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Abstract

Let f be a univariate polynomial with real coefficients, f ∈ R[X]. Subdivision
algorithms based on algebraic techniques (e.g., Sturm or Descartes methods) are
widely used for isolating the real roots of f in a given interval. In this paper, we
consider a simple subdivision algorithm whose primitives are purely numerical
(e.g., function evaluation). The complexity of this algorithm is adaptive because
the algorithm makes decisions based on local data. The complexity analysis of
adaptive algorithms (and this algorithm in particular) is a new challenge for
computer science. In this paper, we compute the size of the subdivision tree for
the SqFreeEVAL algorithm.

The SqFreeEVAL algorithm is an evaluation-based numerical algorithm which
is well-known in several communities. The algorithm itself is simple, but prior
attempts to compute its complexity have proven to be quite technical and have
yielded sub-optimal results. Our main result is a simple O(d(L+ln d)) bound on
the size of the subdivision tree for the SqFreeEVAL algorithm on the benchmark
problem of isolating all real roots of an integer polynomial f of degree d and
whose coefficients can be written with at most L bits.

Our proof uses two amortization-based techniques: First, we use the alge-
braic amortization technique of the standard Mahler-Davenport root bounds to
interpret the integral in terms of d and L. Second, we use a continuous amor-
tization technique based on an integral to bound the size of the subdivision
tree. This paper is the first to use the novel analysis technique of continuous
amortization to derive state of the art complexity bounds.
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1. Introduction

In this paper, we show that the size of the subdivision tree for the simple,
evaluation-based, numerical algorithm SqFreeEVAL has size O(d(L + ln d)) for
the benchmark problem of isolating all of the real roots of an integer polynomial
of degree d whose coefficients can be represented by at most L bits. Under the
mild assumption that L ≥ ln d, this complexity simplifies to the optimal size of
O(dL), see (Eigenwillig et al., 2006, Section 3.3) for a proof of optimality. The
optimality and simplicity of the SqFreeEVAL algorithm imply that it may be a
useful algorithm in practical settings. The bound on the size of the subdivision
tree is achieved via a straight-forward and elementary argument. The two main
techniques which are used in the computation are algebraic amortization, in the
form of Mahler-Davenport bounds, and continuous amortization, in the form of
an integral technique as presented in (Burr et al., 2009).

1.1. EVAL-type algorithms

The SqFreeEVAL algorithm which we study in this paper is a specific exam-
ple of what we call an EVAL-type algorithm. These algorithms are so named
because they are based on function evaluation: EVAL-type algorithms take, as
input, functions which allow some subset of the following two predicates: First,
these functions and their derivatives can be evaluated at a countable dense sub-
set of their domain. In this paper, the domain will be the real numbers and the
countable dense subset will be the dyadic integers. Second, these functions and
their derivatives can be approximated on intervals in such a way that the ap-
proximation converges as the input intervals converge to a point. In this paper,
the approximation is derived from interval arithmetic on a Taylor sequence. The
simplest and most well-known example of an EVAL-type algorithm is Lorensen
and Cline’s marching cube algorithm (Lorensen and Cline, 1987).

EVAL-type algorithms are typically studied because of their simplicity and
generality. These algorithms are fairly general because their inputs can be
extended to more general analytic functions. In particular, many analytic func-
tions have interval arithmetic available to them, and, therefore, it is possible to
approximate these functions on intervals. In addition, with the limited predi-
cates available to EVAL-type algorithms, most of the techniques which are used
in these algorithms are analytically based (as opposed to algebraically based).
These algorithms are simple because, in many cases, EVAL-type algorithms are
based on simple recursive bisection algorithms. Such algorithms iteratively sub-
divide an initial domain until each set in the resulting partition of the initial
domain satisfies a (usually simple) terminal condition. Bisection algorithms are
common in computer graphics (Boier-Martin et al., 2005) as well as in compu-
tational science and engineering applications (International Conference on Do-
main Decomposition Methods). Bisection algorithms are of particular interest
because they are adaptive; they perform more bisections near difficult features
and fewer bisections elsewhere. However, this adaptivity makes the complexity
analysis of such algorithms more difficult because the subdivision tree may have
a few deep paths while the remainder of the tree remains modest in size.
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EVAL-type algorithms have been studied in the univariate case in (Henrici,
1970; Yakoubsohn, 2005; Sagraloff and Yap, 2009; Yap and Sagraloff, 2011; Burr
et al., 2011, 2009), in the bivariate and trivariate cases in (Lorensen and Cline,
1987; Snyder, 1992; Plantinga and Vegter, 2004; Plantinga, 2006; Lin and Yap,
2009; Burr et al., 2010), and in the multivariate case in (Galehouse, 2009; Dedieu
and Yakoubsohn, 1992). All of these algorithms are devoted to approximating
algebraic (and in some cases analytic varieties) in the real or complex settings.
The algorithms in (Burr et al., 2011, 2009) are designed to find all real roots of a
polynomial or analytic function while the algorithms in (Henrici, 1970; Yakoub-
sohn, 2005; Sagraloff and Yap, 2009; Yap and Sagraloff, 2011) are designed to
find the complex roots of a polynomial or analytic function (note that (Henrici,
1970) is only designed to find a single root of a polynomial). Each of these al-
gorithms is very closely related to the SqFreeEVAL algorithm considered in this
paper; the main differences are in the setting, in the type of subdivisions per-
formed, and in various preprocessing steps. We give a more detailed account of
these algorithms in the next section. The two-dimensional EVAL-type algorithm
(Plantinga and Vegter, 2004; Plantinga, 2006) was presented for approximating
smooth and bounded varieties. It was extended to singular and unbounded va-
rieties in (Burr et al., 2010); in addition, the tests performed by the algorithm
were improved in (Lin and Yap, 2009).

1.2. The SqFreeEVAL algorithm

There are many bisection algorithms for finding roots, see Section 1.5 for
references, but among such algorithms, the SqFreeEVAL algorithm is one of
the simplest and most widely applicable, see (Burr et al., 2011). There are
two distinct paths in the literature which arrive at algorithms similar to the
SqFreeEVAL algorithm: one path proceeds through the consideration of magni-
tudes of derivatives and the other path proceeds via interval arithmetic.

We begin by discussing the history from the magnitudes of derivatives per-
spective. In (Henrici, 1970), the author presents an algorithm for finding a
single complex root of a polynomial. The test T3 from the paper is essentially
used here. In (Yakoubsohn, 2005), the test is developed into a bisection algo-
rithm and to find all complex roots of entire functions, not just polynomials.
In the paper, however, the test from (Henrici, 1970) is used only as a one-sided
test; therefore, the algorithm can only exclude regions from containing roots
and does not confirm that roots exist in the final regions. There, the algorithm
was termed a bisection-exclusion algorithm to reflect this drawback. Finally, in
(Sagraloff and Yap, 2009; Yap and Sagraloff, 2011), the algorithm from (Yak-
oubsohn, 2005) was adapted to polynomials in order to confirm that roots exist
in the final regions; there, the authors studied both an algorithm for finding
complex roots as well as one for finding real roots. The SqFreeEVAL algorithm
is a natural restriction of these complex root-finding algorithms to the real line.

On the other hand, from the interval arithmetic community, a bisection al-
gorithm using interval methods was suggested in (Moore, 1966; Mitchell, 1990).
In these papers, any interval function can be used; if the standard centered
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form for polynomials is used, see (Ratschek and Rokne, 1984), then the exclu-
sion conditions are identical (when f and f ′ are square free) to those for the
SqFreeEVAL algorithm.

In this paper, we study the SqFreeEVAL algorithm on the standard bench-
mark problem of finding all of the real roots of a polynomial. We show that,
in this case, the subdivision tree has the favorable size of O(d(L+ ln d)) which
simplifies to the optimal size of O(dL) under the mild assumption that L ≥ ln d.
Since this algorithm uses only local data to find roots, it is an adaptive algo-
rithm and may be more efficient than the standard exact algorithms in certain
cases, see (Burr et al., 2011). In addition, the SqFreeEVAL algorithm can handle
analytic varieties, see (Burr et al., 2011), which extends its reach beyond that of
more standard exact algorithms which require sophisticated algebraic primitives
and are specialized to polynomials. These advantages of the SqFreeEVAL algo-
rithm imply that it may be more practical than other standard root isolation
algorithms in practice.

1.3. Previous complexity results

The computational complexity of EVAL-type algorithms has proven to be
quite a challenging problem because the algorithms are adaptive and the analytic
primitives do not carry much information about the global structure (unlike
algebraic information). Here, we survey the methods of complexity analysis of
the precursors to the SqFreeEVAL algorithm. In most situations, the complexity
is computed in terms of the size of the subdivision tree of the specific EVAL-type
algorithm (this is almost equivalent to counting the number of tests performed
by the algorithm). There have been two main techniques to find the size of
the subdivision tree: by finding the width of the subdivision tree at various
subdivision levels or by finding the local depth of the subdivision tree.

In (Henrici, 1970), the author is searching for only a single root, and, there-
fore, retains a single disk containing a root at each stage of the algorithm.
Many tests are performed in the algorithm, however, because at each stage of
the algorithm, tests are performed on a covering of the previously retained disk.
The final stopping criterion for this algorithm is based on a precision ε > 0
which is chosen a priori by the user. When the worst-case root separation
bound for a polynomial is used, the complexity of the subdivision tree becomes
O(d3(L+ ln d)).

In (Yakoubsohn, 2005), the author is searching for all of the complex roots
of an analytic function. In the computation, a bound on the width of the tree is
computed to bound the number of subdivisions performed. Since this algorithm
only excludes regions and lacks an inclusion test, it is possible that the final
output regions do not contain roots or do not separate roots. The final stopping
criterion for this algorithm is based on a precision ε > 0 which is chosen a priori
by the user. When the worst-case root separation bound for a polynomial is
used, the complexity of the subdivision tree becomes either O(d4(L + ln d)) or
O(d3(L+ ln3 d)) after dln de steps of the Graeffe iteration.

In (Burr et al., 2009), we search for all of the real roots of a polynomial.
Here, the computation is based on the depth of the tree over each point of the
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initial interval. In the paper, we introduced the idea of continuous amortization
via an integral and showed how to use it to bound the size of the subdivision
tree. In particular, we proved a complexity bound of O(d3(L + ln d)) for the
subdivision tree.

In (Sagraloff and Yap, 2009; Yap and Sagraloff, 2011), the authors present
algorithms to find all of the real or all of the complex roots of a polynomial.
In the computation, a bound on the width of the subdivision tree is used to
compute the number of subdivisions performed. The authors show that the
complexity of the subdivision tree is O(d(L+ ln d)(lnL+ ln d)) in the real case
and O((d ln d)2(L + ln d)) in the complex case. In addition, the authors show

that the bit complexity of both of these algorithms is Õ(d4L2) where the Õ
means that logarithmic factors in d and L have been suppressed.

Each of the methods of analysis in (Yakoubsohn, 2005; Burr et al., 2009;
Sagraloff and Yap, 2009; Yap and Sagraloff, 2011) are quite technical, compli-
cated, and require several constants to be defined whose use becomes justified
only after the completion of the complexity analysis. In contrast, the computa-
tion in this paper is quite simple and provides the better bound of O(d(L+ln d)).
It should be noted that although this is the best bound known, it does not di-
rectly replace the bounds presented in these papers because some are in the
different setting of the complex plane and others use different preprocessing
steps. In the case where the polynomial and its derivative are both square free
and we are searching for the real roots, all of these algorithms are identical and
our bound on the subdivision tree is the best.

1.4. Algebraic and continuous amortization

In this paper, we use amortization in two forms: algebraic and continuous.
Algebraic amortization originated with Davenport (Davenport, 1985) where the
individual real root separation bounds are replaced by a product of root sepa-
rations. This bound was then studied in (Johnson, 1991; Du et al., 2007; Eigen-
willig et al., 2006; Mignotte, 1995; Emiris et al., 2008) where it was generalized
to other root separation products including complex roots. This technique has
proven useful to compute the complexity of the subdivision tree for many other
root isolation techniques, see Section 1.5. We introduced continuous amorti-
zation in (Burr et al., 2009) to bound the size of the subdivision tree of an
EVAL-type algorithm. In this paper, we show that continuous amortization can
be used to significantly simplify complexity calculations.

In continuous amortization, we use a complexity charge φ whose domain is
the input region, and, for each x in the input region, φ(x) is a lower bound on
the size of any leaf interval containing x. We call such a function a stopping
function for the algorithm. In this situation, 1/φ(x) is related to the depth
of the subdivision tree for an interval which contains x. Note that a stopping
function φ is theoretical and is never meant to be implemented: it is used only
in the computation of the size of the subdivision tree, and it is not used in
the algorithm itself. Functions similar to stopping functions also appeared in
(Henrici, 1970) where they were called inner and outer convergence functions.
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In (Yakoubsohn, 2005) such functions were also termed exclusion functions. In
both cases, these stopping functions were used to compute the complexity of the
algorithm, but they were not used in a continuous amortization computation.

Continuous amortization was first used in (Burr et al., 2009), to compute
the size of a subdivision tree for an EVAL-type algorithm. In the paper, an upper
bound on the integral resulting from continuous amortization is computed by
using algebraic amortization-based bounds. In Section 4, we greatly simplify
the computation to provide a complexity bound of O(d(L + ln d)) for the size
of the subdivision tree for the SqFreeEVAL algorithm.

1.5. Other root isolation algorithms

There is an extensive amount of literature on the complexity of root isola-
tion, see (Pan, 1997, 1996) for surveys of the previous literature, which we will
not attempt to cover here. Most algorithms are compared by their performance
on the benchmark problem of finding all real roots of a polynomial of degree
d and whose coefficients can be represented by at most L bits. For this prob-
lem, the bit-complexity of O(d3(L+ ln d)) for complex roots was first achieved
by Schönhage (Schönhage, 1982). In many algorithms, the size of the subdivi-
sion tree is smaller than this bound because, for each node in the subdivision
tree, additional calculations must be performed. Davenport (Davenport, 1985)
proved that the the subdivision tree for the Sturm method is O(d(L+ln d)), see
(Reischert, 1997; Lickteig and Roy, 2001; Du et al., 2007; Emiris et al., 2008;
Johnson, 1991). More recently, it has been shown in (Eigenwillig et al., 2006;
Emiris et al., 2008) that the Descartes method also achieves this bound, see
(Collins and Akritas, 1976; Eigenwillig et al., 2006; Krandick and Mehlhorn,
2006; Collins et al., 2002; Sagraloff, 2011; Johnson, 1991). These methods are
optimal under the weak assumption that L ≥ ln d. In addition, related exact
techniques using continued fractions were shown to have a tree size of Õ(dL)

when an ideal root bound is used and Õ(d2L) when a more practical bound is
used (Sharma, 2008); in the expected case, the tree was also shown in (Tsigari-
das and Emiris, 2008) to have an expected size of O(d2 + dL). In the algebraic
computing community, the Descartes method appears to be one of the more
practical algorithms, see (Collins et al., 2002; Johnson, 1998; Rouillier and Zim-
mermann, 2004; Mourrain et al., 2005; Rouillier and Zimmermann, 2004). For
an empirical comparison of these methods, see (Hemmer et al., 2009). In this
paper, we show that the subdivision tree for the SqFreeEVAL algorithm also
achieves this bound; therefore, the SqFreeEVAL algorithm should also be con-
sidered on equal footing with the other more well-known root finding algorithms
via the Sturm or Descartes methods. The SqFreeEVAL algorithm may, in addi-
tion, be considered practical because its computations are numerical and hence
easy to implement and its subdivision tree has a favorable size.

1.6. Organization of this paper

In Section 2, we introduce the SqFreeEVAL algorithm and discuss the main
condition we will use for an interval to be SqFreeEVAL terminal. In Section 3,
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we review the use of stopping functions to bound the size of the subdivision from
(Burr et al., 2009) and create a stopping function for the SqFreeEVAL algorithm.
In Section 4, we compute the size of the SqFreeEVAL algorithm’s subdivision tree
using continuous amortization via the stopping function technique and achieve
the main result of this paper, the O(d(L + ln d)) bound on the size of the
subdivision tree for the SqFreeEVAL algorithm. Finally, we conclude in Section
5.

The authors would like to thank the following people for many useful dis-
cussions: Benjamin Galehouse, Michael Sagraloff, and Chee Yap.

2. The SqFreeEVAL algorithm

Given an interval I = [a, b] with integer endpoints and a polynomial f with
integer coefficients, i.e., f ∈ Z[X], the SqFreeEVAL algorithm returns a collection
of intervals which cover and isolate the real roots of f in (a, b), i.e., every root
appears in an output interval and each output interval contains exactly one root
(ignoring multiplicities). In the SqFreeEVAL algorithm, if the interval [c, d] is
output, then (c, d) contains exactly one root of f and if [c, c] is output, then c
is a root of f . The SqFreeEVAL algorithm maintains a (finite) partition P of
the interval I, i.e., a finite collection of intervals whose interiors are disjoint and
whose union is I. The SqFreeEVAL algorithm iteratively bisects the elements
of P until the intervals of the partition P are each small enough to pass the
SqFreeEVAL termination conditions (see Section 2.1). Of interest to us is the
size #P of the partition, i.e., the number of intervals in P .

We begin with some terminology: For an interval J = [c, d] the width of J
is w(J) = d − c and the midpoint of J is m(J) = (c + d)/2. Also, to bisect an
element of the partition P means to replace the interval J = [c, d] ∈ P by the
two subintervals [c,m(J)] and [m(J), d]. Note that each bisection increases the
number of intervals in the partition by exactly one; this implies that #P is one
more than the number of bisections done by the SqFreeEVAL algorithm. The
subdivision tree is a full binary tree, and, therefore, has 2#P −1 nodes. In fact,
the internal nodes of the subdivision tree are in bijective correspondence with
the splits in the final partition. All of the calculations done by the SqFreeEVAL

algorithm will be performed on the dyadic integers Z[1/2] so that all of the
standard operations are exact. This prevents well-known implementation errors
from arising in practice.

2.1. Statement of the SqFreeEVAL algorithm

In the SqFreeEVAL algorithm, we first replace f by its square free component,
which we briefly call g. Then, we replace f ′ by its square free and relatively
prime to f component, i.e., we first take the square free component of f ′ and
then take the portion of this polynomial which is relatively prime to f . We
briefly call this h. Note that g|f and h|f ′, and, moreover, the roots of g are
separated by roots of h by Rolle’s theorem. In the case where f is square free, the
zeros of h partition f into monotonic regions; in the case where f is not square
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free, the zeros of h no longer have this property, but they still partition the
roots of f (and hence the roots of g). Throughout the remainder of this paper,
except for a brief note in Section 4.2, we use these square free substitutions for
f and f ′ without mention. The bounds on the subdivision tree, however, will
be in terms of the data for original the f and not for any replacements.

The SqFreeEVAL algorithm creates a partition of I and determines which
intervals in the partition contain roots. Initially, the partition of I is P = {I},
the trivial partition.

Algorithm 2.1: The SqFreeEVAL algorithm

Repeatedly subdivide each J ∈ P until one of the following conditions holds:

(C0) |f(m(J))| >
d∑
i=1

|f (i)(m(J))|
i!

(
w(J)

2

)i
or

(C1) |f ′(m(J))| >
d−1∑
i=1

|f (i+1)(m(J))|
i!

(
w(J)

2

)i
If, when subdividing, f(m(J)) = 0, then output [m(J),m(J)].

For each interval J = [c, d] ∈ P where C1 holds and f(c) · f(d) < 0, output J

The termination proof for the SqFreeEVAL algorithm is very similar to the
corresponding statement in (Burr et al., 2009; Sagraloff and Yap, 2009; Yap
and Sagraloff, 2011). The correctness proof is slightly different from the corre-
sponding proofs for other EVAL-type algorithms. The correctness follows from
the Taylor polynomial centered at m(J): if one of the conditions holds, then
it follows that f (for condition C0) or f ′ (for condition C1) is never zero in J
since the inequalities are equivalent to a reverse triangle inequality on the Taylor
polynomial. The first condition implies that f has no zeros in J . The second
condition implies that f has at most one zero in J since roots of f ′ separate
zeros of f (even though f might not be monotonic due to the replacements
above).

2.2. SqFreeEVAL terminal intervals

In this section, we provide a sufficient condition for the SqFreeEVAL algo-
rithm to terminate without subdividing on a given interval, i.e., for the interval
to be SqFreeEVAL terminal.

Definition 2.1. For any polynomial g of degree d, define αg = {α1, · · · , αd} to
be the multiset of the roots of g. In addition, define the function Σg to be the
sum of the reciprocals of the distances from its argument to the roots of g:

Σg(x) =
∑
α∈αg

1

|x− α|
.
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Note that this function can be represented in a simple form using the harmonic
mean HM. Then, one has

1

Σg(x)
=

HM(|x− αg|)
d

where |x− αg| is the set of distances from x to the roots of g.

Σf and Σf ′ will be our main objects of study. We begin with the following
lemma which connects Σf (x) and Σf ′(x) with conditions C0 and C1, respec-
tively:

Lemma 2.1. The following inequality holds for i ≥ 0:∣∣∣∣f (n)(x)

f(x)

∣∣∣∣ ≤ (Σf (x))
n
.

The proof is a straight-forward computation. See the proof of (Burr et al., 2009,
Lemma 6.2) or (Sagraloff and Yap, 2009, Section 5.2) for details.

We use this lemma to show that a simple upper bound on the width of an
interval will ensure that the conditions in the SqFreeEVAL algorithm hold. For
example, in condition C0, divide both sides of the inequality by |f(m(J))| and
apply Lemma 2.1 to derive the following inequality:

d∑
i=1

|f (i)(m(J))|
i!|f(m(J))|

(
w(J)

2

)i
≤

d∑
i=1

1

i!

(
Σf (m(J))w(J)

2

)i
.

If w(J) ≤ 1
Σf (m(J)) , then the sum on the RHS is bounded above by a geometric

series with r = 1/2, and, therefore, the sum is bounded by 1. This implies that
condition C0 holds. We explicitly state the conclusion of this argument in the
following lemma:

Lemma 2.2. If w(J) ≤ 1
Σf (m(J)) then C0 holds on J and J is SqFreeEVAL ter-

minal. Similarly, if w(J) ≤ 1
Σf′ (m(J)) , then C1 holds on J and J is SqFreeEVAL

terminal.

3. Stopping functions

In this section, we show how stopping functions can be used to compute the
size of the subdivision tree of the SqFreeEVAL algorithm. The construction in
Section 3.1 was originally presented in (Burr et al., 2009), but we include it here
for completeness and because the construction in Section 3.2 requires a detailed
understanding of the method.
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3.1. Basic properties

The use of stopping functions promises to be an important tool for bounding
the complexity of subdivision algorithms. Most of the numerical algorithms
appearing in the introduction may benefit from this type of analysis; more
algorithms of this type are mentioned in the Conclusion, Section 5. We begin
by formulating an abstract algorithm called the Bisection algorithm, which is
intended to be the prototype of these types of algorithms in one dimension. The
notion of stopping functions and the Bisection algorithm both easily generalize
to higher dimensions.

Fix a predicate B (i.e., a Boolean function) on intervals with the following
property: if K ⊆ J and B(J) is true, then B(K) is also true. The Bisection al-
gorithm is the following algorithm: given an interval I, the algorithm maintains
a partition P of I. Initially, let the partition be the trivial partition P = {I}
and let PBisection(I) be the final partition.

Algorithm 3.1: The Bisection algorithm

Repeatedly subdivide each J ∈ P until the following condition holds:

B(J) is true

A stopping function for the Bisection algorithm with predicate B is a real-
valued function F with the following property: if, for a given interval J , there
exists a point p ∈ J such that w(J) ≤ F (p), then B(J) is true. The following
theorem, which also appears as (Burr et al., 2009, Theorem 3.5), bounds the
number of subdivisions performed by the Bisection algorithm.

Theorem 3.1. (Burr et al., 2009, Theorem 3.5) Let F be a stopping function
for the Bisection algorithm, then

#PBisection(I) ≤ max

{
1,

∫
I

2dx

F (x)

}
.

If the Bisection algorithm does not terminate, then the integral is infinite.

Proof. If #PBisection = 1, then the bound is immediate. If #PBisection > 1,
then an examination of the Bisection algorithm shows that for J ∈ PBisection

there is a lower bound on w(J) since the Bisection did not terminate at the
parent of J :

∀c ∈ J,w(J) ≥ 1

2
F (c).

In addition,
∫
I

2dx
F (x) =

∑
J∈PBisection

∫
J

2dx
F (x) , and it, therefore, suffices to show

that for every J ∈ PBisection,
∫
J

2dx
F (x) ≥ 1. Let y ∈ J be such that F (y) is

maximal in J . Then∫
J

2dx

F (x)
≥
∫
J

2dx

F (y)
=

2

F (y)
w(J) ≥ 2

F (y)
· F (y)

2
= 1.
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In the case when the Bisection algorithm does not terminate, we can look at
the partition P at any moment in time. The above argument shows that #P
is still bounded by the integral

∫
I

2dx/F (x). Since #P can be chosen to be
arbitrarily large, this shows that the integral is unbounded.

3.2. A stopping function for SqFreeEVAL

The next goal is to transform the inequality w(J) ≤ 1
Σf (m(J)) into a stopping

function. Currently, it is not a stopping function because the function on the
RHS is not for an arbitrary point of J , but for a specific point, the midpoint.
We begin to turn this into a stopping function via the following lemma:

Lemma 3.1. Let z = (z1, · · · , zd) with zi > 0 and y ∈ R such that y > 0 and
zi > y for all i. Then

HM(z − y) ≥ HM(z)− d · y (1)

HM(z) ≤ d · zi ∀i. (2)

Proof. For Inequality (1), we expand each of the harmonic means and get the
following equivalent inequality:

d∑
1

zi−y
≥ d∑

1
zi

− d · y.

Noting that all of the denominators are positive, clearing fractions gives that
this inequality is equivalent to the following inequality:

y

(∑ 1

zi − y

)(∑ 1

zi

)
≥
∑ 1

zi − y
−
∑ 1

zi
.

This inequality is easily justified by combining similar terms on the RHS to
obtain a sum with general term

1

zi − y
− 1

zi
=

y

zi(zi − y)
,

which is a term that appears on the LHS. Since the remaining terms on the LHS
are positive, this proves the first inequality.

For Inequality (2), we expand the harmonic mean to get the following equiv-
alent inequality:

d∑
1
zj

≤ d · zi.

Once again, the denominator is positive, so by clearing fractions we have that
this inequality is equivalent to the following inequality:

1

zi
≤
∑ 1

zj
.

Since all of the terms on the RHS are positive and include the term on the LHS,
this proves the second inequality.
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Let G0(x) = 2
3Σf (x) , then G0 is a stopping function for EVAL: Let J be an

interval such that J contains x and let m be the midpoint of J ; then, |x−m| ≤
w(J)

2 . Assume now that w(J) ≤ 2
3Σf (x) . Then, inequality (2) in Lemma 3.1

implies that |x − α| ≥ 1
Σf (x) > w(J)

2 for all α ∈ αf . This setup implies the

following inequalities:

w(J) ≤ 1

Σf (x)
−w(J)

2
≤

HM(|x− αf | − w(J)
2 )

d
≤ HM(|x− αf | − |x−m|)

d
≤ 1

Σf (m)
.

The second inequality follows from Lemma 3.1 and the fact that the terms of the
harmonic mean HM(|x − αf | − |x −m|) are all positive (because of the bound
on w(J) above). The remaining inequalities follow from the monotonicity of
the harmonic mean. The last inequality also uses that |x − αj | − |x − m| ≤
|m − αj | by the triangle inequality. When combined with Lemma 2.2, this
implies that J is SqFreeEVAL terminal. Similarly, let G1(x) = 2

3Σf′ (x) where

Σf ′ is the corresponding function for f ′, then G1 is also a stopping function for
the SqFreeEVAL algorithm. Finally, let G(x) = max{G0(x), G1(x)}, then G is
an everywhere positive stopping function for the SqFreeEVAL algorithm.

4. Size of the subdivision tree of the SqFreeEVAL algorithm for the
benchmark problem

In this section, we prove that the size of the subdivision tree of the SqFreeEVAL
algorithm is O(d(L + ln d)) where L is the number of bits needed to write the
coefficients of f (hence the absolute value of the coefficients is strictly less than
2L). In this case, the absolute value of all the roots is bounded by 2L (Yap,
2000) (this bound comes from the original f , not from the square free substi-
tution). Hence, we can assume wlog that b = −a = 2L. By Theorem 3.1, the
number of intervals in the final partition of I from the SqFreeEVAL algorithm
is bounded by

∫
I

2
G(x)dx. The crossover points of G are difficult to determine,

however, so we replace this integral by a slightly larger one which is easier to
evaluate: For any x ∈ I, let Rx be the set of roots in αff ′ which are closest to
x. Similarly, for α ∈ αff ′ , let Iα be the set of x ∈ I such that no other root
in αff ′ is closer to x than α. Note that x ∈ Iα iff α ∈ Rx and that two of the
Iα’s are either disjoint (except for endpoints) or coincide (in the case of complex
conjugates). Therefore, these Iα’s determine a partition of I. Also, let S be the
set of endpoints of the Iα’s; then, for all points x ∈ I \ S, one has Rx ⊆ αf
or Rx ⊆ αf ′ because f and f ′ do not share roots. We define another function
F (x):

F (x) =


G1(x) x 6∈ S and Rx ⊆ αf
G0(x) x 6∈ S and Rx ⊆ αf ′

G(x) x ∈ S
.

For some intuition in this definition, note that when Rx ⊆ αf ′ , x is far from
roots of f . Hence, G0 (which is related to C0 by the discussion in Section 3.2)
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should be applied in this case. A corresponding statement holds for G1. Note
that although S might not correspond to the crossover points of G, pointwise,
F (x) ≤ G(x) since G is a maximum of the terms which can occur in F . This
inequality implies the following inequalities:∫

I

2

G(x)
dx ≤

∫
I

2

F (x)
dx ≤

∫
I

∑
α∈αff′\Rx

3dx

|x− α|
=

∑
α∈αff′

∫
I\Iα

3dx

|x− α|
. (3)

For the second inequality let x 6∈ S, then x is either closest to a root of f or a
root of f ′. If x is closest to a root of f , then Rx ⊆ αf and 2

F (x) = 3Σf ′(x). In

this case, the sum to the right of the inequality includes all of the roots in αf ′

as well as some roots in αf . Thus, at least all of the terms of Σf ′(x) appear on
the RHS of the inequality. The case where x is closest to a root of f ′ is similar.
This implies the inequality because the set of points for which this inequality
may fail is a measure zero subset of S.

4.1. Evaluating the integrals

Consider the shape of each of the regions where we integrate: since all of the
integrals are of the form

∫ s
r

3dx
|x−α| , we evaluate a general integral of this form

where r and s lie on the same side of Re(α).

• In the case where α is real:

if s > r > α if r < s < α∫ s

r

3dx

|x− α|
=

∫ s

r

3dx

x− α

∫ s

r

3dx

|x− α|
=

∫ s

r

3dx

α− x
= 3 ln(|s− α|)− 3 ln(|r − α|) = 3 ln(|r − α|)− 3 ln(|s− α|)

These logarithms will be bounded in the next section.

• In the case where α is not real:∫ s

r

3

|x− α|
dx =

∫ s

r

3√
(x− Re(α))2 + Im(α)2

dx

=

∫ (s−Re(α))/| Im(α)|

(r−Re(α))/| Im(α)|

3√
y2 + 1

dy

= 3 arcsinh

(
s− Re(α)

| Im(α)|

)
− 3 arcsinh

(
r − Re(α)

| Im(α)|

)
This is now bounded via the relationship between Re(α) and r, s. If s >
r > Re(α), then:

3 arcsinh

(
s− Re(α)

| Im(α)|

)
− 3 arcsinh

(
r − Re(α)

| Im(α)|

)

= 3 ln

s− Re(α)

| Im(α)|
+

√(
s− Re(α)

| Im(α)|

)2

+ 1
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− 3 ln

r − Re(α)

| Im(α)|
+

√(
r − Re(α)

| Im(α)|

)2

+ 1


= 3 ln(s− Re(α) +

√
(s− Re(α))2 + Im(α)2)

− 3 ln(r − Re(α) +
√

(r − Re(α))2 + Im(α)2)

≤ 3 ln(2|s− α|)− 3 ln(|r − α|).

If r < s < Re(α), then the computation is similar, and the integral is
bounded above by 3 ln(2|r−α|)− 3 ln(|s−α|). These logarithms will also
be bounded in the next section.

4.2. Finishing the bound on the SqFreeEVAL algorithm

In this section, we use the computation from the previous section to prove
the main result of this paper. To do this, we consider the roots α ∈ αff ′ with
two different cases depending on if α is real or not.

• If α is real; then α ∈ Iα and let Iα = [c, d]. Then, the term corresponding
to α in the RHS of Inequality (3) consists of

∫
I\Iα

3dx
|x−α| =

∫ c
−2L

3dx
|x−α| +∫ 2L

d
3dx
|x−α| . Note that integrals may be zero which happens when c = −2L

or d = 2L. Then, using the bounds derived in the preceding section on
these integrals, it follows that they are bounded by:

3 ln(| − 2L − α|)− 3 ln(|c− α|) + 3 ln(|2L − α|)− 3 ln(|d− α|).

The positive terms are bounded by O(L) (the leading term is 6 ln(2)L) and
for the negative terms, note that c and d are points which are equidistant
from α and another root of ff ′, e.g., c is equidistant from α and β ∈ αff ′

where Iβ is the interval immediately to the left of Iα. Then, ln(|c− α|) is
bounded below by the logarithm of half the distance from α to β.

• If α is not real, then the term corresponding α in the RHS of Inequality (3)
consists of

∫
I\Iα

3dx
|x−α| which is bounded above by

∫
I

3dx
|x−α| . By splitting

this integral at Re(α), the integral is equal to
∫ Re(α)

−2L
3dx
|x−α| +

∫ 2L

Re(α)
3dx
|x−α| .

Using the bounds derived in the preceding section on these integrals, it
follows that these integrals are bounded by:

3 ln(2| − 2L−α|)− 3 ln(|Re(α)−α|) + 3 ln(2|2L−α|)− 3 ln(|Re(α)−α|).

The positive terms are bounded by O(L) (the leading term is 6 ln(2)L)
and for the negative terms, note that |Re(α)−α| = | Im(α)|, which is the
logarithm of half the distance between α and α.

Combining all of the O(L)’s which appear in the integrals results in a bound
of O(dL) (the leading term is 6(ln 2(2d − 1))L). The sum of the logarithmic
distances between roots are bounded simultaneously via the standard Mahler-
Davenport lower bound on distances between roots, see (Davenport, 1985; Mignotte,
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1995; Du et al., 2007; Eigenwillig et al., 2006). To do this, we construct a di-
rected graph whose nodes are the roots in αff ′ and whose edges represent the
logarithms which must be calculated. In this graph, the edges satisfy the con-
ditions of the Mahler-Davenport bound and are chosen so that the in-degree of
any node is at most 2. For each pair of complex roots, (α, α), connect them
with two directed edges, one from α to α, the other in the opposite direction.
On the other hand, if α is real, then let β be a root where Iβ lies immediately to
the right of Iα and γ be a root where Iγ lies immediately to the left of Iα (pro-
vided Iα is not the rightmost or leftmost interval in the partition, respectively).
Those of β or γ which are real are connected to α so that the arrow points in the
direction of decreasing absolute value. If β is not real, then connect α to either
β or β, whichever has positive imaginary component. On the other hand, if γ
is not real, then connect α to either γ or γ, whichever has negative imaginary
component. Again, these edges are directed so that the arrow points in the
direction of decreasing absolute value. By inspection, we find that the maxi-
mum in-degree of this directed graph is 2. The Mahler-Davenport bound can
then be applied twice to find the result. The bound implies that the sum of the
negative logarithmic distances between the roots appearing in this construction
is bounded above by:

12 · ln

(
1√

|Disc(ff ′)|
M(ff ′)2d−2

(
2d− 1√

3

)2d−1

(2d− 1)d

)
.

The discriminant will be an integer and therefore the discriminant term is
bounded above by 1. The Mahler measure of ff ′ is bounded in terms of the
2-norms of the coefficients of the original f and f ′: M(ff ′) = M(f)M(f ′) ≤
‖f‖2‖f ′‖2 ≤ (2L

√
d+ 1)(d2L

√
d). Therefore, this portion is bounded by O(dL+

d ln d) (the leading term is bounded 24 ln(2)dL+ 42d ln d)). Thus, the complex-
ity of the SqFreeEVAL algorithm is O(d(L+ ln d)) (the leading term is bounded
36 ln(2)dL+ 42d ln d ≤ 25dL+ 42d ln d).

If f or f ′ was replaced by a square free version, we used the original f and
f ′ because the square free versions of f and f ′ divide the original functions,
and, therefore, the Mahler measure of the product of the square free versions is
bounded above by M(ff ′). In fact, the 2-norms of the coefficients of the original
functions are often smaller than the 2-norms of the square free versions: näıvely
using the divisibility relationship, the coefficients of the square-free versions may
be larger by a factor of 2cd, where c is a constant, see (Yap, 2000).

5. Conclusion

In this paper, we provided a complexity analysis of the SqFreeEVAL algo-
rithm and showed it to be optimal under the weak assumption that L ≥ ln d. To
accomplish this, we used the novel technique of continuous amortization through
stopping functions. The simplicity of this argument exhibits the utility of this
technique: the proof of the next closest complexity bound for an EVAL-type al-
gorithm in (Sagraloff and Yap, 2009; Yap and Sagraloff, 2011) is significantly
more complex.
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The SqFreeEVAL algorithm is very easy to implement (Moore, 1966; Mitchell,
1990; Plantinga and Vegter, 2004; Plantinga, 2006; Kamath, 2010) and it now
joins the Sturm and Descartes methods by having a subdivision tree which
grows at the rate O(d(L + ln d)). It, therefore, may become more prevalent
in practical situations because it has several desirable properties. This also
answers a question raised in (Henrici, 1970) concerning the good behavior of
this technique.

In addition, the continuous amortization technique can be used to bound
the number of subdivisions over any interval, and, therefore, may find many
more applications for different types of questions about subdivision algorithms.
For example, in many practical applications, the question is to find the roots in
a given domain, not just for the benchmark domain; continuous amortization
may provide a comparison of different algorithms in these situations.

We close with some continuing research and questions:

• The algorithm for finding complex roots appearing in (Sagraloff and Yap,
2009; Yap and Sagraloff, 2011) is very similar to the SqFreeEVAL algo-
rithm. We are currently preparing a simplification of their work using the
results from this paper.

• There are many bisection algorithms where continuous amortization may
be useful, see, for example, (Henrici, 1970; Yakoubsohn, 2005; Sagraloff
and Yap, 2009; Yap and Sagraloff, 2011; Plantinga and Vegter, 2004;
Plantinga, 2006; Snyder, 1992; Galehouse, 2009; Burr et al., 2010; Eigen-
willig et al., 2006; Sagraloff, 2011; Du et al., 2007; Lin and Yap, 2009). We
plan on extending our techniques to these cases. In particular, stopping
functions which are appropriate for the two dimensional cases treated in
(Plantinga and Vegter, 2004; Plantinga, 2006; Galehouse, 2009) would be
very useful because current techniques have not been fruitful in establish-
ing complexity bounds of these algorithms.

• If f ′ was not square free, then the test for condition (C1) in Algorithm 2.1
is based on the square free part of f ′, not the original function. The
SqFreeEVAL algorithm, however, will continue to terminate and be correct
even when this substitution does not occur, i.e., when the original f ′ is
used. For this reason, it is likely that the above substitution is extraneous.
For example, in the simplest cases where f ′ is not square free and the
integral in Inequality (3) can be calculated by hand, the result is O(d(L+
ln d)).
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