The Path Player Game

Silvia Schwarze

Institute for Numerics and Applied Mathematics, University of Göttingen

joint work with Justo Puerto, University of Sevilla
and Anita Schöbel, University of Göttingen

June, 26th 2005
Motivation

- In routing games: Flow consists of players that choose a path → minimization of cost
- Different point of view: position of path owner, player suggests amount of flow → maximization of income
- Application: Situation where suppliers of infrastructure share a network, e.g. public transport, energy networks, information networks
Notations

- Directed Network $G = (V, E)$
- Single source s and single sink t
- \mathcal{P}: set of all paths P from s to t
- Cost function $c_e(\cdot)$, depends on load on e
Notations

- Directed Network $G = (V, E)$
- Single source s and single sink t
- \mathcal{P}: set of all paths P from s to t.
- Cost function $c_e(\cdot)$, depends on load on e
- Flow: $f : \mathcal{P} \rightarrow \mathbb{R}^+$
- Flow on an edge: $f_e = \sum_{P : e \in P} f_P$
- Cost on path: $c_P = \sum_{e \in P} c_e(f_e)$
Components of the path player game

- Players \leftrightarrow paths P

Compare: Components of routing games

- Players \leftrightarrow (atomic/nonatomic) fractions of flow f
Components of the path player game

- Players \Leftrightarrow paths P
- Strategies \Leftrightarrow P chooses flow f_P

Compare: Components of routing games

- Players \Leftrightarrow (atomic/nonatomic) fractions of flow f
- Strategies \Leftrightarrow choose a path P
Components of the path player game

- Players ⇔ paths P
- Strategies ⇔ P chooses flow f_P
- Strategy sets ⇔ \mathbb{R}^+

Compare: Components of routing games

- Players ⇔ (atomic/nonatomic) fractions of flow f
- Strategies ⇔ choose a path P
- Strategy sets ⇔ \mathcal{P}
Components of the path player game

- Players \leftrightarrow paths P
- Strategies \leftrightarrow P chooses flow f_P
- Strategy sets $\leftrightarrow \mathbb{R}^+$
- Payoff for P \leftrightarrow benefit function depending on f

Compare: Components of routing games

- Players \leftrightarrow (atomic/nonatomic) fractions of flow f
- Strategies \leftrightarrow choose a path P
- Strategy sets $\leftrightarrow \mathcal{P}$
- Payoff for P \leftrightarrow latency/cost function depending on f
General Benefit Function

- r: flow rate
- $-M$: punishment for infeasible flow
- ω_P: security limit
- κ_P: security payment

Definition (Benefit function of player P)

$$b_P(f) = \begin{cases}
 c_P(f) & \text{if} & \sum_{P \in \mathcal{P}} f_P \leq r \land f_P \geq \omega_P \\
 \kappa_P & \text{if} & \sum_{P \in \mathcal{P}} f_P \leq r \land f_P < \omega_P \\
 -M & \text{if} & \sum_{P \in \mathcal{P}} f_P > r
\end{cases}$$
One-dimensional benefit function

To analyze behavior of benefit $b_P(f)$ of player P, fix strategies of remaining players: $f_{\neg P}$

One-dimensional benefit function:

$$\tilde{b}_P(f_P) = b_P(f_{\neg P}, f_P)$$
Best reaction set for P and given f_{-P}

$$f_{P}^{\text{max}} = \{ f_P \geq 0 : f_P \text{ maximizes } \tilde{b}_P(f_P) \}.$$

Lemma

The best reaction sets f_{P}^{max} are nonempty for all $P \in \mathcal{P}$ if the cost functions $c_e(f_e)$ are continuous for all $e \in E$.

- Important for existence of equilibria
- For non-continuous costs f_{P}^{max} may be empty
Definition (Nash equilibrium in path player game)
A flow \(f^* \) is a Nash equilibrium if and only if \(\forall P \in \mathcal{P} \) and \(\forall f_P \geq 0 \) holds that

\[
b_P(f^*_P, f^*_P) \geq b_P(f^*_P, f_P)
\]

Corollary
A flow \(f^* \) is a Nash equilibrium if and only if for all \(P \in \mathcal{P} \) holds that

\[
f_P^* \in f_P^{max}
\]
Existence of Equilibria for infinite games [Debreu 1952, Glicksberg 1952]:

- nonempty, compact, convex strategy sets; continuous and quasi-concave payoffs \rightarrow equilibrium in pure strategies
- nonempty, compact strategy sets; continuous payoffs \rightarrow equilibrium in mixed strategies

Path Player Game:
nonempty, compact, convex strategy set and non-continuous payoff \rightarrow equilibrium in pure strategies
\rightarrow use: best response exists for continuous $c_e(\cdot)$
Theorem (Existence of feasible Nash equilibria)

In a path player game with continuous cost functions $c_e(f_e)$, a feasible Nash equilibrium in pure strategies exists.

Proof:

- \mathbb{F}: set of feasible strategies f, closed, bounded and convex
- construct continuous mapping $T : \mathbb{F} \rightarrow \mathbb{F}$
- Kakutani’s fixed point theorem: \Rightarrow Fixed point of T exists
- Each fixed point of T is a Nash equilibrium in pure strategies
Theorem (Existence of feasible Nash equilibria)

In a path player game with continuous cost functions $c_e(f_e)$, a feasible Nash equilibrium in pure strategies exists.

Proof:

-\(\mathbb{F} \): set of feasible strategies \(f \), closed, bounded and convex
- construct continuous mapping \(T : \mathbb{F} \rightarrow \mathbb{F} \)
- Kakutani’s fixed point theorem: \(\Rightarrow \) Fixed point of \(T \) exists
- Each fixed point of \(T \) is a Nash equilibrium in pure strategies

\[
\begin{align*}
 f'_P &= f_P + \left\{ \begin{array}{ll}
 \min \left\{ f^m_P - f_P; \sum_{P_k \in \mathcal{P}: \mathcal{P}_k < f^m_k} \left(f^m_k - f_k \right) \cdot d \right\} & \text{if } f_P < f^m_P \\
 f^m_P - f_P & \text{if } f_P \geq f^m_P
 \end{array} \right.
\end{align*}
\]
Strictly increasing costs

Strictly increasing cost functions and $\omega_P = 0$ (no-security-limit)

Lemma

Strictly increasing cost functions $c_e(f_e)$, security limit $\omega_P = 0$: A flow f is a feasible Nash equilibrium if and only if

$$\sum_{P \in \mathcal{P}} f_P = r$$
Strictly increasing cost functions and general $\omega_P \geq 0$

Lemma

Strictly increasing cost functions $c_e(f_e)$: If a flow f is a feasible Nash equilibrium then at least one of the following cases holds:

(i) $\sum_{P \in \mathcal{P}} f_P = r$

(ii) $f_P < \omega_P \ \forall \ P \in \mathcal{P}$.
Question:
When does necessary and sufficient condition:

\[\text{A flow } f \text{ is a feasible Nash equilibrium } \iff \sum_{P \in \mathcal{P}} f_P = r \]

also hold for problems with general security limit?
Non-compensative-security (NCS) property

Definition (Game with NCS property)
\[\forall P \in \mathcal{P}, \forall f_P \text{ with } d_P \geq \omega_P \text{ it holds that} \]
\[\exists f_P \geq \omega_P \text{ such that } \tilde{b}_P(f_P) > \kappa_P . \]

A player always prefers to choose \(f_P \geq \omega_P \) if possible.
Non-compensative-security (NCS) property

Definition (Game with NCS property)
\[\forall P \in \mathcal{P}, \forall f_P \text{ with } d_P \geq \omega_P \text{ it holds that } \exists f_P \geq \omega_P \text{ such that } \tilde{b}_P(f_P) > \kappa_P . \]

A player always prefers to choose \(f_P \geq \omega_P \) if possible.

Lemma

Strictly increasing cost functions \(c_e(f_e) \), *security limit* \(\omega_P \geq 0 \) and *NCS game*:

A flow \(f \) is a feasible Nash equilibrium if and only if
\[\sum_{P \in \mathcal{P}} f_P = r \]
How to identify games with NCS property?

\[\kappa_P < c_P(0, \ldots, 0, \omega_P, 0, \ldots, 0) =: c_P(\vec{0}_{|P| - 1}, \omega_P) \quad (*) \]

If competitors are routing nothing \(\rightarrow P \) choose \(f_P \geq \omega_P \).
How to identify games with NCS property?

\[\kappa_P < c_P(0, \ldots, 0, \omega_P, 0, \ldots, 0) =: c_P(\bar{0}_{|P|-1}, \omega_P) \quad (*) \]

If competitors are routing nothing → \(P \) choose \(f_P \geq \omega_P \).

Lemma

A game where each benefit functions has property (*) is a game with NCS property, if

- the graph is path-disjoint
 - or
- the costs are monotonically increasing
 - or
- each path contains exclusive edge that mimics property (*)
Further Results for Special Benefit Functions

- Differentiable costs \rightarrow necessary condition
- Differentiable and concave costs \rightarrow necessary and sufficient condition
- Convex costs \rightarrow dominating strategy set
Future work

- Multiple equilibria, dominance structures
- Optimal flow for a PPG system
- Potential function for the PPG
- Edge-dependent security limits
- Application: Traffic Optimization: Line Planning, including delay minimization
Routing games Flow consists of independent players that choose a path through a network
- Roughgarden, Tardos: How bad is selfish routing?, 2002
- Koutsoupias, Papadimitriou: Worst-case equilibria, 1999
Routing games Flow consists of independent players that choose a path through a network
- Roughgarden, Tardos: How bad is selfish routing?, 2002
- Koutsoupias, Papadimitriou: Worst-case equilibria, 1999

Bandwidth allocation Capacitated links are used by several players
Player bid for bandwidth, central manager assigns bandwidth and price
- Kelly: Charging and rate control for elastic traffic, 1997
- Johari, Tsitsiklis: Efficiency loss in a network resource allocation game, 2004
Routing games Flow consists of independent players that choose a path through a network
- Roughgarden, Tardos: How bad is selfish routing?, 2002
- Koutsoupias, Papadimitriou: Worst-case equilibria, 1999

Bandwidth allocation Capacitated links are used by several players
Player bid for bandwidth, central manager assigns bandwidth and price
- Kelly: Charging and rate control for elastic traffic, 1997
- Johari, Tsitsiklis: Efficiency loss in a network resource allocation game, 2004

Path auctions Edges are owned by the players, central manager has to buy a path through the network
- Sahai, Elkind, Steiglitz: Frugality in path auctions, 2004
- Archer, Tardos: Frugal path mechanisms, 2002