Reconstruction of Multivariate Functions from
Scattered Data

R. Schaback

January 21, 1997



2 CONTENTS
Contents
1 Introduction 6
1.1 Recovery, Interpolation, and Approximation . . . .. ... .. 7
1.2 TInput and Output Data . . . . ... ... ... ... ... .. 7
1.3 Restrictions on the Choice of Spaces . . . . .. ... .. ... 8
1.4 Data-dependent Spaces . . . . . . . . . ... ... 9
1.5 Evaluation, Interpolation and Approximation . . .. ... .. 11
1.6 Conditionally Positive Definite Functions . . . . . . . .. . .. 13
1.7 Basic Equations for Conditionally Positive Definite Functions . 14
2 Working with Basis Functions 15
2.1 General Practical Considerations . . . . ... ... .. .. .. 16
2.2 Current Basis Functions . . . . ... .. ... ... ...... 19
2.3  Computational Complexity of Solving the System . . . . . .. 20
2.4  Multilevel Algorithms . . . . . . . ... ... ... 21
2.5 Numerical Examples . . . . .. ... .. ... 22
3 Hilbert Space Theory 26
3.1 Optimal Recovery in Hilbert Spaces . . . . . .. ... ... .. 28
3.2 Spaces of Functions . . . . . . ... ... ... ... 42
3.3 Native Spaces . . . . . . . .. e 54
3.4 Standardized Notation . . . . . .. .. ... ... ... ... 65
3.5 Restrictions, Extensions, and Infinite Problems . . . . . . . . . 67
3.6 Example: Cubic Splines in One Variable . . . . .. ... ... 75
4 Power Functions and Applications 80
4.1 Power functions . . . . . ... ... Lo 80
4.2  Optimal Recovery Redefined . . . . . . ... .. .. ... ... 82
4.3 Example: Optimal Interpolation in Wlla,b] . . .. ... ... 83
4.4 Recursive Constructions . . . . .. ... . ... ... ..... 93
4.5 Condition . . . . . . ... 97
4.6 Uncertainty Relation . . . . . . .. ... ... ... 99
5 Error Bounds 101
5.1 Upper Bounds for the Optimal Power Function . . ... ... 101
5.2 Approximation Error in the Radial Case . . . . .. ... ... 104
5.3 Jackson-Bernstein Theorems and Applications . . . . . . . .. 107
5.4 Lebesgue Constants . . . . . . . .. .. ... ... ... ... 111
5.5 Error Bounds in Terms of Fill Distance . . . . . .. ... ... 120
5.6 Doubling the Approximation Order . . . . . .. .. ... ... 123



CONTENTS

5.7

Improvement by Localization . . . ... ... ... ......

6 Advanced Results on R

6.1
6.2
6.3
6.4
6.5
6.6

Transforms of Translation-Invariant Basis Functions . . . . . .
Connection to Ly(IRY) . . . . . . ... .
Characterization of Native Spaces . . . . . . . ... ... ...
Condition Numbers . . . . . . . . . . .. . ...
Error Bounds . . . . . . . . . ...
Error Bounds and Scaling . . . ... ... ... ... ...

7 Special Theory

7.1
7.2
7.3
7.4
7.5

Results for General Transforms . . . . . . . . ... ... ...
Theory on the Torus using Fourier Series . . . . . . ... ...
Theory on Spheres using Expansions . . . . . . .. ... ...
Lower Bounds for Eigenvalues . . . . . . .. ... ... ....
Generalizations of Results Using Transforms . . . . . . .. ..

8 Theory on Grids

8.1
8.2
8.3
8.4

Sampling Theory . . . . . . . .. . ... ...
Strang-Fix Theory . . . . . .. ... ... ... ... ...
Application to Radial Basis Functions . . . . . . ... ... ..
Shift Invariant Spaces. . . . . . . . . ... .. ... .. ....

9 Construction of Positive Definite Functions

9.1
9.2
9.3
9.4

General Construction Techniques . . . . . . ... .. ... ..
Construction of Positive Definite Radial Functions on IR? . .
Positive Definite Functions on Topological Groups . . . . . . .
Positive Definite Zonal Functions on Spheres . . . . . . . . ..

10 Special Algorithms
10.1 Reduction of Enlarged System, Method 1 . . . . . . . .. ...
10.2 Reduction of Enlarged System, Method 2 . . . . . . . .. ...

11 Computational Geometry Techniques
11.1 Voronoi Diagrams . . . . . . . . . .. ... ...

12 Analytic Background
12.1 Calculus Facts . . . . . . . .. . ... ... ...
12.2 Hilbert Space Basics . . . . . . . .. .. ... ... ... ...
12.3 Special Functions and Transforms . . . . . . .. .. ... ...
12.4 Lebesgue Integration . . . . . . . .. ... ... ... .....
12.5 Fourier Transforms on IR? . . . . . . . . . .. ... ......

124
124
128
130
133
139
142

142
142
145
145
145
146

146
146
146
146
146

146
146

. 148

171
171

171
171
173

176
176



LIST OF FIGURES

12.6 Sobolev Spaces . . . . . . ... ...

13 Appendix
13.1 Basis Functions . . . . . . . . . . . ..
13.2 MATLAB routines . . . . . . . . . . . v i o i

List of Figures

1
2

10

11

12

13

14

15

16

17

Franke’s function . . . . . ... ... .. oo
Reconstruction of Franke’s function from thin-plate splines on
M =81 points . . . . . . . .. .
Residuals for thin-plate splines on M = 81 points . . . . . . .
Recovery using Wendland’s C? function with support radius
2on M =8l points . . . ... ...
Residuals using Wendland’s C? function with support radius
2on M =81 points . . . ... ...
Recovery using Wendland’s C? function with bandwidth 21 on
M =289 points . . . . . ..
Residuals using Wendland’s C? function with bandwidth 21
on M =289 points . . . . . .. ...
Residuals using Wendland’s C? function with bandwidth 21
on M =4225 points . . . . . . ...
Recovery using Wendland’s C? function with bandwidth 45 on
M =289 points . . . . . ..
Residuals using Wendland’s C? function with bandwidth 45
on M =4225 points . . . . .. ..o
Recovery using Wendland’s C? function with bandwidth 21 on
M = 289 points, multilevel method . . . . . . ... ... ...
Residuals using Wendland’s C? function with bandwidth 21
on M = 289 points, multilevel method . . . . ... ... ...
Recovery using Wendland’s C? function with bandwidth 5 on
M =9 points, multilevel method . . . . . . . ... ... ...
Recovery using Wendland’s C? function with bandwidth 5 on
M = 25 points, multilevel method . . . . . . ... ... ...
Recovery using Wendland’s C? function with bandwidth 5 on
M = 81 points, multilevel method . . . . . . ... ... ...
Recovery using Wendland’s C? function with bandwidth 5 on
M = 289 points, multilevel method . . . . . . ... ... ...
Recovery using Wendland’s C? function with bandwidth 5 on
M = 4225 points, multilevel method . . . . . . .. ... ...



LIST OF TABLES 5

18
19

Comparison of Power Functions(FigPFEx1) . . ... .. ... 88
Optimal Knot Placement (FigPFEx2) . . . ... ... .... 89

List of Tables

1

Conditionally Positive Definite Functions (TCPDFct) . . .. 19
Unconditionally Positive Definite Functions (TPDFct) . . .. 19
Errors for interpolation of Franke’s function, Nonstationary

Case . . . . 23

Errors for interpolation of Franke’s function, Stationary Case . 25
Errors for interpolation of Franke’s function, Stationary Case,

Interpolation of residuals . . . . . . ... ... ... ... ... 26
L., Bounds of Power Function Based on Lagrange Data

(TCPDEB) . . . o e e e e 121
Lower Bounds of Smallest Eigenvalue Based on Lagrange Data

with Separation Distance ¢ (TCPDC) . . .. ... ... ... 139
Conditionally Positive Definite Functions (TCPDFct2) . . . . 207
Unconditionally Positive Definite Functions (TPDFct2) . . . 207

Transforms (TFT) . . . .. .. ... . ... .. .. ..... 207



6 1 INTRODUCTION

Foreword

This text currently serves two purposes:

e it backs up the lecture on reconstruction of multivariate functions as
given in Gottingen in summer 1996, and

e it serves as a gradually growing reference manual for research of the
group in Gottingen and related places.

It may finally develop into a monograph, but as to now it is rather preliminary
and not intended for general distribution. Suggestions, corrections, addenda,
and any form of criticism are welcome.

R. Schaback Gottingen, January 21, 1997
e-mail: schaback@namu01.gwdg.de

Layout for this test version:
e Logical IXTEX labels printed out in slanted font.
e Three-level cumulative numbering of environments and equations.

e The index is just a preliminary and (possibly) unsorted list of keywords.

1 Introduction

(SectIntro) The following is intended to give the basic motivation for what
follows in later chapters. It shows that the reconstruction of multivariate
functions f from certain function spaces F requires dependence of F on the
data. Such data-dependent spaces are provided by conditionally positive
definite functions, and these are in the focus of this text. Their optimality
properties, as proven in later sections, justify this point of view. After
definition of spaces generated by conditionally positive definite functions,
this section introduces the standard algorithms for recovery of functions
from such spaces. Examples, generalizations, proofs, theoretical details, and
implementation problems will be added in later sections.
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1.1 Recovery, Interpolation, and Approximation

In almost all practical applications, a function f is given not as a formula,
but as a bunch of data. These data often take the form of approximate
values f(z1),..., f(xp) of f at some scattered locations xq,...,xy of the
domain  of definition of f. The recovery problem then consists in the
reconstruction of f as a formula from the given data. This reconstruction
can be done in two ways:

e interpolation tries to match the data exactly, taking f from a large
class F of functions that is actually able to meet all of the data, while

e approximation allows f to miss the data somewhat, but selects the
reconstruction function from a smaller class F of functions that will
not in general be able to reconstruct the data exactly.

The selection between interpolation and approximation will depend on the
application, and especially on the choice of function classes F and the neces-
sity of exact reproduction of data.

We shall address both problems here, and there will be some hidden links
discovered between the two approaches. Furthermore, we shall allow a much
wider class of recovery problems in later sections, but the basic motivation
is better shown by the above simplified “Lagrange” setting.

1.2 Input and Output Data

We shall consider reconstruction of d-variate functions f defined on a domain
Q). In most cases, £ will be a subset of IR%, but many results will hold on
general sets. Right from the start we keep in mind that d might be large and
that the domain Q may be all of IR? or something special like a subdomain of
IR? or the d — 1 dimensional sphere, i.e. the surface { z € IR? : ||z =1}
of the unit ball { z € IRY : ||z| < 1 }, where ||.||2 denotes the usual
Euclidean norm on /R?. In addition, we also may encounter very large sets
of data, and these usually come up in two parts:

e a finite set X = {xy,..., 2y} of M possibly wildly scattered points in
some domain 2 C IR?, and

e real numbers fi,..., fy; that represent approximate values of f at the
given points.
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The reconstruction should supply some function f defined on a domain €2
that contains all the data locations, and the data are to be reproduced
approximately in the sense

fi~f(z;), 1<j< M.
But there are two other important input data for the recovery process:
e the domain €2 should be prescribed by the user, and

e the reconstruction should be confined to some prescribed class F of
functions in order to avoid unpredictable results.

These will finally fix the set of formulas that are allowed as the output of the
recovery process. Their choice will very much depend on the application and
on additional knowledge of the user. For instance, somebody might want
the resulting function f to be defined on all of IR?, while somebody else is
interested in a much more local reconstruction, e.g. in the convex hull of the
data locations.

Furthermore, there may be different requirements on the smoothness of the
recovered function or on its decay further away from the data. These have
to be incorporated into the choice of F, in addition to further information
the user can provide.

1.3 Restrictions on the Choice of Spaces

There are two good reasons to assume that the class F of functions should
be a linear space:

e If the values f; are multiplied by a fixed scalar factor «, then the new
data should be recovered by the function a.f instead of f.

e If data f; and g; at the same locations x; € IR? are recovered by
functions f and g, respectively, then the data f;4g¢, should be recovered
by the function f + g¢.

Note that this does not only require the class F to be a linear space: it also
enforces the whole recovery process to consist of linear maps that associate
a function to each data set. Furthermore, the recovery process will have a
nonunique solution and thus be numerically unstable, if there is a function ¢
in F that vanishes at all data locations in X = {zy,..., 2}, because then
all functions of the form ag can be added to a solution f without altering
the data reproduction.
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Definition 1.3.1 (DefNond) If F is a space of functions on a domain €0,
then a subset X of Q is called F-nondegenerate, if zero is the only function
from F that vanishes on X.

We see that only the F-nondegenerate subsets X of €2 can be used for stable
reconstruction. It would be nice if any finite set X or at least (if dimF = M)
any set X = {z1,...,z)} would be nondegenerate for a given space F.

But in truly multivariate situations this turns out to be impossible. In
fact, if a linear subspace F of dimension M > 2 of a space of multivariate
functions is fixed independent of the set X = {x;,..., x5}, there always is a
degenerate set X. This surprising and disappointing observation dates back
to Mairhuber and Curtis (cf. [8](Braess:86-1)):

Theorem 1.3.2 (MCTheorem) Let F be an M-dimensional space of con-
tinuous real-valued functions on some domain Q C IR® which is truly d-
dimensional in the sense that it contains at least an open subset QO of IR®.
Assume further that any set X = {x1,...,xp} C Qi is F-nondegenerate.
Then either M = 1 or d = 1 hold, i.e. either the function space or the
underlying domain are just one-dimensional.

Proof. We can assume () = (2; without loss of generality. If the continu-
ous functions vy, ..., vy are a basis of F, then the function D(xq,...,zy) =
det (vj(xy)) is a continuous function of its M arguments. Due to our assump-
tion this function can vanish only if two or more of the arguments coincide.
Let us assume M > 2, and let € be at least truly 2-dimensional. Then one
can swap the points x; and x5 by a continuous motion that avoids coincidence
with any of the arguments. Thus there is a continuous transition between
D(xy, w9, 23,...,xy) and D(zo,x1,23,...,2y) = —D(x1,29,23,...,%p)
that keeps D away from zero. This is impossible. O

1.4 Data-dependent Spaces

(SubSectDDSpaces) The Mairhuber-Curtis theorem 1.3.2 (MCTheorem)
forces us to let the space F depend on the data. But since for given X =
{1,...,2} there should be a linear recovery map

Rx : RM = F. (fi,....fu) — [

it is reasonable to let F depend on the data locations X = {z,...,zy}
only, not on the data values fi, ..., fyr. The formulas for the construction of
functions f(z) in F thus must depend on X = {xzy,...,x)} and generate a
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linear space. The most straightforward way to achieve this is to combine the
arguments « and z; into a single function

¢:O0x Q= IR

and to view each ®(z,z;) as a data-dependent function of the variable .

Superposition of such functions results in a space
(calfdef)

M
Fxo = {Zajq)(x,xj) Lo € ZR} (1.4.1)
j=1
that may serve our purposes. It will turn out later that there are strong
arguments to support this definition of a data-dependent space of functions.
Under quite weak and general assumptions it can be proven that there is no
better way to do it. Details of this will be given in 3.1.5 (Necessity), but
we cite the basic features here to support some useful simplifications. If for
some ® the union of all function spaces Fx ¢ for varying sets X is required to
have translation invariance, then the function ® should be of the special
form

@(x,y) = ¢($ - y): ¢ : ZRd — le'

If we add rotational invariance, we end up with radial basis functions

Oz, y) = ¢z = yll2), ¢ : Roo — IR.

Note that in the latter case there is only a single univariate function required
to generate a large class of spaces of multivariate functions. If we are working
on the unit sphere in IR? and assume rotational invariance, we get zonal
functions

O(z,y) = ¢(z"y), ¢ : Ry — R,

where z” stands for transposition of the vector x such that ®(z,y) just is a
univariate function ¢(z”y) of the scalar product z”y. Details are provided
in section 3.2.4 (SecIP).

Of course there are other methods to generate data-dependent linear spaces
of functions. The most prominent one is used widely in the theory of finite
elements. There, the data set X = {xy,..., 2/} is first used to generate a
triangulation of its convex hull, and then one constructs functions on each
subset of the triangulation, which are finally patched together to form smooth
global functions. This approach is very effective if the space dimension d is
small and if the functions to be recovered need not be very smooth. We refer
the reader to the vast literature on this subject, and we proceed without
considering triangulations of domains and patching of functions.
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1.5 Evaluation, Interpolation and Approximation

(subsecEIA) The representation of functions in (1.4.1, calfdef) now serves
as the reconstruction formula, and all one has to do when solving the re-
construction problem is to determine the vector o = (ay,...,an) of the
coefficients of the resulting function with the representation

(falphadef)

falz) := f:afb(fr,xj), reQC IR (1.5.1)
j=1

Before we turn to this problem, we note that evaluation of such a function
at large numbers of different locations x € €2 can be quite costly if M is
large. However, the strong dependence on M can be relaxed if the values
®(z,x;) vanish whenever z and z; are not near to each other. Examples of
such functions will be given later.

Reconstruction by interpolation on X = {z1,...,x)} will now require to
solve the linear system
(EQsysl)
M
> aj®(xy,z5) = fu, k=1,...,.M (1.5.2)
j=1
for aq, ..., ap. We shall write this in shorthand matrix form as
Aa = f,

but in cases where the dependence on X and @ is crucial, we add capital
subscripts:

Axpaxe = fx, Axe = (P(zk, 7)) ¢ pecnr -

To make the system uniquely solvable, the matrix A must be nonsingular.
Looking at approximation, we shall soon have additional reasons to assume
that Ay ¢ should even be positive definite. Thus it is more or less unavoidable
to assume Ay ¢ to be positive definite for all X, when the function ® is fixed.
For these reasons we require the function ® to satisfy

Definition 1.5.3 (DPD) A real-valued function

P:QxQ— IR
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15 a positive definite function on Q, iff for any choice of finite subsets
X ={z1,...,2m} CQ of M different points the matriz

Axe = ((b(xkaxj))lgj,kgM
s positive definite.

At first sight it seems to be a miracle that a fixed function ® should be
sufficient to make all matrices of the above form positive definite, no matter
which points are chosen and no matter how many. It is even more astonishing
that one can often pick radial functions like ®(z,y) = exp(||z — y|[3) to do
the job, and to work for any space dimension.

Turning to approximation, the space Fx ¢ of (1.4.1, calfdef) should depend
on less data than those given to determine the approximation. We simply
assume some other data on some (large) Lebesgue-measurable subset €; C Q
to be specified, and approximation should take place in the space Ly(£4),
for instance, which we assume to contain Fx . This covers discrete and
continuous least-squares fits on the set €2; by functions of the form f, from
(1.5.1, falphadef). The normal equations for the approximation are

M
Z aj((I)(" l‘k)’ (I)(-’ l‘j))L2(Ql) = ((I)(’ l‘k)a f('))Lg(Ql), k=1,...,M.
7j=1
Introducing new functions
(Psidef)
\I](l‘ay) = (q)('ax)a(b('ay))Lg(Ql) (154)

g(y) = ((I)(-, y): f('))LQ(Ql)

we see that this is exactly an interpolation system of the form

AX,WQX,W = 0x.

Thus approximation reduces to interpolation by functions from a similar, but
somewhat different function space.

At this point we see how positive definiteness comes in: the above matrix
Ax v is a Gramian with respect to the functions ®(-, zy) in the inner-product
space Lo(€2;). Thus it is positive definite whenever these functions are
linearly independent in Ly(2;). But the latter requirement is unavoidable
for stable approximation in Ly ().
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From these preliminary considerations we conclude that positive definite
functions should be investigated further, and we note in passing that (1.5.4,
Psidef) yields a first method to construct such functions ¥ from linear in-
dependent functions ®(-,xy), 1 < k < M,z € Q. We shall consider such
constructions in detail in section 9.1 (SecGCT), but we remark in passing
that the Gaussian

®(z,y) = exp(—allz —y|3)
is positive definite on IR? for all d and all o > 0. Since the proof requires

tools like Fourier transforms, we defer it to Theorem 12.5.6 (GaussPD) on
page 199.

1.6 Conditionally Positive Definite Functions

Positive definite functions (formerly defined in a slightly different way) have
a long history that is nicely surveyed by Stewart [44](Stewart:76-1). How-
ever, the first cases of radial basis functions used widely and successfully in
applications were

e the thin-plate spline ®(z,y) = ¢(||z — yll2) = —||x — y||21og ||z — y||2
introduced by Duchon [10](duchon:76-1), [11](duchon:78-1), [12](duchon: 79§

1),

e the multiquadric ®(z,y) = ¢(||z — y||2) = \/02 + ||z — y||3) and

1
Ve +llz —yl3)

e the inverse multiquadric ®(z,y) = ¢(||z — y||2) =
used by the geophysicist Hardy [17](hardy:71-1)

but the first two of these are not positive definite. The corresponding matrices
Ax ¢ naturally define quadratic forms

(QFdef)
M

QX,@ : (al,...,aM) — CYTAX@Oé = Z ajakcb(:cj,xk) (161)
k=1

on IR?, where T stands for vector transposition, but these forms are positive
definite only on a proper subspace of IRM. More precisely, for certain positive
values of m the above functions ® satisfy the following

Definition 1.6.2 (DCPD) A real-valued function

P:QxQ— IR
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is a conditionally positive definite function of order m on Q C IR?, iff
for any choice of finite subsets X = {xy,...,xyp} C Q of M different points

the value
M

o Axso =Y o ®(x), 1)
Jik=1
of the quadratic form (1.6.1, QFdef) is positive, provided that the vector
a=(ay,...,ay) € IRM\ {0} has the additional property
(CPDef)

ilajp(:rj) =0 (1.6.3)

for all d-variate polynomials p of order (=degree-1) up to m. The linear space

of such polynomials will be denoted by IPS, and its dimension is

[ m—-1+d
q:= J .

It is a major problem to prove that multiquadrics are conditionally posi-
tive definite of a fixed order m for all space dimensions d. This was done
(among other things) in Micchelli’s fundamental paper [27](micchelli:86-1)
that boosted the research on radial basis functions.

1.7 Basic Equations for Conditionally Positive Definite
Functions

If & is conditionally positive definite of order m on Q C IR?, then the
additional condition (1.6.3, CPDef) reduces the M degrees of freedom of
a € IRM by at most ¢, the dimension of the space IP% of polynomials. Thus
it is reasonable to add ¢ new degrees of freedom to the recovery process by
adding IP% to the space of admissible functions. Then (1.4.1, calfdef) has to
be replaced by

(calfdef2)

M
Gxo =P+ Fx 4 = ZP,;ng{Zajcb(:c,xj) . a; € IR with (1.6.3, CPDef) ;.
j=1

(1.7.1)
Now the M x M system (1.5.2, EQsys1) goes over into the (M +¢) x (M +q)
system
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(EQsys2)

M q

Yoa®(xp,x;) + Y Bipi(rr) = fi, 1<k<M
o = (1.7.2)
doai(z;)  + 0 =0 1<i<gq
7j=1

for vectors a = (ay,...,ay) € RM and 8 = (41,...,5,) € IR?, where the
polynomials py, ..., p, are a basis of IP¢ . Introducing a matrix

P = PX = (pz(xj))lgzquSJSM’

of values of polynomials, this system reads in matrix form as
(BDef)

(;‘T’J)(g):(gj). (1.7.3)

The coefficient matrix of this enlarged linear system will be abbreviated by
B or Byx,s. The solvability of (1.7.2, EQsys2) is described by

Theorem 1.7.4 (Nonsingl) Let ® be conditionally positive definite of or-
der m on Q C IRY, and let the data set X = {x1,...,2} C Q be IP%-
nondegenerate. Then the system (1.7.2, EQsys2) is uniquely solvable. Fur-
thermore, there are linear algebra techniques using at most O(Mq? + M?q)
operations to reduce it to a positive definite (M — q) x (M — q) system.

Proof. Let a pair of vectors o € IRM and 3 € IR? solve the homogeneous
system with matrix (1.7.3, BDef). Then we have Ao+ P3 = 0 and PTa = 0.
Multiplying the first equation with o and inserting the second in transposed
form, we get o’ Aa +0 = 0. Now a = 0 follows from conditional positive
definiteness, and we are left with P3 = 0. This in turn implies § = 0,
because X is IP%-nondegenerate. The second assertion will be proven by two
explicit algorithms in 10.1 (RedI) and 10.2 (Red2). O

2 Working with Basis Functions

This section is intended for readers working on applications. It contains
tables of the currently known conditionally positive definite functions and
provides guidelines for picking the right function ® from the tables. These
guidelines are based on both numerical experience and theoretical insight.
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However, this chapter will not attempt to prove any of the statements inher-
ent in the guidelines, but rather refer the reader to subsequent sections.

Right after giving the general guidelines, we turn to efficiency considerations.
Special strategies for system reduction, iterative solution, sparse matrices,
and preprocessing techniques for large sets of data points are delayed to
section 10 (SecSA).

A series of examples serves for illustration. Since these examples are quite
convincing in general, they justify the considerable amount of theoretical
background to be developed in later sections.

2.1 General Practical Considerations

Before picking a suitable function ® for recovering a function f in an appli-
cation, the user first has to consider the following issues:

e How smooth should f be?

e What is the required behaviour near the boundary of the convex hull
or outside of the data set X = {xy,...,2p}7

Are the data locations evenly or very unevenly distributed?

Is exact reproduction of the data required?

Are M and/or the space dimension d so large that efficiency consider-
ations are predominant over reproduction quality questions?

2.1.1 Uncertainty Relation

(GPCUP) When considering the above questions, the user has to keep in
mind that every good thing has its price. This basic fact of real life occurs
here in the form of an Uncertainty Relation:

If you go for good reproduction quality, you have to sacrifice numerical
stability. If you go for good stability, you have to sacrifice reproduction
quality.

This wishy-washy statement will be made precise in 4.6 (URT), and there
it turns out that both reproduction quality and numerical instability are
linked to both data density and smoothness of ® (and, in cases with compact
support, to the size of the support radius of ®). Furthermore, if large linear
systems with positive definite coefficient matrices are solved by the conjugate
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gradient method, numerical stability is directly linked to efficiency via the
condition of the matrices. This is why for large problems one can replace
“stability” by “efficiency” in the Uncertainty Relation.

If the data density is considered fixed, the Uncertainty Relation suggests that
the user should be very careful about the smoothness of the function ®. It
should be as low as the application tolerates, and any excessive smoothness
will have negative effects on stability.

But if reproduction quality or stability is fixed, there is a trade-off between
data density and smoothness of ®. For sparse data one can work with
smooth functions, and for large and dense data sets one has to work with
low smoothness of & in order to avoid numerical problems. If working
with compactly supported functions ®, this is a standard way to escape
the inherent numerical problems with very large and dense data sets. One
can split the data set into subsets of increasing density and use compactly
supported functions with decreasing support radii on these data sets. If
things work out nice, one can expect to work at a fixed stability level, but
with incereasing local resolution. We treat such multilevel techniques in detail
in 2.4 (MLA) but the next paragraph will add some other arguments in favor
of it.

Compactly supported functions offer computational advantages due to spar-
sity of the corresponding matrices. If supports are small, the effect of such
functions will be strictly local, and this has both advantages and disadvan-
tages. The disadvantage is that global effects cannot be nicely recovered, and
thus small supports should be used only in cases where the global behavior
is already recovered by any other method. The usual trick is to

e first apply a global method (possibly using a small but global data set),
e take the residuals (data minus values of the recovery function) and then

e handle the local effects by reconstruction the residuals using compactly
supported functions on the full data set.

This three-stage process is quite common in applications and amounts to
solve for the global trend first and then to model the local effects on a finer
scale. The last two steps can be iterated using smaller and smaller supports,
and this is the multilevel method that we look at in 2.4 (MLA)
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2.1.2 Unevenly Distributed Data

(GPCUDD) The above statements assume a more or less evenly scattered
data set. If there are local clusters of data points or areas without data,
some other aspects come into the game. In fact, for a fixed function ® the
numerical stability and the reproduction quality are connected to two similar,
but different quantities which roughly coincide for evenly distributed data
sets. The stability is connected to the separation distance

(SDDef)

1 :
5 1cmin s — el (2.1.1)
while the reproduction quality on the domain €2 is ruled by a somewhat more
complicated quantity (see (5.5, hrhodef)) that can roughly be described for
practical purposes by the fill distance
(DDDef)

h:=hxg:= ilelg 12]1131}\/1 |z — ;2. (2.1.2)
Separation distance measures the minimal distance that separates any two
data locations, i.e. it is the minimal distance from any point of the data set
to its nearest data point, while fill distance measures the way how the data
fill the domain, i.e. it is the maximal distance from any point of the domain
to its nearest data point. Thus fill distance is never smaller than separation
distance, but hazardous cases have a very small separation distance relative
to the fill distance. We call a data set unevenly distributed if this happens,

and the quotient
hx.a

dx,0 = >1

Sx
is a good measure for the unevenness of a data distribution X with respect
to a domain (2.

Now the naive treatment of unevenly distributed data sets will induce “ad-
ditional” numerical instabilities caused by the irregularity of the data dis-
tribution. If these instabilities are severe, some action must be taken. If
caused by a few points that are extremely near to other data locations with
comparable data values, the user can simply throw these “duplicates” out of
the data set and proceed, expecting that the nearby data points are sufficient
for the required reconstruction.

But there are cases where the data show local clusters which themselves
consist of nicely distributed data locations. Then the problem lives on more
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than one density scale, and the obvious technique to treat such cases is by
working in several steps with increasing local resolution. This is another
good reason for the multilevel approach in 2.4 (MLA).

2.2 Current Basis Functions

(SecCBF) Table 1 (TCPDFct) lists some of the currently known radial
functions that are conditionally positive definite of positive order m on IR
A more or less complete list will be in the Appendix under 13.1 (SecBF).
Note that these have some polynomial growth towards infinity, and they
always generate non-sparse matrices. They work for any space dimension
d, and they are especially useful for cases where decay towards infinity is a
disadvantage. Thus they should not be applied to residuals but rather to the
original data, and their power lies in good reproduction of the global overall
shape of the function to be reconstructed, especially in areas away from the
data locations.

We now turn to unconditionally positive definite functions defined on IR?.

o(r) | Parameters m
r’ >0, 8¢2IN m>[3/2]
r®logr >0, 3€2IN m>[3/2

(r?+ )2 [ B3>0, 3¢ 2IN m>[5/2]

Table 1: Conditionally Positive Definite Functions (TCPDFct)

o(r) Parameters Smoothness Dimension Name/Reference
e o >0 C>(IR%) d<oo  Gaussian
(r? 4 )82 6<0 C>(IR?) d<oo  inv. Multiquadric
K, (r) v>0 cwl d < oo  Sobolev spline
(1—r)3@2+r) C" d<3 Wu [47](wu:95-2)
(1—r)i(1+4r) C? d<3 Wendland [46](wendland:95-1)

Table 2: Unconditionally Positive Definite Functions (TPDFct)

These have decay towards infinity and come in two variations: compactly
supported or not. Due to results given in 9.2.12 (NECSAIId) there are
no compactly supported positive definite functions that work for all space
dimensions. Thus one has to check the space dimension d when working with
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compactly supported functions. Table 2 (TPDFct) lists some of the currently
known cases and provides information about smoothness and admissible
space dimensions for positive definiteness. See 13.1 (SecBF) for further cases
and details.

The decay towards infinity may be an unwanted feature when applied to
raw data, but it is very convenient when applied to residuals. Compact
supports provide sparse matrices, but the adjustment of the support radius
can be hazardous. If chosen too small, the resulting matrices Ax ¢ tend to
be nicely diagonal, making the numerical solution very stable and efficient,
but the reproduction quality is disastrous, because one reproduces the data
by extremely narrow and isolated “delta” peaks. On the contrary, a large
support radius very much improves reproduction quality, but at the expense
of matrix fill-in and increasing condition. This is another consequence of the
Uncertainty Relation.

2.3 Computational Complexity of Solving the System

(CompEffort) We now investigate the numerical effort required to solve
the system (1.7.3, BDef). Assuming that ¢ usually is zero or small com-
pared to M, we roughly have a positive definite and symmetric M x M
system to solve. If the condition is reasonable and M is not too large,
Cholesky factorization will do the job at about M?®/6 + O(M?) computa-
tional cost. However, this is not acceptable for large M. In particular,
the value of M can be even too large to form the full matrix in storage.
Therefore one has to look for iterative methods and sparse matrix tech-
niques. Some special tricks due to Beatson [5](beatson-newsam:92-1) and
Powell [38](powell:92-1)[37](powell:92-2)[4]( Powell Ef TPSSystem) are possi-
ble for specific basis functions, but we concentrate here on the solution via
compactly supported functions.

In this case the matrix is sparse and its bandwidth depends on the relative
size 0 /h of the support radius 0 and the fill distance h. For a fixed compactly
supported positive definite function ® the effect of an increase of § yields

e an increase of the bandwidth of the matrix in (1.7.3, BDef) via an
increase of 6/h,

e an increase of the reproduction quality via an increase of §/h (see 6.6
(SecError)), and

e an increase of its condition via an increase of §/q (see 4.5 (SecCondi-
tion)).
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This is another version of the Uncertainty Relation, and the user has to
fix the support radius ¢ to be sufficiently large to get good reproduction
quality while keeping it small enough to let the solution of the system be
computationally effective. A general rule of thumb is to work at the limits
of the computational resources, and to switch to multilevel techniques (see
2.4 (MLA)) in cases where the reproduction quality still is inadequate.

If the ratio §/q is kept bounded, the norm of the inverse (and thus a major
part of the condition) of the matrix in (1.7.3, BDef) is bounded. Solving
the system by conjugate gradients uses only a fixed number of iterations
for fixed precision requirements, if the condition is bounded. Furthermore,
each iteration takes only O(M - B) operations for bandwidth B. Thus the
numerical cost of solving the system (1.7.3, BDef) can be kept roughly at
O(M), if the user keeps the ratios of h, ¢, and ¢ within reasonable bounds.

We finally check the complexity of evaluating (1.5.1, falphadef) at a single
argument x. In general one has to expect O(M), but since one has to
evaluate the function in at least O(M) or many more points, the cost for
evaluation will even be underestimated by O(M?). For large values of M this
cannot be tolerated. Using stencils [38](powell:92-1) and Laurent expansions
[37](powell:92-2) Powell has overcome these difficulities in case of thin-plate
splines. For compactly supported basis functions with maximally B points in
their support (this coincides with the bandwidth of the system (1.7.3, BDef))
one has O(B) operations for each evaluation, which is a significant advantage
if many evaluations have to be made. However, each evaluation then requires
to solve the B-nearest-neighbor problem of computational geometry, because
for each = one has to pick the B data points z; with nonzero ®(z,z;) in
an effective way. If the data are not too wildly scattered, one can employ
preprocessing techniques of complexity at most O(M) to solve this problem
at O(1) for each x. In general, preprocessing of cost O(M log M) is necessary
to provide a O(log M) complexity of solving the B-nearest-neighbor problem
for each z. Details will be provided in section 11 (SecCGT)

2.4 Multilevel Algorithms

(MLA) The basic idea here is to work at levels indexed by j, where one uses
a basis function ®; that usually will be compactly supported with a support
radius 6;. On level j the data is confined to a subset X; of the full data
set X, and the corresponding fill distance and separation distance will be
denoted by h; and g;, respectively. The function f; to be recovered by some
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other function s; at level j consists of the residuals of the preceding step, i.e.

fi=f-1—58-1.72>1 fo:=1F

The ratios of the three quantities h;, ¢;, and 6; are kept at reasonable
values that make the computations possible, while the quantities themselves
decrease with increasing j.

The rationale behind this multilevel techniques is to recover the function f
at different levels of resolution, starting from global reconstruction of slowly
varying features from coarse global data and ending up with highly local
reconstruction of fine details from densely distributed data. The numerical
performance of this technique is superior to single-level techniques in appli-
cations with very large data sets (see 2.5 (SecExamples) and [13](floater-
iske:95-1) [14](floater-iske:96-1)), but its theoretical treatment, starting in
[5](NRSW), still is incomplete. The numerical cost can be kept to O(M) by
proper choice of supports and fill distances.

2.5 Numerical Examples

(SecExamples) Here are some first examples of reconstructions of functions
from multivariate scattered data. For easy presentation, we restrict ourselves
to two-dimensional cases and use MATLAB for the computations. The
corresponding MATLAB M-files and MEX-files are in the appendix.

We start with the reconstruction of Franke’s function [15](franke:82-1)
rescaled to Q = [0,1] x [0,1] C IR? from data on a grid (i/2n,j/2n), 0 <
i,j < 2n such that M = (2n + 1)2. The matrix in (1.7.3, BDef) then has
approximately 4n? entries, and the computational cost of Cholesky factoriza-
tion is about 4n®/3. If the matrix is non-sparse, only very moderate values
of n can be treated.

The function itself (Figure 1 (FigFranke33)) is nicely reconstructed up to
graphical precision by thin-plate splines ¢(r) = r?logr from information on
M = 81 data points (Figure 2 (FigTPS81Fct33)). The effects of higher
values of M are visualized by plotting residuals (see Figure 3 (FigTPS81Res)
for M = 81, and note the scale on the z-axis for plots of residuals).

Working on more than M = 225 points becomes very ineffective for non-
sparse cases. Thus we now consider examples with Wendland’s compactly
supported radial basis function ¢(r) = (1—r)% (4r+1) with support scaled to
radius 6. On M = 81 data points one can still compare with the previous case
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while using a large support radius § = 2 (Figures 4 (FigWF81Supp2Fct33), 5
(FigWF81Res2)). To handle larger values of M, the support radius has to be
decreased to introduce sparsity. We start with examples having bandwidth
21 on M = 289 and M = 4225 points (Figures 6 (FigWF289Ban21Fct65),
7 (FigWF289Ban21), 8 (FigWF4225Ban21)).  Note that the reproduced
function is overlaid by some high-frequency wiggles that arise from the small
support of the radial basis functio used: the approximation is somewhat too
spiky. A look at the residuals supports this, but also implies that the larger
errors occur at the boundary. These take over when going to 4225 data
points, and make the errors in the interior hardly visible. This is the first
hint that the behavior near the boundary needs special treatment.

Now Figures 9 (FigWF289Ban45Fct65), 10 (FigWF4225Ban45)) show resid-
uals computed with matrices of bandwidth 45. The results are better, of
course, but the message is the same.

For even larger values of M we refrain from providing plots of residuals.
Instead, we evaluate the error on a fine grid. Table 3 (TabNonstat) on
page 23 shows the maximum errors for cases with fixed support radius ¢

N\§d |0.03125 0.0625 0.125 0.25 0.5 1 2 4 8
9 * * * * 12,1754 54808 5.5436  5.8102 5.9030

25 * * *10.2176  1.1995 0.8186 0.6902 0.6889 0.7073

81 * * 11.5563  1.1013  0.4668 0.3621 0.3570 0.3584 0.3587
289 *11.7369 0.8148  0.4606  0.1175 0.0397 0.0241 0.0224 0.0226

1089 | 11.6653  0.7812  0.4783  0.1158 _ ; ;
4225 | 0.7791  0.4561 _ ; : ; ;
16641 ; : ; - ; - ;
66049 _ : ; ; ; - -

Table 3: Errors for interpolation of Franke’s function, Nonstationary Case
(TabNonstat)

* Errors too large due to extremely small supports used,

- Workspace exhausted or non-sparse matrix.

(nonstationary case), as far as the computations were numerically feasible.
Convergence along columns is clearly visible, but the scope is still severely
limited by computational restrictions.

If the support radius is kept strictly proportional to the fill distance (this
is called the fully stationary case), then the bandwidth B is constant along
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Figure 1: Franke’s function
(FigFranke33)

Figure 2: Reconstruction of Franke’s function from thin-plate splines on
M = 81 points
(FigTPS81Fct33)

Figure 3: Residuals for thin-plate splines on M = 81 points
(FigTPS81Res)

Figure 4: Recovery using Wendland’s C? function with support radius 2 on
M = 81 points
(FigWF81Supp2Fct33)

Figure 5: Residuals using Wendland’s C? function with support radius 2 on
M = 81 points
(FigWF81Res2)

Figure 6: Recovery using Wendland’s C? function with bandwidth 21 on
M = 289 points
(FigWF289Ban21Fct65)

Figure 7: Residuals using Wendland’s C? function with bandwidth 21 on
M = 289 points
(FigWF289Ban21)

Figure 8: Residuals using Wendland’s C? function with bandwidth 21 on
M = 4225 points
(FigWF4225Ban21)

Figure 9: Recovery using Wendland’s C? function with bandwidth 45 on
M = 289 points
(FigWF289Ban45F ct65)

Figure 10: Residuals using Wendland’s C? function with bandwidth 45 on
M = 4225 points
(FigWF4225Ban45)
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columns in Table 4 (TabStat) on page 25, but there is no convergence along

N\ B 1 Y 9 13 21 25 29 37

45

9121754 8.1801 5.4801 5.3389 5.3521 5.3770 5.4083 5.4830
251 10.2176  4.6070 1.1993 0.9549 0.9209 0.8995 0.8719 0.8400
81 | 11.5563 4.8475 1.1003 0.8840 0.7236 0.6820 0.6316 0.5368

289 | 11.7369 4.5695 0.8148 0.7554 0.7670 0.7190 0.6606 0.5457

1089 | 11.6653 4.4424 0.7812 0.7831 0.7924 0.7432 0.6838 0.5661
4225 | 11.7024 4.4322 0.7791 0.7733 0.7566 0.7099 0.6529 0.5416
16641 | 11.7109 4.4292 0.7786 0.7119 0.7577 0.6994 0.6578 0.5461

66049 | 12.9205 4.4283 - - - - -

Table 4: Errors for interpolation of Franke’s function, Stationary Case
(TabStat)

N number of data points
B number of points per support

- Workspace exhausted

columns, while the scope is greatly enlarged. Convergence occurs along lines
with negative slope in this table, but the minimum attainable error still is
quite large. The condition is roughly constant in each column, such that the
overall numerical cost is approximately proportional to M.

We now recalculate the columns of Table 4 (TabStat) by taking successive
residuals as we proceed along each column, working at fixed bandwidth and
fixed condition, thus with O(M) overall computational complexity (see Table
5 (TabMulti) on page 26). This multilevel approach now decreases the error
significantly and seems to have at least a linear convergence along columns.
More information on the numerical behavior of the multilevel approach can
be found in [13](floater-iske:95-1) [14](Hoater-iske:96-1). Here, we support
the results of Table 5 (TabMulti) by some additional plots of multilevel
interpolants to Franke’s function. Figure 11 (FigWF289Ban21MLFig) shows
the multilevel reconstruction with bandwidth 21 after four levels with 9, 25,
81, and 289 data points. The residuals are in Figure 12 (FigWF289Ban21ML)
and should be compared with Figure 7 (FigWF289Ban21) with the same
bandwidth on 289 points, using a single step.

To visualize the smoothing effect of the multilevel method, we pick a drastic
example by choosing a very small bandwidth of 5. The reader will realize

5.95436
0.8186
0.4668
0.4606
0.4783
0.4561
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N\ B 1 5 9 13 21 25 29 37 45
9112.0412 8.1801 5.4801 5.3389 5.3521 5.3770 5.4048 5.4830 5.5436

25| 7.6972 25971 0.9328 0.7840 0.7016 0.6943 0.6842 0.6808 0.61845

81| 5.9089 0.9172 0.4223 0.3820 0.3565 0.3571 0.3595 0.3680 0.3735
289 | 4.4449 0.2927 0.0680 0.0518 0.0352 0.0332 0.0314 0.0303 0.0288
1089 | 3.3053 0.0867 0.0256 0.0187 0.0120 0.0112 0.0105 0.0098 0.0092
4225 | 2.4589 0.0320 0.0090 0.0064 0.0039 0.0036 0.0034 0.0031 0.0029
16641 | 1.7481 0.0118 0.0034 0.0023 0.0013 0.0011 0.0011 0.0009 0.0008

66049 | 1.3085 0.0053 - - - - -

Table 5: Errors for interpolation of Franke’s function, Stationary Case,
Interpolation of residuals
(TabMulti)

N number of data points
B number of points per support

- Workspace exhausted

that this method will be feasible even for gigantic data sets. Figures 13
(FigWF9Ban5MLFig) 14 (FigWF25Ban5MLFig) 15 (FigWF81Ban5MLFig)
16 (FigWF289Ban5MLFig) 17 (FigWF4225Ban5MLFig) show reconstruc-
tion from M = 9, 25, 81, 289, and 4225 points. The extremely small
bandwidth of 5 does not have a serious influence on the quality on a 3 x 3
data set, but the spiky reproduction in the medium range introduces wiggles
that are ironed out by increasing data density.

Of course, one should take larger supports in the intermediate range and
use a bandwidth larger that 5 to produce optimal results, but the above se-
quence is picked to illustrate what happens qualitatively if the computational
restrictions force to work with very small bandwidth. The actual errors can
be read off the second column of Table 5 (TabMulti).

To prove statements about the convergence rate and the condition of such
calculations will be main goal of this text.

3 Hilbert Space Theory

(SecHST) Here we start with the basic theoretical foundations and proceed
top-down. First, we pose the problem of recovery of elements of Hilbert



Figure 11: Recovery using Wendland’s C? function with bandwidth 21

M = 289 points, multilevel method
(FigWF289Ban21MLFig)

Figure 12: Residuals using Wendland’s C? function with bandwidth 21

M = 289 points, multilevel method
(FigWF289Ban21ML)

Figure 13: Recovery using Wendland’s C? function
M =9 points, multilevel method
(FigWF9Ban5MLFig)

Figure 14: Recovery using Wendland’s C? function
M = 25 points, multilevel method
(FigWF25Ban5MLFig)

Figure 15: Recovery using Wendland’s C? function
M = 81 points, multilevel method
(FigWF81Ban5MLFig)

Figure 16: Recovery using Wendland’s C? function
M = 289 points, multilevel method
(FigWF289Ban5MLFig)

Figure 17: Recovery using Wendland’s C? function
M = 4225 points, multilevel method
(FigWF4225Ban5MLFig)
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spaces in a very general sense. It turns out that optimal recovery is nec-
essarily linked to the use of conditionally positive definite functions. Con-
versely, each conditionally positive definite function allows to define a “na-
tive” Hilbert space in which it serves to solve an optimal recovery problem.
We study the error and the condition of the recovery process and prove the
Uncertainty Relation in general. Altogether, this section is intended to con-
tain all theoretical results that can be proven without resort to (Fourier)
transforms and which hold for general domains. This implies that the more
sophisticated results for special cases are found in later sections.

3.1 Optimal Recovery in Hilbert Spaces
3.1.1 Optimal Recovery Problems

(subsecORP) Assume that we want to reconstruct a function f defined on
some domain €2 from M pieces of information concerning f. These may for
instance be function values f(z;), 1 < j < M in case of classical Lagrange
interpolation, or inner products (f,p;)r,, 1 < j < M for L, approximation.
In both cases the information consists of the value of a linear functional A;
applied to f, and in the second case the function f is assumed to lie in a
space with an inner product (-, -) that serves to give a specific representation
A;(f) = (f,pj) to the functionals in question.

To incorporate the second case, we thus assume that there is a space F of
functions and a space £ of functionals such that A(f) is the application of
the functional A € L to the function f € F. The space F is supposed to
carry an inner product (-,-)r, and the functionals A € L are supposed to be
continuous with respect to this inner product, i.e.,

AT < (Al f1l2

forall A € L, f € F, where the norm of functionals is defined as usual:

A
|A|z :== sup A < 00.
il [ Fll2

We now assume that we want to recover an element f from the space F using
the M real values

(£)
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of M linear functionals Aq,..., A\j; that are continuous on F. Furthermore,
we assume the linear functionals Aq,..., Ay to be linearly independent in L,
which means that the information is not redundant.

Then there will usually be many elements f € F that satisfy the equations
(3.1.1, £j), which may now be viewed as generalized interpolation conditions.
If f solves (3.1.1, fj) and if there is some element v € F that satisfies the
homogeneous conditions

0=2A;(v), 1<) <M,

than all elements f, := f + av for arbitrary a € IR will solve (3.1.1, fj), too.
These elements can have arbitrarily large norms, if v is not identically zero.
To exclude solutions with extremely large norms one thus asks for elements
f* € F that solve (3.1.1, fj) and minimize the norm || - ||z under all other

solutions. That is, the element f* solves the optimal recovery problem
(ORPF)

[f*lr= min 11l (3.1.2)
ferF

fi =X (f)
in the space F.

If we pursue this general setting further, we shall finally see that under mild
additional assumptions there is a positive definite function that serves to
solve the optimal recovery problem. But then we have lost the conditionally
positive definite functions of positive order. Thus we try a fresh start that
slightly generalizes the above recovery problem.

Instead of a space F with an inner product, we only assume there is a linear
space G over IR with a positive semidefinite bilinear form

(,)6 :GxG— IR.

Then |g|3 = (g,9)g defines a seminorm | - |g on G, and we assume that the
nullspace

P:={9g€G : |gl¢g=0}

has a finite dimension ¢ > 0 and is spanned by a basis pi,...,p,. As in
(3.1.1, fj) we assume that we want to recover an element g from the space G
using the M real values

€9)
v =Ailg), 1<j<M (3.1.3)
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of M linear functionals A,..., Ay,. But we would run into problems if we
would simply assume continuity of these functionals with respect to the
seminorm, because this would restrict us to functionals that vanish on P.
Postponing the precise assumptions on the functionals, we can now pose the
generalized optimal recovery problem

(ORP)
9"lg = min 9lg (3.1.4)
geqg
g; = )‘j(g)

in the space G.

3.1.2 Projection onto the Nullspace

(SecHSP) To discuss the solvability of the optimal recovery problem 3.1.4
(ORP) in a very general way, we need some more information on the space G
and ist finite-dimensional subspace P. It simplifies later arguments to have a
simple way of projecting an element g € G onto an element of P. In standard
applications, this projection will be an interpolation or an approximation by
a low-order polynomial. Such a linear projector Ilp from G onto P can be
defined in many different ways. Here we simply assume that there are ¢
linear functionals 7, ..., 7, on G that are linearly independent over P, i.e.
the ¢ x ¢ matrix P with entries m;(p;) is nonsingular. Then the projector

can be represented as
(DefPN)

p(g) := iﬂj(g)pg’- (3.1.5)

By a change of basis in either the p; or the 7; one can assume that the linear
functionals 7;(g) satisfy the system

iﬂj(g)ﬂ'k(pj) =mr(g), 1<k <q.

This is just another way of saying

Wk(HP(g)) = ﬂk(.g)’ 1 < k < q, g € ga

and it has the consequence that IIp(p) = p for all p € P, because of
(k) = Ok
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Having I1p at hand, we now form Rp(g) := g — IIp(g) for all ¢ € G. For
subsequent use we note that the bilinear form on G can now be rewritten as

(Rsp)
(f.9)g = (Bp(f), Bp(9))g. f.9€G. (3.1.6)
The decomposition of an arbitrary element g € G as
9 =T1»(g9) + Rp(g)
implies that the decomposition
(gdec)
G =P+ Rp(G) (3.1.7)

is a direct sum, since Rp(g) € P implies g = IIp(g) + Rp(g) € P and thus
Rp(g) = 0. Furthermore, the bilinear form (-, ) now is positive definite on

Rp(G).

3.1.3 Golomb-Weinberger Technique

There is a way to avoid the explicit construction of the projector Ilp by
simply modifying the bilinear form. If py,...,p, are a basis of P, one can
define an inner product

q q q
(Z pi. Y ﬂk]%) = > b
= P

p k=1

on P and replace the bilinear form (-,)g by the inner product

() = (Bp (), Bp(-))g + (T (-), (TIp(-))p.

This does not require an explicit representation for the projector, but it
implicitly uses the projector to split an element of G into two parts that fit
into the new inner product. We do not pursue this technique further, though
it sometimes facilitates certain arguments. It dates back to Golomb and
Weinberger [16](golomb-weinberger:59-1), and the relation to the technique
used later by Duchon and Madych/Nelson is described in [2](Light- Wayne:96-

1.
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3.1.4 Hilbert Space Completion

(SecHSC) We now complete the space Rp(G) in the usual way to form a
Hilbert space F, taking us back to the setting that we started from, and
where
(" ')-7: = (RP()’ RP())Q

is the inner product. This completion works via Cauchy sequences modulo
null sequences, and it allows all continuous mappings on Rp(G) to be ex-
tended to the completion. See Theorem 12.2.11 (HSCT) for details. We
now define the closure of G as the direct sum of P with the closure F of
Rp(G). Then the decomposition (3.1.7, gdec) extends to the closures, and if

we denote the closure of G by G again, we get
(GPF1)

G=P+F (3.1.8)

Thus we finally see that it makes no difference to start right away with a
space G that allows a decomposition (3.1.7, gdec) such that (3.1.6, Rsp) is a
scalar product on the Hilbert space F := Rp(G) that has P as its nullspace.

We finish this section by checking the proper form of admissible functionals
for recovery. If A is just any functional on G, it defines a functional A— Allp =
ARp by

(Irest)

g+ Ag) — Mp(g)) = MRp(9)), g€, (3.1.9)

and this functional is a good candidate for being continuous with respect to
the seminorm |-|g, because it vanishes on P. We thus consider all functionals
A on G such that A — Allp is continuous, and we denote the space of these
functionals by G*. By (3.1.9, Irest), for each A € G* the functional A — Ao Tlp
is continuous on the Hilbert space F = Rp(G), and by the Riesz theorem
12.2.14 (RieszT) there is an element g, € G such that the identity

(Irep)

Ag) — Al (9)) = AM(Er(9)) = (9, 92)g (3.1.10)

holds for all A € G* and all ¢ € G. We shall use this identity in the more
convenient form

AMg) = MIp(g)) + (9, 92)g

and note that g, is uniquely defined modulo P, while Rp(g,) is unique. The
functionals from (3.1.9, Irest) vanish on P and they form the dual F* of F. If
one defines IT (A) := Aollp and P* = II};(G*), then there are decompositions

A=T5(N) + (-, 90)g
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that correspond to those of ¢ € G and G itself.

We finally remark that the detour via the completion is unnecessary, if
(3.1.10, Irep) is used as a hypothesis, not as a consequence. But we wanted
to show that (3.1.10, Irep) does not need any extra assumptions.

3.1.5 Solutions of Optimal Recovery Problems

(Necessity) We now can return to the problem (3.1.4, ORP) of optimal
recovery. The given functionals A; are assumed to be in G*. Then they
satisfy (3.1.10, Irep) and introduce elements g; := gy, € G, 1 < j < M in
the sense

(Irepj)
Ai(g) = Ai(Tp(g)) = Xi(Rp(9)) = (9,95)6, 9 €G- (3.1.11)

These elements are not unique, and we could make them unique by defining
9; = Rp(gy;), 1 < j < M, but the following results do not require this
uniqueness. We now can characterize the solutions of the recovery problem:

Theorem 3.1.12 (ORT1) Any solution g* of the optimal recovery problem
(3.1.4, ORP) with functionals Ay, ..., Ay € G* satisfying (3.1.11, Irepj) has
the form

(grep)
M q
9" = Zozjgj + Zﬂzpz (3.1.13)
j=1 i=1
where the coefficients satisfy the linear system
(EQsys3)
M q
> il gi)e + P BMp) = e 1<k<M
o = (3.1.14)

M
Zaj)\j(pi) + 0 = 0, 1< < q.
j=1

and any solution of the above system solves the optimal recovery problem.
However, the representation (3.1.13, grep) is not necessarily unique,

Note how similar (3.1.14, EQsys3) and (1.7.2, EQsys2) are, and note that we
postpone the discussion of the solvability of (3.1.14, EQsys3).



34 3 HILBERT SPACE THEORY

Proof: We start by noting that ¢* is a solution of (3.1.4, ORP) if and only
if it satisfies the variational equation
(charmin)

(g*,v)g =0for all v € G with A\j(v) =0, 1 < j < M. (3.1.15)
This follows from Corollary 12.2.7 (BAC) in section 12.2 (SecHSB).
If g* € G satisfies (3.1.14, EQsys3) and v € G satisfies the homogeneous
conditions A;(v) =0, 1 < j < M, then
M g
(9 .v)g = D ajlgjv)g + D Bi(pi,v)g
j=1 i=1

= ;O@' (Aj(v) = A;(TTp(v)))

M
= —2_0;}(Tlp(v))
=1
=0
and ¢* satisfies (3.1.15, charmin) and solves (3.1.4, ORP).

To prove the converse, we note that (3.1.15, charmin) implies the existence

of aq,...,ay € IR such that
(charmin2)

(g%, v)g = Zaj)\j(v) (3.1.16)

for all v € G. In fact, the linear map v — (g*, v)g vanishes on the kernel of
the linear map v — (A\;(v), ..., Ay (v))" € IRM with finite-dimensional range
and thus factorizes over the range of this mapping. See the proof of Corollary
12.2.7 (BAC) for this argument. But now (3.1.16, charmin2) implies
(charmin3)

(9" v)g = ;aj (Ai(Mp(v)) + (95, v)g) (3.1.17)

and specialization to v € P implies the second set of equations in (3.1.14,
EQsys3). Then (3.1.17, charmin3) can be rewritten in the form

M
(g* — Zajgj,v> =0 forallveg
7=1

g
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and this implies the representation (3.1.13, grep) of ¢g*. The interpolation
conditions finally furnish the first set of equations in (3.1.14, EQsys3). O

The system (3.1.14, EQsys3) looks terrible at first sight, because neither the
functions g; nor their inner products (g;, gx)g are readily available from the
given functionals \;. But we shall see in (3.2.14, gjkrep) that there is a
conditionally positive definite function ¢ such that

(955 gr)g = AjAL®(z, )

holds for the elements of the matrix in (3.1.14, EQsys3), making an easy
access to these elements possible, if ® is explicitly known. In particular, if
Ai(f) = f(x;), then

(97: 9)g = (), 7x)
as we used in (1.7.2, EQsys2) in a slightly more special situation.

We now look at solvability of the system (3.1.14, EQsys3) in the shorthand
form

(BDef2)

(ﬁT]g)(g):(g) (3.1.15)

generalizing (1.7.3, BDef). If vectors a € IRM and 3 € IR? satisfy the
homogeneous system, then

Aa + P = 0

Pla + 0 =0
imply
a’Aa = 0
PTa, = 0.
Since the matrix A is a Gramian for the elements g¢i,..., gas, it is positive

semidefinite and we have
2

M
Zajgj

i=1

al Ao =

g

Thus the element Zjﬂil a;g; of G must be in P and the linear combination
Zj]‘/il ;A\, of functionals is zero due to PTa = 0 and

> aiAi(v) =3 a; (A (e (v)) + (g5,v)g) = 0 + (Z@jgj,v) =0
j=1 j=1 G

j=1
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for all v € G. But we assumed the linear functionals A, ..., Ays to be linearly
independent over G. This implies & = 0 and we are left with P3 = 0. There
is no way to deduce 8 = 0 from this in general, and consequently we have to
add injectivity of P to our hypotheses, if we want to assure unique solvability
of (3.1.14, EQsys3). We summarize:

Theorem 3.1.19 (ORT2) There is a unique solution to the optimal recov-
ery problem (3.1.4, ORP) if the M x q matriz P with entries

Ai(pi), 1<j<M, 1<i<gq

15 1njective. This condition means that the only element p € P with vanishing
data A\ (p), ..., Ay (p) must be the zero element. O

It should be clear by now that we finally want to show how the system (1.7.2,
EQsys2) is a special case of (3.1.14, EQsys3) and how a conditionally positive
definite function ® can arise in the above Hilbert space setting. We shall take
point evaluation functionals A, (v) := (v —IIp(v))(z) if the abstract elements
v € G can be interpreted as functions on some domain {2 containing the
points z, and use the elements g, := g), € G from (3.1.10, Irep) to define a
generalized conditionally positive definite function with P generalizing IP¢
by
(2, y) := (9as 9y)g> 7,y € Q.

The details will be specified in Theorem 3.2.17 (CPDNeccT).

Theorems 3.1.12 (ORT1) and 3.1.19 (ORT2) show that optimal recovery in
the fairly general sense of (3.1.4, ORP) necessarily leads to solutions of the
special form (3.1.13, grep) and linear systems (3.1.14, EQsys3). This is why
the techniques of section 1.4 (SubSectDDSpaces) are a quite natural and
general way to access recovery problems.

3.1.6 Related Problems

(SecRP) There is an equivalent dual reformulation of the above recovery
problem. Instead of reconstructing some g € G from the information v; =
Aj(g), 1 <j < M one can ask for a functional A* € G* of minimal seminorm
in G* that satisfies the equations

N(gj) =7, 1<j<M

for a set of linearly independent elements ¢q,..., gy € G. For this the dual
bilinear form on functionals in G* can be defined as
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(DefDualBil)

(X, 1)g == (9x: 9u)a = M) — MTp(g4)) = wlgn) — n(Mp(ga)).  (3.1.20)

The additional property required for uniqueness now is that the M x ¢ matrix
P with entries
mi(g;), 1<j <M, 1<i<q

is injective. This condition means that the zero is the only element in the
span of g1, ..., gy that projects via IIp to zero in P. We leave details to the
readers as an exercise. There is a full duality if one replaces A; by g; and m;

by p;

Another related optimal recovery problem consists in finding an element
g* € G with minimal seminorm |g*|g such that
(scaleq)

(9%.95)¢ = 7, 1<j<M
HP(Q*) = 07

where we again assume that the functions g; represent linear independent
functionals \; in the sense of (3.1.11, Irepj). The difference is that the data
now are not taking notice of additional functions from P, such that the
second condition of (3.1.21, scaleq) is necessary to remove the nonuniqueness
of g* modulo P. Furthermore, one can assume

(3.1.21)

(picond)
Mp(g;) =0, 1<j<M (3.1.22)
without loss of generality.
Theorem 3.1.23 (ORT3) Under the additional assumptions
(spancond)
M
> ajg; € Pimpliesa; =0, 1 <j <M (3.1.24)
7j=1

and (8.1.22, picond), the above optimal recovery problem with conditions
(8.1.21, scaleq) has a unique solution g* of the form

(grep2)

M
g9 = 0 (3.1.25)
i=1
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where the coefficients satisfy the linear system

(EQsys4)
M
Sailge9i)g = Mo 1< k<M. (3.1.26)
7=1

Proof: The equivalent variational equation here is
(g*,v)g = 0for all v € G with [Ip(v) =0 and (v,g;)g =0, 1 <j < M.

This transforms into
M

(g*a U)g = (Zajgja U)g
j=1
for all v € G. This is satisfied if (3.1.25, grep2) holds. To prove the converse,
we conclude that the variational equation implies that the difference of both
sides in (3.1.25, grep2) lies in P. But application of IIp turns the difference
into zero, proving necessity of (3.1.25, grep2).

To prove nonsingularity of the system (3.1.26, EQsys4) we proceed similarly
as in the proof of Theorem 3.1.19 (ORT2), but use (3.1.24, spancond) instead
of linear independence of the functionals \;. O

Note that (3.1.24, spancond) is more restrictive than to assume linear in-
dependence of the functionals \;, as required for Theorem 3.1.12 (ORT1).
This is why Theorem 3.1.23 (ORT3) has positive definiteness of the matrix
((9i, 95)¢)ij, while Theorems 3.1.12 (ORT1) and 3.1.19 (ORT2) need the en-
larged matrix. Furthermore, the functionals p; := (-, g;)¢ that implicitly
arise in Theorem 3.1.23 (ORT3) have the additional property x;(P) = {0},
and this property is not shared by the functionals A; in the previous theorems.
In case of P = {0} there is no difference at all.

We now consider the best approximation problem

(BAP)
ig{f;m—)\g* (3.1.27)

for a given functional p € G* by functionals in
(DefL)

A= span {\,..., Ay} C G . (3.1.28)
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The usual theory of approximation in spaces with inner products or bilinear
forms yields the normal equations

M=

Z )‘ka =

: k

ak(ﬂ) (Qka gj)g

with a coefficient matrix as in (3.1.26, EQsys4), and the optimal value of
(3.1.27, BAP) is given by

(BAPN)
2 < 2
inf [p—Alg. = [p- ;ak(ﬂ))‘k o
B M
= (1, 1)g- — 2 (1) (Me, g (3.1.29)
k=1

3.1.7 Properties of Optimal Recoveries

Assume that we used the method of section 3.1.5 (Necessity) to recover an
element g € G by some element ¢* that satisfies

(Lig)
Ailg) =Xi(97), 1<j <M (3.1.30)
for a set of linearly independent functionals Ay, ..., Ay, with representers g;

in the sense of
)\J(U) = )\J(HP(U)) + (Uagj)ga v E g

Assume further that the sufficient condition for uniqueness holds, as given in
Theorem 3.1.19 (ORT2), and that we normalized the functions g, to satisfy
g9; = Rpgj or Hpgj =0.

Since any element g* = p € P satisfies (3.1.15, charmin), we get

Theorem 3.1.31 (PolRepT1) The optimal recovery process reproduces el-
ements of P. O

Corollary 3.1.32 (PolRepCol) If g* is the unique optimal recovery of g,
then Tp(g — g*) = 0.
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Proof: If p € P is arbitrary, then clearly (¢+p)* = ¢* + p due to uniqueness.
The recovery process thus acts separately on the two parts of G = P+ Rp(G)
with values in the respective parts of S = P + Rp(S). But then (Rpg)* =
Rp(g*) holds and

Rp(g") = (Rpg)" = (9 — llpg)" = g" —Ilpg
implies [Ipg* = Ilpg. O
Turning to orthogonality relations, we have

(97,9 —9")g + Nllp(g—9") =0, 1 <j< M

and for each element s from the space
(DetS)

S = {iajgj + iﬂkpk : iaj)\](’P) = {0}} (3133)

we get the orthogonality
(EqOrtho)

(5,9~ g') = 0 (3.1.34)
by summation. But this means that ¢* is a best approximation to g from §:

Theorem 3.1.35 (ORTBA) The solution g* of the optimal recovery prob-
lem (3.1.4, ORP) for data from some element g € G is a best approzimation
to g from the space S of (3.1.33, DefS) in the sense

* _ : -
9= 9"l = minlg — slg.

Equation (3.1.34, EqOrtho) easily generalizes to

Theorem 3.1.36 (OrtTh) The orthogonal complement of the subspace
(8.1.33, DefS) of G is P plus the space of all elements v € G that have
Ai(v)=0,1<j<M.

Proof: The variational equation (3.1.15, charmin) shows that the orthogonal
complement must contain the elements in question. Now let ¢ € G be an
element in the orthogonal complement of (3.1.33, DefS) and form its optimal
recovery g*. Then use (3.1.15, charmin) and othogonality of g to ¢* to get

9-99-96=1(9.90— (9.9 ) — (95,9 — 9")g = (9, 9)g-
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But since (3.1.15, charmin) always implies orthogonality of g — ¢* to g*, we
have the Pythagorean law
(Pyth)

(9,9) 6 =(9—9"9—9)9+ (9", 9")g (3.1.37)

which leads to ¢g* € P in this special situation. Thus ¢ = ¢* + g — ¢g* is of
the required form. O

We now proceed towards the prototype of an error bound. We use the space
(3.1.28, DefL) of functionals and (3.1.30, ljg) to get A(g — g*) = 0 for all
A € A. Now take any p € G* and form

(= M)(g— g%
(= Np(g — %) + (90 — 97,9 — %)g]
= Ag-19 — 9%g,

g —g*)

VAVANI

using Corollary 3.1.32 (PolRepCol).

Theorem 3.1.38 (ORTFA) [1](DNW) The solution g* of the optimal re-
covery problem (3.1.4, ORP) for data from some element g € G satisfies the
error bound

(Eq2inf)
g —g9)| < inflp—Ag inflg —sig (3.1.39)
for any functional p € G*. a

The crucial factor in the error bound (3.1.39, Eq2inf) is the generalized
optimal power function
(GPDef)

P(u) := Pa(p) = inf[u = Alg- (3.1.40)

with A from (3.1.28, DefL). If the functionals \; are “near” to p, this
quantity should be rather small, and we shall prove specific bounds later
in 5.5 (hrhodef). This is made possible by the representation for P(u) that
follows readily from (3.1.27, BAP) and (3.1.29, BAPN), and which will also
be useful in section 4.6 (URT).
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3.1.8 Remarks

The theory of optimal recovery starts with the early paper of Golomb and
Weinberger [16](golomb-weinberger:59-1), while reproducing kernel Hilbert
spaces are much older (see e.g. the textbook by Meschkowski [26](meschkowski:62-]
1)). A milestone was the theory of optimal recovery in the sense of Micchelli,
Rivlin, and Winograd ( [28](micchelli-rivlin:77-1) [29](micchelli-rivlin:78-1)
[30](micchelli-rivlin:84-1) [31](micchelli-et-al:76-1) ), while the current ex-
tension into the direction of information-based complexity is in [6](bojanov-
wozniakowski:92-1).

3.2 Spaces of Functions

(SecSF) In order to arrive at conditionally positive functions, we now have
to specialize our results on optimal recovery to the case of optimal recovery
of functions.

3.2.1 From Hilbert Spaces to Positive Definite Functions

(SecHSPDF) We now specialize to a Hilbert space F of functions on some
domain €2 that we do not restrict. But since classical functions are objects
that allow the action of specific linear functionals

(deltadef)

0y + g—>g(x), g€ F, 2 €Q (3.2.1)

called point-evaluation functionals, we assume that the above functionals
0, are in F* and thus continuous on F. Then one can invoke the Riesz
representation theorem 12.2.14 (RieszT) to get a function g5, € F for each
x € Q such that

(DRKF)

9(x) = 0.(9) = (9. 95.) 7 (3.2.2)
holds for all g € F, z € Q2. We now define a function
o QXQ_}ZR) @(SE,y) = (gﬁmagﬁy)a xayGQ

and get

Theorem 3.2.3 (PDFT1) If the point evaluation functionals in a Hilbert
space F of functions on some domain €2 are continuous, then the space has
a reproducing kernel function ® with the following properties:
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1. & : OxQ— IR,

2. &(x,-) =(-,x) € F forallx € Q,

3. g(x) = (9,P(x,-))r forallge F, x € Q.
Proof: By definition and (3.2.2, DRKF),

9,(®) = (95,,9.)Fr = @y,)
(95,,95.)F = (95..95,)7 = @(z,y) =P(y,2)

for all z,y € €, proving all of the assertions. O

We now compare this with Definition 1.5.3 (DPD) from section 1.5 (subse-
cEIA) on page 11 which we restate here for convenience:

Definition 3.2.4 A real-valued function

P:QxQ— IR

is a positive definite function on , iff for any choice of finite subsets
X ={z1,...,xm} CQ of M different points the matriz

Axe = (q)(xk:xj))lgj,kgM
18 positive definite.

To test the function ® from Theorem 3.2.3 (PDFT1) for positive definiteness,
consider a finite subset X = {zy,..., 23} C Q of M different points and take
an arbitrary vector a € IRM. Then

M M
TAX<I>04 = Z a]akCD SC]C,SC] (Z a]ngazakgzk) = ||Zajng||g-'
3.k=1 F j=1

implies that the matrix Ax ¢ always is positive semidefinite, because it is
the Gramian of the functions g,,, 1 < j < M. Tt is positive definite if and
only if these functions are linearly independent in F. Furthermore, is is easy
to see from (3.2.2, DRKF) that the functions g,;, 1 < j < M are linearly
dependent if and only if the point evaluation functionals d,;, 1 < j < M are
linearly dependent in the dual space F. Another simple exercise is to show
equivalence of the linear independence of d,,, 1 < j < M with each of the
following notions:
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Definition 3.2.5 (DFSP) A space F of functions on some domain €2 has
the finite separation property, if for all finite subsets X = {xy,...,xp} C
Q of M different points there are M functions ¢1,...,g9y € F that separate
the points in X = {xq1,...,xpm}, i.e

gi(rp) = 0k, 1 < 4,k < M.

Definition 3.2.6 (DFIP) A space F of functions on some domain § has the
finite interpolation property, if for all finite subsets X = {z1,...,xp} C
Q of M different points and all vectors a € IR there is a function g € F,
depending on X = {x1,...,xy} and «, such that

g9(zy) =g, 1 <k < M.

We combine this into a result that proves the setting in 1.5 (subsecEIA) to
occur naturally in fairly general situations:

Theorem 3.2.7 Let F be a space of real-valued functions on some domain
Q, and assume

1. F is a Hilbert space over IR,
2. the point evaluation functionals (3.2.1, deltadef) are continuous on F,
3. F has the finite interpolation or the finite separation property.

Then F is a reproducing kernel Hilbert space, and its kernel function ®
Q x Q 1s a positive definite function. a

3.2.2 Generalization towards Conditionally Positive Definite Func-Jj
tions

(SecGCPDF) We now return to the slightly more general setting of section
3.1.1 (subsecORP). The continuous linear functionals now have to vanish on
the kernel P of the bilinear form (-, -)g, and this is not a usual property of
point evaluation functionals. But we can resort to the functionals

(deltadef2)
51’7) = 5z — 5I(H77) (328)

that will vanish on P for all x € 2. We thus should require the functionals
dz,p from (3.2.8, deltadef2) to be continuous with respect to the bilinear form
(+,-)g- This is the same as to assume that the point evaluation functionals
Jd, are in G*, and then we can use (3.1.10, Irep) to get the generalization
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(DRKF2)

02.p(9) = g(x) — (Tlp(9)) (=) = (9, 95.)g (3.2.9)

of (3.2.2, DRKF) for all g € G, x € Q. This is a special form of (3.1.10, Irep)
on page 32 and yields the Taylor-type formula

(Taylor)
9(x) = (p(9))(x) + (9, 95, »)g (3.2.10)
for all g € G, © € Q. We now define
(DefPhiGen)
®:AxQ— IR, ®(2,y) = (95,595, )5, T,y € € (3.2.11)

and get

Theorem 3.2.12 (CPDFT1) If the functionals (3.2.8, deltadef2) for a
space G of functions on some domain €2 are continuous with respect to the
bilinear form (-, -)g with finite-dimensional kernel P and projector Ilp : G —
P, then the space has a reproducing kernel function ® with the following
properties:

1.% : QxQ— IR,

2. ®(x,-) =(-,x) € G for all x € 0,

8. Mp®(z,+) =1p®(-,z) =0 for all x € Q,

4. ®(z,y) = (2(z,), 2(y,))g for all z,y € Q

5. 9(x) = Tp(g)(z) + (9, B(x,))g for all g € G, x € Q.

Proof: We proceed exactly as in Theorem 3.2.3 (PDFT1) and get
(PhiRep2)

(2, y) = (95,5 95,»)6 = 95,» () — (pgs, »)(y)- (3.2.13)

This proves properties 2 and 3, while 1 holds by definition. Putting the above
identity into (3.2.10, Taylor) and (3.2.11, DefPhiGen) yields the fourth and
fiftth property. O

We shall see later that the well-known conditionally positive definite functions
fail to satisfy some of these properties, but there is a fairly standard process
that shows how to get the properties by slight modifications. We shall
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comment on this when we consider the construction of native Hilbert spaces
from given conditionally positive definite functions in section 3.3 (SecNS).

The identity (3.1.10, Irep) on page 32 introduced a representing function
gx € G for each functional A € G*. This was used in (3.1.11, Irepj) to derive
the system (3.1.14, EQsys3) for solving the recovery problem. To bring this
into line with the system (1.7.2, EQsys2) on page 15, we use (3.2.13, PhiRep2)

to form
)\y(I)(x,y) = )‘(951,73) - AHPQ&I,’P
= (9x: 95.»)0 = 9r(z) — (Ilpgr) ()
and get
gx = llpgy + N (-, y)

for all A € G*. Since g, is nonunique modulo functions from P, we even can
omit the first summand and use the above equation as a definition for g,.
With a second functional ;1 € G* we can write

prN®@(z,y) = pgx — pllpgy
= ullpgr + (1, N)g- — pllpga
- (:U’a )‘)g*'

This proves
(gjkrep)

(95, 9k)a = (N, A)g= = AA[®(,y) (3.2.14)
for the elements of the matrix in (3.1.14, EQsys3).

We now want to move towards conditionally positive definite functions, but
we still have to replace polynomials in Definition 1.6.2 (DCPD) on page 13:

Definition 3.2.15 (DCPD2) A real-valued function
o:OxQ— IR

is a conditionally positive definite function with respect to a finite-
dimensional space P of functions on €0, iff for any choice of finite subsets
X ={z1,...,2m} CQ of M different points the value

M

o Axso =Y ;o ®(x), zp)
Jk=1

of the quadratic form (1.6.1, QFdef) is positive, provided that the vector
a=(ay,...,ay) € RM\ {0} has the additional property
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(CPDef2)

éajp(:cj) =0 (3.2.16)

for all p € P.

Theorem 3.2.17 (CPDNeccT) Let G be a space of real-valued functions on
some domain €2, and assume

1. G has a real-valued symmetric bilinear form (-,-)g with a finite dimen-
stonal kernel P and corresponding projector 1lp,

2. the point evaluation functionals (3.2.8, deltadef2) are continuous with
respect to the bilinear form,

3. G has the finite interpolation or the finite separation property.

Then G has a reproducing kernel in the sense of Theorem 3.2.12 (CPDFT1),
and its kernel function ® : Qx € is a conditionally positive definite function
with respect to P.

Proof: Again, we consider a finite subset X = {z1,...,2)} C Q of M
different points, but now we take a vector a € IRM with (3.2.16, CPDef2).
Then we can repeat the steps of the proof of Theorem 3.2.3 (PDFT1I) to see
that the matrix Ay ¢ is positive semidefinite. To prove definiteness, we now

assume that
(inP)

M
> g, » €P (3.2.18)
7j=1

holds and have to prove that « is zero. But (3.2.16, CPDef2) and (3.2.18,
inP) imply via (3.2.9, DRKF2) that the point evaluation functionals d,,, 1 <
j < M are linearly dependent. 0

We see that conditionally positive definite functions arise necessarily when-
ever optimal recovery of functions from a space G with a bilinear form is
attempted. The coefficient matrix of the major part of the linear system has
elements of Gramian form (g;, gx)g. even if the recovery is carried out in more
general (non-function-) spaces. This means that positive (semi-) definiteness
is the natural condition to ask for, and there is no reason to replace it by
nonsingularity.
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3.2.3 Sobolev and Beppo-Levi Spaces

We now want to exhibit some special cases where we can start from a space
G with bilinear form and arrive at a conditionally positive definite function.
The most usual bilinear form defined on functions is the L, inner product

(£.9) i 1= [ F@)g(a)da

However, point evaluation functionals are not continuous with respect to this
inner product. This is easy to see when looking at the evaluation at zero of
functions of the form f,(z) := exp(—al|x||3) for large positive a. The Ly(IR?)
inner products tend to zero for &« — oo, while the value at zero is always one.
Thus there is no positive constant C' such that

A(fo)l < CllfallLame

holds. As a warm-up for similar calculations occurring in later sections of
the text, let us do the evaluation of the inner product. It suffices to take
B = 2a and calculate the integral

Leﬂexp<—ﬂ||x||3>dx=vol(Sd1>/0 P4 L exp(—Br?)dr

by going over to polar coordinates and integrating over the scaled unit
sphere S~! C IR?. Tts surface area (or its d — 1-dimensional volume) is
vol (S41) = 27(@=1/2/? ((d — 1)/2) due to (12.3.4, VolS). The rest follows
from substitution and the definition (12.3.1, GammaDef) of the Gamma
function:

/Ooordlexp(—BTQ)dr = QB/ =42 exp(—t)dt
= 14 d/Q?(d/Z).

If the reader has difficulties with this, it is time to work through part 12.3
(SecSF'T) of the appendix.

To make point evaluation functionals continuous, we require a stronger bi-
linear form than just the Ly inner product. And the above discussion shows
that problems may get worse with increasing space dimension.

The usual trick is to introduce derivatives into the bilinear form. In particu-
lar, take a multiindex o € ZZ¢ o and define f as the multivariate derivative
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of order av of some function f. For a fixed integer m > 0, assemble all

derivatives with |a| := ||a||; = m into a positive semidefinite bilinear form
m [0} «Q
= [, T () o @l
|aj=m

on all functions that are at least in C"™ (). Here, we used the multivariate

version of
m m! )
;= ————— with |a| = m.
o arl.. ., g

For simply connected domains €2 with a nonzero interior in IR? the nullspace
of the bilinear form will then coincide with the space P = IP2 of polynomials
of order m on IR%. To do this, we need that a C™ function on ) with vanishing
derivatives of order m must necessarily be a polynomial, and this works nicely
in the interior of 2 by application of the multivariate Taylor formula. The
boundary does not count for the integral, and the polynomial is unique, if
we do not have multiple components of the domain.

However, we still have to check the continuity of point-evaluation functionals
dzp in the sense of (3.2.8, deltadef2) on page 44. The construction of a
suitable projector Ilp to the nullspace P = IPY will be given in Lemma 5.4.3
(LemPIG) on page 115 for use in a different context, but it is actually no big
deal. Much more serious is the proof of the fact that m > d/2 is necessary
and sufficient for continuity of the point-evaluation functionals. This is called
the Sobolev inequality, but its proof is delayed to 12.6 (SecSob).

If we assume m > d/2 and start with of G = C™(Q) in the sense of section
3.2.2 (SecGCPDF), we still have to form the Hilbert space completion and to
derive the functions gs, , that occur in (3.2.9, DRKF2) and allow to define a
normalized conditionally positive definite function ® via (3.2.11, DefPhiGen).
To do these things on the full space IR? will later turn out to be much easier
than to use a compact domain €2. To avoid problems with nonexistence of
| f|lm, We restrict ourselves to the subspace of C™(IR?) of functions with
bounded seminorm |- |,,. The resulting completed space G with the bilinear
form (-,+),, is called the Beppo-Levi space of order m on IR?. For readers
without a background in partial differential equations it will probably be a
surprise to hear that the resulting ® then precisely is the normalization of
the conditionally positive definite radial function ¢(r) = >4 for d odd and
d(r) = r*™=2logr for d even.

We give a brief and sloppy “physicist-style” explanation for this and do the
strict proof the other way round: we later construct the space from the
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conditionally positive definite function along the lines of the next section.
The informal technique just takes (3.2.9, DRKF2) for granted and rewrites
it in the form

Sap(9) = / Z( ) (¥)95, , (y)dy

o

= (—1)m/fzg(y) > (Z)ggffp(y)dy

lal=m

if boundary terms are neglected. Thus, in the sense of linear partial differ-
ential equations, the function gs, , must (up to a sign) be a fundamental
solution corresponding to the differential operator

m m «
g (=1)" 3 ( . >g2
|a|=m
which (by a simple inductive proof) coincides with the m-th power (—1)™A™
of the negative Laplacian

2

d
=5

This is the hidden reason for the ) factors in the definition of the

bilinear form. The corresponding fundamental solutions are well-known and
must be radial due to the radial symmetry of the Laplacian. Using the radial
form of the Laplacian, they can be calculated explicitly, and they always are
either of the form r7 or r?logr. The boundary conditions, when evaluated
properly, force to take the solution with maximal smoothness in zero or with
minimal decay at infinity, and this is the radial function given above.

The case d = 2 requires m > d/2 = 1, and the minimal possible m leads
to m = 2 and @(r) = r?logr. The corresponding differential operator is
A2, describing the surfaces formed by thin plates under external forces or
constraints. This is where thin-plate splines have their name, and the
original approach by Duchon started from the partial differential equation
background of these functions. The other cases are fundamental solutions of
the iterated Laplacian, and since solutions of the plain Laplacian are called
harmonic functions, the radial functions of the form ¢(r) = r# for g ¢ 2
or ¢(r) = rPlogr for B € 2Z are called polyharmonic functions. The
transition to non-integer values of [ is possible via Fourier transforms and
will be done in general later.
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Looking back at the seminorm | - |, induced by the bilinear form (-, -),,, we
see that the optimal recovery problem attempts to pick a function with least
weighted mean square of all derivatives of order m. This is somewhat like an
energy minimization in case m = 2, but m = 2 is admissible only in spaces
of dimension up to d = 3.

Another even more important space arises when all derivatives up to order
m are summed up to generate a new bilinear form

0“f 0%g
Z Z / oxr® 6:3“

J=0]a|=j

This is positive definite and defines via completion a Hilbert space W;"(Q)
called Sobolev space of order m. Again, the point evaluation functionals
are continuous only if m > d/2 holds. Using Fourier transforms, the special
case ) = IR? can be treated explicitly and yields a positive definite radial
basis function

o(r) = 1™ P Kpapa(r)

up to a factor depending on m and d, where K, is the Bessel or Macdonald
function defined in (12.3.22, KnuDef). The power of r cancels the singularity
of K,,_q/o at zero exactly, since the asymptotics near zero are given by
(12.3.23, KnuAsyZero).

These radial basis functions look strange, but they arise very naturally,
Since the Bessel functions K, have exponential decay towards infinity due to
(12.3.24, KnuAsylInf), the translates of ¢(||z||2) lead to virtually band-limited
interpolation matrices. The evaluation of such functions is easily possible by
calling standard subroutine packages.

If one considers other (equivalent) inner products on Sobolev spaces, the
associated positive definite functions ® will change. Naively, we would not
expect these changes to be substantial, but surprisingly there is an equivalent
inner product that generates a compactly supported radial basis function.
We shall see this when we check the functions introduced by Wendland in
[46](wendland:95-1).

3.2.4 Invariance Principles

(SecIP) The preceding discussion showed that conditionally positive definite
functions associated to function spaces on IR? often come out to be radial.
We shall now look at this phenomenon in more detail.
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Assume that the domain €2 allows a group 7T of geometric transformations,
and that the bilinear form (-, -)g of the space G is invariant under transfor-

mations from 7. By this we mean the properties
(GInv)

goT € @G

(foT,goT)g = (f.9)g (3.2.19)
(Ilpg) o T = Tip(goT)

for all T € T and all f,g € G. Then there are two ways to interpret the
action of a functional d7, for z € Q and T € T

ore(9) = ¢g(Tw) = (Ilpg)(Tx) + (9, 951, )0
= (goT)(z) = (p(goT))(x)+ (90T, 9s)g
= (Opg)(Tz)+ (9o T,g5, 0T " oT)g
= (Tlpg)(Tx) + (9,95, 0 T ')g

and this proves
g(st — g5 OT—l S P

x

for all g € G, T € T. But this can be inserted into the definition of ® to get

(T, Ty) = (9o 9or, )0 = (95, 0T ', 95, 0T ")g = (95,: 95,)0 = P(2,)
for all z,y € Q2. We thus have

Theorem 3.2.20 (InvT1) Let G and ® satisfy the assumptions of Theorem
3.2.12 (CPDFT1). If the domain Q2 allows a group T of transformations that
leave the bilinear form (-,-)g on G invariant in the sense of (3.2.19, GInv),

then ® is invariant under T in the sense
(Philnv)

O(z,y) = O(Tx, Ty) (3.2.21)
forallx,yeQ, T eT. O

Corollary 3.2.22 If the domain €2 has a fized element denoted by xq, and
if for all x € Q there is a transformation T, € T with Ty(x) = xq, then ®
takes the form

(Philarg)

O(z,y) = @(Ty(x), z0) (3.2.23)

such that one of the two arqguments of ® is redundant.
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We now consider some examples of domains with groups of transformations,
and we always assume the invariance requirements of Theorem 3.2.20 (InvT1)
to be satisfied.

Example 3.2.24 If Q is itself a group with neutral element 1, then
O(r,y) = (y 'z, 1)
for all z,y € €.

Example 3.2.25 If Q = IR with the group of translations, then
(PhiDiff)

P(z,y) = ®(y — x,0) = ®(z — y,0) (3.2.26)
for all z,y € IR

Example 3.2.27 If Q = IR¢ with the group of Euclidean rigid-body trans-

formations (i.e. translations and rotations), then ® is a radial function
(2,y) = ¢([ly — z|)2)

for all z,y € IRY, where ¢ : IR>y — IR.

Proof: First use the translations of the previous case to write ®(z,y) =
®(x — y,0), and then rotate x — y to a fixed unit vector in IR% multiplied by
|z — y||2- Then we are left with a scalar function of ||z — y/|. O

We note the remarkable fact that conditionally positive definite radial basis
functions always occur in optimal recovery problems on IR¢ for functions
from spaces that carry a bilinear form with Euclidean invariance.

Example 3.2.28 IfQ = S9! C IR is the (d—1)-sphere, i.e. the surface of
the unit ball in IR?, then rotational invariance implies that ® is zonal, i.e.
O(z,y) = o(a"y)

for all x,y € S, where ¢ : [0,1] — IR,

In this case the function ® can be written as a scalar function of the angle
between the two arguments, or the cosine of this angle.

Example 3.2.29 If Q = IR? and if the group T is Z* under addition,
then G is a shift-invariant space (see [7](boor-et-al:94-2)), and ® is fully
determined by its values on ZR%O X ZR%O.
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In this case, pick T to shift |min(z,y)| to the origin, using minimum and ||
coordinatewise.

Example 3.2.30 If Q = [—7, 7%, if the space G consists of d-variate 27-
periodic functions, and if the bilinear form is invariant under coordinatewise
real-valued shifts, then we are in a fully periodic setting and ®(x,y) has the
form (8.2.26, PhiDiff) with a 2m-periodic first argument.

3.2.5 Remarks

The monograph [4](atteia:92-1) also explores the relation between reproduc-
ing kernel Hilbert spaces and associated recovery problems. This section used
parts of [42](schaback:96-1).

3.3 Native Spaces

(SecNS) The previous sections have shown that each Hilbert space setting of
a recovery problem leads to a specific conditionally positive definite function
acting as a reproducing kernel. We now turn this upside down: for each
conditionally positive definite function ® there is a Hilbert space (called the
native space) with reproducing kernel ®, and we need as much information
as possible about this space. The construction of such a space seems to
be a quite academic question, but it isn’t. The main reason is that it is
much more easy to construct useful conditionally positive definite functions
than to find certain Hilbert spaces. Thus it often happens that one starts
with a conditionally positive definite function, not with a Hilbert space. But
it is necessary to know the Hilbert space in order to assess the optimality
properties of the reconstruction process, and thus we cannot ignore the
construction of the native space.

Furthermore, if a conditionally positive definite function ® is constructed
without any relation to a Hilbert space, the latter can be theoretically defined
and nicely used to investigate the recovery quality of ®. And there is a third
reason: no matter how we arrived at some conditionally positive definite
function ®, we might want to change it somehow, e.g.: by scaling into
®5(-) = ®(-/6). Then we have to calculate the native space for ®; from
scratch in order to compare it to the native space for .

3.3.1 From Conditionally Positive Definite Functions to Hilbert
Spaces

Now let ® be a conditionally positive definite function on some domain €2
with respect to some finite-dimensional space P in the sense of Definition
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3.2.15 (DCPD2) on page 46. We have to construct the space G occurring the
preceding sections, and its associated bilinear form with nullspace P. Since
there is no other tool available than the definition of conditionally positive

definite functions, we first have to work with finitely supported functionals
(Deflxma)

M
)\X,M,a : f —> Zajf(l“j) (331)

J=1

for arbitrary subsets X = {x1,...,2y} C Q of M distinct points, where the
coefficient vector a € IRV satisfies (3.2.16, CPDef2), i.e. the above functional
is zero on the space P. We thus define P to be the set containing all of
these functionals. To turn P, into a vector space over IR, we use the obvious
multiplication by scalars and define the sum of Ax o and Ay,ng as Az,
with Z = {z,..., 2.} and

Z = XUY
L = card (2)
Y = o if z=z;,€e X\ (XNY)
Ye = Ok if Zg:ykEY\(XﬂY)

Vv = aj+B i z=z=y€XNY
This definition makes sure that

Ax e f) + Avns(f) = Aznq(f)

holds for each function f on 2, and thus the sum satisfies (3.2.16, CPDef2).
The usual laws for vector spaces are satisfied, and we now define a bilinear

form on P, by
(DefBil)

M N
()\XMou)\YNB ZZ ﬂk@ %ayk) (3-3-2)

Since @ is positive definite with respect to P, we even have positive defi-
niteness of the bilinear form on P, and P, is a pre-Hilbert space with the
inner product (-, -)e introduced by ®. Note that the vector space Pg is only
dependent on 2 and P, not on & itself, but the inner product on Pg; depends
on @, as we indicate by our notation.

We now can define the native space G with respect to ® to consist of all
functions on €2 on which all functionals from P are continuous:
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(calgdef)
={f + Q= R, [Mf)| < Cfl|\|s for all A € Py }. (3.3.3)

It is immediately clear that P is a subset of G, but it is neither clear nor true
(in general) that the functions ®(z,-) are in G. Furthermore, we still need a
bilinear form on G that has P as its nullspace. To do this, we first define the
map

(Fmapdef)
F : Py =G, Fxma) = Za] (zj,-) (3.3.4)

and have to make sure that the image is indeed in G. But this follows from
the very important identity
(ImF)

Ay s(F(Axma)) = (Ax e Avivg)e = Ax ma(F(Avivg)) (3.3.5)
for all Ax ar.a, Avivg € Po. Then we define Fy := F(Pg) and assert
Lemma 3.3.6 The sum P + Fqy s direct, and the map F' is bijective.

Proof: Indeed if F(\) = p € P, then for all u € P we have p(F()\)) =
p(p) = (A 1) = 0 due to (3.3.5, ImF), proving both assertions at the same
time. O

In the above proof we used shorthand notation for functionals in P, , and we
shall only return to the full notation if absolutely necessary.

We now can define an inner product on J, via F', turning F into an isometry
and F; into a pre-Hilbert space:

(F(A), F()e == (A i)a

for all A\, u € P,. We used the same notation for the inner product, since
there will be no confusion between spaces of functions and functionals, re-
spectively.

The next step is to go over to Hilbert space completions of Py and Fj in
the sense of Theorem 12.2.11 (HSCT). Then we get a continuous extension
of the isometry F' to the completions for free, and we denote this map again
by F. The completion of Fy will be denoted by JF, and our final goal is to
prove the validity of a direct sum like
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(GPF2)
G=P+F (3.3.7)

to recover (3.1.8, GPF1) on page 32. But this is a hard task since we do not
know that the elements of the completion F of F(Pg) are functions on Q at
all, let alone that they lie in G. However, we know that an abstract element
f of F allows the action of all functionals Ay o € Pq, since (3.3.5, ImF)
yields

(Ifgeneral)

Axaralf) = Axvra F7Hf))e. (3.3.8)

This immediately implies a proper definition of function values for f in case
of P = {0}, since we can define
(Ifsimple)

f(2) = Aayaa(f) (3.3.9)

for all x € €. This definition is consistent with what we know for functions
in Fy, and we could proceed to prove (3.3.7, GPF2). But we need a little
detour for the case P # {0}, since the above point evaluation functionals are
not in Pg,. To facilitate this, we again require a projector IIp onto P as in
section 3.1.2 (SecHSP) on page 30. We could copy this definition, but since
we are in a space of functions now, we want to give a specific construction
that can be expressed in terms of function values.

To get such a special projector, we shall assume the existence of a subset

E:{fla"'agr}gg

which is nondegenerate with respect to P and assume without loss of gen-
erality that = has a minimal number r of distinct points. Then there is a
standard argument from linear algebra that allows to conclude that r equals
the dimension of P. In fact, the map

p (p&),....p(&)" € R

is injective and we have ¢ := dim P <r. If py,...,p, form a basis of P, we
can write down the injective r X ¢ matrix

(Prq)

P = (pk(gj))gjgr@gkgq (3.3.10)
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and pick a subset of rows that generate a submatrix of maximal row rank.
If this were a proper subset, we could reduce r by going over to a subset of
=. Thus P has maximal row rank r. But then we must have ¢ = r, because
there cannot be r linearly independent vectors in a space of dimension ¢ < 7.

This shows that we can assume r = ¢ = dim P and nonsingularity of the
q X ¢ matrix P of (3.3.10, Prq). We use this to go over to a Lagrange-type
basis of P with respect to = which we again denote by pi,...,p,. Then P is
the identity matrix and we can write every function p € P as

(PRq2)

q
Z (&)ps(- (3.3.11)

This now yields the explicit form of a projector I1p onto P as

q
Ip(f)() := Zlf(fj)pj(')
j=
for all functions that are at least defined on =. The projector has the
additional property
(f = IIpf)(E) = {0}
for all functions f that are defined on =, because of é;;= =0, 1 < j <
Note that 7,;(f) = f(&) holds if we compare (3.3.11, PRq2) with (3.1
DefPN).

q.
5,

So the projector is well-defined, but we cannot use it right away, since we first
need nice functionals in P, . But such functionals come from the projector
via

(deltagen)

,2(F) = F(x) — (Tp(F)(x) = F(&) = 3 F(&,)ps(a (33.12)

j=1
for all x € Q) and they annihilate P, as required.

The notation ¢, p from (3.2.8, deltadef2) is very similar, but there will be
no possible confusion. Similar variations of point evaluation functionals will
occur later. These functionals are useful to prove an intermediate result that
will be of some use later:

Lemma 3.3.13 (SuffPol) If the action of all functionals X from Pg is zero
on a given function f from G, then f coincides with a function from P on
Q.
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Proof. : Just take the functionals 6, = for all z € Q, and look at

0=0.z2(f) = f(z) = (p(f))(x).

O

We now could generalize (3.3.9, Ifsimple) using the above functionals in (3.3.8,
Ifgeneral):
(1f2)

F(@) = (0z, F7(f))o, 1 €Q, feF. (3.3.14)

This assigns specific function values to the abstract element of the closure
F of Fy. The assignment has the consequence that f(Z) = {0} due to
o0¢g;,= =0, 1 < j < g, and thus it is rather an assignment of values to f —TIp f
than to f itself. We thus avoid this complication and define a mapping

Rp:j:—>g

by
(1£3)

(Rpf)(2) := (02, F~'(f))e, 2 €Q, f€F. (3.3.15)

We have to show that this maps into G, and for this we have to evaluate

Axma(Rp(f)) = Zaj(éxj,E’F_l(f)>¢'

Now the functional in the bilinear form boils down to

é@j(sxj,s(f) = g:l@j (f(%‘) - Iéf(ﬁk)l?k(%))

= Z_:l a; f(2;)=> f(&) D api(z;)

k=1 7j=1
M
= > a;f(z;) =0
7=1
— )\X,M,a(f)a

and we end up with
(RfDef)

Axara(Rp(f) = Axa FH(F))a (3.3.16)
which proves Rp(f) € G.



60 3 HILBERT SPACE THEORY

Theorem 3.3.17 (GPFT2) The spaces P, G, and F of functions on €
form a direct sum

g =P + RP (',F)a
and Rp defined by (3.3.15, 1f3) is an isometry between F and Rp(F) C G.

The inner products on F and Rp(F) introduce a bilinear form

(9.h)g :== (Rp' (g — Upg), Rp' (h — IIph))e
with nullspace P on G.

Proof: The intersection of P and Rp(F) is zero, because the second space
consists of functions vanishing on =, and the only such function in the first
space is the zero function. Thus the sum is direct, and we have to show that
the sum fills all of G. Before we do that, we take a look at the mapping Rp
and check the topology of G. FEach function f in G has the well-defined norm

A

AePA\{0} ||)‘||tl> ’

[fllg =

and the identity (3.3.16, RfDef) immediately yields

B> (Hlle =11F""(Hlle =l £l

for all f € F. Thus Rp is isometric, and Rp(F) is the closure of Rp(Fp) in
g.

We now proceed to show that P+ Rp(F) fills all of G, and we shall construct
the inverse of Rp. Take an arbitrary function f € G and define a functional
L on the space P by

Li(\) == A(f), \ € Pg.

This functional is continuous on Py, because f isin G, and it has a continuous
extension to the closure of Py which is a space isomorphic to the Hilbert
space F. We thus invoke the Riesz representation theorem 12.2.14 (RieszT)
to get an element S(f) € F with

L) = A() = (L F ' (S())e = (F(N), S(f))a for all A € Py
Using (3.3.16, RfDef), this turns into

Mxara(BpS(f) = Axra, F'Se = Axaralf)
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and Lemma 3.3.13 (SuffPol) implies that f—RpS(f) coincides with a function
from P on €2, and since [IpRp is the zero mapping, we see that

f=1pf+RpSf

holds for all f in G, proving that the direct sum fills all of G. The statement
on the bilinear form is straightforward to prove. a

To write down a more explicit representation of the functions from G, we
apply F' to 0, = and get

F(,2)() = Z (&, Ipi(z) € .

Then (3.3.15, 1f3) and Theorem 3.3.17 (GPFT2) imply the representation
(Taylor2)

i 5] p] ( i 5]) p] Sf()) s (3318)
=1 =t g

but note that the sum in the first argument of the bilinear form cannot easily
be taken out, because ®(x,-) may not be in G. The same problem prevents
us from concluding that ® serves as a reproducing kernel in the strong sense
of Theorem 3.2.12 (CPDFT1). A good candidate, however, is the readily
available function

(EqPsiDef)

U(z,y) = (022 0y2)s (3.3.19)

F(o,=z)(z) = (IIpF (9,
= (HpF(éy

N(@) + (F(b2.2), F(dy2))e
) (@) + ¥ (z,y)

n

[1]

3

such that
U(z,y) = F(0,2)(x) = (IpF(3,2))(2)
holds, proving that (-, x) is indeed in G and satisfies IIp(¥(-,y)) = 0 for

all y € Q. The above identity can now be put into (3.3.18, Taylor2) to get
(3.2.10, Taylor) via
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(Taylor4)
f@) = (pf)(z)+ (U(z,) +TpF(:2))(), f())s

= (pf)() + (¥(z,), f()g -

Thus the function ¥ satisfies all we need for Theorem 3.2.12 (CPDFT1), but
we still have to look at its relation to the original function ®:

(3.3.20)

(DefSymmPsi)
V(z,y) = F(b:2)(y) — pF(d:2))(y)
= Br) = 3 V(G (o) — (e~ 8 s
= ®(z,y) — i (&, y) i (z, &k)or(y i (&k: &5)e(2)p4 ()
= . (3.3.21)

Inspection of this equation and comparison with (3.3.2, DefBil) implies that
® and U generate the same bilinear form for the definition of the native
space. Thus ¥ is also conditionally positive definite and the native spaces
generated by ® and ¥ coincide.

From (3.3.20, Taylor4) one can deduce that all functions from G are contin-
uous on €2, provided that & and the functions in P are continuous. In fact,
we get

[f(@) = fy) = [Mpf)(x) = pf)(y) + (T, ) = ¥y, ), f(-))g |
< e f)(@) = Mpf) ()| + [ (¥(z,-) = Uy, "), f())g |
Q
< z_:l\f &)pi(@) = pi) + [W(z,-) = W(y, )2l /() lle
and we can expand ||¥(z,-) — ( I||% as

Since all quantities now are continuous for y — x, we are finished.

We can now add up the results of this section:

Theorem 3.3.22 (CPDSuffT) Let ® be a conditionally positive definite
function on some domain Q with a finite-dimensional nullspace P of func-
tions on € that allows an interpolatory projector

(HPf Zf 5] p]

j=1
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where py,...,pq are a basis of P and &, ..., &, form a P-nondegenerate subset
= of Q. Then there is a native space G for ® carrying a bilinear form with
nullspace P, and having the function ¥ as defined in (5.3.21, DefSymmPsi)
as a reproducing kernel in the sense of Theorem 3.2.17 (CPDNeccT). The
native space is formed by adding a Hilbert space to P. The functions in the
native space are continuous if ® and the functions in P are continuous. O

The transition from a conditionally positive definite function ® to the func-
tion U with (3.3.21, DefSymmPsi) will be called normalization in the se-
quel. We note that the normalized function ¥ can also be defined if the

projector is not interpolatory, but rather of the more general form (3.1.5,
DefPN).

3.3.2 Normalization of conditionally positive definite functions

(PhiNormalization) With the notation of the preceding section it is fairly
easy to describe the reduction of a conditionally positive definite function to
an unconditionally positive definite function. This process coincides with the
normalization by (3.3.21, DefSymmPsi).

Theorem 3.3.23 (RedCPDFT) Let ® be a conditionally positive definite
function with respect to the nullspace P of the bilinear form on G, and let
the projector Ilp onto P be interpolatory with a minimal P-nondegenerate
set = ={&,...,&} of points of Q. Then the normalized function U defined
as in (8.8.21, DefSymmPsi) is unconditionally positive definite on Q\ =.

Proof: Consider a finite subset X = {z1,..., 2} of 2\ = and an arbitrary
coefficient vector o € IRM. Then the functional

(faé) 1) = Sty - X0, (3 H@mn)

= ;ajf(xj) - Ii: f(&k) (; Oéjpk(ffj))

necessarily vanishes on P and is in Pg. Applying the conditional positive
definiteness of ® for this functional yields positivity of

OéTAX’\I;Oé

unless the coefficients of the above functional are zero, which implies that «
is zero. O
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By some simple linear algebra techniques the above normalization method
can be shown to be equivalent to the method described in 10.2 (Red2) on
page 173. To see this we give some hints, but suppress details of the full
argument. Starting in section 10.2 (Red2) with a P = IP%-nondegenerate
set X = {zy,...,2)}, we can renumber the points and assume that = =
{z1...,zg} = {& ..., &} holds. Furthermore, if we pick the right basis in
IP? | the matrix S in (10.2.1, Dec2) has the elements p;(zr), k = q+1,..., M.
But then the matrix occurring in (10.2.4, RedSys3) precisely describes how
to form the elements U(x;, z;) for j,k =¢+1,..., M via the normalization
formula (3.3.21, DefSymmPsi).

The function ¥ vanishes whenever one of its arguments is in =. This is
reflected in the above argument, since W is responsible for reconstruction on

X\E={2g41,---,Tm}

3.3.3 Characterization of Native Spaces

(SecCNS) The native space associated to each conditionally positive definite
function @ is a rather abstract object, and it would be nice to know precisely
which functions are in the space and which are not. This is a nontrivial task,
since the only available information to start with is the conditional positive
definiteness of ®. Using transforms, we can give some results in section 6.1
(SecCNST). But there are some simple things that we can do right now.

We first want to know how smooth the functions in native spaces are. Since
we have the representation (3.3.20, Taylor4) that allows any A € P to be
applied to f with result (A\*W¥(x,-), f(:))s, we check the functionals in Pg.
Assume that A is a linear functional that

1. we can safely and independently apply to both arguments of ® (or W,
for convenience),

2. that vanishes on P, and
3. can be approximated by functionals from Pg .

Then we assert that A € F*. More precisely, we have

Theorem 3.3.24 Assume a general linear functional A and a sequence
{Atn CPq to satisfy

NNz, y) erists
nlggo A @(x,y) = ANpdd(x,y) for all p € Py
nlggo AND(z,y) = NAD(x,y)
AMP) = {0}
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Then X acts on functions in G like a functional in F*, the closure of Pg .

Proof: We first note that {||\,||¢}. is a Cauchy sequence, because it con-
verges in IR. Then we use the standard technique of the proof of Theorem
12.2.11 (HSCT) to conclude that {),}, is a Cauchy sequence in Pg. Thus
it has a limit u € F*, and we can prove
(A = )62 20(x, 2) = lim A20% =0(a, 2) — lim AZ3% =(x, 2) = 0

for all y € Q. This implies A*®(x,y) = p*®(z,y) + p(y) with some p € P.
Using an arbitrary p € Py we get A*p?®(x,y) = pu"p?®(x,y). Thus A and p
generate the same functional on Py and can be identified as functionals in
the closure F*. a

This coarse result can be applied to functionals that are point-evaluation
functionals of derivatives, and which are approximated by finite difference
functionals. It shows that Gaussians and multiquadrics generate native
spaces of infinitely differentiable functions, while non-smooth conditionally
positive definite functions ® generate spaces of roughly half the smoothness
of ®. But note that the above approach does not cover smoothness of
derivatives, just their pointwise existence.

3.3.4 Remarks

The association of a Hilbert space to each conditionally positive defi-
nite function dates back to Madych and Nelson ([20](madych-nelson:83-1)
[21](madych-nelson:88-1) [22](madych-nelson:89-1) [23|(madych-nelson:90-1)).}

3.4 Standardized Notation

(SecSN) The previous sections showed that it does not matter whether we
start our theory from optimal recovery in spaces of functions with a bilinear
form or from any given conditionally positive definite function. The only
difference was that in the first case we constructed a normalized conditionally
positive definite function from the given bilinear form, while in the second
the given conditionally positive definite function ® may not be normalized,
though its normalization ¥ will generate the same bilinear form as ®. From
now on we want to be independent from the starting point, and thus we
collect the following facts that hold in both cases:

1. & : Q x Q — IR is a conditionally positive definite function on some
domain €2 with respect to some nullspace P of finite dimension q.
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. There is a positive semidefinite bilinear form (-,-)$ on a space G of

functions on €2 with nullspace P.

. The nullspace P has a basis p;,...,p, such that with certain linear
functionals m,...,m, on G the projector IIp from G onto P is well-
defined via

q
lpg="> m(g)pi forallg € G.
k=1

. For each z € Q) the linear functionals

6z,p g+ g(x) — (Ilpg)(z)

are continuous with respect to (-, -)g and the Taylor-type reconstruction
formula

0zp(9) = (05 p®(y, ), 9())e
holds for all g € G, x € Q.

. The space G can be decomposed into a direct sum G = P + F such

that F is a Hilbert space with inner product (-, -)q.

. If functionals Ax as. are defined as

M
Axma @ f =Y aif(z))
=1

for sets X = {xy,...,zy} C Q and vectors o € IRM for arbitrary
values of M > ¢, then one can define an inner product

M N
()\XMou)\YNB ZZ ]ﬁk@ %ayk)

on all such functionals that vanish on P. The set Pg of all of these
functionals then is an inner product space.

. The space G is the largest space of functions on €2 such that all func-

tionals in Pg are continuous with respect to the norm induced by (-, -)s
on Pg.

. The closure of Pg; under (-,:)¢ is the dual F* of F, and the map

F . F* — F provides the Riesz correspondence between functionals
and functions.
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10.

11.

12.

13.

14.

3.5

The action of F' is related to ® via
FA)(-) = \®(y, )

for all A € F*. This is evident in case of A = Ax yo € Py and has to
be read as a definition of the right-hand side for general .

The dual G* of G consists of functionals that are sums of a linear
functional on P and a linear functional in F*.

For each A € G* we have A — Allp € F* and

AMg) = Alpg+ (F(A— Allp), 9)s
— )\HPQ + (()\ — )\HP)y(b(ya ')7 g)‘b

for all g € G.
The normalization ¥p of ® is defined via
Up(z,y) = (62,p, 0y,p)e = 0y p0y p®(u,v)

for all x,y € €. It has the properties described in Theorem 3.2.12
(CPDFT1).

The unique solution ¢g* of the optimal recovery problem for data \;(g)
with ¢ € G and \; € G represented by functions ¢g; € G is of the form
(3.1.13, grep) with coefficients satisfying erefEQsys3.

The solution is orthogonal to all functions from G which are a sum
of functions from P with functions v such that A;(v) = 0 for all
jl<y <M.

Restrictions, Extensions, and Infinite Problems

(SecREIP) It will turn out later that the recovery of functions via condi-
tionally positive definite basis functions involves certain “natural” boundary
conditions like those of “natural” cubic splines (see 3.6 (SecCSOneV)). To
study these, we look at the construction of native spaces for recovery of func-
tions on subsets g of 2. Another reason is that in case of a given Hilbert
space setting for functions on some large domain €2, we do not know how the
native spaces for smaller domains )y are related to the given Hilbert space
of functions on ).
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To this end, let us assume that ® is a conditionally positive definite function
on some domain §2, while we do reconstruction on data given on a subdomain
Q. Of course, the reconstructing functions based on finitely many data in
Qo can be extended to all of €2, but it needs proof that all functions f from
a native space based on )y have a canonical extension to ). Fach of these
extensions solves a reconstruction problem on €2 with possibly infinitely many
data, namely the data of f on the subset €25. Then we study the orthogonal
complement of the extensions, and the result leads us to the general treatment
of recovery problems with infinitely many data.

3.5.1 Restriction Mapping

Assume that € is a subset of 2. Then we can restrict ® to {2y and carry
out the whole construction of a native space based on 2y instead of 2. We
add the subscripts Q or €y in this discussion to distinguish between the
construction of native spaces with respect to €2 or €)3. The reader should
be aware that € can be infinite, e.g.: Q = IR, while Q often will be the
bounded domain that we actually work on. However, for the definition of the
projector IIp and the functionals d, = we use a subset = of )y C €2, such that
the projector and the functionals are the same for both cases. Unfortunately,
earlier writeups of the following arguments contained numerous traps that
had to be eliminated later, and thus we take a very formal approach here,
starting with the explicit use of a restriction map r, that takes functions
defined on {2 to functions defined on €2y. After normalization, which also is
the same in both cases since we use the same functionals, we arrive at two
versions of the representation (3.3.20, Taylor4), namely

(Taylor4b)

g(:r) = (HPQ)(SE) + (\Ij z, '):g('))é,ﬂa A Q, g€ gQ;
f@) = (rollpf)(z) + ((rg(¥(z,9)))(): f()aq, =€, fe(gﬂo, |
3.0.1

which illustrate the use of the restriction map rq. Note that we cannot
identify the two bilinear forms without additional information, since they
were generated via continuous extension from bilinear forms acting on objects
that depended on the domain. This applies to the bilinear forms acting on
functions; the corresponding bilinear forms defined on functionals will just
depend on ® but not on the domain, since they are obtained by continuous
extension of (3.3.2, DefBil) on page 55.

The normalization ¥ of ® is defined on all of 2, and thus the second equation
of (3.5.1, Taylor4b) can possibly be used for x € Q\ Qg, too. However, this
would require
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(restrPsi)

(r(¥(z,9)))(-) € Goy (3.5.2)
for all x € €2, which is not trivial.

We thus proceed more carefully and repeat the construction of native spaces
to some detail. Consider the general definition of G in (3.3.3, calgdef). This
leads to

Go = 19 : Q= IR, |A(g9)| < Cyl||N||e for all)\€7’§}
Gay = {f @ Qo= R, INf)| < Csl[\]|a for all X € Py},

where we note with relief that
A7 = A" N (z, y)

does not depend on the domain. Since each functional A € Pg, induces a
functional A o rg in Py, we can define an intermediate space

Go={g : Q= IR, |\(ro(9))| < Cyl|M|s for all A € Pg,}.

with Go C Gy. But then the restriction r¢(g) of any function g in Gy to €
clearly is in Gg,. We abbreviate this fact by

r0(Ga) C ro(Go) C Ga,

and note for later use that
(restrnorm)

70(9)]a, < l9la (3.5.3)

holds for all g € Ggq, since the minimal constant C, that is good for g in the
definition of G will also work for r4(g) in the definition of Gg,. Altogether,
this discussion showed that there are no problems with (3.5.2, restrPsi), since
U(x,-) is in Gq for all z € Q.

3.5.2 Extension Mapping

We now can extend the interpretation of the second equation in (3.5.1,
Taylor4b) by defining an extension e’(f) of a function f € Gq, by
(extendef)

e’ (f)(@) == (Mp f) (@) + (8 (¥ (2, ) (), f())a.0, (3.5.4)
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for all x € Q0. We assert that this function is in Go. To this end we have to
apply an arbitrary functional Ax ao € Pq to get

(8 X% ara @ (2,9)) (), £(4)
< | flogolmd (A5 a0 (7, 9)) 0,0,
< [fleael (A% a0 Y (2, 0)) 3,0

< |fla.00llAx,Mall®

[ Ax,20,0€” (f)] |

q>,QO

due to (3.5.3, restrnorm). Since now €°(f) is in Gg, we can compare (3.5.4,
extendef) with the application of (3.3.20, Taylor4) for both €°(f) and f:

(Taylor4a)
(\Ij(l‘a ')760(f)('))<1>,ﬂ7 ref) fe nga I
((rg (¥ (2, 9)) (), F(Nag, =€, [ € Gay.
(3.5.5)
The second comparison implies f(z) = €°(f)(z) for all x € Q, as expected,

and the first yields

(B ) (). F (g, = (2000,

(f)(x) = (pe(f))(x)

+
flx) = (rollpf)(x) +

for all z € Q. If we apply arbitrary functionals from Pg with respect to z to
this equation and use continuity, we see that

(r0(9)s o, = (g,eo(f))qm

holds for all f € Gq,, g € Go. But since we already know that roe? is the
identity, the mapping €® must be isometric. This easily follows from setting
g = €"(h) in the above equation.

This altogether yields an extension theorem which was first observed in full
generality by Iske [19](iske:94-2).

Theorem 3.5.6 (ExtThl) A function f from a native space on a domain
Qo always has a canonical extension €°(f) to the largest domain Q0 on which
the generating basis function ® is conditionally positive definite with respect
to some finite-dimensional space P. The extension is furnished by the Taylor-
type reproduction formula (3.5.4, extendef). The extension map €° is an
isometric operator from Gq, into Gq. O

3.5.3 Properties of the Extension

We now look somewhat more closely at the extension €°(f) of a function

[ € Pgq,
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Theorem 3.5.7 (ExtTh2) The canonical extension €°(f) of a function
f € Gq, to the larger domain 2 is a solution of the optimal recovery problem
posed in Gq for functions g satisfying

A(ro(9)) = A(f) for all A € Pgg

or
022(ro(g)) = duz(f) for allx € Q.

Any two solutions differ by a function in P, and for Upq,(f) fized, the
solution is unique. The orthogonal complement of €°(Gq,) in Go consists of
all functions that coincide with a function from P on .

Proof: We show that €°(f) satisfies the necessary and sufficient variational
equation

(e°(f),v)q =0 for all v € G with A(ro(v)) = 0 for all A € Pg,.

The condition on v is equivalent to ry(v) € P due to Lemma 3.3.13 (SuffPol),
and it is equivalent to the same condition restricted to all functionals of the
form 4, =. But since

(6O(f)7 U)Q = (fa TO(U))QO

holds for all v € G, we have that €°(f) solves the recovery problem. The rest
is standard. O

Corollary 3.5.8 (DensCor) Let ® and the functions from P be continuous.
For Q C IR? and Q dense in Q, the embedding °(Ga,) of Ga, is dense in
Ga.

Proof: Let v be in the orthogonal complement of €’(Gq,) in Gg. Then v
coincides with a function p from P on ;. By continuity as following from
Theorem 3.3.22 (CPDSuffT), v = p holds on all of Q. O

3.5.4 Infinite Problems

We take an increasing sequence of P-nondegenerate data sets X, :=
{z1,...,2} CQfor M =Q,Q +1,... and denote the interpolant to data
from some f € Gq on the set X, by fi;. The usual orthogonality property,
as induced by (3.1.15, charmin), implies both

(f = fv. fn)e = 0
(far — fn, fn)an

Il
o
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for all M > N > (). This implies the Pythagorean laws

|f_fN?I>,Q+‘fN|%{>,Q = ‘f%,n
fr = Inlsa+ Ifnlza = [fulda

Thus the sequence {|fy|3q}n converges monotonically to some value
bounded by |f|5 . It necessarily is a Cauchy sequence, and thus {fas}u
and { fy — I1p far } ar are Cauchy sequences. The latter lies in a Hilbert space
and thus is convergent to a function that we can write as fo — lIpfo with
some fo € Gq, and where the term Ilpfy is at our disposal. We fix it to
be identical to IIp f. Since all of the interpolation functionals are in G¢, and
since we can conclude from Corollary 3.1.32 (PolRepCol) that

(prM)(fEJ) = (pr)(fEJ) for all M Z j,

we see that

(foc - HPf)(l‘]) =

= lim
M —o0

(fv = p far)(w5) = flz;) — (Hp f)(2)
such that f(z;) and fu(z;) agree for all j.

Theorem 3.5.9 (IIT) For functions f in the native space Gq corresponding
to a conditionally positive definite function ® on €, one can solve all recovery
problems based on countably many P-nondegenerate data in the form of
functionals \; € G§ for j € IN. In case of Lagrange data, the solution
coincides with the function f° := % (f) if Qg is the set of all data locations.

Proof: The first assertion easily generalizes from the case of Lagrange data
to general functionals. To prove the second, we know that both f* and f
satisfy all interpolation conditions. Since we have

‘fM‘gQ < |foo|GQa ‘fM‘gQ < ‘fo‘gn

because f); is based on less data that the other recovery functions, and since
| farlgq converges to | foolg,, We get

| foclga < 1% ga-

But the seminorm of f° is minimal under all other recovery functions, proving
that f. also solves the total recovery problem on €2y. Two solutions differ
by a function of P, but since the data are P-nondegenerate, they coincide.
|

We could proceed from here towards orthogonal expansions of recovery func-
tions, but we shall delay these things for section 4.4 (SecRecCon).
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3.5.5 The Connection to L, via Convolution

(SecCLC) In this section we require the subset Qy C  to be compact and
assume continuity of ® and functions in P. We then define the bilinear form
(Norm?2)

(f, g)Q’QO = A} 6:5’737“0]0 : 6m’pT0gde = ((S.’pTgf, 6.”PT0Q)L2(QO) (3510)
0
for all f,g € Go. Because of

(6$,7’T0f)2 (65,P(I>(ya ')7 rOf)?é,Qo
162,2115,00170.f 1504
U(z, z)||ro f 115 0

U(z, )| fl3,

and since ¥p(z,y) = (02,9, 0yp)s is the normalization of ® with respect to
P, we can use its continuity and get that the above function is continuous.
Thus we can integrate it over {2y to see that the bilinear form (3.5.10, Norm?2)
is well-defined and continuous with respect to the bilinear form in Go, and

Ga:

IA I IA

(f,9)2.00 < lrofllz.0llrogll200
< N Wp(, 2) 17, 00 70 0,001 709l2,05
< | Wp(, 2) |7, o) [ fllo,0llg]ls,0,

The inner product (-, +)2,0, coincides with the inner product of L, (€2) applied
to functions from the Hilbert subspace Fq after restriction to g, i.e.:

(f,9)2,00 = (Tof,709) Lo(020) for all f, g € Fa.

This proves that the restriction mapping ry can also be viewed as a continuous
mapping from Fq into Ly(€). If we denote bilinear forms carefully, we do
not have to distinguish between 74 as a map into Ly(€)) or as a map into

Ga,-

We now proceed to construct the adjoint ¢® : Ly(Qg) — Fq of rq considered
as a mapping into Ly (€2g). For any g € L(€2) we can consider the continuous
linear functional f — (rof, g)2,0, on the Hilbert space Fo. Then there is a
function °g € F such that

(smapdef)

(rofs 9)12(90) = ([, "g)aq for all f € Fa, g € La($). (3.5.11)

The image of ¢® in Fq is orthogonal to the kernel of 74, and thus it coincides
with Fq N e’(Gq,). Furthermore, it follows from (3.5.11, smapdef) that c’rq
is a nonnegative self-adjoint operator on Fq. But there is a more convenient
way to represent ¢ that sheds some light on the functions in Gq:
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Theorem 3.5.12 (ConvTh) The map ® takes any function v € Ly(€)
into the generalized convolution

(v 0)a) = [ )W)y, 7 € Q.

Proof: Let us first check that these convolutions are in Gg. The integral is
well-defined because both integrands are in Ly(€). Take any Axara € Pg
and form

Mxaralv+ D] = Moo [ v@)W(y)ds]

= ‘/ )‘XMa (:c,y)dy\

‘(U, TOF)\X,M,Q>L2(QO)‘

< ||U||L2(Qo) ||T0F/\X,M,a ||L2(Qo)

< [ Up (@, 2) || 2o (20) 1V]] Lot [[Ax 202,00
Thus we are in G, and we see immediately by application of IIp that the
convolution lies in Fq, since we used W instead of ®.
Let us do the same to c’v and compare. Then
Axra(c®) = (P, V)ag
= (TOF/\X,M,OM U)L2(Qo)

shows that
Ax.ra(c?v —vx¥) =0

for all functionals Ax o € Pg. Then the two functions can only differ by a
function from P, but since both are in F, they agree everywhere. O

Corollary 3.5.13 (ConvThCor) The ranges of the extension map € and
the convolution map c® have the same closure in Fq.

Proof: In fact, if g € F is orthogonal to all ¢°(v) for v € Ly(£), then
0= (9; COU)@,Q = (TOQ,U)L2(QO)

implies that g vanishes on €2y. The corresponding condition
0= (g,")a,0 = (r0g, v)s.0

for all v € Fq, first implies that ¢ coincides with a function from P in €2, but
since we work on Fq here, it must be zero on 2. Thus the orthogonal com-
plements in Fg of the two ranges coincide. and the closures must coincide.
O
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There is another way to look at the map .

(roP)~ L2(£2) and the corresponding functional

Consider any function v €

Ao 0 g (109, V) Ly()

which is continuous on Gq and lies in Fg. Its Riesz representer is c®(v),
because

(Toga )L2 Qo) — )‘ ( ) (gacov)q>,9
holds for all g € F.

3.6 Example: Cubic Splines in One Variable

This section serves to illustrate the construction of the native space and
the extension/convolution maps for cubic splines. We consider the radial
function ®(x,y) := &(||x — yl||2) with ¢(r) = r* in IR' =: Q, which will turn
out to be conditionally positive definite of order m = 2 there. Furthermore,
we restrict the data to an interval Qy = [a,b] C IR later. For P = IP, and
any Ax m.a € Pq according to (3.3.1, Deflxma) we have

M
F(Axara)(@) =D ajle — a5,
=1
due to (3.3.4, Fmapdef), and with |z|> = 223 — 2® we find

F(AxMa) = Za] :c—:c]+ (x—:cj)?’)

M M
= 2) aj(z—x;)% = > aj(z} —3za3) + 0
- =
because Ax i, annihilates linear polynomials. Then
(Fmaplin)

d? M
WF()\XMQ 3?) =12 Zaj(a: — xj)fr (361)

is a piecewise linear function with support in
1 < Ty <...<XTpN-.

If two functionals

M N
Axoa(f) =D ajf(z;), Avng(f Z B f (k)
=1 k=1
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from P, are given, then

M N
(Ax, M, Av,N,3) 0 Zzajﬂﬂ«”fj _yk|3
j=1k=1

by definition, and we want to compare this to
(%F(AXM@( ), e F v ) (@) i
= %% d=F O ma) (0) 4 F (v ) () dor.
= [} a5 F(Axa) (@) 45 F (v ) (@) do.
Using 2!, = (=) + x we rewrite 5, F(Axrq) as

d‘fczF()\XMa)(x) = 12 Za] L+12 Za] T — ;)
Jj=1 j=1

M
2 Z O (x] -
7=1

(note the swap of = with z;) and get

Theorem 3.6.2 Under the above assumptions,
(cubqf)

M N
()\X,M,m)\Y,N,ﬂ)fb = ZZ%@H% —yk
j=1k=1 (3.6.3)

dZ

SEF A x0) (@), 5 F (Ayn) (@) 100wy

fO’I“ all )\X,M,a; )\Y,N,,B € P§

Proof: We use Taylor’s formula

f(z) = fla) + (z —a)f +/ ') (& — u) L du

for functions f € C?[a,b] and @ < x < b. Fixing y € [a,b], we insert
fy(u) = (y —u)? /3! and get
3 3

.~ UL Uy RN

= sxlly—2P + (y—2)?).
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We now apply functionals Ax s, and Ay n . This yields

1 M N 1 M N
Z Y oaiBlry —ul® + 1 o> Brlyr — x5)°
] 1k=1 j=1k=1
1 M N
= EZZ%BH%_% + 0
j=1k=1
1 M N 3 1 M N )
= EZZ oB(ye — a)” — 522%@( —a)(yx — a)
j=1k=1 j=1k=1
M N
b S g [ - 0l - widu
j=1k=1

= 0—0+22a]ﬂk/ yp — )y (z; — u)du

j=1k=1

= (& F(Oxara); %F(AY,N,/B))LQ(R) :

where the functions dd > F(Ax,m,0) and %F(AY,N,ﬂ) are supported in [z, z /]

and [y;, yum|, respectively, such that the L, integral could be suitably re-
stricted. O

Corollary 3.6.4 The function ®(z,y) = ¢(/|lz — yllo) with ¢(r) = r® is
conditionally positive definite of order 2 on IR.

Proof: Theorem 3.6.2 (thcs2) yields that the quadratlc form (3.6.3, cubqf)
is positive semidefinite. If |[Ax r.|/e vanishes, then QF()\XMQ = 0 holds,
and the representation (3.6.1, Fmaplin) as a piecewise hnear function implies
that all coefficients o; must vanish. O

We now use (3.3.3, calgdef) for Q := [a, b] to define the abstract space
Goo = Gl = {9 : [a,b] = IR : |A(f)| < Cf||M|s for all A € Pg o}
and assert that it coincides with the space

Wila,b):==1{g : [a,b] = IR : ¢" € Ly[a,b] }

Lemma 3.6.5
W;[a: b] C g[a,b}-
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Proof. Generalizing Taylor’s formula for f € WZ[a,b], we find for all
Ax, M € Pq, the identity

Manell) = S oyfla) =0+ ") 3 - w)ldu

1=

—_

(a5 f e FOxara)) afos

< N sty i F (Axasa) Lafa

2
< NS fllnafag - VI2 - [ A]|o

O
Lemma 3.6.6
G C Wyla,b].
Proof. Define the subspace
d2
fo = {@F(AX,M’Q) . )\ € ,PYSO}

of Ly[a,b]. Tt carries an inner product

d? d?
(@F(AX,M@), @F(AY,N,ﬂ))LQ[a,b} = 12(Ax M0, Aviv,8) @

constructed from the inner product (-,-)s, and we define F := F; to be the
L, closure of Fy with respect to (, )i,ap. Any g € Gy defines a linear
functional on Fy by

d2

@F(AX,M@) = Axa(9), Ax,Ma € Pgg-
Here, we used that the map Ax o — %F(AX,M,Q) is one-to—one on Pg,.
The above functional is continuous on Fy by definition of G, . Thus there
is some hy € Fap = Fo C Loa, b] such that

d? d?

—hg. = FOx p.a) Lsfa

Axmalg) = (

for all A € Pg,, and we tacitly assume h, € WZ[a,b] (we can start with
d? hy, = f, € Ls[a,b] and do integration). Now Taylor’s formula for A, yields

dz?

d? d?
Ax,malhy) =04+ (==h

g2 @F(AX,M,a))LQ[a,b} = Ax.m.a(9)
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for all Ax,ar,q € Pq,. By the standard argument from Lemma 3.3.13 (SuffPol)
we see that g = h, 4+ p, with a polynomial p, € IP,. O

This finishes the construction of the native space, and we can reconstruct
functions from G, = W3[a, b] from data at locations a < 2y < 2y < ... <
xp < b uniquely by cubic splines of the form

(cubrep)
M 1
s(x) = Z ajle — xj\?’ + Z Bpx® (3.6.7)
j=1 k=0
under the two additional conditions
(cubreprestr)
M
Y b =0, k=0,1. (3.6.8)
7=1

The representation (3.6.1, Fmaplin) shows that these conditions imply lin-
earity of s outside of [z, z)/]. Thus the solution is a natural cubic spline.
The above representation extends to all of IR and can easily be shown to
coincide with the extension defined via the general map e°.

We now want to show how the natural boundary conditions come out of
Theorem 3.5.7 (ExtTh2). There we concluded that the extension of the
recovery problem is orthogonal to all functions that coincide with a function
from P on the recovery domain €. The extensions here are valid in W} (IR)
with bilinear form (f”, ¢")r,(r), and the splines s constructed here must be
orthogonal with respect to the above bilinear form to all functions v on IR
that are linear in [a,b]. We take any function w = v" that is in Ly(IR) and
vanishes on [a, b]. Then

0= (5", 0")rymy = (5", W) Lo(m) = (8" W) Lay(—00,a) + (5" W) Ly [b,00)

implies s” = 0 in (—o0, a] and [b, 00), as required.

The next thing is to look at the convolution map s° and Theorem 3.5.12
(ConvTh) in this case. The explicit evaluation of the normalization ¥ of ®
is possible, but left to the reader. Theorem 3.5.12 (ConvTh) asserts that the
closures of the ranges of the convolution map s° and the extension map e’
are the same. Let v € Ly[a,b] be given. We want to show that v x ¥ is in
W2[a, b] with (v* ®¥)” = 0 outside of [a,b]. We use (3.3.21, DefSymmPsi) to
get
d? b d2

0 () = [ 00 V0o = [ o) 2P 0.2) ),
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where we took derivatives under the integral. But (3.6.1, Fmaplin) shows
that the second factor vanishes if y is outside of [a, b]. To show that v x ¥ is
in W}[a, b, compare the above formula with Taylor’s formula after inserting

3,z for == {a,b}.

4 Power Functions and Applications

(SecPF) This section introduces the notion of power functions. They asso-
ciate to each point z of a domain ) and to each linear quasi-interpolation
process g — S(g) the norm P(x) = Psg(x) of the error functional g —
g(xz) — S(g)(x) with respect to the space G of functions g to be considered.
Thus they describe the worst-case behaviour of the reconstruction process
S at x and are very useful for comparing different reconstruction processes.
We illustrate this for some simple examples.

When specialized to the optimal recovery processes considered in this text,
their square P?(r) has a representation as the diagonal of an explicitly
available quadratic form P(z,y), which in turn has remarkable properties.
In particular, it allows recursive constructions like Newton’s interpolation
formula, and it can be optimized with respect to placement of centers.

4.1 Power functions

(SubSecPF) Assume that we have a quite general process that associates to
each function ¢ in a space G of functions on € another function S(g) € G
such that the map S : g +— S(g) is linear. The space G should carry at least
a seminorm | - | with nullspace P.

Definition 4.1.1 The function

(DefPowfct)
P(z) := Psg(z) == sup g = S(|g))(x) € IRU {oo} (4.1.2)
geg glg
lg| # 0

is the power function of S with respect to P.

This is nothing else than the norm of the pointwise error functional if the
latter is finite:

P(x) := ||6,.5] with 0, 5(g) := g(z) — S(g)(z).
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It yields the elementary error bound
(EqgSg)

l9(z) — S(g)(z)| < P(x)|gl, g€G, v€Q. (4.1.3)

If the projection property S oS = S holds, then one can insert g — S(g)
instead of ¢ into this bound to get

(EqgSgl)
lg(z) = S(g)(z)| < P(z)lg— S(g), g€ G, €, (4.1.4)

which often is some improvement over (4.1.3, EqgSg), because we frequently
have [g — S(g)| < |g/.

To make the reader somewhat more familiar with the notion of a power
function, we recall interpolation by univariate polynomials of order at most
n on n distinct points zy < ... < x, in [a,b] C IR. The space G is C"[a, b]
with seminorm [g, = [|¢'™]|(a.4],00, and the interpolant to g will be denoted
by S(g). The usual error bound

1
_ < it
lg(z) — S(g <

n
H z = 2;)|(gln
is precisely of the form (4.1.3, EqgSg), and the power function is
1 n
r)=—[[lz—=
nli

since it is well-known that the error bound is exact.

Power functions can be associated to almost every process of approximation
or interpolation, and they enable comparison between different processes S
on the same space G as well as the comparison of the same process S on
different spaces G, respectively. Before we give some examples for this, let us
give some straightforward alternative representations:

Lemma 4.1.5 (LemARepPow) The power function Psg of (4.1.2, Def-
Powfct) can be written as

Psg(z) == sup 9(x) cRU{c}= sup g(z) € IRU {oo},
geG 9lo geG
S(g) =0 S(g) =0
lgllg <1

if S is linear, preserves functions in P, and has the projection property
SoS=2S. O
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4.2 Optimal Recovery Redefined

The notion of a power function allows to define optimal recovery processes
in a somewhat different way. Let us fix the space G with its seminorm | - |g,
but let us consider different linear quasi-interpolation processes S. To make
these comparable, we assume them to be based on the same information, i.e.:
the evaluation of M linear continuous functionals Ay, ..., Ay, on G. Since we
restrict ourselves to linear recovery processes, we assume representations

(SgRep)
S(g)(z) == ;uj,s(:v)%(g), (4.2.1)

where u; g,...,up s are certain functions on 2 that may not necessarily be
in G. The recovery processes S just differ in their choice of these functions.
In all cases it is reasonable to ask for preservation of the nullspace P of the
seminorm on G under the recovery process S in the sense

S(p) =pforallp € P,

and we shall abbreviate this condition by S|» = Id. The main reason for
this is that (4.1.3, EqgSg) should always hold.

The representation (4.2.1, SgRep) can now be considered for a fixed z as
a function of the M real-valued quantities u; g(x),...,uprs(z). Then the
optimal linear recovery process at x solves the finite-dimensional mini-
mization problem

(OLRx)
1 M
inf sup —— g(z) — Y _u;j;i(g)). (4.2.2)
WY yueny upr€ER \g\g;ﬁU |g‘g j:1
> u;j (@)X (p)=p(z), pEP
If a solution uj(z),...,u},;(x) exists for all z € €, one can define the optimal
process as
(OSgRep)
M
S*(g)(z) == Zu;‘(x))\](g) (4.2.3)
7j=1

It is by no means obvious that the solution, considered as a set of M
functions on Q, lies in the space G. Section 4.3.2 (SecOPFOR) will prove
that optimal recovery in the sense of 3.1.2 (ORPF) in spaces G with a
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positive definite bilinear form always is optimal in the above sense, too. The
corresponding functions uj(z),...,u},(x) will then be of the form (3.1.13,
grep) and certainly lie in P. This is in agreement with our expectations, but
the example considered in the next section will show that the situation may
be much more difficult if we move away from a Hilbert space setting.

4.3 Example: Optimal Interpolation in W1 [a, b]

On the spaces G = Wl|a,b] or G = C'a,b] for —co < a < b < oo we have
the seminorm |f’|,, with the one-dimensional nullspace P = IP!' spanned
by the constant functions. We now ask for the optimal quasi-interpolant
under all representations (4.2.1, SgRep) for point evaluation functionals in
the points zy,...,zp of the mesh a =: 2y < 2y < ... < xpy < 2Tppyy =0
under reproduction of constants. This means that we consider = € [a, b] as
fixed and vary the M real numbers u(x),...,up(x) in

(SgRepP)

Su(a % g(z;) with %uj(x) = 1. (4.3.1)

=1

That is, we use Lemma 4.1.5 (LemARepPow) and want to solve

= 2 uj()f ()

=1

- ; u](x)f(xg)

inf sup
5@ st | oo
(4.2.1,SgRep)

= inf sup
uiln) [ fee<1
(4.2.1,SgRep)

We start with three lemmas:

Lemma 4.3.2 Leta<zxp <z <...<2)m <band

M
U, Uty ..., Uy € IR, Zujzo

§=0

be given. Then

sup Zu] 9| dt.
fewd

|f']oo<1
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Proof. We write

a) +/: F(d)dt = f(a) +/ab £t (@ —)dt

and take a function f with |f'| <1 to get

b M
- ‘f(a)-UJr [ O3 s - )2, de
a =0
p| M
< / 01 dt
O P
with equality for the special function f with
M
(1) = sgn | 3 ouyx; — 1)}
§=0
which clearly is in WL . O

Note that the proof does not require the ordering of the z;.

Lemma 4.3.3 Let a < z1 < 29 < ... < xp < b and z € [a,b] be given. For
uy (), ..., up(z) with

1= ;Uj(w)

we have
M
sup | F(z) = Suy(x) ()
fewl 7=1
llf]eo <1
b
= / (z —t Zu] 1 dt.
Proof: Use Lemma 1 with 2 := @, ug(x) := —1 and reordering of points.
O

Lemma 4.3.4 (L3W2) Leta = z9p < 21 < ... < 2y < Tyy = b and
x € [a,b] be given. Furthermore, assume

M
]_:ZUJ'(I‘), h]‘ = l‘j—l‘j_l, 1§]§M+1
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and x € [xp_1,x1), 1 <k <M+ 1. Then
/b

= > N

dt

x—t Zu] (J)r

1— Zul(x)

1<j<k—1 i>)
+ (= zp1)|1 =D ui(z)
i>k
+ (xp —x) Zuz(x)
i>k
+ Z h; Zuz(x) .
M+1>j>k+1 1>

Proof: We use the fact that the integrand is piecewise constant with
breakpoints only at the z; and at . We thus split the integrals into

(;J) LR ( > /)

j>k+1
k—1
>N
i=1

— > uix)

i>j

(= zp1) |1 =D wi(2)

i>k

> ui(x)

i>k

i>]

+(l“k — :r)

M+1

+ >

j=k+1

We now introduce new variables

zj(z) == wi(z), uo(x) = uprg1(z) == 0.

i>j
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Then z;(z) := 1 for all z and

We have to minimize
k-1
3 byl - ()]
71=2

+H@ = w1 = 2 (@)] + (26 — 2)]2(2))]

+ > hilz(@)]

j=k+1

under the constraint z;(z) = 1, which appears only for &k = 1 (or = € [a, 24]).
In this case, we get the optimal value z; — x with all other z;(z) being zero.
Thus

ui(z) =05 fora<z <z, 1<j<M+1

for x € [a, z4].

The case )y < x < b can be treated similarly. We thus can assume
2 < k < M, and the optimal solution will have the property

zj(z) = 1 for 2 k—1

IA
IN

J
zi(z) = 0 for k+1 < j < M
because each single term can be minimized separately. This leaves z;(z) open
and yields
u(z) = 2k (2)
up—1(x) = 1= z(x),

the other u;(x) being zero automatically. We now form

T — Tp_ -
Ty — xkkfll 1=z ()] + :rkx— xkl;l |2k (2)]

and set

T — T
Q= g—p— xkk,ll , 2= zp(x)

to get the minimization of

all —z|+ (1 —a)lz]
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for a fixed. Any polygonal function attains its minima at one of its break-
points, and thus the overall minimum is

«, attained at z2=0 Jif a<1l—a
1 — a, attained at z=1 Jif a>1—a
a=1—qa, attainedat 0<z<1 ,if a=1-aqa.

This means

up(z) = 0, wpq(z) = 1 if 2—2,1 < zp,—7
u(z) = 1, wup_q(x) = 0 if v—wpy > xp—x
up(z) = B, wpq(z) = 1=0 if z—2p 1 = x—x

for any 8 € [0, 1], and the value of the power function is

vy —x  for x € [z, m],
min(x — xp_1,x, —x)  for x € a,zg], 2< k<M
r—xy  for x €lxy,b]

Theorem 4.3.5 (ORWIT) The solution of the optimal recovery problem
posed in W1 [a,b] under the seminorm |f'|o and Lagrange data thus consists
of the simple next-neighbour-rule

Take the value of the nearest data point, if it is unique, and take some
weighted arithmetic mean of the two nearest data values otherwise.

The interpolant is piecewise constant with breakpoints halfway between the
data points. The solution thus is not in WL . O

If we compare this solution with the classical piecewise linear B-spline in-
terpolant that everybody would expect to be optimal, we use Lemma 4.3.4
(L3W2) for = € [x)_y, x)] with

T — Tk T — X
Up 1(r) = ——— wp(z) =1 —up 1(r) = ——
e-1(2) Tk — Tk +(@) k-1(2) Tk — Tk—1
to get the power function
Ty, — T T — Tk—1
(@ = o) gz @ Dn =g
2

= oo ¢ (m )
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for v € [xp_q1, 2], 2 < bk < M. Atz = xk_l,xk,% (xr_1 + xx) the two
power functions coincide, but the piecewise linear power function belonging
to the optimal "nearest-data-interpolant” is pointwise smaller elsewhere (see
Figure 18 (FigPFEx1)). Note here that the piecewise linear interpolant has
a piecewise quadratic power function.

Tk—1 Tk
Figure 18: Comparison of Power Functions(FigPFEx1)

If we look at the case £ = 1, we find the two solutions coincide for a < z < x;.

Now we can ask for uniform minimization of both solutions on [a,b] with
respect to knot placement. Clearly, a minimum value 7 is attained in the
situation of Figure 19 (FigPFEx2). Thus

2n-M=b—a or n:[)Q_—Ma

holds for the optimal knot placement. In W1 [a,b], optimal interpolation

on M points thus has a uniformly minimal error of 2;]\/[a

, and the error is
attained for both the natural piecewise linear spline (which is not pointwise

optimal) and the discontinuous pointwise optimal interpolant.

This example shows how power functions allow precise and sometimes unex-
pected statements about the local behaviour of recovery processes in given
spaces for given data.

4.3.1 Representations of Power Functions

(SecRPF) We now want to specialize the notion of a power function to the
context of optimal recovery in function spaces. We assume the situation
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Figure 19: Optimal Knot Placement (FigPFEx2)

of Theorem 3.1.19 (ORT2) on page 36. That is, there are M linearly in-
dependent functionals Ay, ..., Ay from G* and a unique solution ¢* of the
optimal recovery problem (3.1.4, ORP). But we want to compare ¢g* with
arbitrary other recoveries of ¢ by linear methods that use the information
Aj(g), 1 < j < M. These have the form

(GenRec)

= Z)\j(g)uj, (4.3.6)

and we assume them to reproduce functions from P. Then for each x € Q
there is a functional

Ouus 9 9(x) — Sulg)(z) = g(z) — 2_:1 Aj(g)ui(z)

vanishing on P. The power function with respect to S, is then representable
via
Ps, o(2) = |00,u,5(3-

It is now fairly easy to form

F(0su5)() = @(x,) = > Xj®(2, Ju; ()

j=1
and the function
(DefPuxy)
Pu(x,y) = (6mu5a6y,u5’) 6yuS(F6xu,S)
= N ®(z, y)uy
Z i) (4.3.7)
—Z ANO(, -,z )+ Z MA@ (z, u)u;(r)uk(y)
k=1 J,k=1
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for all z,y € €. The reader will suspect some misuse of notation here, but
the function P,(x,y) has some nice properties that justify this:

Theorem 4.3.8 (PuT) The function P,(-,-) defined in (4.3.7, DefPuxy)
satsfies

o PX(z) = P,(x,z) =|Py(z,)|% for all z € Q,
o Py(v,y) < Pu(v)Py(y) for all z,y € Q,
e P,(x,-)/P,(-) altains its mazimum P,(x) in Q at z,

o if X = {ay,....,an} = Z = {&,...,&} is P-nondegenerate and
minimal, then P, coincides with the normalization of ® with respect
to =,

e P, is another conditionally positive definite function that generates the
same native space as D.

Proof: The property P?(z) = P,(x,z) follows from the definitions of both
functions, and

|Pu(, )]s = |F(55L‘,u,5)‘<1> = ||5:L‘,u,5||<1>

implies |P,(z,-)|s = P,(x). The next assertion is a consequence of the
Cauchy-Schwarz inequality applied to the definition of P,(z,y), and together
with the first it yields the third. The proof of the final property listed above
is the same as for the normalization. O

The merit of (4.3.7, DefPuxy) is that it allows to write down the power
function in explicit form and under quite general circumstances. This is of
paramount importance for deriving error bounds in subsequent sections, and
the basic feature is the optimality principle described in the next section.

4.3.2 Optimality of Power Functions of Optimal Recoveries

(SecOPFOR) Equation (4.3.7, DefPuxy) defines P,(z,z) = P?(z) for fixed
r as a quadratic form of the M real variables u;(z), 1 < j < M. We now
want to minimize this quadratic form with respect to these variables, but we
have to consider the restrictions

(PolRepEq)
Grans () = i) = SN uy(0) =0, 1<i<q (439

Jj=1
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imposed by reproduction of P. Since P?(z) is nonnegative, the minimization
must have a solution, and this solution can be characterized by the usual nec-
essary conditions for quadratic optimization under linear constraints. There
must be Lagrange multipliers $,(z), ..., B,(z) such that the solution u}(x)
of the restricted optimization is a minimum of the unrestricted function

ﬁm+§mu%mm—g%@m@0:o

of uy(x),...,up(x). Taking the derivative with respect to ug(z), we get
M q
0= —=2X;®(z,x) +2)_ NAN® (2, u)uj(z) — Y Bi(x) M (ps)-

j=1 i=1

We can rewrite this together with (4.3.9, PolRepEq) to get the system

(PFORSys)
j=1 =1
M
> Ailpiuj(x) + 0 = pi(x),  1<i<g
j=1

(4.3.10)
The coefficient matrix of this system is the same as in (3.1.14, EQsys3) on
page 33, if we use (3.2.14, gjkrep) on page 46. Thus the solution is in the
span of the right-hand side, proving that u}(z) € S, 1 < j < M, as functions
of z, but note that the necessary restriction on the 3;(-) of (3.1.33, DefS) is
not satisfied. If we apply Ay to these equations, we see that the conditions

Ai(uj(r)) = &g, 1< j kb < M
of interpolation are satsfied together with
Ae(Bi(2) =0, 1<k <M, 1<i<q.
Thus we have

Theorem 4.3.11 (OPFT) The power function P,(z) of the optimal re-
covery problem (3.1.4, ORP) is optimal with respect to u under all power
functions P,(x) of recoveries of the form (4.3.6, GenRec) that reproduce P.
O
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This is in line with the optimality of the generalized optimal power function
Py(p) of (3.1.40, GPDef) on page 41. Note that there we used optimal
recovery right from the start, but allowed a general functional p instead of
a point evaluation functional d,, while in this section we allowed general
recoveries, but restricted ourselves to the special functional §,. The explicit
correspondence is

Pr(0;) = Py (2)
between these two versions of optimal power functions. For use in the next
sections, we rewrite the system (4.3.10, PFORSys) in an abbreviated form,

omitting the asterisks standing for optimality and writing the free variables
as indices:

(PFORSys2)

(ﬁg)(zj):(‘i;), (4.3.12)

Au, + Pv, = &,
PTuac + 0 = Dz

This means

and we compare with the shorthand form of the P function associated with
the square P?(z) = P(x, ) of the optimal power function:

(Pdef3)
P(z,y) = ®(z,y) — ul ®, — u,®, + ul Au,. (4.3.13)
From the equations in (4.3.12, PFORSys2) we get
uZAuz + U;Pvz = ugAuz + pgvz = uf@z
and insert the result into (4.3.13, Pdef3) to arrive at
(PnewDef)
P(z,y) = ®(z,y) — u. ®, — vl p,. (4.3.14)

This is one way of writing P explicitly in terms of the solution vectors of the
system (4.3.12, PFORSys2). Note that the coefficient matrix of the system is
constant, such that both u, and v, are linear functions of the right-hand sides
®, and v,. Another simple consequence is the symmetry of the expression

(QFSym)

A P Uy
(UZ,vyT)< PT 0 > < > = ul B, + V] Dy (4.3.15)

Vg

with respect to swapping x and y.
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4.4 Recursive Constructions

(SecRecCon) This section will study the effect of adding data to the recovery
problem. It will turn out that there are some easy recursion formulae of
Newton type.

4.4.1 Orthogonal Decomposition

(SecOD) We now want to add a new functional Ap/y; to the set A =
{N)‘h ...y An}. We shall use a tilde to denote symbols that now depend on
A= AU{ A1} instead of A. Our basic result is

Theorem 4.4.1 If P of (4.3.14, PnewDef) is based on A and P is based on
AU{ A1}, then

(4p11)
~ Ny P, z) - A3, Ply, 2
Blz,y) = Pla,y) - P02 e Plyz) gy )
Ab1 Ah Pu, v)
for all z,y € €.
Proof: We use (4.3.12, PFORSys2) and its extended version
(4p21)

A apM+1 P az (bm
ajl\;[Jrl P p%fﬂ fo | =1 92 |, (4.4.3)
PT Prga 0 Uy Dz

where we introduced shorthands for

P = )‘1](4+1)‘1])\4+1(I>(U7U) 9z = )\7\4+1<I>(z,x)

¢, = ()‘iq’(xaz))ngng Dz = (pj(x))ngng

A = (NAP(u,v)i<jnenm P o= (Npr(2))i<j<mi<i<o
ansr = MM ®(u,0))icicnr Pt = (Aaapi(v))ici<o

and kept u,, v, at the same size as u,, v,. Then
(pr o) (5 200) =)
pT 0 QN):E — Uy B ! Pva

o,
= A <pz)

; A P u,
= e (o) (3)
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if we subtract (4.3.12, PFORSys2) from part of (4.4.3, 4p21) and use (4.3.12,
PFORSys2) after application of the functional Ay, ;. This yields

Uy = Uy — farirqu(2)

Vg = Vg — fm)‘§\4+1v(z)a
and we use the remaining equation of (4.4.3, 4p21) for

9z = aTM+1ﬂz +pfs + pjj\;[Jrl@x

= ag/[+1(”x - fm)‘f\lJrlu(z)) + pf:z: +pg\1f+1(vx - fm)‘§\4+lv(z))

= aﬂﬂ“x + pﬂﬂ% + folp— aﬂ+1Aj4+1u(z) - pﬂﬂﬁ%ﬂ”(@)

and

9z — a?\?fﬂ“m - p?\?fﬂ”z
pP— a%/[+1)‘1]€/1+1u(w) - p%/[-q-l)‘%)/[ﬂv(w)
)\7\/1_1_1(@@, z) — ‘Pfux - p(Z)TUx)
M1 (A @(w, 2) = OTAY u(w) — pI AT v(w))
A?\4+1p(x: Z)
A1 A 841 (R(w, 2) — @Tu(w) — plo(w))
N Pz, 2)
M A P(w, z)

We still have to evaluate P via

Pay) = @) - @11 (") =0,
= ®(z,y) —uald®, — f.g9, — 0lp,
= B(r,y) — (2~ N2y — fog,
—(va = faAir10(2)) Dy
= P(z.y) = folgy = Mipru(2)" @y = Nirir0(2) ' py)

= P(2,y) = foXir (®(y. 2) — u(2)"2, — v(2)"p))

= P(@,y) — fo My Py, 2)
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to prove the assertion. Note that Ay, 11 ¢ span A implies

M
X P 2) = Dol = s = 3 Kt (DAl >0
j=
We now use the recursion (4.4.2, 4p11) of P to construct a sequence of
orthogonal functions that serve to solve the interpolation problem directly.
To this end we now use the index M to indicate quantities that depend on
Ay = {M,...,Am}, and we assume that Ag C Agy1 C ... is a strictly
increasing sequence of P-nondegenerate sets of functionals. Then we use
(4.4.2, 4p11) in the form
(4p41)
)‘7\/1+1FLM(55:UZ) A Pu(y; 2) (4.4.4)
1AM P (u, v)
for M > @ and z,y € Q. The recursion starts with Py, which in case
M > 0 is associated to a set Ag on which interpolation by functions from P
is uniquely possible. On such a set the reconstruction takes place within P,
and Py coincides with the normalization of ®. For m = 0 the functions from
P are not present at all, and we formally use () = 0 and

Py(z,y) := ®(z,y).

This established the start of the recursion (4.4.4, 4p41), and we now define
functions

Py (z,y) = Py(x,y) —

ru+1(z) = Ay Pu(z, 2)
— a1 ()
SM_|_1(.’E) =
\/Azﬁ/[-q-l)‘l])\/[-q-lpM(U: v)
up+1 () = Tar41(2)

1](/[+1)\1]’\/I+1PM(U,7)) .
Clearly
TM+1,SM+1, UM+l € Sm4r
Nrua() = {0}, 1<j<M
hold, and thus Theorem 3.1.36 (OrtTh) implies
(rn,7mm)e =0, Q< N<M.
The different normalization of sy, 1 and w4 yield

Isaralle = 1

uprgr(Tarpn) = 1

to generate orthonormal and Lagrange-type functions.
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4.4.2 Recursion of Power Functions

(SecRecPFu) The recursion (4.4.2, 4p11) leads to the formula
(4plla)

P yi(z) = Piy(2) = s3y4(2) (4.4.5)
for all z € Q, relating two subsequent (squared) power functions. If P
is a measure of the "energy” of the error for recovery based on M pieces
of information, the addition of a new functional A\priq takes just s3,.; ot
of the energy. If the basis function ® has a sharp localization, this will
not necessarily lead to a decrease in the L, norm of PZ. The inherent L,
structure of this decomposition of the power function rather suggests to pick
Ave1 to maximize the expression

P} (z,2)
2 M1
s x)dr = dx.
/Q w1 (2) Q My A% P (u, v)
Since Py, is continuous and €2 is compact, this extremum exists, though it will

be hard to calculate. Anyway, there are lots of interesting research problems
opened up by these recursive techniques.

4.4.3 Newton’s Formula

We now write the reconstruction g¢p; of some function f based on data
fr = M(f) for functionals from Aj; in terms of the orthogonal functions
TQ+1s -+ -3 T AS

g () = gq(-) + Z Bir;(+)

J=Q+1
This is a Newton—type interpolation formula, and we can calculate the
generalized divided differences ; by a simple recursion. In fact, for any
k > @ we have

k
fr=2l(g0) + X2 Bin(ry)
J=Q+1
and get the recursions

Br = )\k(lrk) (fk—)\k 90) Z B Ak Tg)

J=Q+1
1
~— — Me(gr_1)).
A (%) (fx k(gr—1))
Unfortunately, the recursive method based on Newton’s formula is not par-

ticularly effective. One could rewrite the formula in terms of the functions
u; to avoid the denominators, but this is no serious improvement.
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4.4.4 Kernel Expansion

(SecHSE) If we carry the above method out for M — oo on a domain
Q) C IR? with infinitely many points, we clearly have a pointwise decrease of
the functions

o> PY(xoa) > Py () > 0> ]Vllim P} (z,2) =: P2(x,7) >0
—00

for all z € Q). If we are in the special case of Lagrange interpolation, where
A;(f) = f(x;), we can let the points ), gradually get dense in 2 for M — oo.
Then we can expect that the Lo, norm of P on Q decreases to zero for
M — oo. Section 5 (SecEB) will contain a variety of such results, and
uniform Lipschitz continuity of ® along the diagonal will usually be sufficient
(see 5.5 (hrhodef) on page 120).

In such cases we get a kernel expansion

Par) = 3 5@

for the normalized basis function Py. This specializes to the series

Paa) = Polra) = 3 o)

for the squares of power functions. There are lots of highly interesting open
problems along this line of research.
4.4.5 Remarks

Most of the material on power functions as presented in this section seems
to be new, though there is some earlier work on recursive constructions of
interpolants (see e.g. Miihlbach [3](muehlbach:??-77))

4.5 Condition

(SecCondition) We now look at the stability of solutions of the systems
(1.7.2, EQsys2) and (3.1.14, EQsys3) written in matrix form as

[ 6)(5)=

(BDef3)

! ) . (4.5.1)
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which is exactly (1.7.3, BDef) or (3.1.18, BDef2), but repeated here for
convenience. Introducing perturbations of the solution and the right-hand
side we get the system

A P\(a+Aa) [ f+Af
PT 0 B+AB |~ 0

and can subtract (4.5.1, BDef3) to get
A P\[Aa) [ Af
PT 0 Ag )\ 0 )
(DAD)

(Aa)TA(Aa) = (Aa)TAS. (4.5.2)

This implies

Since we have PT(Aa) = 0, we know that the above quadratic form is positive
definite. Thus there are positive real eigenvalues ¢ and ¥ of the matrix A
such that

(Defsigma)

0 <o :=inf < sup =: ¥ < o0, (4.5.3)

ol o ol o

where the sup and inf are extended over all & € IR™ which are nonzero but
satisfy PTa = 0. The condition number x(4) of A in the Euclidean norm
then is the quotient x(A) = ¥ /o, and it appears in the bound

Aaly _ ISl
Tl = "

that follows from (4.5.2, DAD)and the corresponding equation

alAa=alf

for the unperturbed quantities. This bound holds for the relative error, while
the absolute error is governed by
(Stab)

1
8all < 1S (15.4)

Numerical experiments show that o can indeed be extremely small, while ¥
does not grow too wildly, at least not as wildly as 1/0. Later theoretical
results will support these statements, and thus the study of o or some lower
bounds for it will be of great importance for any assessment of the numerical
stability of systems like (4.5.1, BDef3).
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4.5.1 Remarks

The technique for proving error bounds via power functions goes at least
back to Golomb and Weinberger [16](golomb-weinberger:59-1) but probably
further back to Peano, since the error evaluation of linear functionals by
bounding their Peano kernels is very similar. The pointwise optimality
principle of Theorem 4.3.11 (OPFT) was used by various authors and possibly
dates back to Duchon [10](duchon:76-1).

4.6 Uncertainty Relation

(URT) It would be very desirable to have recovery methods with small errors
and good stability. However, these two goals cannot be met at the same time,
since there is a connection between them that implies bad stability whenever
the a-priori error bound is very small.

Let us look at this connection in a fairly general way. If we try optimal recov-
ery of a function g € G from data \;(g),1 < j < M in the setting of section
3.1.1 (subsecORP) and bound the error by Theorem 3.1.38 (ORTFA ) on page
41, then we have to study the generalized optimal power function P(u) of
(3.1.40, GPDef), whose square has the representation (3.1.29, BAPN). But
this quantity can be written as a value of the quadratic form associated to
the matrix

(/’La M)‘P (/’La )‘1)‘13' (/*La )‘M)Q
Ao (A, A o (A Am)e
Apn = : : :

(Aaes ) (A Mo oo (A, Au)e

with the vector (1, —ay(p),...,—ay ()t € IRM*L. This yields a lower
bound

(URI)
P (p) > o(Aun) (1+ a(w)3) = o(Aua) (4.6.1)

for the power function in terms of the smallest eigenvalue of the matrix.
This relates the error analysis to the stability analysis and provides the
background for various cases of the Uncertainty Relation. Furthermore, it
sets the direction for further progress: we need upper bounds for the power
function P and positive lower bounds for the smallest eigenvalue . But
we should be aware that the two sides of (4.6.1, UR1) behave differently as
functions of A: the right-hand side will vanish, but not the left-hand side, if
two functionals from A come too close to each other.
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4.6.1 The Lagrange Case

We now specialize to the setting of Theorem 4.3.11 (OPFT) on page 91 with
X ={xy,...,2y} C IR and A = {0,,,...,0,,,}. Then we have the matrix

O(z,x)  P(z,xq) ... D(x,zpm)
O(zy,2)  @(z1,21) ... D(xy,z0)
Aa:,X = . . .
O(zpr,x) P(zpr, 1) o0 P(aar, za)
and the vector (1, —ul(z),..., —ui,(2))T € IRM*! and get the special form
(UR2)
M
Pl(z) = Pi(6;) > o(Agx) [ 1+ D [uf(z)* | > 0(Asx) (4.6.2)
j=1

of (4.6.1, UR1). Note that both sides are continuous functions of z and X
(or A standing for X) that vanish whenever x tends to points in X.

We now can give some hints to the results that follow in later sections. The
Uncertainty Relation in the form (4.6.2, UR2) suggests to bound P? from
above and o from below, in order to have both upper bounds on the attainable
error and on the numerical stability, measured by 1/0 due to (4.5.4, Stab).
We shall see in 5.1 (SecUBOPF) that upper bounds for P? take the form
(FBound)

P2 (z) < F(hxgq) for allx € Q (4.6.3)

where F' is a monotonic function of the fill distance hx q defined in (2.1.2,
DDDef) on page 18. On the other hand, the lower bounds for ¢ in 7.4
(SecLBE) will be of the form

(GBound)

0(Ax) > G(sx) forall X = {xy,...,zn} CQ (4.6.4)

with the separation distance sy defined in (2.1.1, SDDef). For gridded data
on €24 N Q we can roughly expect hx g = sxV/d, and then the Uncertainty
Relation necessarily implies

(UR3)
F(tVd) > G(t) (4.6.5)

for all ¢ > 0. This allows to check the quality of the bounds (4.6.3, FBound)
and (4.6.4, GBound), since the lowest possible bounds F' and the largest
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possible bounds G' must necessarily satisfy (4.6.5, UR3) and are optimal, if
they turn (4.6.5, UR3) into an equality. This opens the race for optimal
bounds of the form (4.6.3, FBound) and (4.6.4, GBound), and this text will
describe the current state-of-the-art.

4.6.2 Remarks

The Uncertainty Relation seems to occur first in [41](schaback:95-1).

5 Error Bounds

(SecEB)

5.1 Upper Bounds for the Optimal Power Function

(SecUBOPF) Here we proceed to prove upper bounds of the form (4.6.3,
FBound) for the optimal power function of optimal recovery. This approach
uses results from classical approximation theory and does not require Fourier
transforms. Another proof technique, using transforms, will follow in section

6.5 (SecEBTrans).

5.1.1 Assumptions and First Results

We specialize here to the case of multivariate Lagrange interpolation by
conditionally positive definite functions ® : Q x Q — IR of order m on
some domain  that can be embedded into IR?. The data locations are
supposed to form a IP%-nondegenerate set X = {z1,...,25} C Q, and we
use functions u; on Q with (4.3.6, GenRec) that reproduce IP2.

The power function with respect to these data and the functions u; takes the
special form

(DefPuxyLag)
P,(z)? = ®(x,x) —22 O (z, x;)ui(r)
o 7=t (5.1.1)
+.; D (z;, xp)u;(z)ug(z)

from (4.3.7, DefPuxy). Note that we allow quite arbitrary u; here in view
of Theorem 4.3.11 (OPFT). If optimal recovery leads to Lagrange basis
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functions u}, 1 < j < M, then

P, (xz) < P,(x)

holds for all x € €2, yielding a pointwise upper bound for the optimal power
function.

To start with, we fix a polynomial order / > m and a point = € €. Around
x we shall approximate ® by a polynomial ¢ in the following sense:

Assumption 5.1.2 (FBAssl) For each © € Q and a specific choice of a
polynomial order
(EqEllgeqm)

(>m (5.1.3)

there are positive constants p, hg, and Cy and a polynomial ¢ : IR x IR —
IR of order not exceeding ¢ in each d-variate variable, such that

(PhiApp)
|P(z +u,z+v) — p(u,v)]|o < CL1A? (5.1.4)
for all h € [0, ho] and all u,v € [0, h)%.

We shall vary x and ¢ later, and then all of the above quantities will be studied
as functions of z and /. Equation (5.1.4, PhiApp) may be viewed as resulting
from a Taylor expansion around (x,z) or by an L, approximation process.
It is no drawback to assume symmetry of ¢ in the sense ¢(z,y) = ¢(y, x),
because the arithmetic mean of these two polynomials will do the job.

We now define a function Q2 that serves as a polynomial approximation to
P? near z, but which will turn out to be zero later:

(DefQuxyLag)
QU(SE)Q = (,0(0, 0) — 22 QO(O, xrj— x)u](x)
oo (5.1.5)
f; p(rj — x, 2, — )uj(z)up ().

Now it is time to specify our choice of u;, 1 < j < M via local polynomial
reproduction of order ¢ near z. Since the dependence on z and h is crucial
here, we stick to an explicit notation:
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Assumption 5.1.6 (FBAss2) For some x € Q and some h € [0, ho| there
is a subset J,(h) of {1,..., M}, positive constants Cy(x, h),Cs(x, h), and a

choice of M real numbers u(x),. .., ul,(x) such that
(uDefJx)
Jo(h) C{j : 1<j<M, ||z -2zl <Csx,h)h}, (5.1.7)
(uDef1)
u?(x) =0 for allj ¢ J.(h), (5.1.8)
(uDef2)
plz)= > u?(m)p(x]) for allp € IP, (5.1.9)
J€Jz(h)
(uDef3)
1+ > \u )| < Cs(z, h). (5.1.10)
JE€Jx(h)

The first three items specify the local polynomial reproduction, while the
last defines C3 to be the corresponding Lebesgue constant. We apply (5.1.9,
uDef2) to ¢(0,y — x) as a function of y to get

(0,2 —2) =(0,0)= Y u?(:r)cp((],xj — )

J€Jz(h)

to prove that (), is identically zero:

Qu(x)* = ¢(0,0) = 2¢(0,0) + 3 ¢(; — w, 0)u(x)
= 0.

We now bound the optimal power function by
(FundBound)

Py ()

A
=%
=

_QJE%:) (z) (2(z, 7;) — ¢(0,2; — z)) (5.1.11)

+ Z( )U?(ﬁ)UZ(»T) (®(zj, 21) — () — 2,28 — 7))

(1+ Z u?(m)|) Ci(x)(Co(x, h)h)?
J€Jz(h)

Cs(x, h)*Cy(x)C8 (x, h)h?

IA

IN
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for all h with Cy(x, h)h < hg, where we have to keep in mind that everything
still depends on ¢. Nevertheless (5.1.11, FundBound) is the fundamental
error bound for optimal power functions, and it can be applied in a large
number of cases. We summarize:

Theorem 5.1.12 (FundBoundT) Under the assumptions 5.1.2 (FBAssl)
and 5.1.6 (FBAss2) the optimal power function has a local bound of order p/2
in x with respect to h — 0, if the constants Cy(x,h), Cs(z, h) are bounded
for h — 0. a

The applications of Theorem 5.1.12 (FundBoundT) come in two variations:

e To prove a fixed error order p, one fixes an appropriate ¢ and uses
compactness arguments to bound all relevant “constants” with respect
to x and h.

e To prove very strong non-polynomial error bounds like e~¢/*” for fixed-
scale Gaussians, one has to let ¢ tend to oo and study the variation of
the “constants” with ¢. This is a much harder task.

The two assumptions 5.1.2 (FBAss1) and 5.1.6 (FBAss2) require two different
kinds of results to be proven in the following sections:

e an error bound for local polynomial approximation of &,

e and bounds on the Lebesgue constant for local polynomial interpolation
in Q.

5.2 Approximation Error in the Radial Case

(SecAERC) Here we consider the special situation of d-variate radial func-
tions ®(z,y) = ¢(/|]z — yll2), and we want to check Assumption 5.1.2
(FBAss1). The crucial term in (5.1.4, PhiApp) takes the form ®(z + u,x +
v) = ¢(||u—v||2) and usually will not be nicely expandable into a polynomial
in v and v. Fortunately, it is independent of x, since we are in a translation-
invariant situation, and we only need an approximation to ¢ near zero. More
precisely, we approximate ¢(r) by a polynomial p, € IP} in r? on the domain
[0, h] for small A > 0 and define the error as

(EDef1)

En(9.h) = inf 16(r) = p(r*) [l o,fo.

5.2.1
= inf [|6(v7) = p() oo (5.2.1)
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This error can be bounded by univariate Jackson type theorems from classical
approximation theory. Less sophisticated bounds simply take p as the Taylor
expansion of ¢(y/-) in zero. With ¢ = 2n — 1 and h replaced by 2v/dh one
can put the result into Assumption 5.1.2 (FBAss1).

Let us evaluate a few cases by standard techniques and cite the stronger
Jackson results from the literature later.

Example 5.2.2 (AEPHS) In the polyharmonic spline case ¢(r) = r® with
B € IR-o\2IN we can simply rescale the approximation problem to the interval
0,1]. That is,
E,(r®,h) = inf |72 — p(r)|lco o
peP}

= inf [[(*s)"? = p(h*s)|loc 0.1

peP}

= hinf ||s72 — h Pp(h?s)|
nf s p(h°8)loc. 0,1

= WPE,(r%,1).

This yields the exact dependence on h and leaves the dependence on 3 to a
classical Jackson result on [0,1]. We get p = (3, and this is independent
of ¢t = 2n — 1, provided that ¢ = 2n — 1 > m > [(/2] holds, since
we have to exceed the order m of conditional positive definiteness. The
most important cases 3 = 1 and = 3 have the bounds Ei(r,1) = 1/2
and Eo(r®,1) = 2/27, and these are available by direct analysis, using the
Alternation Theorem of linear univariate Lo approximation. For this, see
any textbook on Approximation Theory, e.q.: the classical books by Cheney
[9](cheney:66-1) and Meinardus [25](meinardus:67-1).

Example 5.2.3 (AETPS) Now consider the classsical thin-plate spline
$(r) = rPlogr with 3 € 2IN and order m > (3/2 of conditional positive defi-
niteness. We proceed along the same lines and need £ = 2n —1 > m > /2.
This implies 3/2 < n — 1, which is useful to get rid of the log term in

. 1
En(rPlogr.h) = inf 57" 1ogr = p(r)llooons
. 1
= inf [|5(45)"0g(n*s) = p(h5) e 0
1
= inf ||=(h%s)?*(log(h?) + log s) — p(h*s)||sc,i0,1]
peP)} 2

1
= u 15 (1?5)° 1og s = p(h?5)| oo, o1
— %hﬁ,}g},% 157 1og s — h™"p(h*s)||,j0,1]

= hPE,(rPlogr,1).
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The case 3 =2 has Eo(r?logr,1) = e L.

Example 5.2.4 (AEWF) Here we treat Wendland’s [46](wendland:95-1)
function ¢(r) = (1 —r)3 (1 + 4r) which is positive definite on IR® for d < 3
and in C?(IRY) if r = ||z||o for x € IRY. But our approach will be applicable
to the whole class of piecewise polynomial functions of the form

o(r) :{ u(r?) + ¥ to(r)  relo,1] }

0 else

where we pick a mazimal n such that u lies in IP! and v is an arbitrary
univariate polynomial with v(0) # 0. This means that u covers the first
terms of even degree, while r*"~' is the first term of odd degree. This
includes the full range of Wendland’s functions from [46](wendland:95-1)
as well as Wu’s functions from [47](wu:95-2) for certain values of n. In case
of ¢(r) = (1 —r)i(1 + 4r) we have ¢(r) = 1 — 10r% + r*(20 — 15r + 4r?)
with n = 2. We now use u as an approximation to ¢ on small intervals. In
particular,

E.(¢,h) = pleng |6(r) — p(r%)]] 0,0,
< 2 (1) oo, f0,8]
S C5h2n—1

for h € [0,1] with a suitable constant Cs depending on v, e.g.: Cs =
|v|loo,j0,1- Note that for the function ¢(r) = (1 — r)3(1 + 4r) we get the

same order as for the polyharmonic spline ¢(r) = r3.

So far we did not use sophisticated theorems from approximation theory, since
we were interested in the correct power of A, not in the optimal behaviour of
the bounds with respect to £ or n.

In the previous cases it did not make much sense to let ¢ or n be too large,
because the approximation order with respect to h is not improved, and
because we see later that large values of ¢ lead to bad Lebesgue constants
when heading for Assumption (5.1.6, FBAss2). But the next case will be
different in nature:

Example 5.2.5 (AEGEl) The Gaussian ¢(r) = exp(—ar?) allows arbitrary
values of £ = 2n — 1 because it is unconditionally positive definite. A crude
bound is provided by chopping the exponential series:

Ey(exp(—ar® h) = Jnf [ exp(—ar) = p(r)lloc,on

= pleng,{ | exp(—s) — p(5/)||s0,[0,ah2]

(ah?)™
n!

<
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for ah? < n + 1, which is not a serious restriction. By using the Taylor
residual one can get rid of the restriction, and by Bernstein’s theorem 5.3.4
(BT1) on approximation of analytic functions we can get a similar bound that
decays exponentially with n — oo. Anyway, we see that the bound improves
dramatically with increasing n or £ = 2n — 1.

5.3 Jackson-Bernstein Theorems and Applications

This section contains the results from Approximation Theory that make the
previous results somewhat sharper. We stick to radial functions and use
univariate techniques. These consist of Jackson type theorems for the best
approximation of functions f € C"[a,b] by univariate polynomials in IP; in
the supremum or Chebyshev or L., norm:

(EDef2)

E(f, f’ [(L, b]) = infl ||f - pHoc,[a,b} (531)
pEP,

We additionally need the notion of Lipschitz continuity:

Definition 5.3.2 A function f is Lipschitz continuous on [a,b] of order
a € [0, 1] with Lipschitz constant L, if

(@) = f(y)l < Lz = y[*
holds for all z,y € [a,b].
Theorem 5.3.3 (JT1) For all functions f € C™[a,b] and all ¢ > n we have

B((, f.[a,b]) < (5 (b= a)

D) Ty

If f™) is Lipschitz continuous of order oo with Lipschitz constant L, then

tn41)" (b—a n+aL
n! 14 ’

™

Bt . [o.) < ()

These results of Jackson (see e.g. Cheney [9](cheney:66-1) or Meinardus
[25](meinardus:67-1)) yield bounds in terms of fixed negative powers of ¢
that depend on the smoothness of f. They can be proven to be optimal.
For analytic functions, however, the parameter ¢ moves into the exponent
of some quantity that is smaller than one, and this yields a much better
asymptotic behaviour for ¢ — oo due to Bernstein (this is, for instance, in
Natanson [36](natanson:55-1)) :
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Theorem 5.3.4 (BT1) Let f be a function on [a,b] which has a holomor-
phic continuation into an ellipse in C with foci a,b and half-axes of length
0 < r < R. Then there is a constant K depending only on f,r, and R, but
not on f, such that

B f[a b)) < K (ﬁ)e.

We cannot give proofs here, but the following weaker and easily accessible
result shows how the previous result is possible.

Theorem 5.3.5 (RSJT) Let f be a function on [—r,r] which has a holo-
morphic continuation into the circle Cr in C with radius R > r such that
the continuation still is bounded on the boundary OCg of the circle. Then

R 14
B(& £, [=1.) < I flmocn i (5

and the bound is already achieved by the Taylor expansion around zero.

Proof: Just consider the power series of f in zero and bound it using
Cauchy’s inequality
|an| < || fllscoc, R

for the coefficients. This yields

-1 ] 00 ,

fz) =D | = [ a;7|
§=0 j=t

m .

< Z laj|r?

j=t

[e] r ]
< N lmacsd (3)
j=¢
r\¢* R
< N lmacn (5) 7
for all |z| < r. O

We now work our way through the examples.

Example 5.3.6 (AEPHS2) Consider thin-plate splines ¢(r) = r°. These

are conditionally positive definite of order m > mg := [%} We have to

approzimate %2 on [0, h?] and do this directly by application of Jackson’s
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theorem 5.8.8 (JT1). The function r%/? has mg — 1 continuous derivatives,
and the final derivative is Lipschitz continuous of order

ag:zg—mg—i-l:g—tgje((],l)
with constant
=L 1y () =+ 1t ap) < my!
p=5(G =1 (5 —mg) = (1+ap)(2+ap)...(ms — 1+ ag) < mg!.

Then the two slightly different notions of (5.2.1, EDef1) and (5.3.1, EDef2),
which are related by the transformation r — /T in the argument of the
function, come out to be

s <o < (5)” 25 (),

for all £ =2n — 1> m > mg. The result has the same power of h as before,
but now we can quantify the dependence on 3 and n. Unfortunately, the gain
for large n or £ = 2n —1 is much too weak to cope with the dramatic increase
of Lebesque constants for increasing polynomial degrees.

Example 5.3.7 (AETPS2) We now continue with Example 5.2.3 (AETPS).]}
The radial function ¢(r) = r®logr with 8 € 2IN is conditionally positive def-
inite of order m > mg := (/2 + 1. We have to consider polynomial approzi-
mations to r%/%logr for orders n satisfying { = 2n—1> m > mg = [/2+1.
The derivatives of r%/%logr for 8 € 2IN produce lower-order polynomials of
type rP/2-1 ¢B12=2 which are subsumed in IP! and do not change the ap-
proximation error. Thus we only have to consider the terms of type r®logr,
and we see that we can take 3/2—1 continuous derivatives. The final deriva-
tive is (8/2)!rlogr, which is Lipschitz continuous of order < 1, but not of
order 1. The direct application of the second version of Jackson’s theorem
5.3.3 (JT1) would not give the full order with respect to h due to this fact,
and therefore we first do the scaling of Example 5.2.3 (AETPS) to extract the
factor B? out of E,(r’logr,h). Then the first version of Jackson’s theorem
yields

E,(rPlogr,h) = hPE,(r’logr,1)
E(n,r??logr, [0,1])

r )P/ (8/2)!
(Z) (n+1)n(n_1)...(1n_5/2+2)||7"10g7”||oo,[0,1}

= (§)6/2<n5721> -

forall 0 =2n—1>m>mg= (/24 1. Again, we have some improvement
for increasing n, but it will not be enough to cope with the Lebesque constants.

IN
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Example 5.3.8 (AEMQ) We now consider multiquadrics ¢(r) = (¢* +
r2)8/% for 3 ¢ 2IN and ¢ > 0. In case of 3 > 0 they are conditionally
positive definite of order m > mg := [3/2], while they are positive definite
for 3 < 0. In this case we define mg := 0. Multiquadrics are analytic around
r = 0 and their polynomial approzimation can be treated by application of
Bernstein’s theorem 5.3.4 (BT1) or by Theorem 5.3.5 (RSJT). This means
that we should study the complex function f(z) = (¢ + 2)%/? which has a
singularity at z = —c?. For 3 > 0 the function is bounded on the circle Co,
but for negative 3 (inverse multiquadrics) we have to use a smaller radius.
To be safe, we use R = c®/2 in both cases and get

£ ()] < (3¢%/2)72 < 27721
for 8 >0 and |z| = R, while
F(2)] < (2/2)7% = 20721

for B < 0 yields the same bound. We approzimate on [0, h%] and thus have
the constraint

h?> < R=c*/2
on what follows. Now Theorem 5.3.5 (RSJT) yields
(MQBI1)
E,(¢,h) = E(n, f,[-h?,h?]) < 2‘5/2‘06672 2! (5.3.9)
n ) Y ) — C2 _ 2h2 62 b

forall{ =2n—1>m > mg.
Example 5.3.10 (AES1) We consider Sobolew radial basis functions
o(r) ="K, (r)

for v > 0. These generate Sobolev spaces Wit (IRY) for v = m — d/2 and are
unconditionally positive definite. A direct application of Jackson’s theorems
requires the derivatives of ¢, which are not easy to calculate and bound from
above. We postpone treatment of this case to section 6.5.7 (EBSob), where
we apply Fourier transform techniques.

Theorem 5.3.11 (LipConvTh) If ®(x,y) = é(||z — yl2) is a conditionally
positive definite radial basis function on Q C IR and if ¢ is Lipschitz
continuous in a neighborhood of the origin, then Assumption 5.1.2 (FBAssl)
is satisfied for some positive exponent p.

Proof: Just apply Theorem 5.3.3 (JT1). O
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5.4 Lebesgue Constants

(SecLebCon) We now face the verification of Assumption 5.1.6 (FBAss2),
which is a very hard problem. Let us first discuss some easy cases.

5.4.1 Lines and Triangles

Assume that we want to prove a bound for the error in a point x that lies on
a line between two distinct data points, say x; and x5, and assume that the
distance between these points is 2h. We can define linear functions uq, us by

(y — «’172)T(«’171 — Z)
|21 — 302||§

ui(y) = , ua(y) =1 —u(y)

and see that u;(zy) = 0k, j,k = 1,2. Any linear polynomial p restricted
to the line through z; and x5 is uniquely recovered by p(x) = p(x1)ui(x) +
p(x2)ua(x). Note that Assumption 5.1.6 (FBAss2) only requires the recovery
in x, not everywhere. If x is way between x; and xz, then clearly C3 = 2
suffices, since both u; (z) and us(z) are in [0, 1] and sum up to 1. Furthermore,
we can set C; = 1 and are done for cases with ¢ < 2. This argument works
for every space dimension, but only on lines between two nearby data points.

We now go over to three points z;, x5, 13 € IR? forming a nondegenerate
triangle T', and we consider points x inside such a triangle. If x lies on an
edge, we are in the previous case. Since our argument is carried out in a two-
dimensional affine subspace containing the triangle, we assume that we are in
R? right away, and there are no problems going back to the embedded plane
in IR?. Nondegeneracy of the triangle, when written in bivariate coordinates,
means that the system

has a nonsingular matrix and a unique solution. The components of the
solution are called the barycentric coordinates of y with respect to the
triangle spanned by xy, w9, x3, and they satisfy

e u;(y) is linear in v,

o U,](SC]C): ks 1§]7kS3;

3
e p(y) = > ui(y)p(x;) for all p € IP;,
j=1
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e u;(y) = 0 iff y lies on the boundary line opposite to z;,
e all uj(y) >0, 1 <j < 3iff y lies inside the triangle,
e the u;(y) are nonnegative and sum up to 1 for y not outside the triangle.

The reader will have noticed that this is a very simple generalization from
the two-point case. This can be carried further, but it never yields more than
reproduction by linear polynomials. It always works for d 4+ 1 points that lie
at least in IR? but not in a d — 1-dimensional affine subspace.

It is now clear that in our three-point case we get C3 = 2 independent of x
and h, and if h is taken as the fill distance 2.1.2 (DDDef)

h = h{ml,m,xa}sT = i‘ég 1%1;13 ||:E - ‘T]'HQa
of the triangle T, then we have C; = 1. This argument works on all small
triangles that are formed by three data points that are not on a line.

We now assemble the two cases into a general strategy that works in IR?
for polynomial reproduction of order ¢/ < 2. Assume that the set X =
{z1,..., 277} C IR? of scattered data is given, and let 2 be the convex hull
of X, i.e.: the smallest convex set containing X. Then (2 is a compact convex
polygon, and each point x of €2 either lies on a line between two points of X
or in a nondegenerate triangle formed by three points of X. Assume that X
fills Q with a fill distance

h = hX,Q = 31618 lgjngr}w ||:r — $j||2.

If the situation of one of the two above cases occurs, there will not necessarily
be two points on a line with distance at most 2h or a triangle T" with local
fill distance h. We thus have to determine which distances as factors of h
are possible in these cases. We form the Delaunay triangulation of the set
X = {#1,...,2zm} as described in section 11.1 (SecVor). This splits Q into
triangles with vertices at the points of X, and where there is an edge from
xy to x; iff the midpoint between z, and z; has both z; and z; as points
of X with minimal distance. Since this distance is at most h, the Delaunay
triangles have edges of length at most 2h. If we work on a line joining two
vertices of the Delaunay triangulation, we thus have C5 = 1. Inside of such
triangles, the maximum distance from an interior point to the vertices is
achieved in the isosceles case, and thus the fill distance within Delaunay
triangles is at most 2h/v/3. We thus get away with Cy = 2/4/3 and C3 = 1
in both cases.
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5.4.2 Univariate Data

The situation for local polynomial interpolation of order exceeding two is
much harder, even in one space dimension, where the solution still can be
given using elementary techniques. Let us do a simple, but nonoptimal
bound. Consider an odd number ¢ = 2k + 1 points ordered locally on the
real line like

T < Ty <...<XTy

and let the fill distance of X = {zy,...,2/} be h/2, such that we have
xi11 — x; < h. The Lagrange basis functions for interpolation of order ¢ are

ui(z) =1

itj Li

r — I;

, 1<) <t

and they get large if there are points with z; — ; extremely small. But those
points can be neglected if our points are a local subsample of a much larger
set. Let us thus assume a real number a € (0, 1] with ah < ;41 — z; < h.
Then the M — 1 = 2k factors in the numerator can be bounded above by
(2k)!h% ., while the denominator can be bounded below by (k!)?a?*h*. We
have to sum M = 2k + 1 of these quotients, and thus

(2k +1)!

-0 =2k + 1.

Co S 1+ o

This bound increases dramatically with ¢, unfortunately, but it is indepen-
dent of h. We can get an idea of the behaviour of Cj, if we apply Stirling’s
inequality

(Stirling)

1

=), (5.4.1)

< exp(—

n!
1< —
TN 2mnnte ™ T

<o ()

for £ — oo or in simplified form and as a function of /,

The result is

Cs < O(Y)
for ¢ — oo with some v > 1.

Now let us apply this globally, and assume an ordered, but scattered set
X = {xy,...,2yp} C IR with fill distance h. For a uniform distribution of
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points of meshwidth 3h over Q = [z, z)] we associate a scattered point
to each meshpoint, and then this selection of a subset of N < M points
has a fill distance of 2.5h and each adjacent pair of points is at least A and
at most bh apart. We then can apply the above bound with a = 1/5 by
local selection of ¢ points and an appropriate scaling. If we use a uniform
distribution with spacing Kh, we end up with o = (K — 2)/(K + 2) which
can be pushed towards 1 for K large. To check the value of Cy, we have to
assume the worst case, in which some z lies at the boundary, while the next
interpolation point is 2.5h away, and the interpolation points are at maximal
distance 5h. Then the maximal value of |z — x| is 2.5h+ ({—1)-5-h < 5(h
such that we have Cy = 5¢.

The above approach is unfeasible for multivariate cases, because we relied
heavily on the ordering of the points. But it gives us two pieces of useful
information: the good news is that we might get along with a quantity C3
that does not depend on h, but the bad news is that C3 will crucially depend
on the order ¢ of local polynomial interpolation. We address the two topics
one after another.

5.4.3 Independence of h

As we saw in the univariate case, one can expect that the scaling parameter
h cancels out in the bounds for C3. To generalize this statement, we repeat
the technique that we already used before:

1. Ifaset X = {xq,...,2m} is given in Q with fill distance h, we pick an
integer k > 3 and lay a grid G = khZ? over Q.

2. For each point from G N ) we pick the nearest data point from X.
This yields a subset Y of X of points that are only mildly scattered
and are at least (k — 2)h apart from each other. We need this to
avoid degeneration of the local polynomial interpolation that we want
to construct. Since the diagonal in the unit cube in R? has length v/d,
the fill distance of Y in € is at most (1 + kv/d).

3. If x € Q is given, we pick a selection of points from Y which are near

to z, and the indices of these points define the set J,(h) occurring in
Assumption 5.1.6 (FBAss2).

4. The main problem now is to prove that the selection guarantees solv-
ability of polynomial interpolation of order /.

5. We then evaluate the Lebesgue constants for this local interpolation.
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If k is large, the set Y will consist of points that are relatively near to the grid
G = khZZ?, since they can be only h away from gridpoints. Thus the local
interpolation takes place on data that are slight perturbations of gridded
data. We thus have to study polynomial interpolation on gridded data first,
and then ask for admissible perturbations.

We write multivariate polynomials p € IP¢ as

(PolRep)
=) paz” (5.4.2)
la| <t
with the usual multiindex notation:
d
a € Z>0, la] = ||y, 2% := H x]a]
j=1

The number of data points should equal the number of basis functions, and
thus we simply use the data set

X{i={Bezly 18 < L}

For d = 2 these are the points (j, k) € ZZ? with 0 < j,k < j + k < { forming
a “triangle” in Z7°.

Lemma 5.4.3 (LemPIG) The set X{ is a minimal nondegenerate set in IR
for polynomials in IP{. Thus polynomial interpolation of order { is uniquely
possible.

Proof: Since the dimension of IP{# and the number of points in X{ agree,
it suffices to prove nondegeneracy. Let p be a polynomial of the form
(5.4.2, PolRep) that vanishes on X{, and we want to show that p vanishes
everywhere. We do this by induction on the space dimension d, and the case
d = 1 is well-known. So we assume that for & < ¢ all polynomials from IP?
that vanish on X must be identically zero. Now we extract the variable
x4 from each of the terms in (5.4.2, PolRep), split = as = = (&, x,4), and
rearrange the sum. This yields

p(z) = p(i,7q) = Zp]

with polynomials p; € IP/~!. Setting x = (0,k) for 0 < k < £ we see that
(0,k) € X and the unlvarlate polynomial

p(0, x4) Zp]
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in IP} vanishes in the ¢ distinct points k, 0 < k < £. Thus it is zero as a
polynomial in 4, proving p;(0) = 0, 1 < j < £. Looking at p,_, € P!
see that py, 1 must be zero.

Now let us start an inner induction over an integer 7 = 1,2,... and assume
that we already have proven that p,_;,...,p,—1 are identically zero, and that
all of the p; vanish on X]d’l. This is precisely what we have proven for j = 1
and X{~' = {0}. Now fix an arbitrary 5 € X{ |\ X{~'. Then || = j and
we can form the data points z = (3, k) € X{ for 0 < k < £ — j. Considering
these points, the univariate polynomial

l—j—1

ﬂ; l‘d Z pz
=0

must have vanishing coefficients, and thus all p; vanish on deﬂl For
Pi—j—1 € ZP]dH1 the hypothesis of the outer induction yields that this poly-
nomial vanishes identically, and this finishes the inner and outer induction.
|

Now we know that (in a fixed enumeration of X{ used for rows as well as
columns) the matrix with elements o for o, 8 € X¢ is nonsingular. It is a
continuous function of the data locations a, and thus it is still nonsingular
when all the points vary in local balls of some positive radius p € (0,1/2)
around the integer points of X¢. This radius is a function of both d and
¢, and to give an explicit positive lower bound for it is a formidable task.
We neglect this problem now and consider d and ¢ as fixed, leading to some
mysterious, but clearly positive radius p for admissible perturbations.

Lemma 5.4.4 (LemPIP) For each space dimension d and each polynomial
order ¢ there is a positive quantity p(d,l) such that interpolation by polyno-
mials in IP? is uniquely possible in all data sets that pick a point in each of

the balls
By(a):={yeR" : |ly—al: < p}
for all « € X{. The mazimum Lebesgue constant for all of these polynomial

interpolation processes, measured on a fixed ball Br of some large radius R
containing the set X¢ is some finite positive quantity C;(d,(, R).

Proof: Each pick of points defines a nice interpolation problem that has
Lagrange basis functions {u,}, depending continuously on the locations of
the points. Thus also the Lebesgue constant

14+ sup > |ua(z))
T€BR anld
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varies (via the u,) continuously with the data locations. Since these vary
in a compact set, the Lebesgue constants, as defined above, attain a finite
maximum under variation of the data locations. O

Of course, one could replace the domain Br of “measurement” in the
Lebesgue constant by any compact set in IR?, but note that the actual upper
bound of the Lebesgue constants remains mysterious, and enlarging B will
have a nasty blow-up effect.

The next step is the independence of the above situation under shifts and
scaling:

Lemma 5.4.5 (LemPIS) LetY C IR? be a data set where interpolation by
IP{ is uniquely possible, and let {u,(-)},eyv be the associated Lagrange basis
satisfying u,(x) = 8y for x,y € Y. If Y is translated by some z € IR and
scaled by some h > 0 to go over into

Z:=hY —z2)={yp:=hy—2) : ye Y},
then interpolation in Z is equally possible, using the basis functions

ty, (+) = uy(z +-/h)

and yielding the same Lebesque constants, if the domain of measurement of
those is translated and scaled accordingly, i.e.: the domain B is transformed
into h(B —y).

Proof: The definition of the new functions makes sure that they are poly-
nomials in IP¢ and satisfy the Lagrange interpolation property. Looking at
the definition of the Lebesgue constant proves the rest. a

We now go back to our data set X = {z1,...,x)} that fills Q with a fill
distance h, and we pick points from X that are perturbations of points
from a grid khZ? laid over €. The perturbations thus stay within h of
the grid points, while these are kh apart along the axes. Scaling them down
by division with kh will bring them to the unit grid Z¢, and the scaled
perturbations will stay within a radius 1/k. We thus have to make sure
that 1/k < p(d,?) holds and that we use a shifted, scaled, and perturbed
version of X¢ for local interpolation. The point  must lie in the shifted and
scaled domain of measurement of the Lebesgue constant. We then can use
the bound Cj(d, ¢, R) of the Lebesgue constant from Lemma 5.4.4 (LemPIP)
for all h, as asserted.
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Thus we are left to determine the constant Cy of Assumption 5.1.6 (FBAss2)
that bounds the maximal distance of z in terms of multiples of A to the
points we use for interpolation. This is no big deal when x is in the interior
of 2 and h is small enough, and we can then get away with something like
Cy = k(+/d, the diameter of the cube [0, k¢]?. If x lies near the boundary
of , we must be more careful, because the boundary could have awkward
outgoing cusps that take boundary points far away from places where we can
find enough data from X that lie near the gridpoints of khZZ? and allow full
interpolation up to order /. We make the following assumption:

Definition 5.4.6 (DeflCC) A closed compact domain Q € IR with
nonempty interior satisfies an interior cone condition, if there is a fized
positive angle v and a fixed height 0 such that for any boundary point x there
is a cylindrical cone within € that has vertex x, angle v at the vertex, and

height §.

If € satisfies an interior cone condition, we can consider coverings of () by
fine grids eZZ¢, and we see that there is a constant K, such that for all €
that are small enough, i.e. ¢ < €., any point of € is only K.c away from
a grid cell of eZZ¢ that is completely contained in Q. We apply this for
€ := kht < €. and get that any z is at most K.c = K .kh{ away from a fully
interior cell of sidelength kh¢ in which we can do the local interpolation.
Thus all interpolation points will be at most (K, 4 1)kh{v/d away from x
and we can use Oy = (K, + 1)k(\/d.

We have two restrictions up to now:
1/k < p(d,?) and kht < e,.

This yields the conditions

€. 1

h<h,:=-—andk >
p(d.0)

=T ke
which are no problem for fixed values of d, /, and the interior cone condition
on 2. We summarize:

Theorem 5.4.7 (LPIT) For given values of d and ¢ and for a fized cone
condition there are positive constants h.,Cy, C3 such that Assumption 5.1.6
(FBAss2) is valid for all z in domains Q C IR satisfying the cone condition,
and for all h < h,. a

Theorem 5.4.7 (LPIT) is useful for all cases where the local approximation
uses only a finite degree ¢, and where the exact value of the constants does
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not matter much. We defer a more detailed analysis to the next lemmas,
where we rely on [24](madych-nelson:92-1).

To treat the general case, we cite without proof a deep result from
[24](madych-nelson:92-1):

Theorem 5.4.8 (MNL) Let R be a cube in IR which is divided into K°
identical subcubes for some large integer K, and define vq := 2d(1 + v4-1)
starting with v, := 2. Consider arbitrary polynomials p from IP{ and assume
K > (4. Then

(MNLBound)

||p||oo,R S e2de,Yd||p||oo,Y (549)

holds for any set Y C R that picks a point from each of the subcubes. In
particular, all these sets Y are IP{-nondegenerate.

We now bring this into line with Lemma 5.4.4 (LemPIP) and assume ¢ > 2
throughout. We want to let the little subcubes be centered around the points
of X. If their sidelength is 2p to make balls of radius p safely contained in
the cubes, we have to take (2p)~! =: M € IN and let the large cube be
R = [—p, 0 — 1+ p]¢. Splitting it into K subcubes yields the equation

5 _=1+2p
P=7K
which leads to
f—1 f’}/d—l
K=14+M({-1 = M= .

This allows the application of Theorem 5.4.8 (MNL). We first check the value
of p as a function of d and /. If we bound M crudely from above by 2v,, we
get p > (4v4)~", which is independent of .

The linear functional §, : p — p(x) can be written in the form

> plza)ua(z)

d
acX;

where we have picked z, from the ball B,(a), and where the u, are the
Lagrange interpolation polynomials. Then we fix z € R and interpolate data
sgn (uq(z)) in z, by some polynomial p € IP# and get the bound

> lua(@)] = 5(2) < [[plloor < €77,

d
acX;
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Thus the Lebesgue constant in Lemma 5.4.4 (LemPIP) is bounded by
(C3def)

O < 14 e, (5.4.10)

We now go over to the situation in Theorem 5.4.7 (LPIT). We fix a cone
condition and a space dimension. This fixes the constants €., h., and K,
from the cone condition. The integer k can be chosen as k = 4+, to satisty
kp > 1, and we are left with the condition

(hrestr)
h<h,=—= (5.4.11)
> lbe — 467(1 ey
under which we can use (5.4.10, C3def) and
(C2def)
Cy = 4(K, + 1)tV dy,. (5.4.12)

Theorem 5.4.13 (LPIT2) The assumption 5.1.6 (FBAss2) can be satisfied
for each compact domain Q C IR* satisfying an interior cone condition 5.4.6
(DefICC) that defines positive constants €., K.. If 4 is defined as in 5.4.8
(MNL), the constants Cy and Cs can be bounded by (5.4.12, C2def) and
(5.4.10, C3def), respectively, while the polynomial order ¢ and the fill distance
h must satisfy (5.4.11, hrestr).

5.5 Error Bounds in Terms of Fill Distance

(hrhodef) We can now assemble the previous results into bounds of the form
(4.6.3, FBound) for the power function from optimal recovery. Together with
(4.1.4, EqgSgl) from page 81 this yields error bounds for the reconstruction
of functions g from native spaces G. Depending on the situation, we get quite
explicit bounds for the power function in cases of small space dimensions and
polynomial orders, while for fixed orders and arbitrary space dimension we
use Theorem 5.4.7 (LPIT) to carry the order of the local bounds on the
power functions over to the errors of optimal recoveries, the constants being
mysterious. We list the orders (without the factors) of our L, bounds on the
power function in Table 6 (TCPDEB), but delay the cases with exponential
convergence somewhat. The additional data (parameters, domains, smooth-
ness, dimension, order) should be looked up from tables 1 (TCPDFct) and 2
(TPDFct) on page 19. Note that the actual approximation orders of optimal
recoveries may be better than the squares of these bounds.
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é(r) | Loo Bound of Power Function
rB [ hB/2
rPlogr | h8/?
(r2 +~%)%/2 | exp(—c/h), ¢ >0
e 77 | exp(—c/h?), ¢ >0
r"K,(r) | h”
(1—r)2(2+7) | A2
(1—r)4(1+4r) | B3?

Table 6: L. Bounds of Power Function Based on Lagrange Data (TCPDEB)

For radial functions ®(x, y) = ¢(||x —y||2) such that ¢ is Lipschitz continuous
around the origin, we can apply Theorem 5.3.11 (LipConvTh) together with
Theorem 5.4.7 (LPIT) to get convergence of the L, norm of the power
function to zero for h — 0. We have used this fact in section 4.4.4 (SecHSE).

Unfortunately, the factor [¢g—S(g)|s in the actual error bound (4.1.4, EqgSg1)
still is somewhat mysterious, if we start with a conditionally positive definite
function ® and construct the corresponding native space. If, on the other
hand, we have started with G, we are done. But note that these bounds can
be improved, if ¢ satisfies additional conditions. These improvements cannot
come from better bounds on the power function, because we shall see that
our techniques often provide optimal orders with respect to A. They rely on
a deeper analysis of the term |g — S(g)|e, and this analysis will be done in
5.6 (SecEBStage2) and 5.7 (SecEBStage3).

We now discuss the cases of multiquadrics and Gaussians, where we can push
the polynomial order ¢ up to infinity. The overall bound for P?(z) is given by
(5.1.11, FundBound), and we have to insert (5.4.12, C2def), (5.4.10, C3def)
and the replacement of h by 2hv/d from section 5.2 (SecAERC). The values
of p and C'; depend on the special case chosen.

Let us first look at multiquadrics. The bound on P?(x) then is

under the restrictions 8h*d < ¢?/2 and (5.4.11, hrestr). We now treat
everything as fixed except h and ¢ = 2n — 1. This turns the bound into
something of the form

Cy (Csnh)™™,
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and we shall pick n = (¢ + 1)/2 as a function of h as large as possible, but
such that the constraints

Csnh <~v <1, 4lhyy < €,

are satisfied. This works with n = ¢h™'/2 and some positive constant c.
Then the bound becomes

Cyy*" = Cyexp(—|logy|c/h)
and proves exponential behaviour for h — oc.

The Gaussian case is quite similar and can easily be reduced to a bound like

(C5nh)2n

Cy '
n:

Y

which allows the same treatment. But now we can use the additional n!
in the denominator to speed up the convergence. We first insert Stirling’s
formula (5.4.1, Stirling) into the denominator to cancel an n" factor in the
numerator, introducing some change in the constants C; and C5. This yields

2n
04 (05\/511) 3
and we now pick n = ch™%/2 to get
C5\/Eh <7v<l1.

The second restriction, induced by the interior cone condition, cannot be
satisfied in this case. Furthermore, there are problems on bounded domains,
because the data points needed for reconstruction at x spread out to distance
O(hl) = O(h™"). This is why our final result for Gaussians will only hold
for = IR? and infinite data sets. We get the bound

Ciy"* = Cyexp(—|logle/h?)
with ”Gaussian” exponential behaviour for h — oc.

Theorem 5.5.1 (GMCEBT) The power functions of Lagrange interpola-
tion by multiquadrics and Gaussians have Lo, bounds of the form exp(—c/h)
with ¢ > 0 for compact domains Q C IRY satisfying an interior cone condi-
tion. The bound for the Gaussian can be improved to exp(—c/h?) for Q = IR?.
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5.5.1 Remarks

The proof of bounds on the power function via polynomial approxima-
tion goes back to Duchon [10](duchon:76-1) for thin-plate splines and was
successfully generalized by Madych and Nelson [21)(madych-nelson:88-1),
[24](madych-nelson:92-1). The special cases of lines and triangles were done
for thin-plate splines by Powell [39](powell:93-1).

5.6 Doubling the Approximation Order

(SecEBStage2) Here we show how the error bounds of the form (4.1.4,
EqgSgl) can be improved by adding some assumptions on the function ¢ that

is reconstructed. A third enhancement, based on a localization argument, will
follow in 5.7 (SecEBStage3).

We work in the setting of section 3.5.5 (SecCLC) and use local integration
of the square of the error to get

I70(g = S(9)lLat@0) < 1PAC) |z2000) 19 = S(9) o0
for the optimal power function P, and the optimal recovery S(g) of g € Gq.
For any g € Go we can consider the function
C(g) :==Tpg + "ro(g — Tpg) € Ga.

Then we have

(Cg, flaa = (°ro(g — pg), f — [pf)e0
= (rog —1IIpg),ro(f —IIpf))L2(00)

for all f,g € Go. We now define the subspace
Ha = C(Ga) C Ga

of G and consider optimal recovery of functions g = C(f,) € Hq with f, € G
by ¢* = S(g). The orthogonality (3.1.34, EqOrtho) then implies

lg—S)lze = (9—509),9—509))sq
= (9:9 - S(Q))@,Q
= (Cfy,9—S(9))s0
= (ro(fy —Tpfy),m0(g — S(g) — lpg + pS(9))) Lae0)
< lro(fy = O fo)ll Lacao) 1m0 (9 — S(9)) | Lae0)
< ro(fg = Tp f)ll Laten) 1 PA () 2o (20) |9 — S(9) |20
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and this allows to bound [|g — S(g)||s,o nicely by

lg = S(9)lle.n < [ Pall oo Iro(fg = TIp fo) || La(00)
for all ¢ = Cf, € H. If we combine this with (4.1.4, EqgSgl), we get
Theorem 5.6.1 (EBStage2T) For optimal reconstruction of functions g €

H C G with g = C'f, by optimal recovery functions S(g) we have the improved
error bound

(g = S(9))(@)] < P() [Pl Lo Iro(fy = T fo) [l La00)
for all z € Q.

5.6.1 Remarks

The results of 5.6 (SecEBStage2) are from [40](schaback:96-2) and derived
from the arguments used in classical spline theory [2](ahlberg-et-al:86-1) to
improve the approximation order via the “second integral relation”.

5.7 Improvement by Localization

(SecEBStage3) Here we use a localization argument from [2](Light- Wayne:96-}
1) dating back to Duchon [10](duchon:76-1) to get some additional powers of
h for error bounds of optimal recovery via Lagrange interpolation. We delay
the formulation of these results.

6 Advanced Results on IR?

(SecARRd) Here we apply Fourier transforms in IR?, and derive a series of
results that require related techniques. These include bounds on the stability
and error bounds for the multilevel method. The reader should look into
section 12.5 (SecFTRd) for backup material on Fourier transforms.

6.1 Transforms of Translation-Invariant Basis Func-
tions

(SecCNST) 1In section 3.2.4 (SecIP) we have seen that on IR? we can restrict
ourselves to cases where the recovery problem is translation-invariant or even
invariant under Euclidean rigid-body transformations. In the first case, the
conditionally positive definite functions ®(z, y) take the form ®(z —y), while
in the second they are radial: ®(z,y) = ¢(||x —yl|2). We start with the more
general case, but we restrict ourselves to unconditionally positive definite
functions first.
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6.1.1 Unconditionally Positive Definite Functions

So let us now consider a function ® : IR? — IR with ®(—-) = ®(-) such that
U(z,y) := ®(x — y) is a candidate for an unconditionally positive definite
function on IR?. We want to look at conditions that allow us to conclude that
® actually is unconditionally positive definite on IR?. Having the Gaussian in
mind as a prominent example, we assume ® to have a Fourier transform ® on
IR? such that the Fourier inversion formula holds. We now want to construct
the native space G by the techniques of section 3.3 (SecNS). Clearly, the
representation (3.3.2, DefBil) of the bilinear form (-, -)g can now be rewritten

as
(DefBIil2)

M N
()\X’M’Q,AY’N’[;)Q) = (27T)_d/2 / ; @(w)z Z (0% ﬂke (@5 =yk) “dw. (611)
R ‘
]: :
The functions F'(Ax,u,.) have Fourier transforms

F(A;M,a)(w) = @(W)Zaje*l’f'w

(W)S\X,M,a

S

if we use the definition of Fourier transforms of functionals from Example
12.5.20 (ExIxma). This allows the shorthand representations

Oxtas dvvgle = (2072 [ <T><w>»<,74,a<w>@,g<w>dw
1

Gy e @ F Ao

(FAx Mo FAvngle = (QW)_d/Q/R

We still have to add some arguments that convince us that the above repre-
sentations define positive definite bilinear forms. Equation (6.1.1, DefBil2)
yields

(DefNorm?2)

2

IAxarallf o= (2m) 42 /]Rd D (w) dw, (6.1.2)

M
it w

Z ;e

=1

and we see that nonnegativity of this integral is closely related to nonneg-
ativity of ®. Starting from positive definiteness of ®, it is hard (or even
impossible) to deduce positivity almost everywhere of ® from this equation.
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Conversely, in all known cases the Fourier transform ® can directly proven to
be nonnegative almost everywhere anyway. Then the representation (6.1.1,
DefBil2) yields a useful sufficient condition for positive definiteness:

Theorem 6.1.3 (NCPDFTT) If ® : IRY — IR is absolutely integrable
with a real-valued Fourier transform ® that is positive almost everywhere on
IR?, then ® is even, continuous, and unconditionally positive definite on IR®.

Proof: From Lemma 12.5.17 (FTLoneLem) we get that ® is continuous and
even, and from (6.1.2, DefNorm2) we see that ® is positive semidefinite. To
prove definiteness, we have to prove a = 0 if

M
Z ajezxj-u) — 0
J=1

holds almost everywhere on IRY. But then the equation must hold on all
of IRY, and we can use the argument of Theorem 12.5.6 (GaussPD) to get
a=0. O

6.1.2 Conditionally Positive Definite Functions

We now go over to the treatment of general unconditionally positive definite
functions. To do this, we shall introduce Fourier transforms in a somewhat
more general way that will later save us quite some work. The direct attack
is impossible, because some of the most important conditionally positive
definite functions on IR? are radial functions ®(-) = ¢(]| - [|2) that grow
towards infinity, e.g.: thin-plate splines ¢(r) = r?logr or multiquadrics
é(r) = V1?2 + 2. These do not have classical Fourier transforms, but since
they grow at most polynomially, they are tempered functions in IC. Thus they
have generalized Fourier transforms defined via the Fourier transforms of the
functionals that they induce on S§. These generalized Fourier transforms
are not straightforward to handle and require quite some machinery from
distribution theory. Two different ways to do this are treated in the Ph.D.
theses by A. Iske [18](iske:94-1) and M. Weinrich [45](weinrich:94-1).

We go a different way [42](schaback:96-1) by picking a very specific set of as-
sumptions to start with, and then we can work our way without distributions.
We do not even assume ® to be a conditionally positive definite function; this
will be a consequence of our assumptions and lead to an important technique
to prove conditional positive definiteness for specific examples.
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Assumption 6.1.4 (FTAss1) Let ® : IR — IR be even and continuous.
Furthermore, let there be a continuous nonnegative function

d : R\ {0} > IR

which is positive almost everywhere. It may possibly have an algebraic sin-
qularity

(PhiSingCond)
b(w) = O(||w|| =) (6.1.5)

with some real value By for w near zero, and it must have the behavior
(PhilnfCond)
® € Ly near infinity. (6.1.6)

Then define m := max (0, | 3y]) > 0 to get the restriction

(BetaZCond)
By < 2m (6.1.7)

that will often occur later. Finally, let the usual bilinear form on Pq =
(IP2) pa be representable by (6.1.1, DefBil2).

Theorem 6.1.8 (NCCPDFTT) Under the above assumptions the function
O (x — y) is conditionally positive definite of order > m on IR?.

Proof: Note first that the functionals Ax a. € (IP%)5. have Fourier trans-
forms with zeros of order at least m in the origin. Thus the integrand in
(6.1.1, DefBil2) is of order O(||w||*™4~#) near zero, and the integral is well-
defined due to (6.1.7, BetaZCond) and (6.1.6, PhilnfCond). Nonnegativity
of ® proves that the bilinear form is positive semidefinite. The rest is as in
the proofs of Theorems 6.1.3 (NCPDFTT) and 12.5.6 (GaussPD). 0

The reader should be aware that we did not assume ® to be the usual Fourier
transform. We thus cannot use equations (12.5.2, FT) or (12.5.9, IFT), but
we have the general identity

Zz%ﬁkq) Yi) = (27T)_d/2 /]Rdé(w)zg ﬁke (@5 =96) .

that is identical to (6.1.1, DefBil2) and is valid for all functionals in (IPZ) .
due to Assumption 6.1.4 (FTAss1). It will nicely serve as a substitute for
(12.5.9, IFT) in the form (12.5.10, IFT2), but note that it does not allow
single point-evaluation functionals in the left-hand side.
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6.2 Connection to Ly(IRY)
Assumption 6.1.4 (FTAss1) makes sure that the mapping

LA /s, (IP%) s — Ly(IRY)

is well-defined. Indeed, the function L()) is in Ly near infinity due to (6.1.6,
PhilnfCond), and it is continuous around zero due to (6.1.7, BetaZCond),
since A has a zero of order at least m at the origin.

Theorem 6.2.1 Let Assumption 6.1./ (FTAssl) be satisfied, and let m be
minimal with respect to (6.1.7, BetaZCond). Then the map L extends by

continuity to clos ((IPL) ga), and it yields an isometry between clos ((IP2) pa)
and all of Ly(IR?).

Proof: It is evident from (6.1.1, DefBil2) that L is isometric, and thus L
extends to clos ((IP%)5.) by continuity. But the density of L( clos ((IP%)%.))
in Ly(IRY) does not follow from abstract Hilbert space arguments. We

thus need an additional analytic argument. We first prove the assertion
for continuous ® with ® > 0 on IR\ {0}.

Let some function f € Ly(IR?) and some € > 0 be given. Then there is a
compactly supported C* function g € Ly(IR?) such that || f — g|o < & due to

Lemma 12.4.5 (FTDC). Now define @ := g/\/é on IR?, where the (possible)
singularity of ® at zero does no harm. Clearly @ is continuous and compactly
supported, thus in Ly(IR?) and u is band-limited, of exponential type, and
in Ly(IR?). We now invoke the multivariate sampling theorem 8.1.1 (MST)
to recover u exactly from its function values on a grid in IR? with spacing h,
where h is sufficiently small and related to the support of .

Thus we have

—ih
u(z) = > u(jh) Sincy (:r J > , x€ IR
jEZ
where
sin 7z
Sincy(z1, ..., 2q9) = 2,
jl:Il 7T3?j
and

d(w) =Y u(jh)e™, w € IR*

JE€EZ4
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has the form u = 5\; for the functional
Au(v) = D v(gh)u(jh).

jez

We now have to make sure that A, € clos ((IP%).). If this is done, we are
finished because of L(\,) = g and

1 = VaXuls = IIf = glls < =.

For all p € IP¢ we have to show that \,(p) = 0. By a standard argument in
Fourier analysis this requires a zero of order at least m of u at zero. But our
assumption (6.1.5, PhiSingCond) on ® and the minimality of m in (6.1.7,
BetaZCond) imply that 4 has a zero of order at least

1 1 d
§(d+5o)>§(d+2m—2):m—1+§,

thus of order > m.

We then evaluate the norm formally as

I3 = (V8- N2 = 1V8a]2 = [lg]l2 < oo

Now we can proceed to prove that A, lies in clos ((IP%)4) by defining the
function

Fo(@) =\, 0s2)e, v € R?

via the explicit form of the inner product, and using the finiteness of the norm
|Au]|lo to show that the definition is valid. Then for all Ay ng € (IP2)pa we
get

Ay s(fa) = Aus Avivg)e

and this proves that fy, € F. Finally, we get A\, = F~'(f),) by checking
(Aus Avvgle = Avivs(fa,)
= (Avnsl fa))e

for all Ay, € (IP2)pa, and this concludes the proof in case of ® > 0.

Now let ® be positive up to a set of Lebesgue measure zero. We cover the set
of zeros by intervals I, where k varies over some index set K and the total
area Y. |Ix| is less than some given §. Now let ®5(w) > ®(w) be a strictly
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positive continuous function that differs from P only on the I;. Then @g will
also satisfy our assumptions, and we can use (6.1.1, DefBil2) in the form

(1 Vo = (2m) ™ [ @) Mw)Rlw]do
as a definition of an inner product, but we do not need ®4 explicitly.

Now we approximate a given f € Ly(IR?) by some \/®s - A up to /2 in the
Ly norm, picking a suitable A for each 6 and . Then

1F = VO < If = 3 sll + 1AW/ Bs — V&)1

AW — Vo) = ||X-¢<i?<1—\/<f>/&>5>||%
< ¥ [ M@

and

The full integral

[ B@PBsw)do = 13- /s

can be bounded independent of §, because it approximates || f||3. Thus we
are able to pick 0 small enough to guarantee

Z W) [285(w)dw < £/2

yielding an overall bound || f — \/éXHQ <e. O

6.3 Characterization of Native Spaces

We now use Theorem 6.2.1 (LCTh) to characterize the native space Gpa for
® via Ly(IR?). Starting with an arbitrary h € Ly(IR?) and a fixed IP4-
unisolvent set = C IR?, we mimic the technique of (3.3.15, If3) to define a
function

(fhdef)

fu(@) := (h, Loy 2) 1o (me).- (6.3.1)

It is in Fpra, because



6.3 Characterization of Native Spaces 131

follows easily from (6.3.1, fhdef) for all A € (IP%) .. We can transform this
equation further into ~
A = (B LA) 1, ()
(L_lh, )\)@
= (F7'fa, Na

to see that
(FTDef)

Fy = \/éﬁ = \/ELFflfh (6.3.2)

is another way to define f,. We can rewrite (6.3.1, fhdef) as

- — . Q .

j=1

— ‘ Q ‘
= (QW)fd/Q/IRd fh(w) (em-w _ ij(x)ezfj-w) dw

where we define
fh =h- \/57

which is fully consistent with the usual notation for Fourier transforms in
case of m = 0. We then get

Theorem 6.3.3 The native space Gra for a conditionally positive definite
function of order m on IR® satisfying Assumption 6.1.4 (FTAssl) coincides
with the space of all functions f on IR® that can be written as

(FTtdef)

fla) = em " [

R4

f(w) (6”'“’ - > p; (x)ezgf'“’) dw (6.3.4)

=1

<, and where f s a function that can be defined via

(6.5.2, FTDef) and satisfies

plus polynomials from IPY

PV € Lo(RY).
The inner product on Gra can be rewritten on the subspace Fpra as

flw) 7@,
R D(w)

(f.9)e = (27T)_d/2 w.
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Note that f is only defined for functions in Fpra. In many cases, even with @
increasing polynomially towards infinity, the functions f = g —1ljps g € Fa
for arbitrary ¢ € Gra will decay sufficiently fast to have classical Fourier
transforms, and then (6.3.4, FTfdef) coincides with the Fourier inversion
formula (12.5.10, IFT2). The expression in brackets makes sure that the
left-hand side automatically is (g — IIpa ) () if we insert f = g —Ilps g into
the right-hand side. Thus (6.3.4, FTfdef) is nothing else than the Fourier
inversion formula modulo polynomials.

If we define the mapping

M Fpo— L(RY) | V8,

it is easy to see that

M) = (F )y = (FIVE S B,y = [ 73

holds for all A € clos (IP%). and all f € Fra. Along the same lines or
directly from (6.3.2, FTDef) we get

L=MoF

as expected. Note that (so far) we only have inverse explicit formulae that
allow to calculate f or A(f) from the transforms. The opposite direction is
not explicitly given on its full domain, but rather on the special functionals

and functions of the form Ay, € (]P,fl)Rd and F'Ax po. In particular, we
have

~

(FAxara) (@) = ﬁw)MFAXMa(w)
/o

which nicely agrees with the formula

(; a;P(x; — )) (W) = @(w);ajemjw

we would expect from classical Fourier transforms. But note that the latter
cannot be obtained or defined termwise, because the single terms do not have
classical Fourier transforms. Furthermore, both sides still may be singular
at the origin.
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6.4 Condition Numbers

(SecCNTrans) This section uses Fourier transform techniques to prove results
concerning the condition of the matrices that occur in the basic equations
(1.7.3, BDef) for optimal recovery. This requires upper bounds for the largest,
and lower bounds for the smallest eigenvalue. We start with the latter and
restrict ourselves to the Lagrange case. The bounds should (if possible)
should neither depend on the specific data locations X = {z1, ...,z }, nor
on the number M of data points, but rather on certain real-valued quantities
like the separation distance (2.1.1, SDDef).

6.4.1 Stability Bounds

(SecSB) We go back to the setting in section 4.5 (SecCondition) and want
to calculate lower bounds for the smallest eigenvalue o defined in (4.5.3,
Defsigma) and providing the stability bound (4.5.4, Stab).

6.4.2 Narcowich-Ward Technique

(SecNWT) We generalize the technique of Narcowich and Ward [32](narcowich-}
ward:91-1) [33](narcowich-ward:91-2) [34](narcowich-ward:92-2) for calculat-
ing stability bounds, but we introduce Fourier transforms right from the
start, which makes it much easier to treat large values of m, the order of
conditional positive definiteness of ®.

The starting point is that any conditionally positive definite function ® of
order m satisfying Assumption 6.1.4 (FTAssI) allows the formula

(EqNFT)
M M R M 2
SN o ®(w; — ay) = (2m) Y2 / ) O(w) > e dw (6.4.1)
j=1k=1 R j=1
for all IP%-nondegenerate sets X = {xy,...,7y} and all vectors a € IRM

such that Ax . is a functional that annihilates ZPgl. This is just another
way of writing (6.1.1, DefBil2).

The left-hand side of (6.4.1, EgNFT) is the quantity o Ax g that we want
to bound from below, and we can do this by any minorant ¥ on IR%\ {0} of
d that satisfies

(EqPhiPsi)

v

d(w) > TU(w)  on IR\ {0} (6.4.2)
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and that itself leads to a similar quadratic form
(EqPsiQF)

2

Z”; ajak@(xj — :rk) = (27r)*d/2 /Rd \/I\f(w) dw (643)

M
izjw

Z o;€

j=1

for another basis function ¥ and a weaker constraint on o € IRM (or none
at all). Furthermore, there should be an easy lower bound

aTAX,q,a > a||a||§

for the left-hand side o’ Ax ya of (6.4.3, EqPsiQF). Then clearly for all
a € IRM that are admissible,

o Axpa > o’ Axya > ollalf;,

as required. The basic triCkAof Narcowich and Ward now iri to make Ax g
diagonally dominant, while ¥ is obtained by chopping off ® appropriately
near infinity.

Before we proceed any further, here is the main result:

Theorem 6.4.4 (ThNWLB) Let ® be a conditionally positive definite func-
tion on IR that satisfies Assumption 6.1.4 (FTAssl). Furthermore, let
X ={zy,...,2p} C IR be any set of Lagrange data locations having sepa-
ration distance

¢:= min |z -z
With the function
(EqDefPhi0)
r) = inf ®(w), 6.4.5
folr) = ik, B) (645)

the smallest eigenvalue o of the quadratic form associated to the matrix

Axe = (P(z; — xk))lgj,kgM’
restricted as usual to the subspace of IRM that contains the coefficient vectors
a of functionals Ax ara € Pq has the lower bound

(EqCLB)

GolK) <£> d (6.4.6)

1
72572+ 1) \ V2
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for any K > 0 satisfying

(EqKBound)

A L
K> - (2772 (d/2+1))d+1 (6.4.7)

q
or, a fortiori,
(EqKBound?2)
9.005 d

K> === (6.4.8)

Proof: We start with any K > 0 and the characteristic function
L flzfl < K
Xk(z) =
0 else

of the Ly ball Bg(0) in IR? with radius K. Then we define

V(W) = Vg (w) = ¢0<K[>(‘-; %22 +1)

and immediately see that the support is

(XK * XK)(w)

supp (Ux) = {x c IR : ||z, < 2K} =: Bk (0).

We now use the formula (12.3.3, EqVolBall) for the volume of the unit ball
to get the L., bound

It # Xl < w0 (Bre(0)) = KT
= 7 (@24 1)

via the usual convolution integral. We adjusted the factors in the definition
of U to guarantee (6.4.2, EqPhiPsi) on all of IRY.

This is part of what we wanted, but we still have to evaluate W itself or at
least to show diagonal dominance of Ay y. The radial basis function Wy
corresponding to Vg is obtained via the inverse Fourier transform as

Yx(z) = Xi(-/K)(z)
= K% (Kx)
= KUK |z]))™* Jya(K - ||z]|2)

d/2
K
_ (W) Taa(K - ]l
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using (12.5.5, EqF'TScale) and (9.2.3, EqF TCharF). Then we apply (12.5.3,
EqFTC) to the convolution to get

Uk(z) = ¢o(K)? (d/2+1) K "n ¥ (xx * xx)" (2)

= 60(K)? (§ +1) 22| (K - o))

Equation (12.3.16, EqJsqlnfty) yields

_ ¢o(K) K\*
YO =7+ 1) (ﬁ)

and we assert diagonal dominance of the quadratic form in (6.4.3, EqPsiQF)
by a suitable choice of K. We have

M

T Ao > ol Wx(0) ~ max, S wi(r, — o)

k#j

by Gerschgorin’s theorem, and the final bound will be of the form

1 _ o(K) K\’
o2 590 = sy (v8)

because we shall choose K such that
(EqCBGer)

This is done by a tricky summation argument of Narcowich and Ward
[35](narcowich-ward:92-1) using (12.3.15, EqJsqBound) which proves (6.4.9,
EqCBGer) for K satisfying (6.4.7, EqKBound). Since the technique is nice
and instructive, we repeat it here in full detail.

To proceed towards diagonal dominance of the matrix, we should fix a
point z; € X = {zy,...,zy} and exploit the observation that many of the
distances z; — x; to the remaining points should be large, if the separation
distance ¢ > 0 does not let two points to be too near to each other. But the
number of far-away points will strongly depend on the space dimension d,
and we need a precise argument to put the above reasoning on a solid basis.
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To this end, define the sets
E,={z,e€X :ng<|z;—x|2<(n+1)g}

for all n € IN and observe that F; is empty due to the definition of the
separation distance ¢, which implies

|z; — x|l > 2q for all 1 < j #k < M.

Now we can put a little ball B,(xy) of radius ¢ around each of the x; € E,.
Any two of these balls cannot overlap due to the definition of ¢. Since none
of the =y is farther away from z; than (n + 1)g, the balls are all contained
in the ball B(,19)4(x;) of radius (n + 2)g around ;. But all of the z;, are at
least ng away from x;, such that their surrounding balls cannot intersect the
smaller ball B, 1)q(x;) around z; of radius (n — 1)g. Adding their volumes
using (12.3.3, EqVolBall) we get the bound

B 0T a2 (gl 1))
|En‘ < (n+2)d_ (n_ 1)d.

for the number |E,| of elements of E,. If both terms on the right-hand side
are expanded with the binomial formula, the leading positive term is 3n¢ !,
and all the terms must combine into powers of n with nonnegative factors.
Thus we arrive at

|E,| < 3n%",

For points z; € E, we can bound the values of ¥ via (12.3.15, Eq.JsqBound)
as follows:

Wil =) = Go(K)? (§ +1) 27205 — a4 T3 -y = )
= Go(K)? (§ +1) 2Ky —
(K -2y = el T K -l = )
2d+2
< (K ( +1) 212K (n — 1)q) "1 =——
™

Now it is time to do the summation over all £ # j, and this summation can
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be done by summing the points in the sets E,. This yields

Z‘I’K(:rj—xk) = i Z ‘I’(J?j—l“k)

k#j n=2z,€ky
d+1 )

n=172 (% + 1) > 3t (n—1)"""!

n=2
d+1 00

n=172 (% + 1) 6> (n—1)7?

n=2

N IN IN
S S S
= = =
= = =
TN TN

- w0
< 5Pk(0)

if we choose K according to (6.4.9, EqCBGer).

[t remains to show that (6.4.8, EqKBound2) implies (6.4.7, EqQKBound). We
use a variation of Stirling’s formula in the form

?(1 4 2) < V2rza®e "el/t? x>0

to get
21?2 (d/2+1) < 272d?+!(2e)~de!/3d,
1 1 !
2r?2(d/2+1))d+T < 2& (4en?)d+1 e3d(d +1)
e
T
< d— €Y% < d-2.2511
= \/E e’ =
such that 0,005
K>
= d
is satisfactory for all cases. a

We now want to look at the specific cases for applications. From (6.4.6,
EqCLB) and (6.4.7, EqKBound) we see that

0 =0(q) => O (¢ %(cd/q))

with some positive constant ¢. Thus we only need to look at the decay of
the Fourier transforms to get the asymptotics of ¢ with respect to ¢ — 0,



6.5 FError Bounds 139

keeping the space dimension d fixed. Comparison with Table 10 (TFT) then
yields the results of Table 7 (TCPDC).

¢(r) | Lower Bound in O form for ¢ — 0
rlogr | ¢°
(r? +9%)7 | ¢~ exp(—¢/q), ¢ >0
e " | g~dexp(—c/q?), ¢ >0
rK,(r) | ¢
(1-=r)3i2+7) g
(1—r)il+4r) |

Table 7: Lower Bounds of Smallest Eigenvalue Based on Lagrange Data with
Separation Distance ¢ (TCPDC)

6.5 Error Bounds

(SecEBTrans) We now want to apply Fourier transform techniques to get
error bounds. The starting points are the representations (6.1.1, DefBil2) of
the bilinear form and (5.1.1, DefPuxyLag) of the square of the power function

for Lagrange data on X = {x,..., 7y} C IR%. These combine into
(EqPFFT)
o 2
P?(z) = (27r)’d/2/Rd P (w) e — ;uj(x)e_i“’f“ dw
o ) (6.5.1)
= (27r)_d/2/]Rd B(w) |1 — ]Zl uj(x)e @) du

and we insert the real numbers u?(:c) into this representation as postulated

in Assumption 5.1.6 (FBAss2). Thus we assume (5.1.3, EqEllgeqm), (5.1.7,
uDetJx) to (5.1.10, uDef3) to be satisfied.

There are basically two choices to bound the square factor in the integrand
of equation (6.5.1, EQPFFT), and these two are done after splitting the



140 6 ADVANCED RESULTS ON IRP

integration domain into two parts, say I; and I,. Bounding ' 1) by one,
we can write

/hci(w)

if the latter integral exists. This usually is no problem, if I; excludes the
origin in case of conditionally positive definite functions of positive order.
If I is chosen as a function of h to represent a shrinking neighbourhood of
infinity, say as the complement of the ball By, (0), this integral will nicely
decay for h — 0. But since it does not depend on the u; and their polynomial
reproduction properties in IP{, it does not furnish the relevant part of the
bound of the power function.

2

M
1- Zu?(x)ei(’”_‘”i)'“ dw < Cs(, h)Q/ ®(w)dw
7j=1

Iy

This will be obtained by the second technique. We take the complex-valued
Taylor expansion p, € IP} of e at zero, and denote the residual by ry(t) =
e —py(t). Then the polynomial reproduction property (5.1.9, uDef2), when
applied to the function p,((- — x) - w) for fixed values of x and w, yields

L=p0) = pel(z —2)-w) = Z( )W(flﬁ)m((% —z)-w)

and we use Example 12.1.4 (ExaExpIma) to bound part of (6.5.1, EqPFFT)
by

(EqPFFT2)
er) 2 80) [ty =)o) o < (oL [ G uppta,

(6.5.2)
As explained before, the domain I, is either all of IR? or a large neighbour-
hood of zero that grows towards infinity when h — 0. Thus the bound in
(6.5.2, EQPFFT2) roughly depends on the smoothness of ®. It exists on all
of IRY, if ® has Fourier transformable derivatives of order up to 2¢. Note
that (5.1.3, EqFllgeqm) and (6.1.7, BetaZCond) combine into

60 < 2m S 25,
making the integral well-defined around zero.

Before we look at single examples, let us check the basic two situations, the
first of which is easily obtained by picking I, = IR?.
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—

Theorem 6.5.3 (TheEBFT1) If for a specific £ > m the integral of ®(-)|| -
12 on IR? is finite, and if Assumptions 5.1.6 (FBAss2) and 6.1.4 (FTAssl)
are satisfied, then there is a bound of order ¢ for the power function. O

If Theorem 6.5.3 (TheE@FTl) cannot be applied, there typically is a rather
slow algebraic decay of ® at infinity, e.g.:
(EqPhiDecay)

B(w) < Cyfjw]; (6.5.4)

with a real number (., that cannot be pushed up to be larger than 2¢. We
now set Iy = By;,(0) and look at the result for sufficiently small h. The first
integral will then be of order (., while the second consists of the “inner”
part of order 2/ and the “outer” part, where the asymptotics of P yield the
order 20+ (fo — 20) = . Due to 2¢ > [, we are left with an overall order
Bs. We summarize:

Theorem 6.5.5 (TheEBFT2) Let & satisfy Assumption 6.1.4 (FTAssl)
and have a decay like (6.5.4, EqPhiDecay) with s < 2¢ near infinity. If the
data satisfy Assumption 5.1.6 (FBAss2) near x, then the power function has
a bound of order (/2 at . O

Example 6.5.6 (ExaTPSFT1) The typical case for Theorem 6.5.5 (TheEBFT2)}
is furnished by thin-plate or polyharmonic functions ®(x) = o(||z|2) =
|z||510g ||z]|2 or |z||5, dependent on B being an even integer or not. In both
cases the Fourier transform in IR% is |w|ly*? up to multiplicative constants,

and we have to set 3 = By = Bo < 2¢. Then we get a bound of order /2 for

the power function, as in section 5.5 (hrhodef).

Most other cases are applications of Theorem 6.5.3 (TheEBFT1), because
one can take 2/ < (B, > [y to get order ¢ for the pointwise bound of the
power function. The only drawback is the case 2¢ = (;n fty, which needs a
similar split as the thin-plate-spline case.

Example 6.5.7 (EBSob) Sobolev radial basis functions have the native
space WE(IR?) which can be characterized as the space of functions with
classical Fourier transforms in a weighted Lo space with weight (1+ || - ||2)%.
Thus the reciprocal of this function must be (up to a factor) the Fourier
transform of the radial function generating the space as a reproducing kernel.
We thus can set ® = (1+ || - ||2)~* and use Theorem 6.5.3 (TheEBFT1) for
any £ < k —d/2 = Bx/2. The case { =k —d/2 is handled again by splitting
the integral. This yields terms of type O(h*~4)+O(h%)(O(1)+O(h?*-2-1)),
and we get a pointwise bound of order k — d/2, as expected.
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6.6 Error Bounds and Scaling

(SecError) Here we study the effect of scaling a translation-invariant basis
function ® : IR? — IR® by some factor § in the sense

®s(z,y) == ®((z —y)/6) for all z,y € IR".

We assume that ®q(z,y) = ®(z — y) is conditionally positive definite with
respect to some finite-dimensional space P, and the latter should be invariant

under scaling of arguments. From (3.3.2, DefBil) we see that
(DefBildelta)

M
> ;B ®Ps(x;, yi)

1k=

f: a; 0k ®((z; = yx)/9)

1k=1
/6Maa)\Y/6Nﬁ)

|
M=

()\X,M,ou )\Y,N,ﬁ)<1>,5 -

<.
Il
—

(6.6.1)

I
M:

|
A~
y Il

The condition Axy,a € Pg implies Ax/5n,0 € Pg due to the invariance of
P under scaling. Thus we have

7 Special Theory

(SecST) Here we introduce general transforms and generalize the results
that we had on IR?. We start with generalizing the notion of a transform in
order to cover some other cases we consider in some detail later:

1. Fourier series on [0, 27]¢,
2. General expansions in orthogonal series,
3. Harmonic analysis on locally compact topological groups.
It will turn out that certain results can be formulated for general transforms,

while others take advantage of the special structure of the underlying space.

7.1 Results for General Transforms

(SecT) This section covers the necessary results about general transforms.
The applications except for R¢ will follow later. We start from the general
setting and add the specific details later.
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7.1.1 General Transforms

(SecGTR) Here we formulate the general notions that apply to all kinds of
transforms that we consider later. The setting is general enough to allow
generalized transforms in addition to the classical ones. This turns out to
be absolutely necessary even in the simple case of Fourier transforms on IR?.
For this reason we do not rely on other sources on transforms.

Assume that our basic space G with positive definite bilinear form (-, ) and
nullspace P is a space of real-valued functions on some domain €. Forget
about ®. G, and P for a moment, and concentrate on ).

Assumption 7.1.1 (TAssl) For a specific space S of real-valued test func-
tions on some domain €2 there is a linear and injective transform mapping

g—g : S8— Ly, (D)

whose values are complez-valued functions on some domain D that carries a
measure o such that the space

Ly,(D) := {f : D= C : / |f?do <oo}
D
is well-defined and a Hilbert space over C' with inner product

(4, V)1, (D) i= /Duﬁda for allu,v € Ly, (D).
In particular, the measure o can be Lebesgue measure on D = IR? for
the classical multivariate Fourier transform, or Haar measure on a locally
compact topological group, or plain summation for series transforms, e.g.:
D = ZZ% for Fourier series on 2 = [0, 27]%. Note that the transform domain
D and its measure o are independent of the functions ® that we are going
to consider, but they will crucially depend on Q. We shall often write (-, -)s
as shorthand for the above inner product, and we use the phrase almost
everywhere to stand for “on D except for a set of o-measure zero”.
Assumption 7.1.1 (TAssI) is usually satisfied by proper definition of D, o,
and the transform mapping. Injectivity of the latter is often proved by an
inverse transform.

Assumption 7.1.2 (TAss2) The space Ly ,(D) contains the image of the
space S of test functions under the transform mapping as a dense subspace
and coincides with its closure under the inner product (-, )L, (p)-

This makes sure that the test function space S is rich enough to generate all
of Ly (D) by continuity arguments acting on transforms.
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Assumption 7.1.3 (TAss3) There is a 1-1 correspondence between Lo
spaces on ) and D in the sense that there is a measure w on ) such that the
spaces Ly (D) and Ly, () are isometrically isomorphic under the transform
mapping:

(Planch)

(fag)szQ = /Qfgdw - (.]?: E)ng(D)' (714)

Identities like (7.1.4, Planch) are usually called Plancherel’s equation. Of
course, one could use the structure on Ly ,(D) to define an inner product
for functions on Q by using (7.1.4, Planch) without the representation via
integrals as a definition. Thus the actual meaning of Assumption 7.1.3
(TAss3) is that this abstract inner product can be respresented as a standard
L, inner product.

7.1.2 Spaces Induced by Basis Functions
We restrict ourselves to basis functions @ that satisfy

Assumption 7.1.5 (PFTAssl) The conditionally positive definite function
® : QxQ — IR has an associated real-valued nonnegative function ® which
15 defined and positive almost everywhere on the transform domain D.

For reasons to become apparent later, we do not require d to be the image
of ® under the transform mapping, since we shall encounter cases where ®
is not in the domain of the transform. One should rather consider (®)~" as
a weight function on D. But there will also be cases where actually d is the
transform of ®, thus the notation. The relation between ® and ® will be

clarified after introducing some additional notation.

We use (&))_1 as a weight function to define the operator

~

L(p : gl—>i

Vo
To turn it into a continuous map with image in L, ,(D), we restrict its domain

to the subspace
8q> = {U €S L@U € LQ’O—(D)}

of the space § of test functions on D. We now can define an inner product
(PTIP)

(f,9)s = /Df(@)’lﬁda (7.1.6)
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on all f,g € Ss.

We are now ready to link ® to ® and its native space G = P + F by the
requirement

Assumption 7.1.7 (PTAss2) The closure of Sg under the inner product
(7.1.6, PTIP) coincides with the Hilbert space F.

Then the mapping L¢ can be identified with its continuous extension to all
of F, and it can be further extended to G by defining it as being zero on P.
The image of F under Lg is a closed Hilbert subspace of Ly (D), and we
shall require some additional work in special cases to prove

Assumption 7.1.8 (PTAss3) The mapping
(LSurj)

Ly : G— Ly,(D) (7.1.9)
as the canonical extension of

9

La(g) = —=
NG
for g € Sg is surjective.

The extension allows to define a generalized transform on the space G via

g:= \/éLé(g),

and these are by definition in the weighted L, space

[ u(w)P

L2,0,1/$(D) = { us [ 30) do(w) < oo}.

7.2 Theory on the Torus using Fourier Series
7.3 Theory on Spheres using Expansions

7.4 Lower Bounds for Eigenvalues

(SecLBE) Here we proceed to prove lower bounds of the form (4.6.4,
GBound) for the smallest eigenvalue of the matrix occurring in optimal re-
covery problems with Lagrange data. We had to postpone them until now,
because they require transforms.
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7.5 Generalizations of Results Using Transforms

8 Theory on Grids

Using Fourier transforms, we treat the case of gridded data hZZ? here.

8.1 Sampling Theory

Theorem 8.1.1 (MST) Classical Sampling Theorem......

8.2 Strang-Fix Theory
8.3 Application to Radial Basis Functions

8.4 Shift Invariant Spaces

9 Construction of Positive Definite Functions

(SecCCPD) This section is intended to give the proofs of conditional positive
definiteness of the classical radial basis functions. We include a toolbox
of operators on radial functions that allow the construction of compactly
supported positive definite functions. Except for the first subsection, we
shall rely on properties of Fourier transforms as compiled in section 12.5

(SecFTRd).

9.1 General Construction Techniques

(SecGCT) This section is planned to give an overview of methods for the
construction of new conditionally positive definite functions from existing
ones. For the time being, we restrict ourselves to translation-invariant cases

in IRY,

9.1.1 Simple Cases of Positive Semidefinite Functions

(SecSCPSDF) Let us start with the function

P¢(x,y) = cos((z —y) - (),
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where ¢ € IR? is fixed and z - ¢ stands for the inner product on IR%. Using
the terminology of (3.3.2, DefBil) on page 55, we get

(AxMas AvNgla, = Z Z ;B cos((z; — yr) - €)

j=1k=1
M N
= Y Y a;frcos(x; - ¢) cos(yy - ) + sin(z; - ¢) sin(y - )
=1 k=1
’ M
= (Z ajcos(x ) (Z B, cos(yg - C))
-1
’ M
+(Z a;sin(z ) (Z By sin(yg - ())
Jj=1 k=1

and this is a well-defined bilinear form which is positive semidefinite because
of

M 2 M 2
()\X,M,ou)\X,M,a)(I)C = (Z Oéj COS({,Ej . C)) + (Z Oéj Sin(x]- . C)) .
j=1 j=1

If we allow complex-valued functions temporarily, we can generalize the above

case to

O (w,y) = TV,
which yields a positive semidefinite sesquilinear form with
2

izjC
()\X,M,ou )\X,M,a)cbC je !

These quadratic forms are not positive definite, if ( happens to be a zero of
the analytic function

)\X Moz(bc Z Oé] sz z,
but we shall overcome this drawback by integration over (.

9.1.2 Elementary Operations

(SecCTEIOps) 1t is very easy to see that (conditionally) positive (semi-)
definite functions on ) form a cone in the space of all functions on € x €.
In particular, if ® and ¥ are (conditionally) positive (semi-) definite, so are
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a®+ [V for o, f > 0. Furthermore, if a family @, of (conditionally) positive
(semi-) definite functions can be integrated against a positive function w((),
the result

O(z,y) = /w({)@C(:c,y)dC

will again be (conditionally) positive (semi-) definite.

9.1.3 Autocorrelation Method

(SecCTAut) If we cannot start with a (conditionally) positive (semi-) definite
function but have an arbitrary function ¥ € Ly(IR?), we can form the
autocorrelation function

O(z,y) = /Rd Uz —2)¥(y — z)dz.

This always yields a symmetric positive semidefinite function which even is
positive definite, if all translates ®(z; — ) for different points x; are linearly
independent in Lo (IR?).

9.1.4 Integration Method

(SecCTInt) The previous method easily generalizes for any 2. For any
function ¥ on X II one can formally consider

@r,y) = [ W OW(y,Ou(Q)dC

with a positive weight function w on II. If the integral is well-defined, the
result will be a symmetric positive semidefinite function on €2.

9.2 Construction of Positive Definite Radial Functions
on IR?

(SecCTPDRF) This subsection contains tools from [47](wu:95-2) as general-
ized in [43](schaback-wu:95-1) for the construction of positive definite radial
functions on IR?. We start with the standard reduction of d-variate Fourier
transforms of radial functions to Hankel transforms of univariate functions.
Introducing t = r2/2 as a new variable, two such transforms for different
space dimensions are related to each other by a simple univariate differential
or integral operator that preserves compact supports. This fundamental trick
of Z. Wu then opens up the way for the easy derivation of various compactly
supported radial basis functions.
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9.2.1 Hankel Transforms

(SecHT) We assume a radial function ®(-) = ¢(|| - |[2) to be given such that
¢ : IR~y — IR has some decay towards infinity that we are going to quantify
later. Let us formally look at the Fourier transform formula (12.5.2, FT) and
simplify it, using radiality, and introducing polar coordinates for x:

bw) = (21) 92 /Rdcp(x)e—mdx
= @) [ g(lfalp)eds

= (27r)_‘7l/2/oO qﬁ(r)rd’l/ e MY T gy dr
0 llyll2=1

This contains the function F(r||w||2, d) defined in (12.3.5, EqDefF'td) by the
integral

F(t,d) := / e " dy
llyll2=1

for ¢ > 0 and some |[z||; = 1, 2 € IR?. Using its representation (12.3.7,
EqFtdRep) via a Bessel function, we get the very important equation

(EqFTR)
d(w) = ) 2 ” r)rd=! ?(dQI)?(l) w
$w) = (27) [O S0 e dao )
= Nl [ 62 T2 vl ) dr
(9.2.1)

that allows the Fourier transform of a radial function to be written as a
univariate Hankel transform. Equation (9.2.1, EqFTR) implies that the
Fourier transform of a radial function & is again a radial function. It holds
also for d = 1, as can be proven by direct calculation and

(JBh)

COS z
./ (2 (9.2.2)

This equation is not directly compatible with (12.3.6, JBF), because the
latter does not exist for v = —1/2. But we can use the usual power series
representation (12.3.8, JBFP) of Bessel functions to get (9.2.2, JBh) from
(12.3.10, JBh2).

We conclude this section by evaluating the Fourier transform of the charac-
teristic function y; of the unit ball in IR?. This is needed in the proof of
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Theorem 6.4.4 (ThNWLB). In particular, we apply (12.3.14, CSPnuFT) and
get
(EqF TCharF)

_ —(d—
GW) = Il [ aparlol)dr

—d/
=l T (llwll2).

(9.2.3)

Considered as a univariate radial function, this is an entire analytic function
of exponential type that we shall meet again in the next section.
9.2.2 Change of Variables

(SecCTHTCV) We now introduce t = r?/2 as a new variable, writing a
radial basis function ® as

(EqCHYV)
®(-) = o(ll - ll2) = £l - 113/2), (9.2.4)
and we shall use Latin characters f,g,... to distinguish the transformed

functions from the original ones ¢, v, etc. Note that going over from ® to ¢
and further to f loses the information on the dimension of the space that we
want to work on. But we can take advantage of this loss and write dimension-
dependent operations like Fourier transforms as univariate operations with a
scalar parameter d.

We keep the dimension d in mind and rewrite the d-variate Fourier transform
equation (9.2.1, EQFTR) in terms of the transformed function f to get

~ _dl2 oo
Bw) = fwla ™ [ F2)5" Tusa (s |w]l2)ds

(2 (2 (sl )T
:/of<s7><s7> ( 2 2) Jaia (5 - [|wll2)s ds

= (Y (2VE pran (2 1l
_ S S 2 s
= /0 f(?)(?) H%Q(? —2—2> ds

with the functions .J, and H, defined by

(3) " 7u(e) = H(z2/4) = Z k17 (% +/z/)+ )

for v € € as in (12.3.9, EqHnuDef). If we substitute ¢ = s/2, we find
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(EqHnuProp)
o] . 2
dlw) = F) T Hass (t- ] )dt

“ /0 v N (9.2.5)

= (Faef) (Jol/2)

with the general operator

(EqFnuGen)
(F,f)(r) = /0 © PO, (tr)dt. (9.2.6)

This operator is formally defined for all v > —1 and sufficiently nice functions
f, but we can extend it to all v € IR, if we omit terms in the series of H, that
have a singularity of the Gamma function in their denominator. However,
we want to check its domain of definition with respect to functions f on IR~q
for v > —1. Near zero, the function f(¢)t” should be absolutely integrable,
because the analyticity of H, causes no problems at zero. For large v this
allows a moderate singularity of f at zero. Near infinity we have to check
the decay of H,. But since the Bessel functions .J, have a O(¢~'/2) behaviour
for t — oo due to (12.3.18, EqBFBound?2), we see that H,(t) decays like
t=v/2=1/% Thus we require integrability of f(¢)t*/>~'/* at infinity for v > —1.
Since we do not need the weakest conditions, we can simply assume

(Eqgbb)
f(t)t" € Li(IR+p). (9.2.7)

Note that both F, and H, generalize to arbitrary v € IR, provided that
certain restrictions on f like (9.2.7, Eqbb) hold. Furthermore, by symmetry
of radial functions and our definition of Fourier transforms we have

F7y = Fu>  forde IN
B} 2

on sufficiently smooth functions with sufficient decay. We shall see later
that this generalizes to F, ! = F, for all v € IR, wherever both operators
are defined. Please keep in mind that the parameter v is related to the
space dimension d via v = (d — 2)/2. We shall work with v instead of
d for notational simplification. Furthermore, we consider a space S,,q of
tempered radial functions. It could be defined as a subspace of the space
S of d-variate tempered test functions, comprising all radial test functions
after introducing ||z||3/2 as a new variable. However, we prefer to define it as
the space of real-valued functions on [0, c0) that are infinitely differentiable
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such that all derivatives vanish faster than any polynomial at infinity. Taking
derivatives of (9.2.4, EQCHV), one can easily see that this yields a subspace
of radial test functions on IR® for all space dimensions d. Conversely, any
radial test function ® in the form (9.2.4, EqCHYV) yields a function f that is
in S,44- To see this one can proceed inductively, using

m
;w—m (w) = f(m)(||w||§/2)w;n + lower derivatives with polynomial factors.
j
Thus the two notions of S coincide, and each radial function which yields a
test function for a specific space dimension will provide a test function for
any dimension. Thus S,.q is the proper space to define the operators F, on,
and it clearly contains e™", which can easily proven to be a fixed point of any
F,, using the definitions (12.3.9, EqHnuDef) of H, and (12.3.1, GammaDef)
of the Gamma function.

9.2.3 Calculus on the Halfline

(SecCoHL) 1In the space S,qq wWe can introduce a quite useful generalization
of the classical calculus operations. We start with the family of operators

(EqlaDef)
L(f)(r) = /0°° f(s)%ds (9.2.8)

on S,qq for all @ > 0. The simplest special case is

L)) = [ fls)ds

with the inverse
I (f)(r) == =f'(r).

Note that this operation implies that the resulting function vanishes at infin-
ity, and thus there is no additive constant in the integration. Furthermore,
the identity

Id=1o1I",

is Taylor’s formula at infinity, as follows from (9.2.8, EqlaDef). The identity
(12.3.2, EqGxy) allows a direct proof of the property
(Eqlab)

Ioly=1I,.4 (9.2.9)
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for all @, B > 0 by application of Fubini’s theorem. Differentiation and
integration by parts imply

I"ol, = I,, 0<a<n
LiiwolI, = I, a>0n>0.

By I,=1y0l,0I" =1,01,0I", we get
]Zlo[a:[aO]fla

and this suffices to prove that (9.2.9, Eqlab) holds for all o, 5 € IR if we
define

Ig = Id
Io = Ia-jaj 0 ja

for the remaining cases of a. Altogether, we have

Theorem 9.2.10 (Thelab) The operators I, on Syqq form an abelian group
under composition which is isomorphic to IR under “+7 via a+— I,.

Proof: The remaining things are easy to prove using the above rules. a

Let us do some simple examples of differentiation and integration of fractional
order. The independent variable will be denoted by ¢, and we indicate the
domain of validity of the different cases, because we do not restrict ourselves
to tempered radial functions.

( (t+2)(r) = L(ft)(r+=) a€lR, x>0
( (tz))(r) = x I, (f(t))(rz) a€lR, x>0
I(e™)(r) = s % a€lR, s>0
I (¢~ 57(5))(?‘) = 7 797(8 - a) B>0,a<p
L((x+t)20B8)(r) = (z+ r)_(ﬁﬁ_o‘)? (B—a) >0, a<f, >0
(s =i (s —r)3
Ia< 705) >(r) a1 ) B3>0 a+3>0

We shall make specific use of the “semi-integration” operator and its inverse,
the “semi-differentiation”, as given by

(EqDefT12)
() f(S)
Lis(f)(r) = s
2(f)(r) / |
< f'(s) (9.2.11)

I 19 r) = — 7Sd8
2(H)0) /’"m

= Tipo L. (f)(r),
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that are inverses of each other.

A very simple representation of the operators I, is possible via the Laplace
transform
(EqLapDef)

L(@)(r) = /0°° o(s)e " ds (9.2.12)

which exists classically for any continuous function ¢ on [0, cc0) that grows at
most polynomially towards infinity. For the time being, we ignore the more
general definitions of Laplace transforms and observe that the action of I,
can be written down as

where all real o are formally possible (provided that ¢ behaves nicely
enough).

9.2.4 Basic Transitions

(SecBT) The main advantage of S,,4 and the definition (9.2.6, EqFnuGen) of
the radial Fourier transform using (9.2.5, EqHnuProp) is that we can compare
Fourier transforms for various dimensions, while working on a simple space
of univariate functions. But the most surprising fact, as discovered by Wu,
shows up when we simply take the derivative of F,(f)(r). We use (12.3.11,
EqHnuDer) to get

(EqDFF)
_C%Fu(f)(r) = (Lo F)(f)(r)

_ _%Amf(t)t”Hy(rt)dt

S Uoof(t)t”d%Hu(Tt)dt 219

_ / FO T Hyy (rt)dt

- Fl/+1(f)(r)'

Going back to v = (d—2)/2, we see that the (d+2)-variate Fourier transform
of a radial function after the substitution (9.2.4, EQCHYV) is nothing else than
the negative univariate derivative of the d-variate Fourier transform after
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(9.2.4, EqCHV). We shall generalize the above identity later to I,oF), = F,_,
on R, but we already know that I;oF,, = F,; allows to proceed from (d+2)-
variate radial Fourier transforms to d-variate Fourier transforms by univariate
integration.

Let us apply (12.3.12, EqHnuDerNu) to get another identity on tempered
functions:

(EqFIF)
FA=1)0) = [ =/ ()" Hy(sr)ds
0
- / f(s)s" " H,_y(sr)dsdt (9.2.14)
0
= = Fu—l(f)(r).
This will generalize to F, o I, = F,, and is a trivial consequence of I, o

F,..,=F, and FE = Id, if the latter holds in general.

Note that in both cases we have operators that preserve compact supports.
The integral operator even preserves nonegativity (it is a monotone op-
erator). The explicit construction of compactly supported radial functions
relies heavily on these features. But we also want to proceed from d-variate
Fourier transforms to (d + 1)- or (d — 1)-variate Fourier transforms. This
will be achieved by the operator I, and its inverse from (9.2.11, EqDefI12).
We shall treat this problem in general, comparing two arbitrary instances F),
and F),.
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9.2.5 Identities for Transforms, First Version

(SecIfT1) We can easily evaluate the action of the Fourier operator on the
Laplace transform as

FAL@)0) = [T s Hy(sr) [ pt)e drds

— /OO o(t) /OO s"H,(sr)e *dsdt
0

0

— /OO ()t ! /OO =" H,(xr/t)e” “dxdt
0 0

= [T erte
0

= /oo ©(1/5)s" e *"ds
0

= Lp(1/)()" ).

Then, again as formal operations,

Fy(L(e()) = L(e(1/)()")
= LuwL(0(1/)()
= L Fu(L(e()),

F,(Fu(L(¢(1))) = F (L(p(1/)()*)
L () ()71

Lo (L (1)),

as expected. Note that this implies F> = Id for all v. All of these identities

are valid at least on Laplace transforms of functions ¢ that vanish faster than

any polynomial at zero and at infinity, but continuity arguments can be used

to enlarge the scopes.

9.2.6 Identities for Transforms, Second Version

(SecIfT2) The previous section showed that the identity
F,oF, =1,

holds for all u,v € IR on a small space of functions, and where I, is an
operator that roughly does a-fold integration for @ € IR. We now want to
make this more precise and explicit. In particular, we assert F? = Id for all
v, which we only know for v € %Z>,2. Furthermore, we want to use our
explicit representations for the operators I,,.
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To proceed towards inversion of the operator F,, let us start calculating
the Fourier transform of the simplest compactly supported function, i.e.: a
truncated power. The outcome is somewhat surprising, because we run into
the function H, again:

Lemma 9.2.15 (Leml2) Forv > > —1 and all s,7 > 0 we have

A (A Y 0 = e,

Proof: We directly calculate the assertion and use (12.3.13, JBI) from page

190. In detail,
B (3 ) o

[ s s =
_/0 Py Hultr)dt

- ()(57?@ /Ost“(s—t)”“lHﬂ(tr)dt

—v s
= S | (s =)LV (rt) T2,
el R eI
and by substitution ¢ = su?, we get

,l, 1
= ﬁ / stuhs =P (1 — )= T (24/rsu) (rsu®) M ?2sudu
v — 0

_ 2 22—y
= -m v V)

= (Vrs) " Ju(2V/rs)

= H,(rs).

O

We would like to invert the Fourier transform in the above assertion, but
the decay of H, is not sufficient to see directly that F), is applicable at all.
However, we can resort to specific tools from Special Functions to get

Lemma 9.2.16 (LemFTInvTP) Forv > > —1 and all r,s > 0 we have

(FuH,(s)(r) = sy(?s(; f)i)ﬂl
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Proof: The assertion is a consequence of the Weber—Schafheitlin integral
(see (12.3.21, EqWeSchaf) or [1](abramowitz-stegun:70-1) p. 487, 11.4.41)
after substitutions of the type t = s?/2. In detail, we have

u? r?
(rate () (3 )
_ o ®E T2 H u2 d
= J e ) (s )
SR 2 2 2 2
= L) ey o)y oy )
= /0 2 Hg2utl (% ) K (% ) v J,(us)ds
— 2”r‘“r‘”/oos”_”+1J#(rs)Jy(us)ds
0

2urfpufu2ufy+lru(u2 - TQ)_VF*;L*I
u”? (v — p)

ol () (g g )
v-m\z) (7 Ty

We now know that F, o F,, = Id holds on Laplace transforms, on truncated
powers, and on functions of the form H,(s-). But before we generalize this
to a larger class of functions, we generalize it to other F), operators:

Theorem 9.2.17 (TheFFI) Let v >yt > —1. Then for all tempered radial
test functions f € S,.q we have

(Eqdd)
F,oF, =1, (9.2.18)
where the integral operator I, is given by

a—1

(Jaf)(r):/omf(s)% ds, >0, a>0.

(@)

Proof: For any tempered radial test function f € S,,q we evaluate (F), -
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F,)f(r) by means of Lemma 9.2.16 (LemFTInvTP) to obtain

oo

/Ooo HM(tT)t” i H,(st)s" f(s)dsdt
— /000 s"f(s) /000 t"H,(tr)H,(ts)dt ds

= [T L) (0)ds

By the above theorems it is easy to see that
[aHV = HV*OL

for all @ < v + 1, generalizing (12.3.11, EqHnuDer).

9.2.7 Wendland’s Functions
(SecWF) Due to a result of Askey [3](askey:73-1) the radial truncated power

function
Au() = (1= l2)%

is positive definite on IR? for u > [d/2] + 1, because it has a strictly positive
radial Fourier transform in this case. Its radial form after substitution is
(1- @)i, and due to its finite support we can apply any F, operator for
v > —1. We use the identity F,,, = F, o I, from (9.2.14, EqFIF) for this
function and get

Fu—l—kAu = Fu(]k(Au))’ k€ IN,

where the left-hand side is strictly positive whenever
(EqWeCond)
p>d/2] +1+k. (9.2.19)

Thus the function I;(A,) is positive definite on IR? for the same range of
parameters. Since the I, operators preserve compact supports, the resulting
functions

Dun(r) = In(Au(r?/2))

lead to compactly supported positive definite functions

U () = Yun(l - ll2) = Te(Au(l] - 113/2))
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on IR? under the condition (9.2.19, EqWeCond). Let us do a straightforward
evaluation. This yields

(EqWeGen)

i = [0t
) /jﬂt(l_tw% (9.2.20)

_ /:t(l_t)u%

for0 <r <1/20r0<z=+2r <1. Ifpuisan integer, the resulting function
is a single polynomial of degree ;14 2k in the variable z = ||-||2 on its support.
The case k =1 is particularly simple. We get the explicit representation

LA, (22)2) = /1 11— 1)dt

_ z(1 — )t N (1 — g)nt2
p+1 (h+1)(n+2)
(1—a2)4"

= ey T

The smallest possible integer p for d < 3 and k = 1 is y = 3, whence

I Az(2%/2) 1—2)% (1 + 4x).

1
= 2_0(
In addition to Ay, = I A, let us define

el =

and split the integral defining Ay, via t = (t — 1) + 1 into
Akau = _Bkz.u/‘l'l + Bk:.u/

Then do integration by parts for By, and £ > 1 to get

1
By = mAkfl,qul-
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Thus we have the recurrence relation

1 1

= Ao+ —— A1
k,u [+ 2 k—1,u+2 01 k—1,u+1

Looking at our result for £ = 1 we see that we can assume
Apu(@®/2) = (1 = 2)" Cpu(@)

with the recursion

(- 1) 1
Cru() = ) Cr-1us2(z) + M—Ck—l,u+1($)a

for £ > 1, starting with
Co’u(l‘) =1.

Thus the polynomials C}, , have degree k with a positive leading coefficient.
The number of continuous derivatives of Ax ,(2?/2) at ¥ = 1 thusis p+k—1 >
2k + |d/2] > 2k. To get the number of derivatives at zero we apply the
binomial theorem to the last factor in the integrand. Then

Apu(22/2) = jz_:_: ( kol > %Alt(l — )R gy

J

1 .
Quk—j(T) = /mt(l—t)“t%*%%dt

_ qu,k,j(l)—/o H(1 — )22 gy

l‘Qk_Q]

Qui—ji(1) — %2 + higher-order terms

shows that the first odd monomial occurring in Ay ,(2?/2) cannot have an
exponent smaller than 2k + 1. Thus the function has 2k continuous deriva-
tives at zero, and we get 2n — 1 = 2k + 1 in the context of Example 5.2.4
(AEWF). In terms of continuity requirements, we get overall C** continu-
ity at a minimal degree pu + 2k = |d/2] + 3k + 1, and Wendland proves in
[46](wendland:95-1) that this degree is minimal, if we ask for a single poly-
nomial piece on [0, 1] that induces a positive definite radial function which is
C?* and positive definite on IR?. Note that the order of smoothness at the
boundary of the support is |d/2] larger than the smoothness at zero, which
has a positive effect on the visual appearance of the reproduced functions.
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We end this by giving the C* case for all dimensions d, where p = |d/2] + 3:

Az pu(22/2)
= (1_x)i+2 72 .
= ATy B D+ 3) 3w+ 2) +3)

and the most frequent case for d < 3 is

2 (1- :c)i 2

The Fourier transforms are
F IyA, = F, 1A,

and thus for r = 22/2 of the form

1/2
FoipAu(r) = /o (1 —V2s) " H, 1 (rs)ds

x—u—k 1 it
= Sr / (1= )" T, g (wt)dt
0
x—u—?l/—?k—?

- T/U (z — w)Pu" T, (u) du.

Due to a result of Gasper [?](gasper:75-1), the above integral can be writ-
ten as a positive sum of squares of Bessel functions, at least in the odd-
dimensional case d = 2n — 1 with p = n+ k+ 1, which leads to v =m —1/2
and p =m+ 1 for m = n+k > n. Results of Wendland [46](wendland:95-1)
then imply the asymptotic behaviour

Fu[kAu(r2/2) = Fu+kAu(712/2) > cr -2kl
for the necessary values of u from (9.2.19, EqWeCond).
9.2.8 Fourier Transforms of Conditionally Positive Definite Func-

tions

(SecFTCPD) We now work towards a proof of conditional positive definite-
ness of the functions

() = @(||z]l2) = [|=2
for € IR~y \ 2IN. Let us first informally explain how the argument works
in general. If we have a radial function
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(EqRadg)

®(z) = p(|lzll2) = g(||=[|2/2) (9.2.21)

such that g is recoverable via (9.2.6, EqFnuGen) from a radial Fourier trans-
form via

(EqFTRad1)

g&):Amf@ﬁHxMML (9.2.22)

then the action of functionals on @, as in (3.3.2, DefBil), is representable by
(DefBil3)

(Axas Avnvgle = ;Brg(llz; — yell>/2)

M=
WE

<

Il
—
e

Il
—

I
M=
WE

QB [ HOFHL (s~ uel3/2)dt

.
Il
—
e
Il
_

M N

0t > oy BrHy (tlz; — yell3/2)dt

j=1k=1

(9.2.23)
This is okay if all functions involved actually behave nicely, but in case of
conditionally positive definite functions we have to account for a singularity
of f at the origin. This must be cancelled by a zero of the double sum, and
we thus assert that the application of functionals from (IP%)r, kills off the
first m terms of the power series of H,. In general:

Il
%
8
=

Lemma 9.2.24 (LemPDPow) For all polynomials p € IP% and all func-
tionals Ax a0y Av.nvg € (IPL) pa we have

)‘UX,M,aX{/,N,ﬂp(HU - UH%) = 0.

Proof: We evaluate the left-hand side for a monomial

lu—oll3* = ([[ullf - 2(u, v)%+||v||2)”
= Yl 20 )
Zewgo,m

with 0 < n < m. Since both functionals annihilate polynomials of order up
to m, there can only be nonzero terms for

2(1 +é2 Z m, and £2 + 2(3 Z m.
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This implies n = ¢4 + ¢ + 3 > 2m — n and n > m, which is impossible. O

This leads us to look at the Taylor remainder

Hyp(t) = i 0 (=)

= (v+k+1)

of H, after chopping the first m terms. If ® is only a conditionally positive
definite function of some order m, we should replace (9.2.22, EqFTRad1) by
the assumption

(EqFTRad2)

g(r) = /OOO f(@)t"Hy, m(tr)dt, (9.2.25)

and let the functionals act like in (9.2.23, DefBil3), but on (9.2.25, EqF-
TRad2). Using Lemma 9.2.24 (LemPDPow), we can then conclude that the
first and third lines of (9.2.23, DefBil3) are valid and equal, while the sec-
ond is invalid. But then we can transform the integral back to non-radial
form, letting the sums safely stay inside the integration. This yields precisely
(6.1.1, DefBil2) for

(EqwhPhiDef)

®() = (- 13/2) (9.2.26)

and is the crucial step to prove the validity of Assumption 6.1.4 (FTAssl)
for conditionally positive definite functions.

Theorem 9.2.27 (TheFTCPD) If a function ® on IR is radial in the sense
of (9.2.21, EqRadg) such that its radial form satisfies (9.2.25, EqF TRad2)
for a certain m > 0, then (6.1.1, DefBil2) holds for the function defined
in (9.2.26, EqwhPhiDef) and all functionals from (IP%)pa. If [ is positive
almost everywhere on (0,00), then ® is conditionally positive definite of order
m.

Proof: The first assertion is already proven. The second is a shortcut to
Theorem 6.1.8 (NCCPDFTT) in the radial case, and it just requires the
same arguments as the proofs of Theorems 12.5.6 (GaussPD) and 6.1.3
(NCPDFETT). O
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9.2.9 Application to Transforms of Powers

(SecFTP) Let us apply Theorem 9.2.27 (TheFTCPD) in case of ¢(r) = r°.
We can generalize the rule (12.3.11, EqHnuDer) for derivatives of H, to get
(EqHnuDer2)

__Hl/,m == H,j+1’m,1 (9228)

for the Taylor remainders.

We next assert that the radial Fourier transform of ¢(r) = r? is of the form
r~9=8. This is motivated by the following illegal argument:

The Fourier transform of ¢(r) = 7 in IR? will after substitution of t = 72/2
be proportional to

/ s's%2H, (st)ds
0

= ¢ lv=h/2 /OO w2 H, (u)du
0
= c(d, g)ﬂ—d—ﬂ)/?

for v = (d — 2)/2. The integral will not exist except for a small and
uninteresting range of 4 and d, but there is a deeper argument by analytic
continuation that can be used to turn this Euler-style calculation into a proof.

This makes it reasonable to restrict attention to integrals of monomials
against Taylor residuals. Using (9.2.28, EqHnuDer2) and integration by
parts, they can be reduced to the moment integrals (12.3.20, EqHnuMom).
In fact,

(EqHnum)

9 v,m / 2 v+m t)dt
/0 (p+l) ’ () 0 (p—l—l—l—m) ’0() ( )

T(v—p)

for a proper and hopefully wide enough range of p, v, and m. We deliberately
omitted the usual factor in the argument of the H, function, because we can
proceed along the same lines as above to get rid of it by substitution. Let
us now check the validity of the above procedure. The final equation will be
valid for
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(EqRhoMB)

1
p+m>—1 and 1/>2p+m+§, (9.2.30)

as follows from (12.3.20, EqHnuMom). The way back to the first integral
requires to check the boundary terms of the form t””“H,,H,m,j (t) for 0 <
j < m arising from integration by parts. At zero, we have the behaviour
O(tP*™+1) = o(1) due to the first restriction in (9.2.30, EqRhoMB) and due
to the leading powers of the Taylor residual. At infinity, we use the decay
properties of H,; as given in section 9.2.2 (SecCTHTCV) and get a O(t*)
behaviour with

a=p+j+1—-v/2—j/2-1/4<p+m—-v/2—-—m/24+1/4<0
due to the second restriction in(9.2.30, EqQRhoMB).

We now can head for the real thing, i.e.:
(EqFTPow)

A {2y @Dy (rt)d

= /0 til*ﬁﬂﬂ(d_g)/g’m (Tt)dt
~ (9.2.31)
= P2 /0 s’l’ﬁ/QH(d_g)/Q,m(s)ds

,rﬁ/Q ? (_5/2)
2((d+5)/2)

Here, we applied (9.2.29, EqHnum) and have to check (9.2.30, EqRhoMB)
for the special choice

v=(d-2)/2, p=-1—-0/2, m=[3/2].
But this works fine, since § ¢ 2IN and

-1-p/24+[5/2] > -1

prm =
> 2p+m+45=-3-p5+[5/2].

_d2 S _
v="522

3

N |—=

The worst cases for the final inequality are very small values of § with
[3/2] =1, but they still are safe. We summarize:
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Theorem 9.2.32 (TheCPDPow) The radial basis function ®(-) = (—1)1%/21||.}
19 for 8 € IR \ 2IN is conditionally positive definite of order m > [8/21,
and it satisfies Assumption 6.1.4 (FTAssl) with fy = (3. The function ® is

(EqFTPow?2)

2 251422 ((d+8)/2) ) —a-
)= Tammrcap T (9259
0

Note how the sign (—1)[%/21 arises when accounting for the sign of ? (—3/2)
to make the Fourier transform positive.

9.2.10 Sobolew Splines

(SecSobSpl) Before we treat multiquadrics, let us consider the simpler case
of Sobolew splines, which are the Fourier transforms of inverse multiquadrics.
We want to construct ® such that the native space is WF(IR?). But since
Sobolew space W& (IR?) consists of functions f such that the Fourier trans-
forms satisfy

f@) (1 +llwll2)* € Lo(RY),

we have to take the Fourier transform of
()= (1+- 15"

After the usual substitution and the replacement of 1 by an arbitrary positive
value y we see that we should make use of (12.3.25, EqKJ) to transform it
to meet our needs. In particular,

00 tV+1J
/ T (at). dt

0 (12 4 22)utl
/oo t”+1(at/2)”H,,(a2t2/4)d
0 (12 4 z2)mtl
B a’ /oo t2V+1HU(a2t2/4)
)y (12 + 22wt
— ,ru/221//27u /oo SVHU(TS) ds
0 (s+4y)nt!

2”/2*“7“”/23;(”*”)/2[( 5
= vu(24/7
T(p+1) 4 v)

dt

after substitutions s = 2/2, y = 2%/2, r = a?/2. In a slightly more
convenient form this means
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(EqSobSplRad)
00 (v—n)/2
7 (p+ 1)/0 s'(s+y) WY H,(rs)ds = <%> K, .(2\/TY)
(9.2.34)

for the above range of i and v. If we use our parameters, we have
v=(d—-2)/2, —p—1=—k,

and then the usual Sobolew inequality 2k > d implies that we are safe with
the condition —1 < v < 2u+ 3/2, as required for (12.3.25, EqK.J). We could
even work under the weaker condition d < 4k —3 without any loss, thus doing
a continuous recovery of functions from spaces that contain discontinuous
functions.

It remains to perform the substitutions properly: for &(-) = (1+ || - [|2)~* we
get f(t) =27%(1/2+t)~% and
(EqSobSpl)

() =272 (k)] - Iz~ Ku—apa((] - |2 (9.2.35)

9.2.11 Multiquadrics

(SecFTMQ) Let us now turn the Sobolew spline case upside down. We
want to take the d-variate Fourier transform of (9.2.34, EqSobSplRad) and
come back to ®(-) = (14 || - [|2)"*. To this end, we can use that the K,
functions decay expoentially towards infinity due toe (12.3.24, KnuAsyInf).
At zero, we have to compensate the singularity of K, as given by (12.3.23,
KnuAsyZero), by introducing the function

(EqLnuDef)

L,(s2/4) == K, (s) (g) . (9.2.36)
This definition makes sense due to K, = K_, and (12.3.22, KnuDef), al-
lowing to write the right-hand side as a function of s?. The function to be
transformed by F), then is

INGL .
(1) Keuovmm = 7 L),
and it leads to a function of w in L; after substitution, if 2u —2v +d > 0
or > —1or <0for —pu—1=7(3/2. Thus at least for v = (d — 2)/2 and
d < 2(1+ pu) = —f we can safely invert (9.2.34, EqSobSplRad) to get
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(EqMQFTRad)

o0 (v—n)/2
/0 s (%) K, u(2y/sy)H,(rs)ds = (r +y)""* 7 (u+ 1) (9.2.37)
without any further calculation. This covers a special range of inverse
multiquadrics, namely those which can be handled by classical Fourier
transforms. Our goal is to proceed towards positive values of —1 — p =
(3/2 ¢ IN by a sequence of tricks.

The first step proceeds towards —d < f = —2 — 2 < 0, where both sides of
(9.2.37, EQMQFTRad) are well-defined, the integrand being in L;. The only
thing that prevents us to use (9.2.37, EQMQFTRad) for this range is that
we proved it via the Fourier inversion theorem, but the right-hand side fails
to have a classical Fourier transform in the new range.

But we can make use of our calculus on the half-line, integrating both sides
by application of I, with respect to the variable y for @ > 0. This works
fine on the right-hand side, but we have to check the action on the left-hand
side, rewriting the equation as

(EqMQFTRad?2)

/ s L, ,(sy)H,(rs)ds = (r +y) "2 (u41). (9.2.38)
0
We use the differentiation rule (12.3.26, EqKnuDif) for the K, functions to

get

d 2 _ R0
CLM) = L)

- (3) gm0 ()

SOt

and thus L! = L,_; for all values of v. This allows to apply the integral
operator [, for any integer k£ with 0 < k < pu+1 to (9.2.38, EQMQFTRad?2).
The result is

(EqMQFTRad3)

/ st KL, k(sy)Hy(rs)ds = (r +y) “HR2 (u—k4+1),  (9.2.39)
0
and we cannot integrate any further because both sides would cause trouble.

However, this settles the case of inverse multiquadrics for all negative expo-
nents (/2. In fact, starting with some negative /2, pick some k > 0 such
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that 2k > d + 8 and define y = —1 4k — 3/2. Then we can use the classical
case due to
20u+1)=2k—-p>d
and integrate k times to arrive at (9.2.39, EQMQFTRad3) with exponent
—p— 1+ k = /2 in the right-hand side. The final result is
(EqMQFTRad3a)

/0 5_1_6/2L(d+6)/2(SZJ)H(d72)/2(7”5)d5 = (r+y)"*?(-p/2) (9.2.40)
for all # < 0.

To proceed towards positive values of 3, we have to avoid the singularities
of the right-hand side by sticking to non-integer exponents. Furthermore,
we have to apply functionals from (IP%),. to both sides in order to avoid
a singularity of the integrand at zero and to make sure that the right-hand
side vanishes at infinity.

Let us pick functionals Ay rq, Av,ys from (IP4)%. and apply them with
respect to r = ||z; — yi||3 to (9.2.39, EQMQFTRad3). The result is
(EqQMQFTRad4)

/0 §—1-6/2 Liayp)/2 (sy ZzayﬂéHd 2/2 ||xﬂ _WH /2)ds

j=14=1

0 M N
= /U sV PR Ly gy 0 (sy )22 B (a2 2m(sllz; — yell5/2)ds
/=

—
—_

.

M N T
= 2(=B8/2) S ;B (v + 7y — well3/2)
j=14=1
(9.2.41)
while still 3 < 0. We now can integrate the left-hand side m times with
respect to y without running into difficulties whenever 3 ¢ 22ZZ. This yields

(EqQMQFTRad4a)

- M N
/0 s Ly paem (39) D2 D7 iBeH a2y pm (sl — yell3/2)ds

j=1¢=1

= 2B =MD" S e v+ o - ul/2)

“Mi

(9.2.42)
Looking at the Taylor expansion of the right-hand side assures us that it still
vanishes at infinity, as required. We thus define v := § 4+ 2m < 2m and
rewrite the equation as



9.3 Positive Definite Functions on Topological Groups 171
(EqMQFTRad4a)
00 M N
fy s asnals) 3 ibiHianam sl = wil/2)ds
j=1¢=1

= 22T E B (v + s -l 12)"

(9.2.43)
This proves that multiquadrics (¢* + ||z(|3), 2 for v € IR-q \ 2IN are condi-
tionally positive definite of order m = [v/2] with Fourier transform

22 (-1)" <||0m69a||2
7(=7/2) ¢

after backsubstitution.

(y+d)/2
) Keysaya(ellolz)

9.2.12 Nonexistence of CS Functions for All Dimensions

(NECSAIId)

9.3 Positive Definite Functions on Topological Groups

9.4 Positive Definite Zonal Functions on Spheres

10 Special Algorithms

(SecSA) This section contains some additional techniques that may be useful
for the numerical solution of multivariate recovery problems.

10.1 Reduction of Enlarged System, Method 1

(Redl) Consider the enlarged system (1.7.3, BDef) and perform a partial
Gaussian elimination algorithm on the matrix P with row interchanges. The
result can be written in the form

(U (L O
o (§).1-(t2 )

with nonsingular lower triangular matrices L and Lq; of size M x M and
q X q, respectively, with an M x M permutation matrix II and a nonsingular
q X q upper triangular matrix U, while Ly, is some M X ¢ matrix and F is
the identity matrix. Now write « as a vector
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(split)
T T 6(1) T ﬁ(l) + T 5(2)
o = LTB — ( 1(1) E21 ) ( 6(2) — 11 5(2) 21 , (1011)

again using a split of an M-vector into a g-vector followed by an (M — q)-
vector. Ignoring the details of such obvious splits from now on, we evaluate

0=1"PTa=0"PTL"3 =UT3" +0

and get 3 = 0. Now we split the system LALT 3+ LPv = Lf in the same

way to get
Ay A 0 4 U 5 — 9(1)
Ay Ago 5(2) 0 9(2)

introducing the vector 0 via v = I1§. This decomposes into two systems
A = g®, App? + U5 = g

that can be solved for 5 and 6, respectively. From these it is easy to
calculate o and 7.

To see the positive definiteness of the matrix As,, observe that

(5(2))TA225(2)=< ¥ >TLALT< 0 )
5(2) 5(2)

holds for all 5?) € IRM~9, and all a with (1.6.3, CPDef) have a unique split
in the form (10.1.1, splitl). Thus Ay, defines a positive definite quadratic
form on RM~9, and it must be a positive definite matrix.

To calculate the numerical effort, we now explicitly write down the algorithm:

1. Perform ¢ Gaussian transformations on rows of P with pivoting. This
requires O(M¢?) operations and generates the matrices IT, U, L;;, and
Loy. The latter three can be stored over P, and II requires an integer
array of length ¢ for keeping track of row permutations.

2. Calculate the submatrices A;;, of LAL" by applying the Gaussian trans-
formations stored in L to A row- and columnwise. These are ¢ trans-
formations of M-vectors each, and the overall effort will be O(M?q).
Note that this operation will cause fill-in, if the original matrix was
sparse.
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3. Calculate Lf and split it into g/ and ¢®. Using the special form of
L again, this amounts to O(M¢q) operations.

4. Solve the positive definite (M — q) x (M — q) system Ay = ¢g? by
your favourite method. We shall comment on such problems for uncon-
ditionally positive definite functions later in section 2.3 (CompEffort).
Its computational complexity does not enter into the complexity of the
transformation we consider here.

5. Now solve A;,3?) + Us = ¢ for §. Using the upper triangular
structure of U, the computational effort is O(Mq + ¢*) for forming
the system and solving it.

6. Backpermutation of elements of § yields v at O(q) cost.

7. Finally, o is an extension of ) by the ¢ components of the vector
LT 3 and these can be calculated by O(Mgq?) operations.

Since we started with a conditionally positive definite function of positive
order m, the increase of ® towards infinity leads to a matrix A that shows
a more or less strong increase of elements when moving away from the main
diagonal. After the reduction the resulting matrix behaves like one generated
by a positive definite function (this is actually provable for the reduction
method of the next section). Thus it usually shows off-diagonal decay, and
numerical experiments indicate some improvement of the condition. Thus
there is some hope that variations of these reduction methods can possibly
be turned into efficient preconditioning techniques.

10.2 Reduction of Enlarged System, Method 2

(Red2) Again, we consider the enlarged system (1.7.3, BDef), but now we
perform ¢ Householder transformations on PT with column pivoting. This

means a reordering of the points in X = {x,...,2)} and transition to a
new basis in IPZ. In linear algebra terms we end up with a decomposition

(Dec2)

U 'QPTII = (E, 9) (10.2.1)

with a nonsingular upper triangular ¢ x ¢ matrix U, an orthogonal ¢ X ¢
matrix @), an M x M permutation matrix IT and a plain ¢ x (M — ¢) matrix
S. Note that the Householder transformations first produce QP'TI = (U, %),
but we left-multiply this with U~" to get (10.2.1, Dec2).
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Now we permute and split « by
(split3)

s

into a g-vector followed by an (M — g)-vector. Then we evaluate

—1HpT —1 A pTTr-1 s

0=U QP a=U "QP'IIl 'a=(E,S)

and get ) = —S3?). Now we split the system TTTATIS + 11" Py =TI" f to
get

Ay Ag 5(1) 4 E 5 = 9(1)

Ao Ap 5(2) ST B 9(2)
introducing the vector § = UT@Q~. This decomposes into two systems

A+ App® 4+ o = g

An B+ App® + ST6 = ¢

and we solve the first for § by

(DeltaSys)

6 =g — A1 — 4287 = g + (4115 — Ap2) 8P, (10.2.3)

Putting this with ) = —SB3®?) into the second yields a symmetric (M —
q) X (M — q) system

(RedSys3)

(A22 + STAHS — STA12 - Agls) 5(2) = 9(2) - STg(l) (1024)

that can be solved for 3. To see the positive definiteness of the matrix
(10.2.4, RedSys3), observe that

(5(2))T (AQQ +STAS — ST A,y — Ams) 52 =TT AL = o A

holds for all 5?) € IRM=9, and all & with (1.6.3, CPDef) have a unique split
in the form (10.2.2, split3) with ) = —S3®) . In 3.3.2 (PhiNormalization)
we shall see that this matrix can be written in the form Ay y for a set Y of
M — ¢ points and a function ¥ that is unconditionally positive definite on

R\ (X \Y)..

Let us now explicitly write down the algorithm:
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. Perform ¢ Householder transformations on P” with pivoting by column

permutation of PT. This requires O(Mq?) operations and generates
the matrices II, U, and US. The latter two can be stored over PT,
and II requires an integer array of length M for keeping track of point
permutations.

Solve for S by backward substitution, using U. This again requires
O(M¢q?) operations and generates S, which can be stored over part of
P.

Generate the submatrices A;; of II7 AIl by applying the permutations
defined by II to A row- and columnwise. This requires 2M swaps of M-
vectors, and the overall effort will be O(M?). Note that this operation
can be avoided by using indirect indexing in later steps, but be aware
of the fact that indirect indexing spoils the positive effect of cache
memory.

Permute the right-hand side of the system and split it into ¢(!) and
¢®). This amounts to O(M) operations, but is unnecessary if indirect
indexing is implemented.

. The bulk of work in this reduction method lies in forming the positive

definite matrix
Agy + STA;1S — ST A — As S,
and it is of order O(M?q).

Now solve the positive definite (M — q) x (M — q) system (10.2.4,
RedSys3) for 3 by your favourite method. We considered such prob-
lems for unconditionally positive definite functions in section 2.3 (Com-
pEffort). Tts computational complexity does not enter into the com-
plexity of the transformation we describe here.

Now form () = —S3®) with O(M?q) operations and

use (10.2.3, DeltaSys) to calculate § with O(Mgq?) operations. The
solution vector « just is a permuted version of 3, but the calculation
of v requires solution of the system UTQvy = § in two steps:

Calculate Qv from & by backward substitution with O(¢?) operations,
and

form v = QT(Q~) by premultiplication of Qv with Q7 with O(¢?)
operations. Since M > ¢ follows from IPZ%-nongegeneracy of X =
{z1,..., T}, this is at most an O(Mgq?) effort.
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11 Computational Geometry Techniques

(SecCGT) This section contains algorithms from Computational Geometry
that are useful for solving scattered data problems in the the large. The
main topic will be the k-nearest neighbor problem and related query
problems.

11.1 Voronoi Diagrams

(SecVor)

12 Analytic Background

(SecAB) This section collects the required facts from Functional and Real
Analysis that the core of this text requires as basic knowledge. It is useful for
teaching purposes, because it makes the text self-contained. Researchers and
advanced students will not need to look into this, but beginners should brush
up their background by checking it against the contents of this section. And
in case of doubt or lack of memory, any reader should get an easy possibility
to access the backing material without consulting too many different texts.

12.1 Calculus Facts

(SecCalcFacts) We start with some basics from calculus that we need for
notational reference.

12.1.1 Taylor’s Formula and Truncated Powers

(Sec) Using the truncated power function

(EqTrPoFu)
x x>0
(2) = { 0 so0 (12.1.1)
we write Taylor’s Formula as
(EqTayFor)
-1
fe / x —t £
r) = (z — a)’ + x)dx
f(x) ;U 4_1 (=) (12.1.2)

f(@) = pre(@) +rpe(2)
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for all functions f with absolutely integrable /-th derivative on [a,b] C IR
and all arguments = € [a,b]. The polynomial part p;, is in IP}, while the
residual 7, has the crude bounds

(b—a)f

rre(@)l < = 1FN e tay
(b _ a)ffl/Q

rpe(z)] < WwaHLz[a,b}

depending on how f(¢) is extracted from the integral. The second case uses
the Cauchy-Schwarz inequality, and it is a first case where half-integers enter
naturally into an approximation order. Here are some special instances that
are needed in the text:

Example 12.1.3 (ExaExpNeg) For f(x) =€ " on [0, h] we have

f(x) —pre(x)] = |rre(z)] < Vi

Example 12.1.4 (ExaExplma) For the real and imaginary parts of f(x) =
e, i.e. the sine and cosine function, we know that all derivatives are bounded

by one. Thus we get
hé
f@) = ppe@)l = [rre(a)] < 5

on [—h,h] for h > 0. We avoid a factor of 2 in the bound of the residual by
using Taylor’s formula on both [0, h] and [—h,0].

12.2 Hilbert Space Basics

(SecHSB) This is intended as a short tutorial on Hilbert spaces as required in
Section 3 (SecHST). We only require fundamentals on linear spaces, bilinear
forms, and norms. If a reader has problems with any of the stated facts below,
it is time to go back to an introductory course on Calculus and Numerical
Analysis.

Definition 12.2.1 (DefPHS) A set H and a mapping (+,")% : HxH — IR
form a pre-Hilbert space over IR, if the following holds:
1. H s a vector space over IR.

2. (+,+) 1s a symmetric positive definite bilinear form.



178 12 ANALYTIC BACKGROUND

A symmetric positive bilinear form as (-,+)% : H X H — IR is often called

an inner product on H. Then
(NormDef)

)13, = (v, )0, z € H (12.2.2)

defines a norm on H, and we assume all readers to be familiar with this
notion. Sometimes, we shall weaken the assumptions on (-,-)3 and only
ask for symmetry and positive semidefiniteness. Even in this more general
situation, we have the Cauchy-Schwarz inequality

(1, 0) 2] < Julplvla

for all u,v € H, where we use the notation |z|3, := (z,2)% to denote a
seminorm instead of a norm as in (12.2.2, NormDef). To prove the Cauchy-
Schwarz inequality as a warm-up, just consider the quadratic function

o(t) == |u+ tv|§{ = \u@{ + 2t(u,v)y + t2\v|§{.

It must be nonnegative, and thus it has none or a double real zero. This
property is satisfied for a general function o(t) = at® + 2bt + ¢, iff b> < ac
holds. But this is the square of the Cauchy-Schwarz inequality.

For completeness, we recall some basics from normed linear spaces:

1. A sequence {uy}neny € N of a normed linear space N with norm || - || or
is a zero sequence in N, if the sequence {||u,||x}nen converges to
zero in IR.

2. A sequence {uy}neny C N is a convergent sequence in A/ with limit
u, if the sequence {u, — u}, is a zero sequence.

3. A subspace M of N is a closed subspace, if for every convergent
sequence {uy, fnew € M C N with limit u one can conclude that the
limit u also belongs to M.

4. The normed linear space N is complete or a Banach space, if every
sequence which is a Cauchy sequence in the norm || - ||y is necessarily
convergent in V.

5. A complete normed linear space is closed, since each convergent se-
quence is a Cauchy sequence.

6. A subset M of a normed linear space A is dense, if each element of
N can be written as a limit of a convergent sequence from M.
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Now we add some simple facts about pre-Hilbert spaces:

1. A mapping (or operator) A : H — N with values in a normed linear
space N with norm | - ||, is a continuous mapping or a bounded
mapping, if there is a constant C' such that

|Az ||y < C|lz]|2
holds for all z € H.

2. The mapping A then has an operator norm

A
||A||7-[,/\f = sup || x”/\/ < C
sernfor [zl

and the bound
[Az|[x < (| Allgearl ]l
is best possible.

3. Two subspaces U, V of a pre-Hilbert space are orthogonal, if all
vectors u € U, v € V are orthogonal, i.e.: (u,v)y = 0.

Definition 12.2.3 An element u* of a subspace M of a normed linear space
N is a best approximation to a given element u € N, if

Ju = u'llac = sup [lu = vlly = Ena(u).
vEM

Theorem 12.2.4 (BAT) An element u* of a subspace M of a pre-Hilbert
space H is a best approximation to a given element u € H, iff the variational
identity

(EqVar)

(u—u*,v)3 =0 for allv € M (12.2.5)

holds.  If it exists, the best approrimation is unique. If M is finite-
dimensional and spanned by linearly independent elements wuy ..., uy, then
the coefficients a* of the representation

M

* *)

u = E QU
=1

are solutions of the normal equations

M
S o (ug, ur)y = (u,up)y, 1<k < M,

=1

and the symmetric and positive definite matriz with entries (uj, ug)y is called
a Gram matrix.
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Proof: Let u* be a best approximation to u. Then consider an arbitrary
v € M and form the quadratic function

uy(@) = Jlu—u + ol = [lu— w3 + 20(u — w*, v)s + o¥vll3,

whose minimum must be attained at o = 0. This implies (u — u*,v)y = 0.
Conversely, assume (12.2.5, EqVar) and write any other element v € M as
v=u*+1-(v—u*). Then (12.2.5, EqVar) implies that the quadratic function
Uy, 18 minimal at a = 0, proving u,_,(1) = [|[u — v||lyg > uy_»(0) =
||lu — u*||3. If u* and u** are two best approximations from M to u, then
we can subtract the two variational identities (u — u*, v)y — (u — ™, v)y =
(u™ —u*,v)y = 0 for all v € M and insert v = u*™* — u* to get u** = u*. The
third assertion is a specialization of (12.2.5, EqVar). O

Corollary 12.2.6 The first statement of Theorem 12.2.4 (BAT) holds also
in the case of a positive semidefinite bilinear form. The Gram matrix in the
finite-dimensional case now is only positive semidefinite. a

Corollary 12.2.7 (BAC) Let \y,..., Ay be linear functionals on a pre-
Hilbert space H and let some u € H be given. An element u* of H solves the
problem
([ = inf [0l
(NS
A (0) = ()
1<j<M

iff the variational identity
(u*,v)y =0 for allv € H with A\;(v) =0, 1 < j < M.

holds, or iff there are real numbers aq, ..., oy such that
M

(W', v)3 =Y ayAj(v) for allv € H.
j=1

Proof: Consider the subspace
M={veH : N\ =0 1<j <M}

and reformulate the problem by writing any v € H with \;(v) = Aj(u), 1 <
j < Mas v =u—w for w € M. Then we have a problem of best
approximation to u from M and can simply use Theorem 12.2.4 (BAT)
to prove the first assertion. We then have to prove that the first variational
identity implies the second. But this follows from a standard linear algebra
argument that we include for completeness as the next lemma. O
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Lemma 12.2.8 If A : X - Y and B : X — Z are linear maps between
linear spaces, and if B vanishes on the kernel ker A of A, then B factorizes
over A(X), i.e.: there is a map C . A(X) — Z such that B=Co A. If Z
is normed and if Y is finite-dimensional, then C' is continuous.

Proof: There is an isomorphism D : A(X) — X/ker A, and one can define
B : A/ker A — Z by B(z + ker A) := B(x) because B(ker A) = {0}. Then
C := B o D does the job, since

C(A(x)) = B(D(A(z))) = B(z + ker A) = B(x)

forallz € X. If Y is finite-dimensional, the isomorphic spaces A(X) C Y and
X/ ker A must also be finite-dimensional. Since all linear mappings defined
on finite-dimensional linear spaces with values in normed linear spaces are
continuous, we are finished. O

So far, Theorem 12.2.4 (BAT) does not imply existence of best approxima-
tions from subspaces of infinite dimension. It just characterizes them. To
get existence, we need that certain nice sequences actually have limits:

Definition 12.2.9 (DefHS) A pre-Hilbert space H with inner product (-, )3
is o Hilbert space over IR, if H is complete under the norm || - ||y, i.e.:
as a normed linear space.

We now prove the crucial projection theorem in Hilbert spaces:

Theorem 12.2.10 (PTHS) If H is a Hilbert space with a closed subspace
M, then any element w € H has a unique best approzimation u’, from M,
and the elements u}, and u — u}, are orthogonal. The map Iy : H — M
with My (u) = uly is linear, has norm one if M is nonzero, and is a
projector, i.e.: 13, = Iy If Id is the identity mapping, then Id — Ty is
another projector, mapping H onto the orthogonal complement

M= ={ueHH : (u,v)y =0 forallve M }.
of M. Finally, the decomposition
H=M+M"
s a direct and orthogonal sum of spaces.

Proof: The existence proof for approximations from finite-dimensional sub-
spaces is a consequence of Theorem 12.2.4 (BAT), and we postpone the
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general case for a moment. The orthogonality statement follows in general
from Theorem 12.2.4 (BAT), and it yields Pythagoras’ theorem in the form

ull3 = llu = will3 + w5

This in turn proves that both projectors have a norm not exceeding one. It
is easy to prove that au}, + Bv}, is a best approximation to au + Bv for all
o, € IR and all u,v € H, using the variational identity in Theorem 12.2.4
(BAT). To prove linearity of the projectors, we use uniqueness of the best
approximation, as follows from Theorem 12.2.4 (BAT). Finally, surjectivity
of the projectors is easily proven from the best approximation property of
their definition.

Thus we are left with the existence proof for the infinite-dimensional case.
The nonnegative real number Ey (u) can be written as the limit of a de-
creasing sequence {||u — v,||3}, for certain elements v, € M, because it is
defined as an infimum. Forming the subspaces

M, = span{vy,...,v,} T M
and unique best approximations w, to u from M, we get
Enm(u) < |lu—walln < Jlu—valln,

such that the sequence {||lu — wy,||%}, converges to Exs(u), too. We now fix
indices m > n and use that (u — wp,, Wy, — w,)y = 0 follows from the best
approximation property of w,,. Then we have

lu —wall = lu—walf = [lu—wn+wn — wall3 = |lu— w3
= ||U - ’meg{ + 2(“ — Wm, Wm — wn)?—[
H|wm — wall3 — [lu— w13
= me - wn”%—[a
and since the sequence {||u — w3}, is convergent and thus a Cauchy
sequence, we get that {w,}, C M is a Cauchy sequence in M C H. Now the
completeness of H assures the existence of a limit w* € H of this sequence,

and since M was ssumed to be closed, the element w* must belong to M.
The above identity can be used to let m tend to infinity, and then we get

[l = wnll3, = llu = w3 = [w* = wall,.

This proves

Epm(u) <flu—wlls < flu = wnllx,
and since the right-hand side converges to Ex(u), the element w* must be
the best approximation to u. O

We now proceed towards the completion theorem for pre-Hilbert spaces.
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Theorem 12.2.11 (HSCT) Let H be a pre-Hilbert space with inner product
(+,)%. Then there is a Hilbert space J and an isometric embedding J : H —
J such that the following is true:

1. J(H) is dense in J.

2. Any continuous mapping A : H — N with values in a Banach space
N has a unique continuous extension B : J — N such that BoJ = A.

Proof: We first form the space of all Cauchy sequences in H, which clearly
is a linear space over IR. Two such sequences are called equivalent, if their
difference is a sequence in H converging to zero. The space J now is
defined as the space of equivalence classes of Cauchy sequences in H modulo
zero sequences. These classes clearly form a vector space under the usual
operations on sequences. If we use an overstrike to stand for “class of”, we
write an element of J as {u,}, for a Cauchy sequence {u,}, € H. Now it is
time to define an inner product

(@, m)J = nh_)rgo(un, Un)#
on J and the embedding J via the constant Cauchy sequences
Ju = {u}, = {u, = u},
for each uw C H. Then
(Ju, Jv) 7 = (u,v)y

makes sure that J is an isometry and injective. But we still have to show
that the inner product on J is well-defined and positive definite. If {u,},
and {v,}, are Cauchy sequences in H, then

nll2e = Nwmlla] < flun — wmlla

implies that the sequences {||u,||%},» and {||v,||%}» are Cauchy sequences in
IR, and thus convergent and bounded by constants C, and C),. But then

(Una Un)?-[ - (Umavm)H = (Unavn)H - (unavm)H - (umavm)H + (unavm)H
= (unavn - Um)?—l - (um - una”m)?{
S Cqun _va’H_"CvHUm_UnHH

proves that {(un,v,)}n is a Cauchy sequence in IR and thus convergent.
Two representatives of a class {u,}, differ just by a zero sequence that does
not affect the inner product’s value. The proof of definiteness again uses that
zero sequences represent zero in 7. This finishes the proof of well-definedness
of the new inner product.
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Thus J is another pre-Hilbert space that contains an isometric image of H,
and we first want to prove that J(#H) is dense in J. Let us take an element
{un}n € J and use the fact that for each € > 0 there is some K (€) such that
for all n,m > K(e) we have

[tn = 9 < e
Now take m > K(¢) and the fixed Cauchy sequence {un,}, = J(ty,). Then
17tm) = T Tally = B [l — unlse < €
proves the density assertion.

We now proceed to prove completeness of 7. To do this we have to form

a Cauchy sequence {{Uszm)}n}m of equivalence classes {uslm)}n of Cauchy
sequences {ugm)}n C H. For each m € IN we can use the density property
of H in J to find an element v,, € H such that

1{us™ Y — T (o) 7 < 1/m.
Due to
||vn - UMHH = ||J(Un) - J(Um)HJ

< () = {ul Yl s+

F{ud Y — (Yol 7 + {1l Y — T (om) | 2
0

4

for n,m — oo, the sequence {v,, },, is a Cauchy sequence in H. We now form

{u}n = {vn}all 7 1{usY = (o)l 7 + 1T (o) = {va}nlls

<
< 1/k+ lim oy — vl
— 0

for k — oo, proving convergence towards {v, },.

Now let A : H — N be a linear continuous mapping with values in a
complete normed linear space N. If {u,}, is an element of J, we define the
extension B on {uy,}, by

(Bmapdef)

B({un}n) == lim A(u,). (12.2.12)

n—oo
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Since A is continuous, it is bounded and due to
[A(um) — Alun)lla < AN — uall2

the sequence { Au, }, is a Cauchy sequence in A/. But as A is a Banach space,
the sequence is convergent and (12.2.12, Bmapdef) is well-defined. Clearly
B o J = A holds by definition. Any two such extensions must agree on the
dense subspace A(H) of J, and since they are continuous, they must agree
on all of J. OWe add a little application:

Lemma 12.2.13 If M s a dense subspace of a Hilbert space H, then the
closure of M 1is isometrically isomorphic to H.

Proof: The closure of M can be identified with a closed subspace N of H,
and we assert that N' = H. To this end, decompose H into H = N + N~
and take an element u from A/ ~. Tt must be orthogonal to all elements from
M, and by continuity of the functional v +— (u, v)3 it must be orthogonal to
all of H. Thus it must be zero. a

We further need the Riesz representation theorem for continuous linear
functionals:

Theorem 12.2.14 (RieszT) Any continuous linear real-valued functional
A on a Hilbert space H can be written as
(RieszRep)

A= (- 00)n (12.2.15)

with a unique element gy € H. The map A — gy is an isometric isomorphism
between the dual Hilbert space H* of H, consisting of all continuous linear
real-valued functionals on H, and H itself.

Proof: If A =0, then g, = 0 does the job and is unique. If A # 0, the kernel
L of X\ is not the full space H. It is, however, a closed linear subspace, and
thus there is some element hy € £~ with ||hy][x = 1. Now for each u € H
the element A(u)hy — A(hy)u must necessarily be in £ and thus orthogonal
to hy. This means

0 = (h,\,)\(u)h,\ — )\(h,\)u);{,
AMu) (b, ha)ze = Aha) (u, ha)a,
A(u) (u, A(ha)hy )3

The norm of A is bounded by

AMu
Dl = sup [A(u)]
ueH\{0} [ ]| %

< A
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due to Cauchy-Schwarz, but using u = h) in the definition of the norm yields
equality. Since we set gy := A(hy)hy, we get [|A|z+ = [|gallz. Uniqueness
of g, satisfying (12.2.15, RieszRep) is easy to prove, and equally easy is the
proof of injectivity and surjectivity of the map A — g,. O

12.3 Special Functions and Transforms

(SecSF'T) This is intended as a reference and tutorial for classical formulas
involving special functions (e.g.: Gamma, Beta, and Bessel functions) and
their transforms. Results on Fourier transforms in general are in section 12.5
(SecFTRd). This section, so far, is in raw and unsorted form, because all
required formulae are just collected here.

12.3.1 Gamma Function

(SecGammaFunction) The Gamma function is defined by

(GammaDef)
ua:/‘fﬂawt (12.3.1)
0
and has the properties
T(z+1) = 27(2), z¢—-IN
T(k+1) = kI, kelN
7(1/2) = /m.
The equation
(EqGxy)
s - 7 (2)? (y)
N1 —u)? du = 12.3.2
[t = (123.2)
for any x,y > 0 will be useful.
12.3.2 Volumes and Surface Integrals
(SecVSI) The volume of the d-dimensional ball
B,(0):={xzec IR’ : |z]; <r}
of radius r is
(EqVolBall)
ddf2
vol B,(0) = ——— (12.3.3)

2 (1+d/2)



12.3 Special Functions and Transforms 187

The surface area o4_; of the d — 1-dimensional sphere in IR for d > 1 is
(VolS)

041 = vol (8471 = 27Y2/7 (d/2). (12.3.4)

This follows for d > 2 from the representation

d—1
do = H (sin cpj)d’l’jdgoj

j=1
of the surface element do in terms of the angles
P € [077(]7 1 S] < d— 2: Pd-1 € [07271-]

and univariate integration, while d = 1, 2 are standard.

12.3.3 Bessel Functions

(SecBesF) We now consider the function F(r||w||s, d) defined by the integral
(EqDefFtd)

F(t,d) ;:A ey (12.3.5)
yll2=1

over the surface of the unit ball in IR? for ¢ > 0,d > 2, and some ||z||; =
1, z € IR®. This integral is invariant under orthogonal transformations @ of
IRY, as is easily obtainable from replacement of z by Qz. Thus the integral
is independent of z, as already indicated by the notation, and we can assume
z=(=1,0,...,0) for its evaluation. Let o4_1 be the surface area of the d—1-
sphere, i.e.: the boundary of the unit ball in IRY. We now assume d > 3 and
integrate over the surface of the d — 1-sphere by summing up the integrals
over surfaces of (d — 2)-spheres, splitting y = (y;,u) and setting z -y = cos ¢.
This yields
F(t,d) = / e gy

yll2=1
™

— / eztcosnp/‘ ‘ dud
0 [ul[§=1-y3

— Ud—Q/ eitcosnp(sin((p))d—Qd(p
0

[
_ 0d72/ ¢its (1 — 52)(d=3)/2

-1

and contains an instance of the Bessel function
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(JBF)
(t/2)" L 2011
Jy(t) = m/_l €t (1 — 52) 2 ds (1236)
NP ERARY:
which is well-defined for R(v) > —1. We end up with v = %2 and get
(EqFtdRep)
(t,d) /2)(d 3372 J(4-2)/2(%) (12.3.7)

= 27r‘m(/?)( T2 T2 (8)-

Direct integration shows that this is also valid for d = 2 or v = 0, using
Og — 2.

12.3.4 Power Series of Bessel Functions

(SecPSBF) The Bessel function of (12.3.6, JBF) has the power series repre-
sentation

(JBFP)

To(t) = (%)f} | (_%)]

12.3.8
S w+i+1) ( )

that is valid for all t € € \ {0} and all v € €. The integral representation
(12.3.6, JBF) is first proven to be identical to the power series representation
(12.3.8, JBFP) on its domain of definition. Since the power series is conver-
gent everywhere, the general definition of J, can then be done by (12.3.8,
JBFP). We first expand the exponential in

Mg

/1 ¢t (1 — 52>(2u71)/2d5

-1

/ 1_5 (2v-1)/2 g

and use symmetry to cancel the odd powers. The equation (12.3.2, EqGxy)
will come in handy after the substitution s> = u. Then

00 [ a\2] e 1\ 2]
Z (“5)4] /1 21— 32)(21/71)/2d8 _ Z (Zt).'J /1 uj71/2(1 _ u)(Q”*l)/Qdu
Y LA S L .

X7 () +3)7 (25) (it)

= T(+v+1) 2!

- S (5)

/ (1 — %) (@v=1)/2q4

I
(]

<
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uses the same split of 7 (j + 3) as before. This can be put int (12.3.6, JBF)
to yield the power series representation.

Looking at (12.3.8, JBFP), we can define a function H, by
(EqHnuDef)

(% )_V Ju(z) = Hv(22/4) = i !?(_22/;1)16 1 (12.3.9)
— K7 (k +v+1)

for v € €. This function often occurs in the text.

In a very special situation the power series representation (12.3.8, JBFP)
implies
(JBh2)

Jo1p(t) =
(-1

/N 7N N
N N

N
~
[NV}

by

Nk

[N}

.

—_ .

=

P

.

| .

[a—y

SN—r

~

[\

SN—r

P

N

.

|

w

SN—r

~

[\

SN—r

—

[a—y

~

[\

SN—r

B

N+ DN+ DN+~ DN o+

I
/N

(12.3.10)
and the other Bessel functions with half-integer order are similarly obtainable
as linear combinations of elementary functions.

12.3.5 Relations Between Bessel Functions

(SecRBBF) By differentiation of the H, function from (12.3.9, EqHnuDef)
we get
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(EqHnuDer)

_4 _ 4y
dtH”(Tt) 2 E?7(v+k+1)

B TZ:: (k=17 +k+1) (12.3.11)
s (—rt)k

B T,;)k!?(u+k+2)

= HU+1(Tt).

and

(EqHnuDerNu)

rt)ke”
ai! B = kz; k'7((u +)k 1)
_ ., i (=) (v + k)t Tkt
i KT +k+1) (12.3.12)
00 (—Tt)kty_l

B ,g)k!?(u—1+k+1)

= t""'H, |(rt).

oo

&l

We further need a special identity for Bessel functions:

(JBI)

tu-l—l 1
J;L+V+1(t) = m/{) Jﬂ(t5)5”+1(1 — SQ)VdS, t> 0, v > —1,/,L > ——.
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Since the integral is finite, we can simply insert the power series and get

! S _% ] 1 2\v
/0 Tults)s (1 = 57)"ds - = /0 ((2) Z@J'?((ﬂ-i-j)-i-l)) #T s
)

1 ]( )IH-Q]

1
Q;H—Qj—l—l(l o Q)Vd
S S S
— j! '7(u+J +1) /

(=
]
(1) ()%
|
(-
|

.

I
I Mg

r““ dr

|
M 8

j’7u+j+1 )2
17 (3" 12 M+]+1) (v+1)

— 2 (u+j+1)2 2(utv+j+2)

—1)i (L)t ) 27 (v +1)

<.
Il
=)

I
Mg

<
Il

=
B Zoj Tp+v+j+2) vl

]:
27 (v +1)
= i Jurn(®).

There is a special application in the text for v = 0 and p = (d — 2)/2, with
(CSPnuF'T)

1
Jua(t) =t / Tiaen) o (ts)sY2ds. (12.3.14)
0

12.3.6 Bounds on Bessel Functions

(SecBBF)  We continue with two properties of Bessel functions from
[35](narcowich-ward:92-1):

(EqJsqBound)

Tip(z) < . 20 (12.3.15)
(EqJsqlnfty)

lim 21 J5(2) 573 (11+ i72) (12.3.16)

The second of these follows easily from the power series expansion, since

. 2\ 7Y 1

ting (5) @) = sa
N _ 27
N )

lim (z_”J (z))2 = 2

z—0 v ?(].—FZ/)Q



192 12 ANALYTIC BACKGROUND

Unfortunately, equation (12.3.15, EqJsqBound) is much more difficult and
must (for now) be left to the cited literature. Similarly, there is a weaker,

but more general bound
(EqBFBound)

[ Ju(@)| <1 (12.3.17)

for all z € IR and v > 0 ([1](abramowitz-stegun:70-1), 9.1.60, p. 362). Both
of the above bounds should combine into the general inequality
(EqBFBound?2)

()| < O(lz|7V?), 2 — (12.3.18)

in view of [1](abramowitz-stegun:70-1), 9.2.1, p. 364. These things will be
added later.

12.3.7 Integrals Involving Bessel Functions

(SecWSI) From [1](abramowitz-stegun:70-1) 11.4.16, p. 486 we take the
moment equations
(EqMom.Jnu)

/OOO 7, (£)dt = 2”3 EEZ - Z 1 Bg; (12.3.19)

which are valid for (v + ) > —1, R(u) < 1/2. We now use these to derive
similar equations for the H, functions by

(EqHnuMom)
= [T mrenr e
— guel=% /OC’O 270 () (12.3.20)
_ o)
7(v—p)

for p> —1and v > 2p+ 1.

Another citation from [1](abramowitz-stegun:70-1) 11.4.41, p. 487 is the
Weber-Schafheitlin integral
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(EqWeSchaf)
/0 ” th=v LT (at)J, (bt)dt

0 0O0<b<a
— 2u—v+1au(b2 _ aQ)v—u—l

0<a<b
b7 (v — ) ¢

(12.3.21)
for Rv > Ry > —1 and a # b > 0.
12.3.8 Bessel Functions of Third Kind

(SecBFTK) The Bessel function K, of third kind (alias Mcdonald function)
is

(KnuDef)
71'1/2(2/2)” 50
K,(2) = 7/ (g2 )L/ 12.3.22
=y ¢S (12.3.22)
for |argz| < /2 and Rv > —1/2, and its asymptotics near zero is
(KnuAsyZero)
2 -V
K,(2) = (27/(3) +o(1), (12.3.23)
while it behaves like
(KnuAsylInf)
K, (2) = ﬁe_z(l +0(z7), (12.3.24)

V22

near infinity. Due to [1](abramowitz-stegun:70-1), 11.4.44, p.488 it is related
to the .J, Bessel functions via the identity

(EqKJ)
oo 1], (at) aktz’
- K, 12.3.25
/0 2w g enle?) ( )
for a,z >0, =1 < v < 2u+ 3/2. Tt satisfies the differential equation
(EqKnuDif)
K'(2) = K,_1(2) — 2K, (2) (12.3.26)
z

due to [1](abramowitz-stegun:70-1), 9.6.26, p. 376.
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12.4 Lebesgue Integration

(SecLI) This section covers some results from Lebesgue integration. We
assume some basic knowledge and concentrate on certain specific questions
that may not be covered by every course on Lebesgue integration.

12.4.1 L, spaces

We want to look at density questions for subspaces of Ly(IR?). For each
continuous function f on IR? we define the support as

supp f := clos{z € IR? : f(z) #0}

and note that any continuous function with compact support clearly is in
Ly (IRP).

Lemma 12.4.1 (LemBSDense) The space Co(IRY) of continuous functions
with compact support is a dense subspace of La(IR?).

Proof: Let a function g € Eg(le) be given. For any n € IN we can restrict
g to [-n,n]? and cut off extremely large values to get a function

gn € Lo[—n,n)", g(z) = { g(‘””()) lei [=n.nl, g(z)| < n }

with
2 2 2
g — On S/ g(x d:r/ g(x)|“dx — 0 for n — oc.
9= gullns < [ l@Pde | lgta)

This proves that the bounded L, functions with compact support are dense in
Ly(IR%). But in each of the spaces Ly[—n, n] we have density of continuous
functions. This can either be proven by Weierstra} type theorems or by
approximation with smoothed step functions. O

Lemma 12.4.2 (LemContShift) The shift operator S, : f(-) — f(- — 2)
15 a continuous function of z near zero in the following sense: for each given
u € Ly(IRY) and each given ¢ > 0 there is some § > 0 such that

152 () = ullzy(mey < €

for all ||z|]2 < 6.
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Proof: It is easy to see that it suffices to prove the result for functions in
g € Co(IR?). Let g be supported on [—K, K]¢ and use uniform continuity by
picking some § > 0 such that for all ||z — y||2 < 6 < 1 we have

l9(x) — g(y)| < e(2K +2)7%,

Then for [|z]]y < & we get

— g()|*dz

¥
lﬁggx—z—y<ndx
1

159 = 9ll17, (e

2K +2)~%2)2(2K + 2)¢

IIA

O

We now want to prove that the space S of tempered test functions is dense
in Ly(IR?). For this, we have to study functions like (12.5.11, deltaschar)
in some more detail. They are in § for all positive values of ¢, and Lemma
12.5.12 (LemRepro) tells us that the operation

fo )= [ Fw)ele —y)dy

maps each continuous L; function f to a "mollified” function M,(f) such
that

lim M, (f)(z) = f(x)

e—0

uniformly on compact subsets of IRY.

It is common to replace the Gaussian in (12.5.14, deltarep) by an infinitely
differentiable function with compact support, e.g.
(Friedmoll)

W@:{mﬂwwwwwm mm«} (12.43)

0 flallz>e

where the constant c(e) is such that

/de (e, x)dr =1

holds for all ¢ > 0. This Friedrich’s mollifier can also be used in the
definition of M,. It has the advantage that Lemma 12.5.12 (LemRepro)
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holds for more general functions, i.e.: for functions which are in L; only
locally.

We now want to study the action of M, on L, functions. Let u € Ly(IR?) be
given, and apply the Cauchy-Schwarz inequality to

MA@ = [ (@) eler —)yeler -y

to get

|M(f)(2)? < Jga lf (W) Po(e, 2 — y)dy [ra (e, x = y)dy
= Jra [fW)Pele,x = y)dy

and

[ Par< [ [ 15w)Pele 2)dydz = [ 15()Pdy

such that M, has norm less than or equal to one in the L, norm. It is even
more simple to prove the identity

(f, Meg)Lg(Rd) = (M.f, g)Lg(R‘i)

for all f,g € Ly(IR?) by looking at the integrals. Here, we used the Fubini
theorem on IRY which requires some care, but there are no problems because
everything can either be done with a Friedrich’s mollifier, or be done on
sufficiently large compact sets first, letting the sets tend to IR? later.

We now use a Friedrich’s mollifier to study the L, error of the mollifica-
tion. This is very similar to the arguments we already know. The error is
representable pointwise as

Fla) = M) = [ (@) = F@)ele.s = y)dy

and we can use the Cauchy-Schwarz inequality to get
F@ =M@ [ 1) = ) Pete = )iy

This can be integrated to get

[ @ =MD < [ plen) [ 1F+2) - Fw)dydz,

and we use the continuity of the shift operator as proven in Lemma 12.4.2
(LemContShift) to make this as small as we want by picking a suitably small
€. This shows

z||2<e

i | = M) 10y = 0

and proves
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Lemma 12.4.4 (FTD) The space S of test functions is dense in Ly(IRY).
O

Lemma 12.4.5 (FTDC) The space C°(IRY) of compactly supported in-
finitely differentiable functions is dense in Ly(IR?).

Proof: We can use Lemma 12.4.1 (LemBSDense) to go over from an f €
iQ(Rd) to a compactly supported function, and then we can use Friedrich’s
mollifier to generate an infinitely differentiable function. Both processes work
with arbitrarily small L, errors. a

12.5 Fourier Transforms on IR‘

(SecFTRd) This section contains the necessary definitions and results on
Fourier transforms in IR? together with their generalizations. Since we do
not want to rely on books on distributions, we develop the relevant machinery
here.

12.5.1 Fourier Transforms of Tempered Test Functions

There are two major possibilities to pick a space S of test functions on IR?
to start with, and we take Laurent Schwartz’s tempered test functions
that are verbally defined as complex-valued functions on IR? whose partial
derivatives exist for all orders and decay faster than any polynomial towards
infinity. Such functions clearly define a linear space over €' of functions on
IR?, and the standard notation is S.

Definition 12.5.1 (DefFT) For a tempered test function u € S, the
Fourier transform s
(FT)

i(w) = (2m)~Y2 / u(z)e~dz, (12.5.2)

R4

where w varies in IR? and z-w is shorthand for the scalar product 27w = w’z

to avoid the T symbol in the exponent. Since the definition even works for
general u € L;(IR?), it is well-defined on S and clearly linear. Note that we
use the symmetric form of the transform and do not introduce a factor 27
in the exponent of the exponential. This sometimes makes comparisons to
other presentations somewhat difficult; in particular, our notation induces a
factor in the usual convolution theorem for Fourier transforms, as proven in
the next section
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12.5.2 Convolutions

(SecFTConv) As far as the integral is well-defined, the convolution f * g
of two complex-valued functions f, g on IR? is defined as the function

(f<9)@) = [ F@)gla—y)dy.

R4
This is a linear operation in both f and ¢, and it is well defined for all
functions in S and all functions in Ly(IR?). We check the Fourier transform

of the convolution of tempered test functions f,¢g € S and apply Fubini’s
theorem for this:

(EqFTC)
frow) = o[ (frg)@eda

= em [ el - ydyeeds

= @n) [ [ el - e e dyda

= (2m)*2(2m)=2 /Rd fly)e ¥ edy(2m) 2 /]Rd g(z)e " dz

= (2m)"2(f9)(w)-
(12.5.3)

12.5.3 Identities for Fourier Transforms

(SecFTIFT) Here are some handy identities that are easily provable:

(EqF TShift)

f=y)(w) = e f()(w) (12.5.4)
(EqF TScale)

FE/M@) = f () (rw) (12.5.5)

They do not only hold for tempered test functions from S, but usually
generalize to all function spaces to which the Fourier transform can be
extended.
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12.5.4 Fourier Transforms of Gaussians

(SecPDG) To get used to calculations of Fourier transforms, let us start
with the Gaussian u,(z) = exp(—v|/z[]3) for v > 0, which clearly is in the
space of test functions, since all derivatives are polynomials multiplied with
the Gaussian itself. As a byproduct we shall get that the Gaussian is positive
definite on IR?. Fortunately, the Gaussian can be written as a d-th power of
the entire analytic function exp(—v2z?), and we can thus work on C¢ instead
of IR?. We simply use substitution in

U (iw) = (2m)~Y? [pa e Flier e dy
= (2m)- 2B [ emlvAT—l2Al gy

— (wa)fdﬂellw\\%/‘lv [ e~ Wl gy
and are done up to the evaluation of the dimension-dependent constant
/ 6_HyHgdy 3 Cd
Rd

which is a d-th power, because the integrand factorizes nicely. We calculate
¢ by using polar coordinates and get

02 — fR2 67HyH%dy

= [ [Ce " rdrdy
= 21 [Ce " rdr

= 1 [ (=2r)e" dr
= .

This proves the first assertion of

Theorem 12.5.6 (GaussPD) The Gaussian

Uy () = exp(—7z])3)

has Fourier transform
(GFT)

Ty (w) = (29) eIl (12.5.7)

and is unconditionally positive definite on IR®.
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Proof: Let us first invert the Fourier transform by setting 3 := 1/4v in
(12.5.7, GFT):

exp(—Bllw|2) = (4rB)~Y? [, el 1Bz gy

= (2m) Y2 [ (28) Y2l /4B g tiz gy

Then take any set X = {x1,...,2)} C IR? of M distinct points and any
vector a € IRM to form

M
k=1
M
= Y ajou(d4np) 2 / o Iel13/48 i (-4 g
Jsk=1 R4
M
= (47Tﬁ)_d/2/ e ITIB/48 5™ e ) dy
e J.k=1
M 2
= (47rﬂ)—d/2/de*||fr\\§/4ﬂ S aje | dr > 0.
IR ’
j=1

This proves positive semidefiniteness of the Gaussian. To prove definiteness,
we can assume

M .
f(x) =) aze™™% =0
7=1

for all x € IR? and have to prove that all coefficients a; vanish. Taking
derivatives at zero, we get

M
0=D"f(0) = Z_: a;(—ix;)’,

and this is a homogeneous system for the coefficients o; whose coefficient
matrix is a generalized Vandermonde matrix, possibly transposed and with
scalar multiples for rows or columns. This proves the assertion in one dimen-
sion, where the matrix corresponds to the classical Vandermonde matrix.
The multivariate case reduces to the univariate case by picking a nonzero
vector i € IR? that is not orthogonal to any of the finitely many differences
xj — xy, for j # k. Then the real values y - z; are all distinct for j =1,..., M
and one can consider the univariate function

M .
g(t) = Flty) = 3y = 0
j=1
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which does the job in one dimension. a

Note that the Gaussian is mapped to itself by the Fourier transform, if we
pick vy = 1/21in (12.5.7, GFT). We shall use the Gaussian’s Fourier transform
in the proof of the fundamental Fourier Inversion Theorem:

Theorem 12.5.8 (FTTS) The Fourier transform is bijective on S, and its
inverse s the transform

(IFT)
i(z) = (2m) 42 /Bd (W)™ dw. (12.5.9)

Proof: The multivariate derivative D® of 4 can be taken under the integral
sign, because u is in §. Then

(D7) (@) = (27) "2 [ u(@)(=iz)oem o da,
R
and we multiply this by w” and use integration by parts
W(DeE)(w) = (2m)"Y? [pau(z)(—iz)®(i)* (—iw) e dx

= (27T)_d/2 fRd U(x)(—zx)a(z)ﬂddx_ﬁﬁe—mwdx

= (2m) Y2 (= 1)l IBletB [ em e L (y(2) ) d
to prove that u lies in S, because all derivatives decay faster than any
polynomial towards infinity. The second assertion follows from the Fourier
inversion formula

(IFT2)
u(z) = (27r)_d/2/d@(w)e”""dw (12.5.10)
R

that we now prove for all u € §. This does not work directly if we naively
put the definition of # into the right-hand-side, because the resulting multiple
integral does not satisfy the assumptions of Fubini’s theorem. We have to do
a regularization of the integral, and since this is a very useful trick, we write

it out in some detail:

(2m) "2 fpa ti(w)e™dw = (27) 7 [ [ga uly) eV dydw
— lim(2r)- i(o—y) w3
11{‘%(27r) /Rd /Rd u(y)e dydw

_ : —d i(z—y)w—el|lw|3
-t (e )

= lim | @(e,z = y)u(y)dy
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with
(deltaschar)

ole,2) == (27r)*d/de”'“’*€”w||%dw. (12.5.11)
R

The proof is completed by application of the following result that is handy
in many contexts: O

Lemma 12.5.12 (LemRepro) The family of functions (e, z) of (12.5.11,
deltaschar) approzimates the point evaluation functional in the sense

(Repro)

u(z) =lim [ (e, — y)u(y)dy (12.5.13)
e\0 JRd

for all functions u that are in Li(IRY) and continuous around x.

Proof: We first remark that the definition of ¢ is a disguised form of the
inverse Fourier transform equation of the Gaussian. Thus we get
(deltarep)

o€, z) = (4me) U2 l7ll3/4¢ (12.5.14)

and
/de (e, x)dr = (47re)’d/2/ e lel3/4e gy = 1.

R4
To prove (12.5.13, Repro), we start with some given § > 0 and first find
some ball B,(x) of radius p(d) around x such that |u(z) — u(y)| < §/2 holds
uniformly for all y € B,(x). Then we split the integral in

u(r) — [Ra o€,z — y)u(y)dy| | Jra (e, 7 — y)(u(z) — uly))dy|

IA I

nyfoQSp (,0(6, T — y)\u(m) - U(y)‘dy
+ f||ysz>p (,0(6, T — y)\u(m) - U(y)|dy
< 6/2+ (dme)Y2e P11,
< 4
for all sufficiently small e. a

Due to the Fourier inversion formula, we now know that the Fourier transform
is bijective on §. We want relate the Fourier transform to the Ly inner
product, but we have to use the latter over €' to account for the possibly
complex values of the Fourier transform. Furthermore, we have good reasons
to define the inner product as
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(Ltwodef)

(s )ty = 2m) 2 [ f(@)g(w)da (12.5.15)

R4

with a factor that simplifies some of the subsequent formulae. Fubini’s
theorem easily proves the identity

(U, ﬂ)LQ(IRd) = (27r)7d /Rd U(gj) /Rd u(y)eerydydx = (777 U)LQ(IRd)

for all test functions u,v € S. Setting v = @ we get Plancherel’s equation
(PlanEq)

(@aa)Lz(Rd) = (wau)L2(Rd) (12516)

for the Fourier transform on S, proving that the Fourier transform is isometric
on S as a subspace of Ly(IR?).

The Fourier transform clearly exists pointwise for functions in L;(IR?), and
we have

Lemma 12.5.17 (FTLoneLem) The Fourier transform maps Ly functions
into continuous Lo, functions on IR?. The Fourier transform of a test func-

tion f is real-valued, if and only if f satisfies f(—-) = f(-).

Proof. : It is easy to see that

a(@)| < (2m)™" [ ju(a) dr,

and the continuity follows from the theorem on majorized convergence of
Lebesgue integrals when applied to w,, — w and

U(wy,) — U(w) = (Qﬂ)fdm/

) u(z) (e’”'“’" - e’i"’“"“’) dz,
R

because the integrand is in L;. The final assertion is a consequence of

(2) 1 [ u(@)ei™ o
(2m)~ /Qdeu( x)e "Tdx
= u(—)(w)

and its counterpart for the inverse Fourier transform. 0O

u(-)(w)
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12.5.5 Fourier Transforms of Functionals

With Plancherel’s equation in mind, let us look at the linear functional

(V) i= (U, 0) 1, (R
on S. We see that

)\a(’l)) = (?/J:, U)LQ(Rd) = (U, ®)L2(Rd) = )\u(’lv))

holds. A proper definition of the Fourier transform for functionals A, should
be in line with the functions u that represent them, and thus we should define

o~

Ay = Ap

or in more generality

A(v) = \(D)

for all v € §. Since the space S of test functions is quite small, its dual, the
space of linear functionals on S, is quite large. In particular, the functionals
of the form A, are defined on all of S, if u is a tempered function. The
latter form the space K of all continuous functions on IR? that grow at most
polynomially for arguments tending to infinity.

Definition 12.5.18 The Fourier transform of a linear functional A on § is
the linear functional A on S defined by

A(v) = A\(®) or A(D) := A(v)

for allv € S. If the latter can be represented in the form A\, with a tempered
function w € IC, we say that w is the Fourier transform of A and write w = .
The generalized Fourier transform of a tempered function u € K is the
Fourier transform X\, of the functional \,.

Example 12.5.19 (ExDelta) The functional §,(v) := v(z) has the form
5, (v) = v(z) = (21) /2 / B(w)et T,
R

and its Fourier transform is of the form A, with
Up (W) = 0y (w) = €77,

Here, the normalization of the Ly inner product (12.5.15, Ltwodef) pays off.
Note that the Fourier transform is not a test function, but rather a tempered
function from IC and in particular a bounded function. The functional § := g
has the Fourier transform ug = 1.
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Example 12.5.20 (ExIxma) A wvery important class of functionals for our
purposes consists of the space P = (IP%) . of functionals of the form (3.3.1,
Deflxma) that vanish on IPL. Their action on a test function v is

Axma(V) = Z_:l a;v(z;)

= (27r)_d/2/

M
o B(w) Y aeidw
j=1

- XX,Mcu (ﬁ)

such that the Fourier transform of the functional Ax vq 18 the functional
generated by the bounded function

M
)\X,M,a(w) = Z Otje_ixj.w.
i=1
If we expand the exponential into its power series, we see that

oo M
)\X,M,a(w) = ZZa](—zxjw)k/k'
k=0j=1

— i > aj(—iz; - w)*/k!

k=m j=1

since the functional vanishes on IPL. Thus XX,M,a(w) has a zero of order at
least m in the origin. If the functional Ax pa itself were representable by a
function u, the function u should be Lo-orthogonal to all polynomials from
IPL. We shall use both of these facts later.

Example 12.5.21 (ExFTPol) The monomials x® are in the space K, and
thus they should at least have generalized Fourier transforms in the sense of
functionals. This can easily be verified via
(i) v(@) = (—id)" (@2r) " fpa O(w)et e dw
= (270)7Y2 [ O(w) (=i - iw) e dw
= (27)7Y2 [pa B(w)w et dw,

and the associated functional is

at x = 0.
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12.5.6 Fourier Transform in L,(IR%)

The test functions from S are dense in Ly (IR?) (see Lemma 12.4.4 (FTD) for
details), and thus we have

Theorem 12.5.22 (FLtwoT) The Fourier transform has an Lo-isometric
extension from the space S of tempered test functions to Ly(IR?). The same
holds for the inverse Fourier transform, and both extensions are inverses of
each other in Ly(IRY). Furthermore, Plancherel’s equation (12.5.16, PlanEq)
holds in Lo(IRY). O

Note that this result does not allow to use the Fourier transform formula (or
its inverse) in the natural pointwise form. For any f € Lo(IR?) one first has
to provide a sequence of test functions v, € & that converges to f in the
Ly norm for n — oo, and then, by continuity, the image f of the Fourier
transform is uniquely defined almost everywhere by

Jim|f = 0|z, ey = 0.

This can be done via Friedrich’s mollifiers as defined in (12.4.3, Friedmoll),
replacing the Gaussian in the representation (12.5.14, deltarep) by a com-
pactly supported infinitely differentiable function.

A more useful characterization of f is the variational equation

-~

(fs0) Lo(ray = (f, 0) Ly (me)

for all test functions v € S, or, by continuity, all functions v € Ly(IR?). This
is an equivalent form of Plancherel’s equation
(PIEqL)

(fa 0)Ly(rty = (f1 V) Lo(me) (12.5.23)

for all f,v € ig(le). Some definitions of generalized Fourier transforms use
such variational equations to define f by (12.5.23, PIEqL) for all v from a
subspace of S.

12.6 Sobolev Spaces

(SecSob) This section contains definitions of Sobolev spaces and proves
Sobolev’s embedding theorems.
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13 Appendix

13.1 Basis Functions

(SecBF) Here we try to give a complete list (up to this date) of the avail-
able conditionally positive definite functions with their transforms and their
recursion formulas. Proofs are either in the main text or in section 12.3

(SecSFT) of the appendix.

o(r) | Parameters m
r’ p>0,5¢2IN m=>[5/2]
r8logr >0, €2IN m>3/2
(r*+ )P | 8>0, B¢ 2IN m>[5/2]

Table 8: Conditionally Positive Definite Functions (TCPDFct2)

o(r) Parameters Smoothness Dimension Name/Reference
e’ 8>0 C*>(IR?) d < oo  Gaussian
(r? + c2)p/? 8<0 C*>(IR?) d <oo  inv. Multiquadric
K, (r) v>0 cll d < oo  Sobolev spline
(1—r)3@2+r) C" d<3 Wu [47](wu:95-2)
(1—r)i(1+4r) C? d<3 Wendland [46](wendland:95-1)

Table 9: Unconditionally Positive Definite Functions (TPDFct2)

o(r) Transform
e 0
(r?2 4 ¢?)P/?
" K, (r)
(1—r)3@2+r)
(1 —7r)4(1+4r)

Table 10: Transforms (TFT)
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13.2 MATLAB routines

Here we provide the MATLAB sources required to do the examples of section
2.5 (SecExamples).
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will be updated later.
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