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These pages are intended for the audience of my lecture on the Mathematics of Computer–Aided
Design, Univ. Göttingen 2010. The text is based on an earlier manuscript I wrote for 1999/2000
and 2002/2003, but it is extended at certain places. It requires some knowledge of standard
material that is accessible in almost every book on Computer–Aided Design. I concentrate on
some nonstandard stuff here. In particular, the way of introducing B–splines seems to be rather
unusual, but efficient.

R. Schaback, TEXed 4. Mai 2010

1 Some Simple Splines

Splines are piecewise polynomial functions or curves, which are patched together in a suitable
way to form smooth functions or curves. Each part can be called a “patch”, and the main
problem is to handle such curves together with their smoothness conditions at the patch
boundaries.

1.1 Polygonal curves

The simplest spline is the “connect–the–dots” polygonal line, which is C0 and has no serious
continuity problem.

1.2 Quadratic Splines

The next case will consist of pieces of quadratic polynomials, which we could write as Bernstein–
Bezier patches with control nets [b2i, b2i+1, b2i+2] for i = 0, . . . , n to make them automatically
continous at the patch boundary points b2i. If we parametrize each patch over an interval of
the same length, we get the C1 conditions

b2i+1 + b2i−1

2
= b2i, 1 ≤ j ≤ n − 1.

If we consider the b2i as given, the remaining control points can be expressed via

b2i+1 = 2b2i − b2i−1

recursively, such that in general

b2i+1 =
i−1
∑

j=0

(−1)jb2i−2j + (−1)ib1, 1 ≤ i ≤ n − 1.

and finally

b2n−1 =
n−2
∑

j=0

(−1)jb2n−2−2j + (−1)n−1b1.

This means that the control points b1 and b2n−1 are related by

b2n−1 − (−1)n−1b1 =
n−2
∑

j=0

(−1)jb2n−2−2j
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where the right–hand side is given by the data. Conversely, any choice of control points b1 and
b2n−1 with this property will lead to a C1 curve interpolating the points b2i.

But one can proceed differently, assumeing points b2i+1 for −1 ≤ i ≤ n to be given, with two
auxiliary points b1 and b2n+1 at the end. Then

b2i :=
b2i+1 + b2i−1

2
, 0 ≤ j ≤ n

will lead to a C1 spline curve without problems.

If we now look at subdivision at midpoints, we see that we have a case of “corner cutting”. The
partial control polygon [b−1, b1, . . . , b2n−1, b2n+1] gets its corners gut at 1/4 distance to the next
point, and we know by the standard subdivision argument that this will generate the pecewise
quadratic curve. This simple scheme is due to Chaikin, and it is the first case of a subdivision
that can be implemented as a simple geometric rule on a control net.

1.3 Cubic Splines

Assume that we want to patch together a C2 curve consisting of cubic patches with control
nets [b3i, b3i+1, b3i+2, b3i+3] for i = 0, . . . , n− 1 with a total of 3n + 1 control points in IRd, since
we already made sure by notation that the curve will be C0 at the b3i for i = 1, . . . , n−2. If we
assume each patch to be defined over a parameter interval of the same length, the smoothness
conditions will be

b3i+1 − b3i = b3i − b3i−1

b3i+2 − 2b3i+1 + b3i = b3i − 2b3i−1 + b3i−2

for i = 1, . . . , n − 2. Like for univariate classical splines, we assume the b3i =: fi to be given
and use “second derivatives at the junctions” as unknowns. These are

si := b3i − 2b3i−1 + b3i−2

= b3i+2 − 2b3i+1 + b3i

where we have put the C2 transition condition into the notation. We then have to show how
the other control points can be derived from the si and the b3i = fi, and we have to write down
the C

1

condition.

We start with

si+1 + 2si = b3i+3 − 2b3i+2 + b3i+1 + 2b3i+2 − 4b3i+1 + 2b3i

= b3i+3 − 3b3i+1 + 2b3i

si+1 + 2si − fi+1 + fi = −3(b3i+1 − b3i)
si−1 + 2si = b3i−1 − 2b3i−2 + b3i−3 + 2b3i − 4b3i−1 + 2b3i−2

= b3i−3 − 3b3i−1 + 2b3i

si−1 + 2si − fi−1 + fi = −3(b3i−1 − b3i)

and note that we can use the third and sixth equation to get the missing control points from
the unknowns and the given data via

si+1 + 2si − fi+1 − 2fi = −3b3i+1,
si−1 + 2si − fi−1 − 2fi = −3b3i−1.

(1.1)
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The C
1

condition then is

0 = −3(b3i−1 − b3i) − 3(b3i+1 − b3i)
= si+1 + 2si − fi+1 + fi + si−1 + 2si − fi−1 + fi

= si+1 + 4si + si−1 − fi+1 + 2fi − fi−1

or, as a vector equation,

si+1 + 4si + si−1 = fi+1 − 2fi + fi−1, 1 ≤ i ≤ n − 1.

For i = 0 and i = n we get the equations

s1 + 2s0 − f1 + f0 = −3(b1 − b0)
sn−1 + 2sn − fn−1 + fn = −3(b3n−1 − b3n)

and assume b1 and b3n−1 to be given. Altogether we get a block system of equations with a
matrix

























2I I 0 0 . . . 0
I 4I I 0 0

0 I 4I I
...

...
. . .

. . .
. . .

...
0 I 4I I
0 . . . . . . 0 I 2I

























which has three bands of scaled d × d identity matrices I. We can deal with it blockwise as if
we had the real–valued matrix

























2 1 0 0 . . . 0
1 4 1 0 0

0 1 4 1
...

...
. . .

. . .
. . .

...
0 1 4 1
0 . . . . . . 0 1 2

























which is diagonally dominant and has eigenvalues between 1 and 6 due to Gerschgorin’s theorem,
independent of its size. Thus the system is solvable by O(n) operations. It can be checked that
the solution in terms of the si and after use of (1.1) is indeed C2.

This construction will have drawbacks if the data fi = b3i are very unevenly distributed. In
such a case, one can come closer to arclength parametrization if the patch between fi = b3i

and fi+1 = b3i+3 is parametrized over an interval of length ‖fi − fi+1‖2. Now the transition
conditions are somewhat more complicated.

We shall come back to the more general construction of cubic spline curves in Section 3. bla

2 Multiaffine Forms

2.1 Elementary Properties

Definition 2.1 A mapping

M :
(

IRk
)n → IRd

is a symmetric multiaffine form of degree n on IRk with values in IRd, iff
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1. M is affine in each argument,

2. the values of M are independent of the order of the arguments.

The set of such M is denoted by SMAF (n, k, d). Symmetric multiaffine forms are also called
polar forms or blossoms.

If an argument x of a symmetric multiaffine form M is repeated r times, we write r#x instead of
x, x, . . . , x with r repetitions. We suggest to read r#x as “r times x”. For an affine combination
c = λa + (1 − λ)b of a vector c in terms of a and b and a scalar λ we shall frequently use

M(c, . . .) = λM(a, . . .) + (1 − λ)M(b, . . .)

either from left to right (i. e. replacing c by a and b) or right to left (i.e. coalescing a and b into
c).

Note that the arguments of M are vectors in general, and M is vector–valued. The image space
IRd will usually be of dimension d = 2, 3, 4, and k will be 1 for curves and 2 for surfaces.

Readers may consider multiaffine forms as a rather exotic subject. But if we write a univariate
real–valued polynomial p with real roots x1, . . . , xn as

p(x) =
n
∏

i=1

(x − xi)

it is clear that we have a symmetric multiaffine form of x1, . . . , xn for each fixed x. Furthermore,
all coefficients of p are multiaffine forms, and for n = 2 we get the three examples

M(x1, x2) = 1
M(x1, x2) = −(x1 + x2)
M(x1, x2) = x1 · x2

from the coefficients of p. This can easily be generalized to

p(x) =
n
∑

j=0

xn(−1)n−jSn
n−j(x1, . . . , xn) (2.1)

with the classical elementary symmetric functions

Sn
j (x1, . . . , xn) :=

∑

j1 + j2 + . . . + jn = j
jk ∈ {0, 1}

xj1
1 xj2

2 · · · xjn

n (2.2)

having the property

Sn
j (n#x) =

(

n
j

)

xj. (2.3)

In fact, evaluating the product form of p via the multinomial formula yields both (2.1) and

(2.2), while (2.3) follows from the fact that there are
(

n

j

)

indices in (2.2), because
(

n

j

)

is the
number of ways one can pick j out of n items.
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Equation (2.3) is a fundamental observation when read from right to left. It then means that
each monomial xj can be written as

xj =
1
(

n

j

)Sn
j (n#x)

via a symmetric multiaffine form Sn
j of some order n ≥ j with fully coalescing arguments. This

fact will be proven below, but we start with an easier fact:

Lemma 2.1 Let a polar form M ∈ SMAF (n, k, d) be given. If an argument t ∈ IRk of M
occurs precisely j times, and if all other arguments are kept fixed, the form M is a k–variate
polynomial of degree at most j as a function of t.

Proof: We proceed by induction over j, and the case j = 0 is trivial. Let the assertion hold for
j < n, and look at M(j + 1#t, xj+2, . . . , xn). We write

t =
∑

m

tmem +

(

1 −
∑

m

tm

)

0

and get

M(j + 1#t, xj+2, . . . , xn) = M(j#t, t, xj+2, . . . , xn)

=
∑

m

tmM(j#t, em, xj+2, . . . , xn)

+

(

1 −
∑

m

tm

)

M(j#t, 0, xj+2, . . . , xn)

and get the assertion. 2

Note how the trick of the above proof can be used repeatedly to evaluate M in terms of its
values on unit vectors and zero.

Corollary 2.1 For any polar form M ∈ SMAF (n, k, d) the function M(n#x) is a k–variate
polynomial of degree at most n with values in IRd as a function of x.

Lemma 2.2 Any symmetric multiaffine form M ∈ SMAF (n, k, d) for n > 1 can be uniquely
written as

M(x1, . . . , xn) = A(x2, . . . , xn)x1 + B(x2, . . . , xn)

with A ∈ SMAF (n − 1, k, d · k) and B ∈ SMAF (n − 1, k, d).

Proof: As M is an affine function of x1, one can clearly write M in the above form, but it must
be shown that A and B are multiaffine forms of x2, . . . , xn and unique. For B we get this due
to

B(x2, . . . , xn) = M(0, x2, . . . , xn).

Furthermore, the action of A as a matrix on a vector z is

A(x2, . . . , xn)z = M(z, x2, . . . , xn) − M(0, x2, . . . , xn)

and thus A is clearly symmetric and multiaffine in x2, . . . , xn. 2

Note that Lemma 2.2 also yields an easy inductive proof of Corollary 2.1.

We now go for the already announced converse result:
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Theorem 2.1 For each k–variate polynomial P of degree at most n with values in IRd there
is precisely one polar form MP ∈ SMAF (n, k, d) such that P (x) = MP (n#x).

Proof: We first concentrate on the existence of MP . For the univariate real–valued case we
can use the elementary symmetric functions and (2.3) to get the result for the monomials,
and by linear superposition also for arbitrary polynomials. The vector–valued case can be done
componentwise from the scalar–valued case, and we are left with the scalar–valued multivariate
case. But we can vary (2.2) for

Sn
α(x1, . . . , xn) =

∑

α1 + . . . + αn = α
αj ∈ {0, 1}k

xα1

1 · · ·xαn

n for all α ∈ ZZk
≥0, x1, . . . , xn ∈ IRk

in standard multivariate notation

zβ =
k
∏

j=1

z
βj

j for all z ∈ IRk, β ∈ ZZk
≥0

and see that xα and Sn
α(n#x) coincide up to a positive factor.

We now have to prove uniqueness of MP for given P . Assume that a polar form M ∈
SMAF (n, k, d) with M(n#x) = 0 for all x ∈ IRk is given, and we have to show that
M(x1, . . . , xn) is zero for all xj ∈ IRk. We proceed by induction on n and state that the
case n = 1 is trivial. Writing

M(x1, . . . , xn) = A(x2, . . . , xn)x1 + B(x2, . . . , xn)

with A ∈ SMAF (n − 1, k, d · k), B ∈ SMAF (n − 1, k, d) due to Lemma 2.2, we get
∇x1

M(x1, . . . , xn) = A(x2, . . . , xn). Now

0 = ∇xM(n#x)

=
n
∑

j=1

∇xj
M(x1, . . . , xn)|n#x

= n∇x1
M(x1, . . . , xn)|n#x

= nA(n − 1#x)

because M is symmetric. By induction, the matrix–valued polar form A must vanish, and we
get B(n − 1#x) = 0. Again, induction yields B = 0. 2

At this point, we can look more closely at the polar form of the gradient ∇xP of a multivariate
polynomial P corresponding to a multiaffine form MP . Since the derivatives with respect to all
arguments are equal, we have

∇xP (x) = n · ∇MP (n#x) = n · (∇x1
MP (x1, . . . , xn))|n#x = n · A(x2, . . . , xn))|(n−1)#x

using A and B as above. This implies

M∇xP (x2, . . . , xn) = n · A(x2, . . . , xn)
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because the multiaffine form for ∇xP is unique and n ·A does the job. For any x and x+h ∈ IRk

we can write

A(x2, . . . , xn)h = MP (x + h, x2, . . . , xn) − MP (x, x2, . . . , xn),

and thus we get

M∇xP (x2, . . . , xn)h = n(MP (x + h, x2, . . . , xn) − MP (x, x2, . . . , xn))

for all x, h ∈ IRk. If all arguments are scalar (i.e. k = 1), then

MP ′(x2, . . . , xn) =
n

h
(MP (x + h, x2, . . . , xn) − MP (x, x2, . . . , xn)) (2.4)

for all x, h ∈ IR with h 6= 0. We shall use (2.4) later.

Let us look at directional derivatives ∇T
x r in the case of nonscalar arguments. We get

M(∇T
x r)P (x2, . . . , xn) = n ·A(x2, . . . , xn)r = n ·(MP (y+r, x2, . . . , xn)−MP (y, x2, . . . , xn)) (2.5)

for arbitrary y by the same line of argumentation.

2.2 The Algorithm of de Casteljau Revisited

Assume that we have a polynomial curve of degree n ∈ IRd over [α, β] ⊂ IR in Bernstein–Bézier
form

P (t) :=
n
∑

j=0

bj

(

t − α

β − α

)j (

β − t

β − α

)n−j

=: BB[b0, . . . , bn][α,β]

with control points bj ∈ IRd. We can express the control points as values of the unique symmetric
multiaffine form MP associated with P :

Theorem 2.2 For any polynomial curve P of degree n in IRd over [α, β] ⊂ IR in Bernstein–
Bézier form, the control points b0, b1, . . . , bn are representable as

bj = MP (n − j#α, j#β), 0 ≤ j ≤ n.

Proof: We define cj by the right–hand side of the above representation, and we define Q to be
the Bernstein–Bézier polynomial curve with control points cj . We shall first prove P = Q and
then get bj = cj from the uniqueness of the Bernstein–Bézier representation.

If we define cn
j := cj and proceed by the deCasteljau algorithm for some t ∈ [α, β] as

cr
j =

(

t − α

β − α

)

cr+1
j+1 +

(

β − t

β − α

)

cr+1
j ,

we get
cr
j = MP (r − j#α, n − r#t, j#β), 0 ≤ j ≤ r ≤ n
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by induction
(

t−α
β−α

)

cr+1
j+1 +

(

β−t
β−α

)

cr+1
j =

(

t−α
β−α

)

MP (r − j#α, n − r − 1#t, j + 1#β) +
(

β−t
β−α

)

MP (r + 1 − j#α, n − r − 1#t, j#β)

=
MP (r − j#α, n − r#t, j#β)

because of the affine combination

t =

(

t − α

β − α

)

β +

(

β − t

β − α

)

α.

Now c0
0 = Q(t) = MP (n#t) = P (t) holds, and we are finished. 2

Corollary 2.2 The intermediate points br
j of the deCasteljau algorithm

br
j =

(

t − α

β − α

)

br+1
j+1 +

(

β − t

β − α

)

br+1
j

starting with bj =: bn
j and corresponding to a polynomial P over [α, β] satisfy

br
j = MP (r − j#α, n − r#t, j#β), 0 ≤ j ≤ r ≤ n.

2

a t b

M(a,a,a)

M(a,a,b) M(a,b,b)

M(b,b,b)

M(a,a,t)

M(a,t,b)

M(t,b,b)
M(a,t,t)

M(t,t,b)M(t,t,t)

The above figure shows the values of the multiaffine form M corresponding to a Bernsterin–
Bézier representation of a polynomial of degree 3 over [a, b], if the de Casteljau algorithm is
carried out for an intermediate point t.
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2.3 Subdivision

We specialize Corollary 2.2 and get

br
0 = MP (r#α, n − r#t), 0 ≤ r ≤ n

br
r = MP (n − r#t, r#β), 0 ≤ r ≤ n.

With Theorem 2.2 this proves

Theorem 2.3 If the control points bn
j , 0 ≤ j ≤ n represent a polynomial P in Bernstein–

Bézier form over [α, β], then the deCasteljau control points br
0 = MP (r#α, n− r#t), 0 ≤ r ≤ n

represent P over [α, t], while br
r = MP (n − r#t, r#β), 0 ≤ r ≤ n represent P over [t, β]. 2

Subdivision can be used recursively for generating approximations to the actual curve. We
prove convergence of this process later. The recursion is stopped by a flatness test that we
analyze now. The basic idea is that the curve is a straight line if the control points lie on a line
(by the convex hull property). How far is a curve from a straight line if the control points are
“nearly” on a line?

By degree elevation of the line segment L(t) between the control points b0 and bn of a polynomial
P (t) in Bernstein–Bézier representation over [α, β], we get the representation of L by control
points cj := b0 + j

n
(bn − b0), 0 ≤ j ≤ n. Now

‖P (t) − L(t)‖ = ‖
n
∑

j=0

(bj − cj)β
n
j (t)‖

≤
n
∑

j=0

|βn
j (t)|‖bj − cj‖

≤ max
0≤j≤n

‖bj − cj‖
n
∑

j=0

βn
j (t)

= max
0≤j≤n

‖bj − cj‖ · 1

= max
0≤j≤n

‖bj − b0 −
j

n
(bn − b0)‖

is a bound on the distance of a point of the curve P (t) to a point on the line L(t) at a parameter
t ∈ [α, β]. Note that we have used the partition of unity property of Bernstein polynomials βn

j (t)
of degree n.

Recursive subdivision is stopped if the above bound is smaller than a prescribed constant.
Then either the line segment between bo and bn or the control polygon through b0, . . . , bn is
used as an approximation of the curve segment. The analysis of the error wrt. the latter will
be treated later, because it requires spline theory.

2.4 Convergence of Subdivision

We now want to show that the quantity

max
0≤j≤n

‖bj − b0 −
j

n
(bn − b0)‖

decreases quadratically during repeated subdivision. More precisely:
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Theorem 2.4 If a polynomial curve P is represented in Bernstein–Bézier form over [α, β],
there is a constant C depending only on P, α, and β, such that for the representation of P over
any subinterval [α′, β ′] ⊆ [α, β] with control points b0, . . . , bn the error bound

max
0≤j≤n

‖bj − b0 −
j

n
(bn − b0)‖ ≤ C(β ′ − α′)2

holds.

In other words, subdivision at the midpoint of the interval can be expected to reduce the error
wrt. the line through b0 and bn by a factor of 0.25 in the limit. Or, each subdivision step usually
gives two binary digits of relative accuracy.

Proof: Of course, we represent the control points as

bj = MP (n − j#α′, j#β ′), 0 ≤ j ≤ n

and perform a Taylor expansion of the vector–valued univariate functions

gj(t) := MP (n − j#α′, j#α′ + t ∗ (j#1))), 0 ≤ j ≤ n

around zero. Here, we write j#β ′ = j#α′ +(β ′−α′)∗ (j#1) and get, taking points ξj ∈ [α′, β ′],

gj(β
′ − α′) = gj(0) + (β ′ − α′)g′

j(0) + (β ′ − α′)2g′′
j (ξj)/2

bj = b0 + j(β ′ − α′)M ′
P (n#α′) + j2(β ′ − α′)2M ′′

P (n − j#α′, j#α′ + ξj ∗ (j#1))/2
bn = b0 + n(β ′ − α′)M ′

P (n#α′) + n2(β ′ − α′)2M ′′
P (n#α′ + ξn ∗ (n#1))/2

using symmetry of the j arguments that are used for differentiation. In fact, we have g′
j(0) =

jM ′
P (n#α′), where we write M ′

P for any of the partial derivatives of MP , which coincide by
symmetry. For the same reason we can just write M ′

P and M ′′
P , respectively. Now we evaluate

bj − b0 − j
n
(bn − b0) and see that the constant terms drop out right away, while the linear terms

vanish due to

j(β ′ − α′)M ′
P (n#α′) − j

n
n(β ′ − α′)M ′

P (n#α′) = 0.

The rest is bounded above by

n2(β ′ − α′)2 sup
x1,...,xn∈[α,β]

‖M ′′
P (x1, . . . , xn)‖,

proving the assertion. 2

2.5 Continuity Conditions

We now look at conditions for a Cm transition from a Bernstein–Bézier representation

P = BB[b0, . . . , bn][α,β]

of a polynomial curve P on [α, β] to a Bernstein–Bézier representation

Q = BB[c0, . . . , cn][β,γ]

of a curve Q on [β, γ]. We assume both degrees to be equal. If this is not satisfied, degree
elevation should be applied.
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We first look at the polynomials

Pk := BB[bn−k, . . . , bn][α,β], Qk := BB[c0, . . . , ck][β,γ]

of degree at most k, and defined by a Bernstein–Bézier representation of k + 1 control points
near the transition.

Theorem 2.5 For 0 ≤ m ≤ n, the polynomials P and Q of degree at most n have a Cm

transition at β, if and only if the polynomials Pk and Qk coincide for 0 ≤ k ≤ m.

Proof: Let’s look at the derivatives:

Q(j)(β) =
n!

(n − j)!(γ − β)j
∆jc0, 0 ≤ j ≤ n,

Q
(j)
k (β) =

k!

(k − j)!(γ − β)j
∆jc0, 0 ≤ j ≤ k.

P (j)(β) =
n!

(n − j)!(β − α)j
∆jbn−j , 0 ≤ j ≤ n,

P
(j)
k (β) =

k!

(k − j)!(β − α)j
∆jbn−j , 0 ≤ j ≤ k,

where ∆ is the forward difference ∆dj := dj+1 − dj. The conditions P (j)(β) = Q(j)(β) are

1

(γ − β)j
∆jc0 =

1

(β − α)j
∆jbn−j ,

while P
(j)
k (β) = Q

(j)
k (β) are

1

(γ − β)j
∆jc0 =

1

(β − α)j
∆jbn−j .

Thus a Cm transition from P to Q is equivalent to a Ck transition between Pk and Qk for all
0 ≤ k ≤ m. Since these polynomials have degree at most k, they must coincide with their own
Taylor representation of degree k at β, which is the same for both of them, if and only if they
have a Ck transition at β. 2

We now look at the multiaffine form

Mk(x1, . . . , xk) := MQ(x1, . . . , xk, (n − k)#β)

of k arguments and compare it with MQk
. Clearly,

cj = MQ(n − j#β, j#γ)
= MQ(n − k#β, k − j#β, j#γ)
= Mk(k − j#β, j#γ)
= MQk

(k − j#β, j#γ), 0 ≤ j ≤ k.

This means that the polynomial Qk and the polynomial Mk(k#t) must coincide, because they
generate the same Bernstein–Bézier representation. But then Mk and MQk

are the same. Using
this argument on both sides of β, we get
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Theorem 2.6 For 0 ≤ m ≤ n, the polynomials P and Q of degree at most n have a Cm

transition at β, if and only if the multiaffine forms

MP (x1, . . . , xk, n − k#β) = MQ(x1, . . . , xk, n − k#β)

coincide for 0 ≤ k ≤ m. 2

The above picture shows how two cubic pieces P and Q have a C2 transition. By the previous
theorem, the multiaffine forms of P and Q coincide as long as one of the arguments is b. This
is why we can write M instead of MP or MQ.

We now go back to the original notation and look at the polynomial R := Pm = Qm for a Cm

transition between P and Q at β. We can represent everything over [α, γ] or the subintervals
defined by β. We have the Bernstein–Bézier representations

R(t) = BB[d0, . . . , dm][α,γ]

Pm(t) = BB[bn−m, . . . , bn][α,β]

Qm(t) = BB[c0, . . . , cm][β,γ],

and by subdivision at β we get

Theorem 2.7 For 0 ≤ m ≤ n, the polynomials P and Q of degree at most n with Bernstein–
Bézier representations

P (t) = BB[b0, . . . , bn][α,β]

Q(t) = BB[c0, . . . , cn][β,γ],

have a Cm transition at β, if and only if the control points bn−m, . . . , bn−1, bn = c0, c1, . . . , cm

are obtained by subdivision of a polynomial R(t) = BB[d0, . . . , dm][α,γ] of degree at most m at
the intermediate point β. 2

The previous picture illustrates this as well. Just consider the multiaffine form MR(x, y) :=
M(x, y, b) that defines R, and you can see the three–point control net of R over [a, c] together
with the two control nets generated by subdivision.
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2.6 Cubic Spline Curves

We now patch many copies of cubic curves

Pi(t) := BB[b3i, b3i+1, b3i+2, b3i+3][ti,ti+1]

together in such a way that a C2 curve results.

This works nicely as before, but we can also turn the strategy upside down, starting from the
points

di−2 := M(ti−1, ti, ti+1).

If we split the line between di−2 and di−1 by two points into three pieces as in the split of
[ti−1, ti+2] by ti and ti+1, we get the control points b3i+1 and b3i+2. If we do this for i − 1 also,
we get b3i−1 and b3i−2. But then we find b3i between b3i−1 and b3i+1 via the split of [ti−1, ti+1]
at ti (see the colors in the figure, but note that the affine splits are not to scale). Note further
that M(ti−1, ti, ti+1) corresponds to the multiaffine forms of at least two polynomials, one over
[ti−1, ti] and one over [ti, ti+1]. A somewhat more precise analysis by Theorem 2.6 shows that the
polynomial Pj over [tj, tj+1] can be used for all multiaffine form values dℓ = MPj

(tℓ+1, tℓ+2, tℓ+3)
that have tj or tj+1 in their argument list, i.e. for j − 3 ≤ ℓ ≤ j.
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3 Spline Curves

3.1 Carl de Boor’s Technique

We now generalize the above approach by brute force, starting from a (formally) biinfinite
control net

. . . , dℓ−1, dℓ, dℓ+1, . . . ℓ ∈ ZZ, dℓ ∈ IRd

and a weakly increasing sequence of knots

. . . ≤ tℓ−1 ≤ tℓ ≤ tℓ+1 ≤ . . . ℓ ∈ ZZ, tℓ ∈ IR

together with a fixed polynomial degree n. Governed by the previous example, we try to find a
curve consisting of polynomial pieces Pj such that

dℓ = MPj
(tℓ+1, . . . , tℓ+n) (3.1)

holds for j − n ≤ ℓ ≤ j, where Pj lives in [tj , tj+1]. Since we now allow coalescing points, we
have to assume

tj < tj+1 (3.2)

for Pj to be well–defined. The basic idea of Carl de Boor’s method now is to fix an intermediate
point t ∈ [tj , tj+1] and use affine combinations of the dℓ as if the hypothesis (3.1) were satisfied,
ending up in Pj(t) = MPj

(n#t).

More precisely, we start with
dn

ℓ := dℓ, j − n ≤ ℓ ≤ j,

and generate points dn−r
ℓ (t) that hopefully satisfy

dn−r
ℓ (t) = MPj

(r#t, tℓ+1, . . . , tℓ+n−r), j − (n − r) ≤ ℓ ≤ j.

The rules for the transition r → r + 1 can be easily obtained from our heuristics, if we take

dn−r
ℓ (t) = MPj

(r#t, tℓ+1, . . . , tℓ+n−r), j − (n − r) ≤ ℓ ≤ j
dn−r

ℓ−1 (t) = MPj
(r#t, tℓ, . . . , tℓ+n−r−1), j − (n − r) ≤ ℓ − 1 ≤ j

(3.3)

and compose t affinely by tℓ and tℓ+n−r. For this composition as

t =
tℓ+n−r − t

tℓ+n−r − tℓ
tℓ +

t − tℓ
tℓ+n−r − tℓ

tℓ+n−r

we require
tℓ ≤ tj < tj+1 ≤ tℓ+n−r,

but this follows from ℓ ≤ j and j − (n− r) ≤ ℓ− 1 in (3.3). Thus we define the recursion of de

Boor’s algorithm as

dn−r−1
ℓ (t) :=

tℓ+n−r − t

tℓ+n−r − tℓ
dn−r

ℓ−1 (t)+
t − tℓ

tℓ+n−r − tℓ
dn−r

ℓ (t), j−(n−r−1) ≤ ℓ ≤ j, 0 ≤ r ≤ n. (3.4)

This procedure is independent of our heuristics, and it clearly yields a polynomial Pj on [tj , tj+1]
via

Pj(t) := d0
j(t).
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The above picture shows how the de Boor algorithm works. The plot is not completely to scale,
but note how the colours indicate the correct splitting of affine combinations of t from knots tk
and tm. The first sweep calculates the three values of d2 by picking three sets of four consecutive
knots that overlap t. The second sweep takes two sets of three consecutive knots that overlap
t, while the third sweep just picks tj and tj+1, i.e.one set of two knots that overlap t. The red
part is always to the left of the new de Boor point, while the blue part is always to the right,
the other colours following appropriately.

We now want to prove that our heuristics is correct. The method of de Boor defines a linear
mapping

B : (dj−n, . . . , dj) 7→ Pj

from IRd(n+1) into the space of polynomials of degree up to n with values in IRd, and this space
of polynomials also is of dimension d(n+1). The mapping A that associates to each polynomial
Pj the n + 1 vectors dℓ := MPj

(tℓ+1, . . . , tℓ+n) maps the polynomials into a subspace C of

IRd(n+1). On this subspace, the mapping B inverts A, because by our heuristics the method
of de Boor recovers Pj when started from control points that actually come from Pj . But this
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argument proves that B is surjective, and by equality of dimensions of range and domain of B,
we get that B must be bijective. This proves:

Theorem 3.1 Under the hypothesis (3.2), the algorithm of de Boor constructs a piecewise
polynomial (spline) curve out of a control net {dℓ}ℓ∈ZZ such that the polynomial piece Pj on
[tj, tj+1) is of degree at most n and such that (3.1) holds for j − n ≤ ℓ ≤ j. The construction
uses dj−n, . . . , dj only, and performs convex combinations of these points. 2

The dimension argument also proves

Corollary 3.1 A multiaffine form M of order n with arguments in IR is completely determined
by its values dℓ := M(tℓ+1, . . . , tℓ+n), j − n ≤ ℓ ≤ j for points satisfying

tj−n+1 ≤ . . . ≤ tj < tj+1 ≤ . . . ≤ tj+n.

Proof: In fact, the de Boor algorithm based on these data will construct a unique polynomial
Pj with M = MPj

. 2

Note that not necessarily all control points dℓ are used for the de Boor algorithm on nondege-
nerate intervals when the degree n is fixed. We can define the set

Ln := {ℓ ∈ ZZ : j − n ≤ ℓ ≤ j for some j with tj < tj+1} . (3.5)

of all indices that are actually used. If some index k is not in Ln, we have tk = . . . = tk+n+1,
i.e. the knot tk is at least (n + 2)–fold. Or, by some additional elementary argumentation, we
can rewrite Ln as

Ln := {ℓ ∈ ZZ : tℓ < tℓ+n+1} . (3.6)

In fact, if ℓ ∈ Ln from (3.5), then we have

tℓ ≤ tj < tj+1 ≤ tℓ+n+1. (3.7)

proving that ℓ is in (3.6). The converse is simple: if ℓ comes from (3.6), then there must be
some j with (3.7), and this j must satisfy ℓ ≤ j ≤ ℓ + n, ans required for (3.5).

Corollary 3.2 The polynomial piece Pj of a spline curve on a nondegenerate interval [tj , tj+1)
lies within the convex hull of the control points dj−n, . . . , dj. 2
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The consecutive pieces of the quadratic 
B-spline curve defined by the control net 
must lie in the consecutive triangles.

More precisely: P  lies in the triangle

spanned by d    , d      and d   .

j
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Corollary 3.3 If tj < tj+1 are two knots with multiplicity n, the n+1 control points dj−n, . . . , dj

are control points for the Bernstein–Bézier representation of the polynomial Pj on [tj , tj+1),
and the de Boor algorithm for evaluating Pj(t) for t ∈ [tj , tj+1) coincides with the method of de
Casteljau.

Proof: Due to
tj−n+1 = . . . = tj < tj+1 = . . . = tj+n,

we have
dℓ = MPj

(tℓ+1, . . . , tℓ+n) = MPj
((j − ℓ)#tj , (n − (j − ℓ))#tj+1)

for j−n ≤ ℓ ≤ j and can use Theorem 2.2 to prove the first assertion. The second follows from
inspection of the formulae. A short form of the proof just observes that the k–th sweep of the
de Boor method for k = 1, 2, . . . , n takes n + 1− k affine combinations of n + 2− k points with
the ratio defined by t within consecutive sets of n + 2 − k consecutive knots. For n–fold knots
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tj and tj+1 this ratio is always the ratio of t in [tj , tj+1], i.e. the de Casteljau ratio, and thus
the geometric constructions must coincide. 2

The practical consequence of Corollary 3.3 is that we can calculate a Bernstein–Bézier control
net for each polynomial piece by insertion of additional knots up to multiplicity n. Knot insertion
will be treated later.

Another useful application of Corollary 3.3 occurs at the “endpoints” of a control net. If we
just want to work with a finite set d0, . . . , dN−1 of control points, it is good practice to let the
“ends” have the meaning of Bernstein–Bézier control points. This means that the control points

d0 = M(t1, . . . , tn), dN−1 = M(tN , . . . , tN+n−1)

should be based on coalescing points, i.e. the knot set should satisfy

t1 = . . . = tn < tn+1 ≤ . . . ≤ tN−1 < tN = . . . = tN+n−1. (3.8)

For adjacent spline curves one can use the techniques of section 2.5 to write down the conditions
for a Cm transition at the “ends”, provided that the knots tn+1 and tN−1 have been inserted
up to multiplicity n.

3.2 Smoothness

We now have to work a little to prove something about the smoothness of the spline curve
defined by de Boor’s algorithm.

Theorem 3.2 At a knot tj+1 with multiplicity p, 0 ≤ p ≤ n, i.e.

tj < tj+1 = tj+2 = . . . = tj+p =: τ < tj+p+1,

the spline curve is at least n − p times differentiable.

Proof The adjacent polynomial pieces are Pj and Pj+p, respectively. We use Theorem 2.6 for
Pj and Pj+p at the intermediate p–fold point τ , and we assert

MPj
(p#τ, x1, . . . , xn−p) = MPj+p

(p#τ, x1, . . . , xn−p) (3.9)

for all arguments x1, . . . , xn−p. Now we look at the dℓ that are admissible for both Pj and Pj+p.
The corresponding indices ℓ are restricted by j − n + p ≤ ℓ ≤ j, and thus we have

dℓ = MPj
(tℓ+1, . . . , tℓ+n) = MPj+p

(tℓ+1, . . . , tℓ+n)

for j − n + p ≤ ℓ ≤ j. We can rewrite these inequalities in two ways:

j − n + p + 1 ≤ ℓ + 1 ≤ j + 1
j + p ≤ ℓ + n ≤ j + n

to read off that there always is a p–fold instance of τ within the arguments tℓ+1, . . . , tℓ+n due
to

tℓ+1 ≤ tj+1 = τ = . . . = tj+p = τ ≤ tℓ+n. (3.10)



3 SPLINE CURVES 19

The remaining n − p arguments are different from τ . We now drop the p instances of τ from
the knot sequence by defining

si := ti, i ≤ j, sj+i := tj+p+i, i > 0

and get
sj−n+1 ≤ . . . ≤ sj < sj+1 ≤ . . . ≤ sj+n. (3.11)

We define
Nj(x1, . . . , xn−p) := MPj

(p#τ, x1, . . . , xn−p)
Nj+p(x1, . . . , xn−p) := MPj+p

(p#τ, x1, . . . , xn−p)

and get
dℓ = MPj

(tℓ+1, . . . , tℓ+n) = Nj(sℓ+1, . . . , sℓ+n−p)
= MPj+p

(tℓ+1, . . . , tℓ+n) = Nj+p(sℓ+1, . . . , sℓ+n−p)

for j − n + p ≤ ℓ ≤ j by careful enumeration of the arguments as in (3.10):

tℓ+1 ≤ tj+1 = τ = . . . = tj+p = τ ≤ tℓ+n

sℓ+1 ≤ ≤ sℓ+n−p

The assertion now follows from Corollary 3.1, because Nj and Nj+p coincide on the points with
(3.11). 2

3.3 Derivatives

We now want to derive the control net representation for the derivative of a spline function
S defined by a control net {dℓ}ℓ and a knot sequence {tℓ}ℓ. On any nondegenerate interval
[tj, tj+1) we can use (2.4) to write

MP ′
j
(tℓ+1, . . . , tℓ+n−1) = n

tℓ+n−tℓ
(MPj

(tℓ + (tℓ+n − tℓ), tℓ+1, . . . , tℓ+n−1)

−MPj
(tℓ, tℓ+1, . . . , tℓ+n−1))

= n
tℓ+n−tℓ

(dℓ − dℓ−1)

for all ℓ, j−n+1 ≤ ℓ ≤ j. Thus the control net { n
tℓ+n−tℓ

(dℓ−dℓ−1)}ℓ∈Ln−1
generates S ′. As in the

Bernstein–Bézier case, we see that the control net of a derivative consists of scaled differences
of the original control points. This makes it easy to evaluate derivatives by application of the
de Boor algorithm.

3.4 Knot Insertion

We now insert a new knot τ into a nontrivial subinterval [tk, tk+1). If we use ′ to denote the
knots in the new numbering, we have

. . . ≤ tk ≤ τ < tk+1 ≤ . . .

. . . ≤ t′k ≤ t′k+1 < t′k+2 ≤ . . .

The polynomials Pi on [ti, ti+1) will turn into polynomials Qm on [t′m, t′m+1), but it is clear that
the Qm are the Pi in some new numbering. Of course, the given control net {dℓ}ℓ∈ZZ now needs
to be modified and extended by an additional vector, and we denote the new control net by
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{d′
ℓ}ℓ∈ZZ . We derive the formulae for construction of {d′

ℓ}ℓ∈ZZ from {dℓ}ℓ∈ZZ by application of the
necessary equations

dℓ = MPj
(tℓ+1, . . . , tℓ+n), j − n ≤ ℓ ≤ j

d′
ℓ′ = MQj′

(t′ℓ′+1, . . . , t
′
ℓ′+n), j′ − n ≤ ℓ′ ≤ j′,

(3.12)

where Pj lives on [tj , tj+1) and Qj′ lives on [t′j′, t
′
j′+1), respectively. Let us first look at knots up to

tk = t′k, where the renumbering is trivial. We can take all ℓ = ℓ′ in (3.12) with ℓ+n = ℓ′+n ≤ k,
and this allows for intervals [tj , tj+1) = [t′j , t

′
j+1) = [t′j′ , t

′
j′+1) for all j = j′ ≤ k − n. This means

that we have
d′

ℓ = dℓ for all ℓ ≤ k − n and Pℓ = Qℓ for all ℓ ≤ k − n.

Now we look at knots from tk+1 = t′k+2 on, where the renumbering is by adding 1 to the index
of an old knot. We can take all ℓ in (3.12) with ℓ + 1 ≥ k + 1, and all ℓ′ with ℓ′ + 1 ≥ k + 2.
Thus we should set ℓ′ = ℓ + 1 and get

d′
ℓ′ := d′

ℓ+1 := dℓ and Qℓ+1 = Pℓ for all ℓ ≥ k.

So far, everything works as expected: we can keep the “lower” part of the control net, and just
have to shift the numbering of the “upper” part to allow for one additional control point. The
n control points d′

k−n+1, . . . , d
′
k in the “middle” need some more work. Let us look more closely

at
d′

ℓ′ = MQj′
(t′ℓ′+1, . . . , t

′
k, t

′
k+1, t

′
k+2, . . . , t

′
ℓ′+n)

= MQj′
(tℓ′+1, . . . , tk, τ, tk+1, . . . , tℓ′+n−1)

for k − n + 1 ≤ ℓ′ ≤ k and observe that this range implies that τ = t′k+1 is always one of the
arguments. Furthermore, we can take j′ = k and j′ = k + 1 in the above identities for the full
range of ℓ′, and thus we have Qj′ = Pk for these j′. We compare this to

dℓ′−1 = MPk
(tℓ′, . . . , tℓ′+n−1)

dℓ′ = MPk
(tℓ′+1, . . . , tℓ′+n),

where the admissible range of ℓ′ again is k − n + 1 ≤ ℓ′ ≤ k. With the affine combination

τ =
tℓ′+n − τ

tℓ′+n − tℓ′
tℓ′ +

τ − tℓ′

tℓ′+n − tℓ′
tℓ′+n

we get the affine combination
tℓ′+n−τ

tℓ′+n−tℓ′
dℓ′−1 + τ−tℓ′

tℓ′+n−tℓ′
dℓ′ = MPk

(τ, tℓ′+1, . . . , tℓ′+n−1)

= MQj′
(tℓ′+1, . . . , tk, τ, tk+1, . . . , tℓ′+n−1)

= d′
ℓ′,

(3.13)

and this is the recipe for knot insertion.

Theorem 3.3 Let a control net {dℓ}ℓ∈ZZ ⊂ IRd and a knot sequence {tℓ}ℓ∈ZZ ⊂ IR be given,
and let S be the spline function of degree at most n defined via the algorithm of de Boor. If an
additional knot τ ∈ [tk, tk+1) is inserted, the new data

d′
ℓ := dℓ, ℓ ≤ k − n

d′
ℓ := tℓ+n−τ

tℓ+n−tℓ
dℓ−1 + τ−tℓ

tℓ+n−tℓ
dℓ k − n + 1 ≤ ℓ ≤ k

d′
ℓ := dℓ−1, k + 1 ≤ ℓ

t′ℓ := tℓ, ℓ ≤ k
t′ℓ := τ, k + 1 = ℓ = k + 1
t′ℓ := tℓ−1, k + 2 ≤ ℓ

define the same spline S. 2
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Of course, the first sweep of the de Boor algorithm coincides with knot insertion. It is left to
the reader that the full de Boor algorithm is the same as inserting a knot n times, provided
that the new control points are stored and numbered appropriately.

3.5 Convergence of Knot Insertion

We now want to see whether the control net defined by insertion of sufficiently many knots
must necessarily converge to the spline curve S it defines. Of course, we shall repeat the logic of
the corresponding proof of the Bernstein–Bézier case and employ Taylor expansions of control
points dℓ = MPj

(tℓ+1, . . . , tℓ+n) for j − n ≤ ℓ ≤ j. The expansion point will be the Greville

abscissa

ξℓ := (tℓ+1 + . . . + tℓ+n)/n

satisfying
tℓ+1 ≤ ξℓ ≤ tℓ+n (3.14)

for all ℓ ∈ ZZ. For each ℓ we can find a j such that ξℓ ∈ [tj , tj+1), and this j must satisfy
j − n ≤ ℓ ≤ j because of (3.14). In fact, ξℓ ∈ [tj , tj+1) implies tℓ+n ≥ tj and tℓ+1 ≤ tj+1 because
otherwise the Greville abscissa would not fall into the interval.

For such a pair (ℓ, j) we expand dℓ = MPj
(tℓ+1, . . . , tℓ+n) around S(ξℓ) = Pj(ξℓ) = MPj

(n#ξℓ)
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and get, up to second–order terms in tℓ+k − ξℓ, the error

dℓ − S(ξℓ) ≈ M ′
Pj

(n#ξℓ)
n
∑

k=1

(tℓ+k − ξℓ) = 0.

Again, we used that the derivatives of a polar form with respect to each of the arguments must
be the same, and the reader will see why the trick requires the Greville abscissae. We can add
that the bound on the second–order terms depends on the maximum absolute value of the
second derivative of MPj

at arguments somewhere between tℓ and tℓ+n, multiplied with a factor
bounded by n2(tℓ+n − tℓ)

2.

For a convergence argument, we start with a fixed set of polynomial pieces and do the analysis
just for one piece and its two neighbors. Inserting lots of knots, with the quantity

h := max
ℓ

(tℓ+n − tℓ) (3.15)

tending to zero, we have just three different polynomials involved if h is small enough, and can
thus bound the local error by a constant times h2, where the constant depends on the second
derivatives of the polar forms associated with the three local polynomial pieces.

If the spline curve is twice continuously differentiable, we can use standard arguments of linear
interpolation to conclude that the control net converges to the spline at a local rate that is
proportional to h2. If we have just continuity of the spline, we have uniform continuity locally
because the spline consists of polynomials, and then we still get local convergence of the control
net to the spline, but no convergence rate.

So far, we looked at local convergence, disregarding “endpoints” of the control net. But in the
standard situation (3.8) the constants are uniform, because we have just a finite number of
polynomial pieces. Furthermore, the outermost Greville abscissae coincide with the endpoints
of the finite spline curve piece we look at, and the convergence argument will work uniformly,
because it works for all parts of the curve that correspond to arguments between Greville
abscissae. This can be formulated more exactly, but we omit a proof:

Theorem 3.4 For any finite and twice differentiable spline curve of degree at most n with
(3.8), the piecewise linear interpolant of the control net converges uniformly to the spline curve,
and the error can be bounded by a constant times h2, where h is defined in (3.15). The error is
measured by parametrizing the spline curve linearly between the Greville abscissae associated to
the points of the control net.

The reason for not giving the proof is as follows: it is common practice to evaluate a spline by
inserting each knot sufficiently many times to make in n–fold. The one can use subdivision on
the Bernstein–Bézier control net. And we have already proven quadratic convergence of this
process.

3.6 B–Splines

Though we did not need to define and use them, B–splines always were behind the scene. They
come out to form the partition of unity building the representation of a spline curve S of degree
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at most n defined by a control net {dℓ}ℓ and a knot sequence {tℓ}ℓ. In particular, we want to
write

S(t) =
∑

ℓ∈Ln

dℓNℓ(t) (3.16)

with certain piecewise polynomials Nℓ(t) called B–splines that are a partition of unity in such a
way that only a finite number of them is nonzero for each fixed t. Here, we only use the relevant
control vectors with indices in the set Ln from (3.5). The others are irrelevant and should be
dropped right from the start.

For any nontrivial interval [tj , tj+1) and the corresponding part dj−n, . . . , dj of the control net,
the algorithm of de Boor constructs a polynomial

Pj(t) =
j
∑

ℓ=j−n

pj,ℓ(t)dℓ

with certain nonnegative scalar–valued polynomials pj,ℓ(t) that depend only on the knot vector,
but not on the control net. Thus we can write

S(t) =
∑

j

χ[tj ,tj+1)(t)S(t)

=
∑

j

χ[tj ,tj+1)(t)Pj(t)

=
∑

j

χ[tj ,tj+1)(t)
j
∑

ℓ=j−n

pj,ℓ(t)dℓ

=
∑

ℓ∈Ln

dℓ

ℓ+n
∑

j=ℓ

χ[tj ,tj+1)(t)pj,ℓ(t)

with the characteristic function

χ[tj ,tj+1)(t) = 1 for all t ∈ [tj , tj+1), zero elsewhere.

Thus the B–splines

Nℓ,n(t) :=
ℓ+n
∑

j=ℓ

χ[tj ,tj+1)(t)pj,ℓ(t), ℓ ∈ Ln (3.17)

are what we asked for. They yield (3.16) for all spline functions defined by control nets associated
with a fixed knot vector.

Theorem 3.5 The B–splines corresponding to a knot sequence {tℓ}ℓ have the following pro-
perties:

1. Nℓ,n is defined for the ℓ with tℓ < tℓ+n+1.

2. Nℓ,n is consisting of polynomial pieces of degree at most n, with breakpoints at the knots
of [tℓ, tℓ+n+1] and vanishing outside this interval.

3. The spline curve defined by the algorithm of de Boor can be represented as (3.16) with
(3.17).
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4. Nℓ,n can be calculated via the algorithm of de Boor, started with the scalar–valued control
net {δk,ℓ}k. Therefore the B–splines are uniquely defined by a knot sequence and the de
Boor algorithm on this special control net.

5. Nℓ,n is nonnegative on [tℓ, tℓ+n+1) and zero elsewhere.

6. If a knot of [tℓ, tℓ+n+1] has multiplicity p, the function Nℓ,n has continuous derivatives up
to order n − p there.

7. The set of all B–splines Nℓ,n for ℓ ∈ Ln and a fixed knot sequence forms a partition of
unity.

8. If a spline curve of degree at most n vanishes outside some interval [tk, tk+n], it vanishes
everywhere. In particular, the B–splines Nℓ,n for ℓ ∈ Ln are linearly independent.

Proof: The first property follows from (3.6), while the second is contained in (3.17). Our
discussion preceding the theorem proves the third statement, and the fourth is just a special
scalar case. Now the fifth follows from the fourth due to the convex combinations performed
by the de Boor algorithm. Theorem 3.2 yield the sixth property. The first property that needs
a real proof is number 7. For the scalar–valued control net {1}k, the de Boor algorithm takes
affine combinations of 1 all the time, and it just ends up with

S(t) = 1 =
∑

ℓ∈Ln

1 · Nℓ,n(t).

For the proof of 8, take a vanishing linear combination of the form (3.16) outside of some
interval [tk, tk+n] and consider the polynomials Pj = 0 on nondegenerate intervals [tj , tj+1) for
j + 1 ≤ k and j ≥ k +n, respectively. The multiaffine forms dℓ = MPj

(tℓ, . . . , tℓ+n) must vanish
for the ranges j − n ≤ ℓ ≤ j for these j. But this means that dℓ = 0 for ℓ ≤ j ≤ k − 1 and
ℓ ≥ j − n ≥ k, respectively, and since all dℓ vanish, the complete spline is zero. If we take
a scalar control net generating a vanishing spline function, we can use our previous proof to
conclude that the control net must be zero, proving linear independence of the B–splines. Note
that these proof steps do not account for terms with indices ℓ /∈ Ln. The corresponding control
points dℓ are redundant in de Boor’s algorithm, and they spoil any uniqueness proof. 2

3.7 Recursion of B–Splines

If we look at the formula (3.4) for the de Boor algorithm, we can see that it has a recursive
structure. In fact, if the transition from the control points dj−n, . . . , dj for some t ∈ [tj , tj+1) to
dn−1

j−n+1(t), . . . , d
n−1
j (t) is defined as a map Dj,n,t : IRd(n+1) → IRdn, we can write (3.4) as an

action of Dj,n−r,t on dn−r
j−n+r(t), . . . , d

n−r
j (t).

But this implies for t ∈ [tj , tj+1) the identity

S(t) = Dj,1,t ◦ . . . ◦ Dj,n−1,t ◦ Dj,n,t(dj−n, . . . , dj)
= Dj,1,t ◦ . . . ◦ Dj,n−1,t(d

n−1
j−n+1(t), . . . , d

n−1
j (t)).

Since the second line means that the de Boor algorithm for degree n − 1, when applied to the
control points dn−1

j−n+1(t), . . . , d
n−1
j (t) gives the same result as the standard form, we can write
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the second line in terms of the B–splines Nℓ,n−1 of degree at most n− 1, and recursively all the
way down, i.e.

S(t) =
j
∑

ℓ=j−n

dℓNℓ,n(t)

=
j
∑

ℓ=j−n+1

dn−1
ℓ (t)Nℓ,n−1(t)

=
j
∑

ℓ=j−n+r

dn−r
ℓ (t)Nℓ,n−r(t)

= d0
j(t)Nj,0(t)

= d0
j(t).

This is another close connection to the de Casteljau algorithm, but there still is something left.
If we write the second formula down in explicit form, we get

S(t) =
j
∑

ℓ=j−n+1

dn−1
ℓ (t)Nℓ,n−1(t)

=
j
∑

ℓ=j−n+1

(

tℓ+n − t

tℓ+n − tℓ
dn

ℓ−1(t) +
t − tℓ

tℓ+n − tℓ
dℓ

)

Nℓ,n−1(t)

=
j
∑

ℓ=j−n

(

tℓ+1+n − t

tℓ+1+n − tℓ
Nℓ+1,n−1(t) +

t − tℓ
tℓ+n − tℓ

Nℓ,n−1(t)

)

dℓ,

and since the B–splines are uniquely determined by the control net representation, we get the
recursion formula

Nℓ,n(t) =
tℓ+1+n − t

tℓ+1+n − tℓ
Nℓ+1,n−1(t) +

t − tℓ
tℓ+n − tℓ

Nℓ,n−1(t)

for t ∈ [tj , tj+1) and all ℓ, j − n ≤ ℓ ≤ j. This recursion needs some explanation, because
for ℓ ∈ Ln the indices ℓ and ℓ + 1 need not be both in Ln−1. But if, by additional definition,
Nℓ,n−1(t) vanishes outside of [tℓ, tℓ+n) for all ℓ, there is no problem with the recursion.

3.8 Special Cases

For n = 0, we have dj = MPj
= Pj(t) for all t ∈ [tj , tj+1), and the B–spline Nj,0 is the

characteristic function on [tj, tj+1). Here, the set L0 is the set of j with tj < tj+1.

For n = 1, the control points for evaluation in t ∈ [tj , tj+1) are dj = MPj
(tj+1), dj−1 = MPj

(tj).
These are precisely the degree 1 Bernstein–Bézier control points on the interval [tj , tj+1], and
thus we have the linear interpolant

Pj(t) =
tj+1 − t

tj+1 − tj
dj−1 +

t − tj
tj+1 − tj

dj

between dj−1 and dj . The spline is a continuous polygonal line, if all knots have multiplicity
one. The set L1 is the set of all ℓ where tℓ < tℓ+2, and the B–spline Nℓ is the piecewise linear
interpolant of the data 0,1,0 on the points tℓ, tℓ+1, tℓ+2 on nontrivial half–open subintervals.
Clearly, these functions must sum up to one on each nontrivial interval.
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For n = 2, the control points for evaluation in t ∈ [tj , tj+1) are

dj = MPj
(tj+1, tj+2)

dj−1 = MPj
(tj , tj+1)

dj−2 = MPj
(tj−1, tj).

These are not Bernstein–Bézier control points for the interval [tj, tj+1], but we can form these
by the de Boor or knot insertion algorithm. In fact,

MPj
(tj , tj) =

tj+1 − tj
tj+1 − tj−1

dj−2 +
tj − tj−1

tj+1 − tj−1
dj−1

MPj
(tj+1, tj+1) =

tj+2 − tj+1

tj+2 − tj
dj−1 +

tj+1 − tj
tj+2 − tj

dj

do the job together with dj−1 = MPj
(tj , tj+1). The spline is a differentiable sequence of parabolic

arcs, if all knots have multiplicity one, and the curve then touches each line segment dj−1dj at
the intermediate point defined by the ratio of tj+1 between tj and tj+2. These touchpoints are
the images of the knots under the curve mapping.

t t t t tj j+1 j+2j-1j-2

d

d

d

d

d

j

j-1

j-2

j-3

j+1

This construction also works for the B–spline Nj−1,2. The control net should be placed at the
Greville abscissae, i.e. value 1 at (tj + tj+1)/2 and zero at all other (tk + tk+1)/2. The polygonal
lines between these data are then marked at the abscissae tk, and these points define the outer
Bernstein–Bezier control points for the pieces of Nj−1,2.
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t t tttt
j j+1 j+2j-1j-2j-3

1

4 Some Basics of Computer Graphics

4.1 The View Transformation

Here is a little bit of Mathematics behind Computer Graphics. Assume that we want to map
a point X ∈ IR3 to some plane that an observator sees if he is placed at an “eyepoint” E
and looking into the direction D. The view direction vector D should have length one, and we
assume another unit vector U to be given such that U and V := U ×D span the viewing plane.
The “view–up–vector” U should be perpendicular to D, and thus we have a full orthogonal
coordinate system formed by D, U , and V . The origin F of the viewing plane is assumed to be
at a distance d on D from E.

E

X

Dd

Y

U

VF

The point Y should be in the viewing plane and on the ray from E to X, when the observer
looks from E at X. We thus write Y = λE+(1−λ)X, and the local coordinates of the projected



4 SOME BASICS OF COMPUTER GRAPHICS 28

image Y of X on the viewing plane are

u := UT (Y − F ) = UT (λE + (1 − λ)X − F ) = UT (X − F + λ(E − X))
v := V T (Y − F ) = V T (λE + (1 − λ)X − F ) = V T (X − F + λ(E − X)),

while the “depth” coordinate of X with respect to the eyepoint E is DT (X − E). Since Y
should be in the viewing plane, we know that

DT (Y − F ) = 0
= DT (λE + (1 − λ)X − F ) = DT (X − F + λ(E − X)).

We want to get rid of E in favour of F and allow parallel projection later, i.e. d = ∞. Thus we
use F = E + dD and get

0 = DT (X − F + λ(E − X)) = DT (X − F ) + λDT (F − dD − X)

and λ comes out to be

λ =
DT (X − F )

DT (X − F ) + d
1 − λ =

d

DT (X − F ) + d
=

1

1 + DT (X − F )/d
.

We can introduce σ := 1/d and write

1 − λ =
1

1 + σDT (X − F )

in a form that makes sense for d = ∞ or σ = 0. We now consider the depth coordinate

DT (X − E) = DT (X − F + dD) = DT (X − F ) + d = d(1 + σDT (X − F )),

and for the application to z–buffering we simply rescale it by division by d to get

z := DT (X − E)/d = 1 + σDT (X − F ), 1 − λ = 1/z.

Any monotone transformation would be feasible, because we just want to keep points on the
rays from X to E ordered properly by the depth information. Then we go back to the cordinates

u = UT (Y − F ) = UT (X − F + λ(F − X − dD)) = (1 − λ)UT (X − F )
v = V T (Y − F ) = V T (X − F + λ(F − X − dD)) = (1 − λ)V T (X − F )

for the final form
z = 1 + σDT (X − F )
u = UT (X − F )/z
v = V T (X − F )/z.

Note the simplification for parallel projection, i.e. for σ = 0, z = 1.

4.2 Z–Buffering

The standard way to render a scene with proper treatment of hidden parts is to calculate the
(u, v, z) coordinates for each point of the scene, but to display for each (u, v) only the one
with least value of z, because the others are hidden by it due to their larger distance from the
eyepoint. This is done by discretizing the (u, v)–plane into pixels P (u, v) := (iu, iv) ∈ ZZ2 and
to keep two arrays dimensioned by pixels, one, call it C, for the colour information and another,
call it Z, for the depth information. The colour array is initialized by some default value, e.g.
a background colour. Then one loops over all points (u, v, z) in the scene and performs the
following:
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• If the colour information for pixel P (u, v) is not the background colour, and if z is larger
than the value stored in Z(P (u, v)), then ignore the point, because it lies behind a point
that was already generated. Otherwise calculate a colour c for the point (u, v, z) and
update C(P (u, v)) = c and Z(P (u, v)) = z.

Of course, this process is rather time–consuming, and therefore modern graphics hardware keeps
an internal (discretized) Z–Buffer along with the array C with entries consisting of coded colour
values. Furthermore, the calculations of the scene rendering are broken down by subdivision
of surfaces, until here is a huge mass of small planar polygons, usually triangles or rectangles,
that are later handed over to the hardware, which may be called a “polygon pipeline”. Note
that planar polygons in world coordinates are mapped to polygons in the view plane for every

view, may it be a parallel or a central projection (lines are always mapped to lines, planes are
always mapped to planes...). The image of the view consists of planar polygons in the view
plane, and these are finally displayed. The subdivision can often be made independent of the
actual view on the scene, and then each new view just involves processing all the tiny polygons
over again, assigning new colours and a new Z–Buffer for rendering. This is why the speed of
modern graphics equipment is measured in polygons per second. Measuring frames per second,
the latter being roughly equivalent to view calculations per second, depends on the complexity
(or number of polygons) of the scene, while the polygon rate does not. We supply a simple
self–made rendering program, implementing a Z–Buffer, for the exercises.

4.3 Colour, Shading, and Highlights

The standard way of assigning a colour to a point P of a surface F (u, v) needs a normal vector
N on that point, i.e. a unit vector that is perpendicular to the tangent plane, for instance
N = ∂F

∂u
× ∂F

∂v
plus normalization. Note that the normal gives a local orientation of the surface,

i.e. one can talk about the “front” or “back” side and assign different colours to these. The
sign of the inner product of the normal N with the view direction D decides which side is seen,
and the absolute value of the cosine of the angle between D and N can be used to define a
“shading” towards black for the angle moving towards 900.
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P

N

L
Z

D

M

Another cheap way of improving the appearance of a rendered object is to add a highlight
coming from a light source al L. From the ray L − P of light falling at the point P , and
using the standard reflection law, one gets a direction M for the outgoing reflected ray, i.e.
the direction of the line between L + 2(Z − L) and P , where Z = P + NT (L − P ). Then the
cosine of the angle between M and D describes how much reflection reaches the eyepoint, and
by Phong’s rule the colour of the surface point is changed towards white (or the colour of the
light source) by an amount governed by a power of this cosine. For large powers, there will be
a sharp and centered highlight, while small powers give diffuse and large highlights.

The polygon rendering technique, as described above, is the standard way of displaying 3D
scenes quickly. More sophisticated techniques are

• ray tracing and

• radiosity methods,

but this lecture focuses on Mathematics, not on Computer Science.

5 Tensor Product Surfaces

5.1 General Facts

Surfaces are classically defined either
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• implicitly by equations satisfied by the points on the surface (e.g. (x− xc)
2 + (y − yc)

2 +
(z − zc)

2 = r2 for all points (x, y, z) ∈ IR3 on the surface of a ball in IR3 with center
(xc, yc, zc) and radius r) or

• explicitly as the image of a two–dimensional domain Ω ⊂ IR2 under a map F : Ω →
IRd, d > 2.

We concentrate on the second case with range in IR3, though many facts are valid in arbitrary
dimensions.

An important notion for surfaces with differentiable explicit parametric representations F :
Ω → IR3 is the tangent space spanned by ∂F

∂u
, ∂F

∂v
at a point F (u, v), (u, v) ∈ Ω ⊂ IR2. A

vector perpendicular to the tangent space at F (u, v) is called a surface normal at F (u, v). The
point F (u, v) is called nonsingular, if the dimension of the tangent space is 2, i.e. if the above
tangent vectors are linearly independent. In this case, the vector ∂F

∂u
× ∂F

∂v
is a surface normal, and

in IR3 the surface normals span a one–dimensional space. Assigning a surface normal to each
point F (u, v) gives a local orientation to the surface, and the practically interesting surfaces are
those that have no singularities and allow assignment of a continuously varying surface normal,
e.g. via the choice of ∂F

∂u
× ∂F

∂v
everywhere.

5.2 Tensor Products

A standard way to generate multivariate functions from univariate functions is by taking sums
of products. In particular, if we start with two univariate partitions of unity

ui [α, β] → IR3 i ∈ I
vj [γ, δ] → IR3 j ∈ J

we can define a bivariate partition of unity via

wij(u, v) := ui(u)vj(v), [α, β] × [γ, δ] → IR3, (i, j) ∈ I × J.

A tensor product surface on [α, β] × [γ, δ] will then be generated for any control net
{bij}(i,j)∈I×J via

F (u, v) :=
∑

i∈I

∑

j∈J

bijui(u)vj(v), (u, v) ∈ [α, β] × [γ, δ].

Note that we can use either Bernstein polynomials or B–splines for each of the univariate
partitions of unity, and we thus can construct surfaces defined on rectangular domains. The
sum can be reordered in two ways:

F (u, v) :=
∑

i∈I

ci(v)ui(u)

ci(v) :=
∑

j∈J

bijvj(v), i ∈ I

F (u, v) :=
∑

j∈J

dj(u)vj(v)

dj(u) :=
∑

i∈I

bijui(u), j ∈ J

with two finite sets of curves ci and dj. These formulae can be used to boil the computation
down to a finite number of univariate computations. In fact, to get F (u, v) we can first fix v
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and calculate the ci(v) for i ∈ I by the second formula. Then we put these vectors into the
first formula of the above display, using the ci(v) as a control net for the curve defined by the
functions ui(u). But we can do better, as we shall see below, using the de Casteljau/de Boor
algorithm and subdivision/knot insertion.

Keeping u or v fixed, the function F (u, v) describes an isoparametric curve on the surface,
and the above equations describe the univariate control nets for these curves.

5.3 Bilinear Patches

If we have two linear Bernstein–Bézier representations on [0, 1], the resulting tensor product
surface on [0, 1] × [0, 1] is bilinear and can be written as

F (u, v) = b00(1 − u)(1 − v) + b01(1 − u)v + b10u(1 − v) + b11uv

with four control points. Note that each isoparametric curve is linear, but the surface is not in
general planar. It is a hyperboloid, as some further analysis reveals, and the hyperboloid is a
member of the family of ruled surfaces that can be generated by a motion of a line through
space.

Note that the bilinear surface interpolates the four control points, and patching many of these
surface elements together will yield a continuous piecewise bilinear surface. This feature is
used by many primitive display routines for general (nonparametric) bivariate functions. The
function f is evaluated on a fine grid, the four values on each corner of a grid cell are interpolated
by a local bilinear function, and then the resulting piecewise bilinear function s is used as an
approximation to the original function. If this is done for a real–valued function f(u, v), the
standard way of plotting contour curves

Ct(f) := {(u, v) : f(u, v) = t}

is to plot the curves Ct(s) instead, and this can be done locally in each grid cell, solving
equations of the form

b00(1 − u)(1 − v) + b01(1 − u)v + b10u(1 − v) + b11uv = t

for four given scalar values bij by a curve v(u) or u(v). This leads to a quadratic equation,
which may be solvable or not, depending whether the contour set hits the cell or not. A further
simplification splits the quadrangle spanned by the four control points of a bilinear patch into
two triangles by a diagonal line. Then the triangle vertices are interpolated by a linear function
in each of the triangles. The resulting continuous piecewise planar and piecewise linear function
is even simpler to handle, and pieces of contour lines will always be line segments. Note that
the general solution of the equation f(u, v) = t can be a mess, especially if there are many
unconnected branches to pick up. Programs calculating contours of functions can sometimes
have a very strange output, but if you understand the above logic behind such programs, you
will stop wondering.
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5.4 Multiaffine Forms

We now concentrate on the case of a polynomial tensor product of degree (m, n), i.e. we consider
polynomials

P (u, v) =
m
∑

i=0

n
∑

j=0

αiju
ivj (5.1)

with vector coefficients αij ∈ IRd.

Theorem 5.1 For any polynomial of the above form there is a unique multiaffine form

MP = MP (·; ·) : IRm × IRn → IRd

such that P (u, v) = MP (m#u; n#v) holds for all u, v, and such that MP is invariant under
permutations of the first m and the last n arguments.

Proof: For existence, we just superimpose univariate multiaffine forms

MP (u1, . . . , um; v1, . . . , vn) :=
m
∑

i=0

n
∑

j=0

αijMui(u1, . . . , um)Mvj (v1, . . . , vn).

For uniqueness, we assume that besides the above MP there is another M of the required form
such that P (u, v) = MP (m#u; n#v) = M(m#u; n#v) holds for all u, v. Keeping u fixed, we
get from the univariate case that the symmetric multiaffine forms MP (m#u; v1, . . . , vn) and
M(m#u; v1, . . . , vn) must coincide for all vj and all u. Keeping v1, . . . , vn fixed, we get that
MP (u1, . . . , um; v1, . . . , vn) and M(u1, . . . , um; v1, . . . , vn) must coincide for all ui. 2

We now want to relate the Bernstein–Bézier representation of a tensor product polynomial
surface to its multiaffine form.

Theorem 5.2 For any polynomial P of the form (5.1), the control net of a Bernstein–Bézier re-
presentation

P (u, v) =
m
∑

i=0

n
∑

j=0

bijβ
(m)
i,[α,β](u)β

(n)
j,[γ,δ](v)

over [α, β] × [γ, δ] can be uniquely obtained as

bij = MP (m − i#α, i#β; n − j#γ, j#δ), 0 ≤ i ≤ m, 0 ≤ j ≤ n. (5.2)

Proof: Let us keep v fixed for a moment, and consider the polynomial Qv(u) := P (u, v)
with the multiaffine form MQv

(u1, . . . , um) = MP (u1, . . . , um; n#v). If we form a Bernstein–
Bézier representation of it on [α, β], we get

P (u, v) = Qv(u) =
m
∑

i=0

MP (m − i#α, i#β; n#v)β
(m)
i,[α,β](u). (5.3)

We now represent the polynomials MP (m − i#α, i#β; n#v) in Bernstein–Bézier style with
respect to v over [γ, δ] and get

MP (m − i#α, i#β; n#v) =
n
∑

j=0

MP (m − i#α, i#β; n − j#γ, j#δ)β
(n)
j,[γ,δ](v).

Plugging this into (5.3) gives the required representation, and the uniqueness follows from the
linear independence of the Bernstein polynomials in each variable. 2
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5.5 Variations of de Casteljau and Subdivision

The process of the preceding proof can be used to define three different de Casteljau algorithms
for evaluation. Let us go backwards and evaluate the m+1 polynomials MP (m−i#α, i#β; n#v)
for 0 ≤ i ≤ m as functions of v at some t ∈ [γ, δ] by application of the univariate de Casteljau
algorithm. We would fix i and start with bn

ij(t) := bij , 0 ≤ j ≤ n to proceed via

bn−r
ij (t) :=

δ − t

δ − γ
bn−r+1
ij (t) +

t − γ

δ − γ
bn−r+1
i,j+1 (t), 0 ≤ j ≤ n − r, 1 ≤ r ≤ n.

By this affine combination, we have

bn−r
ij (t) = MP (m − i#α, i#β; n − j − r#γ, j#δ, r#t)

and the procedure ends with b0
i0(t) = MP (m − i#α, i#β; n#t). We now use these values for

0 ≤ i ≤ m and perform the univariate de Casteljau algorithm with respect to the variable u at
some s ∈ [α, β] to arrive at MP (m#s; n#t) = P (s, t).

Let us check the computational cost of this. We first have m + 1 instances of the deCasteljau
algorithm for degree n in IRd, needing O(dmn2) operations. Then we have a single de Casteljau
process for degree m, taking O(dm2) operations. If n > m holds, we should have worked the
other way round, and this is a second way of writing a de Casteljau algrithm.

If we ignore the final single de Casteljau process, we already have the data needed for subdivision
into polynomials over [α, β] × [γ, t] and [α, β] × [t, δ]. In fact, we have the control nets

bn−r
i0 (t) = MP (m − i#α, i#β; n − r#γ, r#t)

bn−r
i,n−r(t) = MP (m − i#α, i#β; r#t, n − r#δ)

for 0 ≤ r ≤ n, 0 ≤ i ≤ m and this is all we need.

But there is a third variation that works by taking a bilinear formula, performing subdivision
at a point (s, t) ∈ [α, β] × [γ, δ]. For this, we assume m = n, possibly after degree elevation.
The starting point now is the full array

bn
ij(s, t) := bij = MP (n − i#α, i#β; n − j#γ, j#δ), 0 ≤ i, j ≤ n.

We do two affine steps to introduce one instance of s and t into the multiaffine form, and this
gives the bilinear formula

bn−r
ij (s, t) :=

δ − t

δ − γ

(

β − s

β − α
bn−r+1
ij (s, t) +

s − α

β − α
bn−r+1
i+1,j (s, t)

)

+
t − γ

δ − γ

(

β − s

β − α
bn−r+1
i,j+1 (s, t) +

s − α

β − α
bn−r+1
i+1,j+1(s, t)

)

for 0 ≤ i, j ≤ n − r. Clearly, these values have the form

bn−r
ij (s, t) = MP (n − i − r#α, i#β, r#s; n − j − r#γ, j#δ, r#t)

and the process ends up with

b0
00(s, t) = MP (n#s; n#t) = P (s, t).
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But let us look at the cost. We have to work on a full array of n2, (n − 1)2, . . . control vectors,
and this yields a O(dn3) computational cost.

In general, the calculated intermediate points of this method are not sufficient to form subdi-
vision control nets. A full split of a control net into four subnets will take two applications of
the first technique.

5.6 Flatness Test and Convergence of Subdivision

To look at subdivision and its convergence, we first need some bound on the distance between
the original surface P (u, v) of the form (5.1) and a simplified surface L. Our candidate is the
bilinear surface L defined by the four control points b00, bm0, b0n, bmn and with subsequent degree
elevation. If we first lift the degree with respect to the variable u, we get the two control nets
{b′i0}i := {b00+(i/m)(bm0−b00)}i and {b′in}i := {b0n+(i/m)(bmn−b0n)}i and the representation

L(u, v) =
m
∑

i=0

(b′i0(1 − v) + b′inv)β
(n)
i (u)

on [0, 1]2, and we can then lift the degree of the inner bracket to get the control net

b′′ij := b′i0 + (j/n)(b′in − b′i0)
= b00 + (i/m)(bm0 − b00) + (j/n)(b0n + (i/m)(bmn − b0n) − b00 + (i/m)(bm0 − b00))
= ((m − i)(n − j)b00 + (m − i)jb0n + i(n − j)bm0 + ijbmn) /(mn)

(5.4)
that we can use to compare with the control net of P . Due to the partition of unity property,
we have

‖P (u, v) − L(u, v)‖∞ = ‖
m
∑

i=0

n
∑

j=0

(bij − b′′ij)β
(m)
i (u)β

(n)
j (v)‖∞

≤ max
0≤i≤m,0≤j≤n

‖bij − b′′ij‖∞
m
∑

i=0

n
∑

j=0

∣

∣

∣β
(m)
i (u)β

(n)
j (v)

∣

∣

∣

= max
0≤i≤m,0≤j≤n

‖bij − b′′ij‖∞

(5.5)

as a possible flatness test.

We now want to show that the bound gets small if the domain gets small. For this, the differences
bij − b′′ij are treated as usual, i.e. by Taylor expansion of the multiaffine form, asserting that the
constant and linear terms vanish, yielding a second–order bound with respect to the domain
size. Since we work with a single polynomial piece, and since the first m and the last n arguments
of the multiaffine form can be permuted, we just express the bij and b′′ij as multiaffine forms

bij = MP (u1, . . . , um; r1, . . . , rn)
b′′ij = MP (v1, . . . , vm; s1, . . . , sn)

and prove
m
∑

i=0

(ui − vi) = 0 =
n
∑

j=0

(rj − sj)
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to get the asserted quadratic behaviour. This is due to the simple fact that for a C2 map
F : IRn 7→ IRd we can bound the difference F (x) − F (y) via local expansion around some
point z as

F (x) − F (y) = F (z) + ∇F (z)(x − z) − F (z) −∇F (z)(y − z) + second–order terms
F (x) − F (y) = ∇F (z)(x − y) + second–order terms,

where the second–order terms can be bounded by an upper bound on sums of absolute values
of second derivatives of F near x, y, and z, multiplied by ‖x − y‖2

∞. In our case, all first–order
derivatives are the same, and thus we are left with the quadratic residuals if we can prove
∑

i(xi − yi) = 0. (I added this remark due to the problems the students had with Exercises 24
and 25).

Now back to our multiaffine forms. From (5.2) we can read off the multiaffine representation
for bij , and we can sum up the arguments in two groups:

(m − i)α + iβ and (n − j)γ + jδ. (5.6)

Now we still have to look at b′′ij in(5.4). The latter is a bi–affine combination of the four control
points b00, bm0, b0n, and bmn, and therefore we can take bi–affine combinations of the respective
arguments when plugged into (5.2). Then we have to sum the arguments up, to prove that the
result equals (5.6). For

mnb′′ij = (m − i)(n − j)b00 + (m − i)jb0n + i(n − j)bm0 + ijbmn

this yields the argument sums

(m − i)(n − j)mα + (m − i)jmα + i(n − j)mβ + ijmβ = mn((m − i)α + iβ)
(m − i)(n − j)nγ + (m − i)jnδ + i(n − j)nγ + ijnγ = mn((n − j)γ + jδ)

as expected. All arguments are in the respective domains, and thus all argument differences
can be bounded by max(β − α, δ − γ). Thus we finally have proven

Theorem 5.3 Subdivision of rectangular polynomial Bernstein–Bézier surface patches conver-
ges quadratically. More precisely; the right–hand side of the final line in (5.5) can be used as a
flatness test, and this quantity is bounded by the product of a constant (depending only on the
starting domain and second derivatives of the surface polynomial) with (max(β − α, δ − γ))2.

5.7 Smooth Transitions

We now want to glue two rectangular Bernstein–Bézier surface patches together. For this, we
have to assume that the domain rectangles coincide on a full edge, and that along this edge the
degree is the same on either side. Thus we assume a surface P of degree (m, n) to be defined on
[α, β]× [γ, δ], while Q is defined on [α, β]× [δ, ǫ] with degree (m, k). The domains meet on the
line v = δ, and we have to look at the cross–boundary derivatives ∂ℓ/∂vℓ at v = δ as functions
of u. For a Cr transition, these must be equal for 0 ≤ ℓ ≤ r when calculated from either side.
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If we use (5.1), we can write P in Bernstein–Bézier form

P (u, v) =
m
∑

i=0

n
∑

j=0

bijβ
(m)
i (u)β

(n)
j (v)

=
m
∑

i=0

β
(m)
i (u)

n
∑

j=0

bijβ
(n)
j (v)

∂ℓP

∂vℓ
(u, v) =

m
∑

i=0

β
(m)
i (u)

∂ℓP

∂vℓ

n
∑

j=0

bijβ
(n)
j (v)

=
m
∑

i=0

β
(m)
i (u)

n!

(n − ℓ)!(δ − γ)ℓ

n−ℓ
∑

j=0

∆ℓ
jbi,·β

(n−ℓ)
j (v)

∂ℓP

∂vℓ
(u, δ) =

m
∑

i=0

β
(m)
i (u)

n!

(n − ℓ)!(δ − γ)ℓ
∆ℓ

n−ℓbi,·

where we take forward differences in the respective control nets. Doing this on both sides
will yield similar expressions, and since the corresponding Bernstein polynomials are linearly
independent, we can compare the coefficients to check the smoothness at the transition. If we
write

Q(u, v) =
m
∑

i=0

k
∑

j=0

cijβ
(m)
i (u)β

(k)
j (v)

on the other side, this implies

n!

(n − ℓ)!(δ − γ)ℓ
∆ℓ

n−ℓbi,· =
k!

(k − ℓ)!(ǫ − δ)ℓ
∆ℓ

0ci,·, 0 ≤ ℓ ≤ r, 0 ≤ i ≤ m

as the full set of conditions for a Cr transition. The conditions can be rephrased in terms of de
Casteljau steps or multiaffine forms, but we skip over these details.

5.8 Patching Several Rectangular Surfaces

The previous paragraph patched just two rectangular polynomial surfaces in Bernstein–
Bézier form together. If we want to repeat this in order to get a surface composed of lots
of rectangular patches, we still have to restrict the transitions to full edges, and therefore
the standard way of multiple patching involves four patches meeting at a “crossroads” vertex.
For simplicity, we assume the degree to be equal to n everywhere, possibly after some degree
elevation.
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bnnb
n-1,nbn-2,n

b
n,n-1

bn-1,n-1

bn,n-2

c 0,n

c 0,n-1

c 0,n-2

c 1,n-1

c 1,n c2,n

a n,0
a

n-1,0a
n-2,0

a n-1,1 a n,1

a n,2

d 0,0 d 1,0 d 2,0

d 0,1 d 1,1

d 0,2

If we write down the continuity requirements for the four Cr transitions involved, the conditions
will have a serious overlap, because the r + 1 “strips” of control points near and parallel to
the common edges are involved. For r = 0, we see that the control points at the joining vertex
must be the same for all four patches. In the figure, where we ordered the control points around
the vertex corresponding to their numbering (they may lie much more chaotically in IR3), this
means an0 = bnn = c0n = d00. Continuity along the border edges means ai0 = bin, bni = c0i, cin =
di0, d0i = ani, each for 0 ≤ i ≤ n, and these equations imply the preceding four.

If we go for r = 1, we need that all partial derivatives at the common vertex lie in the same
(tangent) plane. This requires the five points an0 = bnn = c0n = d00, a10 = b1n, bn1 = c01, c1n =
d10, d01 = an1 to be coplanar. Furthermore, continuity of the cross–derivatives along the joining
edges needs aj1−aj0 = bjn−bj,n−1, bnj−bn−1,j = c1j−c0j , cjn−cj,n−1 = dj1−dj0, an−1,1−an−1,0 =
d1j − d0j for 0 ≤ j ≤ n. But these equations are not independent, because the twist vectors

an−1,1, bn−1,n−1, c1,n−1, d1,1 occur twice.
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In this simplified plot we already have incorporated the C0 conditions at the vertex V , and we
rewrite the C1 conditions:

2A1 = T41 + T12

2A2 = T12 + T23

2A3 = T23 + T34

2A4 = T34 + T41

But, if we know the vectors A1, A2, A3, A4 from the C0 transition on the joining edges, we are
not able (in general) to solve the above system for the four unknown twist vectors! In fact, the
homogeneous system has the nontrivial solution (T41, T12, T23, T34) = (+1,−1, +1,−1). This
makes it hard to construct piecewise rectangular surfaces just from precribed curves along the
joining edges. A more close inspection yields that the equations 2A1 + 2A3 = 2A2 + 2A4 =
4V = T41 + T12 + T23 + T34 must hold for C1 across the vertex V , and thus one of the
equations is redundant anyway. If the Ai vectors are satisfying the above condition, the choice
Tij = Ai + Aj − V does the job nicely, and without any further calculation. The reader should
by now have realized that the coupling of the continuity requirements across a vertex may cause
problems. The situation for surfaces on triangles will be even worse, because there may be any
number of triangles meeting at a vertex.

6 Bernstein–Bézier Representations On Simplices

6.1 Generalized Bernstein Polynomials

We now want to generalize the case of polynomial Bernstein–Bézier curves to surfaces, 3D
bodies, etc. The basic trick to generate a partition of unity is to write 1 = 1n and to replace
1 in the right–hand side by an affine combination. Here, we want to work on d–dimensional
simplices, and thus it is natural to use barycentric coordinates λ0(x), λ1(x), . . . , λd(x) of a
point x ∈ IRd with respect to d + 1 points x0, x1, . . . , xd ∈ IRd in general position, i.e. forming
a simplex. Note that we have curve pieces on intervals for d = 1 and surfaces on triangles for
d = 2.
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We use the multinomial formula and multi–index notation to get

1 = 1n

=

(

d
∑

k=0

λj(x)

)n

=
∑

0 ≤ j0, j1, . . . , jd ≤ n
j0 + j1 + . . . + jd = n

n!

j0!j1! · · · jd!
λj0

0 (x)λj1
1 (x) · . . . · λjd

d (x)

=
∑

j∈INd+1

0
, |j|=n

β
(n)
j (x)

β
(n)
j (x) =

n!

j0!j1! · . . . · jd!
λj0

0 (x)λj1
1 (x) · . . . · λjd

d (x) =
(

n
j

)

λj(x)

where the last line contains generalized Bernstein polynomials, forming a partition of unity on
the base triangle.

The above notation looks somewhat strange at first, but we can go back to the univariate case
and see what we have there, if we work on [x0, x1] = [α, β]:

1 = λ0(x) + λ1(x) =
x1 − x

x1 − x0

+
x − x0

x1 − x0

1 = 1n

= (λ0(x) + λ1(x))n

=
∑

0 ≤ j0, j1 ≤ n
j0 + j1 = n

n!

j0!j1!
λj0

0 (x)λj1
1 (x)

=
n
∑

j=0

n!

j!(n − j)!
λj

0(x)λn−j
1 (x)

=
n
∑

j=0

n!

j!(n − j)!

(

x1 − x

x1 − x0

)j

(x)
(

x − x0

x1 − x0

)n−j

(x)

We see that in the univariate case we should have given the j–th Bernstein polynomial the pair
(j, n − j) of indices, summing up to n, and running over j = 0, . . . , n.

We now have our partition of unity, and we can generate vector–valued polynomials by a
control net representation using the same index set. In particular, we take a control net
{bj}j∈INd+1

0
, |j|=n ⊂ IRD, and then we define a Bernstein–Bézier representation over a simplex

by
P (x) =

∑

j∈INd+1

0
, |j|=n

bjβ
(n)
j (x). (6.1)

6.2 Special Cases for Surfaces

Let us look first at the case n = 1. We construct a linear polynomial via three control points
b100, b010, b001 ∈ IR3 and a triangle spanned by non–collinear points x0, x1, x2 ∈ IR2. The surface
is

P (x) = b100λ0(x) + b010λ1(x) + b001λ2(x)
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forming a planar triangle in IRD with vertices b100, b010, b001.

x x

x

0 1
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b
b

b

b

b

200

020
110

002
011

101

The quadratic case has six control points that are usually arranged in the form of a subdivided
triangle

b002

b101 b011

b200 b110 b020

which can be viewed as the image of the base triangle

x2

x0 x1

x x

x

0 1

2 b

b

b

b
b b b

b

b

b

300
030

003

210 120

111102
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012

021

Correspondingly, the cubic case looks like

b003

b102 b012

b201 b111 b021

b300 b210 b120 b030
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6.3 The Algorithm of de Casteljau

We derive it the classical way and first generalize Pascal’s triangle to

n!

j0!j1! · . . . · jd!
=

d
∑

k=0

(n − 1)!jk

j0!j1! · . . . · jd!
=

d
∑

k=0

(n − 1)!

j0!j1! · . . . · jk−1!(jk − 1)!jk+1! · . . . · jd!

for all j, j ∈ INd+1
0 , |j| = n, where terms with factorials of negative numbers are ignored.

If we denote the unit vectors by e0, e1, . . . , ed, the recursion for the factorials can be rewritten
as

(

n
j

)

=
d
∑

k=0

(

n − 1
j − ek

)

and this immediately implies

β
(n)
j (x) =

(

n
j

)

λj(x) =
d
∑

k=0

(

n − 1
j − ek

)

λj−ek(x)λ1
k(x) =

d
∑

k=0

λ1
k(x)β

(n−1)
j−ek

(x)

where we omit a term as soon as a component of its index gets negative.

Now we proceed to the de Casteljau algorithm by starting with

b
(n)
j (x) := bj , j ∈ INd+1

0 , |j| = n

and performing the recursion

P (x) =
∑

j∈INd+1

0
, |j|=n

b
(n)
j (x)β

(n)
j (x)

=
∑

j∈INd+1

0
, |j|=n

b
(n)
j (x)

d
∑

k=0

λ1
k(x)β

(n−1)
j−ek

(x)

(m = j − ek)

=
∑

;m∈INd+1

0
, |m|=n−1

β(n−1)
m (x)

d
∑

k=0

λ1
k(x)b

(n)
m+ek

(x)

=
∑

;m∈INd+1

0
, |m|=n−1

β(n−1)
m (x)b(n−1)

m (x)

=
∑

m∈INd+1

0
, |m|=n−r

β(n−r)
m (x)b(n−r)

m (x)

via

b(n−r)
m (x) =

d
∑

k=0

λ1
k(x)b

(n−r+1)
m+ek

(x)

for all m ∈ INd+1
0 , |m| = n − r, 0 ≤ r ≤ n. This ends up with

P (x) = β
(0)
0 (x)b

(0)
0 (x) = b

(0)
0 (x)

as expected.
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6.4 Degree Elevation

We want to raise the degree n of a Bernstein–Bézier representation (6.1) of a polynomial P .

P (x) =
∑

j∈INd+1

0
, |j|=n

bjβ
(n)
j (x) · 1

=
∑

j∈INd+1

0
, |j|=n

bj

(

n
j

)

λj(x)
d
∑

k=0

λk(x)

=
∑

j∈INd+1

0
, |j|=n

bj

(

n
j

)

d
∑

k=0

λj+ek(x)

(

n + 1
j + ek

)

(

n + 1
j + ek

)

(m = j + ek)

=
∑

m∈INd+1

0
, |m|=n+1

β(n+1)
m (x)

d
∑

k=0,mk>0

bm−ek

(

n
m − ek

)

(

n + 1
m

)

=
∑

m∈INd+1

0
, |m|=n+1

β(n+1)
m (x)

d
∑

k=0,mk>0

bm−ek

mk

n + 1

=
∑

m∈INd+1

0
, |m|=n+1

β(n+1)
m (x)

d
∑

k=0

bm−ek

mk

n + 1
.

The final form makes sense if we ignore terms with illegal indices or zero scalar factors. The
new control points for degree n + 1 and indices m ∈ INd+1

0 , |m| = n + 1 are weighted means of
the nearby control points:

d
∑

k=0

mk

n + 1
bm−ek

,

where the weights neatly correspond to the index vectors.
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Let us illustrate degree elevation from 2 to 3. Note that on the boundary we can work with
the univariate rule, i.e. by splitting in thirds. The central point b111 is the mean of the points
b011, b101, and b110.

6.5 Multiaffine Forms

It is now easy to guess how the control points of a polynomial Bernstein–Bézier representation
P over a simplex X ⊂ IRd spanned by d + 1 points x0, x1, . . . , xd ∈ IRd in general position can
be obtained from the multiaffine form MP for P . We simply define

bj := MP (j#x) := MP (j0#x0, j1#x1, . . . , jd#xd), j ∈ INd+1
0 , |j| = n (6.2)

and see how far we get with this. Let us forget about Bernstein polynomials and just evaluate
P on t ∈ X via the multiaffine forms. We get the de Casteljau algorithm again! In fact, if we
represent t affinely by

t =
d
∑

k=0

λk(t)xk

we can introduce t into the multiaffine form, step by step. We define b
(n)
j (t) := bj to start, and

we assert
b(n−r)
m (t) = MP (m#x, r#t), |m| = n − r, 0 ≤ r ≤ n,

which is true for r = 0. If we assume the above representation for some r − 1 with r > 0, then
we can write

MP (m#x, r#t) = MP (m#x, r − 1#t,
d
∑

k=0

λk(t)xk)

=
d
∑

k=0

λk(t)MP (m#x, r − 1#t, xk)

=
d
∑

k=0

λk(t)MP (m + ek#x, r − 1#t)

=
d
∑

k=0

λk(t)b
(n−r+1)
m+ek

(t)

= b(n−r)
m (t)



6 BERNSTEIN–BÉZIER REPRESENTATIONS ON SIMPLICES 45

provided that we take the de Casteljau recursion for the final step, and this proves our assertion.
Now b0

0(t) = MP (n#t) = P (t) holds, and we have reconstructed P .

As in the spline case, we do not need to know the partition of unity, i.e. the multivariate
Bernstein polynomials, to derive the de Casteljau formulae. But we want to prove that the
Bernstein–Bézier coefficients have precisely the above form:

Theorem 6.1 If a polynomial P of degree n is represented in Bernstein–Bézier form over a
simplex X spanned by d + 1 points x0, x1, . . . , xd ∈ IRd, its control points are necessarily of the
form (6.2).

Proof: We do this the same way as in the spline case, invoking a dimension argument.

Let us first count the number of nonnegative integer index vectors j ∈ INd+1
0 with |j| = n. It is

the number of integer index vectors k ∈ INd
0 witk 0 ≤ |k| ≤ n because we can uniquely extend

each k to (k, n−|k|). Thus this number is the same as the number of d–variate monomials xk with
0 ≤ |k| ≤ n. Therefore the space B of all d–variate polynomials of degree at most n with values
in IRD has the same dimension as the space C for the full control nets {bj ∈ IRD}j∈INd+1

0
,|j|=n.

The linear mapping S from B to C defined by (6.2) and the linear mapping T from C to
B defined by the de Casteljau algorithm have the property T ◦ S = Id, due to our second
presentation of the de Casteljau algorithm. Since B and C have the same finite dimension, S
and T must be bijective. But then T−1P leads to the unique control net that generates P via
the de Casteljau algorithm, and this is what we wanted to prove. 2

By the same argument, we see that the multivariate Bernstein polynomials are linearly inde-
pendent.

6.6 Subdivision

As in the case of surfaces on rectangles, we have several possibilities to do subdivision. The
simple de Casteljau process for some t in a simplex spanned by x0, x1, . . . , xd ∈ IRd generates
intermediate points

b
(n−r)
ℓ (t) = MP (ℓ#x, r#t), |ℓ| = n − r, 0 ≤ r ≤ n,

as we have seen. Among these are d + 1 sets for the simplices spanned by letting t replace one
of the simplex vertices. The simplex X0 where t replaces x0 needs the points

b
(n−ℓ0)
ℓ−ℓ0e0

(t) = MP (0#x0, ℓ1#x1, . . . , ℓd#xd, ℓ0#t), |ℓ| = n,

and the other simplices are treated similarly.

x x

x

0 1

2

t
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Splitting a triangle this way is not the best possible thing, because the angles get small and
the triangles degenerate into short lines. A better way is to bisect the edges and to generate
four similar triangles.

x x

x

0 1

2

y

yy

2

01

If yi is the point in opposition to xi, we have to generate the four sets

MP (ℓ0#x0, ℓ1#y1, ℓ2#y2)
MP (ℓ0#y0, ℓ1#x1, ℓ2#y2)
MP (ℓ0#y0, ℓ1#y1, ℓ2#x2)
MP (ℓ0#y0, ℓ1#y1, ℓ2#y2)

of control points, where |ℓ| = 3. Of course one could write a recursive routine to do the
evaluation, replacing points yk by their neighbors xk−1 and xk+1, taking indices mod 3.

A

A A

B

B B

B

BB

C

C C

C

CC D

DD E E

E

E E

E

F

F F

G

But one can determine the correct linear combinations beforehand. Each control point of the
four sets of 10 control points we look for must be an affine combination of the 10 control points
we started with, and the weights should just be determined by the indices. The points we have
to calculate can be split up in different classes A to G, depending on their relative position,
as in the figure above. The univariate subdivision process can be used to determine the points
of type A to D. Here are the examples for points of types B to D for the control net b′j in the
upper triangle:

MP (y0, x2, x2) = (MP (x1, x2, x2) + MP (x2, x2, x2))/2 B
b′012 = (b012 + b003)/2 B

MP (y0, y0, x2) = (MP (x1, x1, x2) + 2MP (x1, x2, x2) + MP (x2, x2, x2))/4 C
b′021 = (b021 + 2b012 + b003)/4 C

MP (y0, y0, y0) = (MP (x1, x1, x1) + 3MP (x1, x1, x2) + 3MP (x1, x2, x2) + MP (x2, x2, x2))/8 D
b′030 = (b030 + 3b021 + 3b012 + b003)/8 D
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For type F we pick the example

MP (y0, y1, x2) = MP ((x1 + x2)/2, (x0 + x2)/2, x2)
b′111 = (MP (x1, x0, x2) + MP (x1, x2, x2) + MP (x2, x0, x2) + MP (x2, x2, x2))/4

and for type E we have

MP (y0, y1, y1) = MP ((x1 + x2)/2, (x0 + x2)/2, (x0 + x2)/2)
b′210 = (MP (x1, x0, (x0 + x2)/2) + MP (x1, x2, (x0 + x2)/2)+

MP (x2, x0, (x0 + x2)/2) + MP (x2, x2, (x0 + x2)/2))/4
= (MP (x1, x0, x0) + MP (x1, x0, x2) + MP (x1, x2, x0) + MP (x1, x2, x2)+

MP (x2, x0, x0) + MP (x2, x0, x2) + MP (x2, x2, x0) + MP (x2, x2, x2))/8
= (b210 + 2b111 + b012 + b201 + 2b102 + b003)/8

E

1b

2b

2b

1b

1b

1b

0b 0b 0b

0b

003

012

021

030300 210 120

111201

102

The above plot shows the weights (to be divided by 8) with respect to the original 10 control
points. Or, look at the following simplified picture:

E

1

2

2

1

1

1

0 0 0

0

It should be clear by now how to get the other points of type E and F. The corresponding
weights for F (to be divided by 4) are here:
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1

1

1

0

0

1

0 0 0

0

F

The remaining case is G:

MP (y0, y1, y2) = MP ((x1 + x2)/2, (x0 + x2)/2, (x0 + x1)/2)
b∗111 = (MP (x1, x0, (x0 + x1)/2) + MP (x1, x2, (x0 + x1)/2)+

MP (x2, x0, (x0 + x1)/2) + MP (x2, x2, (x0 + x1)/2))/4
= (MP (x1, x0, x0) + MP (x1, x0, x1) + MP (x1, x2, x0) + MP (x1, x2, x1)+

MP (x2, x0, x0) + MP (x2, x0, x1) + MP (x2, x2, x0) + MP (x2, x2, x1))/8
= (b210 + b120 + 2b111 + b021 + b201 + b102 + b012)/8

and here are the (relative) weights:

0

2

1

1

1

1

0 1 0

1
G

6.7 Derivatives

Let us recall from (2.5) that the derivative of an n–th degree polynomial P over a simplex in
IRd in the direction r ∈ IRd has the symmetric multiaffine form

M(∇T
x r)P (x2, . . . , xn) = n · (MP (z + r, x2, . . . , xn) − MP (z, x2, . . . , xn))

= n∆u
r |z

MP (u, x2, . . . , xn)
(6.3)

for all z ∈ IRd, and the directional derivative of P itself at y is

(∇T
x r)P|y = M(∇T

x r)P ((n − 1)#y) = n · (MP (z + r, (n − 1)#y) − MP (z, (n − 1)#y))
= n∆u

r |z
MP (u, (n − 1)#y)

(6.4)

for arbitrary z ∈ IRd. Here ∆z
r |y

is the first–order undivided difference evaluated at y + r and
y with respect to the variable z, i.e.

∆z
r |y

g(z) := g(y + r) − g(y).
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Again, a directional derivative of a polynomial is just a difference acting on the multiaffine
form, and this generalizes easily to higher–order derivatives.

Lemma 6.1 The k–th directional derivative at y in directions r1, . . . , rk ∈ IRd of an n-th degree
multivariate and vector–valued polynomial P is

∇z
r1 |y

. . .∇z
rk |y

P (z) =
n!

(n − k)!
∆u1

r1 |z1
. . .∆uk

rk |zk

MP (u1, . . . , uk, (n − k)#y)

and has the symmetric multiaffine form

M∇z
r1 |y

...∇z
rk |y

P (z)(zk+1, . . . , zn) =
n!

(n − k)!
∆u1

r1 |z1
. . .∆uk

rk |zk

MP (u1, . . . , uk, zk+1, . . . , zn)

as a polynomial of degree n − k, where z1, . . . , zk ∈ IRd can be arbitrary.

Proof: The first statement follows from the second. if all zi are equal to y. But the second just
is (6.3) extended by induction. 2

Let us make all rj equal to a fixed direction r and set the zj equal to y. Then

M∇z
r

k
|y

P (z)(zk+1, . . . , zn) =
n!

(n − k)!
∆u1

r |y
. . .∆uk

r |y
MP (u1, . . . , uk, zk+1, . . . , zn)

=
n!

(n − k)!

k
∑

j=0

(

k

j

)

(−1)k−jMP (j#(y + r), (k − j)#y, zk+1, . . . , zn)

and

(∇z
r)

k
|y

P (z) =
n!

(n − k)!

k
∑

j=0

(

k

j

)

(−1)k−jMP (j#(y + r), (n − j)#y).

Assume now that we write P in Bernstein–Bézier representation on a simplex S(x0, . . . , xd)
with control points bj = MP (j#x) for |j| = n, j ∈ INd+1

0 . The directional derivatives are
expressible via the control net if, for instance, we take y = xi and r = xm − xi to describe
derivatives from a vertex xi towards another vertex xm. The result is

(

∇z
xm−xi

)k

|xi

P (z)|xi
=

n!

(n − k)!

k
∑

j=0

(

k

j

)

(−1)k−jMP (j#xm, (n − j)#xi)

=
n!

(n − k)!

k
∑

j=0

(

k

j

)

(−1)k−jbjem+(n−j)ei

and we recover the formulae for derivatives of Bernstein–Bézier curves. More generally, the

polynomial
(

∇z
xm−xi

)k

|xi

P (z) of degree n − k is represented via the control net

bℓ(i, m, k) :=
n!

(n − k)!

k
∑

j=0

(

k

j

)

(−1)k−jbℓ+jem+(k−j)ei
, |ℓ| = n − k, ℓ ∈ INd+1

0 .

over the same simplex as P .
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6.8 Continuity Conditions over Simplicial Faces

We now want tor describe conditions in terms of control nets that describe a smooth Cm

transition from one polynomial piece to another via an intersecting simplicial face. We take
two polynomials P and Q over nondegenerate simplices S := conv(x0, x1, . . . , xd) and T :=
conv(y0, x1, . . . , xd) over the common face conv(x1, . . . , xd). Note that this numbering of vertices
looks simple, but implies that the orientations of S and T differ. We shall assume that P and
Q are degree–elevated to the same degree n ≥ m.

Clearly, a Cm transition between P and Q on S ∩ T means that all directional derivatives in
all directions r and of all orders k ≤ m taken at all points y ∈ S ∩ T must coincide. We now
transform this statement step by step in order to find conditions in terms of control points.

Lemma 6.2 A Cm transition between P and Q on S ∩ T is equivalent to

∆u1

r1 |z1
. . .∆uk

rk |zk

MP (u1, . . . , uk, (n − k)#y)

= ∆u1

r1 |z1
. . .∆uk

rk |zk

MQ(u1, . . . , uk, (n − k)#y)

for all r1, . . . , rk, z1, . . . , zk ∈ IRd, 0 ≤ k ≤ m and all y ∈ S ∩ T .

Proof: We take an arbitrary y ∈ S ∩ T and apply Lemma 6.1. 2.

Lemma 6.3 A Cm transition between P and Q on S ∩ T is equivalent to

MP (z1, . . . , zm, (n − m)#y) = MQ(z1, . . . , zm, (n − m)#y)

for all z1, . . . , zm ∈ IRd, y ∈ S ∩ T .

Proof: From the preceding lemma we get equivalence to

MP (z1, . . . , zk, (n − k)#y) = MQ(z1, . . . , zk, (n − k)#y)

for all z1, . . . , zk ∈ IRd, 0 ≤ k ≤ m and all y ∈ S ∩ T , because we can pick arbitrary points zj

and directions rj anyway. The strongest case k = m is the assertion of the lemma. 2

Lemma 6.4 A Cm transition between P and Q on S ∩ T is equivalent to

MP (z1, . . . , zm, ym+1, . . . , yn) = MQ(z1, . . . , zm, ym+1, . . . , yn)

for all z1, . . . , zm ∈ IRd, ym+1, . . . , yn ∈ S ∩ T .

Proof: The assertion follows from the next lemma that we should have proven earlier. 2

Lemma 6.5 If two n–th degree polynomials P and Q coincide on a simplex C, then

MP (c1, . . . , cn) = MQ(c1, . . . , cn) for all c1, . . . , cn ∈ C.

Proof: Clearly, the polynomials P and Q have the same directional derivatives on C if these
are evaluated at points in C and taken into directions leading into C again. Equation (6.4) then
first proves

MP (c1, (n − 1)#c) = MQ(c1, (n − 1)#c) for all c, c1 ∈ C

and the rest can be done via induction. 2
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We consider control point representations of P and Q on s and T , respectively, by

bj = MP (j0#x0, j1#x1, . . . , jd#xd), |j| = n, j ∈ INd+1
0

cj = MQ(j0#y0, j1#x1, . . . , jd#xd), |j| = n, j ∈ INd+1
0

and perform an “extrapolating” de Casteljau algorithm twice: we evaluate P at y0 and Q at
x0, respectively. This yields control points

b
(n−k)
j (y0) = MP (k#y0, j0#x0, j1#x1, . . . , jd#xd), |j| = n − k, j ∈ INd+1

0 , 0 ≤ k ≤ n

c
(n−k)
j (x0) = MQ(k#x0, j0#y0, j1#x1, . . . , jd#xd), |j| = n − k, j ∈ INd+1

0 , 0 ≤ k ≤ n
(6.5)

and due to Lemma 6.4 we see that

b
(n−k)
ℓe0+j (y0) = c

(n−ℓ)
ke0+j(x0) for all 0 ≤ ℓ + k ≤ m, |j| = n − k − ℓ, j0 = 0 (6.6)

is a necessary condition for a Cm transition.

To investigate sufficiency of (6.6), we note first that for fixed values of k and ℓ with 0 ≤ ℓ+k ≤ m
the polynomials Rk,ℓ with

MRk,ℓ
(yk+ℓ+1, . . . , yn) := MP (k#y0, ℓ#x0, yk+ℓ+1, . . . , yn)

are of degree n− k − ℓ and can be represented in Bernstein–Bézier form over S ∩ T by control
points

MRk,ℓ
(j1#x1, . . . , jd#xd) |j| = n − k − ℓ, j ∈ INd

0

= MP (k#y0, ℓ#x0, j1#x1, . . . , jd#xd) |j| = n − k − ℓ, j ∈ INd
0

= b
(n−k)
ℓe0+j (y0) |j| = n − k − ℓ, j ∈ INd+1

0 , j0 = 0

= c
(n−ℓ)
ke0+j(x0) |j| = n − k − ℓ, j ∈ INd+1

0 , j0 = 0
= MQ(ℓ#x0, k#y0, j1#y1, . . . , jd#yd) |j| = n − k − ℓ, j ∈ INd

0 .

This proves the identities

MP (k#y0, ℓ#x0, yk+ℓ+1, . . . , yn) = MQ(k#y0, ℓ#x0, yk+ℓ+1, . . . , yn)

whenever yk+ℓ+1, . . . , yn are repetitions of the vertices x1, . . . , xd of S ∩ T . By standard multi-
affine combinations a la de Casteljau we find that the above equation holds for all yi ∈ S ∩ T .
We then can invoke Lemma 6.5 on the convex hull C of S ∪ T to get

MP (z1, . . . , zk+ℓ, yk+ℓ+1, . . . , yn) = MQ(z1, . . . , zk+ℓ, yk+ℓ+1, . . . , yn)

for all z1, . . . , zk+ℓ ∈ C, k + ℓ ≤ m, yk+ℓ+1, . . . , yn ∈ S ∩ T . Since we assumed the simplices S
and T to be nondegenerate, this means that the above equations also hold for all z1, . . . , zk+ℓ ∈
IRd, k + ℓ ≤ m, yk+ℓ+1, . . . , yn ∈ S ∩ T . This is the assertion of Lemma 6.4, and this finishes
the proof of

Theorem 6.2 Equations (6.6) are necessary and sufficient for a Cm transition of polynomials
of degree n between nondegenerate simplices. 2



6 BERNSTEIN–BÉZIER REPRESENTATIONS ON SIMPLICES 52

If we restrict everything to the affine hull A of S ∩ T , the same statement holds even for
degenerate simplices. One must restrict everything to A instead of working in IRd, in particular
the directional derivatives.

One can look at equations (6.6) from various directions. Assume that we have the control net
bj and want to calculate as many as possible of the cj via the Cm continuity conditions. We
then take ℓ = 0 in (6.6) and calculate all

cke0+j = b
(n−k)
0e0+j(y0), 0 ≤ k ≤ m, |j| = n − k, j0 = 0

by m steps of the de Casteljau algorithm, starting out from S ∩ T . For m = 0 we just have the
C0 condition

c0∗ = b0∗

that ensures P = Q on S ∩ T . For m = 1 we see that

c1j = b
(n−1)
0j (y0), |j| = n − 1

calculates the next layer of control points adjacent to S∩T by simple de Casteljau extrapolation
towards y0.

Sorry, no pictures so far...

Definition 6.1 In view of (6.6) we call control points bj of a representation of a polynomial of
degree n over a simplex S to be in layer k, if min

1≤i≤d
ji = k.

This means that layer 0 consists of control points corresponding to the boundary faces, and
layers up to m are relevant for Cm continuity conditions.

6.9 Continuity Conditions over Vertices

For simplicity, let us restrict ourselves to triangles. In the parameter domain, any number ℓ ≥ 3
of triangles can meet at a common vertex,

Sorry, no pictures so far...

and the corresponding ℓ polynomial surfaces of degree n (by degree elevation) should be not
only smooth over the triangles’ egdes, but also be smooth around the vertex. For C0 continuity
this is easy: the control points corresponding to triangle faces and to the vertex must simply
be well–defined and independent of the triangle in question.

A C1 transition at a vertex is somewhat more complicated. Each C1 transition over the faces
will affect the layer 1 control points of all surfaces in such a way that the local geometry of
the parameter triangles is mapped affinely into image space RD, D = 3, 4. At the vertex this
must hold for all involved triangles simultaneously, meaning that the local “star” of triangles
in the parameter domain must be mapped affinely into the tangent plane to the full C1 surface
at the image of the vertex in such a way that the control points of layers 0 and 1 adjacent to
the vertex are mapped to the tangent plane by this single affine map.

Sorry, no pictures so far...
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If the degree n is 3 or more, this construction will only affect the control points near the vertex
and not affect control points near the other vertices. This means that it is always possible to
design a control net locally around a vertex in such a way that a C1 surface results, if the degree
is 3 or more. One prescribes a tangent plane, maps the local “star” of triangles affinely onto it
and adjusts the rest of the layer 0 control points suitably.

In the general Cm case one can try to prescribe all m–th order directional derivatives at the
vertex to generate all neighbouring control points of layers 0 to m. These do not interfere with
control points being neighbours to other vertices, if control points like bn−2m,m,m and bm,n−2m,m

do not interfere, and this works for n ≥ 2m + 1.

Sorry, no pictures so far...

Things get more complicated if we also consider Cm conditions along all edges. The C1 con-
dition along edges will affect the twist vectors of type b1,1,n−2,1,n−2,1 , c1,1,n−2, c1,n−2,1 etc. in a
cyclic fashion around a vertex. Even if the associated conditions are solvable, these conditions
will interfere with those coming in from other edges unless n is 4 or more. The situation for 4
adjacent rectangular polynomial surface patches and their “twist vectors” was treated in section
5.8, and we do not want to pursue this subject any further. The theses of Armin Iske (Glattes
Verheften von Bernstein-Bézier-Tensorproduktflächen. NAM, Göttingen, Diplomarbeit, 1991)
and Marko Weinrich (Glattes Verheften von Bernstein-Beziér-Dreiecksflächen. NAM, Göttin-
gen, Diplomarbeit, 1991) contain a fairly complete presentation of the patching problem.

7 Rational Curves

The stuff in italics is currently omitted, because it is more orc less standard and can be found
anywhere in the literature

7.1 Elementary Properties

Short discussion of writing curves polynomially in homogeneous coordinates versus writing them
as rational functions with certain weights

Some easy examples showing how to represent simple conics that way.

Motivates that conics should be representable as rational quadratic curves.

7.2 Weighted Bernstein–Bézier Form

Simple stuff: convex hull property, derivatives

7.3 Conics

Here, we follow a journal article of Lee (The rational Bézier representation for conics in
Geometric Modeling, Geometric Modeling: Algorithms and New Trends, SIAM, 1987, p. 3–19)
in order to give a more or less complete account of planar conics.
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Conics are planar curves that arise when intersecting the surface of a 3–dimensional cone with
a hyperplane. We omit a proof of the fact that conics in cartesian 2D coordinates x, y coincide
with the set of nontrivial solutions of quadratic equations

a0 + a1x + a2y + a3x
2 + a4xy + a5y

2 = 0,

but we remark that this definition provides 5 degrees of freedom, because there is a free common
nonzero factor. Everybody should know the standard cases of

• ellipses
(x − x0)

2

a2
+

(y − y0)
2

b2
= 1

• hyperbola
(x − x0)

2

a2
− (y − y0)

2

b2
= 1

• parabola
(x − x0)

2

a2
− y − y0

b
= 1

x − x0

a
− (y − y0)

2

b2
= 1

that apparently have 4 varying parameters, but crucially depend on cartesian coordinates and
should allow a rotation as a fifth parameter. Our goal is to represent the full range of all types
of conics by 5 parameters in a simple and effective way.

We first look at the standard weighted rational Bernstein–Bézier representation

R(t) =
P (t)

p(t)
=

w0b0(1 − t)2 + w1b12t(1 − t) + w2b2t
2

w0(1 − t)2 + w12t(1 − t) + w2t2

of degree 2 with three (finite Euclidean) control points b0, b1, b2. We can assume these points
to lie in a plane. e.g. in IR2, and we can assume them to be non–collinear, because otherwise
we would just get a strangely parameterized straight line. From the preceding section we know
that this fixes two points b0, b2 on the conic together with the tangents there, defined by the
directions b1 − b0, b2 − b1. This makes four pieces of information, and it defines the standard
local second–order polynomial Bernstein–Bézier curve, if we simply ignore the denominator by
putting all weights equal to one. We would thus get the parabolic case, but there are formally
three weights to play with. It will turn out that just one additional parameter is relevant,
making it 5 in total, which is what we are after.

We note in passing that any conic can be constructed from 5 “pieces” by a completely “projec-
tive” construction using only a rule, not even a compass. We provide a single case, consisting
of the two points b0, b2 and two tangents we have so far, plus an additional point b inside
the triangle spanned by b0, b1, b2. This makes 5 “pieces” that uniquely define a conic, and we
construct additional points on the conic as follows:

1. Pick any line L through b0. We want to construct the new point on that line.

2. Intersect L with the line bb1 to get a new point c1.
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3. Intersect b2c1 with the line b0b to get a new point c2.

4. Intersect b1c2 with the line L to get the desired point c.

Though we did not prove the above strategy to be correct, it teaches us that fixing a single
additional point within the triangle should fix the complete conic and determine its type
(elliptic, parabolic, hyperbolic). In fact, it will turn out that fixing a point above or below
the parabolic polynomial curve will yield a hyperbolic or elliptic conic, respectively.

We now want to proceed somewhat more strictly and introduce barycentric coordinates
λ0, λ1, λ2 within the triangle b0b1b2 in the standard way. Then we compare

R(t) =
w0(1 − t)2

p(t)
b0 +

2w1t(1 − t)

p(t)
b1 +

w2t
2

p(t)
b2

= λ0b0 + (1 − λ0 − λ2)b1 + λ2b2

and get

λ0 =
w0(1 − t)2

p(t)

1 − λ0 − λ2 =
2w1t(1 − t)

p(t)

λ2 =
w2t

2

p(t)
.

This combines into the quadratic equation

λ0 · λ2 =
w0(1 − t)2

p(t)

w2t
2

p(t)
=

w0w2

4w2
1

(1 − λ0 − λ2)
2 = k(1 − λ0 − λ2)

2 (7.1)

for the barycentric coordinates, depending only on the single scalar quantity

k :=
w0w2

4w2
1

.

Curves with the same value of k will coincide, and the case k = 1/4 yields the standard second–
degree polynomial case that we expect to turn out to produce a parabola. For simplicity, we
can set w0 = w2 = 1 whenever we want, controlling everything via k or w1.

The denominator polynomial has the form

p(t) = (1 − t)2 + w12t(1 − t) + t2 = (2 − 2w1)t
2 + 2t(w1 − 1) + 1.

If it is of degree smaller than 2, this means w1 = 1 and k = 1/4, i.e. we are in the standard
polynomial case. In any other case, we have the possibly complex roots

w1 − 1 ±
√

(w1 − 1)2 − (2 − 2w1)

2 − 2w1
=

w1 − 1 ± w1

√
1 − 4k

2 − 2w1

and see that there are

• no real roots for k > 1/4

• two real roots for k < 1/4
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• just one real root for k = 1/4, but then the polynomial deteriorates into p = 1 and has
no finite roots at all. If w1 tends to one from above, we are in the above case and see that
the two real roots both tend to infinity and coalesce there in the limit.

Of course we guess that the three cases above are the elliptic, hyperbolic, and parabolic case,
respectively. Clearly, in the first case the whole curve, when seen for all t ∈ IR, stays in
a bounded region. In the second case there are two curve parameters t1 and t2 where the
denominator vanishes. If the numerator does not vanish for those parameters, the curve will
have a singularity there.

We now change the sign of w1 by brute force and define

R̃(t) =
P̃ (t)

p̃(t)
=

w0b0(1 − t)2 − w1b12t(1 − t) + w2b2t
2

w0(1 − t)2 − w12t(1 − t) + w2t2

Again, we compare

R̃(t) =
w0(1 − t)2

p̃(t)
b0 − 2w1t(1 − t)

p̃(t)
b1 +

w2t
2

p̃(t)
b2

= λ̃0b0 + (1 − λ̃0 − λ̃2)b1 + λ̃2b2

and get

λ̃0 =
w0(1 − t)2

p̃(t)

1 − λ̃0 − λ̃2 =
2w1t(1 − t)

p̃(t)

λ̃2 =
w2t

2

p̃(t)
.

This combines into the quadratic equation

λ̃0 · λ̃2 =
w0(1 − t)2

p̃(t)

w2t
2

p̃(t)
=

w0w2

4w2
1

(1 − λ̃0 − λ̃2)
2 = k(1 − λ̃0 − λ̃2)

2

for the barycentric coordinates, and this is the same equation that we already had. Thus the
point R̃(t) must lie somewhere on our curve, but where? We call it complementary to R(t) and
look at

p̃(t)(R̃(t) − b1) = P̃ (t) − b1p̃(t)
= P (t) − 4w1b1t(1 − t) − b1p̃(t)
= P (t) − b1p(t)
= p(t)(R(t) − b1)

to see that the three points R(t), b1, and R̃(t) lie on a line. There should be a parameter t̃ with
R̃(t) = R(t̃), and by some lengthy calculation one gets

t̃ =
t

2t − 1
.
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We should verify this by

P (t̃) = P
(

t

2t − 1

)

= w0b0

(

1 − t

2t − 1

)2

+ 2w1b1

(

t

2t − 1

)(

1 − t

2t − 1

)

+ w2b2

(

t

2t − 1

)2

=
w0b0(t − 1)2 + 2w1b1t(t − 1) + w2b2t

2

(2t − 1)2

=
P̃ (t)

(2t − 1)2
.

Similarly, replacing all b∗ by 1 for a moment, we get that also

p(t̃) =
p̃(t)

(2t − 1)2

holds and implies
R(t̃) = R̃(t)

because the denominator (2t − 1)2 cancels.

But note now that the function t̃(t) = t/(2t − 1) is a bijection on IR with fixed points t = 1
and t = 0, mapping t = 1/2 to ∞, (1/2, 1] to [1,∞) and [0, 1/2) to (−∞, 0]. This means that
R̃(t) = R(t̃) lies on the curve segment outside of the triangle b0b1b2 when t varies in (0, 1).

The point b̃1 := R̃(1/2) = R(∞) is something special. For the parabolic case it lies at infinity,
but clearly not for the other cases, where it comes out to be

b̃1 = R(∞) =
w0b0 − 2w1b1 + w2b2

w0 − 2w1 + w2
.

Strangely enough, the point b̃1 := R̃(1/2) = R(∞) always lies on the line connecting b1 with
(b0 +b2)/2. To see this, consider the intersection point q of the line b0b2 with the line connecting
b1 and b̃1. It has the form

q = λb0 + (1 − λ)b2

= b1 + τ

(

w0b0 − 2w1b1 + w2b2

w0 − 2w1 + w2
− b1

)

and we see that b0 and b2 carry the same weight, which must then be 1/2. The analogous point
s with

s := R(1/2) = R̃(∞) =
w0b0 + 2w1b1 + w2b2

w0 + 2w1 + w2

is called shoulder point and can come in useful as an additional point that controls the type of
the conic.

From this point on, one can calculate plenty of information about conics from the formulae
we have up to now, i.e. axes, foci etc. We shall not do this now, but rather show that given
an additional point S within the standard triangle we can identify a unique conic through this
point. To this end, we have to find k and t such that S = R(t) for the conic with parameter k.
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But this is easy to do via the barycentric cordinates of S, We calculate k from (7.1). Then we
set w0 = w2 = 1 to get w1 from k and use the equations for the barycentric coordinates via

√

λ2

λ0
=

t

1 − t

to calculate t. The same argument shows that we can pick up any conic this way, once we know
that conics are defined by two points with tangents and an additional point. We go to some
place of the conic where it has no singularity, take two points and the tangents there, draw the
standard triangle and select another point from those within the triangle. Then we perform
what we did above, and we get the conic through these data.
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These pictures were made by a simple MATLAB m-file:

% quadratic bezier curves

% points: [xi ; yi; wi]

p=[ 0 0.6 2 ; 0 2 0; 1 3 1]

% weighted points

pb=[p(1,:).*p(3,:) ;p(2,:).*p(3,:) ;p(3,:)]

% range for t from -100 to 100

rt=-100:0.01:100;

% Bernstein polynomial values over the full range

b0=(1-rt).^2;

b1=2*rt.*(1-rt);

b2=rt.^2;

% generate values over the range: [x; y; denominator]

pw=pb*[b0;b1;b2];

% this plots the upper two lines of the triangle

plot(p(1,:),p(2,:));

% this fixes the plot axes

axis([-2 4 -3 5]);

% hold axes scaling for subsequent plots

hold on

% plot the values of the function



8 TRANSFINITE METHODS, COONS PATCHES 60

plot(pw(1,:)./pw(3,:),pw(2,:)./pw(3,:));

hold on

% plot red crosses at the given control points

plot(p(1,:),p(2,:),’r+’);

for varying values of the central weight, i.e. the penultimate value of the p array.

8 Transfinite Methods, Coons Patches

Standard material, in any book on CAGD, omitted

9 Constructing Surfaces from Point Clouds

The background for all of this is the problem of reconstructing geometric objects from given
experimental data, e.g. from laser scans or satellite observations.

9.1 Constructing Curves from Point Data

Start: Standard material on interpolation, omitted

For interpolation of a sequence of data points (tj, yj) ∈ IR2, 0 ≤ j ≤ n one has both the
order information of the points and the parametrization information. This is not available, if
an unstructured set of n points in IR2 or IR3 is given. One needs to recover the order information
first, which need not be implied by the numbering. and then find the “right” order of the points.
This is a highly complicated problem, at least in theory, because it has apparent connections
to the travelling salesman problem.

In what follows, we assume that we have an ordering z0, . . . , zn of the points. But usually there
is no parametrization. A standard choice would be chord–length parametrization, assigning
parameters

t0 := 0 to z0

tj := tj−1 + ‖zj − zj−1‖2 to zj , j ≥ 1

that builds up the chord length of the piecewise linear interpolant. One then has vector–valued
parametric data (tj , zj), 0 ≤ j ≤ n and can use any standard interpolation scheme.

Another possibility is to estimate tangents at the data points, e.g. by differences of nearby
points, and to use Hermite–type interpolants to construct an interpolation curve by a completely
local process. This can be done along the lines of

ftp://ftp.num.math.uni-goettingen.de/pub/preprints/schaback/OGHIoC.ps

and details are give there. Also, one can do an interpolation by conics of varying type, see

ftp://ftp.num.math.uni-goettingen.de/pub/preprints/schaback/PCIbPCoAT.ps.gz

If planar interpolating curves are constructed by implicit representations, things are simpler.
The basic idea is as follows. If the curve can be written as the set Sg of points z ∈ IR2 satisfying
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an equation like g(z) = 1, one can try to approximate g by an interpolant sg that attains
the value 1 at all data points zj and consider the set Sg of points z with sg(z) = 1. Since
sg(zj) = 1 = g(zj) holds, the set Sg contains all the data points zj , and it is a curve, if the
function sg is nondegenerate. One way of constructing such a curve is to solve the linear system

n
∑

j=0

αj exp(−γ‖zj − zk‖2
2) = 1, 1 ≤ k ≤ n

for a fixed positive value of γ, and then setting

sg(z) =
n
∑

j=0

αj exp(−γ‖zj − z‖2
2).

This technique does not need ordered data, but it yields an implicit representation instead of an
explicit one. And, it needs proof that the symmetric n×n matrix with entries exp(−γ‖zj−zk‖2

2)
is nonsingular for any choice of n different points in IR2. This is indeed true, and it holds even
for all space dimensions. But there still is another drawback: it is not clear whether the set Sg

splits into several disjoint connected components, failing to line the given points up in a single
curve.

9.2 Constructing Surfaces from Point Data


