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6 1 INTRODUCTIONForewordThis text currently serves two purposes:� it backs up the lecture on reconstruction of multivariate functions asgiven in G�ottingen in summer 1996, and� it serves as a gradually growing reference manual for research of thegroup in G�ottingen and related places.It may �nally develop into a monograph, but as to now it is rather preliminaryand not intended for general distribution. Suggestions, corrections, addenda,and any form of criticism are welcome.R. Schaback G�ottingen, January 21, 1997e-mail: schaback@namu01.gwdg.deLayout for this test version:� Logical LATEX labels printed out in slanted font.� Three-level cumulative numbering of environments and equations.� The index is just a preliminary and (possibly) unsorted list of keywords.
1 Introduction(SectIntro) The following is intended to give the basic motivation for whatfollows in later chapters. It shows that the reconstruction of multivariatefunctions f from certain function spaces F requires dependence of F on thedata. Such data-dependent spaces are provided by conditionally positivede�nite functions, and these are in the focus of this text. Their optimalityproperties, as proven in later sections, justify this point of view. Afterde�nition of spaces generated by conditionally positive de�nite functions,this section introduces the standard algorithms for recovery of functionsfrom such spaces. Examples, generalizations, proofs, theoretical details, andimplementation problems will be added in later sections.



1.1 Recovery, Interpolation, and Approximation 71.1 Recovery, Interpolation, and ApproximationIn almost all practical applications, a function f is given not as a formula,but as a bunch of data. These data often take the form of approximatevalues f(x1); : : : ; f(xM) of f at some scattered locations x1; : : : ; xM of thedomain 
 of de�nition of f . The recovery problem then consists in thereconstruction of f as a formula from the given data. This reconstructioncan be done in two ways:� interpolation tries to match the data exactly, taking f from a largeclass F of functions that is actually able to meet all of the data, while� approximation allows f to miss the data somewhat, but selects thereconstruction function from a smaller class F of functions that willnot in general be able to reconstruct the data exactly.The selection between interpolation and approximation will depend on theapplication, and especially on the choice of function classes F and the neces-sity of exact reproduction of data.We shall address both problems here, and there will be some hidden linksdiscovered between the two approaches. Furthermore, we shall allow a muchwider class of recovery problems in later sections, but the basic motivationis better shown by the above simpli�ed \Lagrange" setting.1.2 Input and Output DataWe shall consider reconstruction of d-variate functions f de�ned on a domain
. In most cases, 
 will be a subset of IRd, but many results will hold ongeneral sets. Right from the start we keep in mind that d might be large andthat the domain 
 may be all of IRd or something special like a subdomain ofIRd or the d� 1 dimensional sphere, i.e. the surface f x 2 IRd : kxk2 = 1 gof the unit ball f x 2 IRd : kxk2 � 1 g, where k:k2 denotes the usualEuclidean norm on IRd. In addition, we also may encounter very large setsof data, and these usually come up in two parts:� a �nite set X = fx1; : : : ; xMg of M possibly wildly scattered points insome domain 
 � IRd, and� real numbers f1; : : : ; fM that represent approximate values of f at thegiven points.



8 1 INTRODUCTIONThe reconstruction should supply some function f de�ned on a domain 
that contains all the data locations, and the data are to be reproducedapproximately in the sensefj � f(xj); 1 � j �M:But there are two other important input data for the recovery process:� the domain 
 should be prescribed by the user, and� the reconstruction should be con�ned to some prescribed class F offunctions in order to avoid unpredictable results.These will �nally �x the set of formulas that are allowed as the output of therecovery process. Their choice will very much depend on the application andon additional knowledge of the user. For instance, somebody might wantthe resulting function f to be de�ned on all of IRd, while somebody else isinterested in a much more local reconstruction, e.g. in the convex hull of thedata locations.Furthermore, there may be di�erent requirements on the smoothness of therecovered function or on its decay further away from the data. These haveto be incorporated into the choice of F , in addition to further informationthe user can provide.1.3 Restrictions on the Choice of SpacesThere are two good reasons to assume that the class F of functions shouldbe a linear space:� If the values fj are multiplied by a �xed scalar factor �, then the newdata should be recovered by the function �f instead of f .� If data fj and gj at the same locations xj 2 IRd are recovered byfunctions f and g, respectively, then the data fj+gj should be recoveredby the function f + g.Note that this does not only require the class F to be a linear space: it alsoenforces the whole recovery process to consist of linear maps that associatea function to each data set. Furthermore, the recovery process will have anonunique solution and thus be numerically unstable, if there is a function gin F that vanishes at all data locations in X = fx1; : : : ; xMg, because thenall functions of the form �g can be added to a solution f without alteringthe data reproduction.



1.4 Data-dependent Spaces 9De�nition 1.3.1 (DefNond) If F is a space of functions on a domain 
,then a subset X of 
 is called F-nondegenerate, if zero is the only functionfrom F that vanishes on X.We see that only the F -nondegenerate subsets X of 
 can be used for stablereconstruction. It would be nice if any �nite set X or at least (if dimF =M)any set X = fx1; : : : ; xMg would be nondegenerate for a given space F .But in truly multivariate situations this turns out to be impossible. Infact, if a linear subspace F of dimension M � 2 of a space of multivariatefunctions is �xed independent of the set X = fx1; : : : ; xMg, there always is adegenerate set X. This surprising and disappointing observation dates backto Mairhuber and Curtis (cf. [8](Braess:86-1)):Theorem 1.3.2 (MCTheorem) Let F be an M-dimensional space of con-tinuous real-valued functions on some domain 
 � IRd which is truly d-dimensional in the sense that it contains at least an open subset 
1 of IRd.Assume further that any set X = fx1; : : : ; xMg � 
1 is F-nondegenerate.Then either M = 1 or d = 1 hold, i.e. either the function space or theunderlying domain are just one-dimensional.Proof. We can assume 
 = 
1 without loss of generality. If the continu-ous functions v1; : : : ; vM are a basis of F , then the function D(x1; : : : ; xM) =det (vj(xk)) is a continuous function of itsM arguments. Due to our assump-tion this function can vanish only if two or more of the arguments coincide.Let us assume M � 2, and let 
 be at least truly 2-dimensional. Then onecan swap the points x1 and x2 by a continuous motion that avoids coincidencewith any of the arguments. Thus there is a continuous transition betweenD(x1; x2; x3; : : : ; xM ) and D(x2; x1; x3; : : : ; xM) = �D(x1; x2; x3; : : : ; xM)that keeps D away from zero. This is impossible. 21.4 Data-dependent Spaces(SubSectDDSpaces) The Mairhuber-Curtis theorem 1.3.2 (MCTheorem)forces us to let the space F depend on the data. But since for given X =fx1; : : : ; xMg there should be a linear recovery mapRX : IRM ! F : (f1; : : : ; fM) 7! f;it is reasonable to let F depend on the data locations X = fx1; : : : ; xMgonly, not on the data values f1; : : : ; fM . The formulas for the construction offunctions f(x) in F thus must depend on X = fx1; : : : ; xMg and generate a



10 1 INTRODUCTIONlinear space. The most straightforward way to achieve this is to combine thearguments x and xj into a single function� : 
� 
! IRand to view each �(x; xj) as a data-dependent function of the variable x.Superposition of such functions results in a space (calfdef)FX;� := 8<: MXj=1�j�(x; xj) : �j 2 IR9=; (1.4.1)that may serve our purposes. It will turn out later that there are strongarguments to support this de�nition of a data-dependent space of functions.Under quite weak and general assumptions it can be proven that there is nobetter way to do it. Details of this will be given in 3.1.5 (Necessity), butwe cite the basic features here to support some useful simpli�cations. If forsome � the union of all function spaces FX;� for varying sets X is required tohave translation invariance, then the function � should be of the specialform �(x; y) = �(x� y); � : IRd ! IRd:If we add rotational invariance, we end up with radial basis functions�(x; y) = �(kx� yk2); � : IR�0 ! IR:Note that in the latter case there is only a single univariate function requiredto generate a large class of spaces of multivariate functions. If we are workingon the unit sphere in IRd and assume rotational invariance, we get zonalfunctions �(x; y) = �(xTy); � : IR�0 ! IRd;where xT stands for transposition of the vector x such that �(x; y) just is aunivariate function �(xTy) of the scalar product xTy. Details are providedin section 3.2.4 (SecIP).Of course there are other methods to generate data-dependent linear spacesof functions. The most prominent one is used widely in the theory of �niteelements. There, the data set X = fx1; : : : ; xMg is �rst used to generate atriangulation of its convex hull, and then one constructs functions on eachsubset of the triangulation, which are �nally patched together to form smoothglobal functions. This approach is very e�ective if the space dimension d issmall and if the functions to be recovered need not be very smooth. We referthe reader to the vast literature on this subject, and we proceed withoutconsidering triangulations of domains and patching of functions.



1.5 Evaluation, Interpolation and Approximation 111.5 Evaluation, Interpolation and Approximation(subsecEIA) The representation of functions in (1.4.1, calfdef) now servesas the reconstruction formula, and all one has to do when solving the re-construction problem is to determine the vector � = (�1; : : : ; �M) of thecoe�cients of the resulting function with the representation (falphadef)f�(x) := MXj=1�j�(x; xj); x 2 
 � IRd: (1.5.1)Before we turn to this problem, we note that evaluation of such a functionat large numbers of di�erent locations x 2 
 can be quite costly if M islarge. However, the strong dependence on M can be relaxed if the values�(x; xj) vanish whenever x and xj are not near to each other. Examples ofsuch functions will be given later.Reconstruction by interpolation on X = fx1; : : : ; xMg will now require tosolve the linear system (EQsys1)MXj=1�j�(xk; xj) = fk; k = 1; : : : ;M (1.5.2)for �1; : : : ; �M . We shall write this in shorthand matrix form asA� = f;but in cases where the dependence on X and � is crucial, we add capitalsubscripts: AX;��X;� = fX ; AX;� = (�(xk; xj))1�j;k�M :To make the system uniquely solvable, the matrix A must be nonsingular.Looking at approximation, we shall soon have additional reasons to assumethat AX;� should even be positive de�nite. Thus it is more or less unavoidableto assume AX;� to be positive de�nite for allX, when the function � is �xed.For these reasons we require the function � to satisfyDe�nition 1.5.3 (DPD) A real-valued function� : 
� 
! IR



12 1 INTRODUCTIONis a positive de�nite function on 
, i� for any choice of �nite subsetsX = fx1; : : : ; xMg � 
 of M di�erent points the matrixAX;� = (�(xk; xj))1�j;k�Mis positive de�nite.At �rst sight it seems to be a miracle that a �xed function � should besu�cient to make all matrices of the above form positive de�nite, no matterwhich points are chosen and no matter how many. It is even more astonishingthat one can often pick radial functions like �(x; y) = exp(kx � yk22) to dothe job, and to work for any space dimension.Turning to approximation, the space FX;� of (1.4.1, calfdef) should dependon less data than those given to determine the approximation. We simplyassume some other data on some (large) Lebesgue-measurable subset 
1 � 
to be speci�ed, and approximation should take place in the space L2(
1),for instance, which we assume to contain FX;�. This covers discrete andcontinuous least-squares �ts on the set 
1 by functions of the form f� from(1.5.1, falphadef). The normal equations for the approximation areMXj=1�j(�(�; xk);�(�; xj))L2(
1) = (�(�; xk); f(�))L2(
1); k = 1; : : : ;M:Introducing new functions (Psidef)	(x; y) := (�(�; x);�(�; y))L2(
1) (1.5.4)g(y) := (�(�; y); f(�))L2(
1)we see that this is exactly an interpolation system of the formAX;	�X;	 = gX :Thus approximation reduces to interpolation by functions from a similar, butsomewhat di�erent function space.At this point we see how positive de�niteness comes in: the above matrixAX;	 is a Gramian with respect to the functions �(�; xk) in the inner-productspace L2(
1). Thus it is positive de�nite whenever these functions arelinearly independent in L2(
1). But the latter requirement is unavoidablefor stable approximation in L2(
1).



1.6 Conditionally Positive De�nite Functions 13From these preliminary considerations we conclude that positive de�nitefunctions should be investigated further, and we note in passing that (1.5.4,Psidef) yields a �rst method to construct such functions 	 from linear in-dependent functions �(�; xk); 1 � k � M;xk 2 
. We shall consider suchconstructions in detail in section 9.1 (SecGCT), but we remark in passingthat the Gaussian �(x; y) := exp(��kx� yk22)is positive de�nite on IRd for all d and all � > 0. Since the proof requirestools like Fourier transforms, we defer it to Theorem 12.5.6 (GaussPD) onpage 199.1.6 Conditionally Positive De�nite FunctionsPositive de�nite functions (formerly de�ned in a slightly di�erent way) havea long history that is nicely surveyed by Stewart [44](Stewart:76-1). How-ever, the �rst cases of radial basis functions used widely and successfully inapplications were� the thin-plate spline �(x; y) = �(kx� yk2) = �kx� yk2 log kx� yk2introduced by Duchon [10](duchon:76-1), [11](duchon:78-1), [12](duchon:79-1),� the multiquadric �(x; y) = �(kx� yk2) = qc2 + kx� yk22) and� the inverse multiquadric �(x; y) = �(kx� yk2) = 1qc2 + kx� yk22)used by the geophysicist Hardy [17](hardy:71-1)but the �rst two of these are not positive de�nite. The corresponding matricesAX;� naturally de�ne quadratic forms (QFdef)QX;� : (�1; : : : ; �M) 7! �TAX;�� := MXj;k=1�j�k�(xj ; xk) (1.6.1)on IRd, where T stands for vector transposition, but these forms are positivede�nite only on a proper subspace of IRM . More precisely, for certain positivevalues of m the above functions � satisfy the followingDe�nition 1.6.2 (DCPD) A real-valued function� : 
� 
! IR



14 1 INTRODUCTIONis a conditionally positive de�nite function of order m on 
 � IRd, i�for any choice of �nite subsets X = fx1; : : : ; xMg � 
 of M di�erent pointsthe value �TAX;�� := MXj;k=1�j�k�(xj; xk)of the quadratic form (1.6.1, QFdef) is positive, provided that the vector� = (�1; : : : ; �M) 2 IRM n f0g has the additional property (CPDef)MXj=1�jp(xj) = 0 (1.6.3)for all d-variate polynomials p of order (=degree-1) up to m. The linear spaceof such polynomials will be denoted by IP dm, and its dimension isq :=  m� 1 + dd ! :It is a major problem to prove that multiquadrics are conditionally posi-tive de�nite of a �xed order m for all space dimensions d. This was done(among other things) in Micchelli's fundamental paper [27](micchelli:86-1)that boosted the research on radial basis functions.1.7 Basic Equations for Conditionally Positive De�niteFunctionsIf � is conditionally positive de�nite of order m on 
 � IRd, then theadditional condition (1.6.3, CPDef) reduces the M degrees of freedom of� 2 IRM by at most q, the dimension of the space IP dm of polynomials. Thusit is reasonable to add q new degrees of freedom to the recovery process byadding IP dm to the space of admissible functions. Then (1.4.1, calfdef) has tobe replaced by (calfdef2)GX;� := IP dm+FX;� = IP dm+8<: MXj=1�j�(x; xj) : �j 2 IR with (1.6.3, CPDef) 9=; :(1.7.1)Now theM�M system (1.5.2, EQsys1) goes over into the (M +q)� (M+q)system



15(EQsys2)MXj=1�j�(xk; xj) + qXi=1�ipi(xk) = fk; 1 � k �MMXj=1�jpi(xj) + 0 = 0; 1 � i � q (1.7.2)for vectors � = (�1; : : : ; �M) 2 IRM and � = (�1; : : : ; �q) 2 IRq, where thepolynomials p1; : : : ; pq are a basis of IP dm. Introducing a matrixP := PX := (pi(xj))1�i�q;1�j�M ;of values of polynomials, this system reads in matrix form as (BDef) A PP T 0 ! �� ! =  f0 ! : (1.7.3)The coe�cient matrix of this enlarged linear system will be abbreviated byB or BX;�. The solvability of (1.7.2, EQsys2) is described byTheorem 1.7.4 (Nonsing1) Let � be conditionally positive de�nite of or-der m on 
 � IRd, and let the data set X = fx1; : : : ; xMg � 
 be IP dm-nondegenerate. Then the system (1.7.2, EQsys2) is uniquely solvable. Fur-thermore, there are linear algebra techniques using at most O(Mq2 +M2q)operations to reduce it to a positive de�nite (M � q)� (M � q) system.Proof. Let a pair of vectors � 2 IRM and � 2 IRq solve the homogeneoussystem with matrix (1.7.3, BDef). Then we have A�+P� = 0 and P T� = 0.Multiplying the �rst equation with �T and inserting the second in transposedform, we get �TA� + 0 = 0. Now � = 0 follows from conditional positivede�niteness, and we are left with P� = 0. This in turn implies � = 0,because X is IP dm-nondegenerate. The second assertion will be proven by twoexplicit algorithms in 10.1 (Red1) and 10.2 (Red2). 22 Working with Basis FunctionsThis section is intended for readers working on applications. It containstables of the currently known conditionally positive de�nite functions andprovides guidelines for picking the right function � from the tables. Theseguidelines are based on both numerical experience and theoretical insight.



16 2 WORKING WITH BASIS FUNCTIONSHowever, this chapter will not attempt to prove any of the statements inher-ent in the guidelines, but rather refer the reader to subsequent sections.Right after giving the general guidelines, we turn to e�ciency considerations.Special strategies for system reduction, iterative solution, sparse matrices,and preprocessing techniques for large sets of data points are delayed tosection 10 (SecSA).A series of examples serves for illustration. Since these examples are quiteconvincing in general, they justify the considerable amount of theoreticalbackground to be developed in later sections.2.1 General Practical ConsiderationsBefore picking a suitable function � for recovering a function f in an appli-cation, the user �rst has to consider the following issues:� How smooth should f be?� What is the required behaviour near the boundary of the convex hullor outside of the data set X = fx1; : : : ; xMg?� Are the data locations evenly or very unevenly distributed?� Is exact reproduction of the data required?� Are M and/or the space dimension d so large that e�ciency consider-ations are predominant over reproduction quality questions?2.1.1 Uncertainty Relation(GPCUP) When considering the above questions, the user has to keep inmind that every good thing has its price. This basic fact of real life occurshere in the form of an Uncertainty Relation:If you go for good reproduction quality, you have to sacri�ce numericalstability. If you go for good stability, you have to sacri�ce reproductionquality.This wishy-washy statement will be made precise in 4.6 (URT), and thereit turns out that both reproduction quality and numerical instability arelinked to both data density and smoothness of � (and, in cases with compactsupport, to the size of the support radius of �). Furthermore, if large linearsystems with positive de�nite coe�cient matrices are solved by the conjugate



2.1 General Practical Considerations 17gradient method, numerical stability is directly linked to e�ciency via thecondition of the matrices. This is why for large problems one can replace\stability" by \e�ciency" in the Uncertainty Relation.If the data density is considered �xed, the Uncertainty Relation suggests thatthe user should be very careful about the smoothness of the function �. Itshould be as low as the application tolerates, and any excessive smoothnesswill have negative e�ects on stability.But if reproduction quality or stability is �xed, there is a trade-o� betweendata density and smoothness of �. For sparse data one can work withsmooth functions, and for large and dense data sets one has to work withlow smoothness of � in order to avoid numerical problems. If workingwith compactly supported functions �, this is a standard way to escapethe inherent numerical problems with very large and dense data sets. Onecan split the data set into subsets of increasing density and use compactlysupported functions with decreasing support radii on these data sets. Ifthings work out nice, one can expect to work at a �xed stability level, butwith incereasing local resolution. We treat such multilevel techniques in detailin 2.4 (MLA) but the next paragraph will add some other arguments in favorof it.Compactly supported functions o�er computational advantages due to spar-sity of the corresponding matrices. If supports are small, the e�ect of suchfunctions will be strictly local, and this has both advantages and disadvan-tages. The disadvantage is that global e�ects cannot be nicely recovered, andthus small supports should be used only in cases where the global behavioris already recovered by any other method. The usual trick is to� �rst apply a global method (possibly using a small but global data set),� take the residuals (data minus values of the recovery function) and then� handle the local e�ects by reconstruction the residuals using compactlysupported functions on the full data set.This three-stage process is quite common in applications and amounts tosolve for the global trend �rst and then to model the local e�ects on a �nerscale. The last two steps can be iterated using smaller and smaller supports,and this is the multilevel method that we look at in 2.4 (MLA)



18 2 WORKING WITH BASIS FUNCTIONS2.1.2 Unevenly Distributed Data(GPCUDD) The above statements assume a more or less evenly scattereddata set. If there are local clusters of data points or areas without data,some other aspects come into the game. In fact, for a �xed function � thenumerical stability and the reproduction quality are connected to two similar,but di�erent quantities which roughly coincide for evenly distributed datasets. The stability is connected to the separation distance (SDDef)s := sX := 12 min1�j 6=k�M kxj � xkk2 (2.1.1)while the reproduction quality on the domain 
 is ruled by a somewhat morecomplicated quantity (see (5.5, hrhodef)) that can roughly be described forpractical purposes by the �ll distance (DDDef)h := hX;
 := supx2
 min1�j�M kx� xjk2: (2.1.2)Separation distance measures the minimal distance that separates any twodata locations, i.e. it is the minimal distance from any point of the data setto its nearest data point, while �ll distance measures the way how the data�ll the domain, i.e. it is the maximal distance from any point of the domainto its nearest data point. Thus �ll distance is never smaller than separationdistance, but hazardous cases have a very small separation distance relativeto the �ll distance. We call a data set unevenly distributed if this happens,and the quotient �X;
 := hX;
sX � 1is a good measure for the unevenness of a data distribution X with respectto a domain 
.Now the naive treatment of unevenly distributed data sets will induce \ad-ditional" numerical instabilities caused by the irregularity of the data dis-tribution. If these instabilities are severe, some action must be taken. Ifcaused by a few points that are extremely near to other data locations withcomparable data values, the user can simply throw these \duplicates" out ofthe data set and proceed, expecting that the nearby data points are su�cientfor the required reconstruction.But there are cases where the data show local clusters which themselvesconsist of nicely distributed data locations. Then the problem lives on more



2.2 Current Basis Functions 19than one density scale, and the obvious technique to treat such cases is byworking in several steps with increasing local resolution. This is anothergood reason for the multilevel approach in 2.4 (MLA).2.2 Current Basis Functions(SecCBF) Table 1 (TCPDFct) lists some of the currently known radialfunctions that are conditionally positive de�nite of positive order m on IRd.A more or less complete list will be in the Appendix under 13.1 (SecBF).Note that these have some polynomial growth towards in�nity, and theyalways generate non-sparse matrices. They work for any space dimensiond, and they are especially useful for cases where decay towards in�nity is adisadvantage. Thus they should not be applied to residuals but rather to theoriginal data, and their power lies in good reproduction of the global overallshape of the function to be reconstructed, especially in areas away from thedata locations.We now turn to unconditionally positive de�nite functions de�ned on IRd.�(r) Parameters mr� � > 0; � =2 2IN m � d�=2er� log r � > 0; � 2 2IN m > �=2(r2 + c2)�=2 � > 0; � =2 2IN m � d�=2eTable 1: Conditionally Positive De�nite Functions (TCPDFct)�(r) Parameters Smoothness Dimension Name/Referencee��r2 � > 0 C1(IRd) d <1 Gaussian(r2 + c2)�=2 � < 0 C1(IRd) d <1 inv. Multiquadricr�K�(r) � > 0 Cb�c d <1 Sobolev spline(1� r)2+(2 + r) C0 d � 3 Wu [47](wu:95-2)(1� r)4+(1 + 4r) C2 d � 3 Wendland [46](wendland:95-1)Table 2: Unconditionally Positive De�nite Functions (TPDFct)These have decay towards in�nity and come in two variations: compactlysupported or not. Due to results given in 9.2.12 (NECSAlld) there areno compactly supported positive de�nite functions that work for all spacedimensions. Thus one has to check the space dimension d when working with



20 2 WORKING WITH BASIS FUNCTIONScompactly supported functions. Table 2 (TPDFct) lists some of the currentlyknown cases and provides information about smoothness and admissiblespace dimensions for positive de�niteness. See 13.1 (SecBF) for further casesand details.The decay towards in�nity may be an unwanted feature when applied toraw data, but it is very convenient when applied to residuals. Compactsupports provide sparse matrices, but the adjustment of the support radiuscan be hazardous. If chosen too small, the resulting matrices AX;� tend tobe nicely diagonal, making the numerical solution very stable and e�cient,but the reproduction quality is disastrous, because one reproduces the databy extremely narrow and isolated \delta" peaks. On the contrary, a largesupport radius very much improves reproduction quality, but at the expenseof matrix �ll-in and increasing condition. This is another consequence of theUncertainty Relation.2.3 Computational Complexity of Solving the System(CompE�ort) We now investigate the numerical e�ort required to solvethe system (1.7.3, BDef). Assuming that q usually is zero or small com-pared to M , we roughly have a positive de�nite and symmetric M � Msystem to solve. If the condition is reasonable and M is not too large,Cholesky factorization will do the job at about M3=6 + O(M2) computa-tional cost. However, this is not acceptable for large M . In particular,the value of M can be even too large to form the full matrix in storage.Therefore one has to look for iterative methods and sparse matrix tech-niques. Some special tricks due to Beatson [5](beatson-newsam:92-1) andPowell [38](powell:92-1)[37](powell:92-2)[4](PowellE�TPSSystem) are possi-ble for speci�c basis functions, but we concentrate here on the solution viacompactly supported functions.In this case the matrix is sparse and its bandwidth depends on the relativesize �=h of the support radius � and the �ll distance h. For a �xed compactlysupported positive de�nite function � the e�ect of an increase of � yields� an increase of the bandwidth of the matrix in (1.7.3, BDef) via anincrease of �=h,� an increase of the reproduction quality via an increase of �=h (see 6.6(SecError)), and� an increase of its condition via an increase of �=q (see 4.5 (SecCondi-tion)).



2.4 Multilevel Algorithms 21This is another version of the Uncertainty Relation, and the user has to�x the support radius � to be su�ciently large to get good reproductionquality while keeping it small enough to let the solution of the system becomputationally e�ective. A general rule of thumb is to work at the limitsof the computational resources, and to switch to multilevel techniques (see2.4 (MLA)) in cases where the reproduction quality still is inadequate.If the ratio �=q is kept bounded, the norm of the inverse (and thus a majorpart of the condition) of the matrix in (1.7.3, BDef) is bounded. Solvingthe system by conjugate gradients uses only a �xed number of iterationsfor �xed precision requirements, if the condition is bounded. Furthermore,each iteration takes only O(M � B) operations for bandwidth B. Thus thenumerical cost of solving the system (1.7.3, BDef) can be kept roughly atO(M), if the user keeps the ratios of h; q, and � within reasonable bounds.We �nally check the complexity of evaluating (1.5.1, falphadef) at a singleargument x. In general one has to expect O(M), but since one has toevaluate the function in at least O(M) or many more points, the cost forevaluation will even be underestimated by O(M2). For large values ofM thiscannot be tolerated. Using stencils [38](powell:92-1) and Laurent expansions[37](powell:92-2) Powell has overcome these di�culities in case of thin-platesplines. For compactly supported basis functions with maximallyB points intheir support (this coincides with the bandwidth of the system (1.7.3, BDef))one has O(B) operations for each evaluation, which is a signi�cant advantageif many evaluations have to be made. However, each evaluation then requiresto solve the B-nearest-neighbor problem of computational geometry, becausefor each x one has to pick the B data points xj with nonzero �(x; xj) inan e�ective way. If the data are not too wildly scattered, one can employpreprocessing techniques of complexity at most O(M) to solve this problemat O(1) for each x. In general, preprocessing of cost O(M logM) is necessaryto provide a O(logM) complexity of solving the B-nearest-neighbor problemfor each x. Details will be provided in section 11 (SecCGT)2.4 Multilevel Algorithms(MLA) The basic idea here is to work at levels indexed by j, where one usesa basis function �j that usually will be compactly supported with a supportradius �j. On level j the data is con�ned to a subset Xj of the full dataset X, and the corresponding �ll distance and separation distance will bedenoted by hj and qj, respectively. The function fj to be recovered by some



22 2 WORKING WITH BASIS FUNCTIONSother function sj at level j consists of the residuals of the preceding step, i.e.fj := fj�1 � sj�1; j � 1; f0 := f:The ratios of the three quantities hj; qj, and �j are kept at reasonablevalues that make the computations possible, while the quantities themselvesdecrease with increasing j.The rationale behind this multilevel techniques is to recover the function fat di�erent levels of resolution, starting from global reconstruction of slowlyvarying features from coarse global data and ending up with highly localreconstruction of �ne details from densely distributed data. The numericalperformance of this technique is superior to single-level techniques in appli-cations with very large data sets (see 2.5 (SecExamples) and [13](
oater-iske:95-1) [14](
oater-iske:96-1)), but its theoretical treatment, starting in[5](NRSW), still is incomplete. The numerical cost can be kept to O(M) byproper choice of supports and �ll distances.2.5 Numerical Examples(SecExamples) Here are some �rst examples of reconstructions of functionsfrom multivariate scattered data. For easy presentation, we restrict ourselvesto two-dimensional cases and use MATLAB for the computations. Thecorresponding MATLAB M-�les and MEX-�les are in the appendix.We start with the reconstruction of Franke's function [15](franke:82-1)rescaled to 
 = [0; 1] � [0; 1] � IR2 from data on a grid (i=2n; j=2n); 0 �i; j � 2n such that M = (2n + 1)2. The matrix in (1.7.3, BDef) then hasapproximately 4n4 entries, and the computational cost of Cholesky factoriza-tion is about 4n6=3. If the matrix is non-sparse, only very moderate valuesof n can be treated.The function itself (Figure 1 (FigFranke33)) is nicely reconstructed up tographical precision by thin-plate splines �(r) = r2 log r from information onM = 81 data points (Figure 2 (FigTPS81Fct33)). The e�ects of highervalues ofM are visualized by plotting residuals (see Figure 3 (FigTPS81Res)for M = 81, and note the scale on the z-axis for plots of residuals).Working on more than M = 225 points becomes very ine�ective for non-sparse cases. Thus we now consider examples with Wendland's compactlysupported radial basis function �(r) = (1�r)4+(4r+1) with support scaled toradius �. OnM = 81 data points one can still compare with the previous case



2.5 Numerical Examples 23while using a large support radius � = 2 (Figures 4 (FigWF81Supp2Fct33), 5(FigWF81Res2)). To handle larger values ofM , the support radius has to bedecreased to introduce sparsity. We start with examples having bandwidth21 on M = 289 and M = 4225 points (Figures 6 (FigWF289Ban21Fct65),7 (FigWF289Ban21), 8 (FigWF4225Ban21)). Note that the reproducedfunction is overlaid by some high-frequency wiggles that arise from the smallsupport of the radial basis functio used: the approximation is somewhat toospiky. A look at the residuals supports this, but also implies that the largererrors occur at the boundary. These take over when going to 4225 datapoints, and make the errors in the interior hardly visible. This is the �rsthint that the behavior near the boundary needs special treatment.Now Figures 9 (FigWF289Ban45Fct65), 10 (FigWF4225Ban45)) show resid-uals computed with matrices of bandwidth 45. The results are better, ofcourse, but the message is the same.For even larger values of M we refrain from providing plots of residuals.Instead, we evaluate the error on a �ne grid. Table 3 (TabNonstat) onpage 23 shows the maximum errors for cases with �xed support radius �N n � 0.03125 0.0625 0.125 0.25 0.5 1 2 4 89 * * * * 12.1754 5.4808 5.5436 5.8102 5.903025 * * * 10.2176 1.1995 0.8186 0.6902 0.6889 0.707381 * * 11.5563 1.1013 0.4668 0.3621 0.3570 0.3584 0.3587289 * 11.7369 0.8148 0.4606 0.1175 0.0397 0.0241 0.0224 0.02261089 11.6653 0.7812 0.4783 0.1158 - - - - -4225 0.7791 0.4561 - - - - - - -16641 - - - - - - - - -66049 - - - - - - - - -Table 3: Errors for interpolation of Franke's function, Nonstationary Case(TabNonstat)* Errors too large due to extremely small supports used,- Workspace exhausted or non-sparse matrix.(nonstationary case), as far as the computations were numerically feasible.Convergence along columns is clearly visible, but the scope is still severelylimited by computational restrictions.If the support radius is kept strictly proportional to the �ll distance (thisis called the fully stationary case), then the bandwidth B is constant along



24 2 WORKING WITH BASIS FUNCTIONSFigure 1: Franke's function(FigFranke33)Figure 2: Reconstruction of Franke's function from thin-plate splines onM = 81 points(FigTPS81Fct33)Figure 3: Residuals for thin-plate splines on M = 81 points(FigTPS81Res)Figure 4: Recovery using Wendland's C2 function with support radius 2 onM = 81 points(FigWF81Supp2Fct33)Figure 5: Residuals using Wendland's C2 function with support radius 2 onM = 81 points(FigWF81Res2)Figure 6: Recovery using Wendland's C2 function with bandwidth 21 onM = 289 points(FigWF289Ban21Fct65)Figure 7: Residuals using Wendland's C2 function with bandwidth 21 onM = 289 points(FigWF289Ban21)Figure 8: Residuals using Wendland's C2 function with bandwidth 21 onM = 4225 points(FigWF4225Ban21)Figure 9: Recovery using Wendland's C2 function with bandwidth 45 onM = 289 points(FigWF289Ban45Fct65)Figure 10: Residuals using Wendland's C2 function with bandwidth 45 onM = 4225 points(FigWF4225Ban45)



2.5 Numerical Examples 25columns in Table 4 (TabStat) on page 25, but there is no convergence alongN nB 1 5 9 13 21 25 29 37 459 12.1754 8.1801 5.4801 5.3389 5.3521 5.3770 5.4083 5.4830 5.543625 10.2176 4.6070 1.1993 0.9549 0.9209 0.8995 0.8719 0.8400 0.818681 11.5563 4.8475 1.1003 0.8840 0.7236 0.6820 0.6316 0.5368 0.4668289 11.7369 4.5695 0.8148 0.7554 0.7670 0.7190 0.6606 0.5457 0.46061089 11.6653 4.4424 0.7812 0.7831 0.7924 0.7432 0.6838 0.5661 0.47834225 11.7024 4.4322 0.7791 0.7733 0.7566 0.7099 0.6529 0.5416 0.456116641 11.7109 4.4292 0.7786 0.7119 0.7577 0.6994 0.6578 0.5461 -66049 12.9205 4.4283 - - - - - - -Table 4: Errors for interpolation of Franke's function, Stationary Case(TabStat)N number of data pointsB number of points per support- Workspace exhaustedcolumns, while the scope is greatly enlarged. Convergence occurs along lineswith negative slope in this table, but the minimum attainable error still isquite large. The condition is roughly constant in each column, such that theoverall numerical cost is approximately proportional to M .We now recalculate the columns of Table 4 (TabStat) by taking successiveresiduals as we proceed along each column, working at �xed bandwidth and�xed condition, thus with O(M) overall computational complexity (see Table5 (TabMulti) on page 26). This multilevel approach now decreases the errorsigni�cantly and seems to have at least a linear convergence along columns.More information on the numerical behavior of the multilevel approach canbe found in [13](
oater-iske:95-1) [14](
oater-iske:96-1). Here, we supportthe results of Table 5 (TabMulti) by some additional plots of multilevelinterpolants to Franke's function. Figure 11 (FigWF289Ban21MLFig) showsthe multilevel reconstruction with bandwidth 21 after four levels with 9, 25,81, and 289 data points. The residuals are in Figure 12 (FigWF289Ban21ML)and should be compared with Figure 7 (FigWF289Ban21) with the samebandwidth on 289 points, using a single step.To visualize the smoothing e�ect of the multilevel method, we pick a drasticexample by choosing a very small bandwidth of 5. The reader will realize



26 3 HILBERT SPACE THEORYN nB 1 5 9 13 21 25 29 37 459 12.0412 8.1801 5.4801 5.3389 5.3521 5.3770 5.4048 5.4830 5.543625 7.6972 2.5971 0.9328 0.7840 0.7016 0.6943 0.6842 0.6808 0.6i84581 5.9089 0.9172 0.4223 0.3820 0.3565 0.3571 0.3595 0.3680 0.3735289 4.4449 0.2927 0.0680 0.0518 0.0352 0.0332 0.0314 0.0303 0.02881089 3.3053 0.0867 0.0256 0.0187 0.0120 0.0112 0.0105 0.0098 0.00924225 2.4589 0.0320 0.0090 0.0064 0.0039 0.0036 0.0034 0.0031 0.002916641 1.7481 0.0118 0.0034 0.0023 0.0013 0.0011 0.0011 0.0009 0.000866049 1.3085 0.0053 - - - - - - -Table 5: Errors for interpolation of Franke's function, Stationary Case,Interpolation of residuals(TabMulti)N number of data pointsB number of points per support- Workspace exhaustedthat this method will be feasible even for gigantic data sets. Figures 13(FigWF9Ban5MLFig) 14 (FigWF25Ban5MLFig) 15 (FigWF81Ban5MLFig)16 (FigWF289Ban5MLFig) 17 (FigWF4225Ban5MLFig) show reconstruc-tion from M = 9; 25; 81; 289; and 4225 points. The extremely smallbandwidth of 5 does not have a serious in
uence on the quality on a 3 � 3data set, but the spiky reproduction in the medium range introduces wigglesthat are ironed out by increasing data density.Of course, one should take larger supports in the intermediate range anduse a bandwidth larger that 5 to produce optimal results, but the above se-quence is picked to illustrate what happens qualitatively if the computationalrestrictions force to work with very small bandwidth. The actual errors canbe read o� the second column of Table 5 (TabMulti).To prove statements about the convergence rate and the condition of suchcalculations will be main goal of this text.3 Hilbert Space Theory(SecHST) Here we start with the basic theoretical foundations and proceedtop-down. First, we pose the problem of recovery of elements of Hilbert



27Figure 11: Recovery using Wendland's C2 function with bandwidth 21 onM = 289 points, multilevel method(FigWF289Ban21MLFig)Figure 12: Residuals using Wendland's C2 function with bandwidth 21 onM = 289 points, multilevel method(FigWF289Ban21ML)Figure 13: Recovery using Wendland's C2 function with bandwidth 5 onM = 9 points, multilevel method(FigWF9Ban5MLFig)Figure 14: Recovery using Wendland's C2 function with bandwidth 5 onM = 25 points, multilevel method(FigWF25Ban5MLFig)Figure 15: Recovery using Wendland's C2 function with bandwidth 5 onM = 81 points, multilevel method(FigWF81Ban5MLFig)Figure 16: Recovery using Wendland's C2 function with bandwidth 5 onM = 289 points, multilevel method(FigWF289Ban5MLFig)Figure 17: Recovery using Wendland's C2 function with bandwidth 5 onM = 4225 points, multilevel method(FigWF4225Ban5MLFig)



28 3 HILBERT SPACE THEORYspaces in a very general sense. It turns out that optimal recovery is nec-essarily linked to the use of conditionally positive de�nite functions. Con-versely, each conditionally positive de�nite function allows to de�ne a \na-tive" Hilbert space in which it serves to solve an optimal recovery problem.We study the error and the condition of the recovery process and prove theUncertainty Relation in general. Altogether, this section is intended to con-tain all theoretical results that can be proven without resort to (Fourier)transforms and which hold for general domains. This implies that the moresophisticated results for special cases are found in later sections.3.1 Optimal Recovery in Hilbert Spaces3.1.1 Optimal Recovery Problems(subsecORP) Assume that we want to reconstruct a function f de�ned onsome domain 
 from M pieces of information concerning f . These may forinstance be function values f(xj); 1 � j � M in case of classical Lagrangeinterpolation, or inner products (f; pj)L2 ; 1 � j � M for L2 approximation.In both cases the information consists of the value of a linear functional �japplied to f , and in the second case the function f is assumed to lie in aspace with an inner product (�; �) that serves to give a speci�c representation�j(f) = (f; pj) to the functionals in question.To incorporate the second case, we thus assume that there is a space F offunctions and a space L of functionals such that �(f) is the application ofthe functional � 2 L to the function f 2 F . The space F is supposed tocarry an inner product (�; �)F , and the functionals � 2 L are supposed to becontinuous with respect to this inner product, i.e.,j�(f)j � k�kLkfkFfor all � 2 L; f 2 F , where the norm of functionals is de�ned as usual:k�kL := supkfkF 6=0 j�(f)jkfkF <1:We now assume that we want to recover an element f from the space F usingthe M real values (fj)
j = �j(f); 1 � j �M (3.1.1)



3.1 Optimal Recovery in Hilbert Spaces 29of M linear functionals �1; : : : ; �M that are continuous on F . Furthermore,we assume the linear functionals �1; : : : ; �M to be linearly independent in L,which means that the information is not redundant.Then there will usually be many elements f 2 F that satisfy the equations(3.1.1, fj), which may now be viewed as generalized interpolation conditions.If f solves (3.1.1, fj) and if there is some element v 2 F that satis�es thehomogeneous conditions 0 = �j(v); 1 � j � M;than all elements f� := f +�v for arbitrary � 2 IR will solve (3.1.1, fj), too.These elements can have arbitrarily large norms, if v is not identically zero.To exclude solutions with extremely large norms one thus asks for elementsf � 2 F that solve (3.1.1, fj) and minimize the norm k � kF under all othersolutions. That is, the element f � solves the optimal recovery problem(ORPF)kf �kF = minf 2 Ffj = �j(f) kfkF (3.1.2)in the space F .If we pursue this general setting further, we shall �nally see that under mildadditional assumptions there is a positive de�nite function that serves tosolve the optimal recovery problem. But then we have lost the conditionallypositive de�nite functions of positive order. Thus we try a fresh start thatslightly generalizes the above recovery problem.Instead of a space F with an inner product, we only assume there is a linearspace G over IR with a positive semide�nite bilinear form(�; �)G : G � G ! IR:Then jgj2G = (g; g)G de�nes a seminorm j � jG on G, and we assume that thenullspace P := f g 2 G : jgjG = 0 ghas a �nite dimension q � 0 and is spanned by a basis p1; : : : ; pq. As in(3.1.1, fj) we assume that we want to recover an element g from the space Gusing the M real values (gj)
j = �j(g); 1 � j �M (3.1.3)



30 3 HILBERT SPACE THEORYof M linear functionals �1; : : : ; �M . But we would run into problems if wewould simply assume continuity of these functionals with respect to theseminorm, because this would restrict us to functionals that vanish on P.Postponing the precise assumptions on the functionals, we can now pose thegeneralized optimal recovery problem (ORP)jg�jG = ming 2 Ggj = �j(g) jgjG (3.1.4)in the space G.3.1.2 Projection onto the Nullspace(SecHSP) To discuss the solvability of the optimal recovery problem 3.1.4(ORP) in a very general way, we need some more information on the space Gand ist �nite-dimensional subspace P. It simpli�es later arguments to have asimple way of projecting an element g 2 G onto an element of P. In standardapplications, this projection will be an interpolation or an approximation bya low-order polynomial. Such a linear projector �P from G onto P can bede�ned in many di�erent ways. Here we simply assume that there are qlinear functionals �1; : : : ; �q on G that are linearly independent over P, i.e.the q � q matrix P with entries �k(pj) is nonsingular. Then the projectorcan be represented as (DefPN)�P(g) := qXj=1�j(g)pj: (3.1.5)By a change of basis in either the pj or the �j one can assume that the linearfunctionals �j(g) satisfy the systemqXj=1�j(g)�k(pj) = �k(g); 1 � k � q:This is just another way of saying�k(�P(g)) = �k(g); 1 � k � q; g 2 G;and it has the consequence that �P(p) = p for all p 2 P, because of�j(pk) = �jk.



3.1 Optimal Recovery in Hilbert Spaces 31Having �P at hand, we now form RP(g) := g � �P(g) for all g 2 G. Forsubsequent use we note that the bilinear form on G can now be rewritten as(Rsp)(f; g)G = (RP(f); RP(g))G; f; g 2 G: (3.1.6)The decomposition of an arbitrary element g 2 G asg = �P(g) +RP(g)implies that the decomposition (gdec)G = P +RP(G) (3.1.7)is a direct sum, since RP(g) 2 P implies g = �P(g) + RP(g) 2 P and thusRP(g) = 0. Furthermore, the bilinear form (�; �)F now is positive de�nite onRP(G).3.1.3 Golomb-Weinberger TechniqueThere is a way to avoid the explicit construction of the projector �P bysimply modifying the bilinear form. If p1; : : : ; pq are a basis of P, one cande�ne an inner product0@ qXj=1�jpj; qXk=1�kpk1AP = qXj;k=1�j�kon P and replace the bilinear form (�; �)G by the inner product(�; �) := (RP(�); RP(�))G + (�P(�); (�P(�))P :This does not require an explicit representation for the projector, but itimplicitly uses the projector to split an element of G into two parts that �tinto the new inner product. We do not pursue this technique further, thoughit sometimes facilitates certain arguments. It dates back to Golomb andWeinberger [16](golomb-weinberger:59-1), and the relation to the techniqueused later by Duchon and Madych/Nelson is described in [2](Light-Wayne:96-1).



32 3 HILBERT SPACE THEORY3.1.4 Hilbert Space Completion(SecHSC) We now complete the space RP(G) in the usual way to form aHilbert space F , taking us back to the setting that we started from, andwhere (�; �)F := (RP(�); RP(�))Gis the inner product. This completion works via Cauchy sequences modulonull sequences, and it allows all continuous mappings on RP(G) to be ex-tended to the completion. See Theorem 12.2.11 (HSCT) for details. Wenow de�ne the closure of G as the direct sum of P with the closure F ofRP(G). Then the decomposition (3.1.7, gdec) extends to the closures, and ifwe denote the closure of G by G again, we get (GPF1)G = P + F : (3.1.8)Thus we �nally see that it makes no di�erence to start right away with aspace G that allows a decomposition (3.1.7, gdec) such that (3.1.6, Rsp) is ascalar product on the Hilbert space F := RP(G) that has P as its nullspace.We �nish this section by checking the proper form of admissible functionalsfor recovery. If � is just any functional on G, it de�nes a functional ����P =�RP by (lrest)g 7! �(g)� �(�P(g)) = �(RP(g)); g 2 G; (3.1.9)and this functional is a good candidate for being continuous with respect tothe seminorm j � jG, because it vanishes on P. We thus consider all functionals� on G such that � � ��P is continuous, and we denote the space of thesefunctionals by G�. By (3.1.9, lrest), for each � 2 G� the functional �����Pis continuous on the Hilbert space F = RP(G), and by the Riesz theorem12.2.14 (RieszT) there is an element g� 2 G such that the identity (lrep)�(g)� �(�P(g)) = �(RP(g)) = (g; g�)G (3.1.10)holds for all � 2 G� and all g 2 G. We shall use this identity in the moreconvenient form �(g) = �(�P(g)) + (g; g�)Gand note that g� is uniquely de�ned modulo P, while RP(g�) is unique. Thefunctionals from (3.1.9, lrest) vanish on P and they form the dual F� of F . Ifone de�nes ��P(�) := ���P and P� = ��P(G�), then there are decompositions� = ��P(�) + (�; g�)G



3.1 Optimal Recovery in Hilbert Spaces 33G� = P� + F�that correspond to those of g 2 G and G itself.We �nally remark that the detour via the completion is unnecessary, if(3.1.10, lrep) is used as a hypothesis, not as a consequence. But we wantedto show that (3.1.10, lrep) does not need any extra assumptions.3.1.5 Solutions of Optimal Recovery Problems(Necessity) We now can return to the problem (3.1.4, ORP) of optimalrecovery. The given functionals �j are assumed to be in G�. Then theysatisfy (3.1.10, lrep) and introduce elements gj := g�j 2 G; 1 � j � M inthe sense (lrepj)�j(g)� �j(�P(g)) = �j(RP(g)) = (g; gj)G; g 2 G: (3.1.11)These elements are not unique, and we could make them unique by de�ninggj := RP(g�j ); 1 � j � M , but the following results do not require thisuniqueness. We now can characterize the solutions of the recovery problem:Theorem 3.1.12 (ORT1) Any solution g� of the optimal recovery problem(3.1.4, ORP) with functionals �1; : : : ; �M 2 G� satisfying (3.1.11, lrepj) hasthe form (grep)g� = MXj=1�jgj + qXi=1�ipi (3.1.13)where the coe�cients satisfy the linear system (EQsys3)MXj=1�j(gk; gj)G + qXi=1�i�k(pi) = 
k; 1 � k �MMXj=1�j�j(pi) + 0 = 0; 1 � i � q: (3.1.14)and any solution of the above system solves the optimal recovery problem.However, the representation (3.1.13, grep) is not necessarily unique,Note how similar (3.1.14, EQsys3) and (1.7.2, EQsys2) are, and note that wepostpone the discussion of the solvability of (3.1.14, EQsys3).



34 3 HILBERT SPACE THEORYProof: We start by noting that g� is a solution of (3.1.4, ORP) if and onlyif it satis�es the variational equation (charmin)(g�; v)G = 0 for all v 2 G with �j(v) = 0; 1 � j �M: (3.1.15)This follows from Corollary 12.2.7 (BAC) in section 12.2 (SecHSB).If g� 2 G satis�es (3.1.14, EQsys3) and v 2 G satis�es the homogeneousconditions �j(v) = 0; 1 � j �M , then(g�; v)G = MXj=1�j(gj; v)G + qXi=1�i(pi; v)G= MXj=1�j (�j(v)� �j(�P(v)))= � MXj=1�j�j(�P(v))= 0and g� satis�es (3.1.15, charmin) and solves (3.1.4, ORP).To prove the converse, we note that (3.1.15, charmin) implies the existenceof �1; : : : ; �M 2 IR such that (charmin2)(g�; v)G = MXj=1�j�j(v) (3.1.16)for all v 2 G. In fact, the linear map v 7! (g�; v)G vanishes on the kernel ofthe linear map v 7! (�1(v); : : : ; �M(v))T 2 IRM with �nite-dimensional rangeand thus factorizes over the range of this mapping. See the proof of Corollary12.2.7 (BAC) for this argument. But now (3.1.16, charmin2) implies(charmin3)(g�; v)G = MXj=1�j (�j(�P(v)) + (gj; v)G) (3.1.17)and specialization to v 2 P implies the second set of equations in (3.1.14,EQsys3). Then (3.1.17, charmin3) can be rewritten in the form0@g� � MXj=1�jgj; v1AG = 0 for all v 2 G



3.1 Optimal Recovery in Hilbert Spaces 35and this implies the representation (3.1.13, grep) of g�. The interpolationconditions �nally furnish the �rst set of equations in (3.1.14, EQsys3). 2The system (3.1.14, EQsys3) looks terrible at �rst sight, because neither thefunctions gj nor their inner products (gj; gk)G are readily available from thegiven functionals �j. But we shall see in (3.2.14, gjkrep) that there is aconditionally positive de�nite function � such that(gj; gk)G = �xj�yk�(x; y)holds for the elements of the matrix in (3.1.14, EQsys3), making an easyaccess to these elements possible, if � is explicitly known. In particular, if�j(f) = f(xj), then (gj; gk)G = �(xj; xk)as we used in (1.7.2, EQsys2) in a slightly more special situation.We now look at solvability of the system (3.1.14, EQsys3) in the shorthandform (BDef2) A PP T 0 ! �� ! =  
0 ! (3.1.18)generalizing (1.7.3, BDef). If vectors � 2 IRM and � 2 IRq satisfy thehomogeneous system, then A� + P� = 0P T� + 0 = 0imply �TA� = 0P T� = 0:Since the matrix A is a Gramian for the elements g1; : : : ; gM , it is positivesemide�nite and we have �TA� = ������ MXj=1�jgj������2GThus the element PMj=1 �jgj of G must be in P and the linear combinationPMj=1 �j�j of functionals is zero due to P T� = 0 andMXj=1�j�j(v) = MXj=1�j(�j(�P(v)) + (gj; v)G) = 0 + 0@ MXj=1�jgj; v1AG = 0



36 3 HILBERT SPACE THEORYfor all v 2 G. But we assumed the linear functionals �1; : : : ; �M to be linearlyindependent over G. This implies � = 0 and we are left with P� = 0. Thereis no way to deduce � = 0 from this in general, and consequently we have toadd injectivity of P to our hypotheses, if we want to assure unique solvabilityof (3.1.14, EQsys3). We summarize:Theorem 3.1.19 (ORT2) There is a unique solution to the optimal recov-ery problem (3.1.4, ORP) if the M � q matrix P with entries�j(pi); 1 � j �M; 1 � i � qis injective. This condition means that the only element p 2 P with vanishingdata �1(p); : : : ; �M(p) must be the zero element. 2It should be clear by now that we �nally want to show how the system (1.7.2,EQsys2) is a special case of (3.1.14, EQsys3) and how a conditionally positivede�nite function � can arise in the above Hilbert space setting. We shall takepoint evaluation functionals �x(v) := (v��P(v))(x) if the abstract elementsv 2 G can be interpreted as functions on some domain 
 containing thepoints x, and use the elements gx := g�x 2 G from (3.1.10, lrep) to de�ne ageneralized conditionally positive de�nite function with P generalizing IP dmby �(x; y) := (gx; gy)G; x; y 2 
:The details will be speci�ed in Theorem 3.2.17 (CPDNeccT).Theorems 3.1.12 (ORT1) and 3.1.19 (ORT2) show that optimal recovery inthe fairly general sense of (3.1.4, ORP) necessarily leads to solutions of thespecial form (3.1.13, grep) and linear systems (3.1.14, EQsys3). This is whythe techniques of section 1.4 (SubSectDDSpaces) are a quite natural andgeneral way to access recovery problems.3.1.6 Related Problems(SecRP) There is an equivalent dual reformulation of the above recoveryproblem. Instead of reconstructing some g 2 G from the information 
j =�j(g); 1 � j �M one can ask for a functional �� 2 G� of minimal seminormin G� that satis�es the equations��(gj) = 
j; 1 � j �Mfor a set of linearly independent elements g1; : : : ; gM 2 G. For this the dualbilinear form on functionals in G� can be de�ned as



3.1 Optimal Recovery in Hilbert Spaces 37(DefDualBil)(�; �)G� := (g�; g�)G = �(g�)� �(�P(g�)) = �(g�)� �(�P(g�)): (3.1.20)The additional property required for uniqueness now is that theM�q matrixP with entries �i(gj); 1 � j � M; 1 � i � qis injective. This condition means that the zero is the only element in thespan of g1; : : : ; gM that projects via �P to zero in P. We leave details to thereaders as an exercise. There is a full duality if one replaces �j by gj and �iby piAnother related optimal recovery problem consists in �nding an elementg� 2 G with minimal seminorm jg�jG such that (scaleq)(g�; gj)G = 
j; 1 � j �M�P(g�) = 0; (3.1.21)where we again assume that the functions gj represent linear independentfunctionals �j in the sense of (3.1.11, lrepj). The di�erence is that the datanow are not taking notice of additional functions from P, such that thesecond condition of (3.1.21, scaleq) is necessary to remove the nonuniquenessof g� modulo P. Furthermore, one can assume (picond)�P(gj) = 0; 1 � j �M (3.1.22)without loss of generality.Theorem 3.1.23 (ORT3) Under the additional assumptions (spancond)MXj=1�jgj 2 P implies �j = 0; 1 � j �M (3.1.24)and (3.1.22, picond), the above optimal recovery problem with conditions(3.1.21, scaleq) has a unique solution g� of the form (grep2)g� = MXj=1�jgj (3.1.25)



38 3 HILBERT SPACE THEORYwhere the coe�cients satisfy the linear system (EQsys4)MXj=1�j(gk; gj)G = 
k; 1 � k � M: (3.1.26)Proof: The equivalent variational equation here is(g�; v)G = 0 for all v 2 G with �P(v) = 0 and (v; gj)G = 0; 1 � j � M:This transforms into (g�; v)G = ( MXj=1�jgj; v)Gfor all v 2 G. This is satis�ed if (3.1.25, grep2) holds. To prove the converse,we conclude that the variational equation implies that the di�erence of bothsides in (3.1.25, grep2) lies in P. But application of �P turns the di�erenceinto zero, proving necessity of (3.1.25, grep2).To prove nonsingularity of the system (3.1.26, EQsys4) we proceed similarlyas in the proof of Theorem 3.1.19 (ORT2), but use (3.1.24, spancond) insteadof linear independence of the functionals �j. 2Note that (3.1.24, spancond) is more restrictive than to assume linear in-dependence of the functionals �j, as required for Theorem 3.1.12 (ORT1).This is why Theorem 3.1.23 (ORT3) has positive de�niteness of the matrix((gi; gj)G)i;j, while Theorems 3.1.12 (ORT1) and 3.1.19 (ORT2) need the en-larged matrix. Furthermore, the functionals �j := (�; gj)G that implicitlyarise in Theorem 3.1.23 (ORT3) have the additional property �j(P) = f0g,and this property is not shared by the functionals �j in the previous theorems.In case of P = f0g there is no di�erence at all.We now consider the best approximation problem (BAP)inf�2� j�� �jG� (3.1.27)for a given functional � 2 G� by functionals in (DefL)� := span f�1; : : : ; �Mg � G�: (3.1.28)



3.1 Optimal Recovery in Hilbert Spaces 39The usual theory of approximation in spaces with inner products or bilinearforms yields the normal equations(�; �j)G� = MXk=1�k(�)(�k; �j)G� = MXk=1�k(�)(gk; gj)Gwith a coe�cient matrix as in (3.1.26, EQsys4), and the optimal value of(3.1.27, BAP) is given by (BAPN)inf�2� j�� �j2G� = j�� MXk=1�k(�)�kj2G�= (�; �)G� � 2 MXk=1�k(�)(�k; �)G�+ MXj;k=1�j(�)�k(�)(�j; �k)G�: (3.1.29)
3.1.7 Properties of Optimal RecoveriesAssume that we used the method of section 3.1.5 (Necessity) to recover anelement g 2 G by some element g� that satis�es (ljg)�j(g) = �j(g�); 1 � j �M (3.1.30)for a set of linearly independent functionals �1; : : : ; �M with representers gjin the sense of �j(v) = �j(�P(v)) + (v; gj)G; v 2 G:Assume further that the su�cient condition for uniqueness holds, as given inTheorem 3.1.19 (ORT2), and that we normalized the functions gj to satisfygj = RPgj or �Pgj = 0.Since any element g� = p 2 P satis�es (3.1.15, charmin), we getTheorem 3.1.31 (PolRepT1) The optimal recovery process reproduces el-ements of P. 2Corollary 3.1.32 (PolRepCol) If g� is the unique optimal recovery of g,then �P(g � g�) = 0.



40 3 HILBERT SPACE THEORYProof: If p 2 P is arbitrary, then clearly (g+p)� = g�+p due to uniqueness.The recovery process thus acts separately on the two parts of G = P+RP(G)with values in the respective parts of S = P + RP(S). But then (RPg)� =RP(g�) holds andRP(g�) = (RPg)� = (g � �Pg)� = g� � �Pgimplies �Pg� = �Pg. 2Turning to orthogonality relations, we have(gj; g � g�)G + �j�P(g � g�) = 0; 1 � j �Mand for each element s from the space (DefS)S = 8<: MXj=1�jgj + qXk=1�kpk : MXj=1�j�j(P) = f0g9=; (3.1.33)we get the orthogonality (EqOrtho)(s; g � g�)G = 0 (3.1.34)by summation. But this means that g� is a best approximation to g from S:Theorem 3.1.35 (ORTBA) The solution g� of the optimal recovery prob-lem (3.1.4, ORP) for data from some element g 2 G is a best approximationto g from the space S of (3.1.33, DefS) in the sensejg � g�jG = mins2S jg � sjG: 2Equation (3.1.34, EqOrtho) easily generalizes toTheorem 3.1.36 (OrtTh) The orthogonal complement of the subspace(3.1.33, DefS) of G is P plus the space of all elements v 2 G that have�j(v) = 0; 1 � j � M .Proof: The variational equation (3.1.15, charmin) shows that the orthogonalcomplement must contain the elements in question. Now let g 2 G be anelement in the orthogonal complement of (3.1.33, DefS) and form its optimalrecovery g�. Then use (3.1.15, charmin) and othogonality of g to g� to get(g � g�; g � g�)G = (g; g)G � (g; g�)G � (g�; g � g�)G = (g; g)G:



3.1 Optimal Recovery in Hilbert Spaces 41But since (3.1.15, charmin) always implies orthogonality of g � g� to g�, wehave the Pythagorean law (Pyth)(g; g)G = (g � g�; g � g�)G + (g�; g�)G (3.1.37)which leads to g� 2 P in this special situation. Thus g = g� + g � g� is ofthe required form. 2We now proceed towards the prototype of an error bound. We use the space(3.1.28, DefL) of functionals and (3.1.30, ljg) to get �(g � g�) = 0 for all� 2 �. Now take any � 2 G� and form�(g � g�) = (�� �)(g � g�)� j(�� �)�P(g � g�)j+ j(g� � g�; g � g�)Gj� j�� �jG�jg � g�jG;using Corollary 3.1.32 (PolRepCol).Theorem 3.1.38 (ORTFA) [1](DNW) The solution g� of the optimal re-covery problem (3.1.4, ORP) for data from some element g 2 G satis�es theerror bound (Eq2inf)j�(g � g�)j � inf�2�j�� �jG� infs2Sjg � sjG (3.1.39)for any functional � 2 G�. 2The crucial factor in the error bound (3.1.39, Eq2inf) is the generalizedoptimal power function (GPDef)P (�) := P�(�) := inf�2�j�� �jG� (3.1.40)with � from (3.1.28, DefL). If the functionals �j are \near" to �, thisquantity should be rather small, and we shall prove speci�c bounds laterin 5.5 (hrhodef). This is made possible by the representation for P (�) thatfollows readily from (3.1.27, BAP) and (3.1.29, BAPN), and which will alsobe useful in section 4.6 (URT).



42 3 HILBERT SPACE THEORY3.1.8 RemarksThe theory of optimal recovery starts with the early paper of Golomb andWeinberger [16](golomb-weinberger:59-1), while reproducing kernel Hilbertspaces are much older (see e.g. the textbook by Meschkowski [26](meschkowski:62-1)). A milestone was the theory of optimal recovery in the sense of Micchelli,Rivlin, and Winograd ( [28](micchelli-rivlin:77-1) [29](micchelli-rivlin:78-1)[30](micchelli-rivlin:84-1) [31](micchelli-et-al:76-1) ), while the current ex-tension into the direction of information-based complexity is in [6](bojanov-wozniakowski:92-1).3.2 Spaces of Functions(SecSF) In order to arrive at conditionally positive functions, we now haveto specialize our results on optimal recovery to the case of optimal recoveryof functions.3.2.1 From Hilbert Spaces to Positive De�nite Functions(SecHSPDF) We now specialize to a Hilbert space F of functions on somedomain 
 that we do not restrict. But since classical functions are objectsthat allow the action of speci�c linear functionals (deltadef)�x : g 7! g(x); g 2 F ; x 2 
 (3.2.1)called point-evaluation functionals, we assume that the above functionals�x are in F� and thus continuous on F . Then one can invoke the Rieszrepresentation theorem 12.2.14 (RieszT) to get a function g�x 2 F for eachx 2 
 such that (DRKF)g(x) = �x(g) = (g; g�x)F (3.2.2)holds for all g 2 F , x 2 
. We now de�ne a function� : 
� 
! IR; �(x; y) := (g�x; g�y); x; y 2 
and getTheorem 3.2.3 (PDFT1) If the point evaluation functionals in a Hilbertspace F of functions on some domain 
 are continuous, then the space hasa reproducing kernel function � with the following properties:



3.2 Spaces of Functions 431. � : 
� 
! IR,2. �(x; �) = �(�; x) 2 F for all x 2 
,3. g(x) = (g;�(x; �))F for all g 2 F ; x 2 
.Proof: By de�nition and (3.2.2, DRKF),g�y(x) = (g�y ; g�x)F = �(y; x)(g�y ; g�x)F = (g�x; g�y)F = �(x; y) = �(y; x)for all x; y 2 
, proving all of the assertions. 2We now compare this with De�nition 1.5.3 (DPD) from section 1.5 (subse-cEIA) on page 11 which we restate here for convenience:De�nition 3.2.4 A real-valued function� : 
� 
! IRis a positive de�nite function on 
, i� for any choice of �nite subsetsX = fx1; : : : ; xMg � 
 of M di�erent points the matrixAX;� = (�(xk; xj))1�j;k�Mis positive de�nite.To test the function � from Theorem 3.2.3 (PDFT1) for positive de�niteness,consider a �nite subset X = fx1; : : : ; xMg � 
 ofM di�erent points and takean arbitrary vector � 2 IRM . Then�TAX;�� = MXj;k=1�j�k�(xk; xj) = 0@ MXj=1�jgxj ; MXk=1�kgxk1AF = k MXj=1�jgxjk2Fimplies that the matrix AX;� always is positive semide�nite, because it isthe Gramian of the functions gxj ; 1 � j � M . It is positive de�nite if andonly if these functions are linearly independent in F . Furthermore, is is easyto see from (3.2.2, DRKF) that the functions gxj ; 1 � j � M are linearlydependent if and only if the point evaluation functionals �xj ; 1 � j �M arelinearly dependent in the dual space F . Another simple exercise is to showequivalence of the linear independence of �xj ; 1 � j � M with each of thefollowing notions:



44 3 HILBERT SPACE THEORYDe�nition 3.2.5 (DFSP) A space F of functions on some domain 
 hasthe �nite separation property, if for all �nite subsets X = fx1; : : : ; xMg �
 of M di�erent points there are M functions g1; : : : ; gM 2 F that separatethe points in X = fx1; : : : ; xMg, i.e.gj(xk) = �jk; 1 � j; k �M:De�nition 3.2.6 (DFIP) A space F of functions on some domain 
 has the�nite interpolation property, if for all �nite subsets X = fx1; : : : ; xMg �
 of M di�erent points and all vectors � 2 IRM there is a function g 2 F ,depending on X = fx1; : : : ; xMg and �, such thatg(xk) = �k; 1 � k �M:We combine this into a result that proves the setting in 1.5 (subsecEIA) tooccur naturally in fairly general situations:Theorem 3.2.7 Let F be a space of real-valued functions on some domain
, and assume1. F is a Hilbert space over IR,2. the point evaluation functionals (3.2.1, deltadef) are continuous on F ,3. F has the �nite interpolation or the �nite separation property.Then F is a reproducing kernel Hilbert space, and its kernel function � :
� 
 is a positive de�nite function. 23.2.2 Generalization towards Conditionally Positive De�nite Func-tions(SecGCPDF) We now return to the slightly more general setting of section3.1.1 (subsecORP). The continuous linear functionals now have to vanish onthe kernel P of the bilinear form (�; �)G, and this is not a usual property ofpoint evaluation functionals. But we can resort to the functionals(deltadef2)�x;P := �x � �x(�P) (3.2.8)that will vanish on P for all x 2 
. We thus should require the functionals�x;P from (3.2.8, deltadef2) to be continuous with respect to the bilinear form(�; �)G. This is the same as to assume that the point evaluation functionals�x are in G�, and then we can use (3.1.10, lrep) to get the generalization



3.2 Spaces of Functions 45(DRKF2)�x;P(g) = g(x)� (�P(g))(x) = (g; g�x)G (3.2.9)of (3.2.2, DRKF) for all g 2 G, x 2 
. This is a special form of (3.1.10, lrep)on page 32 and yields the Taylor-type formula (Taylor)g(x) = (�P(g))(x) + (g; g�x;P)G (3.2.10)for all g 2 G, x 2 
. We now de�ne (DefPhiGen)� : 
� 
! IR; �(x; y) := (g�x;P ; g�y;P)G; x; y 2 
 (3.2.11)and getTheorem 3.2.12 (CPDFT1) If the functionals (3.2.8, deltadef2) for aspace G of functions on some domain 
 are continuous with respect to thebilinear form (�; �)G with �nite-dimensional kernel P and projector �P : G !P, then the space has a reproducing kernel function � with the followingproperties:1. � : 
� 
! IR,2. �(x; �) = �(�; x) 2 G for all x 2 
,3. �P�(x; �) = �P�(�; x) = 0 for all x 2 
,4. �(x; y) = (�(x; �);�(y; �))G for all x; y 2 
5. g(x) = �P(g)(x) + (g;�(x; �))G for all g 2 G; x 2 
.Proof: We proceed exactly as in Theorem 3.2.3 (PDFT1) and get(PhiRep2)�(x; y) = (g�x;P ; g�y;P)G = g�x;P (y)� (�Pg�x;P )(y): (3.2.13)This proves properties 2 and 3, while 1 holds by de�nition. Putting the aboveidentity into (3.2.10, Taylor) and (3.2.11, DefPhiGen) yields the fourth and�fth property. 2We shall see later that the well-known conditionally positive de�nite functionsfail to satisfy some of these properties, but there is a fairly standard processthat shows how to get the properties by slight modi�cations. We shall



46 3 HILBERT SPACE THEORYcomment on this when we consider the construction of native Hilbert spacesfrom given conditionally positive de�nite functions in section 3.3 (SecNS).The identity (3.1.10, lrep) on page 32 introduced a representing functiong� 2 G for each functional � 2 G�. This was used in (3.1.11, lrepj) to derivethe system (3.1.14, EQsys3) for solving the recovery problem. To bring thisinto line with the system (1.7.2, EQsys2) on page 15, we use (3.2.13, PhiRep2)to form �y�(x; y) = �(g�x;P)� ��Pg�x;P= (g�; g�x;P )G = g�(x)� (�Pg�)(x)and get g� = �Pg� + �y�(�; y)for all � 2 G�. Since g� is nonunique modulo functions from P, we even canomit the �rst summand and use the above equation as a de�nition for g�.With a second functional � 2 G� we can write�x�y�(x; y) = �g� � ��Pg�= ��Pg� + (�; �)G� � ��Pg�= (�; �)G�:This proves (gjkrep)(gj; gk)G = (�j; �k)G� = �xj�yk�(x; y) (3.2.14)for the elements of the matrix in (3.1.14, EQsys3).We now want to move towards conditionally positive de�nite functions, butwe still have to replace polynomials in De�nition 1.6.2 (DCPD) on page 13:De�nition 3.2.15 (DCPD2) A real-valued function� : 
� 
! IRis a conditionally positive de�nite function with respect to a �nite-dimensional space P of functions on 
, i� for any choice of �nite subsetsX = fx1; : : : ; xMg � 
 of M di�erent points the value�TAX;�� := MXj;k=1�j�k�(xj; xk)of the quadratic form (1.6.1, QFdef) is positive, provided that the vector� = (�1; : : : ; �M) 2 IRM n f0g has the additional property



3.2 Spaces of Functions 47(CPDef2)MXj=1�jp(xj) = 0 (3.2.16)for all p 2 P.Theorem 3.2.17 (CPDNeccT) Let G be a space of real-valued functions onsome domain 
, and assume1. G has a real-valued symmetric bilinear form (�; �)G with a �nite dimen-sional kernel P and corresponding projector �P ,2. the point evaluation functionals (3.2.8, deltadef2) are continuous withrespect to the bilinear form,3. G has the �nite interpolation or the �nite separation property.Then G has a reproducing kernel in the sense of Theorem 3.2.12 (CPDFT1),and its kernel function � : 
�
 is a conditionally positive de�nite functionwith respect to P.Proof: Again, we consider a �nite subset X = fx1; : : : ; xMg � 
 of Mdi�erent points, but now we take a vector � 2 IRM with (3.2.16, CPDef2).Then we can repeat the steps of the proof of Theorem 3.2.3 (PDFT1) to seethat the matrix AX;� is positive semide�nite. To prove de�niteness, we nowassume that (inP)MXj=1�jg�xj;P 2 P (3.2.18)holds and have to prove that � is zero. But (3.2.16, CPDef2) and (3.2.18,inP) imply via (3.2.9, DRKF2) that the point evaluation functionals �xj ; 1 �j �M are linearly dependent. 2We see that conditionally positive de�nite functions arise necessarily when-ever optimal recovery of functions from a space G with a bilinear form isattempted. The coe�cient matrix of the major part of the linear system haselements of Gramian form (gj; gk)G, even if the recovery is carried out in moregeneral (non-function-) spaces. This means that positive (semi-) de�nitenessis the natural condition to ask for, and there is no reason to replace it bynonsingularity.



48 3 HILBERT SPACE THEORY3.2.3 Sobolev and Beppo-Levi SpacesWe now want to exhibit some special cases where we can start from a spaceG with bilinear form and arrive at a conditionally positive de�nite function.The most usual bilinear form de�ned on functions is the L2 inner product(f; g)L2(
) := Zx2
 f(x)g(x)dxHowever, point evaluation functionals are not continuous with respect to thisinner product. This is easy to see when looking at the evaluation at zero offunctions of the form f�(x) := exp(��kxk22) for large positive �. The L2(IRd)inner products tend to zero for �!1, while the value at zero is always one.Thus there is no positive constant C such thatj�(f�)j � Ckf�kL2(IRd)holds. As a warm-up for similar calculations occurring in later sections ofthe text, let us do the evaluation of the inner product. It su�ces to take� = 2� and calculate the integralZx2
 exp(��kxk22)dx = vol (Sd�1)Z 10 rd�1 exp(��r2)drby going over to polar coordinates and integrating over the scaled unitsphere Sd�1 � IRd. Its surface area (or its d � 1-dimensional volume) isvol (Sd�1) = 2�(d�1)=2=�((d � 1)=2) due to (12.3.4, VolS). The rest followsfrom substitution and the de�nition (12.3.1, GammaDef) of the Gammafunction: Z 10 rd�1 exp(��r2)dr = 12�Z 10 ( t� )d=2�1 exp(�t)dt= 12��d=2�(d=2):If the reader has di�culties with this, it is time to work through part 12.3(SecSFT) of the appendix.To make point evaluation functionals continuous, we require a stronger bi-linear form than just the L2 inner product. And the above discussion showsthat problems may get worse with increasing space dimension.The usual trick is to introduce derivatives into the bilinear form. In particu-lar, take a multiindex � 2 ZZd�0 and de�ne f� as the multivariate derivative



3.2 Spaces of Functions 49of order � of some function f . For a �xed integer m � 0, assemble allderivatives with j�j := k�k1 = m into a positive semide�nite bilinear form(f; g)m := Z
 Xj�j=m m� ! f�(x)g�(x)dxon all functions that are at least in Cm(
). Here, we used the multivariateversion of  m� ! := m!�1! : : : ; �d! with j�j = m:For simply connected domains 
 with a nonzero interior in IRd the nullspaceof the bilinear form will then coincide with the space P = IP dm of polynomialsof orderm on IRd. To do this, we need that a Cm function on 
 with vanishingderivatives of ordermmust necessarily be a polynomial, and this works nicelyin the interior of 
 by application of the multivariate Taylor formula. Theboundary does not count for the integral, and the polynomial is unique, ifwe do not have multiple components of the domain.However, we still have to check the continuity of point-evaluation functionals�x;P in the sense of (3.2.8, deltadef2) on page 44. The construction of asuitable projector �P to the nullspace P = IPDm will be given in Lemma 5.4.3(LemPIG) on page 115 for use in a di�erent context, but it is actually no bigdeal. Much more serious is the proof of the fact that m > d=2 is necessaryand su�cient for continuity of the point-evaluation functionals. This is calledthe Sobolev inequality, but its proof is delayed to 12.6 (SecSob).If we assume m > d=2 and start with of G = Cm(
) in the sense of section3.2.2 (SecGCPDF), we still have to form the Hilbert space completion and toderive the functions g�x;P that occur in (3.2.9, DRKF2) and allow to de�ne anormalized conditionally positive de�nite function � via (3.2.11, DefPhiGen).To do these things on the full space IRd will later turn out to be much easierthan to use a compact domain 
. To avoid problems with nonexistence ofkfkm, we restrict ourselves to the subspace of Cm(IRd) of functions withbounded seminorm j � jm. The resulting completed space G with the bilinearform (�; �)m is called the Beppo-Levi space of order m on IRd. For readerswithout a background in partial di�erential equations it will probably be asurprise to hear that the resulting � then precisely is the normalization ofthe conditionally positive de�nite radial function �(r) = r2m�d for d odd and�(r) = r2m�d log r for d even.We give a brief and sloppy \physicist-style" explanation for this and do thestrict proof the other way round: we later construct the space from the



50 3 HILBERT SPACE THEORYconditionally positive de�nite function along the lines of the next section.The informal technique just takes (3.2.9, DRKF2) for granted and rewritesit in the form�x;P(g) = Z
 Xj�j=m m� ! g�(y)g��x;P(y)dy= (�1)mZ
 g(y) Xj�j=m m� ! g2��x;P (y)dyif boundary terms are neglected. Thus, in the sense of linear partial di�er-ential equations, the function g�x;P must (up to a sign) be a fundamentalsolution corresponding to the di�erential operatorg 7! (�1)m Xj�j=m m� ! g2�which (by a simple inductive proof) coincides with the m-th power (�1)m�mof the negative Laplacian �(f) := dXj=1 @2f@x2j :This is the hidden reason for the  m� ! factors in the de�nition of thebilinear form. The corresponding fundamental solutions are well-known andmust be radial due to the radial symmetry of the Laplacian. Using the radialform of the Laplacian, they can be calculated explicitly, and they always areeither of the form r
 or r
 log r. The boundary conditions, when evaluatedproperly, force to take the solution with maximal smoothness in zero or withminimal decay at in�nity, and this is the radial function given above.The case d = 2 requires m > d=2 = 1, and the minimal possible m leadsto m = 2 and �(r) = r2 log r. The corresponding di�erential operator is�2, describing the surfaces formed by thin plates under external forces orconstraints. This is where thin-plate splines have their name, and theoriginal approach by Duchon started from the partial di�erential equationbackground of these functions. The other cases are fundamental solutions ofthe iterated Laplacian, and since solutions of the plain Laplacian are calledharmonic functions, the radial functions of the form �(r) = r� for � =2 2ZZor �(r) = r� log r for � 2 2ZZ are called polyharmonic functions. Thetransition to non-integer values of � is possible via Fourier transforms andwill be done in general later.



3.2 Spaces of Functions 51Looking back at the seminorm j � jm induced by the bilinear form (�; �)m, wesee that the optimal recovery problem attempts to pick a function with leastweighted mean square of all derivatives of order m. This is somewhat like anenergy minimization in case m = 2, but m = 2 is admissible only in spacesof dimension up to d = 3.Another even more important space arises when all derivatives up to orderm are summed up to generate a new bilinear form((f; g))m := mXj=0 Xj�j=j Z
 @�f@x� @�g@x� dxThis is positive de�nite and de�nes via completion a Hilbert space Wm2 (
)called Sobolev space of order m. Again, the point evaluation functionalsare continuous only if m > d=2 holds. Using Fourier transforms, the specialcase 
 = IRd can be treated explicitly and yields a positive de�nite radialbasis function �(r) = rm�d=2Km�d=2(r)up to a factor depending on m and d, where K� is the Bessel or Macdonaldfunction de�ned in (12.3.22, KnuDef). The power of r cancels the singularityof Km�d=2 at zero exactly, since the asymptotics near zero are given by(12.3.23, KnuAsyZero).These radial basis functions look strange, but they arise very naturally,Since the Bessel functions K� have exponential decay towards in�nity due to(12.3.24, KnuAsyInf), the translates of �(kxk2) lead to virtually band-limitedinterpolation matrices. The evaluation of such functions is easily possible bycalling standard subroutine packages.If one considers other (equivalent) inner products on Sobolev spaces, theassociated positive de�nite functions � will change. Naively, we would notexpect these changes to be substantial, but surprisingly there is an equivalentinner product that generates a compactly supported radial basis function.We shall see this when we check the functions introduced by Wendland in[46](wendland:95-1).3.2.4 Invariance Principles(SecIP) The preceding discussion showed that conditionally positive de�nitefunctions associated to function spaces on IRd often come out to be radial.We shall now look at this phenomenon in more detail.



52 3 HILBERT SPACE THEORYAssume that the domain 
 allows a group T of geometric transformations,and that the bilinear form (�; �)G of the space G is invariant under transfor-mations from T . By this we mean the properties (GInv)g � T 2 G(f � T; g � T )G = (f; g)G(�Pg) � T = �P(g � T ) (3.2.19)for all T 2 T and all f; g 2 G. Then there are two ways to interpret theaction of a functional �Tx for x 2 
 and T 2 T :�Tx(g) = g(Tx) = (�Pg)(Tx) + (g; g�Tx)G= (g � T )(x) = (�P(g � T ))(x) + (g � T; g�x)G= (�Pg)(Tx) + (g � T; g�x � T�1 � T )G= (�Pg)(Tx) + (g; g�x � T�1)Gand this proves g�Tx � g�x � T�1 2 Pfor all g 2 G; T 2 T . But this can be inserted into the de�nition of � to get�(Tx; Ty) = (g�Tx ; g�Ty)G = (g�x � T�1; g�y � T�1)G = (g�x; g�y)G = �(x; y)for all x; y 2 
. We thus haveTheorem 3.2.20 (InvT1) Let G and � satisfy the assumptions of Theorem3.2.12 (CPDFT1). If the domain 
 allows a group T of transformations thatleave the bilinear form (�; �)G on G invariant in the sense of (3.2.19, GInv),then � is invariant under T in the sense (PhiInv)�(x; y) = �(Tx; Ty) (3.2.21)for all x; y 2 
; T 2 T . 2Corollary 3.2.22 If the domain 
 has a �xed element denoted by x0, andif for all x 2 
 there is a transformation Tx 2 T with Tx(x) = x0, then �takes the form (Phi1arg)�(x; y) = �(Ty(x); x0) (3.2.23)such that one of the two arguments of � is redundant.



3.2 Spaces of Functions 53We now consider some examples of domains with groups of transformations,and we always assume the invariance requirements of Theorem 3.2.20 (InvT1)to be satis�ed.Example 3.2.24 If 
 is itself a group with neutral element 1, then�(x; y) = �(y�1x; 1)for all x; y 2 
.Example 3.2.25 If 
 = IRd with the group of translations, then (PhiDi�)�(x; y) = �(y � x; 0) = �(x� y; 0) (3.2.26)for all x; y 2 IRd.Example 3.2.27 If 
 = IRd with the group of Euclidean rigid-body trans-formations (i.e. translations and rotations), then � is a radial function�(x; y) = �(ky � xk2)for all x; y 2 IRd, where � : IR�0 ! IR.Proof: First use the translations of the previous case to write �(x; y) =�(x� y; 0), and then rotate x� y to a �xed unit vector in IRd multiplied bykx� yk2. Then we are left with a scalar function of kx� yk2. 2We note the remarkable fact that conditionally positive de�nite radial basisfunctions always occur in optimal recovery problems on IRd for functionsfrom spaces that carry a bilinear form with Euclidean invariance.Example 3.2.28 If 
 = Sd�1 � IRd is the (d�1)-sphere, i.e. the surface ofthe unit ball in IRd, then rotational invariance implies that � is zonal, i.e.�(x; y) = �(xTy)for all x; y 2 Sd�1, where � : [0; 1]! IR.In this case the function � can be written as a scalar function of the anglebetween the two arguments, or the cosine of this angle.Example 3.2.29 If 
 = IRd and if the group T is ZZd under addition,then G is a shift-invariant space (see [7](boor-et-al:94-2)), and � is fullydetermined by its values on IRd�0 � IRd�0.



54 3 HILBERT SPACE THEORYIn this case, pick T to shift bmin(x; y)c to the origin, using minimum and b�ccoordinatewise.Example 3.2.30 If 
 = [��; �]d, if the space G consists of d-variate 2�-periodic functions, and if the bilinear form is invariant under coordinatewisereal-valued shifts, then we are in a fully periodic setting and �(x; y) has theform (3.2.26, PhiDi�) with a 2�-periodic �rst argument.3.2.5 RemarksThe monograph [4](atteia:92-1) also explores the relation between reproduc-ing kernel Hilbert spaces and associated recovery problems. This section usedparts of [42](schaback:96-1).3.3 Native Spaces(SecNS) The previous sections have shown that each Hilbert space setting ofa recovery problem leads to a speci�c conditionally positive de�nite functionacting as a reproducing kernel. We now turn this upside down: for eachconditionally positive de�nite function � there is a Hilbert space (called thenative space) with reproducing kernel �, and we need as much informationas possible about this space. The construction of such a space seems tobe a quite academic question, but it isn't. The main reason is that it ismuch more easy to construct useful conditionally positive de�nite functionsthan to �nd certain Hilbert spaces. Thus it often happens that one startswith a conditionally positive de�nite function, not with a Hilbert space. Butit is necessary to know the Hilbert space in order to assess the optimalityproperties of the reconstruction process, and thus we cannot ignore theconstruction of the native space.Furthermore, if a conditionally positive de�nite function � is constructedwithout any relation to a Hilbert space, the latter can be theoretically de�nedand nicely used to investigate the recovery quality of �. And there is a thirdreason: no matter how we arrived at some conditionally positive de�nitefunction �, we might want to change it somehow, e.g.: by scaling into��(�) = �(�=�). Then we have to calculate the native space for �� fromscratch in order to compare it to the native space for �.3.3.1 From Conditionally Positive De�nite Functions to HilbertSpacesNow let � be a conditionally positive de�nite function on some domain 
with respect to some �nite-dimensional space P in the sense of De�nition



3.3 Native Spaces 553.2.15 (DCPD2) on page 46. We have to construct the space G occurring thepreceding sections, and its associated bilinear form with nullspace P. Sincethere is no other tool available than the de�nition of conditionally positivede�nite functions, we �rst have to work with �nitely supported functionals(De
xma)�X;M;� : f 7! MXj=1�jf(xj) (3.3.1)for arbitrary subsets X = fx1; : : : ; xMg � 
 of M distinct points, where thecoe�cient vector � 2 IRM satis�es (3.2.16, CPDef2), i.e. the above functionalis zero on the space P. We thus de�ne P?
 to be the set containing all ofthese functionals. To turn P?
 into a vector space over IR, we use the obviousmultiplication by scalars and de�ne the sum of �X;M;� and �Y;N;� as �Z;L;
with Z = fz1; : : : ; zLg andZ = X [ YL = card (Z)
` = �j if z` = xj 2 X n (X \ Y )
` = �k if z` = yk 2 Y n (X \ Y )
` = �j + �k if z` = xj = yk 2 X \ Y:This de�nition makes sure that�X;M;�(f) + �Y;N;�(f) = �Z;L;
(f)holds for each function f on 
, and thus the sum satis�es (3.2.16, CPDef2).The usual laws for vector spaces are satis�ed, and we now de�ne a bilinearform on P?
 by (DefBil)(�X;M;�; �Y;N;�)� := MXj=1 NXk=1�j�k�(xj; yk): (3.3.2)Since � is positive de�nite with respect to P, we even have positive de�-niteness of the bilinear form on P?
 , and P?
 is a pre-Hilbert space with theinner product (�; �)� introduced by �. Note that the vector space P?
 is onlydependent on 
 and P, not on � itself, but the inner product on P?
 dependson �, as we indicate by our notation.We now can de�ne the native space G with respect to � to consist of allfunctions on 
 on which all functionals from P?
 are continuous:



56 3 HILBERT SPACE THEORY(calgdef)G := nf : 
! IR; j�(f)j � Cfk�k� for all � 2 P?
o : (3.3.3)It is immediately clear that P is a subset of G, but it is neither clear nor true(in general) that the functions �(x; �) are in G. Furthermore, we still need abilinear form on G that has P as its nullspace. To do this, we �rst de�ne themap (Fmapdef)F : P?
 ! G; F (�X;M;�) = MXj=1�j�(xj; �) (3.3.4)and have to make sure that the image is indeed in G. But this follows fromthe very important identity (lmF)�Y;N;�(F (�X;M;�)) = (�X;M;�; �Y;N;�)� = �X;M;�(F (�Y;N;�)) (3.3.5)for all �X;M;�; �Y;N;� 2 P?
 . Then we de�ne F0 := F (P?
 ) and assertLemma 3.3.6 The sum P + F0 is direct, and the map F is bijective.Proof: Indeed if F (�) = p 2 P, then for all � 2 P?
 we have �(F (�)) =�(p) = (�; �)� = 0 due to (3.3.5, lmF), proving both assertions at the sametime. 2In the above proof we used shorthand notation for functionals in P?
 , and weshall only return to the full notation if absolutely necessary.We now can de�ne an inner product on F0 via F , turning F into an isometryand F0 into a pre-Hilbert space:(F (�); F (�))� := (�; �)�for all �; � 2 P?
 . We used the same notation for the inner product, sincethere will be no confusion between spaces of functions and functionals, re-spectively.The next step is to go over to Hilbert space completions of P?
 and F0 inthe sense of Theorem 12.2.11 (HSCT). Then we get a continuous extensionof the isometry F to the completions for free, and we denote this map againby F . The completion of F0 will be denoted by F , and our �nal goal is toprove the validity of a direct sum like



3.3 Native Spaces 57(GPF2)G = P + F (3.3.7)to recover (3.1.8, GPF1) on page 32. But this is a hard task since we do notknow that the elements of the completion F of F (P?
 ) are functions on 
 atall, let alone that they lie in G. However, we know that an abstract elementf of F allows the action of all functionals �X;M;� 2 P?
 , since (3.3.5, lmF)yields (lfgeneral)�X;M;�(f) = (�X;M;�; F�1(f))�: (3.3.8)This immediately implies a proper de�nition of function values for f in caseof P = f0g, since we can de�ne (lfsimple)f(x) := �fxg;1;1(f) (3.3.9)for all x 2 
. This de�nition is consistent with what we know for functionsin F0, and we could proceed to prove (3.3.7, GPF2). But we need a littledetour for the case P 6= f0g, since the above point evaluation functionals arenot in P?
 . To facilitate this, we again require a projector �P onto P as insection 3.1.2 (SecHSP) on page 30. We could copy this de�nition, but sincewe are in a space of functions now, we want to give a speci�c constructionthat can be expressed in terms of function values.To get such a special projector, we shall assume the existence of a subset� = f�1; : : : ; �rg � 
which is nondegenerate with respect to P and assume without loss of gen-erality that � has a minimal number r of distinct points. Then there is astandard argument from linear algebra that allows to conclude that r equalsthe dimension of P. In fact, the mapp 7! (p(�1); : : : ; p(�r))T 2 IRris injective and we have q := dim P � r. If p1; : : : ; pq form a basis of P, wecan write down the injective r � q matrix (Prq)P := (pk(�j))1�j�r; 1�k�q (3.3.10)



58 3 HILBERT SPACE THEORYand pick a subset of rows that generate a submatrix of maximal row rank.If this were a proper subset, we could reduce r by going over to a subset of�. Thus P has maximal row rank r. But then we must have q = r, becausethere cannot be r linearly independent vectors in a space of dimension q < r.This shows that we can assume r = q = dimP and nonsingularity of theq � q matrix P of (3.3.10, Prq). We use this to go over to a Lagrange-typebasis of P with respect to � which we again denote by p1; : : : ; pq. Then P isthe identity matrix and we can write every function p 2 P as (PRq2)p(�) = qXj=1 p(�j)pj(�): (3.3.11)This now yields the explicit form of a projector �P onto P as�P(f)(�) := qXj=1 f(�j)pj(�)for all functions that are at least de�ned on �. The projector has theadditional property (f � �Pf)(�) = f0gfor all functions f that are de�ned on �, because of ��j ;� = 0; 1 � j � q.Note that �j(f) = f(�j) holds if we compare (3.3.11, PRq2) with (3.1.5,DefPN).So the projector is well-de�ned, but we cannot use it right away, since we �rstneed nice functionals in P?
 . But such functionals come from the projectorvia (deltagen)�x;�(f) := f(x)� (�P(f))(x) = f(x)� qXj=1 f(�j)pj(x) (3.3.12)for all x 2 
 and they annihilate P, as required.The notation �x;P from (3.2.8, deltadef2) is very similar, but there will beno possible confusion. Similar variations of point evaluation functionals willoccur later. These functionals are useful to prove an intermediate result thatwill be of some use later:Lemma 3.3.13 (Su�Pol) If the action of all functionals � from P?
 is zeroon a given function f from G, then f coincides with a function from P on
.



3.3 Native Spaces 59Proof. : Just take the functionals �x;� for all x 2 
, and look at0 = �x;�(f) = f(x)� (�P(f))(x): 2We now could generalize (3.3.9, lfsimple) using the above functionals in (3.3.8,lfgeneral): (lf2)f(x) := (�x;�; F�1(f))�; x 2 
; f 2 F : (3.3.14)This assigns speci�c function values to the abstract element of the closureF of F0. The assignment has the consequence that f(�) = f0g due to��j ;� = 0; 1 � j � q, and thus it is rather an assignment of values to f��Pfthan to f itself. We thus avoid this complication and de�ne a mappingRP : F ! Gby (lf3)(RPf)(x) := (�x;�; F�1(f))�; x 2 
; f 2 F : (3.3.15)We have to show that this maps into G, and for this we have to evaluate�X;M;�(RP(f)) = MXj=1�j(�xj ;�; F�1(f))�= 0@ MXj=1�j�xj ;�; F�1(f)1A� :Now the functional in the bilinear form boils down toMXj=1�j�xj ;�(f) = MXj=1�j  f(xj)� qXk=1 f(�k)pk(xj)!= MXj=1�jf(xj)� qXk=1 f(�k) MXj=1�jpk(xj)= MXj=1�jf(xj)� 0= �X;M;�(f);and we end up with (RfDef)�X;M;�(RP(f)) = (�X;M;�; F�1(f))� (3.3.16)which proves RP(f) 2 G.



60 3 HILBERT SPACE THEORYTheorem 3.3.17 (GPFT2) The spaces P; G; and F of functions on 
form a direct sum G = P +RP(F);and RP de�ned by (3.3.15, lf3) is an isometry between F and RP(F) � G.The inner products on F and RP(F) introduce a bilinear form(g; h)G := (R�1P (g � �Pg); R�1P (h� �Ph))�with nullspace P on G.Proof: The intersection of P and RP(F) is zero, because the second spaceconsists of functions vanishing on �, and the only such function in the �rstspace is the zero function. Thus the sum is direct, and we have to show thatthe sum �lls all of G. Before we do that, we take a look at the mapping RPand check the topology of G. Each function f in G has the well-de�ned normkfkG := sup�2P?
 nf0g j�(f)jk�k� ;and the identity (3.3.16, RfDef) immediately yieldskRP(f)kG = kF�1(f)k� = kfk�for all f 2 F . Thus RP is isometric, and RP(F) is the closure of RP(F0) inG.We now proceed to show that P+RP(F) �lls all of G, and we shall constructthe inverse of RP . Take an arbitrary function f 2 G and de�ne a functionalLf on the space P?
 by Lf(�) := �(f); � 2 P?
 :This functional is continuous on P?
 because f is in G, and it has a continuousextension to the closure of P?
 which is a space isomorphic to the Hilbertspace F . We thus invoke the Riesz representation theorem 12.2.14 (RieszT)to get an element S(f) 2 F withLf (�) = �(f) = (�; F�1(S(f)))� = (F (�); S(f))� for all � 2 P?
 :Using (3.3.16, RfDef), this turns into�X;M;�(RPS(f)) = (�X;M;�; F�1Sf)� = �X;M;�(f)



3.3 Native Spaces 61and Lemma 3.3.13 (Su�Pol) implies that f�RPS(f) coincides with a functionfrom P on 
, and since �PRP is the zero mapping, we see thatf = �Pf +RPSfholds for all f in G, proving that the direct sum �lls all of G. The statementon the bilinear form is straightforward to prove. 2To write down a more explicit representation of the functions from G, weapply F to �x;� and getF (�x;�)(�) = �(x; �)� qXk=1�(�k; �)pk(x) 2 G:Then (3.3.15, lf3) and Theorem 3.3.17 (GPFT2) imply the representation(Taylor2)f(x) = qXj=1 f(�j)pj(x) + 0@�(x; �)� qXj=1�(�j; �)pj(x); Sf(�)1AG ; (3.3.18)but note that the sum in the �rst argument of the bilinear form cannot easilybe taken out, because �(x; �) may not be in G. The same problem preventsus from concluding that � serves as a reproducing kernel in the strong senseof Theorem 3.2.12 (CPDFT1). A good candidate, however, is the readilyavailable function (EqPsiDef)	(x; y) := (�x;�; �y;�)�= (F (�x;�); F (�y;�))�; (3.3.19)because then (3.3.18, Taylor2) yieldsF (�y;�)(x) = (�PF (�y;�))(x) + (F (�x;�); F (�y;�))� ;= (�PF (�y;�))(x) + 	(x; y)such that 	(x; y) = F (�y;�)(x)� (�PF (�y;�))(x)holds, proving that 	(�; x) is indeed in G and satis�es �P(	(�; y)) = 0 forall y 2 
. The above identity can now be put into (3.3.18, Taylor2) to get(3.2.10, Taylor) via



62 3 HILBERT SPACE THEORY(Taylor4)f(x) = (�Pf)(x) + (	(x; �) + �PF (�x;�))(�); f(�))� ;= (�Pf)(x) + (	(x; �); f(�))� : (3.3.20)Thus the function 	 satis�es all we need for Theorem 3.2.12 (CPDFT1), butwe still have to look at its relation to the original function �:(DefSymmPsi)	(x; y) = F (�x;�)(y)� (�PF (�x;�))(y)= �(x; y)� qXj=1�(�j; y)pj(x)� (�P(�(x; �)� qXj=1�(�j; �)pj(x)))(y)= �(x; y)� qXj=1�(�j; y)pj(x)� qXk=1�(x; �k)pk(y) + qXj;k=1�(�k; �j)pk(x)pj(y):(3.3.21)Inspection of this equation and comparison with (3.3.2, DefBil) implies that� and 	 generate the same bilinear form for the de�nition of the nativespace. Thus 	 is also conditionally positive de�nite and the native spacesgenerated by � and 	 coincide.From (3.3.20, Taylor4) one can deduce that all functions from G are contin-uous on 
, provided that � and the functions in P are continuous. In fact,we getjf(x)� f(y)j = j(�Pf)(x)� (�Pf)(y) + (	(x; �)� 	(y; �); f(�))� j� j(�Pf)(x)� (�Pf)(y)j+ j (	(x; �)� 	(y; �); f(�))� j� QXj=1 jf(�j)jpj(x)� pj(y)j+ k	(x; �)�	(y; �)k�kf(�)k�and we can expand k	(x; �)� 	(y; �)k2� ask	(x; �)� 	(y; �)k2� = 	(x; x)� 2	(x; y) + 	(y; y):Since all quantities now are continuous for y ! x, we are �nished.We can now add up the results of this section:Theorem 3.3.22 (CPDSu�T) Let � be a conditionally positive de�nitefunction on some domain 
 with a �nite-dimensional nullspace P of func-tions on 
 that allows an interpolatory projector(�Pf)(�) = qXj=1 f(�j)pj(�)



3.3 Native Spaces 63where p1; : : : ; pq are a basis of P and �1; : : : ; �q form a P-nondegenerate subset� of 
. Then there is a native space G for � carrying a bilinear form withnullspace P, and having the function 	 as de�ned in (3.3.21, DefSymmPsi)as a reproducing kernel in the sense of Theorem 3.2.17 (CPDNeccT). Thenative space is formed by adding a Hilbert space to P. The functions in thenative space are continuous if � and the functions in P are continuous. 2The transition from a conditionally positive de�nite function � to the func-tion 	 with (3.3.21, DefSymmPsi) will be called normalization in the se-quel. We note that the normalized function 	 can also be de�ned if theprojector is not interpolatory, but rather of the more general form (3.1.5,DefPN).3.3.2 Normalization of conditionally positive de�nite functions(PhiNormalization) With the notation of the preceding section it is fairlyeasy to describe the reduction of a conditionally positive de�nite function toan unconditionally positive de�nite function. This process coincides with thenormalization by (3.3.21, DefSymmPsi).Theorem 3.3.23 (RedCPDFT) Let � be a conditionally positive de�nitefunction with respect to the nullspace P of the bilinear form on G, and letthe projector �P onto P be interpolatory with a minimal P-nondegenerateset � = f�1; : : : ; �qg of points of 
. Then the normalized function 	 de�nedas in (3.3.21, DefSymmPsi) is unconditionally positive de�nite on 
 n �.Proof: Consider a �nite subset X = fx1; : : : ; xMg of 
 n� and an arbitrarycoe�cient vector � 2 IRM . Then the functional0@ MXj=1�j�xj ;�1A (f) = MXj=1�jf(xj)� MXj=1�j  qXk=1 f(�k)pk(xj)!= MXj=1�jf(xj)� qXk=1 f(�k)0@ MXj=1�jpk(xj)1Anecessarily vanishes on P and is in P?
 . Applying the conditional positivede�niteness of � for this functional yields positivity of�TAX;	�unless the coe�cients of the above functional are zero, which implies that �is zero. 2



64 3 HILBERT SPACE THEORYBy some simple linear algebra techniques the above normalization methodcan be shown to be equivalent to the method described in 10.2 (Red2) onpage 173. To see this we give some hints, but suppress details of the fullargument. Starting in section 10.2 (Red2) with a P = IP dm-nondegenerateset X = fx1; : : : ; xMg, we can renumber the points and assume that � =fx1 : : : ; xqg = f�1 : : : ; �qg holds. Furthermore, if we pick the right basis inIP dm, the matrix S in (10.2.1, Dec2) has the elements pj(xk); k = q+1; : : : ;M .But then the matrix occurring in (10.2.4, RedSys3) precisely describes howto form the elements 	(xj; xk) for j; k = q + 1; : : : ;M via the normalizationformula (3.3.21, DefSymmPsi).The function 	 vanishes whenever one of its arguments is in �. This isre
ected in the above argument, since 	 is responsible for reconstruction onX n � = fxq+1; : : : ; xMg.3.3.3 Characterization of Native Spaces(SecCNS) The native space associated to each conditionally positive de�nitefunction � is a rather abstract object, and it would be nice to know preciselywhich functions are in the space and which are not. This is a nontrivial task,since the only available information to start with is the conditional positivede�niteness of �. Using transforms, we can give some results in section 6.1(SecCNST). But there are some simple things that we can do right now.We �rst want to know how smooth the functions in native spaces are. Sincewe have the representation (3.3.20, Taylor4) that allows any � 2 P?
 to beapplied to f with result (�x	(x; �); f(�))�, we check the functionals in P?
 .Assume that � is a linear functional that1. we can safely and independently apply to both arguments of � (or 	,for convenience),2. that vanishes on P, and3. can be approximated by functionals from P?
 .Then we assert that � 2 F�. More precisely, we haveTheorem 3.3.24 Assume a general linear functional � and a sequencef�ngn � P?
 to satisfy�x�y�(x; y) existslimn!1�xn�y�(x; y) = �x�y�(x; y) for all � 2 P?
limn!1�xn�yn�(x; y) = �x�y�(x; y)�(P) = f0g:



3.4 Standardized Notation 65Then � acts on functions in G like a functional in F�, the closure of P?
 .Proof: We �rst note that fk�nk�gn is a Cauchy sequence, because it con-verges in IR. Then we use the standard technique of the proof of Theorem12.2.11 (HSCT) to conclude that f�ngn is a Cauchy sequence in P?
 . Thusit has a limit � 2 F�, and we can prove(�� �)x�zy;��(x; z) = limn!1�xn�zy;��(x; z) � limn!1�xn�zy;��(x; z) = 0for all y 2 
. This implies �x�(x; y) = �x�(x; y) + p(y) with some p 2 P.Using an arbitrary � 2 P?
 we get �x�y�(x; y) = �x�y�(x; y). Thus � and �generate the same functional on P?
 and can be identi�ed as functionals inthe closure F�. 2This coarse result can be applied to functionals that are point-evaluationfunctionals of derivatives, and which are approximated by �nite di�erencefunctionals. It shows that Gaussians and multiquadrics generate nativespaces of in�nitely di�erentiable functions, while non-smooth conditionallypositive de�nite functions � generate spaces of roughly half the smoothnessof �. But note that the above approach does not cover smoothness ofderivatives, just their pointwise existence.3.3.4 RemarksThe association of a Hilbert space to each conditionally positive de�-nite function dates back to Madych and Nelson ([20](madych-nelson:83-1)[21](madych-nelson:88-1) [22](madych-nelson:89-1) [23](madych-nelson:90-1)).3.4 Standardized Notation(SecSN) The previous sections showed that it does not matter whether westart our theory from optimal recovery in spaces of functions with a bilinearform or from any given conditionally positive de�nite function. The onlydi�erence was that in the �rst case we constructed a normalized conditionallypositive de�nite function from the given bilinear form, while in the secondthe given conditionally positive de�nite function � may not be normalized,though its normalization 	 will generate the same bilinear form as �. Fromnow on we want to be independent from the starting point, and thus wecollect the following facts that hold in both cases:1. � : 
 � 
 ! IR is a conditionally positive de�nite function on somedomain 
 with respect to some nullspace P of �nite dimension q.



66 3 HILBERT SPACE THEORY2. There is a positive semide�nite bilinear form (�; �)� on a space G offunctions on 
 with nullspace P.3. The nullspace P has a basis p1; : : : ; pq such that with certain linearfunctionals �1; : : : ; �q on G the projector �P from G onto P is well-de�ned via �Pg = qXk=1�k(g)pk for all g 2 G:4. For each x 2 
 the linear functionals�x;P : g 7! g(x)� (�Pg)(x)are continuous with respect to (�; �)� and the Taylor-type reconstructionformula �x;P(g) = (�yx;P�(y; �); g(�))�holds for all g 2 G; x 2 
.5. The space G can be decomposed into a direct sum G = P + F suchthat F is a Hilbert space with inner product (�; �)�.6. If functionals �X;M;� are de�ned as�X;M;� : f 7! MXj=1�jf(xj)for sets X = fx1; : : : ; xMg � 
 and vectors � 2 IRM for arbitraryvalues of M � q, then one can de�ne an inner product(�X;M;�; �Y;N;�)� := MXj=1 NXk=1�j�k�(xj; yk)on all such functionals that vanish on P. The set P?� of all of thesefunctionals then is an inner product space.7. The space G is the largest space of functions on 
 such that all func-tionals in P?� are continuous with respect to the norm induced by (�; �)�on P?� .8. The closure of P?� under (�; �)� is the dual F� of F , and the mapF : F� ! F provides the Riesz correspondence between functionalsand functions.



3.5 Restrictions, Extensions, and In�nite Problems 679. The action of F is related to � viaF (�)(�) = �y�(y; �)for all � 2 F�. This is evident in case of � = �X;M;� 2 P?� and has tobe read as a de�nition of the right-hand side for general �.10. The dual G� of G consists of functionals that are sums of a linearfunctional on P and a linear functional in F�.11. For each � 2 G� we have �� ��P 2 F� and�(g) = ��Pg + (F (�� ��P); g)�= ��Pg + (�� ��P ; F�1(g � �Pg))�= ��Pg + ((�� ��P)y�(y; �); g)�for all g 2 G.12. The normalization 	P of � is de�ned via	P(x; y) = (�x;P ; �y;P)� = �ux;P�vy;P�(u; v)for all x; y 2 
. It has the properties described in Theorem 3.2.12(CPDFT1).13. The unique solution g� of the optimal recovery problem for data �j(g)with g 2 G and �j 2 G� represented by functions gj 2 G is of the form(3.1.13, grep) with coe�cients satisfying erefEQsys3.14. The solution is orthogonal to all functions from G which are a sumof functions from P with functions v such that �j(v) = 0 for allj 1 � j �M .3.5 Restrictions, Extensions, and In�nite Problems(SecREIP) It will turn out later that the recovery of functions via condi-tionally positive de�nite basis functions involves certain \natural" boundaryconditions like those of \natural" cubic splines (see 3.6 (SecCSOneV)). Tostudy these, we look at the construction of native spaces for recovery of func-tions on subsets 
0 of 
. Another reason is that in case of a given Hilbertspace setting for functions on some large domain 
, we do not know how thenative spaces for smaller domains 
0 are related to the given Hilbert spaceof functions on 
.



68 3 HILBERT SPACE THEORYTo this end, let us assume that � is a conditionally positive de�nite functionon some domain 
, while we do reconstruction on data given on a subdomain
0. Of course, the reconstructing functions based on �nitely many data in
0 can be extended to all of 
, but it needs proof that all functions f froma native space based on 
0 have a canonical extension to 
. Each of theseextensions solves a reconstruction problem on 
 with possibly in�nitely manydata, namely the data of f on the subset 
0. Then we study the orthogonalcomplement of the extensions, and the result leads us to the general treatmentof recovery problems with in�nitely many data.3.5.1 Restriction MappingAssume that 
0 is a subset of 
. Then we can restrict � to 
0 and carryout the whole construction of a native space based on 
0 instead of 
. Weadd the subscripts 
 or 
0 in this discussion to distinguish between theconstruction of native spaces with respect to 
 or 
0. The reader shouldbe aware that 
 can be in�nite, e.g.: 
 = IRd, while 
0 often will be thebounded domain that we actually work on. However, for the de�nition of theprojector �P and the functionals �x;� we use a subset � of 
0 � 
, such thatthe projector and the functionals are the same for both cases. Unfortunately,earlier writeups of the following arguments contained numerous traps thathad to be eliminated later, and thus we take a very formal approach here,starting with the explicit use of a restriction map r0 that takes functionsde�ned on 
 to functions de�ned on 
0. After normalization, which also isthe same in both cases since we use the same functionals, we arrive at twoversions of the representation (3.3.20, Taylor4), namely (Taylor4b)g(x) = (�Pg)(x) + (	(x; �); g(�))�;
 ; x 2 
; g 2 G
;f(x) = (r0�Pf)(x) + ((ry0(	(x; y)))(�); f(�))�;
0 x 2 
0; f 2 G
0 ;(3.5.1)which illustrate the use of the restriction map r0. Note that we cannotidentify the two bilinear forms without additional information, since theywere generated via continuous extension from bilinear forms acting on objectsthat depended on the domain. This applies to the bilinear forms acting onfunctions; the corresponding bilinear forms de�ned on functionals will justdepend on � but not on the domain, since they are obtained by continuousextension of (3.3.2, DefBil) on page 55.The normalization 	 of � is de�ned on all of 
, and thus the second equationof (3.5.1, Taylor4b) can possibly be used for x 2 
 n 
0, too. However, thiswould require



3.5 Restrictions, Extensions, and In�nite Problems 69(restrPsi)(ry0(	(x; y)))(�) 2 G
0 (3.5.2)for all x 2 
, which is not trivial.We thus proceed more carefully and repeat the construction of native spacesto some detail. Consider the general de�nition of G in (3.3.3, calgdef). Thisleads to G
 := ng : 
! IR; j�(g)j � Cgk�k� for all � 2 P?
 oG
0 := nf : 
0 ! IR; j�(f)j � Cfk�k� for all � 2 P?
 0o ;where we note with relief thatk�k2� = �x�y�(x; y)does not depend on the domain. Since each functional � 2 P?
 0 induces afunctional � � r0 in P?
 , we can de�ne an intermediate spaceG0 := ng : 
! IR; j�(r0(g))j � Cgk�k� for all � 2 P?
 0o :with G
 � G0. But then the restriction r0(g) of any function g in G0 to 
0clearly is in G
0 . We abbreviate this fact byr0(G
) � r0(G0) � G
0and note for later use that (restrnorm)jr0(g)j
0 � jgj
 (3.5.3)holds for all g 2 G
, since the minimal constant Cg that is good for g in thede�nition of G will also work for r0(g) in the de�nition of G
0 . Altogether,this discussion showed that there are no problems with (3.5.2, restrPsi), since	(x; �) is in G
 for all x 2 
.3.5.2 Extension MappingWe now can extend the interpretation of the second equation in (3.5.1,Taylor4b) by de�ning an extension e0(f) of a function f 2 G
0 by(extendef)e0(f)(x) := (�Pf)(x) + ((ry0(	(x; y))(�)); f(�))�;
0 (3.5.4)



70 3 HILBERT SPACE THEORYfor all x 2 
. We assert that this function is in G
. To this end we have toapply an arbitrary functional �X;M;� 2 P?
 to getj�X;M;�e0(f)j = j �(ry0(�xX;M;�	(x; y)))(�); f(�)��;
0 j� jf j�;
0jry0(�xX;M;�	(x; y))j�;
0:� jf j�;
0j(�xX;M;�	(x; �))j�;
� jf j�;
0k�X;M;�k�due to (3.5.3, restrnorm). Since now e0(f) is in G
, we can compare (3.5.4,extendef) with the application of (3.3.20, Taylor4) for both e0(f) and f :(Taylor4a)e0(f)(x) = (�Pe0(f))(x) + (	(x; �); e0(f)(�))�;
 ; x 2 
; f 2 G
0 ;f(x) = (r0�Pf)(x) + ((ry0(	(x; y)))(�); f(�))�;
0 x 2 
0; f 2 G
0 :(3.5.5)The second comparison implies f(x) = e0(f)(x) for all x 2 
0, as expected,and the �rst yields((ry0	(x; y))(�); f(�))�;
0 = �	(x; �); e0(f)(�)��;
for all x 2 
. If we apply arbitrary functionals from P?
 with respect to x tothis equation and use continuity, we see that(r0(g); f)�;
0 = �g; e0(f)��;
holds for all f 2 G
0 ; g 2 G
. But since we already know that r0e0 is theidentity, the mapping e0 must be isometric. This easily follows from settingg = e0(h) in the above equation.This altogether yields an extension theorem which was �rst observed in fullgenerality by Iske [19](iske:94-2).Theorem 3.5.6 (ExtTh1) A function f from a native space on a domain
0 always has a canonical extension e0(f) to the largest domain 
 on whichthe generating basis function � is conditionally positive de�nite with respectto some �nite-dimensional space P. The extension is furnished by the Taylor-type reproduction formula (3.5.4, extendef). The extension map e0 is anisometric operator from G
0 into G
. 23.5.3 Properties of the ExtensionWe now look somewhat more closely at the extension e0(f) of a functionf 2 P?
 0.



3.5 Restrictions, Extensions, and In�nite Problems 71Theorem 3.5.7 (ExtTh2) The canonical extension e0(f) of a functionf 2 G
0 to the larger domain 
 is a solution of the optimal recovery problemposed in G
 for functions g satisfying�(r0(g)) = �(f) for all � 2 P?
 0or �x;�(r0(g)) = �x;�(f) for all x 2 
0:Any two solutions di�er by a function in P, and for �P;
0(f) �xed, thesolution is unique. The orthogonal complement of e0(G
0) in G
 consists ofall functions that coincide with a function from P on 
0.Proof: We show that e0(f) satis�es the necessary and su�cient variationalequation(e0(f); v)
 = 0 for all v 2 G with �(r0(v)) = 0 for all � 2 P?
 0:The condition on v is equivalent to r0(v) 2 P due to Lemma 3.3.13 (Su�Pol),and it is equivalent to the same condition restricted to all functionals of theform �x;�. But since (e0(f); v)
 = (f; r0(v))
0holds for all v 2 G, we have that e0(f) solves the recovery problem. The restis standard. 2Corollary 3.5.8 (DensCor) Let � and the functions from P be continuous.For 
 � IRd and 
0 dense in 
, the embedding e0(G
0) of G
0 is dense inG
.Proof: Let v be in the orthogonal complement of e0(G
0) in G
. Then vcoincides with a function p from P on 
0. By continuity as following fromTheorem 3.3.22 (CPDSu�T), v = p holds on all of 
. 23.5.4 In�nite ProblemsWe take an increasing sequence of P-nondegenerate data sets XM :=fx1; : : : ; xMg � 
 for M = Q;Q + 1; : : : and denote the interpolant to datafrom some f 2 G
 on the set XM by fM . The usual orthogonality property,as induced by (3.1.15, charmin), implies both(f � fN ; fN)�;
 = 0(fM � fN ; fN)�;
 = 0



72 3 HILBERT SPACE THEORYfor all M � N � Q. This implies the Pythagorean lawsjf � fN j2�;
 + jfN j2�;
 = jf j2�;
jfM � fN j2�;
 + jfN j2�;
 = jfM j2�;
:Thus the sequence fjfN j2�;
gN converges monotonically to some valuebounded by jf j2�;
. It necessarily is a Cauchy sequence, and thus ffMgMand ffM ��PfMgM are Cauchy sequences. The latter lies in a Hilbert spaceand thus is convergent to a function that we can write as f1 � �Pf1 withsome f1 2 G
, and where the term �Pf1 is at our disposal. We �x it tobe identical to �Pf . Since all of the interpolation functionals are in G�
, andsince we can conclude from Corollary 3.1.32 (PolRepCol) that(�PfM)(xj) = (�Pf)(xj) for allM � j;we see that(f1 � �Pf)(xj) = limM!1(fM � �PfM)(xj) = f(xj)� (�Pf)(xj)such that f(xj) and f1(xj) agree for all j.Theorem 3.5.9 (IIT) For functions f in the native space G
 correspondingto a conditionally positive de�nite function � on 
, one can solve all recoveryproblems based on countably many P-nondegenerate data in the form offunctionals �j 2 G�
 for j 2 IN . In case of Lagrange data, the solutioncoincides with the function f 0 := e0r0(f) if 
0 is the set of all data locations.Proof: The �rst assertion easily generalizes from the case of Lagrange datato general functionals. To prove the second, we know that both f 0 and f1satisfy all interpolation conditions. Since we havejfM jG
 � jf1jG
; jfM jG
 � jf 0jG
because fM is based on less data that the other recovery functions, and sincejfM jG
 converges to jf1jG
, we getjf1jG
 � jf 0jG
:But the seminorm of f 0 is minimal under all other recovery functions, provingthat f1 also solves the total recovery problem on 
0. Two solutions di�erby a function of P, but since the data are P-nondegenerate, they coincide.2We could proceed from here towards orthogonal expansions of recovery func-tions, but we shall delay these things for section 4.4 (SecRecCon).



3.5 Restrictions, Extensions, and In�nite Problems 733.5.5 The Connection to L2 via Convolution(SecCLC) In this section we require the subset 
0 � 
 to be compact andassume continuity of � and functions in P. We then de�ne the bilinear form(Norm2)(f; g)2;
0 := Z
0 �x;Pr0f � �x;Pr0gdx = (��;Pr0f; ��;Pr0g)L2(
0) (3.5.10)for all f; g 2 G
. Because of(�x;Pr0f)2 = (�yx;P�(y; �); r0f)2�;
0� k�x;Pk2�;
0kr0fk2�;
0= 	(x; x)kr0fk2�;
0� 	(x; x)kfk2�
and since 	P(x; y) = (�x;P ; �y;P)� is the normalization of � with respect toP, we can use its continuity and get that the above function is continuous.Thus we can integrate it over 
0 to see that the bilinear form (3.5.10, Norm2)is well-de�ned and continuous with respect to the bilinear form in G
0 andG
: j(f; g)2;
0j � kr0fk2;
0kr0gk2;
0� k	P(x; x)k2L2(
0)kr0fk�;
0kr0gk�;
0;� k	P(x; x)k2L2(
0)kfk�;
kgk�;
;The inner product (�; �)2;
0 coincides with the inner product of L2(
0) appliedto functions from the Hilbert subspace F
 after restriction to 
0, i.e.:(f; g)2;
0 = (r0f; r0g)L2(
0) for all f; g 2 F
:This proves that the restriction mapping r0 can also be viewed as a continuousmapping from F
 into L2(
0). If we denote bilinear forms carefully, we donot have to distinguish between r0 as a map into L2(
0) or as a map intoG
0 .We now proceed to construct the adjoint c0 : L2(
0)! F
 of r0 consideredas a mapping into L2(
0). For any g 2 L2(
0) we can consider the continuouslinear functional f 7! (r0f; g)2;
0 on the Hilbert space F
. Then there is afunction c0g 2 F
 such that (smapdef)(r0f; g)L2(
0) = (f; c0g)�;
 for all f 2 F
; g 2 L2(
0): (3.5.11)The image of c0 in F
 is orthogonal to the kernel of r0, and thus it coincideswith F
 \ e0(G
0). Furthermore, it follows from (3.5.11, smapdef) that c0r0is a nonnegative self-adjoint operator on F
. But there is a more convenientway to represent c0 that sheds some light on the functions in G
:



74 3 HILBERT SPACE THEORYTheorem 3.5.12 (ConvTh) The map c0 takes any function v 2 L2(
0)into the generalized convolution(v �	)(x) := Z
0 v(y)	(x; y)dy; x 2 
:Proof: Let us �rst check that these convolutions are in G
. The integral iswell-de�ned because both integrands are in L2(
0). Take any �X;M;� 2 P?
and formj�X;M;�(v �	)j = j�xX;M;�Z
0 v(y)	(x; y)dyj= jZ
0 v(y)�xX;M;�	(x; y)dyj= j(v; r0F�X;M;�)L2(
0)j� kvkL2(
0)kr0F�X;M;�kL2(
0)� k	P(x; x)kL2(
0)kvkL2(
0)k�X;M;�k�;
:Thus we are in G
, and we see immediately by application of �P that theconvolution lies in F
, since we used 	 instead of �.Let us do the same to c0v and compare. Then�X;M;�(c0v) = (F�X;M;�; c0v)�;
= (r0F�X;M;�; v)L2(
0)shows that �X;M;�(c0v � v �	) = 0for all functionals �X;M;� 2 P?
 . Then the two functions can only di�er by afunction from P, but since both are in F , they agree everywhere. 2Corollary 3.5.13 (ConvThCor) The ranges of the extension map e0 andthe convolution map c0 have the same closure in F
.Proof: In fact, if g 2 F is orthogonal to all c0(v) for v 2 L2(
0), then0 = (g; c0v)�;
 = (r0g; v)L2(
0)implies that g vanishes on 
0. The corresponding condition0 = (g; e0v)�;
 = (r0g; v)�;
0for all v 2 F
0 �rst implies that g coincides with a function from P in 
, butsince we work on F
 here, it must be zero on 
. Thus the orthogonal com-plements in F
 of the two ranges coincide. and the closures must coincide.2



3.6 Example: Cubic Splines in One Variable 75There is another way to look at the map c0. Consider any function v 2(r0P)?L2(
0) and the corresponding functional�v : g 7! (r0g; v)L2(
0)which is continuous on G
 and lies in F�
. Its Riesz representer is c0(v),because (r0g; v)L2(
0) = �v(g) = (g; c0v)�;
holds for all g 2 F .3.6 Example: Cubic Splines in One VariableThis section serves to illustrate the construction of the native space andthe extension/convolution maps for cubic splines. We consider the radialfunction �(x; y) := �(kx� yk2) with �(r) = r3 in IR1 =: 
, which will turnout to be conditionally positive de�nite of order m = 2 there. Furthermore,we restrict the data to an interval 
0 = [a; b] � IR later. For P = IP 12 andany �X;M;� 2 P?
 according to (3.3.1, De
xma) we haveF (�X;M;�)(x) = MXj=1�jjx� xjj3;due to (3.3.4, Fmapdef), and with jxj3 = 2x3+ � x3 we �ndF (�X;M;�) = MXj=1�j(2(x� xj)3+ � (x� xj)3)= 2 MXj=1�j(x� xj)3+ � MXj=1�j(x3j � 3xx2j ) + 0because �X;M;� annihilates linear polynomials. Then (Fmaplin)d2dx2F (�X;M;�)(x) = 12 MXj=1�j(x� xj)1+ (3.6.1)is a piecewise linear function with support inx1 < x2 < : : : < xN :If two functionals�X;M;�(f) = MXj=1�jf(xj); �Y;N;�(f) = NXk=1�kf(yk)



76 3 HILBERT SPACE THEORYfrom P?
 are given, then(�X;M;�; �Y;N;�)� = MXj=1 NXk=1�j�kjxj � ykj3by de�nition, and we want to compare this to( d2dx2F (�X;M;�)(x); d2dx2F (�Y;N;�)(x))L2(IR):= R1�1 d2dx2F (�X;M;�)(x) d2dx2F (�Y;N;�)(x)dx:= R ba d2dx2F (�X;M;�)(x) d2dx2F (�Y;N;�)(x)dx:Using x1+ = (�x)1+ + x we rewrite d2dx2F (�X;M;�) asd2dx2F (�X;M;�)(x) = 12 MXj=1�j(xj � x)1+ + 12 MXj=1�j(x� xj)= 12 MXj=1�j(xj � x)1+:(note the swap of x with xj) and getTheorem 3.6.2 Under the above assumptions, (cubqf)(�X;M;�; �Y;N;�)� = MXj=1 NXk=1�j�kjxj � ykj3= 112( d2dx2F (�X;M;�)(x); d2dx2F (�Y;N;�)(x))L2(IR) (3.6.3)for all �X;M;�; �Y;N;� 2 P?
 .Proof: We use Taylor's formulaf(x) = f(a) + (x� a)f 0(a) + Z ba f 00(u)(x� u)1+dufor functions f 2 C2[a; b] and a � x � b. Fixing y 2 [a; b], we insertfy(u) = (y � u)3+=3! and get(y � x)3+3! = (y � a)33! � (x� a)(y � a)22! + Z ba (y � u)1+(x� u)1+du= 12�3!(jy � xj3 + (y � x)3):



3.6 Example: Cubic Splines in One Variable 77We now apply functionals �X;M;� and �Y;N;�. This yields112 MXj=1 NXk=1�j�kjxj � ykj3 + 112 MXj=1 NXk=1�j�k(yk � xj)3= 112 MXj=1 NXk=1�j�kjxj � ykj3 + 0= 16 MXj=1 NXk=1�j�k(yk � a)3 � 12 MXj=1 NXk=1�j�k(xj � a)(yk � a)2+ MXj=1 NXk=1�j�k Z ba (yk � u)1+(xj � u)1+du= 0� 0 + MXj=1 NXk=1�j�k Z ba (yk � u)1+(xj � u)+du= � d2dx2F (�X;M;�); d2dx2F (�Y;N;�)�L2(IR) ;where the functions d2dx2F (�X;M;�) and d2dx2F (�Y;N;�) are supported in [x1; xM ]and [y1; yM ], respectively, such that the L2 integral could be suitably re-stricted. 2Corollary 3.6.4 The function �(x; y) := �(kx � yk2) with �(r) = r3 isconditionally positive de�nite of order 2 on IR.Proof: Theorem 3.6.2 (thcs2) yields that the quadratic form (3.6.3, cubqf)is positive semide�nite. If k�X;M;�k� vanishes, then d2dx2F (�X;M;� = 0 holds,and the representation (3.6.1, Fmaplin) as a piecewise linear function impliesthat all coe�cients �j must vanish. 2We now use (3.3.3, calgdef) for 
0 := [a; b] to de�ne the abstract spaceG
0 = G[a;b] = fg : [a; b]! IR : j�(f)j � Cfk�k� for all � 2 P?
 0gand assert that it coincides with the spaceW 22 [a; b] := f g : [a; b]! IR : g00 2 L2[a; b] g.Lemma 3.6.5 W 22 [a; b] � G[a;b]:



78 3 HILBERT SPACE THEORYProof. Generalizing Taylor's formula for f 2 W 22 [a; b], we �nd for all�X;M;� 2 P?
 0 the identity�X;M;�(f) = MXj=1�jf(xj) = 0 + Z ba f 00(u) MXj=1(xj � u)1+du= ( d2dx2 f; d2dx2F (�X;M;�))L2[a;b]� k d2dx2 fkL2[a;b] � k d2dx2F (�X;M;�)kL2[a;b]� k d2dx2 fkL2[a;b] � p12 � k�k� 2Lemma 3.6.6 G � W 22 [a; b]:Proof. De�ne the subspaceF0 := f d2dx2F (�X;M;�) : � 2 P?
 0gof L2[a; b]. It carries an inner product( d2dx2F (�X;M;�); d2dx2F (�Y;N;�))L2[a;b] = 12(�X;M;�; �Y;N;�)�constructed from the inner product (�; �)�, and we de�ne F := F0 to be theL2 closure of F0 with respect to ( ; )L2[a;b]. Any g 2 G[a;b] de�nes a linearfunctional on F0 byd2dx2F (�X;M;�) 7! �X;M;�(g); �X;M;� 2 P?
 0:Here, we used that the map �X;M;� 7! d2dx2F (�X;M;�) is one{to{one on P?
 0.The above functional is continuous on F0 by de�nition of G[a;b]. Thus thereis some hg 2 F[a;b] = F0 � L2[a; b] such that�X;M;�(g) = ( d2dx2hg; d2dx2F (�X;M;�))L2[a;b]for all � 2 P?
 0, and we tacitly assume hg 2 W 22 [a; b] (we can start withd2dx2hg = fg 2 L2[a; b] and do integration). Now Taylor's formula for hg yields�X;M;�(hg) = 0 + ( d2dx2hg; d2dx2F (�X;M;�))L2[a;b] = �X;M;�(g)



3.6 Example: Cubic Splines in One Variable 79for all �X;M;� 2 P?
 0. By the standard argument from Lemma 3.3.13 (Su�Pol)we see that g = hg + pg with a polynomial pg 2 IP 12 . 2This �nishes the construction of the native space, and we can reconstructfunctions from G[a;b] = W 22 [a; b] from data at locations a � x1 < x2 < : : : <xM � b uniquely by cubic splines of the form (cubrep)s(x) = MXj=1�jjx� xjj3 + 1Xk=0�kxk (3.6.7)under the two additional conditions (cubreprestr)MXj=1�jxkj = 0; k = 0; 1: (3.6.8)The representation (3.6.1, Fmaplin) shows that these conditions imply lin-earity of s outside of [x1; xM ]. Thus the solution is a natural cubic spline.The above representation extends to all of IR and can easily be shown tocoincide with the extension de�ned via the general map e0.We now want to show how the natural boundary conditions come out ofTheorem 3.5.7 (ExtTh2). There we concluded that the extension of therecovery problem is orthogonal to all functions that coincide with a functionfrom P on the recovery domain 
0. The extensions here are valid in W 22 (IR)with bilinear form (f 00; g00)L2(IR), and the splines s constructed here must beorthogonal with respect to the above bilinear form to all functions v on IRthat are linear in [a; b]. We take any function w = v00 that is in L2(IR) andvanishes on [a; b]. Then0 = (s00; v00)L2(IR) = (s00; w)L2(IR) = (s00; w)L2(�1;a] + (s00; w)L2[b;1)implies s00 = 0 in (�1; a] and [b;1), as required.The next thing is to look at the convolution map s0 and Theorem 3.5.12(ConvTh) in this case. The explicit evaluation of the normalization 	 of �is possible, but left to the reader. Theorem 3.5.12 (ConvTh) asserts that theclosures of the ranges of the convolution map s0 and the extension map e0are the same. Let v 2 L2[a; b] be given. We want to show that v � 	 is inW 22 [a; b] with (v �	)" = 0 outside of [a; b]. We use (3.3.21, DefSymmPsi) toget (v �	)"(y) = Z ba v(x) d2dy2	(x; y)dx = Z ba v(x) d2dy2F (�x;�)(y)dx;



80 4 POWER FUNCTIONS AND APPLICATIONSwhere we took derivatives under the integral. But (3.6.1, Fmaplin) showsthat the second factor vanishes if y is outside of [a; b]. To show that v �	 isin W 22 [a; b], compare the above formula with Taylor's formula after inserting�x;� for � = fa; bg.4 Power Functions and Applications(SecPF) This section introduces the notion of power functions. They asso-ciate to each point x of a domain 
 and to each linear quasi-interpolationprocess g 7! S(g) the norm P (x) = PS;G(x) of the error functional g 7!g(x)� S(g)(x) with respect to the space G of functions g to be considered.Thus they describe the worst-case behaviour of the reconstruction processS at x and are very useful for comparing di�erent reconstruction processes.We illustrate this for some simple examples.When specialized to the optimal recovery processes considered in this text,their square P 2(x) has a representation as the diagonal of an explicitlyavailable quadratic form P (x; y), which in turn has remarkable properties.In particular, it allows recursive constructions like Newton's interpolationformula, and it can be optimized with respect to placement of centers.4.1 Power functions(SubSecPF) Assume that we have a quite general process that associates toeach function g in a space G of functions on 
 another function S(g) 2 Gsuch that the map S : g 7! S(g) is linear. The space G should carry at leasta seminorm j � j with nullspace P.De�nition 4.1.1 The function (DefPowfct)P (x) := PS;G(x) := supg 2 Gjgj 6= 0 j(g � S(g))(x)jjgjG 2 IR [ f1g (4.1.2)is the power function of S with respect to �.This is nothing else than the norm of the pointwise error functional if thelatter is �nite: P (x) := k�x;Sk with �x;S(g) := g(x)� S(g)(x):



4.1 Power functions 81It yields the elementary error bound (EqgSg)jg(x)� S(g)(x)j � P (x)jgj; g 2 G; x 2 
: (4.1.3)If the projection property S � S = S holds, then one can insert g � S(g)instead of g into this bound to get (EqgSg1)jg(x)� S(g)(x)j � P (x)jg � S(g)j; g 2 G; x 2 
; (4.1.4)which often is some improvement over (4.1.3, EqgSg), because we frequentlyhave jg � S(g)j � jgj.To make the reader somewhat more familiar with the notion of a powerfunction, we recall interpolation by univariate polynomials of order at mostn on n distinct points x1 < : : : < xn in [a; b] � IR. The space G is Cn[a; b]with seminorm jgjn := kg(n)k[a;b];1, and the interpolant to g will be denotedby S(g). The usual error boundjg(x)� S(g)(x)j � 1n! j nYj=1(x� xj)jjgjnis precisely of the form (4.1.3, EqgSg), and the power function isP (x) = 1n! nYj=1 jx� xjj;since it is well-known that the error bound is exact.Power functions can be associated to almost every process of approximationor interpolation, and they enable comparison between di�erent processes Son the same space G as well as the comparison of the same process S ondi�erent spaces G, respectively. Before we give some examples for this, let usgive some straightforward alternative representations:Lemma 4.1.5 (LemARepPow) The power function PSG of (4.1.2, Def-Powfct) can be written asPS;G(x) := supg 2 GS(g) = 0 g(x)jgjG 2 IR [ f1g = supg 2 GS(g) = 0kgkG � 1 g(x) 2 IR [ f1g;
if S is linear, preserves functions in P, and has the projection propertyS � S = S. 2



82 4 POWER FUNCTIONS AND APPLICATIONS4.2 Optimal Recovery Rede�nedThe notion of a power function allows to de�ne optimal recovery processesin a somewhat di�erent way. Let us �x the space G with its seminorm j � jG,but let us consider di�erent linear quasi-interpolation processes S. To makethese comparable, we assume them to be based on the same information, i.e.:the evaluation of M linear continuous functionals �1; : : : ; �M on G. Since werestrict ourselves to linear recovery processes, we assume representations(SgRep)S(g)(x) := MXj=1uj;S(x)�j(g); (4.2.1)where u1;S; : : : ; uM;S are certain functions on 
 that may not necessarily bein G. The recovery processes S just di�er in their choice of these functions.In all cases it is reasonable to ask for preservation of the nullspace P of theseminorm on G under the recovery process S in the senseS(p) = p for all p 2 P;and we shall abbreviate this condition by S jP = Id. The main reason forthis is that (4.1.3, EqgSg) should always hold.The representation (4.2.1, SgRep) can now be considered for a �xed x asa function of the M real-valued quantities u1;S(x); : : : ; uM;S(x). Then theoptimal linear recovery process at x solves the �nite-dimensional mini-mization problem (OLRx)infu1;:::;uM2IRPuj(x)�j (p)=p(x); p2P supjgjG 6=0 1jgjG ������g(x)� MXj=1uj�j(g)������: (4.2.2)If a solution u�1(x); : : : ; u�M(x) exists for all x 2 
, one can de�ne the optimalprocess as (OSgRep)S�(g)(x) := MXj=1u�j(x)�j(g): (4.2.3)It is by no means obvious that the solution, considered as a set of Mfunctions on 
, lies in the space G. Section 4.3.2 (SecOPFOR) will provethat optimal recovery in the sense of 3.1.2 (ORPF) in spaces G with a



4.3 Example: Optimal Interpolation in W 11[a; b] 83positive de�nite bilinear form always is optimal in the above sense, too. Thecorresponding functions u�1(x); : : : ; u�M(x) will then be of the form (3.1.13,grep) and certainly lie in P. This is in agreement with our expectations, butthe example considered in the next section will show that the situation maybe much more di�cult if we move away from a Hilbert space setting.4.3 Example: Optimal Interpolation in W 11[a; b]On the spaces G = W 11[a; b] or G = C1[a; b] for �1 < a < b < 1 we havethe seminorm jf 0j1 with the one-dimensional nullspace P = IP 11 spannedby the constant functions. We now ask for the optimal quasi{interpolantunder all representations (4.2.1, SgRep) for point evaluation functionals inthe points x1; : : : ; xM of the mesh a =: x0 � x1 < : : : < xM � xM+1 := bunder reproduction of constants. This means that we consider x 2 [a; b] as�xed and vary the M real numbers u1(x); : : : ; uM(x) in (SgRepP)Su(x)(g)(g) := MXj=1 uj(x)g(xj) with MXj=1uj(x) = 1: (4.3.1)That is, we use Lemma 4.1.5 (LemARepPow) and want to solveinfuj(x)(4:2:1;SgRep) supjf 0j1 6=0 1jf 0j1 ������f(x)� NXj=1uj(x)f(xj)������= infuj(x)(4:2:1;SgRep) supjf 0j1�1 ������f(x)� NXj=1uj(x)f(xj)������:We start with three lemmas:Lemma 4.3.2 Let a � x0 < x1 < : : : < xM � b andu0; u1; : : : ; uM 2 IR; MXj=0uj = 0be given. Then supf2W11jf 0j1�1 ������ MXj=0uj � f(xj)������ = Z ba ������ MXj=0uj(xj � t)0+������ dt:



84 4 POWER FUNCTIONS AND APPLICATIONSProof. We writef(x) = f(a) + Z xa f 0(t)dt = f(a) + Z ba f 0(t)(x� t)0+dtand take a function f with jf 0j � 1 to get������ MXj=0uj � f(xj)������ = ������f(a) � 0 + Z ba f 0(t) MXj=0uj(xj � t)0+������ dt� Z ba ������ MXj=0uj(xj � t)0+������ dtwith equality for the special function f withf 0(t) = sgn0@ MXj=0uj(xj � t)0+1Awhich clearly is in W 11. 2Note that the proof does not require the ordering of the xj.Lemma 4.3.3 Let a � x1 < x2 < : : : < xM � b and x 2 [a; b] be given. Foru1(x); : : : ; uM(x) with 1 = MXj=1uj(x)we have supf2W11kf 0j1�1 ������f(x)� MXj=1uj(x)f(xj)������= Z ba ������(x� t)0+ � MXj=1uj(x)(xj � t)0+������ dt:Proof: Use Lemma 1 with x0 := x; u0(x) := �1 and reordering of points.2Lemma 4.3.4 (L3W2) Let a = x0 � x1 < : : : < xM � xM+1 = b andx 2 [a; b] be given. Furthermore, assume1 = MXj=1uj(x); hj := xj � xj�1; 1 � j �M + 1



4.3 Example: Optimal Interpolation in W 11[a; b] 85and x 2 [xk�1; xk], 1 � k �M + 1. ThenZ ba ������(x� t)0+ � MXj=1uj(x)(xj � t)0+������ dt= X1�j�k�1hj ������1�Xi�j ui(x)������+ (x� xk�1)������1�Xi�k ui(x)������+ (xk � x) ������Xi�k ui(x)������+ XM+1�j�k+1hj ������Xi�j ui(x)������:Proof: We use the fact that the integrand is piecewise constant withbreakpoints only at the xj and at x. We thus split the integrals into0@ Xj�k�1 Z xjxj�11A+ R xxk�1 + R xkx +0@ Xj�k+1 Z xjxj�11A= k�1Xj=1 hj � ������1�Xi�j ui(x)������+(x� xk�1) ������1�Xi�k ui(x)������+(xk � x) ������Xi�k ui(x)������+ M+1Xj=k+1hj ������Xi�j ui(x)������: 2We now introduce new variableszj(x) :=Xi�j ui(x); u0(x) := uM+1(x) := 0:



86 4 POWER FUNCTIONS AND APPLICATIONSThen z1(x) := 1 for all x anduj(x) = zj(x)� zj+1(x); 1 � j �M:We have to minimizek�1Xj=2 hjj1� zj(x)j+(x� xk�1)j1� zk(x)j+ (xk � x)jzk(x)j+ MXj=k+1hjjzj(x)junder the constraint z1(x) = 1, which appears only for k = 1 (or x 2 [a; x1]).In this case, we get the optimal value x1 � x with all other zj(x) being zero.Thus ui(x) = �j1 for a � x � x1; 1 � j � M + 1for x 2 [a; x1].The case xM � x � b can be treated similarly. We thus can assume2 � k �M , and the optimal solution will have the propertyzj(x) = 1 for 2 � j � k � 1zj(x) = 0 for k + 1 � j � Mbecause each single term can be minimized separately. This leaves zk(x) openand yields uk(x) = zk(x)uk�1(x) = 1� zk(x);the other uj(x) being zero automatically. We now formx� xk�1xk � xk�1 j1� zk(x)j+ xk � xxk � xk�1 jzk(x)jand set � := x� xk�1xk � xk�1 ; z := zk(x)to get the minimization of �j1� zj + (1� �)jzj



4.3 Example: Optimal Interpolation in W 11[a; b] 87for � �xed. Any polygonal function attains its minima at one of its break-points, and thus the overall minimum is�; attained at z = 0 , if � � 1� �1� �; attained at z = 1 , if � � 1� �� = 1� �; attained at 0 � z � 1 , if � = 1� �:This meansuk(x) = 0; uk�1(x) = 1 if x� xk�1 < xk � xuk(x) = 1; uk�1(x) = 0 if x� xk�1 > xk � xuk(x) = �; uk�1(x) = 1� � if x� xk�1 = xk � xfor any � 2 [0; 1], and the value of the power function isx1 � x for x 2 [x0; x1];min(x� xk�1; xk � x) for x 2 [a; xk]; 2 � k �Mx� xM for x 2 [xM ; b]:Theorem 4.3.5 (ORWIT) The solution of the optimal recovery problemposed in W 11[a; b] under the seminorm jf 0j1 and Lagrange data thus consistsof the simple next-neighbour-ruleTake the value of the nearest data point, if it is unique, and take someweighted arithmetic mean of the two nearest data values otherwise.The interpolant is piecewise constant with breakpoints halfway between thedata points. The solution thus is not in W 11. 2If we compare this solution with the classical piecewise linear B{spline in-terpolant that everybody would expect to be optimal, we use Lemma 4.3.4(L3W2) for x 2 [xk�1; xk] withuk�1(x) = x� xk�1xk � xk�1 uk(x) = 1� uk�1(x) = xk � xxk � xk�1to get the power function(x� xk�1) xk � xxk � xk�1 + (xk � x) x� xk�1xk � xk�1= 2xk � xk�1 (x� xk�1)(xk � x)



88 4 POWER FUNCTIONS AND APPLICATIONSfor x 2 [xk�1; xk], 2 � k � M . At x = xk�1; xk; 12 (xk�1 + xk) the twopower functions coincide, but the piecewise linear power function belongingto the optimal "nearest-data-interpolant" is pointwise smaller elsewhere (seeFigure 18 (FigPFEx1)). Note here that the piecewise linear interpolant hasa piecewise quadratic power function.
xk�1 xk� � �Figure 18: Comparison of Power Functions(FigPFEx1)If we look at the case k = 1, we �nd the two solutions coincide for a � x � x1.Now we can ask for uniform minimization of both solutions on [a; b] withrespect to knot placement. Clearly, a minimum value � is attained in thesituation of Figure 19 (FigPFEx2). Thus2� �M = b� a or � = b� a2Mholds for the optimal knot placement. In W 11[a; b], optimal interpolationon M points thus has a uniformly minimal error of b� a2M , and the error isattained for both the natural piecewise linear spline (which is not pointwiseoptimal) and the discontinuous pointwise optimal interpolant.This example shows how power functions allow precise and sometimes unex-pected statements about the local behaviour of recovery processes in givenspaces for given data.4.3.1 Representations of Power Functions(SecRPF) We now want to specialize the notion of a power function to thecontext of optimal recovery in function spaces. We assume the situation



4.3 Example: Optimal Interpolation in W 11[a; b] 89
a x1 � � x2 �� � � �� � �Figure 19: Optimal Knot Placement (FigPFEx2)of Theorem 3.1.19 (ORT2) on page 36. That is, there are M linearly in-dependent functionals �1; : : : ; �M from G� and a unique solution g� of theoptimal recovery problem (3.1.4, ORP). But we want to compare g� witharbitrary other recoveries of g by linear methods that use the information�j(g); 1 � j �M . These have the form (GenRec)Su(g) = MXj=1�j(g)uj; (4.3.6)and we assume them to reproduce functions from P. Then for each x 2 
there is a functional�x;u;S : g 7! g(x)� Su(g)(x) = g(x)� MXj=1�j(g)uj(x)vanishing on P. The power function with respect to Su is then representablevia P 2Su;�(x) = j�x;u;Sj2�:It is now fairly easy to formF (�x;u;S)(�) = �(x; �)� MXj=1�zj�(z; �)uj(x)and the function (DefPuxy)Pu(x; y) := (�x;u;S; �y;u;S)� = �y;u;S(F�x;u;S)= �(x; y)� MXj=1�zj�(z; y)uj(x)� MXk=1�zk�(; �; z)uk(y) + MXj;k=1�zj�uk�(z; u)uj(x)uk(y) (4.3.7)



90 4 POWER FUNCTIONS AND APPLICATIONSfor all x; y 2 
. The reader will suspect some misuse of notation here, butthe function Pu(x; y) has some nice properties that justify this:Theorem 4.3.8 (PuT) The function Pu(�; �) de�ned in (4.3.7, DefPuxy)sats�es� P 2u(x) = Pu(x; x) = jPu(x; �)j2� for all x 2 
,� Pu(x; y) � Pu(x)Pu(y) for all x; y 2 
,� Pu(x; �)=Pu(�) attains its maximum Pu(x) in 
 at x,� if X = fx1; : : : ; xMg = � = f�1; : : : ; �qg is P-nondegenerate andminimal, then Pu coincides with the normalization of � with respectto �,� Pu is another conditionally positive de�nite function that generates thesame native space as �.Proof: The property P 2u (x) = Pu(x; x) follows from the de�nitions of bothfunctions, and jPu(x; �)j� = jF (�x;u;S)j� = k�x;u;Sk�implies jPu(x; �)j� = Pu(x). The next assertion is a consequence of theCauchy-Schwarz inequality applied to the de�nition of Pu(x; y), and togetherwith the �rst it yields the third. The proof of the �nal property listed aboveis the same as for the normalization. 2The merit of (4.3.7, DefPuxy) is that it allows to write down the powerfunction in explicit form and under quite general circumstances. This is ofparamount importance for deriving error bounds in subsequent sections, andthe basic feature is the optimality principle described in the next section.4.3.2 Optimality of Power Functions of Optimal Recoveries(SecOPFOR) Equation (4.3.7, DefPuxy) de�nes Pu(x; x) = P 2u (x) for �xedx as a quadratic form of the M real variables uj(x); 1 � j � M . We nowwant to minimize this quadratic form with respect to these variables, but wehave to consider the restrictions (PolRepEq)�x;u;S(pi) = pi(x)� MXj=1�j(pi)uj(x) = 0; 1 � i � q (4.3.9)



4.3 Example: Optimal Interpolation in W 11[a; b] 91imposed by reproduction of P. Since P 2u (x) is nonnegative, the minimizationmust have a solution, and this solution can be characterized by the usual nec-essary conditions for quadratic optimization under linear constraints. Theremust be Lagrange multipliers �1(x); : : : ; �q(x) such that the solution u�j(x)of the restricted optimization is a minimum of the unrestricted functionP 2u (x) + qXi=1 �i(x)0@pi(x)� MXj=1�j(pi)uj(x)1A = 0of u1(x); : : : ; uM(x). Taking the derivative with respect to uk(x), we get0 = �2�zk�(z; x) + 2 MXj=1�zj�uk�(z; u)u�j(x)� qXi=1 �i(x)�k(pi):We can rewrite this together with (4.3.9, PolRepEq) to get the system(PFORSys)MXj=1�zj�uk�(z; u)u�j(x) + qXi=1 ��i(x)2 �k(pi) = �zk�(z; x); 1 � k �MMXj=1�j(pi)u�j(x) + 0 = pi(x); 1 � i � q(4.3.10)The coe�cient matrix of this system is the same as in (3.1.14, EQsys3) onpage 33, if we use (3.2.14, gjkrep) on page 46. Thus the solution is in thespan of the right-hand side, proving that u�j(x) 2 S; 1 � j �M; as functionsof x, but note that the necessary restriction on the �i(�) of (3.1.33, DefS) isnot satis�ed. If we apply �xk to these equations, we see that the conditions�xk(uj(x)) = �jk; 1 � j; k �Mof interpolation are sats�ed together with�xk(�i(x)) = 0; 1 � k �M; 1 � i � q:Thus we haveTheorem 4.3.11 (OPFT) The power function Pu�(x) of the optimal re-covery problem (3.1.4, ORP) is optimal with respect to u under all powerfunctions Pu(x) of recoveries of the form (4.3.6, GenRec) that reproduce P.2



92 4 POWER FUNCTIONS AND APPLICATIONSThis is in line with the optimality of the generalized optimal power functionP�(�) of (3.1.40, GPDef) on page 41. Note that there we used optimalrecovery right from the start, but allowed a general functional � instead ofa point evaluation functional �x, while in this section we allowed generalrecoveries, but restricted ourselves to the special functional �x. The explicitcorrespondence is P�(�x) = Pu�(x)between these two versions of optimal power functions. For use in the nextsections, we rewrite the system (4.3.10, PFORSys) in an abbreviated form,omitting the asterisks standing for optimality and writing the free variablesas indices: (PFORSys2) A PP T 0 ! uxvx ! =  �xpx ! : (4.3.12)This means Aux + Pvx = �xP Tux + 0 = pxand we compare with the shorthand form of the P function associated withthe square P 2(x) = P (x; x) of the optimal power function: (Pdef3)P (x; y) = �(x; y)� uTx�y � uy�x + uTxAuy: (4.3.13)From the equations in (4.3.12, PFORSys2) we getuTyAux + uTy Pvx = uTyAux + pTy vx = uTy�xand insert the result into (4.3.13, Pdef3) to arrive at (PnewDef)P (x; y) = �(x; y)� uTx�y � vTx py: (4.3.14)This is one way of writing P explicitly in terms of the solution vectors of thesystem (4.3.12, PFORSys2). Note that the coe�cient matrix of the system isconstant, such that both ux and vx are linear functions of the right-hand sides�x and vx. Another simple consequence is the symmetry of the expression(QFSym)(uTy ; vTy ) A PP T 0 ! uxvx ! = uTy�x + vTy px (4.3.15)with respect to swapping x and y.



4.4 Recursive Constructions 934.4 Recursive Constructions(SecRecCon) This section will study the e�ect of adding data to the recoveryproblem. It will turn out that there are some easy recursion formulae ofNewton type.4.4.1 Orthogonal Decomposition(SecOD) We now want to add a new functional �M+1 to the set � =f�1; : : : ; �Mg. We shall use a tilde to denote symbols that now depend on~� := � [ f�M+1g instead of �. Our basic result isTheorem 4.4.1 If P of (4.3.14, PnewDef) is based on � and ~P is based on� [ f�M+1g, then (4p11)~P (x; y) = P (x; y)� �zM+1P (x; z) � �zM+1P (y; z)�uM+1�vM+1P (u; v) (4.4.2)for all x; y 2 
.Proof: We use (4.3.12, PFORSys2) and its extended version (4p21)0B@ A aM+1 PaTM+1 � pTM+1P T pM+1 0 1CA 0B@ ~uxfx~vx 1CA = 0B@�xgxpx 1CA ; (4.4.3)where we introduced shorthands for� = �uM+1�vM+1�(u; v) gx = �zM+1�(z; x)�x = (�zj�(x; z))T1�j�M px = (pj(x))T1�j�QA = (�uj�vk�(u; v))1�j;k�M P = (�zjpk(z))1�j�M;1�k�QaM+1 = (�uj�vM+1�(u; v))1�j�M pM+1 = (�vM+1pj(v))1�j�Qand kept ~ux; ~vx at the same size as ux; vx. Then� A PP T 0 � � ~ux � ux~vx � vx � = �fx � aM+1pM+1 �= �fx�zM+1 ��zpz �= �fx�zM+1 � A PpT 0 � � uzvz �



94 4 POWER FUNCTIONS AND APPLICATIONSif we subtract (4.3.12, PFORSys2) from part of (4.4.3, 4p21) and use (4.3.12,PFORSys2) after application of the functional �M+1. This yields~ux = ux � fx�zM+1u(z)~vx = vx � fx�zM+1v(z);and we use the remaining equation of (4.4.3, 4p21) forgx = aTM+1~ux + �fx + pTM+1~vx= aTM+1(ux � fx�zM+1u(z)) + �fx + pTM+1(vx � fx�zM+1v(z))= aTM+1ux + pTM+1vx + fx(�� aTM+1�zM+1u(z)� pTM+1�zM+1v(z))and fx = gx � aTM+1ux � pTM+1vx�� aTM+1�wM+1u(w)� pTM+1�wM+1v(w)= �zM+1(�(x; z)� �Tz ux � p(z)T vx)�zM+1(�wM+1�(w; z)� �Tz �wM+1u(w)� pTz �wM+1v(w))= �zM+1P (x; z)�zM+1�wM+1(�(w; z)� �Tz u(w)� pTz v(w))= �zM+1P (x; z)�zM+1�wM+1P (w; z) :We still have to evaluate ~P via~P (x; y) = �(x; y)� (~uTx ; fx)��ygy �� ~vTx py= �(x; y)� ~uTx�y � fxgy � ~vTx py= �(x; y)� (ux � fx�zM+1u(z))�y � fxgy�(vx � fx�zM+1v(z))T py= P (x; y)� fx(gy � �zM+1u(z)T�y � �zM+1v(z)Tpy)= P (x; y)� fx�zM+1(�(y; z)� u(z)T�y � v(z)Tpy)= P (x; y)� fx � �zM+1P (y; z)



4.4 Recursive Constructions 95to prove the assertion. Note that �M+1 =2 span� implies�xM+1�xM+1P (x; x) = k�xM+1�x;uk2� = k�M+1 � MXj=1�zM+1uj(z)�jk2� > 0:We now use the recursion (4.4.2, 4p11) of P to construct a sequence oforthogonal functions that serve to solve the interpolation problem directly.To this end we now use the index M to indicate quantities that depend on�M = f�1; : : : ; �Mg, and we assume that �Q � �Q+1 � : : : is a strictlyincreasing sequence of P{nondegenerate sets of functionals. Then we use(4.4.2, 4p11) in the form (4p41)PM+1(x; y) = PM(x; y)� �zM+1PM(x; z) � �zM+1PM(y; z)�uM+1�vM+1PM(u; v) (4.4.4)for M � Q and x; y 2 
. The recursion starts with PQ, which in caseM > 0 is associated to a set �Q on which interpolation by functions from Pis uniquely possible. On such a set the reconstruction takes place within P,and PQ coincides with the normalization of �. For m = 0 the functions fromP are not present at all, and we formally use Q = 0 andP0(x; y) := �(x; y):This established the start of the recursion (4.4.4, 4p41), and we now de�nefunctions rM+1(x) := �zM+1PM(x; z)sM+1(x) := rM+1(x)q�uM+1�vM+1PM(u; v)uM+1(x) := rM+1(x)�uM+1�vM+1PM(u; v) :Clearly rM+1; sM+1; uM+1 2 SM+1�xj rM+1(x) = f0g; 1 � j �Mhold, and thus Theorem 3.1.36 (OrtTh) implies(rN ; rM)� = 0; Q < N < M:The di�erent normalization of sM+1 and uM+1 yieldksM+1k� = 1uM+1(xM+1) = 1to generate orthonormal and Lagrange{type functions.



96 4 POWER FUNCTIONS AND APPLICATIONS4.4.2 Recursion of Power Functions(SecRecPFu) The recursion (4.4.2, 4p11) leads to the formula (4p11a)P 2M+1(x) = P 2M(x)� s2M+1(x) (4.4.5)for all x 2 
, relating two subsequent (squared) power functions. If P 2Mis a measure of the "energy" of the error for recovery based on M piecesof information, the addition of a new functional �M+1 takes just s2M+1 otof the energy. If the basis function � has a sharp localization, this willnot necessarily lead to a decrease in the L1 norm of P 2M . The inherent L2structure of this decomposition of the power function rather suggests to pick�M+1 to maximize the expressionZ
 s2M+1(x)dx = Z
 �zM+1P 2M(x; z)�uM+1�vM+1PM(u; v)dx:Since PM is continuous and 
 is compact, this extremum exists, though it willbe hard to calculate. Anyway, there are lots of interesting research problemsopened up by these recursive techniques.4.4.3 Newton's FormulaWe now write the reconstruction gM of some function f based on datafk = �k(f) for functionals from �M in terms of the orthogonal functionsrQ+1; : : : ; rM as gM(�) = gQ(�) + MXj=Q+1�jrj(�):This is a Newton{type interpolation formula, and we can calculate thegeneralized divided di�erences �j by a simple recursion. In fact, for anyk > Q we have fk = �k(gQ) + kXj=Q+1�j�k(rj)and get the recursions�k = 1�k(rk) 0@fk � �k(gQ)� k�1Xj=Q+1�j�k(rj)1A= 1�k(rk) (fk � �k(gk�1)):Unfortunately, the recursive method based on Newton's formula is not par-ticularly e�ective. One could rewrite the formula in terms of the functionsuj to avoid the denominators, but this is no serious improvement.



4.5 Condition 974.4.4 Kernel Expansion(SecHSE) If we carry the above method out for M ! 1 on a domain
 � IRd with in�nitely many points, we clearly have a pointwise decrease ofthe functions: : : � P 2M(x; x) � P 2M+1(x; x) � : : : � limM!1P 2M(x; x) =: P 21(x; x) � 0for all x 2 
. If we are in the special case of Lagrange interpolation, where�j(f) = f(xj), we can let the points xM gradually get dense in 
 forM !1.Then we can expect that the L1 norm of P 2M on 
 decreases to zero forM ! 1. Section 5 (SecEB) will contain a variety of such results, anduniform Lipschitz continuity of � along the diagonal will usually be su�cient(see 5.5 (hrhodef) on page 120).In such cases we get a kernel expansionPQ(x; y) = 1Xj=Q+1 sj(x)sj(y)for the normalized basis function PQ. This specializes to the seriesP 2Q(x) = PQ(x; x) = 1Xj=Q+1 sj(x)2for the squares of power functions. There are lots of highly interesting openproblems along this line of research.4.4.5 RemarksMost of the material on power functions as presented in this section seemsto be new, though there is some earlier work on recursive constructions ofinterpolants (see e.g. M�uhlbach [3](muehlbach:??-??))4.5 Condition(SecCondition) We now look at the stability of solutions of the systems(1.7.2, EQsys2) and (3.1.14, EQsys3) written in matrix form as (BDef3) A PP T 0 ! �� ! =  f0 ! : (4.5.1)



98 4 POWER FUNCTIONS AND APPLICATIONSwhich is exactly (1.7.3, BDef) or (3.1.18, BDef2), but repeated here forconvenience. Introducing perturbations of the solution and the right-handside we get the system A PP T 0 ! � +��� +�� ! =  f +�f0 !and can subtract (4.5.1, BDef3) to get A PP T 0 ! ���� ! =  �f0 ! :This implies (DAD)(��)TA(��) = (��)T�f: (4.5.2)Since we have P T (��) = 0, we know that the above quadratic form is positivede�nite. Thus there are positive real eigenvalues � and � of the matrix Asuch that (Defsigma)0 < � := inf �TA��T� � sup �TA��T� =: � <1; (4.5.3)where the sup and inf are extended over all � 2 IRM which are nonzero butsatisfy P T� = 0. The condition number �(A) of A in the Euclidean normthen is the quotient �(A) = �=�, and it appears in the boundk��k2k�k2 � �(A)k�fk2kfk2that follows from (4.5.2, DAD)and the corresponding equation�TA� = �Tffor the unperturbed quantities. This bound holds for the relative error, whilethe absolute error is governed by (Stab)k��k2 � 1�k�fk2: (4.5.4)Numerical experiments show that � can indeed be extremely small, while �does not grow too wildly, at least not as wildly as 1=�. Later theoreticalresults will support these statements, and thus the study of � or some lowerbounds for it will be of great importance for any assessment of the numericalstability of systems like (4.5.1, BDef3).



4.6 Uncertainty Relation 994.5.1 RemarksThe technique for proving error bounds via power functions goes at leastback to Golomb and Weinberger [16](golomb-weinberger:59-1) but probablyfurther back to Peano, since the error evaluation of linear functionals bybounding their Peano kernels is very similar. The pointwise optimalityprinciple of Theorem 4.3.11 (OPFT) was used by various authors and possiblydates back to Duchon [10](duchon:76-1).4.6 Uncertainty Relation(URT) It would be very desirable to have recovery methods with small errorsand good stability. However, these two goals cannot be met at the same time,since there is a connection between them that implies bad stability wheneverthe a-priori error bound is very small.Let us look at this connection in a fairly general way. If we try optimal recov-ery of a function g 2 G from data �j(g); 1 � j � M in the setting of section3.1.1 (subsecORP) and bound the error by Theorem 3.1.38 (ORTFA) on page41, then we have to study the generalized optimal power function P (�) of(3.1.40, GPDef), whose square has the representation (3.1.29, BAPN). Butthis quantity can be written as a value of the quadratic form associated tothe matrix A�;� = 0BBBB@ (�; �)� (�; �1)� : : : (�; �M)�(�1; �)� (�1; �1)� : : : (�1; �M)�... ... ...(�M ; �)� (�M ; �1)� : : : (�M ; �M)� 1CCCCAwith the vector (1;��1(�); : : : ;��M (�))T 2 IRM+1. This yields a lowerbound (UR1)P 2(�) � �(A�;�) �1 + k�(�)k22� � �(A�;�) (4.6.1)for the power function in terms of the smallest eigenvalue of the matrix.This relates the error analysis to the stability analysis and provides thebackground for various cases of the Uncertainty Relation. Furthermore, itsets the direction for further progress: we need upper bounds for the powerfunction P and positive lower bounds for the smallest eigenvalue �. Butwe should be aware that the two sides of (4.6.1, UR1) behave di�erently asfunctions of �: the right-hand side will vanish, but not the left-hand side, iftwo functionals from � come too close to each other.



100 4 POWER FUNCTIONS AND APPLICATIONS4.6.1 The Lagrange CaseWe now specialize to the setting of Theorem 4.3.11 (OPFT) on page 91 withX = fx1; : : : ; xMg � IRd and � = f�x1 ; : : : ; �xMg. Then we have the matrixAx;X = 0BBBB@ �(x; x) �(x; x1) : : : �(x; xM )�(x1; x) �(x1; x1) : : : �(x1; xM)... ... ...�(xM ; x) �(xM ; x1) : : : �(xM ; xM) 1CCCCAand the vector (1;�u�1(x); : : : ;�u�M(x))T 2 IRM+1 and get the special form(UR2)P 2u�(x) = P 2�(�x) � �(Ax;X)0@1 + MXj=1 ju�j(x)j21A � �(Ax;X) (4.6.2)of (4.6.1, UR1). Note that both sides are continuous functions of x and X(or � standing for X) that vanish whenever x tends to points in X.We now can give some hints to the results that follow in later sections. TheUncertainty Relation in the form (4.6.2, UR2) suggests to bound P 2 fromabove and � from below, in order to have both upper bounds on the attainableerror and on the numerical stability, measured by 1=� due to (4.5.4, Stab).We shall see in 5.1 (SecUBOPF) that upper bounds for P 2 take the form(FBound)P 2u�(x) � F (hX;
) for all x 2 
 (4.6.3)where F is a monotonic function of the �ll distance hX;
 de�ned in (2.1.2,DDDef) on page 18. On the other hand, the lower bounds for � in 7.4(SecLBE) will be of the form (GBound)�(AX) � G(sX) for all X = fx1; : : : ; xMg � 
 (4.6.4)with the separation distance sX de�ned in (2.1.1, SDDef). For gridded dataon �ZZd \ 
 we can roughly expect hX;
 = sXpd, and then the UncertaintyRelation necessarily implies (UR3)F (tpd) � G(t) (4.6.5)for all t � 0. This allows to check the quality of the bounds (4.6.3, FBound)and (4.6.4, GBound), since the lowest possible bounds F and the largest



101possible bounds G must necessarily satisfy (4.6.5, UR3) and are optimal, ifthey turn (4.6.5, UR3) into an equality. This opens the race for optimalbounds of the form (4.6.3, FBound) and (4.6.4, GBound), and this text willdescribe the current state-of-the-art.4.6.2 RemarksThe Uncertainty Relation seems to occur �rst in [41](schaback:95-1).5 Error Bounds(SecEB)5.1 Upper Bounds for the Optimal Power Function(SecUBOPF) Here we proceed to prove upper bounds of the form (4.6.3,FBound) for the optimal power function of optimal recovery. This approachuses results from classical approximation theory and does not require Fouriertransforms. Another proof technique, using transforms, will follow in section6.5 (SecEBTrans).5.1.1 Assumptions and First ResultsWe specialize here to the case of multivariate Lagrange interpolation byconditionally positive de�nite functions � : 
 � 
 ! IR of order m onsome domain 
 that can be embedded into IRd. The data locations aresupposed to form a IP dm-nondegenerate set X = fx1; : : : ; xMg � 
, and weuse functions uj on 
 with (4.3.6, GenRec) that reproduce IP dm.The power function with respect to these data and the functions uj takes thespecial form (DefPuxyLag)Pu(x)2 := �(x; x)� 2 MXj=1�(x; xj)uj(x)+ MXj;k=1�(xj ; xk)uj(x)uk(x) (5.1.1)from (4.3.7, DefPuxy). Note that we allow quite arbitrary uj here in viewof Theorem 4.3.11 (OPFT). If optimal recovery leads to Lagrange basis



102 5 ERROR BOUNDSfunctions u�j ; 1 � j �M , thenPu�(x) � Pu(x)holds for all x 2 
, yielding a pointwise upper bound for the optimal powerfunction.To start with, we �x a polynomial order ` � m and a point x 2 
. Aroundx we shall approximate � by a polynomial ' in the following sense:Assumption 5.1.2 (FBAss1) For each x 2 
 and a speci�c choice of apolynomial order (EqEllgeqm)` � m (5.1.3)there are positive constants �; h0, and C1 and a polynomial ' : IRd� IRd !IR of order not exceeding ` in each d-variate variable, such that (PhiApp)k�(x + u; x+ v)� '(u; v)k1 � C1h� (5.1.4)for all h 2 [0; h0] and all u; v 2 [0; h]d.We shall vary x and ` later, and then all of the above quantities will be studiedas functions of x and `. Equation (5.1.4, PhiApp) may be viewed as resultingfrom a Taylor expansion around (x; x) or by an L1 approximation process.It is no drawback to assume symmetry of ' in the sense '(x; y) = '(y; x),because the arithmetic mean of these two polynomials will do the job.We now de�ne a function Q2u that serves as a polynomial approximation toP 2u near x, but which will turn out to be zero later: (DefQuxyLag)Qu(x)2 := '(0; 0)� 2 MXj=1'(0; xj � x)uj(x)+ MXj;k=1'(xj � x; xk � x)uj(x)uk(x): (5.1.5)Now it is time to specify our choice of uj; 1 � j � M via local polynomialreproduction of order ` near x. Since the dependence on x and h is crucialhere, we stick to an explicit notation:



5.1 Upper Bounds for the Optimal Power Function 103Assumption 5.1.6 (FBAss2) For some x 2 
 and some h 2 [0; h0] thereis a subset Jx(h) of f1; : : : ;Mg, positive constants C2(x; h); C3(x; h), and achoice of M real numbers uh1(x); : : : ; uhM(x) such that (uDefJx)Jx(h) � f j : 1 � j � M; kx� xjk1 � C2(x; h)hg; (5.1.7)(uDef1)uhj (x) = 0 for all j =2 Jx(h); (5.1.8)(uDef2)p(x) = Xj2Jx(h)uhj (x)p(xj) for all p 2 IP d̀; (5.1.9)(uDef3)1 + Xj2Jx(h) juhj (x)j � C3(x; h): (5.1.10)The �rst three items specify the local polynomial reproduction, while thelast de�nes C3 to be the corresponding Lebesgue constant. We apply (5.1.9,uDef2) to '(0; y � x) as a function of y to get'(0; x� x) = '(0; 0) = Xj2Jx(h)uhj (x)'(0; xj � x)to prove that Qu is identically zero:Qu(x)2 = '(0; 0)� 2'(0; 0) + MXj=1'(xj � x; 0)uj(x)= 0:We now bound the optimal power function by (FundBound)P 2u�(x) � P 2u (x)= P 2u (x)�Q2u(x)= �(x; x)� '(0; 0)�2 Xj2Jx(h) uhj (x) (�(x; xj)� '(0; xj � x))+ Xj;k2Jx(h) uhj (x)uhk(x) (�(xj ; xk)� '(xj � x; xk � x))� 0@1 + Xj2Jx(h) juhj (x)j1A2C1(x)(C2(x; h)h)�� C3(x; h)2C1(x)C�2 (x; h)h�
(5.1.11)



104 5 ERROR BOUNDSfor all h with C2(x; h)h � h0, where we have to keep in mind that everythingstill depends on `. Nevertheless (5.1.11, FundBound) is the fundamentalerror bound for optimal power functions, and it can be applied in a largenumber of cases. We summarize:Theorem 5.1.12 (FundBoundT) Under the assumptions 5.1.2 (FBAss1)and 5.1.6 (FBAss2) the optimal power function has a local bound of order �=2in x with respect to h ! 0, if the constants C2(x; h); C3(x; h) are boundedfor h! 0. 2The applications of Theorem 5.1.12 (FundBoundT) come in two variations:� To prove a �xed error order �, one �xes an appropriate ` and usescompactness arguments to bound all relevant \constants" with respectto x and h.� To prove very strong non-polynomial error bounds like e�c=h2 for �xed-scale Gaussians, one has to let ` tend to 1 and study the variation ofthe \constants" with `. This is a much harder task.The two assumptions 5.1.2 (FBAss1) and 5.1.6 (FBAss2) require two di�erentkinds of results to be proven in the following sections:� an error bound for local polynomial approximation of �,� and bounds on the Lebesgue constant for local polynomial interpolationin 
.5.2 Approximation Error in the Radial Case(SecAERC) Here we consider the special situation of d-variate radial func-tions �(x; y) = �(kx � yk2), and we want to check Assumption 5.1.2(FBAss1). The crucial term in (5.1.4, PhiApp) takes the form �(x + u; x +v) = �(ku�vk2) and usually will not be nicely expandable into a polynomialin u and v. Fortunately, it is independent of x, since we are in a translation-invariant situation, and we only need an approximation to � near zero. Moreprecisely, we approximate �(r) by a polynomial pn 2 IP 1n in r2 on the domain[0; h] for small h > 0 and de�ne the error as (EDef1)En(�; h) := infp2IP 1n k�(r)� p(r2)k1;[0;h]= infp2IP 1n k�(pr)� p(r)k1;[0;h2]: (5.2.1)



5.2 Approximation Error in the Radial Case 105This error can be bounded by univariate Jackson type theorems from classicalapproximation theory. Less sophisticated bounds simply take p as the Taylorexpansion of �(p�) in zero. With ` = 2n � 1 and h replaced by 2pdh onecan put the result into Assumption 5.1.2 (FBAss1).Let us evaluate a few cases by standard techniques and cite the strongerJackson results from the literature later.Example 5.2.2 (AEPHS) In the polyharmonic spline case �(r) = r� with� 2 IR>0n2IN we can simply rescale the approximation problem to the interval[0; 1]. That is, En(r�; h) = infp2IP 1n kr�=2 � p(r)k1;[0;h2]= infp2IP 1n k(h2s)�=2 � p(h2s)k1;[0;1]= h� infp2IP 1n ks�=2 � h��p(h2s)k1;[0;1]= h�En(r�; 1):This yields the exact dependence on h and leaves the dependence on � to aclassical Jackson result on [0; 1]. We get � = �, and this is independentof ` = 2n � 1, provided that ` = 2n � 1 � m � d�=2e holds, sincewe have to exceed the order m of conditional positive de�niteness. Themost important cases � = 1 and � = 3 have the bounds E1(r; 1) = 1=2and E2(r3; 1) = 2=27, and these are available by direct analysis, using theAlternation Theorem of linear univariate L1 approximation. For this, seeany textbook on Approximation Theory, e.g.: the classical books by Cheney[9](cheney:66-1) and Meinardus [25](meinardus:67-1).Example 5.2.3 (AETPS) Now consider the classsical thin-plate spline�(r) = r� log r with � 2 2IN and order m > �=2 of conditional positive de�-niteness. We proceed along the same lines and need ` = 2n� 1 � m > �=2.This implies �=2 � n� 1, which is useful to get rid of the log term inEn(r� log r; h) = infp2IP 1n k12r�=2 log r � p(r)k1;[0;h2]= infp2IP 1n k12(h2s)�=2 log(h2s)� p(h2s)k1;[0;1]= infp2IP 1n k12(h2s)�=2(log(h2) + log s)� p(h2s)k1;[0;1]= infp2IP 1n k12(h2s)�=2 log s� p(h2s)k1;[0;1]= 12h� infp2IP 1n ks�=2 log s� h��p(h2s)k1;[0;1]= h�En(r� log r; 1):



106 5 ERROR BOUNDSThe case � = 2 has E2(r2 log r; 1) = e�1.Example 5.2.4 (AEWF) Here we treat Wendland's [46](wendland:95-1)function �(r) = (1� r)4+(1 + 4r) which is positive de�nite on IRd for d � 3and in C2(IRd) if r = kxk2 for x 2 IRd. But our approach will be applicableto the whole class of piecewise polynomial functions of the form�(r) = ( u(r2) + r2n�1v(r) r 2 [0; 1]0 else ) ;where we pick a maximal n such that u lies in IP 1n and v is an arbitraryunivariate polynomial with v(0) 6= 0. This means that u covers the �rstterms of even degree, while r2n�1 is the �rst term of odd degree. Thisincludes the full range of Wendland's functions from [46](wendland:95-1)as well as Wu's functions from [47](wu:95-2) for certain values of n. In caseof �(r) = (1 � r)4+(1 + 4r) we have �(r) = 1 � 10r2 + r3(20 � 15r + 4r2)with n = 2. We now use u as an approximation to � on small intervals. Inparticular, En(�; h) = infp2IP 1n k�(r)� p(r2)k1;[0;h]� kr2n�1v(r)k1;[0;h]� C5h2n�1for h 2 [0; 1] with a suitable constant C5 depending on v, e.g.: C5 :=kvk1;[0;1]. Note that for the function �(r) = (1 � r)4+(1 + 4r) we get thesame order as for the polyharmonic spline �(r) = r3.So far we did not use sophisticated theorems from approximation theory, sincewe were interested in the correct power of h, not in the optimal behaviour ofthe bounds with respect to ` or n.In the previous cases it did not make much sense to let ` or n be too large,because the approximation order with respect to h is not improved, andbecause we see later that large values of ` lead to bad Lebesgue constantswhen heading for Assumption (5.1.6, FBAss2). But the next case will bedi�erent in nature:Example 5.2.5 (AEGEl) The Gaussian �(r) = exp(��r2) allows arbitraryvalues of ` = 2n � 1 because it is unconditionally positive de�nite. A crudebound is provided by chopping the exponential series:En(exp(��r2; h) = infp2IP 1n k exp(��r)� p(r)k1;[0;h2]= infp2IP 1n k exp(�s)� p(s=�)k1;[0;�h2]� (�h2)nn!



5.3 Jackson-Bernstein Theorems and Applications 107for �h2 � n + 1, which is not a serious restriction. By using the Taylorresidual one can get rid of the restriction, and by Bernstein's theorem 5.3.4(BT1) on approximation of analytic functions we can get a similar bound thatdecays exponentially with n !1. Anyway, we see that the bound improvesdramatically with increasing n or ` = 2n� 1.5.3 Jackson-Bernstein Theorems and ApplicationsThis section contains the results from Approximation Theory that make theprevious results somewhat sharper. We stick to radial functions and useunivariate techniques. These consist of Jackson type theorems for the bestapproximation of functions f 2 Cn[a; b] by univariate polynomials in IP 1̀ inthe supremum or Chebyshev or L1 norm: (EDef2)E(`; f; [a; b]) := infp2IP 1̀ kf � pk1;[a;b] (5.3.1)We additionally need the notion of Lipschitz continuity:De�nition 5.3.2 A function f is Lipschitz continuous on [a; b] of order� 2 [0; 1] with Lipschitz constant L, ifjf(x)� f(y)j � Ljx� yj�holds for all x; y 2 [a; b].Theorem 5.3.3 (JT1) For all functions f 2 Cn[a; b] and all ` � n we haveE(`; f; [a; b]) � ��4�n (b� a)n(`+ 1)` : : : (`� n+ 2)kf (n)k1:If f (n) is Lipschitz continuous of order � with Lipschitz constant L, thenE(`; f; [a; b]) � ��4�n+1 (n+ 1)nn!  b� a` !n+� L:These results of Jackson (see e.g. Cheney [9](cheney:66-1) or Meinardus[25](meinardus:67-1)) yield bounds in terms of �xed negative powers of `that depend on the smoothness of f . They can be proven to be optimal.For analytic functions, however, the parameter ` moves into the exponentof some quantity that is smaller than one, and this yields a much betterasymptotic behaviour for ` ! 1 due to Bernstein (this is, for instance, inNatanson [36](natanson:55-1)) :



108 5 ERROR BOUNDSTheorem 5.3.4 (BT1) Let f be a function on [a; b] which has a holomor-phic continuation into an ellipse in C with foci a; b and half-axes of length0 < r � R. Then there is a constant K depending only on f; r; and R, butnot on `, such that E(`; f; [a; b]) � K  b� a2(r +R)!` :We cannot give proofs here, but the following weaker and easily accessibleresult shows how the previous result is possible.Theorem 5.3.5 (RSJT) Let f be a function on [�r; r] which has a holo-morphic continuation into the circle CR in C with radius R > r such thatthe continuation still is bounded on the boundary @CR of the circle. ThenE(`; f; [�r; r]) � kfk1;@CR RR� r � rR�` ;and the bound is already achieved by the Taylor expansion around zero.Proof: Just consider the power series of f in zero and bound it usingCauchy's inequality janj � kfk1;@CRR�nfor the coe�cients. This yieldsjf(z)� `�1Xj=0 ajzjj = j 1Xj=` ajzjj� 1Xj=` jajjrj� kfk1;@CR 1Xj=`� rR�j� kfk1;@CR � rR�` RR� rfor all jzj � r. 2We now work our way through the examples.Example 5.3.6 (AEPHS2) Consider thin-plate splines �(r) = r�. Theseare conditionally positive de�nite of order m � m� := d�2 e. We have toapproximate r�=2 on [0; h2] and do this directly by application of Jackson's



5.3 Jackson-Bernstein Theorems and Applications 109theorem 5.3.3 (JT1). The function r�=2 has m� � 1 continuous derivatives,and the �nal derivative is Lipschitz continuous of order�� := �2 �m� + 1 = �2 � b�2 c 2 (0; 1)with constantL� = �2 (�2 � 1) : : : (�2 �m�) = (1 + ��)(2 + ��) : : : (m� � 1 + ��) � m�!:Then the two slightly di�erent notions of (5.2.1, EDef1) and (5.3.1, EDef2),which are related by the transformation r 7! pr in the argument of thefunction, come out to beEn(r�; h) = E(n; r�=2; [0; h2]) � ��4�m� (m�)m��1(m� � 1)!  h2n !�=2 L�for all ` = 2n� 1 � m � m�. The result has the same power of h as before,but now we can quantify the dependence on � and n. Unfortunately, the gainfor large n or ` = 2n�1 is much too weak to cope with the dramatic increaseof Lebesgue constants for increasing polynomial degrees.Example 5.3.7 (AETPS2) We now continue with Example 5.2.3 (AETPS).The radial function �(r) = r� log r with � 2 2IN is conditionally positive def-inite of order m � m� := �=2 + 1. We have to consider polynomial approxi-mations to r�=2 log r for orders n satisfying ` = 2n�1 � m � m� = �=2+1.The derivatives of r�=2 log r for � 2 2IN produce lower-order polynomials oftype r�=2�1; r�=2�2; : : : which are subsumed in IP 1n and do not change the ap-proximation error. Thus we only have to consider the terms of type r� log r,and we see that we can take �=2�1 continuous derivatives. The �nal deriva-tive is (�=2)!r log r, which is Lipschitz continuous of order < 1, but not oforder 1. The direct application of the second version of Jackson's theorem5.3.3 (JT1) would not give the full order with respect to h due to this fact,and therefore we �rst do the scaling of Example 5.2.3 (AETPS) to extract thefactor h� out of En(r� log r; h). Then the �rst version of Jackson's theoremyields En(r� log r; h) = h�En(r� log r; 1)= E(n; r�=2 log r; [0; 1])� ��4��=2 (�=2)!(n+1)n(n�1):::(n��=2+2)kr log rk1;[0;1]= ��4��=2  n+ 1�=2 !�1 e�1for all ` = 2n� 1 � m � m� = �=2 + 1. Again, we have some improvementfor increasing n, but it will not be enough to cope with the Lebesgue constants.



110 5 ERROR BOUNDSExample 5.3.8 (AEMQ) We now consider multiquadrics �(r) = (c2 +r2)�=2 for � =2 2IN and c > 0. In case of � > 0 they are conditionallypositive de�nite of order m � m� := d�=2e, while they are positive de�nitefor � < 0. In this case we de�ne m� := 0. Multiquadrics are analytic aroundr = 0 and their polynomial approximation can be treated by application ofBernstein's theorem 5.3.4 (BT1) or by Theorem 5.3.5 (RSJT). This meansthat we should study the complex function f(z) = (c2 + z)�=2 which has asingularity at z = �c2. For � > 0 the function is bounded on the circle Cc2,but for negative � (inverse multiquadrics) we have to use a smaller radius.To be safe, we use R = c2=2 in both cases and getjf(z)j � (3c2=2)�=2 � 2j�=2jc�for � > 0 and jzj = R, whilejf(z)j � (c2=2)�=2 = 2j�=2jc�for � < 0 yields the same bound. We approximate on [0; h2] and thus havethe constraint h2 < R = c2=2on what follows. Now Theorem 5.3.5 (RSJT) yields (MQB1)En(�; h) = E(n; f; [�h2; h2]) � 2j�=2jc� c2c2 � 2h2  2h2c2 !n (5.3.9)for all ` = 2n� 1 � m � m�.Example 5.3.10 (AES1) We consider Sobolew radial basis functions�(r) = r�K�(r)for � > 0. These generate Sobolev spaces Wm2 (IRd) for � = m� d=2 and areunconditionally positive de�nite. A direct application of Jackson's theoremsrequires the derivatives of �, which are not easy to calculate and bound fromabove. We postpone treatment of this case to section 6.5.7 (EBSob), wherewe apply Fourier transform techniques.Theorem 5.3.11 (LipConvTh) If �(x; y) = �(kx� yk2) is a conditionallypositive de�nite radial basis function on 
 � IRd and if � is Lipschitzcontinuous in a neighborhood of the origin, then Assumption 5.1.2 (FBAss1)is satis�ed for some positive exponent �.Proof: Just apply Theorem 5.3.3 (JT1). 2



5.4 Lebesgue Constants 1115.4 Lebesgue Constants(SecLebCon) We now face the veri�cation of Assumption 5.1.6 (FBAss2),which is a very hard problem. Let us �rst discuss some easy cases.5.4.1 Lines and TrianglesAssume that we want to prove a bound for the error in a point x that lies ona line between two distinct data points, say x1 and x2, and assume that thedistance between these points is 2h. We can de�ne linear functions u1; u2 byu1(y) := (y � x2)T (x1 � x2)kx1 � x2k22 ; u2(y) := 1� u1(y)and see that uj(xk) = �jk; j; k = 1; 2. Any linear polynomial p restrictedto the line through x1 and x2 is uniquely recovered by p(x) = p(x1)u1(x) +p(x2)u2(x). Note that Assumption 5.1.6 (FBAss2) only requires the recoveryin x, not everywhere. If x is way between x1 and x2, then clearly C3 = 2su�ces, since both u1(x) and u2(x) are in [0; 1] and sum up to 1. Furthermore,we can set C2 = 1 and are done for cases with ` � 2. This argument worksfor every space dimension, but only on lines between two nearby data points.We now go over to three points x1; x2; x3 2 IRd forming a nondegeneratetriangle T , and we consider points x inside such a triangle. If x lies on anedge, we are in the previous case. Since our argument is carried out in a two-dimensional a�ne subspace containing the triangle, we assume that we are inR2 right away, and there are no problems going back to the embedded planein IRd. Nondegeneracy of the triangle, when written in bivariate coordinates,means that the system x1 x2 x31 1 1 !0B@ u1(y)u2(y)u3(y) 1CA =  y1 !has a nonsingular matrix and a unique solution. The components of thesolution are called the barycentric coordinates of y with respect to thetriangle spanned by x1; x2; x3, and they satisfy� uj(y) is linear in y,� uj(xk) = �jk; 1 � j; k � 3,� p(y) = 3Xj=1uj(y)p(xj) for all p 2 IP 22 ,



112 5 ERROR BOUNDS� uj(y) = 0 i� y lies on the boundary line opposite to xj,� all uj(y) > 0; 1 � j � 3 i� y lies inside the triangle,� the uj(y) are nonnegative and sum up to 1 for y not outside the triangle.The reader will have noticed that this is a very simple generalization fromthe two-point case. This can be carried further, but it never yields more thanreproduction by linear polynomials. It always works for d+1 points that lieat least in IRd but not in a d� 1-dimensional a�ne subspace.It is now clear that in our three-point case we get C3 = 2 independent of xand h, and if h is taken as the �ll distance 2.1.2 (DDDef)h := hfx1;x2;x3g;T := supx2T min1�j�3 kx� xjk2;of the triangle T , then we have C2 = 1. This argument works on all smalltriangles that are formed by three data points that are not on a line.We now assemble the two cases into a general strategy that works in IR2for polynomial reproduction of order ` � 2. Assume that the set X =fx1; : : : ; xMg � IR2 of scattered data is given, and let 
 be the convex hullof X, i.e.: the smallest convex set containingX. Then 
 is a compact convexpolygon, and each point x of 
 either lies on a line between two points of Xor in a nondegenerate triangle formed by three points of X. Assume that X�lls 
 with a �ll distanceh := hX;
 := supx2
 min1�j�M kx� xjk2:If the situation of one of the two above cases occurs, there will not necessarilybe two points on a line with distance at most 2h or a triangle T with local�ll distance h. We thus have to determine which distances as factors of hare possible in these cases. We form the Delaunay triangulation of the setX = fx1; : : : ; xMg as described in section 11.1 (SecVor). This splits 
 intotriangles with vertices at the points of X, and where there is an edge fromxk to xj i� the midpoint between xk and xj has both xk and xj as pointsof X with minimal distance. Since this distance is at most h, the Delaunaytriangles have edges of length at most 2h. If we work on a line joining twovertices of the Delaunay triangulation, we thus have C2 = 1. Inside of suchtriangles, the maximum distance from an interior point to the vertices isachieved in the isosceles case, and thus the �ll distance within Delaunaytriangles is at most 2h=p3. We thus get away with C2 = 2=p3 and C3 = 1in both cases.



5.4 Lebesgue Constants 1135.4.2 Univariate DataThe situation for local polynomial interpolation of order exceeding two ismuch harder, even in one space dimension, where the solution still can begiven using elementary techniques. Let us do a simple, but nonoptimalbound. Consider an odd number ` = 2k + 1 points ordered locally on thereal line like x1 < x2 < : : : < x`and let the �ll distance of X = fx1; : : : ; x`g be h=2, such that we havexi+1 � xi � h. The Lagrange basis functions for interpolation of order ` areuj(x) =Yi6=j x� xixj � xi ; 1 � j � `and they get large if there are points with xj�xi extremely small. But thosepoints can be neglected if our points are a local subsample of a much largerset. Let us thus assume a real number � 2 (0; 1] with �h � xi+1 � xi � h.Then the M � 1 = 2k factors in the numerator can be bounded above by(2k)!h2k, while the denominator can be bounded below by (k!)2�2kh2k. Wehave to sum M = 2k + 1 of these quotients, and thusC3 � 1 + (2k + 1)!(k!)2�2k ; ` = 2k + 1:This bound increases dramatically with `, unfortunately, but it is indepen-dent of h. We can get an idea of the behaviour of C3, if we apply Stirling'sinequality (Stirling)1 � n!p2�nnne�n � exp(� 112n): (5.4.1)The result is C3 � O pk � 2��2k!for k !1 or in simpli�ed form and as a function of `,C3 � O(
`)for `!1 with some 
 > 1.Now let us apply this globally, and assume an ordered, but scattered setX = fx1; : : : ; xMg � IR with �ll distance h. For a uniform distribution of



114 5 ERROR BOUNDSpoints of meshwidth 3h over 
 = [x1; xM ] we associate a scattered pointto each meshpoint, and then this selection of a subset of N � M pointshas a �ll distance of 2:5h and each adjacent pair of points is at least h andat most 5h apart. We then can apply the above bound with � = 1=5 bylocal selection of ` points and an appropriate scaling. If we use a uniformdistribution with spacing Kh, we end up with � = (K � 2)=(K + 2) whichcan be pushed towards 1 for K large. To check the value of C2, we have toassume the worst case, in which some x lies at the boundary, while the nextinterpolation point is 2:5h away, and the interpolation points are at maximaldistance 5h. Then the maximal value of jx� xjj is 2:5h+(`� 1) � 5 �h < 5`hsuch that we have C2 = 5`.The above approach is unfeasible for multivariate cases, because we reliedheavily on the ordering of the points. But it gives us two pieces of usefulinformation: the good news is that we might get along with a quantity C3that does not depend on h, but the bad news is that C3 will crucially dependon the order ` of local polynomial interpolation. We address the two topicsone after another.5.4.3 Independence of hAs we saw in the univariate case, one can expect that the scaling parameterh cancels out in the bounds for C3. To generalize this statement, we repeatthe technique that we already used before:1. If a set X = fx1; : : : ; xMg is given in 
 with �ll distance h, we pick aninteger k � 3 and lay a grid G = khZZd over 
.2. For each point from G \ 
 we pick the nearest data point from X.This yields a subset Y of X of points that are only mildly scatteredand are at least (k � 2)h apart from each other. We need this toavoid degeneration of the local polynomial interpolation that we wantto construct. Since the diagonal in the unit cube in Rd has length pd,the �ll distance of Y in 
 is at most h(1 + kpd).3. If x 2 
 is given, we pick a selection of points from Y which are nearto x, and the indices of these points de�ne the set Jx(h) occurring inAssumption 5.1.6 (FBAss2).4. The main problem now is to prove that the selection guarantees solv-ability of polynomial interpolation of order `.5. We then evaluate the Lebesgue constants for this local interpolation.



5.4 Lebesgue Constants 115If k is large, the set Y will consist of points that are relatively near to the gridG = khZZd, since they can be only h away from gridpoints. Thus the localinterpolation takes place on data that are slight perturbations of griddeddata. We thus have to study polynomial interpolation on gridded data �rst,and then ask for admissible perturbations.We write multivariate polynomials p 2 IP d̀ as (PolRep)p(x) = Xj�j<` p�x� (5.4.2)with the usual multiindex notation:� 2 ZZd�0; j�j := k�k1; x� := dYj=1 x�jj :The number of data points should equal the number of basis functions, andthus we simply use the data setX d̀ := f � 2 ZZd�0 : j�j < ` g:For d = 2 these are the points (j; k) 2 ZZ2 with 0 � j; k � j + k < ` forminga \triangle" in ZZ2.Lemma 5.4.3 (LemPIG) The set X d̀ is a minimal nondegenerate set in IRdfor polynomials in IP d̀. Thus polynomial interpolation of order ` is uniquelypossible.Proof: Since the dimension of IP d̀ and the number of points in X d̀ agree,it su�ces to prove nondegeneracy. Let p be a polynomial of the form(5.4.2, PolRep) that vanishes on X d̀, and we want to show that p vanisheseverywhere. We do this by induction on the space dimension d, and the cased = 1 is well-known. So we assume that for k < ` all polynomials from IP dkthat vanish on Xdk must be identically zero. Now we extract the variablexd from each of the terms in (5.4.2, PolRep), split x as x = (~x; xd), andrearrange the sum. This yieldsp(x) = p(~x; xd) = `�1Xj=0 pj(~x)xjdwith polynomials pj 2 IP d�1`�j . Setting x = (0; k) for 0 � k < ` we see that(0; k) 2 X d̀ and the univariate polynomialp(0; xd) = `�1Xj=0 pj(0)xjd



116 5 ERROR BOUNDSin IP 1̀ vanishes in the ` distinct points k; 0 � k < `. Thus it is zero as apolynomial in xd, proving pj(0) = 0; 1 � j < `. Looking at p`�1 2 IP d�11 wesee that p`�1 must be zero.Now let us start an inner induction over an integer j = 1; 2; : : : and assumethat we already have proven that p`�j; : : : ; p`�1 are identically zero, and thatall of the pi vanish on Xd�1j . This is precisely what we have proven for j = 1and Xd�11 = f0g. Now �x an arbitrary � 2 Xd�1j+1 nXd�1j . Then j�j = j andwe can form the data points x = (�; k) 2 X d̀ for 0 � k < `� j. Consideringthese points, the univariate polynomialp(�; xd) = `�j�1Xi=0 pi(�)xidmust have vanishing coe�cients, and thus all pi vanish on Xd�1j+1 . Forp`�j�1 2 IP d�1j+1 the hypothesis of the outer induction yields that this poly-nomial vanishes identically, and this �nishes the inner and outer induction.2Now we know that (in a �xed enumeration of X d̀ used for rows as well ascolumns) the matrix with elements �� for �; � 2 X d̀ is nonsingular. It is acontinuous function of the data locations �, and thus it is still nonsingularwhen all the points vary in local balls of some positive radius � 2 (0; 1=2)around the integer points of X d̀. This radius is a function of both d and`, and to give an explicit positive lower bound for it is a formidable task.We neglect this problem now and consider d and ` as �xed, leading to somemysterious, but clearly positive radius � for admissible perturbations.Lemma 5.4.4 (LemPIP) For each space dimension d and each polynomialorder ` there is a positive quantity �(d; `) such that interpolation by polyno-mials in IP d̀ is uniquely possible in all data sets that pick a point in each ofthe balls B�(�) := f y 2 IRd : ky � �k2 � �gfor all � 2 X d̀. The maximum Lebesgue constant for all of these polynomialinterpolation processes, measured on a �xed ball BR of some large radius Rcontaining the set X d̀ is some �nite positive quantity C�3 (d; `; R).Proof: Each pick of points de�nes a nice interpolation problem that hasLagrange basis functions fu�g� depending continuously on the locations ofthe points. Thus also the Lebesgue constant1 + supx2BR X�2X d̀ ju�(x)j



5.4 Lebesgue Constants 117varies (via the u�) continuously with the data locations. Since these varyin a compact set, the Lebesgue constants, as de�ned above, attain a �nitemaximum under variation of the data locations. 2Of course, one could replace the domain BR of \measurement" in theLebesgue constant by any compact set in IRd, but note that the actual upperbound of the Lebesgue constants remains mysterious, and enlarging BR willhave a nasty blow-up e�ect.The next step is the independence of the above situation under shifts andscaling:Lemma 5.4.5 (LemPIS) Let Y � IRd be a data set where interpolation byIP d̀ is uniquely possible, and let fuy(�)gy2Y be the associated Lagrange basissatisfying uy(x) = �xy for x; y 2 Y . If Y is translated by some z 2 IRd andscaled by some h > 0 to go over intoZ := h(Y � z) := f yh := h(y � z) : y 2 Y g;then interpolation in Z is equally possible, using the basis functionsuyh(�) := uy(z + �=h)and yielding the same Lebesgue constants, if the domain of measurement ofthose is translated and scaled accordingly, i.e.: the domain B is transformedinto h(B � y).Proof: The de�nition of the new functions makes sure that they are poly-nomials in IP d̀ and satisfy the Lagrange interpolation property. Looking atthe de�nition of the Lebesgue constant proves the rest. 2We now go back to our data set X = fx1; : : : ; xMg that �lls 
 with a �lldistance h, and we pick points from X that are perturbations of pointsfrom a grid khZZd laid over 
. The perturbations thus stay within h ofthe grid points, while these are kh apart along the axes. Scaling them downby division with kh will bring them to the unit grid Zd, and the scaledperturbations will stay within a radius 1=k. We thus have to make surethat 1=k � �(d; `) holds and that we use a shifted, scaled, and perturbedversion of X d̀ for local interpolation. The point x must lie in the shifted andscaled domain of measurement of the Lebesgue constant. We then can usethe bound C�3(d; `; R) of the Lebesgue constant from Lemma 5.4.4 (LemPIP)for all h, as asserted.



118 5 ERROR BOUNDSThus we are left to determine the constant C2 of Assumption 5.1.6 (FBAss2)that bounds the maximal distance of x in terms of multiples of h to thepoints we use for interpolation. This is no big deal when x is in the interiorof 
 and h is small enough, and we can then get away with something likeC2 = k`pd, the diameter of the cube [0; k`]d. If x lies near the boundaryof 
, we must be more careful, because the boundary could have awkwardoutgoing cusps that take boundary points far away from places where we can�nd enough data from X that lie near the gridpoints of khZZd and allow fullinterpolation up to order `. We make the following assumption:De�nition 5.4.6 (DefICC) A closed compact domain 
 2 IRd withnonempty interior satis�es an interior cone condition, if there is a �xedpositive angle 
 and a �xed height � such that for any boundary point x thereis a cylindrical cone within 
 that has vertex x, angle 
 at the vertex, andheight �.If 
 satis�es an interior cone condition, we can consider coverings of 
 by�ne grids �ZZd, and we see that there is a constant Kc such that for all �that are small enough, i.e. � � �c, any point of 
 is only Kc� away froma grid cell of �ZZd that is completely contained in 
. We apply this for� := kh` � �c and get that any x is at most Kc� = Kckh` away from a fullyinterior cell of sidelength kh` in which we can do the local interpolation.Thus all interpolation points will be at most (Kc + 1)kh`pd away from xand we can use C2 = (Kc + 1)k`pd.We have two restrictions up to now:1=k � �(d; `) and kh` � �c:This yields the conditionsh � hc := �ck` and k � 1�(d; `)which are no problem for �xed values of d; `, and the interior cone conditionon 
. We summarize:Theorem 5.4.7 (LPIT) For given values of d and ` and for a �xed conecondition there are positive constants hc; C2; C3 such that Assumption 5.1.6(FBAss2) is valid for all x in domains 
 � IRd satisfying the cone condition,and for all h � hc. 2Theorem 5.4.7 (LPIT) is useful for all cases where the local approximationuses only a �nite degree `, and where the exact value of the constants does



5.4 Lebesgue Constants 119not matter much. We defer a more detailed analysis to the next lemmas,where we rely on [24](madych-nelson:92-1).To treat the general case, we cite without proof a deep result from[24](madych-nelson:92-1):Theorem 5.4.8 (MNL) Let R be a cube in IRd which is divided into Kdidentical subcubes for some large integer K, and de�ne 
d := 2d(1 + 
d�1)starting with 
1 := 2. Consider arbitrary polynomials p from IP d̀ and assumeK � `
d. Then (MNLBound)kpk1;R � e2d`
dkpk1;Y (5.4.9)holds for any set Y � R that picks a point from each of the subcubes. Inparticular, all these sets Y are IP d̀-nondegenerate.We now bring this into line with Lemma 5.4.4 (LemPIP) and assume ` � 2throughout. We want to let the little subcubes be centered around the pointsof X d̀. If their sidelength is 2� to make balls of radius � safely contained inthe cubes, we have to take (2�)�1 =: M 2 IN and let the large cube beR = [��; `� 1 + �]d. Splitting it into Kd subcubes yields the equation2� = `� 1 + 2�Kwhich leads toK = 1 +M(`� 1); � = `� 12(K � 1) ; M = b`
d � 1`� 1 c:This allows the application of Theorem 5.4.8 (MNL). We �rst check the valueof � as a function of d and `. If we bound M crudely from above by 2
d, weget � � (4
d)�1, which is independent of `.The linear functional �x : p 7! p(x) can be written in the formX�2X d̀ p(z�)u�(x)where we have picked z� from the ball B�(�), and where the u� are theLagrange interpolation polynomials. Then we �x x 2 R and interpolate datasgn (u�(x)) in z� by some polynomial ~p 2 IP d̀ and get the boundX�2X d̀ ju�(x)j = ~p(x) � k~pk1;R � e2d`
d :



120 5 ERROR BOUNDSThus the Lebesgue constant in Lemma 5.4.4 (LemPIP) is bounded by(C3def)C�3 � 1 + e2d`
d : (5.4.10)We now go over to the situation in Theorem 5.4.7 (LPIT). We �x a conecondition and a space dimension. This �xes the constants �c; hc; and Kcfrom the cone condition. The integer k can be chosen as k = 4
d to satisfyk� � 1, and we are left with the condition (hrestr)h � hc = �c4`
d (5.4.11)under which we can use (5.4.10, C3def) and (C2def)C2 = 4(Kc + 1)`pd
d: (5.4.12)Theorem 5.4.13 (LPIT2) The assumption 5.1.6 (FBAss2) can be satis�edfor each compact domain 
 � IRd satisfying an interior cone condition 5.4.6(DefICC) that de�nes positive constants �c; Kc. If 
d is de�ned as in 5.4.8(MNL), the constants C2 and C3 can be bounded by (5.4.12, C2def) and(5.4.10, C3def), respectively, while the polynomial order ` and the �ll distanceh must satisfy (5.4.11, hrestr).5.5 Error Bounds in Terms of Fill Distance(hrhodef) We can now assemble the previous results into bounds of the form(4.6.3, FBound) for the power function from optimal recovery. Together with(4.1.4, EqgSg1) from page 81 this yields error bounds for the reconstructionof functions g from native spaces G. Depending on the situation, we get quiteexplicit bounds for the power function in cases of small space dimensions andpolynomial orders, while for �xed orders and arbitrary space dimension weuse Theorem 5.4.7 (LPIT) to carry the order of the local bounds on thepower functions over to the errors of optimal recoveries, the constants beingmysterious. We list the orders (without the factors) of our L1 bounds on thepower function in Table 6 (TCPDEB), but delay the cases with exponentialconvergence somewhat. The additional data (parameters, domains, smooth-ness, dimension, order) should be looked up from tables 1 (TCPDFct) and 2(TPDFct) on page 19. Note that the actual approximation orders of optimalrecoveries may be better than the squares of these bounds.



5.5 Error Bounds in Terms of Fill Distance 121�(r) L1 Bound of Power Functionr� h�=2r� log r h�=2(r2 + 
2)�=2 exp(�c=h); c > 0e��r2 exp(�c=h2); c > 0r�K�(r) h�(1� r)2+(2 + r) h1=2(1� r)4+(1 + 4r) h3=2Table 6: L1 Bounds of Power Function Based on Lagrange Data (TCPDEB)For radial functions �(x; y) = �(kx�yk2) such that � is Lipschitz continuousaround the origin, we can apply Theorem 5.3.11 (LipConvTh) together withTheorem 5.4.7 (LPIT) to get convergence of the L1 norm of the powerfunction to zero for h! 0. We have used this fact in section 4.4.4 (SecHSE).Unfortunately, the factor jg�S(g)j� in the actual error bound (4.1.4, EqgSg1)still is somewhat mysterious, if we start with a conditionally positive de�nitefunction � and construct the corresponding native space. If, on the otherhand, we have started with G, we are done. But note that these bounds canbe improved, if g satis�es additional conditions. These improvements cannotcome from better bounds on the power function, because we shall see thatour techniques often provide optimal orders with respect to h. They rely ona deeper analysis of the term jg � S(g)j�, and this analysis will be done in5.6 (SecEBStage2) and 5.7 (SecEBStage3).We now discuss the cases of multiquadrics and Gaussians, where we can pushthe polynomial order ` up to in�nity. The overall bound for P 2(x) is given by(5.1.11, FundBound), and we have to insert (5.4.12, C2def), (5.4.10, C3def)and the replacement of h by 2hpd from section 5.2 (SecAERC). The valuesof � and C1 depend on the special case chosen.Let us �rst look at multiquadrics. The bound on P 2(x) then isP 2(x) � 2j�=2j+1c� �1 + e2d`
d�2 �4(Kc + 1)`pd
d�2n �8h2dc2 �nunder the restrictions 8h2d < c2=2 and (5.4.11, hrestr). We now treateverything as �xed except h and ` = 2n � 1. This turns the bound intosomething of the form C4 (C5nh)2n ;



122 5 ERROR BOUNDSand we shall pick n = (` + 1)=2 as a function of h as large as possible, butsuch that the constraintsC5nh � 
 < 1; 4`h
d � �care satis�ed. This works with n = ch�1=2 and some positive constant c.Then the bound becomesC4
c=h = C4 exp(�j log 
jc=h)and proves exponential behaviour for h!1.The Gaussian case is quite similar and can easily be reduced to a bound likeC4 (C5nh)2nn! ;which allows the same treatment. But now we can use the additional n!in the denominator to speed up the convergence. We �rst insert Stirling'sformula (5.4.1, Stirling) into the denominator to cancel an nn factor in thenumerator, introducing some change in the constants C4 and C5. This yieldsC4 �C5pnh�2n ;and we now pick n = ch�2=2 to getC5pnh � 
 < 1:The second restriction, induced by the interior cone condition, cannot besatis�ed in this case. Furthermore, there are problems on bounded domains,because the data points needed for reconstruction at x spread out to distanceO(h`) = O(h�1). This is why our �nal result for Gaussians will only holdfor 
 = IRd and in�nite data sets. We get the boundC4
c=h2 = C4 exp(�j log 
jc=h2)with "Gaussian" exponential behaviour for h!1.Theorem 5.5.1 (GMCEBT) The power functions of Lagrange interpola-tion by multiquadrics and Gaussians have L1 bounds of the form exp(�c=h)with c > 0 for compact domains 
 � IRd satisfying an interior cone condi-tion. The bound for the Gaussian can be improved to exp(�c=h2) for 
 = IRd.



5.6 Doubling the Approximation Order 1235.5.1 RemarksThe proof of bounds on the power function via polynomial approxima-tion goes back to Duchon [10](duchon:76-1) for thin-plate splines and wassuccessfully generalized by Madych and Nelson [21](madych-nelson:88-1),[24](madych-nelson:92-1). The special cases of lines and triangles were donefor thin-plate splines by Powell [39](powell:93-1).5.6 Doubling the Approximation Order(SecEBStage2) Here we show how the error bounds of the form (4.1.4,EqgSg1) can be improved by adding some assumptions on the function g thatis reconstructed. A third enhancement, based on a localization argument, willfollow in 5.7 (SecEBStage3).We work in the setting of section 3.5.5 (SecCLC) and use local integrationof the square of the error to getkr0(g � S(g))kL2(
0) � kP�(�)kL2(
0)kg � S(g)k�;
for the optimal power function P� and the optimal recovery S(g) of g 2 G
.For any g 2 G
 we can consider the functionC(g) := �Pg + c0r0(g � �Pg) 2 G
:Then we have(Cg; f)�;
 = (c0r0(g � �Pg); f � �Pf)�;
= (r0(g � �Pg); r0(f � �Pf))L2(
0)for all f; g 2 G
. We now de�ne the subspaceH
 := C(G
) � G
of G
 and consider optimal recovery of functions g = C(fg) 2 H
 with fg 2 Gby g� = S(g). The orthogonality (3.1.34, EqOrtho) then implieskg � S(g)k2�;
 = (g � S(g); g � S(g))�;
= (g; g � S(g))�;
= (Cfg; g � S(g))�;
= (r0(fg � �Pfg); r0(g � S(g)� �Pg +�PS(g)))L2(
0)� kr0(fg � �Pfg)kL2(
0)kr0(g � S(g))kL2(
0)� kr0(fg � �Pfg)kL2(
0)kP�(�)kL2(
0)kg � S(g)k�;




124 6 ADVANCED RESULTS ON IRDand this allows to bound kg � S(g)k�;
 nicely bykg � S(g)k�;
 � kP�kL2(
0)kr0(fg � �Pfg)kL2(
0)for all g = Cfg 2 H. If we combine this with (4.1.4, EqgSg1), we getTheorem 5.6.1 (EBStage2T) For optimal reconstruction of functions g 2H � G with g = Cfg by optimal recovery functions S(g) we have the improvederror boundj(g � S(g))(x)j � P (x)kPkL2(
0)kr0(fg � �Pfg)kL2(
0)for all x 2 
0.5.6.1 RemarksThe results of 5.6 (SecEBStage2) are from [40](schaback:96-2) and derivedfrom the arguments used in classical spline theory [2](ahlberg-et-al:86-1) toimprove the approximation order via the \second integral relation".5.7 Improvement by Localization(SecEBStage3) Here we use a localization argument from [2](Light-Wayne:96-1) dating back to Duchon [10](duchon:76-1) to get some additional powers ofh for error bounds of optimal recovery via Lagrange interpolation. We delaythe formulation of these results.6 Advanced Results on IRd(SecARRd) Here we apply Fourier transforms in IRd, and derive a series ofresults that require related techniques. These include bounds on the stabilityand error bounds for the multilevel method. The reader should look intosection 12.5 (SecFTRd) for backup material on Fourier transforms.6.1 Transforms of Translation-Invariant Basis Func-tions(SecCNST) In section 3.2.4 (SecIP) we have seen that on IRd we can restrictourselves to cases where the recovery problem is translation-invariant or eveninvariant under Euclidean rigid-body transformations. In the �rst case, theconditionally positive de�nite functions �(x; y) take the form �(x�y), whilein the second they are radial: �(x; y) = �(kx�yk2). We start with the moregeneral case, but we restrict ourselves to unconditionally positive de�nitefunctions �rst.



6.1 Transforms of Translation-Invariant Basis Functions 1256.1.1 Unconditionally Positive De�nite FunctionsSo let us now consider a function � : IRd ! IR with �(��) = �(�) such that	(x; y) := �(x � y) is a candidate for an unconditionally positive de�nitefunction on IRd. We want to look at conditions that allow us to conclude that� actually is unconditionally positive de�nite on IRd. Having the Gaussian inmind as a prominent example, we assume � to have a Fourier transform b� onIRd such that the Fourier inversion formula holds. We now want to constructthe native space G by the techniques of section 3.3 (SecNS). Clearly, therepresentation (3.3.2, DefBil) of the bilinear form (�; �)� can now be rewrittenas (DefBil2)(�X;M;�; �Y;N;�)� = (2�)�d=2 ZIRd b�(!) MXj=1 NXk=1�j�kei(xj�yk)�!d!: (6.1.1)The functions F (�X;M;�) have Fourier transformsdF (�X;M;�)(!) = b�(!) MXj=1�je�xj �!= b�(!)b�X;M;�if we use the de�nition of Fourier transforms of functionals from Example12.5.20 (Exlxma). This allows the shorthand representations(�X;M;�; �Y;N;�)� = (2�)�d=2ZIRd b�(!) d�X;M;�(!) d�Y;N;�(!)d!(F�X;M;�; F�Y;N;�)� = (2�)�d=2ZIRd 1b�(!) dF�X;M;�(!) dF�Y;N;�(!)d!:We still have to add some arguments that convince us that the above repre-sentations de�ne positive de�nite bilinear forms. Equation (6.1.1, DefBil2)yields (DefNorm2)k�X;M;�k2� := (2�)�d=2 ZIRd b�(!) ������ MXj=1�jeixj �!������2 d!; (6.1.2)and we see that nonnegativity of this integral is closely related to nonneg-ativity of b�. Starting from positive de�niteness of �, it is hard (or evenimpossible) to deduce positivity almost everywhere of b� from this equation.



126 6 ADVANCED RESULTS ON IRDConversely, in all known cases the Fourier transform b� can directly proven tobe nonnegative almost everywhere anyway. Then the representation (6.1.1,DefBil2) yields a useful su�cient condition for positive de�niteness:Theorem 6.1.3 (NCPDFTT) If � : IRd ! IR is absolutely integrablewith a real-valued Fourier transform b� that is positive almost everywhere onIRd, then � is even, continuous, and unconditionally positive de�nite on IRd.Proof: From Lemma 12.5.17 (FTLoneLem) we get that b� is continuous andeven, and from (6.1.2, DefNorm2) we see that � is positive semide�nite. Toprove de�niteness, we have to prove � = 0 ifMXj=1�jeixj �! = 0holds almost everywhere on IRd. But then the equation must hold on allof IRd, and we can use the argument of Theorem 12.5.6 (GaussPD) to get� = 0. 26.1.2 Conditionally Positive De�nite FunctionsWe now go over to the treatment of general unconditionally positive de�nitefunctions. To do this, we shall introduce Fourier transforms in a somewhatmore general way that will later save us quite some work. The direct attackis impossible, because some of the most important conditionally positivede�nite functions on IRd are radial functions �(�) = �(k � k2) that growtowards in�nity, e.g.: thin-plate splines �(r) = r2 log r or multiquadrics�(r) = pr2 + c2. These do not have classical Fourier transforms, but sincethey grow at most polynomially, they are tempered functions inK. Thus theyhave generalized Fourier transforms de�ned via the Fourier transforms of thefunctionals that they induce on S. These generalized Fourier transformsare not straightforward to handle and require quite some machinery fromdistribution theory. Two di�erent ways to do this are treated in the Ph.D.theses by A. Iske [18](iske:94-1) and M. Weinrich [45](weinrich:94-1).We go a di�erent way [42](schaback:96-1) by picking a very speci�c set of as-sumptions to start with, and then we can work our way without distributions.We do not even assume � to be a conditionally positive de�nite function; thiswill be a consequence of our assumptions and lead to an important techniqueto prove conditional positive de�niteness for speci�c examples.



6.1 Transforms of Translation-Invariant Basis Functions 127Assumption 6.1.4 (FTAss1) Let � : IRd ! IR be even and continuous.Furthermore, let there be a continuous nonnegative functionb� : IRd n f0g ! IRwhich is positive almost everywhere. It may possibly have an algebraic sin-gularity (PhiSingCond)b�(!) = O(k!k�d��0) (6.1.5)with some real value �0 for ! near zero, and it must have the behavior(PhiInfCond)b� 2 L1 near in�nity: (6.1.6)Then de�ne m := max(0; b�0c) � 0 to get the restriction (BetaZCond)�0 < 2m (6.1.7)that will often occur later. Finally, let the usual bilinear form on P?
 =(IP dm)?IRd be representable by (6.1.1, DefBil2).Theorem 6.1.8 (NCCPDFTT) Under the above assumptions the function�(x� y) is conditionally positive de�nite of order � m on IRd.Proof: Note �rst that the functionals �X;M;� 2 (IP dm)?IRd have Fourier trans-forms with zeros of order at least m in the origin. Thus the integrand in(6.1.1, DefBil2) is of order O(k!k2m�d��0) near zero, and the integral is well-de�ned due to (6.1.7, BetaZCond) and (6.1.6, PhiInfCond). Nonnegativityof b� proves that the bilinear form is positive semide�nite. The rest is as inthe proofs of Theorems 6.1.3 (NCPDFTT) and 12.5.6 (GaussPD). 2The reader should be aware that we did not assume b� to be the usual Fouriertransform. We thus cannot use equations (12.5.2, FT) or (12.5.9, IFT), butwe have the general identityMXj=1 NXk=1�j�k�(xj � yk) = (2�)�d=2 ZIRd b�(!) MXj=1 NXk=1�j�kei(xj�yk)�!d!:that is identical to (6.1.1, DefBil2) and is valid for all functionals in (IP dm)?IRddue to Assumption 6.1.4 (FTAss1). It will nicely serve as a substitute for(12.5.9, IFT) in the form (12.5.10, IFT2), but note that it does not allowsingle point-evaluation functionals in the left-hand side.



128 6 ADVANCED RESULTS ON IRD6.2 Connection to L2(IRd)Assumption 6.1.4 (FTAss1) makes sure that the mappingL : � 7! b�qb�; (IP dm)?IRd ! L2(IRd)is well-de�ned. Indeed, the function L(�) is in L2 near in�nity due to (6.1.6,PhiInfCond), and it is continuous around zero due to (6.1.7, BetaZCond),since b� has a zero of order at least m at the origin.Theorem 6.2.1 Let Assumption 6.1.4 (FTAss1) be satis�ed, and let m beminimal with respect to (6.1.7, BetaZCond). Then the map L extends bycontinuity to clos ((IP dm)?IRd), and it yields an isometry between clos ((IP dm)?IRd)and all of L2(IRd).Proof: It is evident from (6.1.1, DefBil2) that L is isometric, and thus Lextends to clos ((IP dm)?IRd) by continuity. But the density of L( clos ((IP dm)?IRd))in L2(IRd) does not follow from abstract Hilbert space arguments. Wethus need an additional analytic argument. We �rst prove the assertionfor continuous b� with b� > 0 on IRd n f0g.Let some function f 2 L2(IRd) and some " > 0 be given. Then there is acompactly supported C1 function g 2 L2(IRd) such that kf�gk2 � " due toLemma 12.4.5 (FTDC). Now de�ne bu := g=qb� on IRd, where the (possible)singularity of b� at zero does no harm. Clearly û is continuous and compactlysupported, thus in L2(IRd) and u is band{limited, of exponential type, andin L2(IRd). We now invoke the multivariate sampling theorem 8.1.1 (MST)to recover u exactly from its function values on a grid in IRd with spacing h,where h is su�ciently small and related to the support of bu.Thus we have u(x) = Xj2ZZd u(jh) Sincd  x� jhh ! ; x 2 IRdwhere Sincd(x1; : : : ; xd) = dYj=1 sin�xj�xj ;and bu(!) = Xj2ZZd u(jh)eihj�!; ! 2 IRd



6.2 Connection to L2(IRd) 129has the form bu = c�u for the functional�u(v) = Xj2ZZd v(jh)u(jh):We now have to make sure that �u 2 clos ((IP dm)?IRd). If this is done, we are�nished because of L(�u) = g andkf �qb�c�uk2 = kf � gk2 � ":For all p 2 IP dm we have to show that �u(p) = 0. By a standard argument inFourier analysis this requires a zero of order at least m of bu at zero. But ourassumption (6.1.5, PhiSingCond) on b� and the minimality of m in (6.1.7,BetaZCond) imply that bu has a zero of order at least12(d+ �0) > 12(d+ 2m� 2) = m� 1 + d2 ;thus of order � m.We then evaluate the norm formally ask�uk2� = kqb� � c�uk22 = kqb�buk22 = kgk22 <1:Now we can proceed to prove that �u lies in clos ((IP dm)?IRd) by de�ning thefunction f�u(x) := (�u; �x;�)�; x 2 IRdvia the explicit form of the inner product, and using the �niteness of the normk�uk� to show that the de�nition is valid. Then for all �Y;N;� 2 (IP dm)?IRd weget �Y;N;�(f�u) = (�u; �Y;N;�)�and this proves that f�u 2 F . Finally, we get �u = F�1(f�u) by checking(�u; �Y;N;�)� = �Y;N;�(f�u)= (�Y;N;�F�1f�u))�for all �Y;N;� 2 (IP dm)?IRd , and this concludes the proof in case of b� > 0.Now let b� be positive up to a set of Lebesgue measure zero. We cover the setof zeros by intervals Ik, where k varies over some index set K and the totalarea Pk jIkj is less than some given �. Now let b��(!) � b�(!) be a strictly



130 6 ADVANCED RESULTS ON IRDpositive continuous function that di�ers from b� only on the Ik. Then b�� willalso satisfy our assumptions, and we can use (6.1.1, DefBil2) in the form(�; �)�� := (2�)�d=2 ZIRd b��(!)b�(!)b�(!)d!as a de�nition of an inner product, but we do not need �� explicitly.Now we approximate a given f 2 L2(IRd) by some qb�� � b� up to "=2 in theL2 norm, picking a suitable � for each � and ". Thenkf �qb�b�k2 � kf � b�qb��k2 + kb�(qb�� �qb�)k2and kb�(qb�� �qb�)k22 = kb� �qb��(1�qb�=b��)k22� Xk ZIk jb�(!)j2 b��(!)d!:The full integral ZIRd jb�(!)j2 b��(!)d! = kb� �qb��k22can be bounded independent of �, because it approximates kfk22. Thus weare able to pick � small enough to guaranteeXk ZIk jb�(!)j2 b��(!)d! � "=2yielding an overall bound kf �qb�b�k2 � ". 26.3 Characterization of Native SpacesWe now use Theorem 6.2.1 (LCTh) to characterize the native space GIRd for� via L2(IRd). Starting with an arbitrary h 2 L2(IRd) and a �xed IP dm-unisolvent set � � IRd, we mimic the technique of (3.3.15, lf3) to de�ne afunction (fhdef)fh(x) := (bh; L�x;�)L2(IRd): (6.3.1)It is in FIRd, because �fh = (bh; L�)L2(IRd)



6.3 Characterization of Native Spaces 131follows easily from (6.3.1, fhdef) for all � 2 (IP dm)?IRd. We can transform thisequation further into �fh = (bh; L�)L2(IRd)= (L�1bh; �)�= (F�1fh; �)�to see that (FTDef)cfh = qb�bh = qb�LF�1fh (6.3.2)is another way to de�ne cfh. We can rewrite (6.3.1, fhdef) asfh(x) = (2�)�d=2ZIRd bh(!)qb�(!)0@eix�! � QXj=1 pj(x)ei�j �!1A d!= (2�)�d=2ZIRd cfh(!)0@eix�! � QXj=1 pj(x)ei�j �!1A d!where we de�ne cfh := bh �qb�;which is fully consistent with the usual notation for Fourier transforms incase of m = 0. We then getTheorem 6.3.3 The native space GIRd for a conditionally positive de�nitefunction of order m on IRd satisfying Assumption 6.1.4 (FTAss1) coincideswith the space of all functions f on IRd that can be written as (FTfdef)f(x) = (2�)�d=2 ZIRd bf(!)0@eix�! � QXj=1 pj(x)ei�j �!1A d! (6.3.4)plus polynomials from IP dm, and where bf is a function that can be de�ned via(6.3.2, FTDef) and satis�es bf=qb� 2 L2(IRd):The inner product on GIRd can be rewritten on the subspace FIRd as(f; g)� = (2�)�d=2 ZIRd bf(!) � bg(!)b�(!) d!: 2



132 6 ADVANCED RESULTS ON IRDNote that bf is only de�ned for functions in FIRd. In many cases, even with �increasing polynomially towards in�nity, the functions f = g � �IP dmg 2 FIRdfor arbitrary g 2 GIRd will decay su�ciently fast to have classical Fouriertransforms, and then (6.3.4, FTfdef) coincides with the Fourier inversionformula (12.5.10, IFT2). The expression in brackets makes sure that theleft-hand side automatically is (g��IP dmg)(x) if we insert f = g��IP dmg intothe right-hand side. Thus (6.3.4, FTfdef) is nothing else than the Fourierinversion formula modulo polynomials.If we de�ne the mappingM : FIRd ! L2(IRd) f 7! bf=qb�;it is easy to see that�(f) = (Mf;L�)L2(IRd) = ( bf=qb�; b�qb�)L2(IRd) = ZIRd bf b�holds for all � 2 clos (IP dm)?IRd and all f 2 FIRd. Along the same lines ordirectly from (6.3.2, FTDef) we getL =M � Fas expected. Note that (so far) we only have inverse explicit formulae thatallow to calculate f or �(f) from the transforms. The opposite direction isnot explicitly given on its full domain, but rather on the special functionalsand functions of the form �X;M� 2 (IP dm)?IRd and F�X;M�: In particular, wehave (F�X;M�)b(!) = qb�(!)MF�X;M�(!)= qb�(!)L�X;M�(!)= b�(!)b�X;M�(!)= b�(!) MXj=1�je�ixj �!;which nicely agrees with the formula0@ MXj=1�j�(xj � �)1Ab(!) = b�(!) MXj=1�je�ixj �!we would expect from classical Fourier transforms. But note that the lattercannot be obtained or de�ned termwise, because the single terms do not haveclassical Fourier transforms. Furthermore, both sides still may be singularat the origin.



6.4 Condition Numbers 1336.4 Condition Numbers(SecCNTrans) This section uses Fourier transform techniques to prove resultsconcerning the condition of the matrices that occur in the basic equations(1.7.3, BDef) for optimal recovery. This requires upper bounds for the largest,and lower bounds for the smallest eigenvalue. We start with the latter andrestrict ourselves to the Lagrange case. The bounds should (if possible)should neither depend on the speci�c data locations X = fx1; : : : ; xMg, noron the numberM of data points, but rather on certain real-valued quantitieslike the separation distance (2.1.1, SDDef).6.4.1 Stability Bounds(SecSB) We go back to the setting in section 4.5 (SecCondition) and wantto calculate lower bounds for the smallest eigenvalue � de�ned in (4.5.3,Defsigma) and providing the stability bound (4.5.4, Stab).6.4.2 Narcowich-Ward Technique(SecNWT) We generalize the technique of Narcowich andWard [32](narcowich-ward:91-1) [33](narcowich-ward:91-2) [34](narcowich-ward:92-2) for calculat-ing stability bounds, but we introduce Fourier transforms right from thestart, which makes it much easier to treat large values of m, the order ofconditional positive de�niteness of �.The starting point is that any conditionally positive de�nite function � oforder m satisfying Assumption 6.1.4 (FTAss1) allows the formula (EqNFT)MXj=1 MXk=1�j�k�(xj � xk) = (2�)�d=2 ZIRd b�(!) ������ MXj=1�jeixj �!������2 d! (6.4.1)for all IP dm{nondegenerate sets X = fx1; : : : ; xMg and all vectors � 2 IRMsuch that �X;M;� is a functional that annihilates IP dm. This is just anotherway of writing (6.1.1, DefBil2).The left{hand side of (6.4.1, EqNFT) is the quantity �TAX;�� that we wantto bound from below, and we can do this by any minorant b	 on IRd n f0g ofb� that satis�es (EqPhiPsi)b�(!) � b	(!) on IRd n f0g (6.4.2)



134 6 ADVANCED RESULTS ON IRDand that itself leads to a similar quadratic form (EqPsiQF)MXj=1 MXk=1�j�k b	(xj � xk) = (2�)�d=2 ZIRd b	(!) ������ MXj=1�jeixj �!������2 d! (6.4.3)for another basis function b	 and a weaker constraint on � 2 IRM (or noneat all). Furthermore, there should be an easy lower bound�TAX;	� � �k�k22for the left{hand side �TAX;	� of (6.4.3, EqPsiQF). Then clearly for all� 2 IRM that are admissible,�TAX;�� � �TAX;	� � �k�k22;as required. The basic trick of Narcowich and Ward now is to make AX;	diagonally dominant, while b	 is obtained by chopping o� b� appropriatelynear in�nity.Before we proceed any further, here is the main result:Theorem 6.4.4 (ThNWLB) Let � be a conditionally positive de�nite func-tion on IRd that satis�es Assumption 6.1.4 (FTAss1). Furthermore, letX = fx1; : : : ; xMg � IRd be any set of Lagrange data locations having sepa-ration distance q := min1�i6=j�M kxi � xjk2:With the function (EqDefPhi0)�0(r) := infk!k1�2r b�(!); (6.4.5)the smallest eigenvalue � of the quadratic form associated to the matrixAX;� = (�(xj � xk))1�j;k�M ;restricted as usual to the subspace of IRM that contains the coe�cient vectors� of functionals �X;M;� 2 P?
 has the lower bound (EqCLB)� � 12 �0(K)� (d=2 + 1)  Kp2!d (6.4.6)



6.4 Condition Numbers 135for any K > 0 satisfying (EqKBound)K � 4q �2��2 (d=2 + 1)� 1d+ 1 (6.4.7)or, a fortiori, (EqKBound2)K � 9:005 dq : (6.4.8)Proof: We start with any K > 0 and the characteristic function�K(x) = 8<: 1 kxk2 � K0 else 9=;of the L2 ball BK(0) in IRd with radius K. Then we de�neb	(!) := b	K(!) := �0(K)� (d=2 + 1)Kd �d=2 (�K � �K)(!)and immediately see that the support issupp ( b	K) = nx 2 IRd : kxk2 � 2Ko =: B2K(0):We now use the formula (12.3.3, EqVolBall) for the volume of the unit ballto get the L1 boundk�K � �Kk1 � vol(BK(0)) = Kd �d=2� (d=2 + 1)via the usual convolution integral. We adjusted the factors in the de�nitionof b	 to guarantee (6.4.2, EqPhiPsi) on all of IRd.This is part of what we wanted, but we still have to evaluate 	 itself or atleast to show diagonal dominance of AX;	. The radial basis function 	Kcorresponding to b	K is obtained via the inverse Fourier transform as��K(x) = ��1(�=K)(x)= Kd ��1(Kx)= Kd(Kkxk)�d=2 Jd=2(K � kxk2)=  Kkxk!d=2 Jd=2(K � kxk2)



136 6 ADVANCED RESULTS ON IRDusing (12.5.5, EqFTScale) and (9.2.3, EqFTCharF). Then we apply (12.5.3,EqFTC) to the convolution to get	K(x) = �0(K)� (d=2 + 1)K�d��d=2(�K � �K)_(x)= �0(K)��d2 + 1� 2d=2kxk�dJ2d=2(K � kxk):Equation (12.3.16, EqJsqInfty) yields	K(0) = �0(K)� (d=2 + 1)  Kp2!dand we assert diagonal dominance of the quadratic form in (6.4.3, EqPsiQF)by a suitable choice of K. We have�TAX;	� � k�k220BB@	K(0)� max1�j�M MXk=1k 6=j	K(xj � xk)1CCAby Gerschgorin's theorem, and the �nal bound will be of the form� � 12	K(0) = �0(K)2� (d=2 + 1)  Kp2!d;because we shall choose K such that (EqCBGer)max1�j�MXk=1k 6=j	K(xj � xk) � 12	K(0): (6.4.9)This is done by a tricky summation argument of Narcowich and Ward[35](narcowich-ward:92-1) using (12.3.15, EqJsqBound) which proves (6.4.9,EqCBGer) for K satisfying (6.4.7, EqKBound). Since the technique is niceand instructive, we repeat it here in full detail.To proceed towards diagonal dominance of the matrix, we should �x apoint xj 2 X = fx1; : : : ; xMg and exploit the observation that many of thedistances xj � xk to the remaining points should be large, if the separationdistance q > 0 does not let two points to be too near to each other. But thenumber of far-away points will strongly depend on the space dimension d,and we need a precise argument to put the above reasoning on a solid basis.



6.4 Condition Numbers 137To this end, de�ne the setsEn := f xk 2 X : nq � kxj � xkk2 < (n+ 1)q gfor all n 2 IN and observe that E1 is empty due to the de�nition of theseparation distance q, which implieskxj � xkk2 � 2q for all 1 � j 6= k �M:Now we can put a little ball Bq(xk) of radius q around each of the xk 2 En.Any two of these balls cannot overlap due to the de�nition of q. Since noneof the xk is farther away from xj than (n + 1)q, the balls are all containedin the ball B(n+2)q(xj) of radius (n+ 2)q around xj. But all of the xk are atleast nq away from xj, such that their surrounding balls cannot intersect thesmaller ball B(n�1)q(xj) around xj of radius (n� 1)q. Adding their volumesusing (12.3.3, EqVolBall) we get the boundjEnj qd�d=2�(1 + d=2) � (q(n+ 2))d�d=2�(1 + d=2) � (q(n� 1))d�d=2�(1 + d=2)jEnj � (n+ 2)d � (n� 1)d:for the number jEnj of elements of En. If both terms on the right-hand sideare expanded with the binomial formula, the leading positive term is 3nd�1,and all the terms must combine into powers of n with nonnegative factors.Thus we arrive at jEnj � 3nd�1:For points xk 2 En we can bound the values of 	 via (12.3.15, EqJsqBound)as follows:	K(xj � xk) = �0(K)��d2 + 1� 2d=2kxj � xkk�dJ2d=2(K � kxj � xkk)= �0(K)��d2 + 1� 2d=2K�1kxj � xkk�d�1�(K � kxj � xkk2)J2d=2(K � kxj � xkk)� �0(K)��d2 + 1� 2d=2K�1((n� 1)q)�d�12d+2�= 	K(0) 4K(n� 1)q!d+1 ��1�2 �d2 + 1� :Now it is time to do the summation over all k 6= j, and this summation can



138 6 ADVANCED RESULTS ON IRDbe done by summing the points in the sets En. This yieldsXk 6=j	K(xj � xk) = 1Xn=2 Xxk2En	(xj � xk)� 	K(0) 4Kq!d+1 ��1�2 �d2 + 1� 1Xn=2 3nd�1(n� 1)�d�1� 	K(0) 4Kq!d+1 ��1�2 �d2 + 1� 6 1Xn=2(n� 1)�2� 	K(0) 4Kq!d+1 ��1�2 �d2 + 1��2= 	K(0) 4Kq!d+1 ��2 �d2 + 1�� 12	K(0)if we choose K according to (6.4.9, EqCBGer).It remains to show that (6.4.8, EqKBound2) implies (6.4.7, EqKBound). Weuse a variation of Stirling's formula in the form�(1 + x) � p2�xxxe�xe1=12x; x > 0to get 2��2 (d=2 + 1) � 2�2dd+1(2e)�de1=3d;(2��2 (d=2 + 1)) 1d+ 1 � d2e �4e�2� 1d+ 1 e 13d(d+ 1)� d �pe � e1=6 � d � 2:2511such that K � 9:005qdis satisfactory for all cases. 2We now want to look at the speci�c cases for applications. From (6.4.6,EqCLB) and (6.4.7, EqKBound) we see that� = �(q) =� O �q�d�0(cd=q)�with some positive constant c. Thus we only need to look at the decay ofthe Fourier transforms to get the asymptotics of � with respect to q ! 0,



6.5 Error Bounds 139keeping the space dimension d �xed. Comparison with Table 10 (TFT) thenyields the results of Table 7 (TCPDC).�(r) Lower Bound in O form for q ! 0r� q�r� log r q�(r2 + 
2)�=2 q�d exp(�c=q); c > 0e��r2 q�d exp(�c=q2); c > 0r�K�(r) q2�(1� r)2+(2 + r) q(1� r)4+(1 + 4r) q3Table 7: Lower Bounds of Smallest Eigenvalue Based on Lagrange Data withSeparation Distance q (TCPDC)
6.5 Error Bounds(SecEBTrans) We now want to apply Fourier transform techniques to geterror bounds. The starting points are the representations (6.1.1, DefBil2) ofthe bilinear form and (5.1.1, DefPuxyLag) of the square of the power functionfor Lagrange data on X = fx1; : : : ; xMg � IRd. These combine into(EqPFFT)P 2u (x) = (2�)�d=2ZIRd b�(!) ������e�ix�! � MXj=1uj(x)e�ixj �!������2 d!= (2�)�d=2ZIRd b�(!) ������1� MXj=1 uj(x)ei(x�xj)�!������2 d! (6.5.1)
and we insert the real numbers uhj (x) into this representation as postulatedin Assumption 5.1.6 (FBAss2). Thus we assume (5.1.3, EqEllgeqm), (5.1.7,uDefJx) to (5.1.10, uDef3) to be satis�ed.There are basically two choices to bound the square factor in the integrandof equation (6.5.1, EqPFFT), and these two are done after splitting the



140 6 ADVANCED RESULTS ON IRDintegration domain into two parts, say I1 and I2. Bounding ei(x�xj)�! by one,we can writeZI1 b�(!) ������1� MXj=1uhj (x)ei(x�xj)�!������2 d! � C3(x; h)2 ZI1 b�(!)d!if the latter integral exists. This usually is no problem, if I1 excludes theorigin in case of conditionally positive de�nite functions of positive order.If I1 is chosen as a function of h to represent a shrinking neighbourhood ofin�nity, say as the complement of the ball B1=h(0), this integral will nicelydecay for h! 0. But since it does not depend on the uj and their polynomialreproduction properties in IP d̀, it does not furnish the relevant part of thebound of the power function.This will be obtained by the second technique. We take the complex-valuedTaylor expansion p` 2 IP 1̀ of eit at zero, and denote the residual by r`(t) =eit � p`(t). Then the polynomial reproduction property (5.1.9, uDef2), whenapplied to the function p`((� � x) � !) for �xed values of x and !, yields1 = p`(0) = p`((x� x) � !) = Xj2Jx(h) uhj (x)p`((xj � x) � !)and we use Example 12.1.4 (ExaExpIma) to bound part of (6.5.1, EqPFFT)by (EqPFFT2)(2�)�d=2ZI2 b�(!) ������ MXj=1 r`((xj � x) � !)������2 d! � (2�)�d=2 (C2(x; h)h)``! ZI2 b�(!)k!k2`d!:(6.5.2)As explained before, the domain I2 is either all of IRd or a large neighbour-hood of zero that grows towards in�nity when h ! 0. Thus the bound in(6.5.2, EqPFFT2) roughly depends on the smoothness of �. It exists on allof IRd, if � has Fourier transformable derivatives of order up to 2`. Notethat (5.1.3, EqEllgeqm) and (6.1.7, BetaZCond) combine into�0 < 2m � 2`;making the integral well-de�ned around zero.Before we look at single examples, let us check the basic two situations, the�rst of which is easily obtained by picking I2 = IRd.



6.5 Error Bounds 141Theorem 6.5.3 (TheEBFT1) If for a speci�c ` � m the integral of d�(�)k �k2` on IRd is �nite, and if Assumptions 5.1.6 (FBAss2) and 6.1.4 (FTAss1)are satis�ed, then there is a bound of order ` for the power function. 2If Theorem 6.5.3 (TheEBFT1) cannot be applied, there typically is a ratherslow algebraic decay of b� at in�nity, e.g.: (EqPhiDecay)d�(!) � C4k!k�d��12 (6.5.4)with a real number �1 that cannot be pushed up to be larger than 2`. Wenow set I2 = B1=h(0) and look at the result for su�ciently small h. The �rstintegral will then be of order �1, while the second consists of the \inner"part of order 2` and the \outer" part, where the asymptotics of b� yield theorder 2`+(�1� 2`) = �1. Due to 2` � �1 we are left with an overall order�1. We summarize:Theorem 6.5.5 (TheEBFT2) Let b� satisfy Assumption 6.1.4 (FTAss1)and have a decay like (6.5.4, EqPhiDecay) with �1 � 2` near in�nity. If thedata satisfy Assumption 5.1.6 (FBAss2) near x, then the power function hasa bound of order �1=2 at x. 2Example 6.5.6 (ExaTPSFT1) The typical case for Theorem 6.5.5 (TheEBFT2)is furnished by thin-plate or polyharmonic functions �(x) = �(kxk2) =kxk�2 log kxk2 or kxk�2 , dependent on � being an even integer or not. In bothcases the Fourier transform in IRd is k!k�d��2 up to multiplicative constants,and we have to set � = �0 = �1 � 2`. Then we get a bound of order �=2 forthe power function, as in section 5.5 (hrhodef).Most other cases are applications of Theorem 6.5.3 (TheEBFT1), becauseone can take 2` < �1 � �0 to get order ` for the pointwise bound of thepower function. The only drawback is the case 2` = �infty, which needs asimilar split as the thin-plate-spline case.Example 6.5.7 (EBSob) Sobolev radial basis functions have the nativespace W k2 (IRd) which can be characterized as the space of functions withclassical Fourier transforms in a weighted L2 space with weight (1 + k � k22)k.Thus the reciprocal of this function must be (up to a factor) the Fouriertransform of the radial function generating the space as a reproducing kernel.We thus can set b� = (1 + k � k22)�k and use Theorem 6.5.3 (TheEBFT1) forany ` < k � d=2 = �1=2. The case ` = k � d=2 is handled again by splittingthe integral. This yields terms of type O(h2k�d)+O(h2`)(O(1)+O(h2k�2`�d)),and we get a pointwise bound of order k � d=2, as expected.



142 7 SPECIAL THEORY6.6 Error Bounds and Scaling(SecError) Here we study the e�ect of scaling a translation-invariant basisfunction � : IRd ! IRd by some factor � in the sense��(x; y) := �((x� y)=�) for all x; y 2 IRd:We assume that �1(x; y) = �(x � y) is conditionally positive de�nite withrespect to some �nite-dimensional space P, and the latter should be invariantunder scaling of arguments. From (3.3.2, DefBil) we see that (DefBildelta)(�X;M;�; �Y;N;�)�� = MXj=1 MXk=1�j�k��(xj; yk)= MXj=1 MXk=1�j�k�((xj � yk)=�)= (�X=�;M;�; �Y=�;N;�)�1 : (6.6.1)
The condition �X;M;� 2 P?
 implies �X=�;M;� 2 P?
 due to the invariance ofP under scaling. Thus we have.....7 Special Theory(SecST) Here we introduce general transforms and generalize the resultsthat we had on IRd. We start with generalizing the notion of a transform inorder to cover some other cases we consider in some detail later:1. Fourier series on [0; 2�]d,2. General expansions in orthogonal series,3. Harmonic analysis on locally compact topological groups.It will turn out that certain results can be formulated for general transforms,while others take advantage of the special structure of the underlying space.7.1 Results for General Transforms(SecT) This section covers the necessary results about general transforms.The applications except for Rd will follow later. We start from the generalsetting and add the speci�c details later.



7.1 Results for General Transforms 1437.1.1 General Transforms(SecGTR) Here we formulate the general notions that apply to all kinds oftransforms that we consider later. The setting is general enough to allowgeneralized transforms in addition to the classical ones. This turns out tobe absolutely necessary even in the simple case of Fourier transforms on IRd.For this reason we do not rely on other sources on transforms.Assume that our basic space G with positive de�nite bilinear form (�; �)� andnullspace P is a space of real-valued functions on some domain 
. Forgetabout �;G, and P for a moment, and concentrate on 
.Assumption 7.1.1 (TAss1) For a speci�c space S of real-valued test func-tions on some domain 
 there is a linear and injective transform mappingg 7! bg : S ! L2;�(D)whose values are complex-valued functions on some domain D that carries ameasure � such that the spaceL2;�(D) := �f : D! C : ZD jf j2d� <1�is well-de�ned and a Hilbert space over C with inner product(u; v)L2;�(D) := ZD uvd� for all u; v 2 L2;�(D):In particular, the measure � can be Lebesgue measure on D = IRd forthe classical multivariate Fourier transform, or Haar measure on a locallycompact topological group, or plain summation for series transforms, e.g.:D = ZZd for Fourier series on 
 = [0; 2�]d. Note that the transform domainD and its measure � are independent of the functions � that we are goingto consider, but they will crucially depend on 
. We shall often write (�; �)2as shorthand for the above inner product, and we use the phrase almosteverywhere to stand for \on D except for a set of �-measure zero".Assumption 7.1.1 (TAss1) is usually satis�ed by proper de�nition of D; �,and the transform mapping. Injectivity of the latter is often proved by aninverse transform.Assumption 7.1.2 (TAss2) The space L2;�(D) contains the image of thespace S of test functions under the transform mapping as a dense subspaceand coincides with its closure under the inner product (�; �)L2;�(D).This makes sure that the test function space S is rich enough to generate allof L2;�(D) by continuity arguments acting on transforms.



144 7 SPECIAL THEORYAssumption 7.1.3 (TAss3) There is a 1-1 correspondence between L2spaces on 
 and D in the sense that there is a measure ! on 
 such that thespaces L2;�(D) and L2;!(
) are isometrically isomorphic under the transformmapping: (Planch)(f; g)L2;!
 := Z
 fgd! = ( bf; bg)L2;�(D): (7.1.4)Identities like (7.1.4, Planch) are usually called Plancherel's equation. Ofcourse, one could use the structure on L2;�(D) to de�ne an inner productfor functions on 
 by using (7.1.4, Planch) without the representation viaintegrals as a de�nition. Thus the actual meaning of Assumption 7.1.3(TAss3) is that this abstract inner product can be respresented as a standardL2 inner product.7.1.2 Spaces Induced by Basis FunctionsWe restrict ourselves to basis functions � that satisfyAssumption 7.1.5 (PFTAss1) The conditionally positive de�nite function� : 
�
! IR has an associated real-valued nonnegative function b� whichis de�ned and positive almost everywhere on the transform domain D.For reasons to become apparent later, we do not require b� to be the imageof � under the transform mapping, since we shall encounter cases where �is not in the domain of the transform. One should rather consider (b�)�1 asa weight function on D. But there will also be cases where actually b� is thetransform of �, thus the notation. The relation between � and b� will beclari�ed after introducing some additional notation.We use (b�)�1 as a weight function to de�ne the operatorL� : g 7! bgqb� :To turn it into a continuous map with image in L2;�(D), we restrict its domainto the subspace S� := fu 2 S : L�u 2 L2;�(D)gof the space S of test functions on D. We now can de�ne an inner product(PTIP)(f; g)� = ZD bf(b�)�1bgd� (7.1.6)



7.2 Theory on the Torus using Fourier Series 145on all f; g 2 S�.We are now ready to link b� to � and its native space G = P + F by therequirementAssumption 7.1.7 (PTAss2) The closure of S� under the inner product(7.1.6, PTIP) coincides with the Hilbert space F .Then the mapping L� can be identi�ed with its continuous extension to allof F , and it can be further extended to G by de�ning it as being zero on P.The image of F under L� is a closed Hilbert subspace of L2;�(D), and weshall require some additional work in special cases to proveAssumption 7.1.8 (PTAss3) The mapping (LSurj)L� : G ! L2;�(D) (7.1.9)as the canonical extension of L�(g) := bgqb�for g 2 S� is surjective.The extension allows to de�ne a generalized transform on the space G viabg := qb�L�(g);and these are by de�nition in the weighted L2 spaceL2;�;1=b�(D) := ( u : ZD ju(!)j2b�(!) d�(!) <1) :7.2 Theory on the Torus using Fourier Series7.3 Theory on Spheres using Expansions7.4 Lower Bounds for Eigenvalues(SecLBE) Here we proceed to prove lower bounds of the form (4.6.4,GBound) for the smallest eigenvalue of the matrix occurring in optimal re-covery problems with Lagrange data. We had to postpone them until now,because they require transforms.



146 9 CONSTRUCTION OF POSITIVE DEFINITE FUNCTIONS7.5 Generalizations of Results Using Transforms8 Theory on GridsUsing Fourier transforms, we treat the case of gridded data hZZd here.8.1 Sampling TheoryTheorem 8.1.1 (MST) Classical Sampling Theorem......8.2 Strang-Fix Theory8.3 Application to Radial Basis Functions8.4 Shift Invariant Spaces9 Construction of Positive De�nite Functions(SecCCPD) This section is intended to give the proofs of conditional positivede�niteness of the classical radial basis functions. We include a toolboxof operators on radial functions that allow the construction of compactlysupported positive de�nite functions. Except for the �rst subsection, weshall rely on properties of Fourier transforms as compiled in section 12.5(SecFTRd).9.1 General Construction Techniques(SecGCT) This section is planned to give an overview of methods for theconstruction of new conditionally positive de�nite functions from existingones. For the time being, we restrict ourselves to translation-invariant casesin IRd.9.1.1 Simple Cases of Positive Semide�nite Functions(SecSCPSDF) Let us start with the function��(x; y) := cos((x� y) � �);



9.1 General Construction Techniques 147where � 2 IRd is �xed and x � � stands for the inner product on IRd. Usingthe terminology of (3.3.2, DefBil) on page 55, we get(�X;M;�; �Y;N;�)�� = MXj=1 NXk=1�j�k cos((xj � yk) � �)= MXj=1 NXk=1�j�k cos(xj � �) cos(yk � �) + sin(xj � �) sin(yk � �)= 0@ MXj=1�j cos(xj � �)1A NXk=1 �k cos(yk � �)!++0@ MXj=1�j sin(xj � �)1A NXk=1 �k sin(yk � �)!and this is a well-de�ned bilinear form which is positive semide�nite becauseof (�X;M;�; �X;M;�)�� = 0@ MXj=1�j cos(xj � �)1A2 + 0@ MXj=1�j sin(xj � �)1A2 :If we allow complex-valued functions temporarily, we can generalize the abovecase to ��(x; y) = ei(x�y)�� ;which yields a positive semide�nite sesquilinear form with(�X;M;�; �X;M;�)�� = ������ MXj=1�jeixj �� ������2 :These quadratic forms are not positive de�nite, if � happens to be a zero ofthe analytic function �X;M���(�; z) = MXj=1�jeixj �z;but we shall overcome this drawback by integration over �.9.1.2 Elementary Operations(SecCTElOps) It is very easy to see that (conditionally) positive (semi-)de�nite functions on 
 form a cone in the space of all functions on 
 � 
.In particular, if � and 	 are (conditionally) positive (semi-) de�nite, so are



148 9 CONSTRUCTION OF POSITIVE DEFINITE FUNCTIONS��+�	 for �; � > 0. Furthermore, if a family �� of (conditionally) positive(semi-) de�nite functions can be integrated against a positive function w(�),the result �(x; y) := Z w(�)��(x; y)d�will again be (conditionally) positive (semi-) de�nite.9.1.3 Autocorrelation Method(SecCTAut) If we cannot start with a (conditionally) positive (semi-) de�nitefunction but have an arbitrary function 	 2 L2(IRd), we can form theautocorrelation function�(x; y) := ZIRd 	(x� z)	(y � z)dz:This always yields a symmetric positive semide�nite function which even ispositive de�nite, if all translates �(xj � �) for di�erent points xj are linearlyindependent in L2(IRd).9.1.4 Integration Method(SecCTInt) The previous method easily generalizes for any 
. For anyfunction 	 on 
� � one can formally consider�(x; y) := Z�	(x; �)	(y; �)w(�)d�with a positive weight function w on �. If the integral is well-de�ned, theresult will be a symmetric positive semide�nite function on 
.9.2 Construction of Positive De�nite Radial Functionson IRd(SecCTPDRF) This subsection contains tools from [47](wu:95-2) as general-ized in [43](schaback-wu:95-1) for the construction of positive de�nite radialfunctions on IRd. We start with the standard reduction of d-variate Fouriertransforms of radial functions to Hankel transforms of univariate functions.Introducing t = r2=2 as a new variable, two such transforms for di�erentspace dimensions are related to each other by a simple univariate di�erentialor integral operator that preserves compact supports. This fundamental trickof Z. Wu then opens up the way for the easy derivation of various compactlysupported radial basis functions.



9.2 Construction of Positive De�nite Radial Functions on IRd 1499.2.1 Hankel Transforms(SecHT) We assume a radial function �(�) = �(k � k2) to be given such that� : IR>0 ! IR has some decay towards in�nity that we are going to quantifylater. Let us formally look at the Fourier transform formula (12.5.2, FT) andsimplify it, using radiality, and introducing polar coordinates for x:b�(!) = (2�)�d=2ZIRd �(x)e�ix�!dx= (2�)�d=2ZIRd �(kxk2)e�ix�!dx= (2�)�d=2Z 10 �(r)rd�1 Zkyk2=1 e�irk!k2y� !k!k2 dydr:This contains the function F (rk!k2; d) de�ned in (12.3.5, EqDefFtd) by theintegral F (t; d) := Zkyk2=1 e�ity�zdyfor t � 0 and some kzk2 = 1; z 2 IRd. Using its representation (12.3.7,EqFtdRep) via a Bessel function, we get the very important equation(EqFTR)b�(!) = (2�)�d=2�d�2Z 10 �(r)rd�1 �(d�12 )�(12)(rk!k2=2)(d�2)=2J(d�2)=2(rk!k2)dr= k!k�(d�2)=22 Z 10 �(r)rd=2J(d�2)=2(rk!k2)dr: (9.2.1)that allows the Fourier transform of a radial function to be written as aunivariate Hankel transform. Equation (9.2.1, EqFTR) implies that theFourier transform of a radial function � is again a radial function. It holdsalso for d = 1, as can be proven by direct calculation and (JBh)r �2z J�1=2(z) = cos zz : (9.2.2)This equation is not directly compatible with (12.3.6, JBF), because thelatter does not exist for � = �1=2. But we can use the usual power seriesrepresentation (12.3.8, JBFP) of Bessel functions to get (9.2.2, JBh) from(12.3.10, JBh2).We conclude this section by evaluating the Fourier transform of the charac-teristic function �1 of the unit ball in IRd. This is needed in the proof of



150 9 CONSTRUCTION OF POSITIVE DEFINITE FUNCTIONSTheorem 6.4.4 (ThNWLB). In particular, we apply (12.3.14, CSPnuFT) andget (EqFTCharF)c�1(!) = k!k�(d�2)=22 Z 10 rd=2J(d�2)=2(rk!k2)dr= k!k�d=22 Jd=2(k!k2): (9.2.3)Considered as a univariate radial function, this is an entire analytic functionof exponential type that we shall meet again in the next section.9.2.2 Change of Variables(SecCTHTCV) We now introduce t = r2=2 as a new variable, writing aradial basis function � as (EqCHV)�(�) = �(k � k2) = f(k � k22=2); (9.2.4)and we shall use Latin characters f; g; : : : to distinguish the transformedfunctions from the original ones �;  ; etc. Note that going over from � to �and further to f loses the information on the dimension of the space that wewant to work on. But we can take advantage of this loss and write dimension-dependent operations like Fourier transforms as univariate operations with ascalar parameter d.We keep the dimension d in mind and rewrite the d-variate Fourier transformequation (9.2.1, EqFTR) in terms of the transformed function f to getb�(!) = k!k� d�222 Z 10 f(s2=2)sd=2J d�22 (s � k!k2)ds= Z 10 f �s22 ��s22 � d�22 �s � k!k22 �� d�22 J d�22 (s � k!k2)s ds= Z 10 f �s22 ��s22 � d�22 H d�22  s22 � k!k222 ! s dswith the functions J� and H� de�ned by�z2 ��� J�(z) = H�(z2=4) = 1Xk=0 (�z2=4)kk!�(k + � + 1)for � 2 C as in (12.3.9, EqHnuDef). If we substitute t = s2=2, we �nd



9.2 Construction of Positive De�nite Radial Functions on IRd 151(EqHnuProp)b�(!) = Z 10 f(t)t d�22 H d�22  t � k!k22 ! dt=: �F d�22 f� (k!k2=2) (9.2.5)with the general operator (EqFnuGen)(F�f)(r) := Z 10 f(t)t�H�(tr)dt: (9.2.6)This operator is formally de�ned for all � > �1 and su�ciently nice functionsf , but we can extend it to all � 2 IR, if we omit terms in the series of H� thathave a singularity of the Gamma function in their denominator. However,we want to check its domain of de�nition with respect to functions f on IR>0for � > �1. Near zero, the function f(t)t� should be absolutely integrable,because the analyticity of H� causes no problems at zero. For large � thisallows a moderate singularity of f at zero. Near in�nity we have to checkthe decay of H�. But since the Bessel functions J� have a O(t�1=2) behaviourfor t ! 1 due to (12.3.18, EqBFBound2), we see that H�(t) decays liket��=2�1=4. Thus we require integrability of f(t)t�=2�1=4 at in�nity for � > �1.Since we do not need the weakest conditions, we can simply assume (Eqbb)f(t)t� 2 L1(IR>0): (9.2.7)Note that both F� and H� generalize to arbitrary � 2 IR, provided thatcertain restrictions on f like (9.2.7, Eqbb) hold. Furthermore, by symmetryof radial functions and our de�nition of Fourier transforms we haveF�1d�22 = F d�22 for d 2 INon su�ciently smooth functions with su�cient decay. We shall see laterthat this generalizes to F�1� = F� for all � 2 IR, wherever both operatorsare de�ned. Please keep in mind that the parameter � is related to thespace dimension d via � = (d � 2)=2. We shall work with � instead ofd for notational simpli�cation. Furthermore, we consider a space Srad oftempered radial functions. It could be de�ned as a subspace of the spaceS of d-variate tempered test functions, comprising all radial test functionsafter introducing kxk22=2 as a new variable. However, we prefer to de�ne it asthe space of real-valued functions on [0;1) that are in�nitely di�erentiable



152 9 CONSTRUCTION OF POSITIVE DEFINITE FUNCTIONSsuch that all derivatives vanish faster than any polynomial at in�nity. Takingderivatives of (9.2.4, EqCHV), one can easily see that this yields a subspaceof radial test functions on IRd for all space dimensions d. Conversely, anyradial test function � in the form (9.2.4, EqCHV) yields a function f that isin Srad. To see this one can proceed inductively, using@m@!mj �(!) = f (m)(k!k22=2)!mj + lower derivatives with polynomial factors:Thus the two notions of S coincide, and each radial function which yields atest function for a speci�c space dimension will provide a test function forany dimension. Thus Srad is the proper space to de�ne the operators F� on,and it clearly contains e�r, which can easily proven to be a �xed point of anyF�, using the de�nitions (12.3.9, EqHnuDef) of H� and (12.3.1, GammaDef)of the Gamma function.9.2.3 Calculus on the Hal
ine(SecCoHL) In the space Srad we can introduce a quite useful generalizationof the classical calculus operations. We start with the family of operators(EqIaDef)I�(f)(r) := Z 10 f(s)(s� r)��1+�(�) ds (9.2.8)on Srad for all � > 0. The simplest special case isI1(f)(r) := Z 1r f(s)dswith the inverse I�1(f)(r) := �f 0(r):Note that this operation implies that the resulting function vanishes at in�n-ity, and thus there is no additive constant in the integration. Furthermore,the identity Id = In1 � In�1is Taylor's formula at in�nity, as follows from (9.2.8, EqIaDef). The identity(12.3.2, EqGxy) allows a direct proof of the property (EqIab)I� � I� = I�+� (9.2.9)



9.2 Construction of Positive De�nite Radial Functions on IRd 153for all �; � > 0 by application of Fubini's theorem. Di�erentiation andintegration by parts implyIn�1 � I� = I��n 0 < � < nIn+� � In�1 = I� � > 0; n > 0:By I� = I� � In � In�1 = In � I� � In�1 we getIn�1 � I� = I� � In�1;and this su�ces to prove that (9.2.9, EqIab) holds for all �; � 2 IR if wede�ne I0 := IdI�n := In�1; n > 0I� := I��b�c � Ib�cfor the remaining cases of �. Altogether, we haveTheorem 9.2.10 (TheIab) The operators I� on Srad form an abelian groupunder composition which is isomorphic to IR under \+" via � 7! I�.Proof: The remaining things are easy to prove using the above rules. 2Let us do some simple examples of di�erentiation and integration of fractionalorder. The independent variable will be denoted by t, and we indicate thedomain of validity of the di�erent cases, because we do not restrict ourselvesto tempered radial functions.I�(f(t+ x))(r) = I�(f(t))(r + x) � 2 IR; x � 0I�(f(tx))(r) = x��I�(f(t))(rx) � 2 IR; x � 0I�(e�st)(r) = s��e�sr � 2 IR; s > 0I�(t���(�))(r) = r�(���)�(� � �) � > 0; � < �I�((x + t)���(�))(r) = (x+ r)�(���)�(� � �) � > 0; � < �; x > 0I�  (s� t)��1+�(�) ! (r) = (s� r)�+��1+�(� + �) � > 0; � + � > 0We shall make speci�c use of the \semi-integration" operator and its inverse,the \semi-di�erentiation", as given by (EqDefI12)I1=2(f)(r) = Z 1r f(s)q�(s� r)dsI�1=2(f)(r) = �Z 1r f 0(s)q�(s� r)ds= I1=2 � I�1(f)(r); (9.2.11)



154 9 CONSTRUCTION OF POSITIVE DEFINITE FUNCTIONSthat are inverses of each other.A very simple representation of the operators I� is possible via the Laplacetransform (EqLapDef)L(')(r) := Z 10 '(s)e�rsds (9.2.12)which exists classically for any continuous function ' on [0;1) that grows atmost polynomially towards in�nity. For the time being, we ignore the moregeneral de�nitions of Laplace transforms and observe that the action of I�can be written down as I�(L(')(�)) := L('(�)(�)��);where all real � are formally possible (provided that ' behaves nicelyenough).9.2.4 Basic Transitions(SecBT) The main advantage of Srad and the de�nition (9.2.6, EqFnuGen) ofthe radial Fourier transform using (9.2.5, EqHnuProp) is that we can compareFourier transforms for various dimensions, while working on a simple spaceof univariate functions. But the most surprising fact, as discovered by Wu,shows up when we simply take the derivative of F�(f)(r). We use (12.3.11,EqHnuDer) to get (EqDFF)� ddrF�(f)(r) = (I�1 � F�)(f)(r)= � ddr Z 10 f(t)t�H�(rt)dt= �Z 10 f(t)t� ddrH�(rt)dt= Z 10 f(t)t�+1H�+1(rt)dt= F�+1(f)(r):
(9.2.13)

Going back to � = (d�2)=2, we see that the (d+2)-variate Fourier transformof a radial function after the substitution (9.2.4, EqCHV) is nothing else thanthe negative univariate derivative of the d-variate Fourier transform after



9.2 Construction of Positive De�nite Radial Functions on IRd 155(9.2.4, EqCHV). We shall generalize the above identity later to I��F� = F���onR, but we already know that I1�F� = F�+1 allows to proceed from (d+2)-variate radial Fourier transforms to d-variate Fourier transforms by univariateintegration.
Let us apply (12.3.12, EqHnuDerNu) to get another identity on temperedfunctions: (EqFIF)

F�(�f 0)(r) = Z 10 �f 0(s)s�H�(sr)ds= Z 10 f(s)s��1H��1(sr)dsdt= = F��1(f)(r): (9.2.14)
This will generalize to F� � I� = F�+� and is a trivial consequence of I� �F�+� = F� and F 2� = Id, if the latter holds in general.
Note that in both cases we have operators that preserve compact supports.The integral operator even preserves nonegativity (it is a monotone op-erator). The explicit construction of compactly supported radial functionsrelies heavily on these features. But we also want to proceed from d-variateFourier transforms to (d + 1)- or (d � 1)-variate Fourier transforms. Thiswill be achieved by the operator I1=2 and its inverse from (9.2.11, EqDefI12).We shall treat this problem in general, comparing two arbitrary instances F�and F�.



156 9 CONSTRUCTION OF POSITIVE DEFINITE FUNCTIONS9.2.5 Identities for Transforms, First Version(SecIfT1) We can easily evaluate the action of the Fourier operator on theLaplace transform asF�(L('))(r) = Z 10 s�H�(sr) Z 10 '(t)e�stdtds= Z 10 '(t) Z 10 s�H�(sr)e�stdsdt= Z 10 '(t)t���1 Z 10 x�H�(xr=t)e�xdxdt= Z 10 '(t)t���1e�r=tdt= Z 10 '(1=s)s��1e�srds= L ('(1=�)(�)��1) :Then, again as formal operations,F�(L('(�))) = L ('(1=�)(�)��1)= I���L ('(1=�)(�)��1)= I���F�(L('(�));F�(F�(L('(�)))) = F� (L ('(1=�)(�)��1))= L ('(�)(�)��+1(�)��1)= I���(L('(�)));as expected. Note that this implies F 2� = Id for all �. All of these identitiesare valid at least on Laplace transforms of functions ' that vanish faster thanany polynomial at zero and at in�nity, but continuity arguments can be usedto enlarge the scopes.9.2.6 Identities for Transforms, Second Version(SecIfT2) The previous section showed that the identityF� � F� = I���holds for all �; � 2 IR on a small space of functions, and where I� is anoperator that roughly does �-fold integration for � 2 IR. We now want tomake this more precise and explicit. In particular, we assert F 2� = Id for all�, which we only know for � 2 12ZZ>�2. Furthermore, we want to use ourexplicit representations for the operators I�.



9.2 Construction of Positive De�nite Radial Functions on IRd 157To proceed towards inversion of the operator F� , let us start calculatingthe Fourier transform of the simplest compactly supported function, i.e.: atruncated power. The outcome is somewhat surprising, because we run intothe function H� again:Lemma 9.2.15 (Leml2) For � > � > �1 and all s; r � 0 we haveF�  s��(s� �)����1+�(� � �) ! (r) = H�(rs):Proof: We directly calculate the assertion and use (12.3.13, JBI) from page190. In detail, F�  s��(s� �)����1+�(� � �) ! (r)= Z 10 t� s��(s� t)����1+�(� � �) H�(tr)dt= s���(� � �) Z s0 t�(s� t)����1H�(tr)dt= s���(� � �) Z s0 t�(s� t)����1J�(2prt)(rt)��=2dt;and by substitution t = su2, we get= s���(� � �) Z 10 s�u2�s����1(1� u2)����1J�(2prsu)(rsu2)��=22sudu= 2(rs)��=2�(� � �) Z 10 u�+1(1� u2)����1J�(2prsu)du= 2(rs)��=2�(� � �) 2����1�(� � �)(2prs)���� J�(2prs)= (prs)��J�(2prs)= H�(rs): 2We would like to invert the Fourier transform in the above assertion, butthe decay of H� is not su�cient to see directly that F� is applicable at all.However, we can resort to speci�c tools from Special Functions to getLemma 9.2.16 (LemFTInvTP) For � > � > �1 and all r; s > 0 we have(F�H�(s�))(r) = s��(s� r)����1+�(� � �) :



158 9 CONSTRUCTION OF POSITIVE DEFINITE FUNCTIONSProof: The assertion is a consequence of theWeber{Schafheitlin integral(see (12.3.21, EqWeSchaf) or [1](abramowitz-stegun:70-1) p. 487, 11.4.41)after substitutions of the type t = s2=2. In detail, we have�F�H� �u22 ����r22 �= Z 10 t�H� �r22 t�H� �u22 t� dt= Z 10 �s22 �� � s �H� �r22 � s22 �H� �u22 � s22 � ds= Z 10 2��s2�+1 �rs2 ��� �us2 ���J�(us)ds= 2�r��r��Z 10 s���+1J�(rs)J�(us)ds= 2�r��u��2���+1r�(u2 � r2)����1+u��(� � �)= 1�(� � �) �u22 ��� �u22 � r22 � ����1+ : 2We now know that F� � F� = Id holds on Laplace transforms, on truncatedpowers, and on functions of the form H�(s�). But before we generalize thisto a larger class of functions, we generalize it to other F� operators:Theorem 9.2.17 (TheFFI) Let � > � > �1. Then for all tempered radialtest functions f 2 Srad we have (Eqdd)F� � F� = I��� (9.2.18)where the integral operator I� is given by(I�f)(r) = Z 10 f(s)(s� r)��1+�(�) ds; r > 0; � > 0:Proof: For any tempered radial test function f 2 Srad we evaluate (F� �



9.2 Construction of Positive De�nite Radial Functions on IRd 159F�)f(r) by means of Lemma 9.2.16 (LemFTInvTP) to obtainZ 10 H�(tr)t� Z 10 H�(st)s�f(s)dsdt= Z 10 s�f(s) Z 10 t�H�(tr)H�(ts)dt ds= Z 10 s�f(s) � F�(H�(s�))(r)ds= Z 10 f(s)(s� r)����1+�(� � �) ds = (I���f)(r): 2By the above theorems it is easy to see thatI�H� = H���for all � < � + 1, generalizing (12.3.11, EqHnuDer).9.2.7 Wendland's Functions(SecWF) Due to a result of Askey [3](askey:73-1) the radial truncated powerfunction A�(�) := (1� k � k2)�+is positive de�nite on IRd for � � bd=2c+1, because it has a strictly positiveradial Fourier transform in this case. Its radial form after substitution is(1� p2r)�+, and due to its �nite support we can apply any F� operator for� > �1. We use the identity F�+� = F� � I� from (9.2.14, EqFIF) for thisfunction and get F�+kA� = F�(Ik(A�)); k 2 IN;where the left-hand side is strictly positive whenever (EqWeCond)� � bd=2c+ 1 + k: (9.2.19)Thus the function Ik(A�) is positive de�nite on IRd for the same range ofparameters. Since the Ik operators preserve compact supports, the resultingfunctions  �;k(r) := Ik(A�(r2=2))lead to compactly supported positive de�nite functions	�;k(�) =  �;k(k � k2) = Ik(A�(k � k22=2))



160 9 CONSTRUCTION OF POSITIVE DEFINITE FUNCTIONSon IRd under the condition (9.2.19, EqWeCond). Let us do a straightforwardevaluation. This yields (EqWeGen)IkA�(r) = Z 10 (1�p2s)�+ (s� r)k�1+(k � 1)!= Z 1p2r t(1� t)� (t2=2� r)k�1+(k � 1)!= Z 1x t(1� t)� (t2 � x2)k�1+(k � 1)!2k�1 (9.2.20)
for 0 � r � 1=2 or 0 � x = p2r � 1. If � is an integer, the resulting functionis a single polynomial of degree �+2k in the variable x = k�k2 on its support.The case k = 1 is particularly simple. We get the explicit representationI1A�(x2=2) = Z 1x t(1� t)�dt= x(1� x)�+1�+ 1 + (1� x)�+2(�+ 1)(�+ 2)= (1� x)�+1+(�+ 1)(�+ 2) (1 + (�+ 1)x) :The smallest possible integer � for d � 3 and k = 1 is � = 3, whenceI1A3(x2=2) = 120(1� x)4+(1 + 4x):In addition to Ak;� := IkA� let us de�neBk;� := Z 1x (1� t)� (t2 � x2)k�1+(k � 1)!2k�1and split the integral de�ning Ak;� via t = (t� 1) + 1 intoAk;� = �Bk;�+1 +Bk;�:Then do integration by parts for Bk;� and k > 1 to getBk;� = 1�+ 1Ak�1;�+1:



9.2 Construction of Positive De�nite Radial Functions on IRd 161Thus we have the recurrence relationAk;� = � 1� + 2Ak�1;�+2 + 1�+ 1Ak�1;�+1:Looking at our result for k = 1 we see that we can assumeAk;�(x2=2) = (1� x)�+kCk;�(x)with the recursionCk;�(x) = (x� 1)�+ 2 Ck�1;�+2(x) + 1�+ 1Ck�1;�+1(x);for k � 1, starting with C0;�(x) = 1:Thus the polynomials Ck;� have degree k with a positive leading coe�cient.The number of continuous derivatives of Ak;�(x2=2) at x = 1 thus is �+k�1 �2k + bd=2c � 2k. To get the number of derivatives at zero we apply thebinomial theorem to the last factor in the integrand. ThenAk;�(x2=2) = k�1Xj=0 k � 1j ! (�1)jx2j(k � 1)! Z 1x t(1� t)�t2k�2�2jdtq�;k�j(x) := Z 1x t(1� t)�t2k�2�2jdt= q�;k�j(1)� Z x0 t(1� t)�t2k�2�2jdt= q�;k�j(1)� x2k�2j2k � 2j + higher-order termsshows that the �rst odd monomial occurring in Ak;�(x2=2) cannot have anexponent smaller than 2k + 1. Thus the function has 2k continuous deriva-tives at zero, and we get 2n � 1 = 2k + 1 in the context of Example 5.2.4(AEWF). In terms of continuity requirements, we get overall C2k continu-ity at a minimal degree � + 2k = bd=2c + 3k + 1, and Wendland proves in[46](wendland:95-1) that this degree is minimal, if we ask for a single poly-nomial piece on [0; 1] that induces a positive de�nite radial function which isC2k and positive de�nite on IRd. Note that the order of smoothness at theboundary of the support is bd=2c larger than the smoothness at zero, whichhas a positive e�ect on the visual appearance of the reproduced functions.



162 9 CONSTRUCTION OF POSITIVE DEFINITE FUNCTIONSWe end this by giving the C4 case for all dimensions d, where � = bd=2c+3:A2;�(x2=2)= (1� x)�+2+(�+ 1)(�+ 2)(�+ 3)(�+ 4)(x2(�+ 1)(�+ 3) + 3x(�+ 2) + 3)and the most frequent case for d � 3 isA2;4(x2=2) = (1� x)6+1680 (35x2 + 18x+ 3):The Fourier transforms are F�IkA� = F�+kA�and thus for r = x2=2 of the formF�+kA�(r) = Z 1=20 (1�p2s)�s�+kH�+k(rs)ds= x���k2�+k Z 10 (1� t)�t�+k+1J�+k(xt)dt= x���2��2k�22�+k Z x0 (x� u)�u�+k+1J�+k(u)du:Due to a result of Gasper [?](gasper:75-1), the above integral can be writ-ten as a positive sum of squares of Bessel functions, at least in the odd-dimensional case d = 2n� 1 with � = n+ k+1, which leads to � = m� 1=2and � = m+1 for m = n+ k � n. Results of Wendland [46](wendland:95-1)then imply the asymptotic behaviourF�IkA�(r2=2) = F�+kA�(r2=2) � cr�d�2k�1for the necessary values of � from (9.2.19, EqWeCond).9.2.8 Fourier Transforms of Conditionally Positive De�nite Func-tions(SecFTCPD) We now work towards a proof of conditional positive de�nite-ness of the functions �(x) = '(kxk2) = kxk�2for � 2 IR>0 n 2IN . Let us �rst informally explain how the argument worksin general. If we have a radial function



9.2 Construction of Positive De�nite Radial Functions on IRd 163(EqRadg)�(x) = '(kxk2) = g(kxk22=2) (9.2.21)such that g is recoverable via (9.2.6, EqFnuGen) from a radial Fourier trans-form via (EqFTRad1)g(r) = Z 10 f(t)t�H�(tr)dt; (9.2.22)then the action of functionals on �, as in (3.3.2, DefBil), is representable by(DefBil3)(�X;M;�; �Y;N;�)� = MXj=1 NXk=1�j�kg(kxj � ykk22=2)= MXj=1 NXk=1�j�k Z 10 f(t)t�H�(tkxj � ykk22=2)dt= Z 10 f(t)t� MXj=1 NXk=1�j�kH�(tkxj � ykk22=2)dt:(9.2.23)This is okay if all functions involved actually behave nicely, but in case ofconditionally positive de�nite functions we have to account for a singularityof f at the origin. This must be cancelled by a zero of the double sum, andwe thus assert that the application of functionals from (IP dm)?IRd kills o� the�rst m terms of the power series of H�. In general:Lemma 9.2.24 (LemPDPow) For all polynomials p 2 IP dm and all func-tionals �X;M;�; �Y;N;� 2 (IP dm)?IRd we have�uX;M;��vY;N;�p(ku� vk22) = 0:Proof: We evaluate the left-hand side for a monomialku� vk2n2 = (kuk22 � 2(u; v)2 + kvk22)n= X`2IN3�0; j`j=n n!`1!`2!`3!kuk2`12 (�2(u; v)2)`2kvk2`32with 0 � n < m. Since both functionals annihilate polynomials of order upto m, there can only be nonzero terms for2`1 + `2 � m; and `2 + 2`3 � m:



164 9 CONSTRUCTION OF POSITIVE DEFINITE FUNCTIONSThis implies n = `1 + `2 + `3 � 2m� n and n � m, which is impossible. 2This leads us to look at the Taylor remainderH�;m(t) := 1Xk=m (�t)kk!�(� + k + 1)of H� after chopping the �rst m terms. If � is only a conditionally positivede�nite function of some order m, we should replace (9.2.22, EqFTRad1) bythe assumption (EqFTRad2)g(r) = Z 10 f(t)t�H�;m(tr)dt; (9.2.25)and let the functionals act like in (9.2.23, DefBil3), but on (9.2.25, EqF-TRad2). Using Lemma 9.2.24 (LemPDPow), we can then conclude that the�rst and third lines of (9.2.23, DefBil3) are valid and equal, while the sec-ond is invalid. But then we can transform the integral back to non-radialform, letting the sums safely stay inside the integration. This yields precisely(6.1.1, DefBil2) for (EqwhPhiDef)b�(�) = f(k � k22=2) (9.2.26)and is the crucial step to prove the validity of Assumption 6.1.4 (FTAss1)for conditionally positive de�nite functions.Theorem 9.2.27 (TheFTCPD) If a function � on IRd is radial in the senseof (9.2.21, EqRadg) such that its radial form satis�es (9.2.25, EqFTRad2)for a certain m � 0, then (6.1.1, DefBil2) holds for the function de�nedin (9.2.26, EqwhPhiDef) and all functionals from (IP dm)?IRd. If f is positivealmost everywhere on (0;1), then � is conditionally positive de�nite of orderm.Proof: The �rst assertion is already proven. The second is a shortcut toTheorem 6.1.8 (NCCPDFTT) in the radial case, and it just requires thesame arguments as the proofs of Theorems 12.5.6 (GaussPD) and 6.1.3(NCPDFTT). 2



9.2 Construction of Positive De�nite Radial Functions on IRd 1659.2.9 Application to Transforms of Powers(SecFTP) Let us apply Theorem 9.2.27 (TheFTCPD) in case of �(r) = r�.We can generalize the rule (12.3.11, EqHnuDer) for derivatives of H� to get(EqHnuDer2)� ddtH�;m = H�+1;m�1 (9.2.28)for the Taylor remainders.We next assert that the radial Fourier transform of �(r) = r� is of the formr�d��. This is motivated by the following illegal argument:The Fourier transform of �(r) = r� in IRd will after substitution of t = r2=2be proportional to Z 10 s�s�=2H�(st)ds= t�1����=2 Z 10 u�+�=2H�(u)du= c(d; �)t(�d��)=2for � = (d � 2)=2. The integral will not exist except for a small anduninteresting range of � and d, but there is a deeper argument by analyticcontinuation that can be used to turn this Euler-style calculation into a proof.This makes it reasonable to restrict attention to integrals of monomialsagainst Taylor residuals. Using (9.2.28, EqHnuDer2) and integration byparts, they can be reduced to the moment integrals (12.3.20, EqHnuMom).In fact, (EqHnum)Z 10 t��(� + 1)H�;m(t)dt = Z 10 t�+m�(�+ 1 +m)H�+m;0(t)dt= 1�(� � �) : (9.2.29)for a proper and hopefully wide enough range of �; �; andm. We deliberatelyomitted the usual factor in the argument of the H� function, because we canproceed along the same lines as above to get rid of it by substitution. Letus now check the validity of the above procedure. The �nal equation will bevalid for



166 9 CONSTRUCTION OF POSITIVE DEFINITE FUNCTIONS(EqRhoMB)�+m > �1 and � > 2�+m + 12 ; (9.2.30)as follows from (12.3.20, EqHnuMom). The way back to the �rst integralrequires to check the boundary terms of the form t�+j+1H�+j;m�j(t) for 0 �j < m arising from integration by parts. At zero, we have the behaviourO(t�+m+1) = O(1) due to the �rst restriction in (9.2.30, EqRhoMB) and dueto the leading powers of the Taylor residual. At in�nity, we use the decayproperties of H�+j as given in section 9.2.2 (SecCTHTCV) and get a O(t�)behaviour with� = �+ j + 1� �=2� j=2� 1=4 � �+m� �=2�m=2 + 1=4 < 0due to the second restriction in(9.2.30, EqRhoMB).We now can head for the real thing, i.e.: (EqFTPow)Z 10 t(d�2)=2t�(d+�)=2H(d�2)=2;m(rt)dt= Z 10 t�1��=2H(d�2)=2;m(rt)dt= r�=2 Z 10 s�1��=2H(d�2)=2;m(s)ds= r�=2 �(��=2)�((d+ �)=2) : (9.2.31)
Here, we applied (9.2.29, EqHnum) and have to check (9.2.30, EqRhoMB)for the special choice� = (d� 2)=2; � = �1� �=2; m = d�=2e:But this works �ne, since � =2 2IN and�+m = �1� �=2 + d�=2e > �1� = d�22 � �12 > 2� +m+ 12 = �32 � � + d�=2e:The worst cases for the �nal inequality are very small values of � withd�=2e = 1, but they still are safe. We summarize:



9.2 Construction of Positive De�nite Radial Functions on IRd 167Theorem 9.2.32 (TheCPDPow) The radial basis function �(�) = (�1)d�=2ek�k�2 for � 2 IR>0 n 2IN is conditionally positive de�nite of order m � d�=2e,and it satis�es Assumption 6.1.4 (FTAss1) with �0 = �. The function b� is(EqFTPow2)b�(�) = 2�+d=2�((d+ �)=2)(�1)d�=2e�(��=2) k � k�d��2 : (9.2.33)2Note how the sign (�1)d�=2e arises when accounting for the sign of �(��=2)to make the Fourier transform positive.9.2.10 Sobolew Splines(SecSobSpl) Before we treat multiquadrics, let us consider the simpler caseof Sobolew splines, which are the Fourier transforms of inverse multiquadrics.We want to construct � such that the native space is W k2 (IRd). But sinceSobolew space W k2 (IRd) consists of functions f such that the Fourier trans-forms satisfy bf(!)(1 + k!k2)k 2 L2(IRd);we have to take the Fourier transform ofb�(�) = (1 + k � k22)k:After the usual substitution and the replacement of 1 by an arbitrary positivevalue y we see that we should make use of (12.3.25, EqKJ) to transform itto meet our needs. In particular,Z 10 t�+1J�(at)(t2 + z2)�+1dt= Z 10 t�+1(at=2)�H�(a2t2=4)(t2 + z2)�+1 dt= a�2� Z 10 t2�+1H�(a2t2=4)(t2 + z2)�+1 dt= r�=22�=2�� Z 10 s�H�(rs)(s+ y)�+1ds= 2�=2��r�=2y(���)=2�(�+ 1) K���(2pry)after substitutions s = t2=2; y = z2=2; r = a2=2. In a slightly moreconvenient form this means



168 9 CONSTRUCTION OF POSITIVE DEFINITE FUNCTIONS(EqSobSplRad)�(�+ 1) Z 10 s�(s+ y)�(�+1)H�(rs)ds = �yr�(���)=2K���(2pry)(9.2.34)for the above range of � and �. If we use our parameters, we have� = (d� 2)=2; ��� 1 = �k;and then the usual Sobolew inequality 2k > d implies that we are safe withthe condition �1 < � < 2�+ 3=2, as required for (12.3.25, EqKJ). We couldeven work under the weaker condition d < 4k�3 without any loss, thus doinga continuous recovery of functions from spaces that contain discontinuousfunctions.It remains to perform the substitutions properly: for b�(�) = (1+ k � k2)�k weget f(t) = 2�k(1=2 + t)�k and (EqSobSpl)�(�) = 2�k�(k)k � kk�d=22 Kk�d=2(k � k2) (9.2.35)9.2.11 Multiquadrics(SecFTMQ) Let us now turn the Sobolew spline case upside down. Wewant to take the d-variate Fourier transform of (9.2.34, EqSobSplRad) andcome back to b�(�) = (1 + k � k22)�k. To this end, we can use that the K�functions decay expoentially towards in�nity due toe (12.3.24, KnuAsyInf).At zero, we have to compensate the singularity of K� , as given by (12.3.23,KnuAsyZero), by introducing the function (EqLnuDef)L�(s2=4) := K�(s)�s2�� : (9.2.36)This de�nition makes sense due to K� = K�� and (12.3.22, KnuDef), al-lowing to write the right-hand side as a function of s2. The function to betransformed by F� then is�ys�(���)=2K���(2psy) = s���L���(sy);and it leads to a function of ! in L1 after substitution, if 2� � 2� + d > 0or � > �1 or � < 0 for ��� 1 = �=2. Thus at least for � = (d� 2)=2 andd < 2(1 + �) = �� we can safely invert (9.2.34, EqSobSplRad) to get



9.2 Construction of Positive De�nite Radial Functions on IRd 169(EqMQFTRad)Z 10 s� �ys�(���)=2K���(2psy)H�(rs)ds = (r + y)�(�+1)�(�+ 1) (9.2.37)without any further calculation. This covers a special range of inversemultiquadrics, namely those which can be handled by classical Fouriertransforms. Our goal is to proceed towards positive values of �1 � � =�=2 =2 IN by a sequence of tricks.The �rst step proceeds towards �d � � = �2� 2� < 0, where both sides of(9.2.37, EqMQFTRad) are well-de�ned, the integrand being in L1. The onlything that prevents us to use (9.2.37, EqMQFTRad) for this range is thatwe proved it via the Fourier inversion theorem, but the right-hand side failsto have a classical Fourier transform in the new range.But we can make use of our calculus on the half-line, integrating both sidesby application of I� with respect to the variable y for � > 0. This works�ne on the right-hand side, but we have to check the action on the left-handside, rewriting the equation as (EqMQFTRad2)Z 10 s�L���(sy)H�(rs)ds = (r + y)�(�+1)�(�+ 1): (9.2.38)We use the di�erentiation rule (12.3.26, EqKnuDif) for the K� functions toget ddzL�(z2=4) = z2L0�(z2=4)= K 0�(z)�z2�� + �2K�(z)�z2���1= �z2���1K��1(z)z2and thus L0� = L��1 for all values of �. This allows to apply the integraloperator Ik for any integer k with 0 � k < �+1 to (9.2.38, EqMQFTRad2).The result is (EqMQFTRad3)Z 10 s��kL���+k(sy)H�(rs)ds = (r + y)�(�+1�k)�(�� k + 1); (9.2.39)and we cannot integrate any further because both sides would cause trouble.However, this settles the case of inverse multiquadrics for all negative expo-nents �=2. In fact, starting with some negative �=2, pick some k > 0 such



170 9 CONSTRUCTION OF POSITIVE DEFINITE FUNCTIONSthat 2k > d+ � and de�ne � = �1+ k� �=2. Then we can use the classicalcase due to 2(�+ 1) = 2k � � > dand integrate k times to arrive at (9.2.39, EqMQFTRad3) with exponent��� 1 + k = �=2 in the right-hand side. The �nal result is(EqMQFTRad3a)Z 10 s�1��=2L(d+�)=2(sy)H(d�2)=2(rs)ds = (r + y)�=2�(��=2) (9.2.40)for all � < 0.To proceed towards positive values of �, we have to avoid the singularitiesof the right-hand side by sticking to non-integer exponents. Furthermore,we have to apply functionals from (IP dm)?IRd to both sides in order to avoida singularity of the integrand at zero and to make sure that the right-handside vanishes at in�nity.Let us pick functionals �X;M;�; �Y;N;� from (IP dm)?IRd and apply them withrespect to r = kxj � ykk22 to (9.2.39, EqMQFTRad3). The result is(EqMQFTRad4)Z 10 s�1��=2L(d+�)=2(sy) MXj=1 NX̀=1�j�`H(d�2)=2(skxj � y`k22=2)ds= Z 10 s�1��=2L(d+�)=2(sy) MXj=1 NX̀=1�j�`H(d�2)=2;m(skxj � y`k22=2)ds= �(��=2) MXj=1 NX̀=1�j�` �y + kxj � y`k22=2��=2 (9.2.41)while still � < 0. We now can integrate the left-hand side m times withrespect to y without running into di�culties whenever � =2 2ZZ. This yields(EqMQFTRad4a)Z 10 s�1��=2�mL(d+�)=2+m(sy) MXj=1 NX̀=1�j�`H(d�2)=2;m(skxj � y`k22=2)ds= �(��=2�m)(�1)m MXj=1 NX̀=1�j�` �y + kxj � y`k22=2��=2+m: (9.2.42)Looking at the Taylor expansion of the right-hand side assures us that it stillvanishes at in�nity, as required. We thus de�ne 
 := � + 2m < 2m andrewrite the equation as



9.3 Positive De�nite Functions on Topological Groups 171(EqMQFTRad4a)Z 10 s�1�
=2L(d+
)=2(sy) MXj=1 NX̀=1�j�`H(d�2)=2;m(skxj � y`k22=2)ds= �(�
=2)(�1)m MXj=1 NX̀=1�j�` �y + kxj � y`k22=2�
=2: (9.2.43)This proves that multiquadrics (c2 + kxk22)
=2 for 
 2 IR>0 n 2IN are condi-tionally positive de�nite of order m = d
=2e with Fourier transform2
=2(�1)m�(�
=2)  komegak2c !�(
+d)=2K(
+d)=2(ck!k2)after backsubstitution.9.2.12 Nonexistence of CS Functions for All Dimensions(NECSAlld)9.3 Positive De�nite Functions on Topological Groups9.4 Positive De�nite Zonal Functions on Spheres10 Special Algorithms(SecSA) This section contains some additional techniques that may be usefulfor the numerical solution of multivariate recovery problems.10.1 Reduction of Enlarged System, Method 1(Red1) Consider the enlarged system (1.7.3, BDef) and perform a partialGaussian elimination algorithm on the matrix P with row interchanges. Theresult can be written in the formLP� =  U0 ! ; L =  L11 0L21 E !with nonsingular lower triangular matrices L and L11 of size M � M andq� q, respectively, with an M �M permutation matrix � and a nonsingularq � q upper triangular matrix U , while L21 is some M � q matrix and E isthe identity matrix. Now write � as a vector



172 10 SPECIAL ALGORITHMS(split1)� = LT� =  LT11 LT210 E ! �(1)�(2) ! =  LT11�(1) + LT21�(2)�(2) ! ; (10.1.1)again using a split of an M -vector into a q-vector followed by an (M � q)-vector. Ignoring the details of such obvious splits from now on, we evaluate0 = �TP T� = �TP TLT� = UT�(1) + 0and get �(1) = 0. Now we split the system LALT� + LP
 = Lf in the sameway to get  A11 A12A21 A22 ! 0�(2) !+  U0 ! � =  g(1)g(2) !introducing the vector � via 
 = ��. This decomposes into two systemsA22�(2) = g(2); A12�(2) + U� = g(1)that can be solved for �(2) and �, respectively. From these it is easy tocalculate � and 
.To see the positive de�niteness of the matrix A22, observe that(�(2))TA22�(2) =  0�(2) !T LALT  0�(2) !holds for all �(2) 2 IRM�q, and all � with (1.6.3, CPDef) have a unique splitin the form (10.1.1, split1). Thus A22 de�nes a positive de�nite quadraticform on RM�q, and it must be a positive de�nite matrix.To calculate the numerical e�ort, we now explicitly write down the algorithm:1. Perform q Gaussian transformations on rows of P with pivoting. Thisrequires O(Mq2) operations and generates the matrices �, U , L11, andL21. The latter three can be stored over P , and � requires an integerarray of length q for keeping track of row permutations.2. Calculate the submatrices Aik of LALT by applying the Gaussian trans-formations stored in L to A row- and columnwise. These are q trans-formations of M -vectors each, and the overall e�ort will be O(M2q).Note that this operation will cause �ll-in, if the original matrix wassparse.



10.2 Reduction of Enlarged System, Method 2 1733. Calculate Lf and split it into g(1) and g(2). Using the special form ofL again, this amounts to O(Mq) operations.4. Solve the positive de�nite (M � q)� (M � q) system A22�(2) = g(2) byyour favourite method. We shall comment on such problems for uncon-ditionally positive de�nite functions later in section 2.3 (CompE�ort).Its computational complexity does not enter into the complexity of thetransformation we consider here.5. Now solve A12�(2) + U� = g(1) for �. Using the upper triangularstructure of U , the computational e�ort is O(Mq + q2) for formingthe system and solving it.6. Backpermutation of elements of � yields 
 at O(q) cost.7. Finally, � is an extension of �(2) by the q components of the vectorLT21�(2), and these can be calculated by O(Mq2) operations.Since we started with a conditionally positive de�nite function of positiveorder m, the increase of � towards in�nity leads to a matrix A that showsa more or less strong increase of elements when moving away from the maindiagonal. After the reduction the resulting matrix behaves like one generatedby a positive de�nite function (this is actually provable for the reductionmethod of the next section). Thus it usually shows o�-diagonal decay, andnumerical experiments indicate some improvement of the condition. Thusthere is some hope that variations of these reduction methods can possiblybe turned into e�cient preconditioning techniques.10.2 Reduction of Enlarged System, Method 2(Red2) Again, we consider the enlarged system (1.7.3, BDef), but now weperform q Householder transformations on P T with column pivoting. Thismeans a reordering of the points in X = fx1; : : : ; xMg and transition to anew basis in IP dm. In linear algebra terms we end up with a decomposition(Dec2)U�1QP T� = (E; S) (10.2.1)with a nonsingular upper triangular q � q matrix U , an orthogonal q � qmatrix Q, an M �M permutation matrix � and a plain q� (M � q) matrixS. Note that the Householder transformations �rst produce QP T� = (U; �),but we left-multiply this with U�1 to get (10.2.1, Dec2).



174 10 SPECIAL ALGORITHMSNow we permute and split � by (split3)� = ��; � =  �(1)�(2) ! (10.2.2)into a q-vector followed by an (M � q)-vector. Then we evaluate0 = U�1QP T� = U�1QP T���1� = (E; S) �(1)�(2) !and get �(1) = �S�(2). Now we split the system �TA�� +�TP
 = �Tf toget  A11 A12A21 A22 ! �(1)�(2) !+  EST ! � =  g(1)g(2) !introducing the vector � = UTQ
. This decomposes into two systemsA11�(1) + A12�(2) + � = g(1)A21�(1) + A22�(2) + ST � = g(2)and we solve the �rst for � by (DeltaSys)� = g(1) � A11�(1) � A12�(2) = g(1) + (A11S � A12)�(2): (10.2.3)Putting this with �(1) = �S�(2) into the second yields a symmetric (M �q)� (M � q) system (RedSys3)�A22 + STA11S � STA12 � A21S��(2) = g(2) � STg(1) (10.2.4)that can be solved for �(2). To see the positive de�niteness of the matrix(10.2.4, RedSys3), observe that(�(2))T �A22 + STA11S � STA12 � A21S��(2) = �T�TA�� = �TA�holds for all �(2) 2 IRM�q, and all � with (1.6.3, CPDef) have a unique splitin the form (10.2.2, split3) with �(1) = �S�(2). In 3.3.2 (PhiNormalization)we shall see that this matrix can be written in the form AY;	 for a set Y ofM � q points and a function 	 that is unconditionally positive de�nite onIRd n (X n Y )..Let us now explicitly write down the algorithm:



10.2 Reduction of Enlarged System, Method 2 1751. Perform q Householder transformations on P T with pivoting by columnpermutation of P T . This requires O(Mq2) operations and generatesthe matrices �, U , and US. The latter two can be stored over P T ,and � requires an integer array of length M for keeping track of pointpermutations.2. Solve for S by backward substitution, using U . This again requiresO(Mq2) operations and generates S, which can be stored over part ofP .3. Generate the submatrices Aik of �TA� by applying the permutationsde�ned by � to A row- and columnwise. This requires 2M swaps ofM -vectors, and the overall e�ort will be O(M2). Note that this operationcan be avoided by using indirect indexing in later steps, but be awareof the fact that indirect indexing spoils the positive e�ect of cachememory.4. Permute the right-hand side of the system and split it into g(1) andg(2). This amounts to O(M) operations, but is unnecessary if indirectindexing is implemented.5. The bulk of work in this reduction method lies in forming the positivede�nite matrix A22 + STA11S � STA12 � A21S;and it is of order O(M2q).6. Now solve the positive de�nite (M � q) � (M � q) system (10.2.4,RedSys3) for �(2) by your favourite method. We considered such prob-lems for unconditionally positive de�nite functions in section 2.3 (Com-pE�ort). Its computational complexity does not enter into the com-plexity of the transformation we describe here.7. Now form �(1) = �S�(2) with O(M2q) operations and8. use (10.2.3, DeltaSys) to calculate � with O(Mq2) operations. Thesolution vector � just is a permuted version of �, but the calculationof 
 requires solution of the system UTQ
 = � in two steps:9. Calculate Q
 from � by backward substitution with O(q2) operations,and10. form 
 = QT (Q
) by premultiplication of Q
 with QT with O(q3)operations. Since M � q follows from IP dm-nongegeneracy of X =fx1; : : : ; xMg, this is at most an O(Mq2) e�ort.



176 12 ANALYTIC BACKGROUND11 Computational Geometry Techniques(SecCGT) This section contains algorithms from Computational Geometrythat are useful for solving scattered data problems in the the large. Themain topic will be the k-nearest neighbor problem and related queryproblems.11.1 Voronoi Diagrams(SecVor)12 Analytic Background(SecAB) This section collects the required facts from Functional and RealAnalysis that the core of this text requires as basic knowledge. It is useful forteaching purposes, because it makes the text self-contained. Researchers andadvanced students will not need to look into this, but beginners should brushup their background by checking it against the contents of this section. Andin case of doubt or lack of memory, any reader should get an easy possibilityto access the backing material without consulting too many di�erent texts.12.1 Calculus Facts(SecCalcFacts) We start with some basics from calculus that we need fornotational reference.12.1.1 Taylor's Formula and Truncated Powers(Sec) Using the truncated power function (EqTrPoFu)(x)k+ := ( x x � 00 x < 0 (12.1.1)we write Taylor's Formula as (EqTayFor)f(x) = `�1Xj=0 f (j)(a)j! (x� a)j + Z ba (x� t)`�1+(`� 1)! f (`)(x)dxf(x) =: pf;`(x) + rf;`(x) (12.1.2)



12.2 Hilbert Space Basics 177for all functions f with absolutely integrable `-th derivative on [a; b] � IRand all arguments x 2 [a; b]. The polynomial part pf;` is in IP 1̀, while theresidual rf;` has the crude boundsjrf;`(x)j � (b� a)``! kf (`)kL1[a;b]jrf;`(x)j � (b� a)`�1=2q(2`� 1)! kf (`)kL2[a;b]depending on how f(`) is extracted from the integral. The second case usesthe Cauchy-Schwarz inequality, and it is a �rst case where half-integers enternaturally into an approximation order. Here are some special instances thatare needed in the text:Example 12.1.3 (ExaExpNeg) For f(x) = e�x on [0; h] we havejf(x)� pf;`(x)j = jrf;`(x)j � h``! :Example 12.1.4 (ExaExpIma) For the real and imaginary parts of f(x) =eix, i.e. the sine and cosine function, we know that all derivatives are boundedby one. Thus we get jf(x)� pf;`(x)j = jrf;`(x)j � h``! :on [�h; h] for h > 0. We avoid a factor of 2 in the bound of the residual byusing Taylor's formula on both [0; h] and [�h; 0].12.2 Hilbert Space Basics(SecHSB) This is intended as a short tutorial on Hilbert spaces as required inSection 3 (SecHST). We only require fundamentals on linear spaces, bilinearforms, and norms. If a reader has problems with any of the stated facts below,it is time to go back to an introductory course on Calculus and NumericalAnalysis.De�nition 12.2.1 (DefPHS) A set H and a mapping (�; �)H : H�H ! IRform a pre-Hilbert space over IR, if the following holds:1. H is a vector space over IR.2. (�; �)H is a symmetric positive de�nite bilinear form.



178 12 ANALYTIC BACKGROUNDA symmetric positive bilinear form as (�; �)H : H �H ! IR is often calledan inner product on H. Then (NormDef)kxk2H := (x; x)H; x 2 H (12.2.2)de�nes a norm on H, and we assume all readers to be familiar with thisnotion. Sometimes, we shall weaken the assumptions on (�; �)H and onlyask for symmetry and positive semide�niteness. Even in this more generalsituation, we have the Cauchy-Schwarz inequalityj(u; v)Hj � jujHjvjHfor all u; v 2 H, where we use the notation jxj2H := (x; x)H to denote aseminorm instead of a norm as in (12.2.2, NormDef). To prove the Cauchy-Schwarz inequality as a warm-up, just consider the quadratic function'(t) := ju+ tvj2H = juj2H + 2t(u; v)H + t2jvj2H:It must be nonnegative, and thus it has none or a double real zero. Thisproperty is satis�ed for a general function '(t) = at2 + 2bt + c, i� b2 � acholds. But this is the square of the Cauchy-Schwarz inequality.For completeness, we recall some basics from normed linear spaces:1. A sequence fungn2IN � N of a normed linear space N with norm k �kNis a zero sequence in N , if the sequence fkunkNgn2IN converges tozero in IR.2. A sequence fungn2IN � N is a convergent sequence in N with limitu, if the sequence fun � ugn is a zero sequence.3. A subspace M of N is a closed subspace, if for every convergentsequence fungn2IN � M � N with limit u one can conclude that thelimit u also belongs to M.4. The normed linear space N is complete or a Banach space, if everysequence which is a Cauchy sequence in the norm k � kV is necessarilyconvergent in V.5. A complete normed linear space is closed, since each convergent se-quence is a Cauchy sequence.6. A subset M of a normed linear space N is dense, if each element ofN can be written as a limit of a convergent sequence from M.



12.2 Hilbert Space Basics 179Now we add some simple facts about pre-Hilbert spaces:1. A mapping (or operator) A : H ! N with values in a normed linearspace N with norm k � kN is a continuous mapping or a boundedmapping, if there is a constant C such thatkAxkN � CkxkHholds for all x 2 H.2. The mapping A then has an operator normkAkH;N := supx2Hnf0g kAxkNkxkH � Cand the bound kAxkN � kAkH;NkxkHis best possible.3. Two subspaces U ; V of a pre-Hilbert space are orthogonal, if allvectors u 2 U ; v 2 V are orthogonal, i.e.: (u; v)H = 0.De�nition 12.2.3 An element u� of a subspaceM of a normed linear spaceN is a best approximation to a given element u 2 N , ifku� u�kN = supv2M ku� vkN =: EM(u):Theorem 12.2.4 (BAT) An element u� of a subspace M of a pre-Hilbertspace H is a best approximation to a given element u 2 H, i� the variationalidentity (EqVar)(u� u�; v)H = 0 for all v 2 M (12.2.5)holds. If it exists, the best approximation is unique. If M is �nite-dimensional and spanned by linearly independent elements u1 : : : ; uM , thenthe coe�cients �� of the representationu� = MXj=1��jujare solutions of the normal equationsMXj=1��j(uj; uk)H = (u; uk)H; 1 � k �M;and the symmetric and positive de�nite matrix with entries (uj; uk)H is calleda Gram matrix.



180 12 ANALYTIC BACKGROUNDProof: Let u� be a best approximation to u. Then consider an arbitraryv 2 M and form the quadratic functionuv(�) := ku� u� + �vk2H = ku� u�k2H + 2�(u� u�; v)H + �2kvk2Hwhose minimum must be attained at � = 0. This implies (u � u�; v)H = 0.Conversely, assume (12.2.5, EqVar) and write any other element v 2 M asv = u�+1�(v�u�). Then (12.2.5, EqVar) implies that the quadratic functionuu��v is minimal at � = 0, proving uu��v(1) = ku � vkH � uu��v(0) =ku � u�kH. If u� and u�� are two best approximations from M to u, thenwe can subtract the two variational identities (u� u�; v)H � (u� u��; v)H =(u���u�; v)H = 0 for all v 2 M and insert v = u���u� to get u�� = u�. Thethird assertion is a specialization of (12.2.5, EqVar). 2Corollary 12.2.6 The �rst statement of Theorem 12.2.4 (BAT) holds alsoin the case of a positive semide�nite bilinear form. The Gram matrix in the�nite-dimensional case now is only positive semide�nite. 2Corollary 12.2.7 (BAC) Let �1; : : : ; �M be linear functionals on a pre-Hilbert space H and let some u 2 H be given. An element u� of H solves theproblem ku�kH = infv 2 H�j(v) = �j(u)1 � j � M kvkH;i� the variational identity(u�; v)H = 0 for all v 2 H with �j(v) = 0; 1 � j �M:holds, or i� there are real numbers �1; : : : ; �M such that(u�; v)H = MXj=1�j�j(v) for all v 2 H:Proof: Consider the subspaceM = f v 2 H : �j(v) = 0; 1 � j �Mgand reformulate the problem by writing any v 2 H with �j(v) = �j(u); 1 �j � M as v = u � w for w 2 M. Then we have a problem of bestapproximation to u from M and can simply use Theorem 12.2.4 (BAT)to prove the �rst assertion. We then have to prove that the �rst variationalidentity implies the second. But this follows from a standard linear algebraargument that we include for completeness as the next lemma. 2



12.2 Hilbert Space Basics 181Lemma 12.2.8 If A : X ! Y and B : X ! Z are linear maps betweenlinear spaces, and if B vanishes on the kernel kerA of A, then B factorizesover A(X), i.e.: there is a map C : A(X)! Z such that B = C � A. If Zis normed and if Y is �nite-dimensional, then C is continuous.Proof: There is an isomorphism D : A(X)! X= kerA, and one can de�neeB : A= kerA! Z by eB(x+ kerA) := B(x) because B( kerA) = f0g. ThenC := eB �D does the job, sinceC(A(x)) = eB(D(A(x))) = eB(x + kerA) = B(x)for all x 2 X. If Y is �nite-dimensional, the isomorphic spaces A(X) � Y andX= kerA must also be �nite-dimensional. Since all linear mappings de�nedon �nite-dimensional linear spaces with values in normed linear spaces arecontinuous, we are �nished. 2So far, Theorem 12.2.4 (BAT) does not imply existence of best approxima-tions from subspaces of in�nite dimension. It just characterizes them. Toget existence, we need that certain nice sequences actually have limits:De�nition 12.2.9 (DefHS) A pre-Hilbert space H with inner product (�; �)His a Hilbert space over IR, if H is complete under the norm k � kH, i.e.:as a normed linear space.We now prove the crucial projection theorem in Hilbert spaces:Theorem 12.2.10 (PTHS) If H is a Hilbert space with a closed subspaceM, then any element u 2 H has a unique best approximation u�M from M,and the elements u�M and u� u�M are orthogonal. The map �M : H !Mwith �M(u) := u�M is linear, has norm one if M is nonzero, and is aprojector, i.e.: �2M = �M. If Id is the identity mapping, then Id��M isanother projector, mapping H onto the orthogonal complementM? := f u 2 H : (u; v)H = 0 for all v 2 M g:of M. Finally, the decompositionH =M+M?is a direct and orthogonal sum of spaces.Proof: The existence proof for approximations from �nite-dimensional sub-spaces is a consequence of Theorem 12.2.4 (BAT), and we postpone the



182 12 ANALYTIC BACKGROUNDgeneral case for a moment. The orthogonality statement follows in generalfrom Theorem 12.2.4 (BAT), and it yields Pythagoras' theorem in the formkuk2H = ku� u�Mk2H + ku�k2H:This in turn proves that both projectors have a norm not exceeding one. Itis easy to prove that �u�M + �v�M is a best approximation to �u+ �v for all�; � 2 IR and all u; v 2 H, using the variational identity in Theorem 12.2.4(BAT). To prove linearity of the projectors, we use uniqueness of the bestapproximation, as follows from Theorem 12.2.4 (BAT). Finally, surjectivityof the projectors is easily proven from the best approximation property oftheir de�nition.Thus we are left with the existence proof for the in�nite-dimensional case.The nonnegative real number EM(u) can be written as the limit of a de-creasing sequence fku � vnkHgn for certain elements vn 2 M, because it isde�ned as an in�mum. Forming the subspacesMn := span fv1; : : : ; vng � Mand unique best approximations wn to u from Mn, we getEM(u) � ku� wnkH � ku� vnkH;such that the sequence fku� wnkHgn converges to EM(u), too. We now �xindices m � n and use that (u � wm; wm � wn)H = 0 follows from the bestapproximation property of wm. Then we haveku� wnk2H � ku� wmk2H = ku� wm + wm � wnk2H � ku� wmk2H= ku� wmk2H + 2(u� wm; wm � wn)H+kwm � wnk2H � ku� wmk2H= kwm � wnk2H;and since the sequence fku � wnk2Hgn is convergent and thus a Cauchysequence, we get that fwngn �M is a Cauchy sequence inM� H. Now thecompleteness of H assures the existence of a limit w� 2 H of this sequence,and since M was ssumed to be closed, the element w� must belong to M.The above identity can be used to let m tend to in�nity, and then we getku� wnk2H � ku� w�k2H = kw� � wnk2H:This proves EM(u) � ku� w�kH � ku� wnkH;and since the right-hand side converges to EM(u), the element w� must bethe best approximation to u. 2We now proceed towards the completion theorem for pre-Hilbert spaces.



12.2 Hilbert Space Basics 183Theorem 12.2.11 (HSCT) Let H be a pre-Hilbert space with inner product(�; �)H. Then there is a Hilbert space J and an isometric embedding J : H !J such that the following is true:1. J(H) is dense in J .2. Any continuous mapping A : H ! N with values in a Banach spaceN has a unique continuous extension B : J ! N such that B�J = A.Proof: We �rst form the space of all Cauchy sequences in H, which clearlyis a linear space over IR. Two such sequences are called equivalent, if theirdi�erence is a sequence in H converging to zero. The space J now isde�ned as the space of equivalence classes of Cauchy sequences in H modulozero sequences. These classes clearly form a vector space under the usualoperations on sequences. If we use an overstrike to stand for \class of", wewrite an element of J as fungn for a Cauchy sequence fungn 2 H. Now it istime to de�ne an inner product(fungn; fvngn)J := limn!1(un; vn)Hon J and the embedding J via the constant Cauchy sequencesJu := fugn := fun = ugnfor each u � H. Then (Ju; Jv)J = (u; v)Hmakes sure that J is an isometry and injective. But we still have to showthat the inner product on J is well-de�ned and positive de�nite. If fungnand fvngn are Cauchy sequences in H, thenjkunkH � kumkHj � kun � umkHimplies that the sequences fkunkHgn and fkvnkHgn are Cauchy sequences inIR, and thus convergent and bounded by constants Cu and Cv. But then(un; vn)H � (um; vm)H = (un; vn)H � (un; vm)H � (um; vm)H + (un; vm)H= (un; vn � vm)H � (um � un; vm)H� Cukvn � vmkH + Cvkum � unkHproves that f(un; vn)Hgn is a Cauchy sequence in IR and thus convergent.Two representatives of a class fungn di�er just by a zero sequence that doesnot a�ect the inner product's value. The proof of de�niteness again uses thatzero sequences represent zero in J . This �nishes the proof of well-de�nednessof the new inner product.



184 12 ANALYTIC BACKGROUNDThus J is another pre-Hilbert space that contains an isometric image of H,and we �rst want to prove that J(H) is dense in J . Let us take an elementfungn 2 J and use the fact that for each � > 0 there is some K(�) such thatfor all n;m � K(�) we have kun � umkH � �:Now take m � K(�) and the �xed Cauchy sequence fumgn = J(um). ThenkJ(um)� fungnkJ = limn!1 kum � unkH � �proves the density assertion.We now proceed to prove completeness of J . To do this we have to forma Cauchy sequence ffu(m)n gngm of equivalence classes fu(m)n gn of Cauchysequences fu(m)n gn � H. For each m 2 IN we can use the density propertyof H in J to �nd an element vm 2 H such thatkfu(m)n gn � J(vm)kJ � 1=m:Due tokvn � vmkH = kJ(vn)� J(vm)kJ� kJ(vn)� fu(n)n gnkJ++kfu(n)n gn � fu(m)n gnkJ + kfu(m)n gn � J(vm)kJ! 0for n;m!1, the sequence fvmgm is a Cauchy sequence in H. We now formkfu(k)n gn � fvngnkJ � kfu(k)n gn � J(vk)kJ + kJ(vk)� fvngnkJ� 1=k + limn!1 kvk � vnkH! 0for k !1, proving convergence towards fvngn.Now let A : H ! N be a linear continuous mapping with values in acomplete normed linear space N . If fungn is an element of J , we de�ne theextension B on fungn by (Bmapdef)B(fungn) := limn!1A(un): (12.2.12)



12.2 Hilbert Space Basics 185Since A is continuous, it is bounded and due tokA(um)� A(un)kN � kAkkum � unkHthe sequence fAungn is a Cauchy sequence inN . But asN is a Banach space,the sequence is convergent and (12.2.12, Bmapdef) is well-de�ned. ClearlyB � J = A holds by de�nition. Any two such extensions must agree on thedense subspace A(H) of J , and since they are continuous, they must agreeon all of J . 2We add a little application:Lemma 12.2.13 If M is a dense subspace of a Hilbert space H, then theclosure of M is isometrically isomorphic to H.Proof: The closure of M can be identi�ed with a closed subspace N of H,and we assert that N = H. To this end, decompose H into H = N + N?and take an element u from N?. It must be orthogonal to all elements fromM, and by continuity of the functional v 7! (u; v)H it must be orthogonal toall of H. Thus it must be zero. 2We further need the Riesz representation theorem for continuous linearfunctionals:Theorem 12.2.14 (RieszT) Any continuous linear real-valued functional� on a Hilbert space H can be written as (RieszRep)� = (�; g�)H (12.2.15)with a unique element g� 2 H. The map � 7! g� is an isometric isomorphismbetween the dual Hilbert space H� of H, consisting of all continuous linearreal-valued functionals on H, and H itself.Proof: If � = 0, then g� = 0 does the job and is unique. If � 6= 0, the kernelL of � is not the full space H. It is, however, a closed linear subspace, andthus there is some element h� 2 L? with kh�kH = 1. Now for each u 2 Hthe element �(u)h� � �(h�)u must necessarily be in L and thus orthogonalto h�. This means 0 = (h�; �(u)h� � �(h�)u)H;�(u)(h�; h�)H = �(h�)(u; h�)H;�(u) = (u; �(h�)h�)H:The norm of � is bounded byk�kH� := supu2Hnf0g j�(u)jkukH� j�(h�)j



186 12 ANALYTIC BACKGROUNDdue to Cauchy-Schwarz, but using u = h� in the de�nition of the norm yieldsequality. Since we set g� := �(h�)h�, we get k�kH� = kg�kH. Uniquenessof g� satisfying (12.2.15, RieszRep) is easy to prove, and equally easy is theproof of injectivity and surjectivity of the map � 7! g�. 212.3 Special Functions and Transforms(SecSFT) This is intended as a reference and tutorial for classical formulasinvolving special functions (e.g.: Gamma, Beta, and Bessel functions) andtheir transforms. Results on Fourier transforms in general are in section 12.5(SecFTRd). This section, so far, is in raw and unsorted form, because allrequired formulae are just collected here.12.3.1 Gamma Function(SecGammaFunction) The Gamma function is de�ned by (GammaDef)�(z) = Z 10 tz�1e�tdt (12.3.1)and has the properties�(z + 1) = z�(z); z =2 �IN�(k + 1) = k!; k 2 IN�(1=2) = p�:The equation (EqGxy)Z 10 ux�1(1� u)y�1du = �(x)�(y)�(x + y) (12.3.2)for any x; y > 0 will be useful.12.3.2 Volumes and Surface Integrals(SecVSI) The volume of the d-dimensional ballBr(0) := f x 2 IRd : kxk2 � r gof radius r is (EqVolBall)vol Br(0) = rd�d=2�(1 + d=2) : (12.3.3)



12.3 Special Functions and Transforms 187The surface area �d�1 of the d� 1-dimensional sphere in IRd for d � 1 is(VolS)�d�1 = vol (Sd�1) = 2�d=2=�(d=2): (12.3.4)This follows for d > 2 from the representationd� = d�1Yj=1(sin'j)d�1�jd'jof the surface element d� in terms of the angles'j 2 [0; �]; 1 � j � d� 2; 'd�1 2 [0; 2�]and univariate integration, while d = 1; 2 are standard.12.3.3 Bessel Functions(SecBesF) We now consider the function F (rk!k2; d) de�ned by the integral(EqDefFtd)F (t; d) := Zkyk2=1 e�ity�zdy (12.3.5)over the surface of the unit ball in IRd for t � 0; d � 2; and some kzk2 =1; z 2 IRd. This integral is invariant under orthogonal transformations Q ofIRd, as is easily obtainable from replacement of z by Qz. Thus the integralis independent of z, as already indicated by the notation, and we can assumez = (�1; 0; : : : ; 0) for its evaluation. Let �d�1 be the surface area of the d�1-sphere, i.e.: the boundary of the unit ball in IRd. We now assume d � 3 andintegrate over the surface of the d� 1-sphere by summing up the integralsover surfaces of (d�2)-spheres, splitting y = (y1; u) and setting z �y = cos'.This yields F (t; d) = Zkyk2=1 eity�zdy= Z �0 eit cos' Zkuk22=1�y21 dud'= �d�2Z �0 eit cos'(sin('))d�2d'= �d�2Z 1�1 eits(1� s2)(d�3)=2dsand contains an instance of the Bessel function



188 12 ANALYTIC BACKGROUND(JBF)J�(t) = (t=2)��(2�+12 )�(12)Z 1�1 eits(1� s2) 2��12 ds (12.3.6)which is well-de�ned for <(�) > �12 . We end up with � = d�22 and get(EqFtdRep)F (t; d) = �d�2�(d�12 )�(12)(t=2)(d�2)=2 J(d�2)=2(t)= 2�d=2(t=2)�(d�2)=2J(d�2)=2(t): (12.3.7)Direct integration shows that this is also valid for d = 2 or � = 0, using�0 = 2.12.3.4 Power Series of Bessel Functions(SecPSBF) The Bessel function of (12.3.6, JBF) has the power series repre-sentation (JBFP)J�(t) = � t2�� 1Xj=0 �� t24 �jj!�(� + j + 1) (12.3.8)that is valid for all t 2 C n f0g and all � 2 C . The integral representation(12.3.6, JBF) is �rst proven to be identical to the power series representation(12.3.8, JBFP) on its domain of de�nition. Since the power series is conver-gent everywhere, the general de�nition of J� can then be done by (12.3.8,JBFP). We �rst expand the exponential inZ 1�1 eits(1� s2)(2��1)=2ds = 1Xj=0 (it)jj! Z 1�1 sj(1� s2)(2��1)=2ds= 1Xj=0 (it)2j2j! Z 1�1 s2j(1� s2)(2��1)=2dsand use symmetry to cancel the odd powers. The equation (12.3.2, EqGxy)will come in handy after the substitution s2 = u. Then1Xj=0 (it)2j2j! Z 1�1 s2j(1� s2)(2��1)=2ds = 1Xj=0 (it)2j2j! Z 10 uj�1=2(1� u)(2��1)=2du= 1Xj=0 �(j + 12)�(2�+12 )�(j + � + 1) (it)2j2j!= 1Xj=0 �(12)�(2�+12 )j!�(j + � + 1)  �t24 !j



12.3 Special Functions and Transforms 189uses the same split of �(j + 12) as before. This can be put int (12.3.6, JBF)to yield the power series representation.Looking at (12.3.8, JBFP), we can de�ne a function H� by (EqHnuDef)�z2 ��� J�(z) =: H�(z2=4) = 1Xk=0 (�z2=4)kk!�(k + � + 1) (12.3.9)for � 2 C . This function often occurs in the text.In a very special situation the power series representation (12.3.8, JBFP)implies (JBh2)J�1=2(t) = � t2��1=2 1Xj=0 �� t24 �jj!�(j + 1=2)= � t2��1=2 1Xj=0 (�1)jt2j22jj!((j � 1)=2)((j � 3)=2) : : : (1=2)p�= � t2��1=2 1Xj=0 (�1)jt2j(2j)!p�= � t2��1=2 1p� cos(t)= s 2� cos(t)pt ; (12.3.10)and the other Bessel functions with half-integer order are similarly obtainableas linear combinations of elementary functions.12.3.5 Relations Between Bessel Functions(SecRBBF) By di�erentiation of the H� function from (12.3.9, EqHnuDef)we get



190 12 ANALYTIC BACKGROUND(EqHnuDer)
� ddtH�(rt) = � ddt 1Xk=0 (�rt)kk!�(� + k + 1)= r 1Xk=1 (�rt)k�1(k � 1)!�(� + k + 1)= r 1Xk=0 (�rt)kk!�(� + k + 2)= H�+1(rt): (12.3.11)

and (EqHnuDerNu)ddtt�H�(rt) = ddt 1Xk=0 (�rt)kt�k!�(� + k + 1)= r 1Xk=0 (�r)k(� + k)t�+k�1k!�(� + k + 1)= 1Xk=0 (�rt)kt��1k!�(� � 1 + k + 1)= t��1H��1(rt): (12.3.12)
We further need a special identity for Bessel functions: (JBI)
J�+�+1(t) = t�+12��(� + 1) Z 10 J�(ts)s�+1(1� s2)�ds; t > 0; � > �1; � > �12 :(12.3.13)



12.3 Special Functions and Transforms 191Since the integral is �nite, we can simply insert the power series and getZ 10 J�(ts)s�+1(1� s2)�ds = Z 10 0B@�ts2 �� 1Xj=0 �� (ts)24 �jj!�(�+ j + 1)1CA s�+1(1� s2)�ds= 1Xj=0 (�1)j( t2)�+2jj!�(�+ j + 1) Z 10 s2�+2j+1(1� s2)�ds= 1Xj=0 (�1)j( t2)�+2jj!�(�+ j + 1) 12 Z 10 r�+j(1� r)�dr= 1Xj=0 (�1)j( t2)�+2jj!�(�+ j + 1) 12 �(�+ j + 1)�(� + 1)�(�+ � + j + 2)= 0@ 1Xj=0 (�1)j( t2)�+�+1+2jj!�(�+ � + j + 2)1A 2�(� + 1)t�+1= 2�(� + 1)t�+1 J�+�+1(t):There is a special application in the text for � = 0 and � = (d� 2)=2, with(CSPnuFT)Jd=2(t) = t Z 10 J(d�2)=2(ts)sd=2ds: (12.3.14)12.3.6 Bounds on Bessel Functions(SecBBF) We continue with two properties of Bessel functions from[35](narcowich-ward:92-1): (EqJsqBound)J2d=2(z) � 2d+2�z ; z > 0 (12.3.15)(EqJsqInfty)limz!0 z�dJ2d=2(z) = 12d�2 (1 + d=2) : (12.3.16)The second of these follows easily from the power series expansion, sincelimz!0 �z2��� J�(z) = 1�(1 + �)limz!0 z��J�(z) = 2���(1 + �)limz!0 �z��J�(z)�2 = 2�2��(1 + �)2 :



192 12 ANALYTIC BACKGROUNDUnfortunately, equation (12.3.15, EqJsqBound) is much more di�cult andmust (for now) be left to the cited literature. Similarly, there is a weaker,but more general bound (EqBFBound)jJ�(x)j � 1 (12.3.17)for all x 2 IR and � � 0 ([1](abramowitz-stegun:70-1), 9.1.60, p. 362). Bothof the above bounds should combine into the general inequality(EqBFBound2)jJ�(jxj)j � O(jxj�1=2); x!1 (12.3.18)in view of [1](abramowitz-stegun:70-1), 9.2.1, p. 364. These things will beadded later.12.3.7 Integrals Involving Bessel Functions(SecWSI) From [1](abramowitz-stegun:70-1) 11.4.16, p. 486 we take themoment equations (EqMomJnu)Z 10 t�J�(t)dt = 2��((� + �+ 1)=2)�((� � �+ 1)=2) (12.3.19)which are valid for <(� + �) > �1; <(�) < 1=2. We now use these to derivesimilar equations for the H� functions by (EqHnuMom)Z 10 s�H�(s)ds = Z 10 (z2=4)�H�(z2=4)(z=2)dz= Z 10 (z2=4)�(z=2)��J�(z)(z=2)dz= 2��1�2� Z 10 z2���+1J�(z)dz= �(�+ 1)�(� � �) (12.3.20)
for � > �1 and � > 2� + 12 .Another citation from [1](abramowitz-stegun:70-1) 11.4.41, p. 487 is theWeber-Schafheitlin integral



12.3 Special Functions and Transforms 193(EqWeSchaf)Z 10 t���+1J�(at)J�(bt)dt= 8><>: 0 0 < b < a2���+1a�(b2 � a2)����1b��(� � �) 0 < a < b 9>=>;(12.3.21)for <� > <� > �1 and a 6= b > 0.12.3.8 Bessel Functions of Third Kind(SecBFTK) The Bessel function K� of third kind (alias Mcdonald function)is (KnuDef)K�(z) = �1=2(z=2)��(� + 1=2)Z 11 e�zt(t2 � 1)��1=2dt (12.3.22)for j arg zj < �=2 and <� > �1=2, and its asymptotics near zero is(KnuAsyZero)K�(z) = (z=2)���(�) + O(1); (12.3.23)while it behaves like (KnuAsyInf)K�(z) = p�p2z e�z(1 +O(z�1)); (12.3.24)near in�nity. Due to [1](abramowitz-stegun:70-1), 11.4.44, p.488 it is relatedto the J� Bessel functions via the identity (EqKJ)Z 10 t�+1J�(at)(t2 + z2)�+1 = a�z���2��(�+ 1)K���(az) (12.3.25)for a; z > 0; �1 < � < 2�+ 3=2. It satis�es the di�erential equation(EqKnuDif)K 0�(z) = K��1(z)� �zK�(z) (12.3.26)due to [1](abramowitz-stegun:70-1), 9.6.26, p. 376.



194 12 ANALYTIC BACKGROUND12.4 Lebesgue Integration(SecLI) This section covers some results from Lebesgue integration. Weassume some basic knowledge and concentrate on certain speci�c questionsthat may not be covered by every course on Lebesgue integration.12.4.1 L2 spacesWe want to look at density questions for subspaces of L2(IRd). For eachcontinuous function f on IRd we de�ne the support assupp f := clos f x 2 IRd : f(x) 6= 0 gand note that any continuous function with compact support clearly is inL2(IRD).Lemma 12.4.1 (LemBSDense) The space C0(IRd) of continuous functionswith compact support is a dense subspace of L2(IRd).Proof: Let a function g 2 ~L2(IRd) be given. For any n 2 IN we can restrictg to [�n; n]d and cut o� extremely large values to get a functiongn 2 L2[�n; n]d; g(x) = ( g(x) x 2 [�n; n]; jg(x)j � n0 else )withkg � gnk2L2(IRd) � Zjg(x)j>n jg(x)j2dxZx=2[�n;n]d jg(x)j2dx! 0 for n!1:This proves that the bounded L2 functions with compact support are dense inL2(IRd). But in each of the spaces L2[�n; n] we have density of continuousfunctions. This can either be proven by Weierstra� type theorems or byapproximation with smoothed step functions. 2Lemma 12.4.2 (LemContShift) The shift operator Sz : f(�) 7! f(� � z)is a continuous function of z near zero in the following sense: for each givenu 2 L2(IRd) and each given � > 0 there is some � > 0 such thatkSz(u)� ukL2(IRd) � �for all kzk2 � �.



12.4 Lebesgue Integration 195Proof: It is easy to see that it su�ces to prove the result for functions ing 2 C0(IRd). Let g be supported on [�K;K]d and use uniform continuity bypicking some � > 0 such that for all kx� yk2 < � < 1 we havejg(x)� g(y)j < �(2K + 2)�d=2:Then for kzk2 < � we getkSg � gk2L2(IRd) = ZIRd jSz(g)(x)� g(x)j2dx= ZIRd jg(x� z)� g(x)j2dx� (�(2K + 2)�d=2)2(2K + 2)d= �2: 2We now want to prove that the space S of tempered test functions is densein L2(IRd). For this, we have to study functions like (12.5.11, deltaschar)in some more detail. They are in S for all positive values of �, and Lemma12.5.12 (LemRepro) tells us that the operationf 7!M�(f) := ZIRd f(y)'(�; � � y)dymaps each continuous L1 function f to a "molli�ed" function M�(f) suchthat lim�!0M�(f)(x) = f(x)uniformly on compact subsets of IRd.It is common to replace the Gaussian in (12.5.14, deltarep) by an in�nitelydi�erentiable function with compact support, e.g. (Friedmoll)'(�; x) = ( c(�) exp(�1=(�2 � kxk22)) kxk2 < �0 kxk2 � � ) (12.4.3)where the constant c(�) is such thatZIRd '(�; x)dx = 1holds for all � > 0. This Friedrich's molli�er can also be used in thede�nition of M�. It has the advantage that Lemma 12.5.12 (LemRepro)



196 12 ANALYTIC BACKGROUNDholds for more general functions, i.e.: for functions which are in L1 onlylocally.We now want to study the action of M� on L2 functions. Let u 2 L2(IRd) begiven, and apply the Cauchy-Schwarz inequality toM�(f)(x) = ZIRd(f(y)q'(�; x� y))q'(�; x� y)dyto get jM�(f)(x)j2 � RIRd jf(y)j2'(�; x� y)dy RIRd '(�; x� y)dy= RIRd jf(y)j2'(�; x� y)dyand ZIRd jM�(f)(x)j2dx � ZIRd ZIRd jf(y)j2'(�; z)dydz = ZIRd jf(y)j2dysuch that M� has norm less than or equal to one in the L2 norm. It is evenmore simple to prove the identity(f;M�g)L2(Rd) = (M�f; g)L2(Rd)for all f; g 2 L2(IRd) by looking at the integrals. Here, we used the Fubinitheorem on IRd which requires some care, but there are no problems becauseeverything can either be done with a Friedrich's molli�er, or be done onsu�ciently large compact sets �rst, letting the sets tend to IRd later.We now use a Friedrich's molli�er to study the L2 error of the molli�ca-tion. This is very similar to the arguments we already know. The error isrepresentable pointwise asf(x)�M�(f)(x) = ZIRd(f(x)� f(y))'(�; x� y)dyand we can use the Cauchy-Schwarz inequality to getjf(x)�M�(f)(x)j2 � Zkx�yk2<� jf(x)� f(y)j2'(�; x� y)dy:This can be integrated to getZIRd jf(x)�M�(f)(x)j2dx � Zkzk2<� '(�; z) ZIRd jf(y + z)� f(y)j2dydz;and we use the continuity of the shift operator as proven in Lemma 12.4.2(LemContShift) to make this as small as we want by picking a suitably small�. This shows lim�!0 kf �M�(f)kL2(IRd) = 0and proves



12.5 Fourier Transforms on IRd 197Lemma 12.4.4 (FTD) The space S of test functions is dense in L2(IRd).2Lemma 12.4.5 (FTDC) The space C10 (IRd) of compactly supported in-�nitely di�erentiable functions is dense in L2(IRd).Proof: We can use Lemma 12.4.1 (LemBSDense) to go over from an f 2~L2(IRd) to a compactly supported function, and then we can use Friedrich'smolli�er to generate an in�nitely di�erentiable function. Both processes workwith arbitrarily small L2 errors. 212.5 Fourier Transforms on IRd(SecFTRd) This section contains the necessary de�nitions and results onFourier transforms in IRd together with their generalizations. Since we donot want to rely on books on distributions, we develop the relevant machineryhere.12.5.1 Fourier Transforms of Tempered Test FunctionsThere are two major possibilities to pick a space S of test functions on IRdto start with, and we take Laurent Schwartz's tempered test functionsthat are verbally de�ned as complex-valued functions on IRd whose partialderivatives exist for all orders and decay faster than any polynomial towardsin�nity. Such functions clearly de�ne a linear space over C of functions onIRd, and the standard notation is S.De�nition 12.5.1 (DefFT) For a tempered test function u 2 S, theFourier transform is (FT)bu(!) := (2�)�d=2 ZIRd u(x)e�ix�!dx; (12.5.2)where ! varies in IRd and x�! is shorthand for the scalar product xT! = !Txto avoid the T symbol in the exponent. Since the de�nition even works forgeneral u 2 L1(IRd), it is well-de�ned on S and clearly linear. Note that weuse the symmetric form of the transform and do not introduce a factor 2�in the exponent of the exponential. This sometimes makes comparisons toother presentations somewhat di�cult; in particular, our notation induces afactor in the usual convolution theorem for Fourier transforms, as proven inthe next section



198 12 ANALYTIC BACKGROUND12.5.2 Convolutions(SecFTConv) As far as the integral is well-de�ned, the convolution f � gof two complex-valued functions f; g on IRd is de�ned as the function(f � g)(x) := ZIRd f(y)g(x� y)dy:This is a linear operation in both f and g, and it is well de�ned for allfunctions in S and all functions in L2(IRd). We check the Fourier transformof the convolution of tempered test functions f; g 2 S and apply Fubini'stheorem for this: (EqFTC)df � g(!) = (2�)�d=2ZIRd(f � g)(x)e�ix�!dx= (2�)�d=2ZIRd ZIRd f(y)g(x� y)dye�ix�!dx= (2�)�d=2ZIRd ZIRd f(y)g(x� y)e�iy�!e�i(x�y)�!dydx= (2�)+d=2(2�)�d=2ZIRd f(y)e�iy�!dy(2�)�d=2 ZIRd g(z)e�iz�!dz= (2�)d=2( bf bg)(!): (12.5.3)12.5.3 Identities for Fourier Transforms(SecFTIFT) Here are some handy identities that are easily provable:(EqFTShift)df(� � y)(!) = e�iy�! df(�)(!) (12.5.4)(EqFTScale)df(�=r)(!) = rddf(�)(r!) (12.5.5)They do not only hold for tempered test functions from S, but usuallygeneralize to all function spaces to which the Fourier transform can beextended.



12.5 Fourier Transforms on IRd 19912.5.4 Fourier Transforms of Gaussians(SecPDG) To get used to calculations of Fourier transforms, let us startwith the Gaussian u
(x) = exp(�
kxk22) for 
 > 0, which clearly is in thespace of test functions, since all derivatives are polynomials multiplied withthe Gaussian itself. As a byproduct we shall get that the Gaussian is positivede�nite on IRd. Fortunately, the Gaussian can be written as a d-th power ofthe entire analytic function exp(�
z2), and we can thus work on C d insteadof IRd. We simply use substitution incu
(i!) = (2�)�d=2 RIRd e�
kxk22ex�!dx= (2�)�d=2ek!k22=4
 RIRd e�kp
x�!=2p
k22dx= (2�
)�d=2ek!k22=4
 RIRd e�kyk22dyand are done up to the evaluation of the dimension-dependent constantZIRd e�kyk22dy =: cdwhich is a d-th power, because the integrand factorizes nicely. We calculatec2 by using polar coordinates and getc2 = RIR2 e�kyk22dy= R 2�0 R10 e�r2r dr d'= 2� R10 e�r2r dr= �� R10 (�2r)e�r2 dr= �:This proves the �rst assertion ofTheorem 12.5.6 (GaussPD) The Gaussianu
(x) = exp(�
kxk22)has Fourier transform (GFT)cu
(!) = (2
)�d=2e�k!k22=4
 (12.5.7)and is unconditionally positive de�nite on IRd.



200 12 ANALYTIC BACKGROUNDProof: Let us �rst invert the Fourier transform by setting � := 1=4
 in(12.5.7, GFT):exp(��k!k22) = (4��)�d=2 RIRd e�kxk22=4�e�ix�!dx= (2�)�d=2 RIRd(2�)�d=2e�kxk22=4�e+ix�!dx:Then take any set X = fx1; : : : ; xMg � IRd of M distinct points and anyvector � 2 IRM to form�TAX� = MXj;k=1�j�k exp(��kxj � xkk22)= MXj;k=1�j�k(4��)�d=2 ZIRd e�kxk22=4�e�ix�(xj�xk)dx= (4��)�d=2ZIRd e�kxk22=4� MXj;k=1�j�ke�ix�(xj�xk)dx= (4��)�d=2ZIRd e�kxk22=4� ������ MXj=1�je�ix�xj ������2 dx � 0:This proves positive semide�niteness of the Gaussian. To prove de�niteness,we can assume f(x) := MXj=1�je�ix�xj = 0for all x 2 IRd and have to prove that all coe�cients �j vanish. Takingderivatives at zero, we get0 = D�f(0) = MXj=1�j(�ixj)�;and this is a homogeneous system for the coe�cients �j whose coe�cientmatrix is a generalized Vandermonde matrix, possibly transposed and withscalar multiples for rows or columns. This proves the assertion in one dimen-sion, where the matrix corresponds to the classical Vandermonde matrix.The multivariate case reduces to the univariate case by picking a nonzerovector y 2 IRd that is not orthogonal to any of the �nitely many di�erencesxj �xk for j 6= k. Then the real values y �xj are all distinct for j = 1; : : : ;Mand one can consider the univariate functiong(t) := f(ty) = MXj=1�je�ity�xj = 0



12.5 Fourier Transforms on IRd 201which does the job in one dimension. 2Note that the Gaussian is mapped to itself by the Fourier transform, if wepick 
 = 1=2 in (12.5.7, GFT). We shall use the Gaussian's Fourier transformin the proof of the fundamental Fourier Inversion Theorem:Theorem 12.5.8 (FTTS) The Fourier transform is bijective on S, and itsinverse is the transform (IFT)�u(x) := (2�)�d=2 ZIRd u(!)eix�!d!: (12.5.9)Proof: The multivariate derivative D� of bu can be taken under the integralsign, because u is in S. Then(D�bu)(!) = (2�)�d=2 ZIRd u(x)(�ix)�e�ix�!dx;and we multiply this by !� and use integration by parts!�(D�bu)(!) = (2�)�d=2 RIRd u(x)(�ix)�(i)�(�i!)�e�ix�!dx= (2�)�d=2 RIRd u(x)(�ix)�(i)� d�dx� e�ix�!dx= (2�)�d=2(�1)j�j+j�ji�+� RIRd e�ix�! d�dx� (u(x)x�)dxto prove that bu lies in S, because all derivatives decay faster than anypolynomial towards in�nity. The second assertion follows from the Fourierinversion formula (IFT2)u(x) := (2�)�d=2 ZIRd bu(!)eix�!d! (12.5.10)that we now prove for all u 2 S. This does not work directly if we naivelyput the de�nition of bu into the right-hand-side, because the resulting multipleintegral does not satisfy the assumptions of Fubini's theorem. We have to doa regularization of the integral, and since this is a very useful trick, we writeit out in some detail:(2�)�d=2 RIRd bu(!)eix�!d! = (2�)�d RIRd RIRd u(y)ei(x�y)�!dyd!= lim�&0(2�)�d ZIRd ZIRd u(y)ei(x�y)�!��k!k22dyd!= lim�&0(2�)�d ZIRd �ZIRd ei(x�y)�!��k!k22d!�u(y)dy= lim�&0 ZIRd '(�; x� y)u(y)dy



202 12 ANALYTIC BACKGROUNDwith (deltaschar)'(�; z) := (2�)�d ZIRd eiz�!��k!k22d!: (12.5.11)The proof is completed by application of the following result that is handyin many contexts: 2Lemma 12.5.12 (LemRepro) The family of functions '(�; z) of (12.5.11,deltaschar) approximates the point evaluation functional in the sense(Repro)u(x) = lim�&0 ZIRd '(�; x� y)u(y)dy (12.5.13)for all functions u that are in L1(IRd) and continuous around x.Proof: We �rst remark that the de�nition of ' is a disguised form of theinverse Fourier transform equation of the Gaussian. Thus we get (deltarep)'(�; x) = (4��)�d=2e�kxk22=4� (12.5.14)and ZIRd '(�; x)dx = (4��)�d=2 ZIRd e�kxk22=4�dx = 1:To prove (12.5.13, Repro), we start with some given � > 0 and �rst �ndsome ball B�(x) of radius �(�) around x such that ju(x)� u(y)j � �=2 holdsuniformly for all y 2 B�(x). Then we split the integral inju(x)� RIRd '(�; x� y)u(y)dyj = j RIRd '(�; x� y)(u(x)� u(y))dyj� Rky�xk2�� '(�; x� y)ju(x)� u(y)jdy+ Rky�xk>� '(�; x� y)ju(x)� u(y)jdy� �=2 + (4��)�d=2e��2=4�2kuk1� �for all su�ciently small �. 2Due to the Fourier inversion formula, we now know that the Fourier transformis bijective on S. We want relate the Fourier transform to the L2 innerproduct, but we have to use the latter over C to account for the possiblycomplex values of the Fourier transform. Furthermore, we have good reasonsto de�ne the inner product as



12.5 Fourier Transforms on IRd 203(Ltwodef)(f; g)L2(IRd) := (2�)�d=2ZIRd f(x)g(x)dx (12.5.15)with a factor that simpli�es some of the subsequent formulae. Fubini'stheorem easily proves the identity(v; bu)L2(IRd) = (2�)�d ZIRd v(x) ZIRd u(y)e+ix�ydydx = (�v; u)L2(IRd)for all test functions u; v 2 S. Setting v = bw we get Plancherel's equation(PlanEq)( bw; bu)L2(IRd) = (w; u)L2(IRd) (12.5.16)for the Fourier transform on S, proving that the Fourier transform is isometricon S as a subspace of L2(IRd).The Fourier transform clearly exists pointwise for functions in L1(IRd), andwe haveLemma 12.5.17 (FTLoneLem) The Fourier transform maps L1 functionsinto continuous L1 functions on IRd. The Fourier transform of a test func-tion f is real-valued, if and only if f satis�es f(��) = f(�).Proof. : It is easy to see thatjbu(!)j � (2�)�d=2 ZIRd ju(x)jdx;and the continuity follows from the theorem on majorized convergence ofLebesgue integrals when applied to !n ! ! andbu(!n)� bu(!) = (2�)�d=2 ZIRd u(x) �e�ix�!n � e�ix�!� dx;because the integrand is in L1. The �nal assertion is a consequence ofdu(�)(!) = (2�)�d=2 RIRd u(x)eix�!dx= (2�)�d=2 RIRd u(�x)e�ix�!dx= du(��)(!)and its counterpart for the inverse Fourier transform. 2



204 12 ANALYTIC BACKGROUND12.5.5 Fourier Transforms of FunctionalsWith Plancherel's equation in mind, let us look at the linear functional�u(v) := (u; v)L2(IRd)on S. We see that�bu(v) = (bu; v)L2(IRd) = (u; �v)L2(IRd) = �u(�v)holds. A proper de�nition of the Fourier transform for functionals �u shouldbe in line with the functions u that represent them, and thus we should de�nec�u := �buor in more generality b�(v) := �(�v)for all v 2 S. Since the space S of test functions is quite small, its dual, thespace of linear functionals on S, is quite large. In particular, the functionalsof the form �u are de�ned on all of S, if u is a tempered function. Thelatter form the space K of all continuous functions on IRd that grow at mostpolynomially for arguments tending to in�nity.De�nition 12.5.18 The Fourier transform of a linear functional � on S isthe linear functional b� on S de�ned byb�(v) := �(�v) or b�(bv) := �(v)for all v 2 S. If the latter can be represented in the form �w with a temperedfunction w 2 K, we say that w is the Fourier transform of � and write w = b�.The generalized Fourier transform of a tempered function u 2 K is theFourier transform c�u of the functional �u.Example 12.5.19 (ExDelta) The functional �x(v) := v(x) has the form�x(v) = v(x) = (2�)�d=2 ZIRd bv(!)e+ix�!d!;and its Fourier transform is of the form �ux withux(!) = c�x(!) = e�ix�!:Here, the normalization of the L2 inner product (12.5.15, Ltwodef) pays o�.Note that the Fourier transform is not a test function, but rather a temperedfunction from K and in particular a bounded function. The functional � := �0has the Fourier transform u0 = 1.



12.5 Fourier Transforms on IRd 205Example 12.5.20 (Exlxma) A very important class of functionals for ourpurposes consists of the space P?
 = (IP dm)?IRd of functionals of the form (3.3.1,De
xma) that vanish on IP dm. Their action on a test function v is�X;M�(v) = MXj=1�jv(xj)= (2�)�d=2ZIRd bv(!) MXj=1�jeixj �!d!= b�X;M�(bv)such that the Fourier transform of the functional �X;M� is the functionalgenerated by the bounded functionb�X;M;�(!) = MXj=1�je�ixj �!:If we expand the exponential into its power series, we see thatb�X;M;�(!) = 1Xk=0 MXj=1�j(�ixj � !)k=k!= 1Xk=m MXj=1�j(�ixj � !)k=k!since the functional vanishes on IP dm. Thus b�X;M;�(!) has a zero of order atleast m in the origin. If the functional �X;M� itself were representable by afunction u, the function u should be L2-orthogonal to all polynomials fromIP dm. We shall use both of these facts later.Example 12.5.21 (ExFTPol) The monomials x� are in the space K, andthus they should at least have generalized Fourier transforms in the sense offunctionals. This can easily be veri�ed via��i ddx�� v(x) = ��i ddx�� (2�)�d=2 RIRd bv(!)e+ix�!d!= (2�)�d=2 RIRd bv(!)(�i � i!)�e+ix�!d!= (2�)�d=2 RIRd bv(!)!�e+ix�!d!;and the associated functional isv 7!  �i ddx!� v(x)at x = 0.



206 12 ANALYTIC BACKGROUND12.5.6 Fourier Transform in L2(IRd)The test functions from S are dense in L2(IRd) (see Lemma 12.4.4 (FTD) fordetails), and thus we haveTheorem 12.5.22 (FLtwoT) The Fourier transform has an L2-isometricextension from the space S of tempered test functions to L2(IRd). The sameholds for the inverse Fourier transform, and both extensions are inverses ofeach other in L2(IRd). Furthermore, Plancherel's equation (12.5.16, PlanEq)holds in L2(IRd). 2Note that this result does not allow to use the Fourier transform formula (orits inverse) in the natural pointwise form. For any f 2 L2(IRd) one �rst hasto provide a sequence of test functions vn 2 S that converges to f in theL2 norm for n ! 1, and then, by continuity, the image bf of the Fouriertransform is uniquely de�ned almost everywhere bylimn!1 k bf � cvnkL2(IRd) = 0:This can be done via Friedrich's molli�ers as de�ned in (12.4.3, Friedmoll),replacing the Gaussian in the representation (12.5.14, deltarep) by a com-pactly supported in�nitely di�erentiable function.A more useful characterization of bf is the variational equation( bf; v)L2(IRd) = (f; �v)L2(IRd)for all test functions v 2 S, or, by continuity, all functions v 2 L2(IRd). Thisis an equivalent form of Plancherel's equation (PlEqL)( bf; bv)L2(IRd) = (f; v)L2(IRd) (12.5.23)for all f; v 2 ~L2(IRd). Some de�nitions of generalized Fourier transforms usesuch variational equations to de�ne bf by (12.5.23, PlEqL) for all v from asubspace of S.12.6 Sobolev Spaces(SecSob) This section contains de�nitions of Sobolev spaces and provesSobolev's embedding theorems.



20713 Appendix13.1 Basis Functions(SecBF) Here we try to give a complete list (up to this date) of the avail-able conditionally positive de�nite functions with their transforms and theirrecursion formulas. Proofs are either in the main text or in section 12.3(SecSFT) of the appendix.�(r) Parameters mr� � > 0; � =2 2IN m � d�=2er� log r � > 0; � 2 2IN m > �=2(r2 + c2)�=2 � > 0; � =2 2IN m � d�=2eTable 8: Conditionally Positive De�nite Functions (TCPDFct2)�(r) Parameters Smoothness Dimension Name/Referencee��r2 � > 0 C1(IRd) d <1 Gaussian(r2 + c2)�=2 � < 0 C1(IRd) d <1 inv. Multiquadricr�K�(r) � > 0 Cb�c d <1 Sobolev spline(1� r)2+(2 + r) C0 d � 3 Wu [47](wu:95-2)(1� r)4+(1 + 4r) C2 d � 3 Wendland [46](wendland:95-1)Table 9: Unconditionally Positive De�nite Functions (TPDFct2)�(r) Transforme��r2(r2 + c2)�=2r�K�(r)(1� r)2+(2 + r)(1� r)4+(1 + 4r)Table 10: Transforms (TFT)
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