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Abstract

Local helioseismology aims at recovering the mo-
tions (flow velocities) in the solar interior from ob-
servations of solar oscillations on the surface of the
Sun. In time-distance helioseismology, the basic in-
put data are travel times of waves between pairs of
points on the surface. These quantities are linked to
the internal properties of the Sun via an integral op-
erator. In previous publications the reconstruction
of flow velocities from travel times has been studied
by solving an inverse problem. The aim of this paper
is to recover directly the Reynolds stresses instead
of first recovering the velocities then computing the
correlations. This paper is a first attempt in this di-
rection and all the necessary ingredients to perform
directly the inversion are presented.

Introduction

Time-distance helioseismology [1] aims at recov-
ering subsurface structure and dynamics of the Sun
by the measurement and analysis of travel-times for
wave packets moving between two points on the so-
lar surface. Travel-times are obtained thanks to high-
resolution Doppler images of the Sun surface given by
space and ground-based networks. Once these quan-
tities are known, a forward model has to be derived
to link them to internal properties of the Sun. In the
upper layers of the Sun, the convective motions are
described by a flow field with velocity v(x), x ∈ R

3,
which we would like to image using helioseismology.
The relation between the travel time τa (between two
surface points r1 and r2) and the flow velocity v(x)
can be expressed as:

τa(r1, r2) =

∫

V

Ka(r− r1,r2, z) · v(r, z)d
2rdz

+ na(r1, r2) (1)

where the integration is performed over a volume
V = S × [0, zmin] formed by the product of a surface
S in the (x, y)−plane (supposed planar) by a small
depth interval [0, zmin] under the Sun’s surface. The

superscript a denotes the type of travel time, Ka is
the sensitivity kernel and na the noise generated by
the stochastic excitation of the waves by the small-
est scales of convection (granulation). The position
vector x is written as x = (r, z) where r = (x, y) are
the horizontal coordinates and z points up.

To recover internal properties of the Sun, the in-
verse problem corresponding to (1) has to be solved.
A good knowledge of the sensitivity kernel and of
the noise model is required to perform the inversion
reliably. A methodology to construct the kernels is
presented in [2], [3] and in [4] for the noise model.
If one wants to recover another quantity related to
velocities like the Reynolds stresses one could first
compute the velocities and then deduce the Reynolds
stresses. However, this method is time-consuming
and not very accurate. This paper presents a first at-
tempt to compute directly the Reynolds stresses from
the travel times spatial correlations. In a first part,
inversion methods for travel times are presented, then
we show that the velocity correlations can also be
linked to travel times via an integral operator and so
deduced by inversion methods.

1 Inversion for velocities

Two methods are traditionally used to invert (1):
the Regularized Least Square (RLS) method (equiv-
alent to the Tikhonov method in the mathemati-
cal literature) and the Optimally Localized Averages
(OLA) (equivalent to the approximate inverse). A
modified version of the latter has been recently used
[5] in order to invert (1) in the Fourier space instead
of the real space. It is of great interest as the dif-
ferent modes are not correlated in the Fourier space
so a lot of small matrices (≈ 300 × 300) have to be
inverted instead of a large one. The small size of the
matrices makes possible the calculation of its singular
value and thus, to perform the inversion by singular
value decomposition (SVD). This method is partic-
ularly efficient for our problem. As the problem is
severely ill-posed, a lot of eigenvalues are close to 0
so only few ones are kept for most of the modes.



2 Inversion for velocity correlations

Using Reynolds’s decomposition, the ith com-
posant of the flow velocity vector can be written as
vi = Vi + v′i where Vi is the deterministic mean part
of the flow velocity and v′i the small scale (random)
part. The Reynolds stresses Rij are then defined as:

Rij(x,x
′) = 〈v′i(x), v

′

j(x
′)〉 (2)

If we assume that the correlations of the fluctuating
part of the flow are horizontally homogeneous, Rij

depends only on the distance δ = r′ − r, z and z′:

Rij(δ, z, z
′) = 〈v′i(r, z), v

′

j(r+ δ, z′)〉 (3)

Multiplying τa(r1, r2) and τ b(r1
′, r2

′) (using (1)) and
supposing for the sake of clarity that Vi = 0, one can
link Reynolds stresses and measured travel times:

〈τa(r1, r2), τ
b(r1

′, r2
′)〉 = Λab(x1,x2,x1

′,x2
′)+

∫

⊙′

∫

z

Kab
ij (r

′, z, z′; r1, r2, r1
′, r2

′)×

Rij(r
′, z, z′)dzd2r′dz′ (4)

where Kab
ij (r

′, z, z′; r1, r2, r1
′, r2

′) =
∫

r

Ka
i (r− r1, r2, z)K

b
j(r+ r′ − r1

′, r2
′, z′)d2r (5)

with Ka
i the ith component of Ka and Λab defined in

[4] the noise covariance matrix for travel times.
Eq. (4) gives a relation between the Reynolds

stresses and the travel times correlations via an in-
tegral operator. It turns out that the kernels are
known as they are a correlation between two kernels
for travel times. They can even be computed effi-
ciently by Fast Fourier Transform (FFT):

Kab
ij = F−1

{

F
(

Ka
i

)

F
(

Kb
j

)}

(6)

where Ka
i (r) = Ka

i (−r), F and F−1 represent the
Fourier and inverse Fourier transform.

A 2D case used for kernel computations is pre-
sented in Figure 1. The kernels are computed be-
tween a one-way wave packet traveling west-east from
the point (−10Mm, 0) to (10Mm, 0) and a south-
north one traveling from (0,−10Mm) to (0, 10Mm).
The kernel representing the cross-correlation for the
Reynolds stresses is shown in Figure 1. Once the ker-
nels are known, a noise model for Reynolds stresses
is required. This can be done following the ideas of

Figure 1: Test case for kernels computations
(left); Kaa

xy (x, y, r1, r2, r
′
1
, r2

′), a refers to a f-mode
measure between pairs separated by 20Mm (right)

[4]. Computations are unfortunately way more com-
plicated. In [4] it was necessary to compute the ex-
pected value of a product of four complex random
Gaussian variables. Here, the moments of order six
and eight are required which lead to about one hun-
dred terms to estimate. However an exact formula
can be derived for this purpose. Knowing the kernels
and a noise model, (4) can be inverted for example
by using a singular value decomposition.
This approach is significantly more efficient both

concerning memory storage and computation time.
In this direct approach, computations are made with
mean values instead of maps on the whole domain if
one wants to first compute the velocities then deduce
the Reynolds stresses. So the size of the matrix to in-
vert is much smaller. This approach will be validated
using a model for flow velocities and travel times.
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