this relative scaling. In many
cases, given problems show a certain “intrinsic” preference for a certain scale,
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Figure 18: Stationary interpolation to a smooth function at small starting
scales

as shown in Figure [[7 but this is an experimental observation which still is
without proper theoretical explanation.

7.7 Practical Rules

If users adjust the smoothness and the scaling of the underlying radial basis
function along the lines of the previous sections, chances are good to get
away with relatively small and sufficiently stable systems. The rest of the
text contains plenty of examples for this observation.

For completeness, we add a few rules for Scientific Computing with radial
basis functions, in particular concerning good choices of scale and smooth-
ness. Note that these apply also to methods for solving partial differential
equations in later chapters.

e Always allow a scale adjustment.
e If possible, allow different RBFs to choose from.

e Perform some experiments with scaling and choice of RBF before you
turn to tough systems for final results.
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Figure 19: Stationary interpolation to a smooth function at wider starting
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e If you do not apply iterative solvers, do not worry about large condition
numbers, but use a stabilized solver, e.g. based on Singular Value
Decomposition (SVD). Remember that unless you apply certain tricks,
getting a good reproduction quality will always require bad condition.
If you need k decimal digits of final accuracy for an application, do not
bother about condition up to 10'27*.

e If you use compactly supported radial basis functions, do not expect
them to work well when each support contains less than about 50 neigh-
bors. This means that the bandwidth of large sparse systems should
not be below 50. Increasing bandwidth will usually improve the quality
of the results at the expense of computational complexity.

e When using either compactly supported or quickly decaying radial basis
functions of high smoothness, the theoretical support and the practical
support do not coincide. In such cases one should enforce sparsity by
chopping the radial basis functions, in spite of losing positive definite-
ness properties. But this should be done with care, and obeying the
“50 neighbors” rule above.

o [f systems get large and ill-conditioned, and if change of scale and RBF
do not improve the situation, try methods described in the following

112



section.

e Use blockwise iteration (“domain decomposition”) first, because it is
simple and often rather efficient.

e Blockwise iteration can be speeded up by precalculation of LR decom-
positions of blocks.

e If all of this does not work, try partitions of unity, multilevel methods,
or special preconditioning techniques. You are now at current research
level, and you should look into the next section.

7.8 Sensitivity to Noise

So far, the discussion focused on noiseless data, with the exception of Fig-
ure 231 If users expect noise in the data, an interpolatory recovery is not
appropriate, because it treats noise as data. In most of the later sections of
this text, data are right-hand sides or boundary values for partial differential
equations, and they usually are given as noiseless functions which can be
evaluated anywhere. Thus the rest of the text does not treat noisy inputs in
detail. But at this point, some remarks are appropriate.

In all noisy situations, interpolation should be replaced by approximation.
This can be done in various ways leading to stabilization.

A primitive, but often quite sufficient technique is to run a smoothing process
on the raw data and to recover the unknown function from the smoothed data
instead of the raw data.

Another standard trick is to solve (B:3]) in the Ly sense with oversampling, if
only n << m trial points z; are used for m data points y;. The trial points
can then be placed rather freely with a large separation distance, while a
small separation distance of data points will not have a dramatic effect on
stability any more. However, there is not very much theoretical and practical
work done on unsymmetric recovery techniques [Sch06bl [Sch07].

A third possibility is the old Levenberg-Marquardt trick of adding a pos-
itive value A into the diagonal of the kernel matrix of (B.3) with entries
o(||z;—zk||2). Asiswell-known from literature on spline smoothing, this leads
to an approximant achieving a tradeoff between smoothness and reproduction
quality which can be controlled by A. If a stochastic background is available,
there are methods to estimate A properly, e.g. by cross-validation. How-
ever, in most cases users adjust A experimentally. This technique also helps
to fight instability when working on irregularly distributed data [WRO05],
because it is able to shift the stability from dependence on the separation
distance to dependence on the fill distance (see section [7.4)).
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A fourth possibility is regularization, for example using a singular-value
decomposition as described in section [Z.10L

In general, one can replace the system (3.3) by an optimization method
which penalizes the reproduction error on one hand and either a complexity or
smoothness criterion on the other, allowing a fair amount of control over the
tradeoff between error and stability. Penalties for the discrete reproduction
error can be made in various discrete norms, the ¢; and /., case having the
advantage to lead to linear optimization restrictions, while the discrete ¢
norm leads to quadratic ones. For radial basis functions of the form (B.1) or
(?7?), the quadratic form

ullg = >_ ajand(llz; — xxll2) (7.6)

jk=1

is a natural candidate for penalizing high derivatives without evaluating any.
This is due to the standard fact that the above expression is a squared norm in
a native space of functions with about half the smoothness of ¢, penalizing
all available derivatives there. For details, we have to refer to basic literature
[Buh03, Wen05] on the theory of radial basis functions. But even though we
skip over native spaces here, all users should be aware that they always lure
in the theoretical background, and that all methods based on radial basis
functions implicitly minimize the above quadratic form under all functions
in the native space having the same data. This has a strong regularization
effect which is the background reason why radial basis function or more gen-
eral kernel methods work well for many ill-posed and inverse problems
The above strategy of minimizing the quadratic form (7.6]) also is central for
modern methods of machine learning, but we cannot pursue this subject
in detail here [CSTO0, [SS02, [STCO4].

Let us use minimization of the quadratic form (.6]) to provide an example for
the tradeoff between error and complexity. Again, the basic situation is inter-
polation to the MATLAB peaks function, this time in 14x14—=196 regularly
distributed points in [—3,3]? by Gaussians of scale 1. The global L.,[—3, 3]?
error of the exact interpolation on these data is 0.024, evaluated on a fine
grid with 121x121=14641 points. But now we minimize the quadratic form
((C8) under the constraints

<Y agb(ln —ml) - fo) S 1<k<n (1)
j=1

for positive €. The case of ¢ = 0 is exact interpolation using all 196 data
points and trial functions. For positive €, the usual Karush-Kuhn-Tucker
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Figure 20: Connection between € and the number n(e) of necessary points

conditions imply that only those points z; are actually used where one of the
bounds in (7.7) is attained with equality. The number n(e) of required points
grows up to the maximally possible n(0) = 196 when e decreases. Figure
shows this for the case of exact and noisy data.

But even more interesting is the behavior of the global L., [—3, 3]? error E(e)
as a function of e. Figure 2] shows that F(e) roughly follows the behavior
of € when plotted as a function of the required points n(e). Both curves are
experimentally available, and one can read off that the optimal choice of €
in the noisy case is at the point where the curve takes its L-turn, i.e. at
the point of largest curvature around n = 40. This can be viewed as an
experimental method to determine the noise level. Note that it does not
pay off to use more points, and note the similarity to the L-curve technique
[HO93].

But also for exact data, these curves are useful. Since the maximum value
of the peaks function is about 8.17, one can get a relative global accuracy of
1% using roughly 60 points for exact data. It makes no sense to use the full
196 points, even for exact data, if exact results are not required. Of course,
larger noise levels lead to smaller numbers of required points, but a thorough
investigation of these tradeoff effects between error and complexity is still a
challenging research topic.

. incomplete...
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Demos on power functions and on point selection
. incomplete...

7.9 Calculation

We now want to take a closer look at the systems (?7) or (?7). To this end,
we perform a singular-value-decomposition of the kernel matrix as

A=UsU"
with an orthogonal matrix U and a diagonal matrix with nonnegative entries
01,...,0n. We focus on (??) as minimization of a quadratic form. The latter
is N v
0<Qa) = K(z,2)—2> ajK(z.zj)+ > ajapK(z;, )
j=1 k=1
= K(z,7) —2aTKx(z) + a’ Aa with
Kx(@) = (K(@ya),... K(y,o)"
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and can be rewritten as

Qa) = K(z,z)—2a"UUTKx(z) + a"UUTAUUTa
= K(z,7) - 2d"UUTKx(z) +a"UZ U"q
- b
=:z(x) =
=R(b) = K(z,z)—20"2(z) +07b

= K(z,2)+ z_:l (biffj — 202 (37))'

We know that this quadratic form is always nonnegative, and we can mini-
mize it now by taking derivatives with respect to each b;. The optimal values
b (z) have to satisfy

bi(z)oj = zi(z), 1< j < N.

This leads to

. %(2)
bi(x) := === for o; > 0.

gj

In case of 0; = 0 we must (in theory) have z;(z) = 0 because otherwise the
quadratic form could take on negative values. For these j we can take any
b;(z), and we formally write

zj()
b;(x) = g,
)\ij(l‘) O'j = O

O'j>0

with arbitrary \; for the j with o; = 0. Thus we can write
b*(z) = Dz(x)

with a diagonal matrix D = D(o, \) having the entries

1
— for o0;>0
0j
)‘j fOI" 0']' =0

on the diagonal. This yields the representation
a*(z) = Ub*(x) = UDz(z) = UDUT Kx ()

of the total solution, but we already know that this solution also arises as
ui(r) = aj(x) in the system (??7) and the Lagrange type formula (?7). But

in the above form we see that the solution can in spite of the singular system
be written in such a way that it lies in Sy and thus in the native space.
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In practical situations, the right—hand side of a system (??) will not neces-
sarily consist of values of a function from the native space. In such a case the
system might be unsolvable, and this then proves that the data indeed do not
come from a function in the native space. But one can always go for a quasi—
interpolant of the form (?7) with the u}(z) constructed as above. This will
not necessarily interpolate the data, but probably be a good reconstruction
strategy anyway.

7.10 Regularization

Let A be an m x n matrix and consider the linear system
Ar=beR™ (7.8)

which is to be solved for a vector z € R™. The system may arise from
any method using kernels, including (?7?) and (??), but we allow for more
equations than unknowns here. Then the system will have m > n and it
usually is overdetermined. Furthermore, for later cases, we allow the matrix
A to be unsymmetric.

The previous section told us that even in the case m = n with a positive
semidefinite matrix, chances are good there is an approximate solution Z
which at least yields ||[AZ — b||s < n with a small tolerance 7, and which
has a coefficient vector z representable on a standard computer. Note that
1 may also contain noise of a certain unknown level. The central problem is
that there are many vectors & leading to small values of || Az — b||2, and the
selection of just one of them is an unstable process. But the reproduction
quality is much more important than the actual accuracy of the solution
vector z, and thus questions like the nonsingularity or the condition of the
matrix are not the right aspects here.

Clearly, any reasonably well-programmed least-squares solver [GvL.96] should
do the job, i.e. produce a numerical solution £ which solves

min || Az — bl (7.9)
or at least guarantees || AZ—bl|s < 7. It should at least be able not to overlook
or discard . This regularization by optimization works in many practical
cases, but we shall take a closer look at the joint error and stability analysis,
because even an optimizing algorithm will recognize that it has problems to
determine Z reliably if columns of the matrix A are close to being linearly
dependent.
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By singular-value decomposition [GvL96], the matrix A can be decom-
posed into

A=UxVT (7.10)
where U is an m X m orthogonal matrix, > is an m X n matrix with zeros
except for singular values o4, ..., 0, on the diagonal, and where V7 is an

n X n orthogonal matrix. Due to some sophisticated numerical tricks, this
decomposition can under normal circumstances be done with :(mn? + nm?)
complexity, though it needs an eigenvalue calculation. One can assume

ol >05>...>02>0,

and the 0]2 are the nonnegative eigenvalues of the positive semidefinite n x n
matrix AT A.

The condition number of the non-square matrix A is then usually defined
to be 01/0,. This is in line with the usual spectral condition number
| A|l2]] A7 ||z for the symmetric case m = n. The numerical computation of
U and V usually is rather stable, even if the total condition is extremely
large, but the calculation of small singular values is hazardous. Thus the
following arguments can rely on U and V, but not on small singular values.
Using ([Z.10)), the solution of either the minimization problem (Z.9)) or, in the
case m = n, the solution of (Z.8) can be obtained and analyzed as follows.
We first introduce new vectors

c:=U"heR™and y :=VTz ¢ R"

by transforming the data and the unknowns orthogonally. Since orthogonal
matrices preserve Fuclidean lengths, we rewrite the squared norm as

[Az = 0|} = ULV Tz — b3
= |ZVTx —UTD|3
= lmy-e
= d(oyi—c)+ > ¢
j=1 j=n+1
where now ¥, ..., y, are variables. Clearly, the minimum exists and is given

by the equations
05Y; = Cj, 1 S] Sna

but the numerical calculation runs into problems when the o; are small and
imprecise in absolute value, because then the resulting y; will be large and
imprecise. The final transition to the solution x = Vy by an orthogonal
transformation does not improve the situation.
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If we assume existence of a good solution candidate & = V' with ||AZ —b||2 <
1, we have
n m
Y (o0, — )+ > & <. (7.11)
j=1 j=n+1
A standard regularization strategy to construct a reasonably stable ap-
proximation y is to choose a positive tolerance ¢ and to define

J 0 |O-j‘ <€

i.e. to ignore small singular values, because they are usually polluted by
roundoff and hardly discernible from zero. This is called the truncated
singular value decomposition (TSVD). Fortunately, one often has small
¢; whenever o7 is small, and then chances are good that

A b= X+ Y d<a
1<j<n 7=

o] > €

holds for x¢ = Vy°©.

2 T T T

T
—— Log of linear system error
—log of condition of subsystem

-8k

-10F

—12} 4

—16} 4
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Number of DOF

Figure 22: Error and condition of linear subsystems via SVD
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Figure P2l is an example interpolating the MATLAB peaks function in m =
n = 441 regular points on [—3, 3]* by Gaussians with scale 1, using the stan-
dard system (?7?). Following a fixed 441 x 441 singular value decomposition,
we truncated after the k largest singular values, thus using only k degrees of
freedom (DOF). The results for 1 < k < 441 show that there are low-rank
subsystems which already provide good approximate solutions.

10°

Error

—— Error without noise

o Error with 0.01% noise
B 1 1 1 T

107 107 107 107 10° 10°

Delta

Figure 23: Error as function of regularization parameter §>

But now we proceed with our analysis. In case of large ¢; for small o;,
truncation is insufficient, in particular if the dependence on the unknown
noise level 1 comes into focus. At least, the numerical solution should not
spoil the reproduction quality guaranteed by (ZII]), which is much more
important than an exact calculation of the solution coefficients. Thus one
can minimize ||y||3 subject to the essential constraint

n m

Yoy — )+ Y &< (7.12)
j=n+1

j:l =N

but we suppress details of the analysis of this optimization problem. Another,
more popular possibility is to minimize the objective function
n

(ojy; —¢;)> +6° > y;
j =1

1
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Figure 24: Coefficients |¢;| as function of j

where the positive weight ¢ allows to put more emphasis on small coefficients
if 0 is increased. This is called Tikhonov regularization.
The solutions of both settings coincide and take the form

yS = 0
T 0F 4 0%

1<j<n

depending on the positive parameter § of the Tikhonov form, and for 20 :=
Vi we get

|Az® — b||2 = zn:cz (572>2 + i c

’ = T \P+ o; j=n+1 g

which can me made smaller than n? for sufficiently small 5. The optimal
value 0* of § for a known noise level 7 in the sense of (Z.12]) would be defined
by the equation ||Az%" — b||2 = 7%, but since the noise level is only rarely
known, users will be satisfied to achieve a tradeoff between reproduction
quality and stability of the solution by inspecting ||Az? — b||3 for varying §
experimentally.
We now repeat the example leading to Figure 22| replacing the truncation
strategy by the above regularization. Figure 23 shows how the error ||Az® —
b||c,x depends on the regularization parameter d. In case of noise, users can
experimentally determine a good value for § even for an unknown noise level.
The condition of the full matrix was calculated by MATLAB as 1.46 - 109,
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Figure 25: The L-curve for the same problem

but it may actually be higher. Figure 24] shows that the coefficients |c;| are
indeed rather small for large j, and thus regularization by truncated SVD
will work as well in this case.

From Figures 24 and 23] one can see that the error ||Az° — b|| takes a sharp
turn at the noise level. This has led to the L-curve method for determining
the optimal value of §, but the L-curve is defined differently as the curve

§ = (log|ly’[|3, log [| Az® — b][3).

The optimal choice of § is made where the curve takes its turn, if it does
so, and there are various way to estimate the optimal ¢, see [Han92|, [Han94!
Han00| including a MATLAB software package.

Figure 25 shows the typical L-shape of the L-curve in case of noise, while in
the case of exact data there is no visible sharp turn within the plot range.
The background problem is the same as for the previous figures.
Consequently, users of kernel techniques are strongly advised to take some
care when choosing a linear system solver. The solution routine should in-
corporate a good regularization strategy or at least automatically project
to stable subspaces and not give up quickly due to bad condition. Further
examples for this will follow in later chapters.

But for large systems, the above regularization strategies are debatable. A
singular-value decomposition of a large system is computationally expensive,
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and the solution vector will usually not be sparse, i.e. the evaluation of
the final solution at many points is costly. In many cases, linear systems
arising from kernels often have good approximate solutions with only few
nonzero coefficients, and the corresponding numerical techniques are other,
and possibly preferable regularizations which still are under investigation.

8 Error Analysis

This section is the core for any error analysis of interpolation or approxima-
tion methods. There are essentially two possible approaches:

1. via upper bounds on the power function and
2. via “sampling inequalities”.

These share some common tools. e.g. the concept of stable local polynomial
approximation. The second alternative is more modern, but, as the other one,
it is hardcore mathematics and involves quite some work. Since the current
forms of sampling inequalities contain a good deal of concealed oversampling,
it will hopefully worthwhile to start slowly and exhibit the places where
oversampling kicks in. Thus we shall first focus on motivating and explaining
the important ingredients to error bounds in general, before we reproduce
the current state—of-the art.

8.1 General Considerations

For simplicity, we start with an unconditionally or P—conditionally real—
valued positive definite symmetric kernel K on a s set €2. This means that
we rule out the truly complex—valued and the positive semidefinite case.
The reason is that we want to work with a true Lagrange basis uj, ..., uxy
whenever we have a P-unisolvent set X = {x,..., x5} of points of 2, and
we want to postpone extensions to a later version of the text.

We assume that we want to recover an unknown function f from the native
space N of K from its given data f(z1),..., f(xy) on X, and we shall focus
on interpolation by kernel translates and functions from P. This means that
the interpolant s = sx r x exists and is uniquely defined by its representation

s@) = o5 @)f ()
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in terms of the Lagrange basis. This is the same for the unconditionally and
the P-conditionally positive definite case, though the constructions of the
Lagrange bases in (2.41]) and (5.21) are different.

The error bounds we are looking for are of the form

|[f(x) = s(x)] <7

for arbitrary functions f € N and arbitrary points z € Q. We have the
standard bound

|f(z) = s(x)] < Px (@) fllxw

from (230) and (532]) via the Power Function at our disposal. This nicely
splits the effect of f and X into two independent factors, and we can use
the optimality property of the Power Function from (231)) and (5.29) for
getting upper bounds on it. We shall pursue this line of argument later,
since it gives a lot of information. Furthermore, in the case of kernels coming
from covariances, the natural notion of an error bound is given by the Power
Function itself, because it describes the variance of the Kriging estimation
error, and leads to confidence bands in the case of Gaussian processes.

But in may cases, e.g. for the Gaussian kernel, the native space is far too
small to be useful, and thus one wants to extend these error bounds to larger
function spaces. This is where the quest for sampling inequalities started.

8.2 Sampling Inequalities

The basic idea of sampling inequalities is to forget about kernels and their
sometimes exotic native spaces. Assume that a function s approximates or
interpolates a function f on a discrete subset X of its domain 2. Then f —s
is small or even zero on X. How large can the error function f — s be
outside of X7 If, for instance, any directional derivative of both f and s is
bounded above by some constant C, we can write

[f(x) = s(x)| < [f(5) = s(a)| +2C - [l — ],

if the line connecting x and z; € X is in ) and if we integrate the directional
derivative along the line. If we define the fill distance

h = h(X,Q) := sup min ||z — z,||

zeQ TjEX

of X in € and if  is convex, this yields the simple error bound

1 = slloe < 2C -,
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but we need to have C' under control, i.e. in terms of some tricky high—order
norm || f| of f.

Here is a more general description of the above argument, applied to the
error function:

If a smooth function has a bound on its highest derivatives, and if it is
small on a large set of points which “fills” the domain, then it should
be small everywhere.

This can be cast into a more general bound like

[flloo.0 < F(X, )| fl7 +C - [[flloo.x (8.1)

with F'(h) — 0 for h — 0, and holding for all f in some function space F
with a (semi-) norm |f|z. This is a special case of a sampling inequality.

Its application to error functions f — s of interpolants on X works whenever
f and s are in F via

1 = slloc0 FMX, )|f = slr+C-|[f = slloo.x
F(MX, )| f — 5|7

F(R(X, )| fr + |s]7).
At this point, one has to take into account that |s|z will still depend on X

and thus also on A(X, ), but in many cases one can infer a stability bound
of the form

VAN VAN

|s|7 < ClflF

with a constant independent of X, e.g. when we have the usual optimality
principle for interpolants in native spaces. This leads to

If = sllco < (1 + C)F(R(X, Q) |7 (8.2)

with F'(h) — 0 for h — 0 and works for general function spaces, circumvent-
ing the restriction to native Hilbert spaces.

8.3 Simple Bounds for Power Functions

In the unconditional case, we can use Theorem on page for some
simple upper bounds. For X CY C Q we have Py (z) < Px(x) for all x € Q.
And if we have two native spaces H; and H, with associated kernels K; and
K, respectively, such that for the unit balls we have an inclusion

feHy flu 1= f et [[flln <1,
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then
PX7K1(ZL') S PX7K2(ZL') for all z € .

This generalizes to the case of bounded inclusions. Assume two unconditional
kernels K, K, with native spaces H;, Ho such that

feHi= feH, [l < Cllfll-

Then
Pxa,(z) = sup f(z)
FeH1, F(X)={0},|Ifll2, <1
sup f(z)
FE€H2, f(X)={0},||f/Cllny <1
C sup g()
g€H2,9(X)={0},llglln, <1

= C Pxy,(2)

allows to carry all upper bounds on Px 3, over to upper bounds on Px 3, up
to a constant factor.

IA

IN

Roughly speaking: larger native spaces in the sense of unit ball inclusion or
bounded inclusion lead to larger Power Functions.

Other upper bounds for the Power Function are based on (2.31) and (5.29).

There, a set of functions wuq,...,uy occur which in case of P—conditional

positive definiteness must additionally recover functions from P in the sense

of the second set of equations in (5:21I]). Then the upper bounds are of the
form

N

Pi(z) < K(o,7) = 2) uj(2)K(z;,2)

v (8.3)

+ > ui(@)up(@) K (), wp).

Jk=1
The simplest case uses nearest—meighbor reconstruction. Assume that
for each z € €0 we pick a single zj(,) € X and define

wa={ g @ }.

Then
PR () < K(x,2) = 2K (Tr(a), ) + K (Tr(e), Tr(e)) = d(, Th(a))®

with the distance defined in (2.I7). This shows that one should pick @y, € X
closest to x in that distance. Since this recovery process reproduces constants,
we have
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Theorem 8.4. If K is unconditionally positive semidefinite or conditionally
positive semidefinite with respect to the space of constant functions, the Power
Function on nonempty sets X of interpolation points satisfies

Px(z) < ggle%d(x ,T5)

with the distance defined in (217). O

Note that this simple result does not assume any smoothness of K or any
structure on (2.

If the domain 2 lies in R?, we can use barycentric coordinates ug(z), . . ., ug(x)
if the point x lies in a nondegenerate simplex with vertices xg, ..., x4 This
yields a process that recovers all linear polynomials. We set u;(z) = 0 for
all other indices j. Then by standard arguments on the “linear precision” of
barycentric coordinates, and for twice continuously differentiable functions

f’ d
)= 2 @) < Clele)’

if €(z) is the diameter of the simplex, and with a constant C'(f) that involves
the second derivatives of f in such a way that it acts like a seminorm that
vanishes on all polynomials of degree at most 1.

We now assume that the native space N of the kernel K is contained in the
space of twice differentiable functions in the sense that there is a bounded
immersion, i.e. there is a bound

d
Z f(z)] < O(f)e(z)? < ce(x)?|f|y forall fe N  (8.5)
with a constant ¢ independent of f and X. By Theorem [5.31] we then get

Px<l’)

IN

d

16, = 3 (@), 1.
j=0

< ce(x)?

with an even easier argument in case of unconditional positive semidefinite-

ness via (2.37]).

Theorem 8.6. Assume that Q is a compact domain in R? and the kernel K
S
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1. unconditionally positive semidefinite or

2. conditionally positive semidefinite with respect to polynomials of degree
at most one,

3. and has a native space which is continuously embedded in the space of
twice continuously differentiable functions in the sense of (8.3).

If an arbitrary point x € Q lies in a nondegenerate simplex of diameter €(x)
spanned by d + 1 data points of some interpolation set X, then the Power
Function can be bounded at x by

Px(z) < ce(x)?.

O

Note that this applies to smooth unconditionally positive semi—definite ker-
nels, but the connection to thin—plate splines is not obvious at this point. It
mimics the error bounds for piecewise linear interpolation on simplices, i.e.
for the simplest finite element spaces.

Clearly, this argument generalizes to orders larger than 2 in (8.5]) and Theo-
rem [8.6, provided that e(z) is replaced by some other useful quantity E(z, h)
which is small if the point x is surrounded by sufficiently many well-placed
points of X. Note that it uses local error bounds for local recovery processes
to prove local error bounds for global processes of an order that is not worse
than the order of the best possible local recovery. But it turns out to be not
so easy to find the right quantity E(z, h) and the right notions for “sufficiently
many” and “well-placed” in more general situations.

Let us have a short look at necessary conditions for good bounds on the
Power Function. Assume that we can prove something like

Px(z) < CE(x,h)

for all data sets X with fill distance at most h. This implies

< CE(z,h)| flly for all f € H, x € Q

fx) = ;@(l“)f(l“j)

for the Lagrange-type basis associated to the kernel and the data set X.
Thus there is a continuously embedded subspace H of H (here: H itself) and
a set of reproduction functions wu; such that

N

fle) =Y ui(x) f(z;)

j=1

< CE(x,h)||f||g for all f € H, z € Q..
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If we try to prove upper bounds for the Power Function via finding instances
where the above inequality holds, we have not departed from the main road.
We just have to find the best of all such reconstruction processes, and issues
like oversampling or stability are not necessarily on our way.

To do the more general case, we can simplify the upper bound (&3] by
introducing the error operator

EY(f(y)) = f(x) = zu](w)f(%)

to get

Pi(z) < QZ“J K(zj, )

= . Zu] K(zj,x)

+¥u] (/i K(zj,xy) — K(ag,az))
_ i K(.m))
— BIEEK(y.2).

Our basic technique will be to use a bound of the form

[EZ(F ()] - } Z )| < exx(WILS (8.7)

with some linear differential opperator L with values on some normed space.
We then can bound the Power Function by

PX() |[EYEZK (y, 2)]

<
< exx(W||ILVEK (y, 2)| (8.8)
< EXK( LY LK (y, )|l

if the final expression makes sense.
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8.4 Univariate Case

Let us look at the univariate case first, using a compact interval Q = [a, b]
and a finite subset X = {x1,...,xy} thereof. Of course, we would fix a point
x € |a,b] and then select a “local” subset

Xy ={z;€e X : jeN(x)C{l,...,N}}

of points of X which are “sufficiently many” and “well-placed” near z. Of
course, to keep things elementary, we would like to work with local poly-
nomial recoveries. Thus we fix a positive integer £ and work locally with
polynomials of order at most k. The simplest idea would be to pick the £
closest neighbors to x within X and to perform local Lagrange interpolation
by some polynomial p, of order at most k£ at these points. If we go for an
error bound of the form (83]), we can take the error formula for interpolation
in Newton form as

fW) = p(y) =y, Xo|f T (y— ;) forall y € [a,b]

Z‘jeXx

where [y, X,]f is the divided difference on the points of X, U {y} applied to
f. If we assume f to be continuously k—times differentiable, we get the local
error bound

@) = pato)) < W etest g

:BjEXz

This is of the form (87, if we use the fact that
1. the first nearest neighbor to x is at distance at most h,
2. the second nearest neighbor to z is at distance at most 3h,
3. the third nearest neighbor to x is at distance at most 5h,

4. the k—th nearest neighbor to x is at distance at most (2k — 1)h

and thus
II 1z -z < hk@.
X, = ok
leading to
2k)!
BLf ()] < h’f;(k?y 17 lloo s
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Now we use a univariate kernel K which has k continuous and independent
derivatives with respect to both variables. Then we can use (8.8)) to get

=235

which altogether leads to

ok ok
@a—ykK(Z, y)‘

sup sup
a<z<ba<y<b

Theorem 8.9. Assume a positive semidefinite kernel K on [a, b] X [a, b] which
s k times continuously and independently differentiable with respect to both
arguments. Then, with the constant

(2Kk)! J
Cp = sup sup

2k (K!)? \ a<z<ba<y<b

o o
02+ dy*

K(z,y)

)

for every point set X C la,b] consisting of at least k points and with fill
distance at most h, the Power Function can be bounded in the form

Px(h)(z) < cih* for all x € Q.

Example 8.10

Let us check this for the Gaussian

K(z,y) = exp(—(z — y)*/2)

on the interval [—1,1]. The derivatives are linked to Hermite polynomials
H,, by

d" "
g7 exp(—t2/2) = (—1)"exp(—t*/2) H,(t).
To take derivatives with respect to both arguments, we set ¢ := x — y and

use
ko ok 2%k
S @) = (D) e/
= (=D"exp(—(z — y)*/2) Ha(x — y)
This is a Hermite function with a well-known, but complicated extremal
behavior. For z,y € [—1, 1], we can proceed crudely by bounding Hox(z — )
via bounds on Hermite polynomials on [—2, 2] using the recursion

H,1(z) =2H,(x) — nH,_1(z)
and Hy =1, Hy(t) =t. We assert

| Hploo,[—2,2) < 3" n!
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and get inductively

| Hpt1lloo—221 < 2[[Hplloo,(~2,2) + 7| Hn—100,[~2,2]
< 2-3"nl+n3" (n—1)!
= 7-3"1nl
7 n+1 |
< 3"t (n+1)!
Thus -
%%K($’y)| < 3% (2k)!
on [—1,1] and
1\322k
2 < ((2k)1)33 _

22k (k1)
Up to fixed multiplicative constants independent of k, we can apply Stirling’s
asymptotics
n! ~n"e "/n
to get the bound
o ((Qk)zke—% m>332k
922k (ke —k/I )4
o (Qk)6k676kk3/232k
92k |4k o—A4k &2
233733
C( 2k2e—2
= C(12¢ ).

Q

<

This combines into L
Py <C (12he*1k)

We now couple k£ to h via requiring
1
k=|—
1)

12he 'k <el<1

such that we get

and the exponential rate
Px < Cexp (k;log 6_1) ~ Cexp(—1/(12h)).

But we should check if we need oversampling here. For a fill distance of h
with N points in [—1, 1], we need at least N & 1/h points, placing the inner
ones at distance 2h from each other and the outer ones at —1 + h and 1 — h.
Thus we need no oversampling for the exponential rate.
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Theorem 8.11. If a kernel on domains in R? is radial, i.e. it is a function

K(z,y) = ¢(lz — yll2) = g(lz — yl3/2), =,y € RY,

and if in the above representation the function g is k—times continuously
differentiable, then K has continuous partial derivatives up to order k, irre-
spective which partial derivatives are taken.

Proof: If we set 7 := ||z — y||2, then
=2~ (r?)) =z, 1<5<d.
axf T’aIL‘j(T/) T t=J=
Consequently,
A g9(r?/2) = ¢'(r*/2)a;,
aSL’j J

and repeated application of this simple rule shows that each partial derivative
requires a derivative of g and produces a factor z; or y;. Altogether, a mixed
derivative of total order m is a linear combination of derivatives of g at r?/2
up to order m, multiplied by polynomials in  and y of degree up to m. .

This result can be applied easily to various kernels. Examples are the Wend-
land kernels or the Whittle/Matern/Sobolev kernels.

Example 8.12

Let us look at the latter, i.e. 77K, (r) =: g,(r?/2) for v > 0 with the Bessel
function of second kind. It has the property

K)(2) = —Kya(2) + 2Ky (2) = =Ky (2) = 2K, (2)

and we need

and (v/2s) = —=. Then

g(s) = KL(vV28)—=(V2s)" + K, (V25)(V2s)" ' —=

2s V2s

V)

Thus the radial kernel r” K, (r) =: g,(r*/2) has partial derivatives of total or-
der 2k for v > 2k, and then we have convergence of order h* in the univariate
case. U
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Example 8.13

Another case is the kernel 72, which is conditionally positive definite of order
2. We have g(s) = s*?2 up to a factor, and at first sight we cannot take two
derivatives. But in 1D and in general we have

82 "
axayg(TQ/Q) =zyg"(r’/2)
and in our case
2 3 _ 3v2xy
9) — 2 2/9y-1/2 _ 2V 2TY
awyg('f’ /2) 4xy('f’ /2) Y

which has no singularity at zero. Thus the convergence of interpolation is at
least, like O(h). With better methods we get O(h*/?). O

It is tempting to generalize all of this directly to the multivariate setting.
But the main problem occurs right at the beginning, since it is a problem
to prove error bounds for multivariate polynomial interpolation on irregular
data sets. Even more, it is highly nontrivial to find good sufficient conditions
for unisolvency.

8.5 Conditions for Unisolvency

We now want to derive sufficient and (if possible) necessary conditions for
sets X = {x1,...,zx} to be unisolvent on sets 2 C R? with respect to linear
spaces P = span {pi,...,pg} of dimension ) < N on €.

To begin with, it is clear that unisolvency is equivalent to the existence of

functions uq,...,uy on € such that the reproduction equations
N
pr(z) =D ui(@)pr(z;), 1€ Q, 1<k <Q (8.14)
j=1

hold. But note that at this point it is not clear whether we have u; € P.
For what follows, we should introduce the sampling map

T C@Q) 5 KY, s (f(mn),- . flan)
and the vector

w(z) = (uy (), ..., uy(x))’ € KV,
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Then we have a stability inequality of the form
p(2)] < [lu()lo[T @), for allp € P, 2z € Q

with ¢, 7—norms on K% satisfying 1/¢ + 1/r = 1. For all p € P\ {0}, all
u(r) € KY and all z € Q this implies

p(=)| Ip(z)] 6
O = S IO = weet G

This suggests that the two inner optimization problems are in weak duality.

[u(@)llg < flulz)]lq-

Theorem 8.15. Assume that X = {z1,...,xny} C Q is unisolvent for P =
span {p1,...,po} of dimension Q < N on Q. and let x € Q be fized. Then
the middle inequality in the above display is an equality, i.e.

Ip(z)| , *
p#0 ||T(p)||7" u(z)eKN7 || ( )Hq ( )

and

p(z)] < C*(@)||T ()|, for allx € Q, p € P,
lu(z)|l, > C*(x) for all x € Q, u(x) with (817
and there is an optimal recovery defined by some u*(z) € KN with ||u*(z)||, =
C*(x) satisfying (8-17).

Proof: For each u(z) € KY with (814) we consider the linear functional
JT |—>Zu] p(x;) for all p € P.

This is well-defined on the subspace T(P) C K in the r—norm, and by
the Hahn—Banach theorem there is an extension to all of K¥ with the same
norm in the dual. Thus there is a vector @(z) := (41(z),. .., un(x))T € KV
extending the functional, i.e. it also satisfies (8I4)), and its norm satisfies

b))

la(z)llq = 1) pep) l @) = sup
‘ TETE T e o ITW perpro [TD)]

proving the assertion. O
RS: ToDo: do this as duality in convex optimization...

This implies that finding a recovery via u(x) with (8I4) and the smallest
possible Lebesgue function value ||u(z)l|, is the same as finding the smallest
possible constant C'(z) in a stability inequality

p(z)| < C()|T(p)|l for all p € P,
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and the minimal constant C*(x) is equal to the smallest possible value
|u*(z)||, of the Lebesgue function.

Towards Moving Least Squares, we can specialize the above theorem to
weighted {5 norms.

Corollary 8.16. Assume that X = {xy,...,xx} C Q is unisolvent for P =
span {p1,...,po} of dimension Q < N on Q. and let x € Q be fized. Then
the minimization of

N
lu(@)]13, = > Juf (x)Pw;
j=1
with positive weights wq, ..., wy s equivalent to solving

“ Ip(z)]
P,
p20 || T(P)l2,1/w

and the resulting optimal recovery u*(x) satisfies the stability inequality

p(@)] < [lu” (@) 21 T(P)ll21w- B

In the classical theory of Lebesgue functions, users will choose r = oo and
q = 1. This leads to a very useful result:

Corollary 8.17. Let Q C R? be compact, and let the functions of P be
continuous. If for all p € P with ||p|l.a = 1 we have ||p|lec.x > 1/C with
C > 1, then X is P—unisolvent and there is a recovery with ||u(x)||; < C for
all x € Q.

Proof: Take an arbitrary p € P with ||p||cco = 1. Then

1 1

1Plloox = = = FIplloc.0
¢ C

implies via rescaling that for all z € 2 and all p € P we have

p()] < [pllse < ClIplloox.
This implies unisolvency, and the rest follows from Theorem .15l O
There also is a converse:

Corollary 8.18. Let Q C R? be compact, and let the functions of P be
continuous. If X is P—unisolvent, then there is a constant C' > 1 such that
for all p € P with ||p||lecc.o = 1 we have ||p|loc.x > 1/C. Furthermore, there is
a recovery with ||u(x)|; < C with the same constant.
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Proof: If we parametrize functions in P via a basis, we see that the values
at maxima are continuously dependent on the coefficients, and thus

e
p
pEP,p#0 ”pHoo,X

can be calculated via coefficients on a sphere, and thus the supremum is a
finite number C' > 1. All the rest follows from what we know already. O

To illustrate this for the Euclidean case, we provide

Theorem 8.19. Assume that X = {x1,...,xn} C Q is unisolvent for P =
span {p1,...,po} of dimension Q@ < N on §). and let v € Q) be fized. In the
case r = q = 2 the recovery

N
Z p(x;) for allp € P (8.20)

with minimal v
Ju(@)|3 =D u;()]? (8.21)
j=1

has the form

k=
with uniquely defined coefficients a;(x) satisfying

Q N
=Y ap(2) > pe(x;)pm Zu )pm(z;), 1 <m < Q. (8.22)
P i=1

Both the aj; and the u} are in P.

Proof: By unisolvency, the system (8.22)) is uniquely solvable, the u}(x) are
well-defined and provide the reproduction. To see that they minimize (8.21)),
we have to prove that the vector with components u}(x) is orthogonal to the
affine subspace defined by (820). This means that we have to take v;(x)
with

O—Zvj p(x;) for allp € P

and prove

N
>
7j=1

Q N
= Y a(z Z k(xj)vi(z) =0. O

=1

=
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Now we define 0

poi= 2 ailoip € P

k=1

and take an arbitrary p € P to get

P = e

o))

We assert that equality is attained for p,. For this, look at (8.22]) and see
that there is a reproduction

(8.23)

N

pm(l‘) = Zp;(xj)pm(xj)a 1<m< Q LS Qa
j=1

which in particular yields

N

pz(ﬂf) = Zp .CL’] pz .CL’] Z |p:1: x]

j=1

and by optimality of the u}(x) we have

N N
* 2 * 2
=D PP > > uj(2)
= =1

Now we check ([823) for p, and get that it is attained with equality, and in
particular

N N
pe(x) = Zp )z () Z 1Dz (25)|” = Z |uj(;1:)\2 O
=1

J=1

For later use with Moving Least Squares, we add another property of recon-
structions which are optimally oversampled in the /5 sense. It turns out that
the /,—optimally stable reproduction guarantees an optimal least—squares
data error at the same time.

Theorem 8.24. Let X be P-unisolvent, and consider a weighted minimiza-
tion of

lu(@)Il5, = Zlua
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with positive weights w; under the reproduction constraints (8.20). Denote
the solution by u*(x). For all weighted least—squares problems minimizing

; |f () = p(a;)]?/w;

under all p € P, the solution p} € P satisfies

N

pi(@) =D uj () f(z;).

Proof: Denoting the diagonal matrix with weights w; by D,,, and the () x N
matrix of values p,,(x;) by A, and P(z) := (p1(x),...,po(z))", the solution
u*(z) of the first problem minimizes the penalized quadratic form

u’ (2) Dyu(x) + 27 (P(x) — Au(x))

leading to
(w7 (2) Dy = 2(2)TA, or Dyu*(z) = A*2(x).

Equation (820) then leads to

BN
S
*
—
\a¥
Il

AD ' A*z(x) = P(x),
Ar) = (AD,AY)1P(2)
Dyu*(z) = A*(AD'A*)"'P(x)

and ends up with
u*(x) = D' A*(AD ' A*) 71 P(x).
For the second problem, write
p(x) = (p1(2), ..., po(z)) ¢

and use T : F +— (f(z1),..., f(zy))T again, to let the problem take the
form
min || 7(f) — T(p)|[3,, = min | T(f) — A%c|l7,.

Then by similar reasoning, we get

o

(T<f> _ATC});DQEiA: ~ 7T *\T 7)—1 Ax*
T(f)"D,'A* = (AT¢;)TD,'A
ADJ'T(f) = AD'ATc;

¢; = (AD,'AT)"YAD,'T(f)
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and
T(f)'u*(x) = T(f)"D,'A*(AD, A*)~' P(x)
((AD,'AT)YAD T (f))" P(x)
= ()" P(x) =p}(z). O

RS: There seems to be a similar theorem for general q,r—norms.

We now proceed towards finding P—unisolvent subsets of sets X = {x,...,zn}
of scattered points in a compact domain Q C R? with some fill distance h.
We assume P to consist of continuous functions. The goal is to prove P—
unisolvency for arbitrary sets with sufficiently small h. We might later restrict
ourselves to small subsets of €2, but this is a later issue, since at this point {2
might be just a small ball.

We want to use Corollary RB.I7 for our purpose. This means that we start
with some p € P with ||p||cco = 1, and we can select an x € Q with p(z) =1
without loss of generalization. If we can manage to show that there is an
z; € X NQ with p(x;) > 1/C > 0, we are done after application of Corollary
BI7 If h is small enough, we can surely find such points z;, and they will
be close to x, but we do not know how fast p falls when we go from z to z;.
To get this under control, we must control differences of p—values at different
points. This means that we have to control derivatives.

8.6 Stable Polynomial Reproduction

To do this for spaces P2 of d—variate polynomials of order m, we focus first
on polynomials in P! on [~1,1]. There, the classical Bernstein—Markov
inequality is

19 llso, 1.1y < (M = 1)*[lq]loc,-1,1) for all g € P,,.
This turns into the form we need in 1D, if we work along

la(s) —a®)] < |a'(7)l]s =1
< (m = 1)%[lglloo 11l = 1]

for all s,t € [~1,1], ¢ € PL. This looks fine, but remember that we have ¢
defined and bounded on all of [—1,1] while we use it only between s and ¢.
In what follows, we can assume m > 2 throughout, because the case m = 0
is empty and the case m = 1 is trivial.

To apply this argument for a generalized Bernstein-Markov inequality on a
convex set, we are tempted to connect x and z; by a line, but in view of
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the 1D case we will need that we have to be able to evaluate and bound
the polynomials on more than just the section of the line between z and
xj. In a more explicit form, the drawback is that if we rewrite the classical
Bernstein-Markov inequality for a small interval [—a, o], we get

—1)?
MHQHMH,M for all ¢ € P

19 lloc [~a.0) <
by plugging ¢(at) into the inequality on [—1,1]. Thus it will not pay off to
have something like o = ||z — z;[|o. We need that we can draw a sufficiently
long line from all points = € {2 through at least one point z; € X, the length
of the line segment contained in 2 being larger than h or ||z — x;[|3. The way
out is the interior cone condition that we now describe.

Definition 8.25. A cone with vertex x, azis direction z with ||z||*> = 1, height
H, and angle 0 € (0,7/2) is the set

{z+Xy : 0<SA<H yeRY |yla=1, 2"y > cosh}.

To understand this, note that the angle between 2z and y should be at most
6. Since the cosine is decreasing, this means cos Z(y, 2) = 21y > cos#.

Definition 8.26. A set ) C RY has an interior cone condition of angle
0 € (0,7/2) and height H > 0, if for each x € ) there is a cone with height at
least H, angle at least 0 and arbitrary axis z(x) which is completely contained
in 2. This means that the cones

{z+Xdy : 0<A<H yeR? |lylla=1, y"z(z) > cosb}.
are all contained in Q for all x € Q and a selection of unit axis vectors z(x).

These cones contain balls of the form B(z + tz(x),r(t)) with radii r(t) <
t sin(@) for t < Hsiinﬁ)' This follows easily from a litte drawing of the situa-
tion. Furthermore, the above balls do not contain x if t > 0. Finally, if some
v = x + Ay lies in the cone above, then the whole ray from x to x + Hy lies
in the cone.

Theorem 8.27. Assume that a compact domain Q C R? satisfies an interior
cone condition of angle 6 € (0,7/2) and height H > 0. Then for all finite
sets X C Q with fill distance h satisfying

H sin(6) 1
< =
hos ho=7 sin(f) 4(m — 1)?

the set X is PL —unisolvent, and there is a recovery u(x) with ||u(x)|; < 2.
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Proof: We again start with a p € P2 with ||p|leco = 1 and p(z) = 1 for
some z € ). Then we use the cone at x to work on. If we take
h H

t:= <
sinf — 1+ sin(f)

and consider the ball B(z +tz(z),r(t)), we can take r(t) := t sin(f) = h and
can find an x; € X in that ball. The ray from x through z; can be extended
up to the point z; := v + H(z — z;)/||x — x|, and we have x # x; since we
have ¢ > 0. Furthermore,

lo a5l < t+r()

= t(1+sin(0))

1 + sin(0)
sin(0)

We now apply the 1D Bernstein-Markov inequality along the line section
from x to z; via x;, setting

= h < H.

q(t) = plz +t(z; —2)/||z; —2)), 0 <t < H.

Then the scaled version of the Bernstein—-Markov inequality is

2(m —1)?
e = 27 gl
This yields
p(x) = p(z;)l = 19(0) — q(llz — z5ll)|
2(m — 1)?
<z = aglle=————lldlloc,fo.e1
< 1+ sin(6) 2(m — 1)?
- sin(#) H
< L
-2
leading to
p(z;) = zi(:vj) —p(z) +1
> —. O
-2

This result still is not local. We would like to apply it in sets QN B(z,r) for
arbitrary x €  and certain ball radii r.

Theorem 8.28. Assume that a compact domain Q C R? satisfies an interior
cone condition of angle 6 € (0,7/2) and height H > 0. Then for all r with
0<r<Handallx € the set QN B(x,r) contains a ball of radius at least
rsin(f)/(1 + sin(6).
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Proof: Let x € € be arbitrary. We can have a cone C C () of height H and
angle 6 with vertex z. Intersecting it with B(x,r) with some r < H, we have
that the ball B(x + z(z)r/(1 +sinf),rsinf/(1+sind)) is in the cone and in
the ball B(x,r). O

Then we just need unisolvency conditions on balls. Via a small drawing, we
get

Theorem 8.29. Assume Q = B(0,r) with some radius r > 0. Then
satisfies an interior cone condition with height r and angle 0 with 0 = /3.

Proof: On the unit circle, pick the point x = (—1,0) and its cone pointing
to the right with a 60 degree angle and radius 1. Moving that cone with x to
the right shows that a cone of this size works for all = between (—1,0) and
(0,0), thus for all points in the circle. O

Theorem 8.30. Assume that a compact domain Q C R? satisfies an interior
cone condition of angle 0 € (0,7/2) and height H > 0. Define

_ 42+ V3)(m — 1)(1 +sin(0))
V/3sin(6)

Then for all finite sets X C Q) with fill distance h satisfying

Co .

h S hoZ:—

the set X N B(x,coh) is P -unisolvent, and there is a recovery u(z) with
|lu(z)]|1 < 2 based only on points in X N B(x, coh).

Proof: We start with the cone condition at some arbitrary x € 2. Thus we
can find a ball with radius 7 sin(#)/(1+4sin(#)) that is still in B(z, )N for all
0 <r < H. For this ball, we know by Theorem 8229 that it satisfies an interior
cone condition of height 17;:?15(09)) and angle a = 7/3 with sin(7/3) = v/3/2.
Then the hg of Theorem for this ball is

ho(r) = rsin(0)v/3 1 _r
° (2+V3)(1+sin(0)) 4(m —1)2 ¢

and we now know that every set X with fill distance h < hy(r) has a unisol-
vent subset in that ball. We now turn this upside down, starting with some
set X with fill distance h < % We then take r(h) := coh < H and see that
ho(r(h)) = h, leading to unisolvency. O
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Definition 8.31. A compact domain Q@ C R? allows uniformly stable
local polynomial reproduction of order m > 1, if there are positive con-
stants ¢, C, hg such that for all finite sets X = {x1,...,xn} with fill distance
h < hq there are scalars ui(x), ..., uy(z) such that

N
Zuj(a:)p(a:j) = p(z) for allp € P4 z € Q,
j=1

N
> ui(x)] < C forall x € Q,
j=1
uj(x) = for all x; with ||z — z;|| < coh.

Note that we have proven this for compact domains in R? satisfying an
interior cone condition with height H and angle #, where the constants are
given above.

To arrive at an error bound for these reproductions on functions f with
continuous derivatives up to order m on €2, we apply the Taylor formula from
Theorem [I2.1] on page 234 of Section [2.Il We fix a point x € ) with the
cone C C ) of the proof of Theorem and work on points y € CNB(z, cor)
with ¢y from Theorem B30 Both the Taylor polynomial T,.(f) of f at x € Q
and the local polynomial reproduction

N

sao(f)(y) = > ui(y) f (),
J=1
[l — ;]| < coh
are in P? . and for the latter we are using only those data at the points

z; € X with ||z — zj||2 < coh that we used in the proof of Theorem B30l
These have the property that all line segments from x to x; lie completely in
(), together with the line segments from x to all y € C N B(z, coh). Thus we
can apply the Taylor bound

£(2) = Te(H) ) < llz — 25" > %I\D“fl\oo,a < coh™|flm

|laj=m
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for z =y and all z = «; for these j. This yields

|f(W) = s(H)W) < [f(y) = T(f) W)+ [Tl f) () — s2() ()]
= |f(y) = To(/)W)] + [5(To () (W) = 82(f) ()]
< |f) = To(f) ()] +\Zu](y)( x(f)(xj)—f(:cj))\
< 1+Z|u] |) o h" | flm
< 3Cohm|f|m

We now can go back to (88) and get

Theorem 8.32. Under the assumptions and notations of Theorem[8.30, and
if we have a conditionally positive semidefinite kernel of order at most m
with continuous derivatives up to order m independently in both variables,
the Power Function for recovery on PS¢ —unisolvent sets X with fill distance

h < hg is bounded by

Pi(z) <9t sup >

DY DK .
B aﬁ_\ (y,2)|

RS: This is still open—ended. The final goal is to prove more general stability
results in connection with oversampling.
RS; Incomplete here, as of February 1, 2011

8.7 Univariate Sampling Inequalities

Since the forthcoming mathematical analysis is quite hard, let us first start
with the much simpler univariate case. We shall work on a bounded interval
I := [a,b] C R, and there we shall define the (semi-) inner products and
(semi—) norms

(£.9); = [ D099 W)t for all .9 € CI(1)
| floox = sup|f(t)| forall f e C(I), X C 1,

fix = h(X, Q)Y f(z)forall feC(), X ClI, |X]|<oo.

rzeX

Throughout, we shall confine ourselves to subsets X C [a, b] with fill distance
h = h(X, [a,b]).
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Lemma 8.33. Given g € C'(I) and a subset X of [a,b] with fill distance h.
Then we have

lglle < hlglh +v2|glax,
lg1lo < i/l|g|1 +1/2(b — a)|goo.x, (8.34)
19llocr < PG llcor +19loox
| gller < Vhigh +|glox-

Proof: For all x € I we can take its closest neighbor z; € X with distance
|z — z;| < h. Then

g@) = gle)+ [ g(r)ar

9@ < gl + [ g7l
;
19l < D llg'llsor + [9loc,x
for all x € I. With the Cauchy-Schwarz inequality we we get

1/2 1/2

[ g

J

oo < Loy +| [ @e)

1/2

)

<l + 1o = [/

Zj
| glloor < VR |gl1 + [gloox-

By taking squares and the usual trick
(a+b)* < a®+ b+ 2[ab| < 24° + 20
we see that

9(@)* < 292, + 20 — 3yl - [ (g()dr

Zj

and by integration we find

[fg(tPdt < 2z —ajlg(a, 4+/2u—%|A<<>fMﬁ

= 2|z —zj|g(z; +/ 2/ 2|t — x;|dtdr
< 2o —aylgle) + o — o [ (g(7) .
Zj

From here on we superimpose different integrals of this form to a full integral
over [a,b] to end up with

191l5 W g1t +2(b—a)lgl? x

<
lgllo < hlgh + /20— a)|gle,x
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where we used va? + b2 < a+b for a,b > 0. If we sum up the discrete values,
we arrive at

N
lgl3 < B2 lgf} + 20" g(a;)’

7j=1
lgllo < h|g‘1+\/§‘9|2,x-

8.8 Example: Univariate Splines

In the notation of the text on splines, we have

Theorem 8.35. Let f € C*[a,b] be interpolated by s* in N > k data with a
fill distance
h := sup min |z — ;.
z€la,b] T

Then there is a constant ¢, depending only on k and [a,b], but not on f or
the data or h, such that

1f = 5" lLafar) < ahlf — s < 20" f |1,
1f =5 far) < chP 2 f = 5% < 2chF2 £y

Proof: Note that the zeros of f — s* have a distance of at most 2h between
each other and of at most h < 2h to the boundary. By Rolle’s theorem, there
are zeros of (f — s*) with distance of at most 4h between each other and
3h to the boundary. This means that we can use the fill distance 4h for the
zeros of the first derivative. This works up to the derivative of order k£ — 1,
which has zeros with distance of at most 4*~'h between each other and to
the boundary. Using induction on the previous Lemma yields

1f = 5" Latap) < h-4h-- AP MR f — [ =2 eph®| f — s
and the left-hand parts of the assertions follow.
For the right-hand parts we use the optimality condition |s*|x < |f]x- O

If some additional boundary conditions are satisfied, the convergence order
doubles.

Theorem 8.36. If, in addition, f € C**[a,b] and if (f — s*)Y9) vanishes at a
and b for 7 =0,...,k—1, then

If = 5" oar) < h?*[f 2k
1f =5l oefan) < GA* Y fok-

148



Proof: We can use the orthogonality relation
(.f - S*a S*)k =0
and do integration by parts via

F=sh = (F=s"f =5

(fb_ S*af)k

[ =000

(0 [ = )OO0

< Nf = 5" ofap | 2k

Then
If = s uy < Gh?[f —s*;
<GPPI f = 5*|| Lofa] 2
If = 5" mafat) < | flon-
Similarly,

R f — 5|2
AR f = 5% Lafany | flon

Vb — a7 f = $* || b o] fl2k

G2 flak.

If = S*H%oo[a,b]

VARVARVARVAN

1f — 5™ Locfab]

Note that the above argument used Rolle’s theorem, which does not hold in
multivariate settings. Thus we cannot generalize this approach directly to
functions of several variables.

8.9 Univariate Polynomial Reproduction

Our goal is to prove a multivariate version of a sampling inequality. But
already in the univariate case, a general inequality like

tlloo,fa < C (B2l + [u]c,x)
means that for all polynomials p € P, we have

1Pl c0,a8] < Clploo,x- (8.37)

Then X must be unisolvent, but this is not enough. If we take X to contain
exactly k£ points, an equality of the above form cannot hold. To see this,
fix £ — 1 zeros and prescribe 1 at a point which moves close to a zero. The
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resulting Lagrange basis polynomial will converge to infinity except at the
7eros.

But if we take many more than k& points, i.e. we do some oversampling,
chances are better to get something like (8.37). If we extend (837) trivially
to the right, we get

”pHOO,[a,b} < C|p|OO,X < CHP”OO,[a,b]

and see that X must guarantee norm equivalence of a discrete norm with a
“continuous” norm. We could call X a “norming set”, but there is a more
general definition of that notion, and we provide it later.

To move closer to (8.31), let us fix a polynomial p € Py, with ||p||sc,jap) = 1.
We need to show that such a polynomial cannot be too small on a nontrivial
set X, but we want to get away with a smallest possible set X. For simplicity,
we take a ¢t € [a,b] with |p(¢)] = 1 and ask: How far must we go to let |p|
drop below 1/27 Fortunately, we have a bound on the derivative:

Theorem 8.38. Any univariate polynomial of degree n satisfies Markov’s
inequality
12 oo =117 < 721l oo, (-1,15-

We skip over the proof, but by norm equivalence there must be an n—
dependent constant that does the job. The only problem is to prove that
the constant is n?.

Now we know that our special polynomial has a derivative |[p/[|s —11] < n°
if we assume that the interval is [—1, 1]. Thus, in order to let p go down to
1/2 we need to go at least a distance 1/2n?. If we know that X has a fill

distance 1
h < —
— 2n?

we can be sure that we cannot reach a point with absolute value of p smaller
than 1/2 when starting from ¢. This means that

1
|p|oo,X Z 5

and consequently |[|p||oc,[=1,1] < 2|p|oo,x. Thus we have

Theorem 8.39. If X C [—1,1] is a set of fill distance h < #, then
12/loe,i=1,1) < 2[P|oo,x

for all polynomials of degree at most n. ]
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From now on we assume that the hypothesis of Theorem [R.39 is satisfied.
Then X clearly is unisolvent, and we know that we can reproduce all poly-
nomials p € P, by a nonunique formula like

plr) = > ui(@)p(a;). (8.40)
:BjEX
In our old notation, this is an under-determined linear system

Py - u(x) = p(x)

and one can impose additional conditions. In fact, there are efficient numeri-
cal techniques (e.g. moving least squares which produce useful admissible
solutions.

Theorem 8.41. Under all possibilities to satisfy (8-40) under the conditions
of Theorem[8.39 there is one which has a uniformly bounded Lebesgue func-
tion

> uy(x)| <2 for all z € [-1,1].

:BjEX

Proof: This statement is not at all evident, and for now we have to do an
abstract existence proof. We define the sampling operator

TX : fH(f(xl)a"'af(xN))TeRNa

which is continuous on C[—1, 1] with the ||.||o norm and invertible on T'(P,,) C
RY. Tt has a bounded inverse

S+ T(P,) = P. C C[-1,1].

For each vector y € T(P,) C RY there is a unique p € P, with such y =
(p(z1),-..,p(zy))T, and thus for each z € [—1, 1] we have a linear functional

Ao o y=(p(x1),....plan))" = p(x)

on T(P,). By the Hahn—Banach theorem it has a norm—preserving
extension to all of RY, and this is the abstract and non-constructive part of
the argument. As a functional on all of RY it can be written as

Ae(y) = ;uj(x)yj

with certain real values u;(z), and its norm must be

Xelly == >~ Juj(x)] = sup [Sayex ui(2)y;

ryeX veri\op (Yl

151



because the dual of RY under the ||.||oc norm is RY with the L; norm. But
since the extension is norm—preserving, this norm is equal to the norm of the
functional on the subspace T(P,). There it has the form A\, = §, o S, and
thus

[Aalls < ([0 - IS
with operator norms
o= sup oy
reci-1,10\{0} I flloo
e ()
p(x
IS|[:=  sup = <2
rer@a\ {0} |1 T(P)ls
Thus we get the assertion. O

1.025
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1.01F
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Figure 26: Minimal Lebesgue function for 17 equidistant points in [—1,1]
and polynomial degree n = 3

It is an easy task to find functions u;(z) for which the Lebesgue function
is pointwise minimal, while a certain polynomial reproduction of a degree n
is required. It boils down to an L; optimization problem, because we can
write each u;(z) as uj(x) = a; — b; with nonnegative variables to arrive at
the linear optimization problem

Minimize 1% (a + b) under Px(a — b) = p()
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Figure 27: Functions u; for the same case as in the previous figure

in normal form with nonnegative variables a,b € RY. This can be solved
pointwise, but the solution is rather strange, see figures and 20l The
theory of linear optimization implies that at a certain point z there can be
at most 2(n+ 1) nonzero u;(x), but the functions u; are not localized around
xj, as Figure 28 shows.

Thus it is an additional problem to find a stable solution which is localized
in the sense that u;(x) vanishes if x is “far” from z;. But this can be done
by localizing the above argument. However, we shall not do this at this
point. Instead, we start with the general multivariate case and care for both
localization and a bounded Lebesgue function.

8.10 Norming Sets

As a little digression, we generalize the above construction, following an idea
of Jetter, Stockler, and Ward.

. incomplete here.....
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Figure 28: Derivative of u; for the same case as in the previous figure

8.11 Multivariate Polynomial Reproduction

In the multivariate setting, we should go for sampling inequalities of the form

Ml + B e )

M2 ) s )+ o )

lullwp@ < C
DUl < C

(8.42)

for all functions in the Sobolev space W34 (Q) with the inner product

M
(fs Dwprey = D_(f,9);
i=0
(f.9); = X [ D°fDog
laf=7
and (semi—)norms
HfHWM(Q = (fa.f)WQM(Q)
Py = (FDu= X [ 1D

where we use standard multivariate notation. If u is a polynomial of order
at most M, then |u|§VM(Q) = |u|pr = 0 and our equations take a special form

1Pllza ) < Cliplloo,x,
1Pz < Clpllos.x,
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for all p € Py, i.e. there is stable polynomial reproduction in the sense
of (83T). But we also want this reproduction to be local and it should be
guaranteed via Lagrange-type functions u;. We thus formulate the following
goal:

Definition 8.43. Let Q C R? be a domain and fiz a number k € N. If there
are positive numbers hg, c1, co depending on k and ) such that for each
finite subset X = {x1,...,xn} C Q with fill distance h(X,Q) < hq there are

functions uX, ..., ux on Q such that
N
Zuf(w)p(xj) = p(x) for all p € Py, x € Q)
=1
al 8.44
Yot (@)] < o« for all x € Q (8.44)

=
|z —zjll2 > ch = uf(x) =0 forallzeQ 1<j<N

then we say that the quasi—interpolation process

[ = Qx(f

N
Z f(z;) forall f: Q=R

defined for all such X provides stable local polynomial reproduction of
order k.

Then we have a rather simple local error bound:

Theorem 8.45. Assume that Q C R? is bounded and admits stable local
polynomial reproduction of order k. Then there is a constant C' with

f(2) = Qx(f)(@)] < O flpsr0-

for all x € Q and all f € C*(Q*) on the extended domain

= U B(ZL‘, Cgho)

z€eQ
where B(x,r) is the open ball with center at x and radius r.

Proof: See Wendland’s book [Wen05|, p. 25/26. The basic trick is to
introduce the local Taylor expansion at x which has the same error bound
and is reproduced by the quasi—interpolant. Then use the boundedness of
the Lebesgue function to show that the error of the local Taylor expansion
carries over to the quasi-interpolant. 1.
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Inspection of the proof shows that the extended domain is not necessary for
all forms of local bounds.

To proceed towards an existence proof of stable local polynomial reproduc-
tion on nondegenerate domains, we repeat our argument from the univariate
case, but we can focus on k > 1 because stable polynomial reproduction by
constants is trivial, using the nearest neighbor of X to each x € ). Another
choice for stable local approximation of order one is Shepard approxima-
tion, which we shall describe in the next section.

It does not suffice to use P,—unisolvent subsets, because they will not have
bounded Lebesgue functions. We thus first aim at a proof of an inequality
like

[Pllc.0 < collplloo,x for all p € Py

for suitable domains €2 and finite sets X C €2 . We start with a polynomial
p € P with p(z) = ||pl|cc.o = 1 and see how fast it can go down when moving
away from z. On a ray going from x to some other point z, the polynomial

q(t) =p(x+t(z—1x)), t €[0,1]

is univariate and of order at most £. We have
t
p @+ 1z = 2) = pla)| = la(t) = a(0)| = | [ 4] < /o1
and use Markov’s inequality to get

p (z+t(z — @) = p(@)] < tlk = 1)*dlloo-10 <tk = 1)?[[Plloos

for all ¢ € [0,1]. But for our choice of 1 = p(z) = ||p||cc.0 We get

ple+tlz—a)| =qt)>1—2t(k—1)?
—_———
=y

leading to p(y;) > 1/2 for all y; on the ray with ¢t = ||z — ]| < For

1
2(k-1)2"
all finite sets X with

1
. _ c 1
mip || w2—4@—1y
this implies
1 1
|P]oo,x > 5= 520(95)

This argument needs that the ray from x to z is contained in the domain we
want to focus on.
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Definition 8.46. A set Q) C R? is convex, if for all points x,y € Q the line
2,y == {Az + (1= Ny = A€ [o,1]}
consisting of all convex combinations of x and y belongs to 2.

Thus the argument works for all closed bounded convex sets €2 and we have

Theorem 8.47. If X is a finite subset with fill distance

h < !

—— =:h
“4(k—12

in a closed bounded convez set QO C R?, then the inequality

1Plloc.2 < 2([Plloc,x
holds for all polynomials p € P,. O

Note that this result is independent of the size of 2, but it requires convexity,
because we need the rays from any point x € € to any point z € X.

X

To proceed towards the argument providing the functions w3, we look at the

sampling operator

TX(f) = (f('r1>7 . '7f('rN>>T

mapping functions on 2 into RY for each set X = {z1,...,zy} C Q. Under
the assumptions of Theorem [R.47] this map is injective on V := P, and we
can proceed exactly as in the univariate case to get

Theorem 8.48. If X is a finite subset with fill distance

1
h<——=h
“4(k—12
in a closed bounded convez set Q) C R?, then there are functions uf on ) that
realize stable polynomial reproduction in the sense of the first two equations

of (874) with cy = 2. O

The remaining problem is localization together with elimination of convexity.
But the problem is that, for instance with gridded data, there may be convex
subdomains which contain no point of X at all, and a fortiori there are convex
subdomains where a set X with fill distance h; with respect to {2 has a local
fill distance larger than h;. We thus have to focus on domains where we have
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positive constants hg < h; and c¢; such that each point of €2 belongs to a
convex subset Q of 2 in which any discrete set with fill distance h < ho with
respect to €2 still has a fill distance h < c1hg < hy with respect to Q. In this
case, given a point x, we just work on the subdomain Q containing z and
restrict ourselves to points in X N Q to prove (844). This will turn out to
work for domains satisfying

Definition 8.49. A domain Q C R? satisfies an interior cone condition
with angle o and radius r such that for each x € ) there is a normalized
cone axis z, with ||z;|ls = 1 such that the cone

{4+ Xy : Ae0,7], [|ylla =1,y 2, > cos(a)}
of height r > 0 and opening angle 2cc > 0 1is still contained in Q.

. missing picture...

We restrict ourselves to domains with 0 < o« < 7 and r < 1 in order to
avoid difficulties. In fact, if a domain satisfies a cone condition with angle
a > 0 and r > 0, it satisfies a condition also for all smaller positive o and
r. We shall cover the domain by cones of the above form, and thus we only
have to prove that such cones have the property we mentioned, i.e. any
discrete set with fill distance h < hg with respect to €2 still has a fill distance
h < c1hg < hy with respect to such a cone, where we can define hy and ¢; in
terms of o and r.

T

Trsma from a ball of radius

In such a cone, the point x has distance z =

rsina

T which still is in the cone.
+sin «

. missing picture...

If

e < rsin a
"= 1+sina
we have at least one point of X in the ball. Since the maximal distance of x
to this point is 7, we get that X has fill distance at most

1+ sina
r>————hg
sin «v
with respect to that cone. But we have to aim at a fill distance h < crhg < hq,
and we can get away with

1+ sina

¢ =
| sina

ho := —min(r,hy).
6]
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In fact, this implies c;hg < hq, and any set X with fill distance h < hg with
respect to €2 will have a fill distance at most c¢;hg with respect to any of our
cones, because we can use 7 = c¢1hg < r in the interior cone condition.

Theorem 8.50. In bounded domains in R® with interior cone condition with
angle 0 < a < 7 and radius r < 1 there is stable local polynomial reproduction
of order k with the constants given above. ]

8.12 Mboving Least Squares

The above theory does not provide a practical way to construct functions
u]X with the required properties. But there is a constructive way to generate
stable local polynomial reproduction constructively.

The easiest case is Shepard approximation. Take a nonnegative nontrivial
kernel in translation-invariant form, e.g. K(x,y) = ®(z—y) with ® : R? —
R and consider the function

Sx(F)@) = 3 fla)

for any finite set X and any function f. If the quotient is undefined for
certain exceptional cases, e.g. when the support of ® is very small and the
set X has large fill distance, the quotient can be defined to be zero. This
approximant preserves constant, because it uses a partition of unity, i.e.
a set of nonnegative functions that sum up to one. It clearly is stable with
Lebesgue function bounded by one, and it can be made local if the support
of the kernel is proportional to the fill distance h of the set X.

Motivated by this case, we introduce a scaling into the kernel by defining
Bs(x) := ®(x/6) for all z € R?, § > 0

and take a nonnegative kernel with precise support in the unit ball B(0, 1),
i.e.
®(z) = 0 for z € R? if and only if ||z||, > 1.

Then the kernel ®5 has support in the ball B(0,¢) with center 0 and radius
J.

When constructing an approximation at some point x based on function
values f(x;) at certain points z; of a finite set X, we use the kernel as a
weight function to let the points x; € X closer to  have more importance
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than those further away. If ® is smooth, there is some hope that the resulting
function of x can be defined to be continuous or even differentiable, because
the weights of the used points are varying smoothly. Furthermore, one can
hope to get a fully local method, if the support radius 0 is scaled like § =
c1h and thus connected to the fill distance h of X. Finally, polynomial
reproduction should be built into the method by adding equations like (8.40)
as constraints and allowing enough oversampling to let them be satisfied up
to a certain order.

Put together, all of this suggests the following pointwise definition of a mov-
ing least—squares approximation:

Minimize Y (f(z;) — p(z;))*®s(z — x;) over all p € Py

I]'GXI’(S

for fixed x and sets X := {x1,...,zn}, and call the resulting function value
MLS(x) := MLS(f, X®5)(x) := p*(z) when p* is the optimal polynomial.
Note that we restricted the sum in the objective function to

Xos = {zpeX ¢ ||z — a2 <6}

) 8.51
Jos = {J  x; € Xy} ( )

describing the points of X close enough to x to enter into the calculation.

For convenience, we use the shorthand notation J := J,;, and we should
rewrite the problem in terms of a polynomial basis and in matrix—vector
form. Then it is

Minimize ||[vVW (F — Pb)||3 over b € RY

where

Ef( 1), € J)T € Rl
=
(

pz(%))yeJ 1<£<Q
bi,...,bg)T € RY

]kq)é(x — Tk))j ke

S v

and it is a standard least—squares problem approximationg v W fx by vW Pxb
for b € R¥. In theory, the solution satisfies the normal equations

PIWF = PYW Pxb

and is unique if the rank of P£W Py is . This requires Q < | X, s| < N and
Pr—unisolvence of X, s. With this assumption, we can calculate the unique
solution of the problem by standard least—squares techniques, but we have
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no information about stability or polynomial reproduction. To this end, one
can try to rewrite the problem as one in the localized quasi—interpolant form

MLS(z) =" ai(z)f(z)

jed

where we already inserted the optimal values a}(z) for fixed x without know-
ing how to set up an equivalent optimization problem. Anyway, we should
impose the polynomial reproduction constraints

p(z) = a;j(z)p(z;) for all p € Py, (8.52)

jedJ

restricting the variables a;(x) for j € J. But we still have nothing to optimize.
Clearly, we should make sure that a}(x) gets small if z; is just about to leave
the influence region for z, i.e. if ||z — ;|2 is close to 6, or if ®5(x — ;) is
small. This suggests to minimize

1
2

a2(z) ———. (8.53)
j;] I s (x — xy)
Theorem 8.54. If the set X, s of (821) is Pr—unisolvent, the moving least—
squares problem has a unique solution. It coincides with the solution of the
minimization of (853) under the constraints (852) and thus has polynomial
reproduction of order k.

Proof: We already have the first part of the theorem. If we take the optimal
solution vector b* € R? of the first form of the problem, we can write the
optimal polynomial

Q
p(z) = ; bype(z)

in terms of the basis p;,...,pg of P, we used in defining the matrix Px.
Since we know that we have a unisolvent set, we can rewrite the polynomial
at arbitrary points y € R? as

Q
p(y) = ; bipe(y) = Z;]&j(y)p*(fcj)

with certain nonunique coefficients a;(y). Thus the constraints (852) can
be satisfied, but our choice of the a; may not be the optimal ones for mini-
mization of erefeqQMLSobjfun. The diagonalized quadratic form of (853) is
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positive definite, and thus it attains its unique minimum on all affine sub-
spaces like the one defined by (m: Thus there is a solution vector a}(z),
and we have to prove that the equation

> a3(a)f(a) = wa = > i)’ ()

holds. The new problem takes the form
Minimize |[VW ta(z)||2 = a(z)" W 'a(z) under PYa(x) = p(z)

with p(z) = (pi(z),...,po(x))" as in (??7). By the standard “parabola”
argument for solutions of quadratic problems with affine-linear constraints,
we know that a(x)TW~=lc = 0 for all ¢ € RV with Pfc = 0, and by the
factorization lemma [[T.I0] we get Lagrange multipliers \(z) € R? with
a(x)TW=le = \T(z) P{c for all ¢ € RVI. This proves that a*(z) = W Px ()
and from PTa*(z) = p(z) we get p(x) = PLW Px\(z). But then

p(x) = p'(2)b* = AT (2) PLW Pxb* = AT (2) Py W F = Fla*(2)
proves the assertion. O
For further analysis, we note some results of the above argument. First, the

equation a*(z) = WPxA(zx) is

Q
aj(z) = (ng—sz x)p(z;), 7 € J,

and p(z) = PEW Px\(x) shows that the A (z) satisfy the system

Q
) = ]; Ne(@) Y pr () @s(x — zy)pe(wy), 1 <L < Q.

jed

This is another way to calculate the solution, and it only requires a Q) x @
system whose entries can be calculated with complexity |J| each.

From the first equation we get that the a} are as smooth as the functions ®;
and A\, allow. But the second system can be written as

Q N
= Z )\k Z .CL’] (I)zS xj)pé('rj>7 1 < l < Q7
and thus we have
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Corollary 8.55. If all sets X, s for arbitrary x € Q and fized § are Pj—
unisolvent, then the solution of the moving least—squares approcimation is as
smooth as the kernel ®s.

Proof: Due to global P,—unisolvence of all sets X, 5, the coefficient matrix is
globally nonsingular and has a determinant as smooth as the kernel itself. [

To align moving least—squares with our previous theory of stable local poly-
nomial reproduction, we should fix § to be cih for a fixed set X with fill
distance h. Then we have unisolvence of each set X, s and local polyno-
mial reproduction. The main problem is stability, and for this we shall need
quasi—uniformity in the sense that the separation distance ¢ and the fill
distance h are related by gcz > h for some positive constant cs.

For stability, we bound the factors of

(Sw) = (£ 4582 ) (Soute-)

JjeJ JjeJ JjeJ

separately. The first is the objective function of the second form of our
minimization, and thus it can be bounded by any stable solution u;(z) we
have from the previous theory. To have some leeway, we make ¢ larger, taking
it as 2¢1h, while we use the u; for ¢;h. Thus

|aj()]? |uj (@)
j%;;@é($—$j) = gq’a(x—%)

> [uy(@)[?

infzeB(o,1/2) D(2) jed

c (Z |uj<x>|)
< 40.]

IN

The second factor can be dealt with a counting argument, since it is bounded
by a constant times the number |J|. Each point of X, s has a ball of radius
q/2 around it with no other point of X. Since all of these disjoint balls lie in
the ball B(x,d + ¢/2), we have

| J[vol(B(z;,q/2)) < vol(B(x,0 +q/2))

and
d
155 < (6+a/2)" < (2e1h +a/2)" < (2150 +/2)"
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leading to
|J| S (40103 + 1)d

Altogether, we see that moving least—squares realize stable local polynomial
reproduction.

8.13 Bramble—Hilbert Lemma

We now leave the stable local polynomial reproduction part and go back to
(842). We now have to care for the part varying with h, but we already
know something about stable local polynomial recovery, i.e. we have

1Plloc.0 < Cliplloo x,

for all p € Py, and all set X}, with h < hy. For convenience, we restrict our
attention to the Loo norm, and focus on the remaining part

||u||Loo(Q) S ChM_d/2|u|W2M(Q)

Clearly, an inequality like this cannot hold unless the function wu is replaced
by something like u — p* for some polynomial p* € P,;, because if the right—
hand side is zero, the left—hand side must be zero. Thus we go for something
like

lu = Pz < CRM 2 ulypr )

and inequalities like this are well-known in simple cases like the univariate
ones. We already did that for M = d = 1, and it also is easy for univariate
cases of higher order when p* is the Taylor polynomial and if the basis interval
is of length h.

This observation is the clue for what we are doing next. Let us consider a
simple case first, which is a variation of a Poincaré—Friedrichs inequality.

Lemma 8.56. Let Q) be a bounded cube in R? of mazimal sidelength s. Then
for each function u in W} (S2) there is a constant ~(u) such that

lw =y (u)l[ Lo < slulwyo) (8.57)
and the constant can be taken as the mean value of u over ().

Proof: We first prove the assertion for smooth functions, and then we go
to the completion limit. There is a point  where u(z) = v(u). We set
v :=u—(u). As in the univariate case we now integrate from z to any z in
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the cube, but we first integrate along the first coordinate only, i.e. we take
z =ux + Te; and get
T Ju

v(z) = ; 8—m($+t61)dt

lv(z)]? < ’T/OT <aa—::1(:p+tel)> dt /OT <aa—::1(l‘+t61)> dt

We integrate this over the full line L of length s through x and z along the
first coordinate to get

<s

Jplv(y)Pdy < 82/L<88—;(y)>2dy-

because the right-hand side is independent of z and the length |7| of inte-
gration towards z cannot be greater than s. If we integrate both sides over
the other dimensions as well, we get

ov ?
e < 5 [ (Few) o=k

Now the assertion follows when inserting v = u — v(u) and when going over
to the Hilbert space closure. O

A more standard and classical version of this, named after Poincaré and
Friedrichs, does the same thing without v(u), but with the assumption that
u vanishes somewhere on the boundary. The proof is the same.

Unfortunately, we cannot sum up the inequalities (857) when combining a
larger domain from cube subdomains, because the constants will be different
in each subdomain. But we can proceed on cube subdomains €2 like

[ull a0 < llu=v(W)llLaeo) + V(W) | Lo
S‘U‘WQ(QS) + |78<u)‘ \V UOl(Qs)

<
< 257l g + 21 () Pool(22)

||U||%2(Qs)

and we can sum this up for a domain €2 composed of such subdomains. The
result is

ullf,0) < 28l ) + 2000(Q) D ys(w)]®

Qs
lull o) < V2slulwy) +/2v0l(Q), > 17s(w)]?
Qs
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and can be viewed as our first full-size sampling inequality.

Having understood the basic logic, readers can now imagine that a general-
ization of Lemma [8.56] is

Lemma 8.58. (“Local” Bramble—Hilbert Lemma)

Let € be a nice domain of diameter s, e.g. a cube, a ball, or a convex or
a star—shaped set. Then there is a constant C' such that for all functions
u € WM (Q) with M > 1 there is a polynomial p(u) € Py such that

The polynomial can be chosen as an averaged Taylor polynomial, and the
constant is only dependent on the dimension d and the type of “nice” domain.

We just had the case M = 1 for cubes, but we want to avoid a full proof (see
IBS02] for the star-shaped case, and certain papers for other cases). The
main argument first works on a domain of diameter 1 and bounds the error
of the averaged Taylor polynomials uniformly by

lu = p(u) || o) < C|u|WZJ\4(Q) for all u € W1 ().

Roughly, this is a result of the factorization lemma [IT.10, because the oper-
ator Id — Ty, with Ty, being the Taylor projector of order M, vanishes on
the kernel Py, of the linear map

Ly : u— (D%, o] = M)

and thus must be factorizable over the range of Lj;, implying that it can be
bounded by the derivatives D*u with || = M alone.

The next step in this rough proof sketch is a plain scaling argument. We
now take u € WM (Q,) and define v(z) := u(z - s) to get some v € WM (Qy).
Then

s Nlu = p(W)lZy@.) = v = P70 < C*lolipq) = C*s™™ s ulfymq,)

does the job, provided that we also have the scale invariance

p(v)(@) = p'(ult - $))(z) = p(u)(s - x).
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But this holds for standard Taylor polynomials at zero

Tuw)@) = > ¥ 2

= Ty(u)(zs)
and carries over to the averaged ones.

For the L., norm, the correspondent result is
lu = Tos (Wl ) < C5™ 2 [ulyyyrcoy (8.59)

under the restriction M > d/2 because otherwise we have no continuous
point evaluation. here, we wrote the averaged Taylor projector Th;. We can
also sketch the idea that leads to (8.59). By a factorization argument, one
can get a result like

[l = Tar ()l Lo () < Clulwoy

for a “nice” domain of diameter one. This time, one can also work with the
standard Taylor projector. The next step is again a scaling argument like
the one above, using v(xz) = u(x - s) connecting v on €; with u on €, with
diameter s. The scaling now gives

lu = Tn (W17 ) = v = Tar(0)17 @) < Cloliagy = O™ ulfym o,

which is what we need. Note that this argument is a local proof of Sobolev’s
imbedding inequality, since it implies that C(€2) is continuously embedded
in WM(Q,) for M > d/2.

8.14 Globalization

From (859) and stable polynomial reproduction f — Qp(f) of order M
from values on a set X we can proceed to a local sampling inequality on
“nice” domains of diameter s. This starts from bounding the Taylor operator
in terms of data on X via

ClTarul|oo,x

C (1 Taru = vloo,x + [[ttfloc,x)

C (1 Taru = vlloc,o + [ttfloc,x)

C (O™ uliypr () + [[ulloo,x)

[Tarte]|so 0

VAR VASRVANIVAN
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and proceeds via

lu = Tarull L) + 1Tl Lo
CsM =2 ulyy e + C (CM 2 ulyps(ay + o x )
C (sM 2 ulwpr) + llullc.x)

] Loo (2

IAIN A

with generic constants. This is perfectly fine for “nice” domains of diameter s
proportional to A such that a global set X restricted to €2 still has fill distance
h. In fact, this can be done at the expense of changing the constants, and
it can be done uniformly for arbitrary domains with a fixed cone condition.
We do not want to do this in full detail, because it is rather technical and
provides no new insights.

But we state the final results for sampling inequalities, as they are provided
now by the literature. In all cases, the domain  C R? has to be bounded
with a Lipschitz boundary and an interior cone condition, and the order m
has to be fixed beforehand, together with real numbers 1 < p, ¢ < oo. Then
there exist constants C, hg > 0 such that the following inequalities hold for
all functions u in m—th order Sobolev space and all discrete sets X; C
with fill distance h < hg:

e Narcowich, Ward, & Wendland MC 2005 [NWWO06]
|u|W‘O“ S Chmf‘c‘{'*d(l/p*l/q)ﬁ-|u|W;n’ U(Xh) = {0}
for 0 < |a| < m > d/p,

e Wendland & Rieger Num. Math. 2005 [WR05]
[l a1 < C (hm—la\—d(l/p—l/q)+|u|wgl + plod ||u||m7Xh)
for 0 < |a] <m > d/p,

e Madych JAT 2006 [Mad06]
ulle, <C (hm—d(l/p—l/Q)+|u|W;n 4 hd/mm(M)HUHzp,Xh)
for 0 <m > d/p.
Finally, there is a more sophisticated inequality due to Christian Rieger
and Barbara Zwicknagl [RZ06]. It holds on Hilbert spaces H of functions
on bounded Lipschitz domains 2 C R? with interior cone condition pro-

vided that the Hilbert spaces are uniformly and continuously embedded in
all Sobolev spaces W3"(Q2) for all m € N, i.e.

||u||W2’m(Q) < Cl|ul|y for all u € H.
Then for all 1 < ¢ < oo and m > 0 there exist constants C, hg > 0 such that
log(cah M
Hu”w{;m(ﬂ) <C (exp (cl%> lul|lx + R | |HUng(Xh)> (8.60)
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holds for all functions u in H, all discrete sets X; C € with fill distance
h < hg. The proof of this is based in the Wendland-Rieger form of the
fixed—order sampling inequality, but tracks the constants carefully in terms
of the order m. Then the used m is connected to h in such a way that the
new sampling inequality is obtained.

8.15 Error Bounds

We now can use the sampling inequalities for error bounds concerning kernel
interpolation in Sobolev spaces. As we pointed out before, we only need that
the native space N for a kernel K is continuously embedded in some Sobolev
space of order m, i.e.

|ullwi @) < Cllull for all u € N. (8.61)

If we take a set X, with fill distance A < hg in one of the above situations,
we can use the minimum norm property of the interpolation operator Q)x,
to get

1Qx,ullug ) < Cl@x,ully < Cllully for all uw e A,
and we use Sobolev embedding from (861 in one of the sampling inequalities

of B.14] when applying them to the difference u — Q)x,u. This yields in the
first case

Chm—|04‘—d(1/2—1/q)+ ‘u — QXhu|Wm
p

chm=1d=dA2=1 D+ ||y — Qx, u|xr
Chm_‘a|_d(1/2—1/Q)+ HuHN

lu — Qxhu\wéa\

VAR VARIVAN

forall 0 < |a] <m > d/2, 1 < ¢ < oo and thus also in the full Sobolev norm
Ju— Qx,ullyy < Chmmr= 02D [y
foral0 <pu<m>d/2, 1 <q< 0.

Using Madych’s form we get
C hm—a(1/2-1/9)+ lu — Qxhu|w2m
Chm=4W/2=1/0)+ ||y |y

2
Chm=41/2=1/0)+ ||y ||

lu — Qx,ullL,@

VAVANIVAN

for 0 <m >d/2, 1 <q<oo.

In the situation of the refined inequality (8.60), the correspondent error
baound

log(cgh)>
u— ullwm) < Cexp | ci———=| ||u
= Qb < o (22 )

yields exponential convergence of the error.
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9 Construction of Kernels

For this section, we only present some additional material. The standard
procedure will be like the one in the book [Wen05| of Holger Wendland, but
with several omittances. This theory heavily relies on Fourier transforms,
the essentials of which are covered by an appendix in section [[2.3]

9.1 General Construction Techniques

This section is planned to give an overview of methods for the construction
of new kernels from existing ones. For the time being, we restrict ourselves
to translation-invariant cases in R%.

9.1.1 Elementary Operations

It is very easy to see that (conditionally) positive (semi-) definite functions
on {2 form a cone in the space of all functions on Q x €. In particular, if
® and ¥ are (conditionally) positive (semi-) definite, so are a® + SV for
a,f > 0. Furthermore, if a family ®; of (conditionally) positive (semi-)
definite functions can be integrated against a positive function w((), the
result

(a,y) = [w(O)Plw,y)dC

will again be (conditionally) positive (semi-) definite.

9.1.2 Autocorrelation Method

If we cannot start with a (conditionally) positive (semi-) definite function but
have an arbitrary function ¥ € Ly(R?), we can form the autocorrelation
function

O(z,y) = /]Rd U(z — 2)¥(y — 2)dz.

This always yields a symmetric positive semidefinite function which even is
positive definite, if all translates ®(x; — -) for different points x; are linearly
independent in Ly(RY).

9.1.3 Integration Method

The previous method easily generalizes for any ). For any function ¥ on
Q2 x II one can formally consider

O(,y) = [ U, OW(y, Qu()dC
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with a positive weight function w on II. If the integral is well-defined, the
result will be a symmetric positive semidefinite function on 2.

9.2 Special Kernels on R?

In Machine Learning, the polynomial kernels

K.(z,y) = (2Ty)"foralln >0, z,y € R?
or K,(xz,y) = (1+aTy)" foralln >0, z,y € R?

are often used. Due to Theorem B.7], they are positive semidefinite when the
kernel K (z,1y) = 2Ty is, but this is easy to see.

Clearly, their translates generate polynomials of degree at most n of d vari-
ables, such that the native space of the kernels must be a subspace of this
polynomial space. However, the geometry of 2 will determine the native
space.

For illustration, consider the kernel Ki(z,y) = 27y. It generates functions

N T
9(y) = (Z ajrj) y, y € R%
=1

Each such function lies in the subspace
No:={f, : y—a'y : ac LH(Q)} (9.1)
of (RN)* where LH(S) is the linear hull of €, i.e.
LH(Q) := span {z € Q}.

If Q lies in a k-dimensional subspace of R¢, the space Nq cannot be more
than k—dimensional. The inner product in the native space is defined as
usual, and it turns out easily that it coincides with the usual dual inner
product on (RY)* in the notation of (@) as

(fas f3) := a”b for all a,b € RY.

It is now an interesting exercise to see what happens if we solve a system
with the usual kernel matrix for K; on any choice of N points, but we skip
over details.

To Do: Insert details
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The kernel K has an analogon in the periodic case, i.e. the kernel K(x,y) =
cos(z — y). It is an easy exercise to see that it is positive semidefinite. This
works similarly for the kernels K,(x,y) := cos(a(z — y)).

To Do: Insert details

Inspired by the previous example, we can consider kernels in polar coordi-
nates (r, ¢) in R%. If we describe two variables in R? via two polar coordinates
(r,) and (s,), the kernels

Ko((r; ¢), (5,9)) = 1" cos(a(p — ¢))

are positive semidefinite and harmonic, i.e. they satisfy the homogeneous
Laplace equation Au = 0 in both arguments.

To Do: Insert details
These examples are closely related to the complex—valued case

K,(z,u) = (zu)", z,u € C, n € Ny.

To Do: Insert details

From these kernels, we can generate new kernels by additive superposition.
Let us do a simple example by taking

(z"y)"
|

- = exp(:pTy), T,y € RY.

K(z,y) == io

It is well-defined since the series is absolutely convergent everywhere, and it
is positive semidefinite due to Theorem 3.7l By an easy additional argument
this proves that the Gaussian kernel

G(z,y) = exp(—|lz — y[2), =,y € R
is positive semidefinite.

To Do: Insert details
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9.3 Translation—Invariant Kernels on R?

We now go back to section and define kernels on €2 := R? by the feature
map
®(z) := exp(—iz’") for all z € R?

into a weighted L, feature space
Fom{g s RS C, (2m)72 [ g(w)Pe(w)dw < o0}
R

for a nonnegative and integrable weight function ¢ on R?. This defines a
kernel K. in translation—invariant form via

Ke(x —y) = 2m) 2 [ exp(i(z - y)Tw)e(w)dw

and this coincides with ¢"(x — y) since the Fourier transform ¢" of ¢ exists
pointwise under the above assumption. If ¢ is even in the sense c¢(w) = ¢(—w),
the Fourier transform and the kernel are real-valued.

Theorem 9.2. If ¢ is a nonnegative even and integrable function on R?, its
Fourier transform is a real-valued symmetric translation—invariant positive
semidefinite kernel K, on R, O

This is the easiest approach to translation-invariant kernels on R?, and it is
rather close to the general situation due to the famous but difficult

Theorem 9.3. (Bochner)

A continuous complez—valued translation—invariant kernel on R is positive
semidefinite if and only if it is the Fourier transform of a nonnegative Borel
measure 1 on RY, i.e.

K(z,y) = (27?)*‘”2/

[ exp(i(e — y)Tw)du(w).

Since we omitted measure theory in this text, we do not want to prove
Bochner’s theorem, but the reader should be aware that the connection be-
tween the above theorems is via the case that the measure p has density c,
e du(w) = c(w)dw.

The above construction immediately implies that the Gaussian is positive
semidefinite on all R%. Tt even is positive definite, but we shall prove this
soon in more generality.
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In fact, we should take a general nonnegative even and integrable function ¢
on {2 and ask for sufficient conditions to make the kernel K, positive definite.
As always, we consider the quadratic form

N
> ajaK (zj, )

jk=1

N
= @0 3 ot T el
Re T—

2
_ d/2 /

and assume that it vanishes. Then the product of the generalized trigono-
metric polynomial

(w)dw >0

e J

“ﬂ

p( ) _an :Z (94)

with ¢ vanishes almost everywhere. But we can expect that such polynomials
cannot vanish on reasonable sets without being identically zero and having
zero coefficients. More precisely:

Lemma 9.5. If a generalized trigonometric polynomial of the above form
vanishes on an open set in R?, it has zero coefficients.

Proof: By a simple shift (which multiplies each coefficient with a nonzero
complex number) we can assume that the open set contains the origin in its
interior. Then all derivatives of p at zero must vanish. This implies that all
complex numbers

N
0) = a;(iz;)’, f € Nj
j=1
vanish, and this means that all

al B

d
Z a;xy, B € Nj
i=1

are zero. If we pick a single index j, 1 < j < N, we can find a multivariate
polynomial ¢;(x) with the Lagrange property g;(x) = 05, 1 < j,k < N, for

instance
Z Hx xk”2 _. Zbg)xﬁ
k£j lz; — 13 3

174



for finitely many nonzero coefficients b(ﬁj). Then we get

N
a; = Y agi(zr)

forall j, 1 <j < N. O

Theorem 9.6. If c is a nonnegative even and integrable function on R which
s positive on an open set, its Fourier transform is a real-valued symmetric
translation—invariant positive definite kernel K. on R, ]

This now implies that the Gaussian is positive definite, because its inverse
Fourier transform is never zero.

Furthermore, since both the kernel and its inverse Fourier transform are
real-valued and symmetric, we can ignore the difference between inverse and
forward Fourier transform in this context.

We can turn the above theorem upside-down to get

Theorem 9.7. Let K be a translation—invariant symmetric real-valued ker-
nel on R? whose Fourier transform exists, is even and nonnegative and inte-
grable on R and positive on an open set. Then K is positive definite. ]

This gives us plenty of leeway to construct positive definite kernels. However,
we are interested in explicitly known kernels only, and then we have to check
their Fourier transforms. For instance, Wendland’s kernel

Kz —y)=(1—llz—yl)i(1 + 4z —yl2), z,y € R

has positive Fourier transform in R? for d < 3, but this is not at all clear.
We postpone such kernels for a while.

9.4 Global Sobolev Kernels on R?

Clearly, we should look for the reproducing kernel of global Sobolev space
Wi (R?). This is defined as the space of functions with generalized derivatives
up to order m being in Ly(R?Y), and we can cast this into a condition on
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Fourier transforms. If f is a smooth function on R, we know that the

~

Fourier transform of the derivative D* f is the function w +— (iw)* f(w), and
this is in Ly(R?Y) if the integral

[ DR @) = [ ) fe)Pdo = [Pl fw) Pdo

is finite. Thus Sobolev space W3*(R?) can be defined via the inner product

g = 3 (%) 3 (1) [, 0@ D(a)te

) i (é) Z (5 [ o )y

= [ (14 wlB)” f@)i@)ds
and consists of all functions f on R? with

I By = [, (14 1l3)" f@)Pdo < ox.

We now look for the kernel K which will be reproducing in Sobolev space
Wi (R?). We write it in difference form right away, and we need the relation

f(x) = (f, K(z =) wp e for all x € RY, f € Wi (RY).

We formally see that

~

(K(z =) (w) =™ “K(w)
and find that we have to satisfy

f@) = (F K@= Dup _
= @0 f@) (1 wlf)" e R w)do

which works if we can set
Kw)=(1+|«l3)

and if K and f are inverse Fourier—transformable.

Since we now have an idea what the kernel should be, we define it as
K(z —y) == (2m) %2 / (1 fwllp) T e (9.8)
R
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This integral is well-defined if —2m < —d or m > d/2, which is the usual
sufficient condition for an embedding of C(€2) into W3*(€2). Thus the kernel
exists pointwise, and we have to check whether K (x — -) lies in W3*(€2). To
this end, we check the Fourier transform condition

m) 2 [ (14 Jwl)" (R (o~ ()P
= @n) (1 |wll3)” K (w)?dw
= (2m)"9/? " (1+|]w|\§) dw

which is finite and equal to K(0), again due to the condition m > d/2.

What is left is the inverse Fourier transformability of f, since we can form
the right-hand side of the reproduction equation, and it is

~

(27T)7d/2/ e f(w)dw.

R4

This integral is classically integrable because of
[ 1f(w)ldw

i m/2 A —m/2
L )™ 1@ (14 o) ™

\//Rd el ‘f@”?dw\//}%d (1+ [lw[l3) ™™ dw
Cllf llwgr e K(0)

IN

IN

and thus it represents f(x). We have

Theorem 9.9. The reproducing kernel for Sobolev space Wi (RY) for m >
d/2 is given by (98) and turns out to have the explicit radial representation

21—m

m—d/2
il Yl Kl = yla) (9.10)

where K, is the modified Bessel function of order v.

We postpone the explicit calculation ending with the above formula, but in
Figure [0l on page [l we already presented a plot of the kernels VK, (r) after a
rescaling to attain 1 at zero. In section [[2.7.8 we provide some properties of
these functions. In particular, they decrease monotonically away from zero,
and they have exponential decay towards infinity. At zero, they have limited
smoothness.
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9.5 Native Spaces of Translation—Invariant Kernels

After we have seen the special case of a kernel that directly leads to a global
Sobolev space, we now go back to the more general situation of a translation—
invariant kernel K. generated from an even, nonnegative, and summable
Fourier transform ¢ = K,. We want to calculate the native space of the
kernel, but in order to be aligned with our error analysis, we have to do this
on a bounded domain Q C R? We can drop ¢ and work with K and K
directly.

The inner product in the native space is defined for typical functions f, x as
in (B.I7)) in section B3l But we can now use Fourier transforms on it and get
first

(fax)@) = @02 [ fux(@)e " do

M
— (27T)_d/2 Z aje—ixfw / K(ZL‘ . l,j)ei(g;j —$)T0de
j=1 ke

A~ M .7
= K(w)) aje ¢
j=1
= K(w) Pa,x <w>

and then

(faxs foy) = DD a;biK (yx, x;)

=1k=1

= (2m)" %2 ZZa]bk/ K (w)el @) g,

j=1k=1
N
= @0 [ KW z a3 b
k=1

_ (27T>7d/2 faX( )be( )dw
R? K(w)

<.

Thus we can read off the right inner product of the native space. We define

@)l
K@)

Fr = {f € Ly(RY) : /Rd < o0}

and see that this space contains the native space for K because it contains
it as a set and has the same topology. Since, by definition as a closure, the
native space for K is closed, it is a closed subspace of Fr. We now look at
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its orthogonal complement. For this, we take any f € Fx and evaluate the
inner product

(f fox)x = (@m)77 [ —otdw

M
= > a;f(z))
j=1
which implies that K is the reproducing kernel in Fx on the full domain R¢.

If f is orthogonal to all f, x with X C Q for a bounded domain Q C R?, we
see that f(Q) = {0}, and conversely.

Theorem 9.11. The native space for a general translation—invariant sym-
metric positive definite kernel K on a domain ) is the orthogonal subspace

of the space of functions in Fx vanishing on §2, where orthogonality is un-
derstood in Fi. OJ

We now check for which m we have a continuous embedding of the native
space N of K into WJ"(€Q). We take an f € N and note first that it is in
Fk, which means that it has a global extension and satisfies

[
w (W)

We now check if we can prove f € Wi*(R?). This would work if we get

L @R+ ol de
/

A~

= [ R R e

< (swA@as B [, lg?’};dw < o0

[\

under the hypothesis
sup K (w)(1+ wlf3)™ < € < o0

or
K(w) < O+ |jw]|?)™ for all w € RY. (9.12)
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Theorem 9.13. If a translation—invariant symmetric positive definite kernel
K on R? satisfies (912) for some m > d/2, then its native space N is
continuously embedded in Wi(R?), and its restriction to a domain € is in
Wi (). Furthermore, interpolation on subsets X of Q0 with fill distance
h < ho(m, Q) has convergence order h™~%2 for h — 0 in the Lo, norm on
Q. O

Note that the condition (@I2]) is closely related to the smoothness of the
kernel K in the global Ly(R?) sense. Roughly spoken, it means that the
kernel itself is in Sobolev space Wi'(RY) for all n < 2m — d/2.

9.6 Construction of Positive Definite Radial Functions
on R

This subsection contains tools from [Wu95| as generalized in [SW96]| for the
construction of positive definite radial functions on RY. We start with the
standard reduction of d-variate Fourier transforms of radial functions to Han-
kel transforms of univariate functions. Introducing ¢t = 7?/2 as a new vari-
able, two such transforms for different space dimensions are related to each
other by a simple univariate differential or integral operator that preserves
compact supports. This fundamental trick of Z. Wu then opens up the way
for the easy derivation of various compactly supported radial basis functions.

9.6.1 Hankel Transforms

We assume a radial function ®(-) = ¢(]| - ||2) to be given such that ¢
R.yp — R has some decay towards infinity that we are going to quantify
later. Let us formally look at the Fourier transform formula and simplify it,
using radiality, and introducing polar coordinates for x:

B(w) = (21)4? / O(z)e " dz

R4

= @0 [ olllel)edr

= (27?)*‘1/2/OO gb(r)rd_l/ e Il T gy dr

0 lyll2=1

This contains the function F(r||w||2, d) defined in (I2Z:29) by the integral

F(t,d) := / e A dy
lyll2=1
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for t > 0 and some ||z]|s = 1, z € R% Using its representation (I231) via a
Bessel function, we get the very important equation

. d-1)(1
b(w) = (277')_d/20'd72/0 ¢(7’)Tdl(rﬁcﬁ”j/;;gzi)/ﬂ(d2)/2(7“|\w|!2)d’f’

(9.14)
that allows the Fourier transform of a radial function to be written as a
univariate Hankel transform. Equation (@.I4) implies that the Fourier
transform of a radial function ® is again a radial function. It holds also for
d =1, as can be proven by direct calculation and

s COS 2
[T _ , 1
QZJ 1/2(2) > (9 5)

This equation is not directly compatible with (T2.30]), because the latter does
not exist for v = —1/2. But we can use the usual power series representation

(12.32)) of Bessel functions to get (9.15]) from (12.34]).

9.6.2 Bessel Kernels

We apply the Hankel transform for evaluating the Fourier transform of the
characteristic function y; of the unit ball in R%. This is needed in the proof
of a theorem tn stability theory, but it also yields useful new kernels.

In particular, we apply (I2.38)) and get

1
_ —(d—
) = [l [ (ol

—d/2
= [lwlls " Jap2(|wll2)-

Considered as a univariate radial function, this is an entire analytic function
of exponential type that we shall meet again later. Figure shows the
kernels = .J,(r) for various v after rescaling to have value 1 at zero. For v €
7./2 they are positive definite on R? for d < 2, since they are positive definite
on R? for d = 2v and all smaller dimensions. Since their Fourier transform is
compactly supported, they are band—limited and they generalize the usual
stnc function.

Theorem 9.17. [FLW0G]. The Bessel kernel r="J,(r) when acting as a
radial kernel K(x,y) := ||z — y|lz"J(|lx — y|l2) on R? is positive definite if
2Z > v > d/2. The kernel r=%2.Jy5(r) generates the space of bandlimited

functions on R? with L, Fourier transforms supported in the unit ball of
R, O

(9.16)
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Bessel kernels, rescaled

-0.5 I I I I I ! !

Figure 29: The Bessel kernels r=".J,(r)

From (I2:31)) we know that F'(r, d) behaves like r=.J,(r) for v = (d—2)/2 for
d > 1. Tts Fourier transform on R? is not positive on an open set, and thus we
have to invest some work in order to prove positive definiteness on R?, while
Theorem guarantees positive definiteness only on R¥ for 0 < k < d — 2.
This was first observed in [FLW06].

Theorem 9.18. The Bessel kernel r=".J,(r) for v = (d — 2)/2 is positive
definite on R? for d > 1.

Proof: With our standard argument we have to prove that a generalized
polynomial p = p, x of the form (9.4)) has zero coefficients, if it vanishes on the
sphere. If we single out any two coordinates of €2, we have an analytic function
which vanishes on a circle, thus it vanishes for all arguments. Repeating this
for all combinations of two variables, we see that the polynomial must vanish
on all of R?, and then we can proceed as before to prove positive definiteness
of the kernel. O

From [FLW06] we also take the interesting observation that the kernel (cr)~(@=2/2J;_5) »(rc)
satisfies the Laplace eigenvalue equation (or the Helmholtz equation)
Au + c®u = 0 for d > 1 dimensions.

A second application of the Hankel transform is the proof of (@.I0) in Theo-
rem [2.9. A more explicit and direct proof is in [Wen05| on pages 76-77, but
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we cite (I2Z.51]) with

d—2
v=—p— p=m-Lt=ra=|uw]z=c
to get
/oo r ey (rllells) )l e
0 (r2 4 ) 2n1(m) .

Combining with (0.14) applied to ¢(r) = (72 + ¢*)~™ this yields

—1—(d-2)/2 _
||W||;n (d=2)/2 —m+d/2

P(w) = 27T (m) K_miapa(cfw]2)

m—d/2 1-m
il \ "2
- ( 2K ma(llll)

C m —

9.6.3 Change of Variables
We now introduce ¢ = r?/2 as a new variable, writing a radial basis function
® as

() = o[ - [l) = £l - 15/2), (9.19)
and we shall use Latin characters f,g,... to distinguish the transformed
functions from the original ones ¢, v, etc. Note that going over from ® to ¢
and further to f loses the information on the dimension of the space that we
want to work on. But we can take advantage of this loss and write dimension-

dependent operations like Fourier transforms as univariate operations with a
scalar parameter d.

We keep the dimension d in mind and rewrite the d-variate Fourier transform
equation (@.I4) in terms of the transformed function f to get

Bw) = ol ™ [T S22 usas - Jell)ds

d—2

= () (3)7 (el )T s el as
- [ (5) s (5 1)

with the functions .J, and H, defined by

P 2 —Z 4k
(5)  (2) = Hu(*/4) = Zk'rk+u)+1)
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for v € C as in (I2.33). If we substitute ¢ = s%/2, we find

dw) = /Ooof(t)t%ﬂ¥ <t- ”“é )dt
= (Fazz f) (I0]7/2)

with the general operator

(9.20)

(F,f)(r) = /O T RO H, (tr)dt. (9.21)

Theorem 9.22. The d-variate Fourier transform of a radial kernel ¢ with
o(r) = f(r?/2) is given by

Fla-z2(£)(Ilw]l2/2)-

The operator F, is formally defined for all v > —1 and sufficiently nice
functions f, but we can extend it to all v € R, if we omit terms in the series
of H, that have a singularity of the Gamma function in their denominator.
However, we want to check its domain of definition with respect to functions
f on Ry for v > —1. Near zero, the function f(¢)t” should be absolutely
integrable, because the analyticity of H, causes no problems at zero. For
large v this allows a moderate singularity of f at zero. Near infinity we have
to check the decay of H,. But since the Bessel functions .J, have a (t~'/2)
behaviour for ¢t — oo due to (I2.42), we see that H,(t) decays like ¢t=/271/4,
Thus we require integrability of f(¢)t*/2=%/4 at infinity for v > —1. Since we
do not need the weakest conditions, we can simply assume

f)t" € Li(Rso). (9.23)

Note that both F, and H, generalize to arbitrary v € R, provided that
certain restrictions on f like (@.23) hold. Furthermore, by symmetry of radial
functions and our definition of Fourier transforms we have

F/,=Fss fordeN
D) 2

on sufficiently smooth functions with sufficient decay. We shall see later
that this generalizes to F, ! = F, for all v € R, wherever both operators
are defined. Please keep in mind that the parameter v is related to the
space dimension d via v = (d — 2)/2. We shall work with v instead of
d for notational simplification. Furthermore, we consider a space S,.q of
tempered radial functions. It could be defined as a subspace of the space
S of d-variate tempered test functions, comprising all radial test functions
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after introducing ||z||3/2 as a new variable. However, we prefer to define it as
the space of real-valued functions on [0, 00) that are infinitely differentiable
such that all derivatives vanish faster than any polynomial at infinity. Taking
derivatives of (@.19), one can easily see that this yields a subspace of radial
test functions on R? for all space dimensions d. Conversely, any radial test
function @ in the form (@.I9) yields a function f that is in S,.q. To see this
one can proceed inductively, using

a—mcb(w) = f™(J|w||?/2)w™ + lower derivatives with polynomial factors

8w§” = 2 j poly .
Thus the two notions of S coincide, and each radial function which yields a
test function for a specific space dimension will provide a test function for
any dimension. Thus §,.4 is the proper space to define the operators F, on,

and it clearly contains e™", which can easily proven to be a fixed point of any
F,, using the definitions (I2.33) of H, and (I2.25) of the Gamma function.

9.6.4 Calculus on the Halfline

In the space S,.q we can introduce a quite useful generalization of the classical
calculus operations. We start with the family of operators

L = [ (9.24)

on S,qq for all & > 0. The simplest special case is

L)) = [ fs)ds
with the inverse
L1 (f)(r) = =f"(r).
Note that this operation implies that the resulting function vanishes at infin-
ity, and thus there is no additive constant in the integration. Furthermore,
the identity
Id=11"o1I",

is Taylor’s formula at infinity, as follows from (@.24]). The identity (I2.26)
allows a direct proof of the property

]a o) IB = ]a+5 (925)

for all o, B > 0 by application of Fubini’s theorem. Differentiation and
integration by parts imply

["ol, = I,, 0<a<n
IyyoqolI™ = 1, a>0,n>0.
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Byl,=1,0l,0I" =1,01,01I" we get
and this suffices to prove that (9.23]) holds for all «, 5 € R if we define

IQ = Id
[, = I",n>0
lo = la—ja)©ljal

for the remaining cases of a. Altogether, we have

Theorem 9.26. The operators I, on S..q form an abelian group under com-
position which is isomorphic to R under “+7 via o > 1.

Proof: The remaining things are easy to prove using the above rules. O

Let us do some simple examples of differentiation and integration of fractional
order. The independent variable will be denoted by ¢, and we indicate the
domain of validity of the different cases, because we do not restrict ourselves
to tempered radial functions.

( (t+2)(r) = L(ft)r+z) a€c€R, z>0
( (tx))(r) = a7 L (f(t))(rz) a€R x>0
( SH(r) = s % aceR, s>0
LAPB)(r) = r~ =T (3 — ) >0, a<p
I((z+1)” 6(6))(7“) - (x+r)’(‘;’“’T(ﬁ —a) >0,a<pB, x>0
N (s =m)3 !
Ia< I )(r) e >0 a+8>0

We shall make specific use of the “semi-integration” operator and its inverse,
the “semi-differentiation”, as given by

< f(s)

() = [ s
O

Lip(f)(r) = /7» \/mds

= TLipol 1(f)(r),

(9.27)

that are inverses of each other.

A very simple representation of the operators I, is possible via the Laplace

transform -
L(p)(r) = /0 o(s)e"ds (9.28)
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which exists classically for any continuous function ¢ on [0, c0) that grows at
most polynomially towards infinity. For the time being, we ignore the more
general definitions of Laplace transforms and observe that the action of I,
can be written down as

La(L()() = L{p()()%),

where all real o are formally possible (provided that ¢ behaves nicely enough).

9.6.5 Basic Transitions

The main advantage of S,,q and the definition (2] of the radial Fourier
transform using (9.20) is that we can compare Fourier transforms for various
dimensions, while working on a simple space of univariate functions. But the
most surprising fact, as discovered by Wu, shows up when we simply take

the derivative of F,(f)(r). We use (IZ33]) to get

d

_aFy(f)(T) = (I.10F)(f)(r)

_ _d%/ooo F(6) H, (rt)dt

- /0 - f(t)t”%H,,(frt)dt (9.29)

_ /0 TR OET H, L (r) dt

= Fuoa(f)(r).

Going back to v = (d—2)/2, we see that the (d+2)-variate Fourier transform
of a radial function after the substitution (@.I9) is nothing else than the
negative univariate derivative of the d-variate Fourier transform after (0.19)).
We shall generalize the above identity later to I, o F,, = F,,_, on R, but we
already know that I, 0 F,, = F),;; allows to proceed from (d+ 2)-variate radial
Fourier transforms to d-variate Fourier transforms by univariate integration.

Let us apply (IZ36) to get another identity on tempered functions:
FA=f)0) = [T =(s)s" Hy(sr)ds
0
= /OO f(s)s"  H,_,(sr)dsdt (9.30)
0

= =Fa(f)(r).
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This will generalize to F, o I, = F,;, and is a trivial consequence of I, o
F, o =F, and Fi = Id, if the latter holds in general.

Note that in both cases we have operators that preserve compact supports.
The integral operator even preserves nonegativity (it is a monotone op-
erator). The explicit construction of compactly supported radial functions
relies heavily on these features. But we also want to proceed from d-variate
Fourier transforms to (d+ 1)- or (d — 1)-variate Fourier transforms. This will
be achieved by the operator I/, and its inverse from (@.27). We shall treat
this problem in general, comparing two arbitrary instances F, and F),.

9.6.6 Identities for Transforms, First Version

We can easily evaluate the action of the Fourier operator on the Laplace
transform as

FAL@N) = [T Holor) [ eltyedrds

= /OO o(t) /Oo s"H,(sr)e *dsdt
0 0

= /OO ottt /Oo x’H,(xr/t)e” *dxdt
0 0

- / o)t e/t
0

= /OO ©(1/5)s" te " ds
0

= L(e(1/)()).

Then, again as formal operations,

FL(()) = Lip(1/)() )
— Lo L(e(1/)() )
= L Fu(L(e(),
F(Fu(L(¢())) = F, (L(p(1/)(-)*1)
= L{p()()" ()
= Luw(L(e(4))),
as expected. Note that this implies F2 = Id for all v. All of these identities
are valid at least on Laplace transforms of functions ¢ that vanish faster than
any polynomial at zero and at infinity, but continuity arguments can be used
to enlarge the scopes.

188



9.6.7 Identities for Transforms, Second Version

The previous section showed that the identity
F,oF,=1,.,

holds for all u,v € R on a small space of functions, and where [, is an
operator that roughly does a-fold integration for a € R. We now want to
make this more precise and explicit. In particular, we assert F? = Id for
all v, which we only know for v € %Z>_2. Furthermore, we want to use our
explicit representations for the operators I,,.

To proceed towards inversion of the operator F,, let us start calculating
the Fourier transform of the simplest compactly supported function, i.e.: a
truncated power. The outcome is somewhat surprising, because we run into
the function H, again:

Lemma 9.31. Forv > u > —1 and all s,r > 0 we have
(=T oy )
"\ T —np) s

Proof: We directly calculate the assertion and use (I237) from page 252

In detail,
B (e ) o

% sTV(s— ) H
= [ é(y _>;) H,(tr)dt

N ﬁ /Ostu(s—t)”_“‘lHM(tr)dt
- e [ e

and by substitution ¢ = su?, we get

4

1
= 5 m) / s“um‘s”*“*l(l—uz)”_“_lJM(Q\/Eu)(TSUQ)_“/Q%udu
0

Iy —
2rs)™M* [t 2\v—p—1

o 2(rs) M2 2T (v — )
ERCEn RNV
(V)2

= H,(rs).
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O

We would like to invert the Fourier transform in the above assertion, but
the decay of H, is not sufficient to see directly that F), is applicable at all.
However, we can resort to specific tools from Special Functions to get

Lemma 9.32. Forv > > —1 and all r,s > 0 we have

sV(s —r) !
I'(v — p)
Proof: The assertion is a consequence of the Weber—Schafheitlin integral

(see (IZ.4H) or [AST0] p. 487, 11.4.41) after substitutions of the type t = s?/2.
In detail, we have

(FuH,(s))(r) =

. o) 82 H T’2 82 u2 82
LGl ) (g )
= [T () () s
= 2“7’_“7’_”/005“_”+1Ju(T’S)Ju(us)ds

0

ZVT_“U_VZM_V—HT“(UQ _ ,'62)1_/[#71
u'T'(v — p)
2

- o (7) (5 7))

O

The above result can be used to derive the d—variate Fourier transform of
the kernel

Koy, () _ () () g

We have to rewrite this kernel as ¢(r) = f(r?/2) and get



Then the above lemma yields

A\ (S wlB)
(F(d2)/2Hu <%2>> (HQ;”%> = ( & ) p<£2 a7 f 1)>+ (9.34)

proving

Theorem 9.35. If2v+2 > d holds, the scaled Bessel kernel (9.33) is positive
definite on R? and has the compactly supported Fourier transform (9.53) due
to Theorems and (970

We now know that F), o F,, = Id holds on Laplace transforms, on truncated
powers, and on functions of the form H,(s-). But before we generalize this
to a larger class of functions, we generalize it to other F), operators:

Theorem 9.36. Let v > > —1. Then for all tempered radial test functions
f € Sr0q we have
F,oF, =1,_, (9.37)

where the integral operator 1, is given by

([af)(’f’):/ooof(S)%ds, r>0, a>0.

Proof: For any tempered radial test function f € S,.,q we evaluate (F), -
F,)f(r) by means of Lemma [0.32] to obtain

[T Huee [T H(st)s” () dsde
-/ T s f(s) / TR (tr)H(ts)dt ds
_ /O T s f(s) - F(Hy(s)(r)ds

v—p—1

= [T 10 S ds = .

By the above theorems it is easy to see that
I.H,=H,_,

for all & < v+ 1, generalizing (I2.35)).
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9.6.8 Wendland’s Functions

Due to a result of Askey [Ask73| the radial truncated power function

Au() = (=1 1l2)%

is positive definite on R? for 1 > |d/2] + 1, because it has a strictly positive
radial Fourier transform in this case.

Incomplete: add proof see [Wen05|

Its radial form after substitution is (1 —+/2r)%, and due to its finite support
we can apply any F, operator for v > —1. We use the identity F,,, = F, o1,
from (©.30) for this function and get

Fu-l—kAu = FV(Ik(AM))7 ke Na
where the left-hand side is strictly positive whenever
p>|d/2] +1+k. (9.38)

Thus the function I(A,) is positive definite on R? for the same range of
parameters. Since the [, operators preserve compact supports, the resulting
functions

Yur(r) = [k(Aﬂ('r2/2))
lead to compactly supported positive definite functions

Uge() = Yl - ll2) = Te(Aull - 113/2))

on R? under the condition ([@.38). Let us do a straightforward evaluation.
This yields

o0 s — 1)kl
nadn = [Ta-vERSs
= /;7 t(1 - t)“% (9.39)
1 2 _ p2)k-1
- / tl ‘”“Ek_ 1)!;:1

for0 <r <1/20r0 <z =+2r <1. If yis an integer, the resulting function
is a single polynomial of degree p+2k in the variable x = |- ||2 on its support.
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The case k = 1 is particularly simple. We get the explicit representation

LA = [ 1o

_ z(1l — z)rtl (1 — x)rt2
pt1 (1 +1)(p+2)
(1—a2)"

= DR 1+ (p+1)x).

The smallest possible integer u for d < 3 and k = 1 is 4 = 3, whence
2 1 4
L Asz(z7)2) = %(1 — )5 (1+4x).
In addition to A, := I3 A, let us define

! (t* — )i
B = /x (1- t)“(k T

and split the integral defining Ay, via t = (¢ — 1) + 1 into
Apy = =By g1 + Bi

Then do integration by parts for By, and k > 1 to get

1
By = mAkfl,,qul-

Thus we have the recurrence relation

1 1
A, -
k 1,M+2+ILH_1

k. — _,LL ) Ak—1,u+1-

Looking at our result for £ = 1 we see that we can assume
Apu(@/2) = (1 = 2)" ()

with the recursion

Ck,u(x) = (Z — !

for k > 1, starting with



Thus the polynomials C}, , have degree k with a positive leading coefficient.
The number of continuous derivatives of Ay, ,(2?/2) at © = 1 thusis p+k—1 >
2k + |d/2| > 2k. To get the number of derivatives at zero we apply the
binomial theorem to the last factor in the integrand. Then

Apu(2?)2) = kf( bl ) 7(@1_)?: /: t(1 — )2 gt

=\ 7

1 )
Qui_j(z) = / t(1 — )22 gt

= quvk_j(l)—/ t(1 — )22 gt
0
2k—2j

2k —2j

= quir— (1) + higher-order terms

shows that the first odd monomial occurring in Ay ,(22/2) cannot have an
exponent smaller than 2k+1. Thus the function has 2k continuous derivatives
at zero, and we get 2n—1 = 2k+1 in the context of Wendland’s functions. In
terms of continuity requirements, we get overall C?* continuity at a minimal
degree p + 2k = |d/2] + 3k + 1, and Wendland proves in [Wen95| that this
degree is minimal, if we ask for a single polynomial piece on [0, 1] that induces
a positive definite radial function which is C** and positive definite on R?.
Note that the order of smoothness at the boundary of the support is |d/2]
larger than the smoothness at zero, which has a positive effect on the visual
appearance of the reproduced functions.

We end this by giving the C* case for all dimensions d, where u = |d/2] + 3:

Az (22/2)
= (- o)™ (2 (pu+ 1) (p + 3) + 3x(u + 2) + 3)
B R e R o

and the most frequent case for d < 3 is

2 (1-=)f 2
Agy(27/2) = W(%x + 18z + 3).

The Fourier transforms are

FV[]CA/J - V+kA;L
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and thus for r = 22 /2 of the form

1/2
Frndu(r) = /0 (1 — V25) s K H, o (rs)ds

I_V_k 1
A
0
x—u—ZV—Qk—Z

= e [t

Due to a result of Gasper [Gas75|, the above integral can be written as a
positive sum of squares of Bessel functions, at least in the odd-dimensional
case d = 2n—1 with g = n+k+1, which leads to v = m—1/2 and pp = m+1
for m = n+k > n. Results of Wendland [Wen95| then imply the asymptotic
behaviour

E LA (1%)2) = F, 1 A (r?)2) > er 281

for the necessary values of u from (0.38).

9.7 Conditionally Positive Definite Kernels

We now go over to the treatment of general unconditionally positive definite
kernels. To do this, we shall introduce Fourier transforms in a somewhat more
general way that will later save us quite some work. The direct attack is im-
possible, because some of the most important conditionally positive definite
functions on R? are radial functions ®(-) = ¢(|| - ||2) that grow towards infin-
ity, e.g.: thin-plate splines ¢(r) = r?logr or multiquadrics ¢(r) = v/r2 + 2.
These do not have classical Fourier transforms, but since they grow at most
polynomially, they induce functionals on the Schwartz space S. Thus they
have generalized Fourier transforms defined via the Fourier transforms of
the functionals that they induce on §. These generalized Fourier transforms
are not straightforward to handle and require quite some machinery from
distribution theory.

We go a different way by picking a very specific set of assumptions to start
with, and then we can work our way without distributions. We do not
even assume P to be a conditionally positive definite function; this will be a
consequence of our assumptions and lead to an important technique to prove
conditional positive definiteness for specific examples.

In what follows, recall the notation used in section [5.4], but here we fix the
space P to be the space P2 of d—variate polynomials of order at most m. Fur-
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thermore, we use the notion of Fourier transforms of functionals as provided
in section [12.6]

Assumption 9.40. Let ® : R? — R be even and continuous. Furthermore,
let there be a continuous nonnegative function

o RIN\{0} =R

which is positive on at least an open set. It may possibly have an algebraic
singularity R
®(w) = ||w]| ") (9-41)

with some real value By for w near zero, and it must have the behavior
® € L, near infinity. (9.42)
Then define m := max(0, |5o|) > 0 to get the restriction

that will often occur later. Finally, let the usual bilinear form on L be repre-
sentable by

M N
(o Ao = (2m) 77 [ B@)Y Y abee @ Wdo,  (0.44)
Jj=1k=1

where the functionals A, x € L satisfy the moment conditions (5.7]) in the
form

Ao x (Pr) = {0}, (9.45)

and thus we may use the notation (P22, for L.

Lemma 9.46. The functionals A\, x € L have Fourier transforms

T

N
Aax (W) =pox(w) = Z aje "%
=1

with zeros of order at least m in the origin.
Proof: Since we have (0.45), we can use ExampleIT2.22] to get our result. [

Theorem 9.47. Under the above assumptions the function ®(x —y) is con-
ditionally positive definite of order > m on R,
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Proof: From the previous lemma we know that the functionals A\, x € L
have Fourier transforms with zeros of order at least m in the origin. Thus
the integrand in (@.44) is of order {(||w]||?*™~9~%0) near zero, and the integral
is well-defined due to (2.43) and (2.42). Nonnegativity of ® proves that the
bilinear form is positive semidefinite. The rest is as in the proofs of Theorems

0.6 and 12.8 0

The reader should be aware that we did not assume ® to be the usual Fourier
transform. We thus cannot use equations (IZ.7)) or (IZI2)), but we have the
general identity

M N R M N o
>3 4y —y) = (2m) 2 [ B)30 3 ajbe
j=1k=1 o

that is identical to (344 and is valid for all functionals in L due to Assump-
tion @40l Tt will nicely serve as a substitute for (I2Z.12), but note that it does
not allow single point-evaluation functionals in the left-hand side.

9.8 Examples

We now present special cases of (9.44) for radial kernels

K(z,y) = ®(x —y) = ¢([lz = yll2), v,y € R?

where we get a resulting generalized d—variate Fourier transform in radial
form which we denote by ¢.

The first example generalizes the inverse multiquadrics to general multi-
quadrics. If we set

o(r) = (41?2 r>0¢>0 BeR\ 2N,

we get the function
- UHB/2 g\ — B
o(s) = T—572) (E) K¥(cs), seR
while the order of conditional positive definiteness turns out to be

m = max(0, [3/2]).

Note that for positive 3 the denominator has the sign (—1)[%/21. Thus we have
to multiply ¢ for positive 5 with this factor to get a conditionally positive
definite function.

197



The proof idea is quite nice. Each side of the standard Fourier transform
identity (@.44), including the quadratic form and holding first for negative
[ is proven to be an analytic function of 8. Under the additional moment
conditions, both sides also make sense for general 3, and they can be con-
nected by analytic continuation with the case for negative g by a detour over
complex [ avoiding passing through the origin. Thus the Fourier transform
equation also holds for the other .

The next example concerns the power functions, and this is the limit of the
previous case for ¢ — 0. If we set

o(r) == (=128 >0, B eRyg\ 2N
we get, the positive function

1o 2 2TPT((B+d)/2) -
~ C)PAN(=5/2)

while the order of conditional positive definiteness turns out to be
m = [5/2].

This proof works from the previous case for positive 5 by letting ¢ tend to
zero, checking carefully how the Bessel function interacts with the premulti-
plied rational function.

4 seR

The final case is connected to S being an even integer. If we set
o(r) == (=1)" ¥ logr, r >0, k€N

we get
QE(S) _ 22k—1+d/28—2k—d’ seER

while the order of conditional positive definiteness turns out to be
m=k+ 1.

The last two cases are called polyharmonic, because they are homogeneous
solutions of a power of the Laplacian. This is due to the fact that their
generalized Fourier transform is a plain negative power. The last case is
called the thin—plate spline.
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9.9 Connection to Ly(R?)

We now go back to Definition ?7 of the native space via (??) and Corollary
?7as

Nkz:= 77,‘?1 —l—@z?’,‘i + F.
This definition is very general, and we want to re—express the native space
via Fourier transforms. We do this using a detour over weighted L, spaces.

The space L of section [5.4] consists of functionals A\, x with the moment

condition (a, X) € M. These functionals have Fourier transforms 5\& x with
the property

T

N
Aa,X(f) = (27T)7d/2(f7 )‘a,X>L2(Rd)7 (Aa,X)«"J) = Z a’jeimj v
j=1
Assumption makes sure that the mapping

L: A= MW, L= (Pt — Ly(RY

is well-defined. Indeed, the function £(\) is in Ly near infinity due to (9.42]),
and it is continuous around zero due to ([9.43]), since A has a zero of order at
least m at the origin.

With the results of the previous section, (9.44)) takes the form

(Aa,x, )\b,Y)Q = (27T)7d/2<£)\a7x, L)\b,y)LQ(Rd). (948)

Theorem 9.49. Let Assumption[9.40 be satisfied, and let m be minimal with
respect to (9.43). Then the map L extends by continuity to clos(L), and it
yields an isometry between clos(L) and all of Lo(R?).

Proof: It is evident from (9.44]) that £ is isometric, and thus £ extends to
clos (L) by continuity. But the density of £( clos(L)) in Ly(R?) does not
follow from abstract Hilbert space arguments. We thus need an additional
analytic argument. We first prove the assertion for continuous ® with & > 0

on R4\ {0},

Let some function f € Ly(R?) and some € > 0 be given. Then there is a
compactly supported C* function g € Ly(R?) such that || f — g||» < & due to

Lemma [[2.5 Now define @ := g/ \/é on R?, where the (possible) singularity
of @ at zero does no harm. Clearly @ is continuous and compactly supported,
thus in Ly(R?) and u is band-limited, of exponential type, and in Lo(R%).
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We now invoke the multivariate sampling theorem to recover u exactly from
its function values on a grid in R? with spacing h, where h is sufficiently
small and related to the support of .

Thus we have

—ih
u(z) = Y u(jh) Sincy <x J ) , zcR?
jezd h
where
sin 7w ;
Sincg(xy,...,2q) = .
j]:! L 5
and

d(w) =" u(jh)e™, w € R?

J€EZq

has the form © = )\Au for the functional

Aa(v) = > v(jh)u(jh).

jezd

We now have to make sure that A, € clos (L). If this is done, we are finished
because of L£(A,) = g and

If — VSl = IIf — gla < e

For all p € P we have to show that \,(p) = 0. By a standard argument in
Fourier analysis this requires a zero of order at least m of u at zero. But our
assumption (I4I) on ® and the minimality of m in (@43) imply that @ has
a zero of order at least

1 1 d

~(d “(d+2m—2)=m—1+=

2( +ﬁo)>2( +2m—2)=m +2,
thus of order > m.

We then evaluate the norm formally as

N2 = IV K2 = Va2 = Jlg]2 < oo.

Now we can proceed to prove that A, lies in clos (L) by defining the function

fAu('x) = (AU75:B,E)<I>, T &€ Rd
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via the explicit form of the inner product, and using the finiteness of the
norm ||A,||¢ to show that the definition is valid. Then for all Ay y 3 € L we
get

Ay ns(fa) = Ay Avivg)e

and this proves that fy, € F. Finally, we get A\, = F~1(f\,) by checking
()\u,)\Y,N,ﬁ)q> = AY,N,B(]CAU)
= (AvivsF ' fau))e

for all Ay, y 3 € L, and this concludes the proof in case of > 0.

Now let @ be positive up to a set of Lebesgue measure zero. We cover the set
of zeros by intervals I, where k varies over some index set K and the total
area Y |I,| is less than some given 8. Now let ®s(w) > ®(w) be a strictly
positive continuous function that differs from P only on the I;. Then (f)(; will
also satisfy our assumptions, and we can use (@.44) in the form

(1 Ny = (2m) 2 [ @s(w)Mw) )

as a definition of an inner product, but we do not need ®4 explicitly.

Now we approximate a given f € Ly(R?) by some V®s - A up to £/2 in the
Ly norm, picking a suitable \ for each ¢ and . Then

1f = VB < 1f = AWl + IABs — VB,
IABs — V)2 = ||X-¢<375<1—\/<i>/&>5>n3
< Z w)|*®s(w)dw.

IAw)PBs(w)dw = |[A - /B3
Rd

can be bounded independent of §, because it approximates || f||3. Thus we
are able to pick 0 small enough to guarantee

Z W) P0s(w)dw < £/2

and

The full integral

yielding an overall bound || f — \/EXHQ <e. O
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9.10 Characterization of Native Spaces

We now can re-express the native space Nz := P4 + G = Pl + F. via
Fourier transforms.

Theorem 9.50. The native space N = := PL+G for a conditionally positive
definite function of order m on R? satisfying Assumption [9.40) coincides with
the space of all functions f on RY that can be written as

fula) = (2m)~ " |

y h(w)\/®(w) (e” @ — ;pj(x)€Z£] “’) dw (9.51)
plus polynomials from P2 and where h e Ly(RY). The above functions are
spanning the space G. The bilinear form on G can be rewritten as

(for f)o = (2m) (g, h) 1, (wo). (9.52)

Proof: We first focus on (@.51). Starting with an arbitrary h € Ly(R?) and
a fixed P4 -unisolvent set = C R?, we mimic the technique of Riesz maps to
define a function

fu(z) == (fA% ﬁ5(x))L2(Rd)- (9.53)

This is (@.51)). Since ~
)\fh = (h, ‘C)\)LQ(Rd)

follows easily from (@.53)) for all A € L, we can transform this equation further
into ~
)\fh - (h, L/)\\)LQ(]Rd)
(L7, \)s.

By the previous section, (9.48) with Theorem yields that £~ maps
Lo(R?) isometrically back to L. But L is isometric to G via the extension R
of the Riesz map R : L — G we had in section ??. Thus the above identity
can be extended to

M = (7 LN @

(L7 N
(RLh,R\)g for all A € L

proving

fa=RL 'heq.

By (9.52) we also get
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Corollary 9.54. The mapping
F=RL': he—f,
is isometric between Ly(R?) and G. O

Note that we avoided to use the Fourier transform of f;,. In case that \/gﬁ =:
gr is an absolutely integrable function, the right-hand side of (.57 is

fh( gh éj

H M@

such that we see that a polynomial variation of f;, has a Fourier transform
which is \/gﬁ

But we can also work via the F part of the native space. It is the closure of
all functions

fa,X(x) = )‘Z,X(I)(x - t)?

and if the functional is such that Fourier tyransforms can be taken, we get
fux = Bhax = VLA

such that
2 = Lhx € Ly(RY).

This can also be written as

N =

if all transforms exist, and this is a third reason to define

Fu: —\/TA

as a generalized Fourier transform of f;, but the use of standard Fourier
transform equations is forbidden without additional argumants along the
above lines.
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9.11 Connection to Sobolev Spaces

To make error bounds applicable, we need inclusion theorems for native
spaces in Sobolev spaces. Since polynomials are not contained in global
Sobolev spaces, we can only expect the G part of the native space to be
contained in a global Sobolev space W7 (R?), while polynomials are always
contained in local Sobolev spaces W7 (£2) for bounded domains. Thus we
cannot work as easily as in the unconditionally positive definite case.

Let us check the differentiability of the functions from (@.51]). Under sufficient

regularity of \/gﬁ =: gn, we take a derivative D of f, of order a with

|a] > m. It will have Fourier transform (zw)a\/g(w)iz(w) and we check when
it is well-defined and globally in L,. This is the case when ||w|/?*/®(w) is
globally bounded. Since we only use L, arguments for this result, we can

ignore the additional regularity assumptions on \/giz =: g, by an additional
density argument.

Near zero, the boundedness of ||w||2*!®(w) follows for
2lal > d+ By

because A

w1 (w) < a(Jfw]|P=450).
Near infinity, we have not yet made any assumptions about the behavior of
®. For simplicity, we mimic (341 as

P (w) < U||lw]| "4 7<) near co. (9.55)
Then a sufficient condition for boundedness at infinity is

2ol < d+ .

Altogether, we get that the derivative D®f}, is defined and globally in L, at
least for
la| > m, Bo+d<2al < +d.

This is quite sufficient for the multiquadric case, because there (., is arbi-
trarily large. For the thin—plate spline and the polyharmonic splines, we have
Bo = P and see that we can still work with generalized derivatives of order
m=|a| =d/2+ Ps/2 =d/2+ Py/2 > d/2 if this is an integer.

In all of these cases we can take the maximum possible |a| and get conver-
gence of interpolants like hl*/=%2 in the L., norm when the data are from a
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function in the native space. This yields infinite order for the multiquadrics
and convergence like h%0/2 = hP=/2 for the thin-plate spline and the poly-
harmonic spline provided that d + 5y = d 4+ [ is even.

incomplete here...

10 Stability Theory

It would be very desirable to have recovery methods with small errors and
good stability. However, these two goals cannot be met at the same time,
since there is a connection between them that implies bad stability whenever
the a-priori error bound is very small.

10.1 Uncertainty Relation

Let us look at this connection in the Lagrange interpolation setting and con-
sider optimal recovery of a function g € A in a Hilbert space A/ which is the
native space of a reproducing kernel K on a domain £ C R?. This recovery
should use data g(z;),1 < j < M for a finite set X = {z,...,2p} CQ C
R,

We add a variable point x to X and define the kernel matrix

O(z,z)  P(z,21) ... D(z,zp)
O(zy,2)  P(zy,21) ... P(ay,zMm)
Ax,X = . . .
O(xp,x) Plop,z1) ... Plra,xym)
and the vector
(ux)" (@) = (L —uj(2), ..., —ujy(2)" € R¥*!

with the Lagrange basis of (??7) and get the special form

Pi(z) = Z K(zj,x) + ; uj(z)uy(z) K (2, vx)
> (1 + Z | (x )
>

(10.1)
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of the power function (??), where o(A, x) is the minimal eigenvalue of A, x.
Note that both sides are continuous functions of x and X (or A standing for
X) that vanish whenever z tends to points in X.

Theorem 10.2. The error of kernel interpolation can only be small if the
condition of the kernel matrixz is large. In particular,

Py(z) > 0(Asx)

holds for the power function P% in terms of the smallest eigenvalue o(A, x)
of the kernel matriz A, x.

We can call the above observation an Uncertainty Principle or a Tradeoff
principle.

The interpretation of the above result is as follows. Assume we have a re-
covery process with a very good error bound (??) via the power function.
Then A, x must have a very small eigenvalue. The largest eigenvalue of A, x
can only be as large as a constant times /N, thus it is not very relevant for
the condition of A, y, which is the quotient of the largest by the smallest
eigenvalue, if the condition is taken in the spectral norm. Thus the condition
of A, x is large whenever the recovery error is small. But A, y is itself a
kernel matrix, if we view z as the “‘next” interpolation point. Or, when we
change the meaning of x and X somewhat, we can rewrite the above result
as

i Py, (25) 2 o(Ax),

bounding the smallest eigenvalue of a kernel matrix via the “leave—one—out”
power function.

We now can give some hints to the results that follow in later sections. The
Uncertainty Relation in the form (I0.I) suggests to bound P? from above
and o from below, in order to have both upper bounds on the attainable
error and on the numerical stability, measured by 1/0. We have seen in the
previous chapter that upper bounds for P? take the form

Pt () < F(hyg) for all z € Q (10.3)

where F'is a monotonic function of the fill distance hy o defined in (Z.2). On
the other hand, the lower bounds for ¢ which we shall prove in this chapter,
will be of the form

0(Ax) > G(gx) for all X = {xy,..., 2} CQ (10.4)
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with the separation distance

¢=gx= min |z — xj]|2- (10.5)
For gridded data on €Z? N Q we can roughly expect hy.q = gxVd, and then
the Uncertainty Relation necessarily implies

F(tVd) > G(t) (10.6)

for all t > 0. This allows to check the quality of the bounds (I0.3) and (I0.4]),
since the lowest possible bounds F' and the largest possible bounds G must
necessarily satisfy (I0.6) and are optimal, if they turn (I0.6) into an equality.
This opens the race for optimal bounds of the form (I0.3) and (I04]), and
this text will describe the current state-of-the-art. To cut the story short,
we shall prove that ' and G just differ by a factor in case of kernels of finite
smoothness, i.e. (I0.6]) is extended to

F(tVd) > G(t) > C - F(c-t) (10.7)

for all ¢ > 0, proving that the square of the power function and the minimal
eigenvalue of the kernel matrix are roughly proportional in all cases of finite
smoothness.

10.2 Lower Bounds on Eigenvalues

This section uses Fourier transform techniques to prove results concerning
the condition of the matrices that occur in the basic equations (??) and (?7?)
for optimal recovery. This requires upper bounds for the largest, and lower
bounds for the smallest eigenvalue. We start with the latter and restrict our-
selves to the Lagrange case. The bounds should (if possible) should neither
depend on the specific data locations X = {x1,...,2y}, nor on the num-
ber M of data points, but rather on certain real-valued quantities like the
separation distance (T0.3)).

We generalize the technique of Narcowich and Ward [NW91a] [NW91h] for
calculating stability bounds, but we introduce Fourier transforms right from
the start, which makes it much easier to treat large values of m, the order of
conditional positive definiteness of ®.

The starting point is that any conditionally positive definite function ® of
order m satisfying Assumption 0.40 allows the formula

" 2
T w

Z ;e

=1

SN ajar®(x; — a) = (2m) Y2 /Rd D (w) dw (10.8)

j=1k=1
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for all P¢-nondegenerate sets X = {xy,..., 2y} and all vectors a € RM
such that Ax . is a functional that annihilates 73;2. This is just another

way of writing (9.44)).

The left-hand side of (I0.8)) is the quantity OéTAX,q)q\ that we want to bound
from below, and we can do this by any minorant ¥ on R?\ {0} of ® that
satisfies

d(w) > T(w)  on R\ {0} (10.9)
and that itself leads to a similar quadratic form

2

>N o,V (x; — ) = (2m) Y2 /]Rd T(w) dw (10.10)
j=1k=1

M .
iTjw

Z aje

=1

for another basis function ¥ and a weaker constraint on v € RM (or none at
all). Furthermore, there should be an easy lower bound

aTAX,\I,Oz > aHaH%

for the left-hand side o’ Ax g of (I0I0). Then clearly for all « € RM that
are admissible,
ozTAX@a > ozTAXﬂ,a > o||al|3,

as required. The basic trickAof Narcowich and Ward now isA to make Ax g
diagonally dominant, while W is obtained by chopping off ® appropriately
near infinity.

Before we proceed any further, here is the main result:

Theorem 10.11. Let ® be a conditionally positive definite function on R?
that satisfies Assumption[9.40. Furthermore, let X = {xy,...,zp} C R? be
any set of Lagrange data locations having separation distance (I0.3). With
the function

do(r) ;== inf ®w), (10.12)

l[wlloo <2r

the smallest eigenvalue o of the quadratic form associated to the matrix

Axe = (P(z; — xk))lgj,kgM’

restricted as usual to the subspace of RM that contains the coefficient vectors
a of functionals Ax .0 € Pé has the lower bound

bo(K) <£>d (10.13)

1
72Tz ) \ V2
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for any K > 0 satisfying

1
K> (212 (d/2+1))d +1 (10.14)
q
or, a fortiori,
K> 205d (10.15)
q

Proof: We start with any K > 0 and the characteristic function

L |zl <K
Xk () =
0 else

of the Ly ball Bg(0) in R? with radius K. Then we define

¢o(K)L (d/2+1)

‘T’(W) = ‘T’K(W) = Kd qd/2

(XK * xK) (W)
and immediately see that the support is
supp (V) = {z € R?: |[all2 < 2K} =: B (0).

We now use the formula (I2:27) for the volume of the unit ball to get the

L., bound
/2

™

s < vol(Bg(0)) = K¢ —————
via the usual convolution integral. We adjusted the factors in the definition
of U to guarantee (I0.9) on all of R%.

This is part of what we wanted, but we still have to evaluate ¥ itself or at
least to show diagonal dominance of Ay y. The radial basis function Uy
corresponding to W is obtained via the inverse Fourier transform as

k(@) = xai(-/K)(z)
= de(l(Kx)

= KUK |])™" Jua(K - ||z]l2)

- )M JapaK - lall)

]
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using scaling of Fourier transforms and (@.I6). Then we apply the Fourier
transform to the convolution to get

Ui(z) = do(K)T(d/2+ 1) K- n~ % (xx * xx) " (x)

= GolBIT (§ +1) 2ol - o))
Equation (I2:40) yields

do(K) [ K\*
v = m (73)

and we assert diagonal dominance of the quadratic form in (I0.I0) by a
suitable choice of K. We have

M

aTAXﬂ,a > ||z | Ui (0) — 1%2}&; Uy (x; — )

k#j

by Gerschgorin’s theorem, and the final bound will be of the form

¢o(K) <£>d7

1
> — =

— 2 (d/2+1)

because we shall choose K such that

max Z\I/K<5L’j — SL’k) < —\I/K<O) (1016)

This is done by a tricky summation argument of Narcowich and Ward [NW91b|

using (I2:39) which proves (I0.10) for K satisfying (I0.I4]). Since the tech-
nique is nice and instructive, we repeat it here in full detail.

To proceed towards diagonal dominance of the matrix, we should fix a point
z; € X = {x1,...,zm} and exploit the observation that many of the dis-
tances x; — x, to the remaining points should be large, if the separation
distance ¢ > 0 does not let two points to be too near to each other. But the
number of far-away points will strongly depend on the space dimension d,
and we need a precise argument to put the above reasoning on a solid basis.

To this end, define the sets

E,={x€X : ng<|lz; —aplla<(n+1)g}
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for all n € N and observe that F; is empty due to the definition of the
separation distance ¢, which implies

llx; — zx)l2 > 2¢ for all 1 < j # k< M.

Now we can put a little ball B,(x)) of radius ¢ around each of the z; € E,.
Any two of these balls cannot overlap due to the definition of ¢. Since none
of the zy, is farther away from z; than (n + 1)g, the balls are all contained
in the ball B, ;2),(x;) of radius (n + 2)q around z;. But all of the x;, are at
least ng away from x;, such that their surrounding balls cannot intersect the
smaller ball B(,_1)q(x;) around z; of radius (n — 1)gq. Adding their volumes
using (12.27) we get the bound

g'm/? (g(n +2))*%?  (g(n — 1))'n??
Bl 75 < -
[(1+d/2) ['(1+4d/2) ['(1+4d/2)
B < (n+2)—(n—1)"
for the number |E,,| of elements of E,,. If both terms on the right-hand side
are expanded with the binomial formula, the leading positive term is 3n? 1,
and all the terms must combine into powers of n with nonnegative factors.

Thus we arrive at
|E,| < 3n% .

For points z; € F,, we can bound the values of ¥ via (I2.39) as follows:

Wiy — o) = GolOT (§ + 1) 22y — | T3 - ;= )

Po(K)T (% + 1) 22 K|y — g7
(K g — apll2) T3 (K - [z — i)

d+2
—d—1 2

™

< ¢o(K)T <% + 1) 292K ((n — 1)q)

— W (0) (ﬁ)dﬂ 71T (g +1).

Now it is time to do the summation over all £ # j, and this summation can
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be done by summing the points in the sets E,. This yields

S Ug(w; —ap) = i > W(z; — )

k#£j n=2zx,clby

4 d+1 J 0o

< Wk(0) (K—q> e (Q + 1) z_j 3nttn — 1)~
4\ ; n=z

S \I/K(O) <K—q> 7T711—‘2 <§ + 1) 62(71 — 1)_2
4\ "=

< \I/K(O) <K—q> a2 (% + 1) 2
4 d+1 d

< 3Uk(0)

if we choose K according to (I0.16).

It remains to show that (I0.I5) implies (I0.14). We use a variation of Stir-
ling’s formula in the form

I'(1+z) < V2rzzte %el/1%, x>0

to get
272 (d/2 +1) < 2r2di+t(2e)~del/3,
1 1
1y oL
(el (d/2+1))d+T < = (4en?)d+1 3d(d+1)
e
s
< d—= e/ < d-22511
> \/E € >
such that 9.005
K>
=
is satisfactory for all cases. O

We now want to look at the specific cases for applications. From (I0.I3]) and

(I0.14) we see that
o =o(g) =>1(q "bo(cd/q))

with some positive constant ¢. Thus we only need to look at the decay of
the Fourier transforms to get the asymptotics of o with respect to ¢ — 0,
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keeping the space dimension d fixed. Our known Fourier transforms then
yield the results of Table [3.

¢(r) | Lower Bound in ? form for ¢ — 0
PP
rlogr | ¢°
(r* +9%)° | ¢ exp(—c/q), ¢ >0
e | glexp(—c/q?), ¢ >0
rK,(r) | ¢
(1—r)3@2+r)|q
(1—=r)i(l+4r) | ¢

Table 3: Lower Bounds of Smallest Eigenvalue Based on Lagrange Data with
Separation Distance ¢

10.3 Stability in Function Space

This text is from a recent preprint with Stefano deMarchi, and needs some
brushing—up.

10.3.1 Lebesgue Constants

Given a positive definite kernel ® : 2 xQ — R, the recovery of functions from
function values f(z;) on the set X = {zy,...,ax} C @ C R? of N different
data sites can be done via interpolants of the form

N
spx = a;0(,x5) . (10.16)
j=1

This interpolant, as in classical polynomial interpolation, can also be written
in terms of cardinal functions u; € Vy := span{®(-,z) : € X} such that
w;(xy) = 6;. Then, the interpolant (I0.16) takes the usual Lagrangian form

srx =Y fx))uy. (10.16)

=1

As in the (univariate) polynomial case, based on the representation (I0.16)
we consider the Lebesgue function

A(@) = Y (@)
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Its maximum value, Ay := max,cq Ay(x) is referred to as the associated
Lebesgue constant and gives the norm of the interpolating projector Px :
C(Q) — Vx C Vo, with Vo = span{®(-,z) : = € Q}, both spaces equipped
with the sup-norm. As well-known in the polynomial case, either in the uni-
variate and in the bivariate case, there exist upper bounds for the Lebesgue
function. Moreover, many authors faced the problem of finding near-optimal
points for polynomial interpolation. All these near-optimal sets of N points
have a Lebesgue function that behaves in 1D like log(N) while as log®(N) in
2D (cf. [] and references therein).

We want to bound the Lebesgue constant and the Lebesgue function for
interpolation projectors using (I0.16). For a rather large class of kernel-based
multivariate interpolants, we can prove that the Lagrange basis functions
for N well-distributed data locations in a bounded Lipschitz domain with
an interior cone condition are uniformly bounded, and thus the Lebesgue
constant grows only linearly with NV, irrespective of the space dimension and
the kernel used.

For conditionally positive definite kernels with finite smoothness, sharper
results are possible. The classical Lebesgue constants grow only like v/ N,
and the generalized L, Lebesgue constants, defined as the norms of the in-
terpolation projectors between RY under a scaled ¢, norm and L,(f2) are
uniformly bounded, provided that the data locations are well-distributed.
Specific estimates for general scattered data locations are also available, and
some numerical examples in the next section show that the results are real-
istic.

We shall consider interpolation of d-variate functions on a bounded Lipschitz
domain Q C R? with an outer cone condition [Wen05]. Interpolation is done
on a set X = {x1,...,zn} of N scattered data locations or centers. Their
geometric relation to the domain €2 is described by the fill distance or mesh
norm

hxa = Sup iy [z — ;2

and the separation distance

min [z — ;1]

1
L W

T £z,

These parameters are used for standard error and stability estimates for mul-
tivariate interpolants, and they will be also of inportance here. The inequality
gx < hxq will hold in most cases, but if points of X nearly coalesce, ¢x can
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be much smaller than hx o, causing ionstability of the standard solution pro-
cess. Point sets X are called quasi—uniform with uniformity constant
~v > 1, if the inequality

§QX < hxo <vgx

holds. Later, we shall consider arbitrary sets of arbitrary cardinality, but
with uniformity constants bounded above by a fixed number. Note that hx o
and gx play an important role in finding good points for radial basis function
interpolation, as recently studied in [FT96, DMSWO05].

To generate interpolants, we allow conditionally positve definite translation-
invariant kernels @ of the form

(z,y) = ®(x —y), v,y € R?

which have generalized Fourier transforms on R? [Wen03).
For reasons to become apparent later, we consider two different classes of ker-
nels. First, there are kernels of limited smoothness measured by a parameter
7 with

0 < e(1+ Jlwl]l3) T < Bw) < O+ [lwly) T (10.16)

at infinity. This includes polyharmonic splines, thin-plate splines, the Sobolev/Matern
kernel, and Wendland’s compactly supported kernels. Second, there are ker-

nels with unlimited smoothness where the Fourier transform decays exponen-

tially at infinity, e.g. the Gaussian and various multiquadrics.

10.3.2 Results for Limited Smoothness

Under the assumption (I0.I6) the space Vx will be a subspace of Sobolev
space W7 (€2). Our central result then is

Theorem 10.17. The classical Lebesque constant for interpolation with ® on
N data locations X = {x1,...,2,} in a bounded domain Q C R? satisfying
an outer cone condition has a bound of the form

h T—d/2
Ay < CVN (—XQ> )

qx

For quasi-uniform sets with bounded uniformity ~, this simplifies to
Ay < CVN.

FEach single cardinal function is bounded by

T—d/2
hx.a

Il < © (—) |
ax
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which in the quasi-uniform case simplifies to
[ ooy < €

There also is an Ly analog of this. We compare the Ly(€2) norm of f with
its discrete counterpart h%?lﬂf‘xﬂg and note that the latter converges to a
multiple of the former, if f is smooth and if the discrete set X is quasi-uniform
and asymptotically dense. The generalized Lo Lebesque constant can then be
defined as the norm of the map

f|X — S£.X RN — L2(Q)
if the above norms are chosen.

Theorem 10.18. Under the above assumptions,

T7—d
hx.q & /2
s5.x@) < C o P ol fll2.x

and for quasi-uniform data locations with bounded uniformity ~v the general-
ized Lo Lebesque constant is uniformly bounded. The cardinal functions have
a bound

h T—d/2

X,Q /2

ooy < 0 (252) 0
ax

and for quasi-uniform data locations they behave like

d/2
]| 2a0) < Cha.

10.3.3 L., Bounds

Our most important tool for the proof of Theorem [I0.17 is the sampling
inequality (cf. [WRO05, Th. 2.6])
T—d T
lullzeo) < C (R *lullws@) + ulloex) . Yue WE(Q),  (10.18)
where X C (1 is a discrete set of points in €2 with fill distance hx . This is

independent of kernels.
We can apply the sampling inequality in two ways

Ispxlliwe < C (RS lsrxllwz) + I57.xloox)
< O (h5q lssxllwgo) + [ fllsex)
il < C (A% luillwg@ + luslloox)
< O (W3 luslwy@ +1)
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since we know that the space Vx is contained in W7 (§2). To get a bound on
either the Lebesgue constant or the norm of a cardinal function, we have to
find bounds of the form

Isllwz (@) < CX, 2, ®)|s]|oc,x

for arbitrary elements s € Vx. Such bounds are available from [SW02], but
we repeat the basic notation here. Let & satisfy (I0.16]). Then [SW02] has

Islfvs ) < Cax™HIsll3 x < CNgx ™ |s|1% x for all s € Vx

with a different generic constant. If we apply this to u;, we get

T—d/2
h
Il < C (( q);) ; 1) |

while application to s¢ x yields

T—d/2 T—d/2
h h
sl < € ((—q);) 1 Fllax + IIflloo,x) <c (VN (L) ; 1) T

qx

Then the assertions of Theorem [T0.17] follow. O.

10.3.4 L, Bounds

For the Ly case covered by Theorem [I0.1§ we take the sampling inequality
T a/2 T
£l < C (Bxallfllwg) + [ flecohis) . Ve W5 Q)  (10.18)
of [Mad06, Thm. 3.5]. We can apply the sampling inequality as

C
C (hxallssxllws@ + | fllacohia)
) 2 )

h T*d/2 d 2
C( ;XQ) ”f”fz(x)hX/,Qv i
C (Wxalluillwz @ + lujllecohye)

X,0 HUJ”W{(Q) + X,0
T—d/2

¢ ((te)™ " + 1) i

qx

. d/2
5. 1) W ollsrxllwr@ + lspxllohis)

IA A

;| L)

VAR VAN VAN

IN

This proves Theorem [I0.I8 O
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11 Hilbert Space Theory

This is intended as a short tutorial on Hilbert spaces as required in this text.
We only require fundamentals on linear spaces, bilinear forms, and norms.
If a reader has problems with any of the stated facts below, it is time to go
back to an introductory course on Calculus and Numerical Analysis.

11.1 Normed Linear Spaces

For completeness, we recall some basics from normed linear spaces over a

field K =R or C.

1. A sequence {u,}neny C N of a normed linear space N with norm || - ||»r
is a zero sequence in N, if the sequence {||u,||x}nen converges to
zero in R.

2. A sequence {u,},en C N is a convergent sequence in N with limit
u, if the sequence {u,, — u}, is a zero sequence.

3. A subspace M of N is a closed subspace, if for every convergent
sequence {uy}ney € M C N with limit u one can conclude that the
limit u also belongs to M.

4. The normed linear space N is complete or a Banach space, if every
sequence which is a Cauchy sequence in the norm || - ||y is necessarily
convergent in V.

5. A complete normed linear space is closed, since each convergent se-
quence is a Cauchy sequence.

6. A subset M of a normed linear space N is dense, if each element of
N can be written as a limit of a convergent sequence from M.

7. A linear mapping (or operator) A : N — M with values in a normed
linear space M with norm || - || is a continuous mapping or a
bounded mapping, if there is a constant C' such that

|Az||p < Cllz||
holds for all z € N.

8. The mapping A then has an operator norm

A
JAly = sup LAZlm
cem(o} |7lla

<C
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and the bound
[Az||pm < (| Al mllz ||

is best possible.
9. The most important special case arises for M = K, i.e. for linear

functionals A : N — K. If they are continuous, they have an
operator norm

Mz
e = A = sup A&

< C.
zen\{0} |||l

10. The space of continuous linear functionals on a normed linear space N
is a normed linear space under the above dual norm, and it is called
the dual space N* to N.

11. The kernel of a continuous linear map on a normed linear space is
always a closed subspace.

11.2 Pre—Hilbert Spaces

Definition 11.1. A set H and a mapping (-,-)y : H X H — K form a
pre-Hilbert space or a Euclidean space over K, if the following holds:

1. H is a vector space over K.

2. (+,)n 18 a Hermitian positive definite inner product, linear in the first
and antilinear in the second argument.

Then
)13, = (2, 2)p, x € H (11.2)

defines a norm on H, and we assume all readers to be familiar with this
notion. Sometimes, we shall weaken the assumptions on (-,-) and only
ask for symmetry and positive semidefiniteness. Even in this more general
situation, we have the Cauchy-Schwarz inequality

|(u, v)%| < |ulnlvy

for all u,v € H, where we use the notation |z|3, := (z,2) to denote a
seminorm instead of a norm as in (II.2). To prove the Cauchy-Schwarz
inequality for K = R as a warm-up, just consider the quadratic function

o(t) == |u+ tv|§{ = |u|?{ + 2t(u,v)y + t2|v|3{.
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It must be nonnegative, and thus it has none or a double real zero. This
property is satisfied for a general function ¢(t) = at® + 2bt + ¢, iff b* < ac
holds. But this is the square of the Cauchy-Schwarz inequality. An argument
like the one above is very frequent, and we call it the “parabola argument”.
In the complex case, the argument is similar. For real ¢, we get

o(t) == |u+ tvﬁ{ = |u|3{ + 2t Re ((u,v)y) + t2|v\§{

and see that
| Re ((u, v)5)]* < |ul3|v]F

holds, Taking purely imaginary ¢ leads to the same for the imaginary part,
proving the complex case, too.

Now we add some simple facts about pre-Hilbert spaces:

1. For two nonzero elements z,y of H over R one can define the cosine of
the angle /(z,y) as

_ (l’,y)y
oS = lallvlhe

2. Two elements x,y of H are orthogonal, if (z,y)y = 0. In that case,
the theorem of Pythagoras is

l+ I3, = 13 + i3,

and trivially proven by evaluating the left—hand side as
lz+yll5 = (@ +y, 2+ v = lely + @)+ (v 2)u+

3. Two subspaces U, V of a pre-Hilbert space are orthogonal, if all vec-
tors u € U, v € V are orthogonal, i.e.: (u,v)y = 0.

Roughly speaking, Euclidean geometry needs the definition of angles and
orthogonality. This is why one can also use the notion of an Euclidean
space here, provided that we work over R.

11.3 Sequence Spaces

For illustration, we can look at sequence spaces. Let I be a finite or
countably infinite set, and take the space

So := span {{&}ics : & # 0 for only finitely many i € I}. (11.3)
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Then take a sequence {\; };c; of positive numbers, and define the inner prod-
uct

({&Yier, {miticr) g == D N&mi

i€l
on Sy. Then Sy is a pre—Hilbert space with the above inner product, and
we should call it Sy ; now to make the dependence on the topology on )\;
apparent. The dual of Sy s is at least as large as the full sequence space
Seo 1= span {{u; }ier}
because we can let each p:= {;}icr € Soo act on each € := {&;}icr € Sp via
= Z &itbi
iel

because we only have finitely many nonzero &;.

If we allow infinite sequences, we have to be careful with convergence and
duality. But we can define the space

Sxr = span{{&}ier Z)\ &2 < oo} (11.4)

el

which clearly also has the above inner product, and it contains Sy ;. We
assert that its dual contains Si/y 7, and it can surely not be as large as S...
We can let each 11 := {p;}ier € Si/ar act on each & := {&}icr € Sy via

= Z &itbi
el
because we can use the Cauchy-Schwarz inequality

2

w@? = %&m
= mszglfﬂz
< (% )\z‘\fi\2> (; )\_i|ﬂi‘2>

= Sl el -

The linear map
R : Sipg— Sae pe {m/ A}
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has the properties
u(§) = Zu@-éz = Z )\igi% = (& R(p))a 1

and

(R(p), R(p))ar = Z&p_;/;“ = (M,/J)l/,\,l-

We shall generalize this later, but note that R is an antilinear isometry.

11.4 Best Approximations
Definition 11.5. An element u* of a subspace M of a normed linear space
N is a best approximation to a given element u € N, if

=l = sup [l — vllxe = Baa(a).
veEM

Theorem 11.6. An element u* of a subspace M of a pre-Hilbert space H is
a best approximation to a given element u € H, iff the variational identity

(u—u*,v)y =0 for allv e M (11.7)

holds. If it exists, the best approzimation is unique. If M is finite-dimensional
and spanned by linearly independent elements uy ..., uyr, then the coefficients
a* of the representation

M
ut=>" aju;
j=1
are solutions of the normal equations
M
Za;(uj,uk)H = (u,up)y, 1 <k <M.

J=1

The symmetric and positive definite matriz with entries (uj, uy)y in the above
system is called o Gram matrix. In this special case, the best approzimation
exists uniquely and can theoretically be calculated via the normal equations.

Proof: Let us consider the case K = R first. Let u* be a best approxima-
tion to u. To have another instance of the parabola argument, consider an
arbitrary v € M and form the quadratic function

up(a) = [lu—w" + awlfy = flu — w3 + 20(u — u, )y + o|v]l3,
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whose minimum must be attained at o = 0. This implies (u — u*,v)y = 0.
Conversely, assume ([L7) and write any other element v € M as v = u* +
1-(v—u*). Then (II.7) implies that the quadratic function u,«_, is minimal
at a = 0, proving uy- (1) = [lu = vllx = wur(0) = |Ju — u*[l3. I u* and
u™* are two best approximations from M to u, then we can subtract the two
variational identities (v — u*,v)y — (u — u**,v)y = (V™ —u*,v)y = 0 for all
v € M and insert v = ™ — u* to get ™ = u*. The third assertion is a
specialization of (7). This finishes the real case.

For the complex case, we have to discuss
up(a) = [lu— " + avll3y = [lu — w3 + 2 Re (a(u —u*,v)y) + |af[[v]l3

for all complex . If u* is a best approximation with (u — u*,v)y # 0, we
can take

(u—u*,v)y

| (u — ¥, v)y]

with some real ¢t and do the same argument as above to prove (ILT). The
other conclusions work like in the real case. O

a=t

Corollary 11.8. The first statement of Theorem[11.6 holds also in the case
of a positive semidefinite bilinear form. The Gram matriz in the finite-
dimensional case now s only positive semidefinite. ]

Corollary 11.9. Let Ay, ..., Ay be linear functionals on a pre-Hilbert space
H and let some u € H be given. An element u* of H solves the problem

|l = inf [0l
veEH
Aj(v) = Xj(u)
1<j<M
iff the variational identity
(v,u")y = 0 for allv € H with \j(v) =0, 1 < j < M.

holds, or iff there are scalars oy, ..., ap such that

M
(v, u )y =Y a\j(v) for allv € H.
=1
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Proof: Consider the subspace
M={veH : \v)=0,1<j<M}

and reformulate the problem by writing any v € H with A\;(v) = A\;(u), 1 <
J < Masv=u—wforwe M. Then we have a problem of best approx-
imation to u from M and can simply use Theorem to prove the first
assertion. We then have to prove that the first variational identity implies
the second. But this follows from a standard linear algebra argument that
we include for completeness as the next lemma. O

Lemma 11.10. If A : X — Y and B : X — Z are linear maps between
linear spaces, and if B vanishes on the kernel ker A of A, then B factorizes
over A(X), i.e.: there is a map C' : A(X) — Z such that B=Co A. If Z

is normed and if Y is finite-dimensional, then C' is continuous.

Proof: There is an isomorphism D : A(X) — X/ker A, and one can define
B @ X/ker A — Z by B(x + ker A) := B(z) because B(ker A) = {0}. Then
C := B o D does the job, since

C(A(x)) = B(D(A(z))) = B(x + ker A) = B(x)

forall z € X. If Y is finite-dimensional, the isomorphic spaces A(X) C Y and
X/ ker A must also be finite-dimensional. Since all linear mappings defined
on finite-dimensional linear spaces with values in normed linear spaces are
continuous, we are finished. O

11.5 Hilbert Spaces

So far, Theorem [I1.6] does not imply existence of best approximations from
subspaces of infinite dimension. It just characterizes them. To get existence,
we need that certain nice sequences actually have limits:

Definition 11.11. A pre-Hilbert space H over K with inner product (-, )y
is o Hilbert space, if H is complete under the norm || - ||z, i.e.: as a
normed linear space.

We now prove the crucial projection theorem in Hilbert spaces:

Theorem 11.12. If H is a Hilbert space with a closed subspace M, then
any element uw € H has a unique best approzimation Wy, from M, and the
elements uj, and u — u’, are orthogonal. The map Ilpy : H — M with
Iy (u) == uhy is linear, has norm one if M is nonzero, and is a projector,
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i.e. it is idempotent, meaning I1%, = . If Id is the identity mapping,
then Id — Il 1s another projector, mapping H onto the orthogonal com-
plement

M ={ueH : (u,v)y=0forallve M}.
of M. Finally, the decomposition

H=M+M"
is a direct and orthogonal sum of spaces.

Proof: The existence proof for approximations from finite-dimensional sub-
spaces is a consequence of Theorem [[T.6] and we postpone the general case
for a moment. The orthogonality statement follows in general from Theorem
[M1.6 and it yields Pythagoras’ theorem in the form

luallzy = Il = uhall3, + 1”11

This in turn proves that both projectors have a norm not exceeding one. It
is easy to prove that au’, + Bv}, is a best approximation to au + Sv for all
a,f € R and all u,v € H, using the variational identity in Theorem IT.6l To
prove linearity of the projectors, we use uniqueness of the best approximation,
as follows from Theorem [[1.6l Finally, surjectivity of the projectors is easily
proven from the best approximation property of their definition.

Thus we are left with the existence proof for the infinite-dimensional case.
The nonnegative real number Ej(u) can be written as the limit of a de-
creasing sequence {||u — v,||y}, for certain elements v, € M, because it is
defined as an infimum. Forming the subspaces

M, := span{vy,...,v,} T M
and unique best approximations w, to u from M,,, we get
Enm(u) < [Ju—walln < flu—onlla,

such that the sequence {||u — wy||3}n converges to Ex(u), too. We now fix
indices m > n and use that (u — wy,, w, — w,)y = 0 follows from the best
approximation property of w,,. Then we have

|u — wn”%—[ — Jlu— wm”?—l = |lu— wp + wy, — wn”%—[ — Jlu— wm”?—l
= ||u_wm||§{+2(u_wm>wm_wn)7-l
+wem — wn”%—l — Jlu— wm”%—l
= [Jwm — wallf;
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and since the sequence {||u — w, |3}, is convergent and thus a Cauchy se-
quence, we get that {w,}, C M is a Cauchy sequence in M C H. Now the
completeness of H assures the existence of a limit w* € H of this sequence,
and since M was assumed to be closed, the element w* must belong to M.
The above identity can be used to let m tend to infinity, and then we get

lu = wall3, =l = w*[l5, = [lw* = wall.
This proves
Em(u) < lu—wly < Jlu— wnll,
and since the right-hand side converges to Ea(u), the element w* must be

the best approximation to . O

We add two little applications:

Lemma 11.13. If an element [ from a Hilbert space H is orthogonal to H,
it 15 zero.

Proof: Take M = H in Theorem [T.I2] The space M* contains f, but it
is necessarily zero, so that f is zero. But a more simple and direct proof just
uses that f is orthogonal to itself:

1£13 = (f. flu = 0.
O

Lemma 11.14. If M is a dense subspace of a Hilbert space H, then the
closure of M 1is isometrically isomorphic to H.

Proof: The closure of M can be identified with a closed subspace N of H,
and we assert that A = H. To this end, decompose H into H = N + N+
and take an element u from A, It must be orthogonal to all elements from
M, and by continuity of the functional v — (u, v)y it must be orthogonal to
all of H. Thus it must be zero. O

11.6 Riesz Representation Theorem

We further need the Riesz representation theorem for continuous linear

functionals. To this end, we recall that the dual N* of a normed linear space

N consists of all continuous linear functionals A : N — R with dual norm
A(S)

[Ny := sup —=.
ren 120 || flla

It is a normed linear space under this norm.
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Theorem 11.15. (Riesz representation theorem)
Any continuous linear functional X\ on a Hilbert space H can be written as

A=(9)n (11.16)

with a unique element gy € H satisfying ||A||z- = [|gr]|n-

Proof: If A = 0, then g, = 0 does the job and is unique. If X # 0, the kernel
L of X is not the full space H. It is, however, a closed linear subspace, and
thus there is some element hy € £+ with |||l = 1. Now for each u € H
the element A(u)hy — A(hy)u must necessarily be in £ and thus orthogonal
to hy. This means

O = ()\(u)h)\ — )\(h,\)u, hA)'H,
Aw)(has ha)n = M) (s, ha)a,
AMu) = (u,M(hy)hy)n

and we can define gy := A(hy)hy to get (ITI0).

>~

>

The norm of A is bounded by

Mu
M = sup U
uernfoy |[ulla

< A

due to Cauchy-Schwarz, but using u = h, in the definition of the norm yields

equality. Since we set g) := A(hy)hy, we get [|[A]|x= = ||grllz- Uniqueness of

g satisfying (II.I6]) is easy to prove, because for any other g, with (I1T.16)

we have
(g)\ - ?])\, f)q.[ = )\(f) - )\(f) =0 for all f € H,
and thus gy, — g\ = 0 because it is orthogonal to the full space. O

Definition 11.17. The map
R : H* — H with A\ — gy for all \ € H*
on the dual H* of a Hilbert space H is called the Riesz map. Another de-

scription 1s

(f, RA)y = A(f) for all x € H*, f € H.

227



Theorem 11.18. The Riesz map is an antilinear isometric bijection between
a Hilbert space H and its dual H*. In particular, the dual norm can be written
as a Hilbert space norm based on an inner product (.,.)y satisfying

(RO\), R())we = (1, N for all A, ju € H
Thus any Hilbert space is isometrically isomorphic to its dual via the Riesz
map.

Proof: We already know that the Riesz map is well-defined and satisfies

|IR(A)||% = ||M|l3+- Tt also is antilinear due to
(f; R(aA + b))y = (aA+bu)(f)
= aA(f) +bu(f)

= a(f, R(\)w + b(f, R(
= (f,a-R(\)+b-R(p)

because this implies that R(aX + bu) — (@ - R(A
all of H, thus zero.

1)
)y forall f € H, a,beR
)

+b- R(u)) is orthogonal to

We already have
A )= (f,R(\))y forall feH, e H".
But now we use f = R(u) and get
MR(1)) = (R(1), R(\)n = p(R(N)) for all A\, u € H.
We define a “new” bilinear form
(i) == AR()) = (R(1), RO = A(BOV) for all A, € H*

on H* which clearly is positive definite and sequilinear, thus an inner product.
It generates the same norm as ||.||y+ due to ||A||x= = ||R(N)|| for all A € H*,
and we can rewrite it in the notation (.,.), = (.,.)sx.

Altogether, we now have that R is an injective isometric antilinear map from
H* to ‘H conserving the inner product. To prove that it is surjective, we can
take any f € H and generate a functional \; with

Ar(g) == (g, f)n for all g € H.
This functional clearly is continuous due to

[Ar(@)l = (g, F)ul < [[fllllgll for all g € H.
by Cauchy-Schwarz, and we compare f now with R(\;) to get

(gaf - R()\f))H = (gaf)H - <97R<)\f)>7-[
= (9,./)n—As(9)
= (gaf)'H_(gaf)’H:O

for all g € H, proving f = R(\y). O
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11.7 Reproducing Kernel Hilbert Spaces

As an important application of the Riesz theorem, we consider a Hilbert space
H with an inner product (.,.); and assume that H consists of real-valued
functions on a set ). Furthermore, we assume that all point—evaluation

functionals
by €EH + H—=R, f— f(x)

for all x € () are continuous, i.e.
102(F)| = 1f (@) < | flllldz]l32- for all f € H, z € Q.
Then the Riesz map takes each J, into a function
R(0,)(y) =: K(x,y) for all z,y € Q.

This defines a kernel
K :OxQ—=R

which is Hermitian due to

K(z,y) = R(
J

=
(

= K(y,x).

Furthermore, we have

f(l‘) = 5x(f) = (f7 R(5$))H = (f,K(l‘, ))'H for all z € Qa f € H,

and this is called a reproduction equation. In particular, when taking
f()=K(y,-), we get

K(y,z) = (K(y,-), K(z,-))y for all z,y € Q.

Then H is called a reproducing kernel Hilbert space with a reproducing
kernel K. By the Riesz theorem, we have proven that all Hilbert spaces of
functions with continuous point evaluations have a reproducing kernel.

11.8 Completion of Pre—Hilbert Spaces

Like the transition from rational numbers to real numbers by “completion”,
we can perform a transition from pre—Hilbert spaces to Hilbert spaces by a
very similar technique via equivalence classes of Cauchy sequences.

229



Theorem 11.19. Let ‘H be a pre-Hilbert space with inner product (-, -)y.
Then there is a Hilbert space J and an isometric embedding J : H — J
such that the following is true:

1. J(H) is dense in J.

2. Any continuous mapping A : H — N with values in a Banach space
N has a unique continuous extension B : J — N such that BoJ = A.

3. The Hilbert space J s unique up to a Hilbert space isometry.

Proof: We first form the space of all Cauchy sequences in H, which clearly
is a linear space over R. Two such sequences are called equivalent, if their
difference is a sequence in ‘H converging to zero. The space J now is defined
as the space of equivalence classes of Cauchy sequences in ‘H modulo zero
sequences. These classes clearly form a vector space under the usual opera-
tions on sequences. If we use an overstrike to stand for “class of”, we write
an element of J as {u,}, for a Cauchy sequence {u,}, € H. Now it is time
to define an inner product

({un}na {Un}n>j = nh_{glo(una Un)?—[
on J and the embedding J via the constant Cauchy sequences
Ju = {u}, = {u, = u},

for each w C H. Then
(Ju7 JU)f = <u7 U)H

makes sure that J is an isometry and injective. But we still have to show
that the inner product on J is well-defined and positive definite. If {u,},
and {v, }, are Cauchy sequences in H, then

lunlloe = llumllze] < flun = wmll

implies that the sequences {||u,||#}» and {||v,|/#}» are Cauchy sequences in
R, and thus convergent and bounded by constants C, and C,. But then

(um Un)?—l - (um7 Um)?—[ = (una Un)?-[ - (um Um)?—[ - (uma Um)?—[ + (una Um)?—[
= (una Un — Um)?—[ - (um — Unp, Um)?—l
S CuHUn_Um”?-["i_CvHum_unHH

proves that {(un,vn)x}n is a Cauchy sequence in R and thus convergent.
Two representatives of a class {u,}, differ just by a zero sequence that does
not affect the inner product’s value. The proof of definiteness again uses that
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zero sequences represent zero in 7. This finishes the proof of well-definedness
of the new inner product.

Thus J is another pre-Hilbert space that contains an isometric image of H,
and we first want to prove that J(?) is dense in J. Let us take an element
{un}n € J and use the fact that for each ¢ > 0 there is some K (€) such that
for all n,m > K(¢) we have

[t — umlly < €.
Now take m > K (¢) and the fixed Cauchy sequence {ty, }r, = J(tp,). Then
17 (tm) — TemFally = Jim [l — tnll < e
proves the density assertion.

We now proceed to prove completeness of 7. To do this we have to form

a Cauchy sequence {{u\™},}.. of equivalence classes {u{}, of Cauchy se-
quences {uﬁlm)}n C H. For each m € N we can use the density property of H
in J to find an element v,, € H such that

{ut™}n = J(vm)]|7 < 1/m.
Due to
on = vl = 11T (wa) = (0|l s
< ) = {ulYall g+

H{u Yo — (Yl + Y — T (0m) |2
— 0

for n,m — oo, the sequence {v,,},, is a Cauchy sequence in H. We now form

H{udY e = {ontalls < a3 — Tl + (1 (k) = {on}alls
< 1k + lim [fvx = valn
— 0

for k — oo, proving convergence towards {v, },.

Now let A : H — N be a linear continuous mapping with values in a
complete normed linear space N. If {u,}, is an element of 7, we define the
extension B on {u,}, by

B({un}n) == lim A(u,). (11.20)

n—oo
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Since A is continuous, it is bounded and due to
[A(um) = Alun) I < A llum — uall2

the sequence {Au, }, is a Cauchy sequence in /. But as AV is a Banach space,
the sequence is convergent and (IT.20) is well-defined. Clearly BoJ = A holds
by definition. Any two such extensions must agree on the dense subspace
A(H) of J, and since they are continuous, they must agree on all of 7.

Finally, if there are two completions J and J, we apply the first parts of the
theorem to the embeddings

{:’H—MZ
J : H—=J

This leads to two continuous maps

B : J—=J, BoJ=1J

B : J—=J, BoJ=1J (11.21)

and we conclude ~
BoB = Id onJ(H)
BoB = Id on J(H)

and this extends continuously to the completion, thus

BoB = Id on J
BoB = Id onJ.

But then we have isomorphisms between J and J which must be isometric
due to m The isometry property follows first on the dense subspaces
J(H) and J(H), but then also on the completions J and J. O

11.9 Applications

As an application, consider a pre-Hilbert space H of functions on some set
(2 having a reproducing kernel K : Q) x 2 — R in the sense

f(z) = (f, K(x,-))y forall feH, el

We now go to the completion J with the embedding J : H — J. The
linear functionals

5:): : f'_>f<x> and A\, : f'_><f7K('r7))H
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coincide on H and are continuous there. Thus there is an extension
N J—R
with )
Ae(J(f)) = A f) = (f, K(2,°))n = f(z) for all x € €.
On general elements g € J we can define the functional

g Aa(9) = (9. J(K(2.)g

which is in J* and vanishes on the dense subset J(#H) due to

<ﬂnﬂmew=:%§m»H
= M(J(f)) forall feH, 2.

Thus the functional is zero, proving the identity
5\x(g) = (ga J(K(l‘, )))\7 for all g e \7’ x €L

This equation can be interpreted as follows. Each abstract element g € J is
a function on €2 in the sense that

g(x) == X\alg) = (9, J(K(z,-))) s for all z € Q.

Via )
K(z, )= J(K(z,-)) for all x € Q

we get a kernel K such that the reproduction equation

g(z) = (9, K(z,)) s forallz € Q, g€ J

holds on J. This proves that the original kernel, when embedded into the
completion J of H, still works as a reproducing kernel in the completion,
and the completion is not just an abstract construction, but rather a Hilbert
space of functions on ).

Let us now look at sequence spaces from subsection [I.3l They can be
viewed as spaces of functions on I with a continuous point evaluation which
we simply define for a sequence & = {;}ics as

§(i) =&, i€l

The pre-Hilbert space Sy ) ; under its inner product (., .), s has a reproducing
kernel
. 0ij . .
K(i,j) := SR el
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since

£(7) =D N&K(5,1) = (& K(4,))ar for all § € Sy, j € 1.
iel
By completion of Sy, ; under its inner product, we get some Hilbert space
S with a continuous embedding J : Sp,; — S, and it is a sequence space
because we have a reproduction equation using the extended kernel. Since
we have an isometric embedding of S » ; into the space Sy ; of (IL4), we get
that S must be isometrically embedded in Sy ;. To prove that Sy; = S, we
take an arbitrary element & € Sy ; which is orthogonal to the subspace Sy » ;.
But then
gi = (g,K(Z, ')))\,I =0forallzel

proves £ = 0. Note that this avoids a direct proof that the space Sy is a
Hilbert space, using completion arguments instead.

Thus we see that Sy ; of (IL4) is the Hilbert space completion of S, s, and
it is a reproducing kernel Hilbert space with the kernel K defined as above.
The Riesz map

R : Sl/)\J = S;,I — S)\J

comes out as

R({pitier) == {%} for all {ui}icr € Siyaa
iier
and the kernel is the Riesz representer of the point evaluation functional, as
readers will quickly verify.

12 Required Results from Real Analysis

Here, we provide some material that is often not contained in standard
courses on Analysis or on Numerical Methods. But we assume readers to
be familiar with multiindex notation and partial derivatives.

12.1 Multivariate Taylor Formula

Theorem 12.1. Let x and y be two points in RY, and assume that a d—
variate real-valued function f is m—times continuously differentiable on the
line segment |x,y] connecting x and y. With the Taylor polynomial

L = >

|ee]=0
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we then have

[f) = (NI < lly — =l > iID“f(E(x,y,a))l

|a)l=m
with certain points (x,y, ) on the line segment between x and y.
Proof: We consider the univariate function
git) = flz+tly—=x)), 0<t<1

on [0, 1] and write down its standard univariate Taylor representation as

fly) = 911) , 1
— j I ! m (l_s)mi
= )3 g(J)(O)ﬁJr i gt )(S) Tl ds.

We now prove that the derivatives of g are
j j « o
B0 = 5 (7)0 sttty
|al=j

This is clearly true for 7 = 0, and we proceed by induction via

00 = 53 (1) st ity — o)y
= = () (Sorrse st ) o
- T () ose -

All multiindices o + e now have |« + ex| = j + 1, but we want to rearrange
them into multiindices § with |3| = j + 1. The number of possibilities such
a [ can be written as § = a + ¢y, is

P Rt R

B =a+e
la| =j
1<k<d




finishing the induction. Now Taylor’s formula yields
/ (y)
- S5 (Npr@e-oh

J=0 |al=j

+/o 2 X (W) pste sty oo = aras

laf=m

_ ZDa (_x)

jal=0 o N
dm [ Y Dot sty - )
lo|=m ’
and the residual has the bound
[f(y) = T=(f)(y))
< m [0 S Dt sty - s
o a!
< m/ (1= Y D f(a+s(y— ))|M
= a!
< ly—zl% sup - —ID“f($+8(y z))]
0s= ai=m
=yl X D (e v, 0))
la)]=m "
with certain points £(z,y, a) on the line segment between z and . O

12.2 Lebesgue Integration
12.2.1 L, spaces

Lemma 12.2. The shift operator S, : f(-) — f(- — z) is a conlinuous
function of z near zero in the following sense: for each given u € Lo(R?) and
each given € > 0 there is some 6 > 0 such that

152 (u) = ull ey < €
for all ||z||2 < 6.

Proof: to be supplied later....

We now want to prove that the space S of tempered test functions is dense
in Ly(R%). For this, we have to study functions like (IZI3) in some more
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detail. They are in S for all positive values of ¢, and Lemma [12.14] tells us
that the operation

f o MU = [ T @)ele = y)dy

R4

maps each continuous L; function f to a "mollified" function M,(f) such
that

lim M.(f)(2) = f(z)
uniformly on compact subsets of R?.

It is common to replace the Gaussian in (I2.16) by an infinitely differentiable
function with compact support, e.g.

ole.) = { () exp(=1/(€ ~ al}3) [l < ¢ } 123)

0 Jzll>e

where the constant c(€) is such that

/ o(e,x)dr =1
R4

holds for all ¢ > 0. This Friedrich’s mollifier can also be used in the
definition of M,. It has the advantage that Lemma I2.14 holds for more
general functions, i.e.: for functions which are in L; only locally.

We now want to study the action of M, on L, functions. Let u € Ly(R?) be
given, and apply the Cauchy-Schwarz inequality to

M) = [ (F@)yele.x =)y elex —y)dy

to get

|M(f) ()] Jra l[FW)Pe(e, 2 = y)dy [pa o(e, 2 — y)dy

Jra l[F (W) [Po(e, 2 — y)dy

[ INA

and
Lmn@idr < [ [ 17w)Pete Dy = [ 15)Pdy

such that M, has norm less than or equal to one in the L, norm. It is even
more simple to prove the identity

(f, Meg)Lz(Rd) = (M. f, Q)LQ(Rd)
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for all f,g € Ly(RY) by looking at the integrals. Here, we used the Fubini
theorem on R? which requires some care, but there are no problems because
everything can either be done with a Friedrich’s mollifier, or be done on
sufficiently large compact sets first, letting the sets tend to R? later.

We now use a Friedrich’s mollifier to study the L, error of the mollifica-
tion. This is very similar to the arguments we already know. The error is
representable pointwise as

fl@) = MP)@) = [ (@) = F)eles = y)dy

and we can use the Cauchy-Schwarz inequality to get

@) = MD@E< [ |f@) = )Pl - y)dy.

lz—yll2<e

This can be integrated to get
L@ = M p@Pde < [ wlez) [ 1+ 2) = fl)Pdydz,
R? llzllz<e R4

and we use the continuity of the shift operator as proven in Lemma [12.2] to
make this as small as we want by picking a suitably small e. This shows

11_13% If = Mc(f)ll2omey = 0
and proves

Lemma 12.4. The space S of test functions is dense in Ly(RY). O

Lemma 12.5. The space C*(RY) of compactly supported infinitely differen-
tiable functions is dense in Lo(R?).

Proof: We can use a standard density lemma to go over from an f € o(R%)
to a compactly supported function, and then we can use Friedrich’s mollifier
to generate an infinitely differentiable function. Both processes work with
arbitrarily small Ly errors. ]

12.3 Fourier Transforms on R

This section concerns an important tool for analysis of kernels on R?. There
are two major possibilities to pick a space S of test functions on R? to start
with, and we take the tempered test functions forming Schwartz space
S that are verbally defined as complex-valued functions on R? whose partial
derivatives exist for all orders and decay faster than any polynomial towards
infinity.
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Definition 12.6. For a test function u € S, the Fourier transform is

ti(w) := (2m) "2 /]Rd u(z)e " dr, (12.7)
where w varies in R? and z - w is shorthand for the scalar product 27w = w”x
to avoid the 7 symbol in the exponent. Since the definition even works for
general u € L;(R?), it is well-defined on S and clearly linear. Note that we
use the symmetric form of the transform and do not introduce a factor 27
in the exponent of the exponential. This sometimes makes comparisons to

other presentations somewhat difficult.

To get used to calculations of Fourier transforms, let us start with the Gaus-
sian u,(z) = exp(—y||x||3) for v > 0, which clearly is in the space of test
functions, since all derivatives are polynomials multiplied with the Gaussian
itself. As a byproduct we shall get that the Gaussian is positive definite on
R?. Fortunately, the Gaussian can be written as a d-th power of the entire
analytic function exp(—~22), and we can thus work on C¢ instead of R%. We
simply use substitution in

U (iw) = (21)"Y? fpaelBerwdy
= (QW)*d/%IIMl%/M [ o~ IVAT—w/2A13 g
— (Qﬂ,y)fd/%llwllé/ﬁw [ e*llyllédy

and are done up to the evaluation of the dimension-dependent constant
/ e_lly”%dy = Cd
R4

which is a d-th power, because the integrand factorizes nicely. We calculate
c? by using polar coordinates and get

2 = [ eIy
= ¥ e rdrdp
= o1 [ e rdr
= o (=2r)e " dr
= .

This proves the first assertion of
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Theorem 12.8. The Gaussian
Uy () = exp(—7llz[3)
has Fourier transform
5 (w) = (27) 23 (129

and is unconditionally positive definite on R,
To understand the second assertion, we add
Definition 12.10. A real-valued function

P:OxOQ—R

is a positive definite function on Q, iff for any choice of finite subsets
X =A{zy,...,zpm} CQ of M different points the matriz

Axo = (®(Tk, 7)) 1< s
s positive definite.

At first sight it seems to be a miracle that a fixed function ® should be
sufficient to make all matrices of the above form positive definite, no matter
which points are chosen and no matter how many. It is even more astonishing
that one can often pick radial functions like ®(z,y) = exp(||x — y||3) to do
the job, and to work for any space dimension.

Proof of the theorem: Let us first invert the Fourier transform by setting
B :=1/4v in (I2Z9):
exp(—flwl3) = (Anf) Y2 fpa e IFIE/ B ey
= (2m)Y2 [, (2B) Y2 olB/AB i gy

Then take any set X = {zy,...,zy} C R? of M distinct points and any
vector a € RM to form

M
oAy = 3 agonexp(—lle; — a3)
7,k=1
M
= Y aja(dmy) Y / o3 /4 g i (=) g
G k=1 R4
M
= (477)_(1/2/ e llela/4y Z ajake*m'(xrrk)dx
Re 7,k=1
M 2
= (4my)~9/? / el S et e > 0,
R :
7j=1
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This proves positive semidefiniteness of the Gaussian. To prove definiteness,
we can assume

M .
f(x) =) ae ™% =0
=1

for all z € R? and have to prove that all coefficients «; vanish. Taking
derivatives at zero, we get

0= DPS(0) = 3 oy

and this is a homogeneous system for the coefficients a; whose coefficient
matrix is a generalized Vandermonde matrix, possibly transposed and with
scalar multiples for rows or columns. This proves the assertion in one dimen-
sion, where the matrix corresponds to the classical Vandermonde matrix.
The multivariate case reduces to the univariate case by picking a nonzero
vector y € R? that is not orthogonal to any of the finitely many differences
xj —xy, for j # k. Then the real values y - x; are all distinct for j =1,..., M
and one can consider the univariate function

M .
o(t) = Flty) = Y. aye 5 = 0
j=1

which does the job in one dimension. O

Note that the Gaussian is mapped to itself by the Fourier transform, if we
pick v = 1/2. We shall use the Gaussian’s Fourier transform in the proof of
the fundamental Fourier Inversion Theorem:

Theorem 12.11. The Fourier transform is bijective on S, and its inverse
is the transform

u(z) = (2m) "2 /]Rd u(w)e™“dw. (12.12)

Proof: The multivariate derivative D of & can be taken under the integral
sign, because u is in §. Then

(D°G)(w) = (27)%/? / (@) (—iz) e dr,

R4
and we multiply this by w® and use integration by parts
WD) (w) = (2m)"Y? fpau(z)(—iz)®(i)* (—iw) e dy
= (2m)7? fra U@)(_m)a(’i)ﬁﬁ—ﬁ/ge*mwdx

= (2m) (1)l HBltB o e Dy (1)) d
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to prove that u lies in S, because all derivatives decay faster than any polyno-
mial towards infinity. The second assertion follows from the Fourier inversion
formula

() = (2m)~4/? / (W)™ duw

Rd
that we now prove for all v € S. This does not work directly if we naively
put the definition of @ into the right-hand-side, because the resulting multiple
integral does not satisfy the assumptions of Fubini’s theorem. We have to do
a regularization of the integral, and since this is a standard trick, we write it
out in some detail:

(2m) 72 [pati(w)e™@dw = (27)7% fpa fra u(y)e' @V dydw

= 1 —d i(z—y)w—ellwl3
11{%(2@ /Rd /Rd u(y)e 2dydw

- 1 —d i(z—y)w—elwl3
11\1%(27‘(‘) /]Rd </Rd e dw) u(y)dy

€

= lim | o(e,x —y)u(y)dy

e\0 JRd
with
; 2
(e, z) == (27r)’d/d eizeelellz gy, (12.13)
R
The proof is completed by application of the following result that is useful
in many contexts: U

Lemma 12.14. The family of functions (e, z) of (IZ13) approzimates the
point evaluation functional in the sense

u(z) =lim | ole,z —y)uly)dy (12.15)

for all functions u that are in Li(RY) and continuous around x.

Proof: We first remark that ¢ is a disguised form of the inverse Fourier
transform equation of the Gaussian. Thus we get

o€, 7) = (dme) W2 llzl3/4e (12.16)

and
/d (e, x)dr = (47re)’d/2/ e el3/Ae gy — 1.
R

R4
To prove (I2I5), we start with some given § > 0 and first find some ball
B,(x) of radius p(d) around z such that |u(z) — u(y)| < /2 holds uniformly
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for all y € B,(x). Then we split the integral in

| Jra p(e, 2 — y)(u(x) — u(y))dy|
f||yf:v||2§p o6,z —y)lu(z) — u(y)|dy
+ fy—z>p P67 — y)|u(z) — u(y)|dy
§/2 4 (dme)~U2er* /12| |u]|,

0

[u(z) — Jra (e, — y)u(y)dyl

IA I

IAINA

for all sufficiently small e. O

Due to the Fourier inversion formula, we now know that the Fourier transform
is bijective on S.

We now relate the Fourier transform to the L, inner product, but we have
to use the latter over C to account for the possibly complex values of the
Fourier transform. We define the inner product as

(f, 9) Lomay = /Rdf(:c)g(:c)dx (12.17)
without factors that sometimes are used.

Fubini’s theorem easily proves the identity

(U, a)Lz(Rd) = (27T)7d/2 /]Rd U(x) /]Rd u(y>e+ix.ydydx = (T}, U)L2(Rd)

for all test functions u,v € S. Setting v = W we get the Plancherel equa-
tion

(@7 a)[&(Rd) = (wa u)LQ(Rd) (1218)
for the Fourier transform on S, proving that the Fourier transform is isometric
on S as a subspace of Ly(R?).

12.4 Fourier Transform in Ly(R?)

The test functions from S are dense in Lo(R?) (see Lemma [2.4] for details),
and thus we have

Theorem 12.19. The Fourier transform has an Lo-isometric extension from
the space S of tempered test functions to Lo(R?). The same holds for the
inverse Fourier transform, and both extensions are inverses of each other in
Ly(RY). Furthermore, Parceval’s equation (IZ.18) holds in Ly(RY). O
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Note that this result does not allow to use the Fourier transform formula (or
its inverse) in the natural pointwise form. For any f € Lo(R?) one first has
to provide a sequence of test functions v, € & that converges to f in the
Ly norm for n — oo, and then, by continuity, the image f of the Fourier
transform is uniquely defined almost everywhere by

im || f = 0|, ey = 0.

This can be done via Friedrich’s mollifiers as defined in (IZ3)), replacing the
Gaussian in the representation (I2.I6) by a compactly supported infinitely
differentiable function.

A more useful characterization of ]? is the variational equation

(f.0) Larey = (f20) L ey

for all test functions v € S, or, by continuity, all functions v € Ly(RY).

12.5 Poisson Summation Formula

This comes in several forms:

()12 alk) = Y u(2w))

kezd jezd

2m) =23 ak)e™ T = 3 u(e + 2m9)
kezd jezd

2m) 23" w(k)e ™ = N aw + 27))
kezd jezd

—d)2 —ihkTw —d N 21
(2m) > u(hk)e = > a <w + T)
kezd jezd

but we shall have to assure in which sense and under which assumptions it
holds. The first clearly is a consequence of the second, if the second holds
pointwise. But we shall not discuss this here. The final two are variations of
the second, as follows from standard transformations.

Thus we focus on the second one first and see it as an equation in Ly(R?).
Both sides are 27-periodic, and the left-hand side can be viewed as the Fourier
series representation of the right-hand side. Thus we assume that the right-
hand side is a pointwise absolutely convergent series which is also convergent,
in Ly[—m,7]% To make the left-hand side meaningful, we assume that u is
in L, (R%).
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If we write the Fourier analysis of a d-variate 2m-periodic function f(z) as

— Z ckeikT’”, Cp = (27?)_‘1/ f(x)e_ikadx,

kEZd [_ﬂ-vﬂ-}d

we can apply this to the right-hand side f of the second form of the Poisson
summation formula. We get the coefficient

= (27r)d/[ y flx)e * = dy
. —d N —ikTy
= (2n) ) > u(z + 2mj)e dz

= (27r)*d[ . Z (z + 27§) 7sz(:v+27rj)dx
o jezd

_ —d —ikTt

— (©n) /R u(t)e= " tdt

= (2m) (k)
under our assumptions. Note that the above argument uses only Ls—continuous
transformations. This proves the second equation.

The third form can be deduced exactly like the second one, if we also in-
terchange the role of u and @ in the assumptions. Formally, we can use the
second for u instead of u and apply

>

(k) = a@”(=k) = u(=k).

The final form takes v(z) := u(hx) and applies the third inequality with

B(w) = h % (%)

following from
Bw) = (2m) 2 / v(x)e " dy
= (27?)_d/2/u(h:p)e_ith“/hd:p
= h_d(27r)’d/2/u(y)e’in“/hd:c

= hda(%).
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This yields

2m) 23 w(k)e ™ = 3 oy + 21j)

kezd jezad
) 279
(2m) 23 u(hk)e ™ = Ky @ <” 5 m)
kezd jezd
(27T)_d/2 Z u(hk)e—ihkTw _ h—d Z i (w + 22)
B h
kezd jEZ4

for n =: hw. But note that the above form is badly scaled. It should read
) 2 d/2 i
B2 u(hk)e e = (%) S a (w + %)
kezd jezd
in order to represent the fact that the left-hand side is a summation over
gridpoints with spacing h, while the right-hand side is a summation over a
grid with spacing 27“
12.6 Fourier Transforms of Functionals

With Plancherel’s equation in mind, let us look at the linear functional

Au(V) = (U, V) Ly ey

on S. We see that

Ap(v) = (aav)Lg(Rd) = (ua'[})Lg(Rd) = Au(0)

holds. A proper definition of the Fourier transform for functionals A, should
be in line with the functions u that represent them, and thus we should define

Ay = A5

or in more generality

A(v) = A(D)

for all v € §. Since the space S of test functions is quite small, its dual, the
space of linear functionals on S, is quite large. In particular, the functionals
of the form A, are defined on all of S, if u is a tempered function. The
latter form the space K of all continuous functions on R? that grow at most
polynomially for arguments tending to infinity.
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Definition 12.20. The Fourier transform of a linear functional A on S is
the linear functional A\ on S defined by

o~

M) = A®) or A(®) := A(v)

for allv € §. If the latter can be represented in the form A\, with a tempered
function w € KC, we say that w is the Fourier transform of X and write w = .
The generalized Fourier transform of a tempered function u € K is the
Fourier transform X\, of the functional \,.

Example 12.21

The functional 6, (v) := v(z) has the form
5, (v) = v(x) = (21)"? / (w)etTed,
R

and its Fourier transform is of the form \,, with

o~

Uz (w) =0 (w) =e

—iTw

Here, the normalization of the Ly inner product (I2.I7) pays off. Note that
the Fourier transform is not a test function, but rather a tempered function
from K and in particular a bounded function. The functional § := dy has the
Fourier transform ug = 1.

Example 12.22

A very important class of functionals for our purposes consists of the space
Pq = L of functionals of the form

Aax = > a;f(z;) (12.23)

T ex

for finite sets X C Q and a € RXI that vanish on PZ. Their action on a test
function v is

Aax(v) = Zajv(ﬂfj)

7j=1
M
= (27r)_d/2/ B(w) > ;e dw
Rd o
= Aux(D)
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such that the Fourier transform of the functional A\, x is the functional gen-
erated by the bounded function

M
Aax (W) = pax(w) == ae ™.
j=1
If we expand the exponential into its power series, we see that

Rx(@) = 33 ay(—ia; - w) /R

— Y ay (i - w) /]

since the functional vanishes on P%. Thus A, x(w) has a zero of order at
least m in the origin. If the functional )\, x itself were representable by a
function u, the function u should be Ls-orthogonal to all polynomials from
P2, We shall use both of these facts later.

Example 12.24

The monomials z® are in the space IC, and thus they should at least have
generalized Fourier transforms in the sense of functionals. This can easily be
verified via

(—i%)av(x) = (—i%)a (2m) =2 [oq D(w)e T dw

(2m) =2 [ou D(w)(—1 - iw) e dw
(2m) =2 [oq D(w)w et T dw,

and the associated functional is

at x = 0.

12.7 Special Functions and Transforms

This is intended as a reference and tutorial for classical formulas involving
special functions (e.g.: Gamma, Beta, and Bessel functions) and their trans-
forms. Results on Fourier transforms in general are in section (2.3l This
section, so far, is in raw and unsorted form, because all required formulae
are just collected here.
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12.7.1 Gamma Function

The Gamma function is defined by
I'(z) = / t*letdt
0

and has the properties

I(z+1) = z2I'(2), z¢ —-N
P(k+1) = Kk, keN
r'(1/2) = /.

The equation

Lo y—=17  _ I'(z)T(y)
/0 w1 —w)Y du = T@+ty)

for any x,y > 0 will be useful.

12.7.2 Volumes and Surface Integrals

The volume of the d-dimensional ball
B.(0):={z¢€ RY - |zl <7}

of radius 7 is i
rim

1B,(0) = ————.

vol B:0) = s am)

(12.25)

(12.26)

(12.27)

The surface area o,_; of the d — 1-dimensional sphere in R for d > 1 is

041 = vol (8%7Y) = 27%2/T'(d/2).

This follows for d > 2 from the representation
d—1 '
do = ] (sing;)*"dg,

=1

of the surface element do in terms of the angles

P S [O,ﬂ'], 1§j Sd—Q, PYd—1 € [0,271']

and univariate integration, while d = 1, 2 are standard.
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12.7.3 Bessel Functions
For Bessel functions, the standard source of information is [Wat95].

We consider the function F(r||w||2,d) defined by the integral
F(t,d) = / e~itE gy (12.29)
lyll2=1

over the surface of the unit ball in R? for t > 0,d > 2, and some ||z, =
1, z € R This integral is invariant under orthogonal transformations @ of
R¢, as is easily obtainable from replacement of z by Qz. Thus the integral is
independent of z, as already indicated by the notation, and we can assume
z=(=1,0,...,0) for its evaluation. Let o4_1 be the surface area of the d— 1-
sphere, i.e.: the boundary of the unit ball in R?. We now assume d > 3 and
integrate over the surface of the d — 1-sphere by summing up the integrals
over surfaces of (d — 2)-spheres, splitting y = (y1, ) and setting z -y = cos .
This yields
F(t,d) = /” it gy

yll2=1
s

—_ / ezt cos / dudgp
0 ull3=1-v7

— Ud—Q/O eitcosw(sin(w))d—ZdSO
1

_ 0d72/ ¢t (1 — 52)(d=9)/2
—1

and contains an instance of the Bessel function

Jo(t) = %/1 e (1 — s2)*T ds (12.30)

which is well-defined for Re (v) > —1. We end up with v = 452 and get
L(FHr(3)

F(t,d) = 0d72(t/22)(ﬁ)32j(d—2)/2(t) (12.31)

2m12(t/2) D2 Jaoa) (1),

Direct integration shows that this is also valid for d = 2 or v = 0, using
oy — 2.

12.7.4 Power Series of Bessel Functions

The Bessel function of (IZ30) has the power series representation

=3y o)

2) ZiT(v+j+1)

(12.32)
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that is valid for all ¢t € C\ {0} and all v € C. The integral representation
(I2.30) is first proven to be identical to the power series representation (I12.32)
on its domain of definition. Since the power series is convergent, everywhere,
the general definition of .J, can then be done by (IZ32]). We first expand the
exponential in

1 o0 (it)j
its(1 — 2\(2v—-1)/2 _
[ € (1—s%) ds Z i
7=0
_ i (it)
o 2!
and use symmetry to cancel the odd powers. The equation (I2.26]) will come

in handy after the substitution s> = u. Then
e’} (,lt>2]

(it)% ) L
. (2v—-1)/2 _ j—1/2 - (2v—-1)/2
X_: 21 L A fy W
= .]_
=L+ )05 (@)%

D

= T(G+v+1) 25!
_ i LT3 (2
— iT(j+v+1)\ 4

Jj=0

/1 $(1 — )2 1/2 g
-1

! /1 S (1 = §2)@=Di2gg
-1

uses the same split of ['(j + 1) as before. This can be put int (I230) to yield
the power series representation.

Looking at (I232]), we can define a function H, by

(5) (2 = H(*/4) = Z le 3 +/3)+ 1) (12.33)

for v € C. This function often occurs in the text.

In a very special situation the power series representation (IZ32]) implies

Lo = (3) R

1/2 oo (_ )j 2j
N <2) = 22]] (g —1)/2)((j1—t3)/2)---(1/2)ﬁ
_ (%) Jz:(:) e 'Jf; (12.34)
1/2
- (5) et

\/gco\/(_t)7
™ t
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and the other Bessel functions with half-integer order are similarly obtainable
as linear combinations of elementary functions.

12.7.5 Relations Between Bessel Functions

By differentiation of the H, function from (I2.33]) we get

d e (—rt)k
e = AL
_ T“ (=rt)*
- TS TR (1235
B o (—rt)*
B T%k!r(u+k+2)
= rH,1(rt).
and p . (i)t
a ) = e R
B ( ) (l/"‘k)tlﬁkkil
—'ng KT(v+k + 1) (12.36)

B i (_Tt)ktl/fl
S kKT -1+k+1)
= " 1H, |(rt).

We further need a special identity for Bessel functions:

tl/+1 1 1
— ts)s* (1 — s%)Vds, t —1 ——.
2”F(V+1)/o Ju(ts)s" (1 —s%)"ds, t > 0,v > —1,u > 5

(12.37)

Jutv1 (t) =
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Since the integral is finite, we can simply insert the power series and get

/Olj(ts)s“ﬂ( 2)ds = /01 ((f)“i (-) S — 2)ds

—J\C(p+j+1)

_ i D52 1T (p+j+ I (v+1)
OjF( j+1)2 F(,u—l—u—i—j—i—Q)
(—1)7(Lymhvie2i ) 2T (v + 1)

- i (=1)7(5)"* / SHH2FL(] 2 s
jﬂij+J+U
00 ( )_]( ;L+2j
= Y ' r““ r)¥dr
jﬂjru+9+12
(=
|

i T (p+rv+i+2))  tH!
— o e (D).
There is a special application in the text for v =0 and p = (d — 2)/2, with

1
Jupp(t) =t [ Jia2y(ts)s"ds, (12.38)
0

12.7.6 Bounds on Bessel Functions

We continue with two properties of Bessel functions from [NW91b]:

2d+2
Jip(z) < S, 2>0 (12.39)

1
2912 (1 +d/2)’
The second of these follows easily from the power series expansion, since

lim (g)ny(z) = !

E%z“@d@ = (12.40)

250 I'1+v)
L o
fimy 2 L@)_’Fu+u)

lim (+J,(2)° =

lim (=7 (2) = AL

Unfortunately, equation (I2.39) is much more difficult and must (for now)
be left to the cited literature. Similarly, there is a weaker, but more general
bound

|, (z)] <1 (12.41)

253



for all x € R and v > 0 (JAS70], 9.1.60, p. 362). Both of the above bounds
should combine into the general inequality

[ T(jz)] <]z 7?), 2 — o0 (12.42)
in view of [AS70], 9.2.1, p. 364. These things will be added later.

12.7.7 Integrals Involving Bessel Functions
From [AS70] 11.4.16, p. 486 we take the moment equations

© (4t 1)/2)
/O P =2 g

which are valid for Re (v + ) > —1, Re (u) < 1/2. We now use these to
derive similar equations for the H, functions by

/ T H,(s)ds = /0 T (224 H, (% /4)(2/2)d=

0

(12.43)

= [Ty e e 2
o0 12.44
— vl /0 2L () dz (12.44)

I'(p+1)
I'(v—p)
forp>—land v >2p+ 1.

Another citation from [AST70] 11.4.41, p. 487 is the Weber-Schafheitlin
integral

/0 - t=r L, (at) g, (bt)dt

0 O<b<a
_ 2,ufu+lal,u(b2 _ a[2)1/f,u71

b
P = ) 0<a<

(12.45)
for Rev> Repu>—1and a#b>0.
12.7.8 Bessel Functions of Third Kind
The Bessel function K, of third kind (alias Mcdonald function) is defined as

K,(z):= /OOO et cosh(vt) (12.46)
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for z #0, |argz| < 7/2 and all v € C. From this it follows that
K, =K., (12.47)

holds and that K, is positive for real parameters v, z. For the special case
Re v > —1/2 there is an integral representation

_ 7T1/2(Z/2)V

K, (2) = m/ﬁ e (12 — 1)V 241, (12.48)

Its asymptotics near zero is

+0o(1) (12.49)

for v > 0 and real, while it behaves like

K, (2) = ﬁe’z(l +z7h), (12.50)

V22

near infinity for |v| > 1/2. The asymptotics of K, near zero are like
1
Ky(r) = = —log(r/2) + o(1) for r — 0.
e

Due to [AS70], 11.4.44, p.488 it is related to the J, Bessel functions via the
identity

oo vl (at Koo V=L
/ Jo(at) K, (az) (12.51)
0

(24 2)p 1 2D (i + 1)
fora,z >0, =1 <v < 2u+ 3/2. It satisfies the differential equations

Ky(2) = Koa(2) = K, (2)
d “ (12.52)
a(z”Ky(z)) = —2"K, 1(2).
The second equation, combined with (I2.47), proves that the functions K, (x)z”
for x > 0, v > 0 are nondecreasing for x > 0 with exponential decay at in-
finity. These functions occur as reproducing kernels of Sobolev spaces and
are often called Matérn kernels or Sobolev kernels.
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