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Abstract

In this paper, we provide a new approach to estimating the error of re-
construction from Σ∆ quantized compressed sensing measurements. Our
method is based on the restricted isometry property (RIP) of a certain
projection of the measurement matrix. Our result yields simple proofs
and a slight generalization of the best-known reconstruction error bounds
for Gaussian and subgaussian measurement matrices.

1 Introduction

1.1 Compressed sensing

Compressed sensing has drawn significant attention since the seminal works by
Candès, Romberg, Tao [8], and Donoho [14]. The theory of compressed sensing is
based on the observation that various cases of natural signals are approximately
sparse with respect to certain bases or frames. The basic idea is to recover such
signals from a small number of linear measurements. Hence the problem turns
into an underdetermined linear system. Various criteria have been proposed to
determine whether such a system has a unique sparse solution. In this paper we
will work with the restricted isometry property (RIP) as introduced by Candès
et al. [9] in the context of recovery guarantees for `1 minimization.

Definition 1. A matrix A ∈ Rm×N has the restricted isometry property (RIP)
of order s if there exists 0 < δ < 1 such that for all s-sparse vectors x ∈ RN ,
i.e., vectors that have at most s non-zero components, one has

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22.

The smallest such δ is called the restricted isometry constant of order s and is
denoted by δs.

There have been a number of works on recovery guarantees for compressed
sensing with RIP measurement matrices. Recovery can be guaranteed for var-
ious algorithms. For the original context of `1 minimization, the most recent
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results require the measurement matrix to have a restricted isometry constant
of δ2s <

1√
2

[7], which is known to be optimal [11].

Finding the restricted isometry constant of a measurement matrix is, in
general, an NP hard problem [31]. On the other hand, deterministic matrix
constructions with guaranteed RIP are only known for relatively large embed-
ding dimensions (see for example [13]). That is why many papers on the subject
work with random matrices.

Examples of random matrices known to have the RIP for large enough em-
bedding dimension with high probability include subgaussian, partial random
circulant [23], and partial random Fourier matrices [29]. A subgaussian matrix
has independent random entries whose tails are dominated by a Gaussian ran-
dom variable (cf. Definition 2). Such matrices have been shown to have the RIP
provided m = Ω(s log(eN/s)), see for example [2]. This order of the embedding
dimension m is known to be optimal [15]. Examples of subgaussian matrices
include Gaussian and Bernoulli matrices.

1.2 Quantization

To allow for digital transmission and storage of compressed sensing measure-
ments, one needs to quantize these measurements. That is, the measurements
need to be represented by finitely many symbols from a finite alphabet. In this
paper, we only consider alphabets consisting of equispaced real numbers. The
extreme case of considering the set of only the two elements {−1, 1} is also called
1-bit quantization.

The most intuitive method to quantize the measurements is to map each of
them to the closest element from the alphabet. Since this method processes the
quantization independently for each measurement, it is also called memoryless
scalar quantization (MSQ).

Most of the literature on MSQ compressed sensing up to date considers
1-bit quantization [6, 22, 28, 1], which amounts to considering only the mea-
surement signs. Jacques et al. [22] showed that for Gaussian measurements or
measurements drawn uniformly from the unit sphere, a reconstruction error of
O( sm log mN

s ) is feasible. However, they did not provide an efficient algorithm
that guarantees this accuracy. Later, for Gaussian measurements, Gupta et al.
[18] demonstrated that one may tractably recover the support of a signal from
O(s logN) measurements. Plan et al. [28] showed that one can, again for Gaus-
sian measurements, reconstruct the direction of an s-sparse signal via convex
optimization, with accuracy O(( sm )

1
5 ) up to logarithmic factors with high prob-

ability. Ai et al. [1] derived similar results for subgaussian measurements under
additional assumptions on the size of the signal entries.

On the other hand, in [22] it was shown that the `2 reconstruction error can
never be better than Ω( sm ). To break this bottleneck of MSQ, Σ∆ quantization
for compressed sensing has drawn attention recently. Σ∆ quantizes a vector
as a whole rather than the components individually, i.e., the quantized values
depend on previous quantization steps.
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Σ∆ quantization was originally introduced as an efficient quantizer for re-
dundant representation of oversampled band-limited functions [21]. Later on, a
rigorous mathematical error analysis was provided by [10] and many follow-up
papers. The best known error decay rates are exponential in the oversampling
rate, as derived in [16, 12]. This is known to be optimal: in [26], corresponding
lower bounds are derived, which also show that the achievable accuracy must
depend on the signal amplitude.

In [3], Σ∆ has been extended to frame expansions; this will be also the
viewpoint taken in this paper. The first works on Σ∆ schemes for frame quan-
tization, such as [3, 5], required frame constructions with particular smoothness
properties to yield reconstruction guarantees. In [27], the authors observed that
what is needed is in fact a requirement on the dual frame used for reconstruction
rather than the frame itself. Reconstruction guarantees can hence be improved
by choosing the dual frame used for reconstruction appropriately. Optimizing
the dual frame in this respect led to the definition of Sobolev dual frames [4],
cf. Section 2.2.2 below. Combined with the exponential error bounds derived
for the corresponding Σ∆ schemes for bandlimited functions [16, 12], Sobolev
dual reconstructions yield root-exponential error decay in the oversampling rate.
This constitutes the best known accuracy guarantees for coarse frame quanti-
zation, both for harmonic frames and Sobolev self-dual frames [24] and for
subgaussian random frames [25].

Sobolev dual reconstructions have also been crucial for being able to ap-
ply Σ∆ quantization to compressed sensing measurements. Güntürk et al. [17]
proved the first recovery guarantees for this setup, showing that for rth order
Σ∆ quantization applied to Gaussian compressed sensing measurements, the
`2 reconstruction error is of order O(( sm )α(r−

1
2 )) with high probability. Here

α ∈ (0, 1) is a parameter and the required measurements grows with α, tending
to infinity as α → 1. Indeed for r large enough this breaks the MSQ bottle-
neck. More recently, in [25], this result has been generalized to subgaussian
measurements.

1.3 Contributions

The main contribution of this paper is that the restricted isometry property
(RIP) is applied to estimate the error bound for Σ∆ quantized compressed
sensing. That is, once we know the restricted isometry constant of a modification
of the measurement matrix, we can estimate the reconstruction error.

In the following results, we assume that the Σ∆ quantized measurements
with quantization alphabet Z = ∆Z, ∆ > 0, are given. We refer the readers
to Section 2.2 for details on the quantization scheme employed. A special role
is played by the rth power of the inverse of the finite difference matrix D as
introduced in (2) below; denoting the singular value decomposition of D−r by
D−r = UD−rSD−rV ∗D−r , we obtain our main theorem given as follows.

Theorem 1. Suppose one is given a measurement matrix Φ ∈ Rm×N such that

both Φ and
√

1
`P`V

∗
D−rΦ, ` ≤ m have the restricted isometry constant δ2s <

1√
2

,
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where P` maps a vector to its first ` components.
Then for an s-sparse signal x ∈ RN satisfying minj |xj | ≥ K2r−

1
2 ∆, for

some positive constant K, denote by q the rth order Σ∆ quantized measurements
of Φx with step size ∆. Furthermore, denote by T the support set recovered from
Φx via `1 minimization and choose Lsob,r to be the Sobolev dual matrix of ΦT
(see Section 2.2.2 for details). Then reconstructing the signal via x̂T = Lsob,rq
yields a reconstruction error bounded by

‖x− x̂‖2 ≤ C∆(
m

`
)−r+

1
2 ,

where C > 0 is a constant depending only on r.

Note from Theorem 1 that smaller values of ` yield better error bounds.
However, ` has to be large enough such that 1√

`
(P`V

∗
D−rΦ) has the restricted

isometry constant δ2s ≤ 1√
2
.

This result can be applied to obtain recovery guarantees for Gaussian and
subgaussian measurements (in the sense of Definition 2 below). The resulting
bounds for the first two cases agrees with those derived in [17] and [25], as
summarized in the following Theorem.

Theorem 2 ([17, 25]). Let Φ be an m×N matrix whose entries are independent,
mean zero, unit variance ρ-subgaussian random variables and suppose that λ :=

m/k ≥ (C log(eN/k))
1

1−α where α ∈ (0, 1). With high probability the rth order
Σ∆ reconstruction x̂ satisfies

‖x− x̂‖2 ≤ C ′λ−α(r−1/2)δ,

for all x ∈ ΣNk for which minj∈supp(x) |xj | > K ′∆. Again, ∆ is the step size
of the Σ∆ quantization alphabet and C,C ′,K ′ are appropriate constants that
depend only on r and ρ.

1.4 Organization

The paper is organized as follows. We first introduce in Section 2 some back-
ground and previous results on Σ∆ quantization, suprema of chaos processes,
and the partial random circulant matrices. In Section 3 we present our main
result showing how the RIP is used to estimate the reconstruction error for
quantized compressed sensing. In Section 4, we explain how our result recovers
the best-known bounds for Gausssian and subgaussian measurement matrices
using a simple argument, in Section 5 we slightly generalize these bounds. We
conclude in Section 6.

2 Background and previous results

2.1 Notation

Throughout this paper, we use the following notation. The set Ds,N = {x ∈
R|‖x‖2 ≤ 1, ‖x‖0 ≤ s} is the set of unit norm s-sparse vectors. The `0-norm ‖·‖0
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counts the number of non-zero components of a vector. Given a signal x, the
support set of x, in short, supp x, is the index set of the non-zero components.
The `2-operator norm is denoted by ‖A‖2→2 = sup‖x‖2=1 ‖Ax‖2. For a matrix
A, σi(A) and σmin(A) denote the ith largest and the smallest singular value,
respectively. Furthermore we write & and . to denote ≥ or ≤ up to a positive
multiplicative constant. The Moore-Penrose pseudoinverse of a matrix A is
denoted by A† = (A∗A)−1A∗.

We will mainly study subgaussian random matrices, that is, matrices with
independent subgaussian entries in the sense of the following definition.

Definition 2. A random variable X is called ρ-subgaussian if P(|X| ≥ t) ≤
2 exp(−t2/2ρ2).

2.2 Σ∆ Quantization

In this paper, we exclusively focus on quantization alphabets Z such that Z =
∆Z, for some ∆ > 0. Note that while this is an infinite set, one can show that
in fact only a finite range of values are assumed [17, 24]. Hence this setup is
in line with requiring a finite alphabet. The idea of rth order Σ∆ quantization
is to quantize each component of a vector taking the previous r quantization
steps into account. More explicitly, a greedy rth order Σ∆ quantization scheme
maps a sequence of inputs (yj) to elements qi ∈ Z via an internal state variable
ui chosen to satisfy the recurrence relation

(∆ru)i :=

r∑
j=0

(
r

j

)
(−1)jui−j = yi − qi, (1)

where qi is chosen such that |ui| is minimized (Note that only in this equation,
∆ denotes the finite difference operator, whereas all other occurences in this
paper refer to the quantization step size).

With the initial condition (ui)
−∞
i=0 = 0, Equation (1) can be expressed as

Dru = y − q,

where the finite difference matrix D ∈ Rm×m is given by

Dij ≡

 1 , if i = j,
−1 , if i = j + 1,
0 , otherwise.

(2)

2.2.1 Support set recovery

Given an s-sparse signal x, and an m×N measurement matrix Φ, where m� N ,
we acquire measurements y = Φx. Applying an rth order Σ∆ quantization
scheme to y, we obtain q. Treating q as perturbed measurements, i.e., q =
y + e = Φx + e, one can determine the support set. This is a consequence of
the following observation, which is a modified version of Proposition 4.1 in [17]
combined with the reconstruction guarantees in [7].
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Proposition 1. Given ε > 0 as well as x ∈ RN an s-sparse signal with suppx =
T and minj∈T |xj | ≥ K ε√

m
. Here K is an absolute constant. Let Φ ∈ RN×m be

a measurement matrix such that 1√
m

Φ has the RIP with δ2s <
1√
2

. Denote by

e ∈ Rm a noise vector with ‖e‖2 ≤ ε, and let x′ be the signal reconstructed from
the noisy measurements q = Φx+ e via `1 minimization, i.e.,

x′ = arg min ‖z‖1 subject to ‖Φz − q‖2 ≤ ε.

Then the index set of largest s components of x′ is T , that is, the support set of
x is correctly recovered.

Note that in this result, the measurement matrix Φ is not normalized, while
in the compressed sensing literature, it is common to normalize the measure-
ment matrix such that it has unit-norm columns. This is because for normalized
matrix columns, each measurement will be of order 1√

m
, so quantizing it with

a fixed step size ∆ will lead to worse and worse resolution. To allow for a fair
comparison when m grows, the measurements should rather be chosen inde-
pendently of m. Therefore, in this paper as well as in [17] the measurement
matrices are not normalized, each entry of the measurement matrices is chosen
to have variance one.

To apply Proposition 1 to greedy Σ∆ quantization, one sets e = q−y, where
q is the quantized measurement vector. Elementary estimates (cf. [17]) yield
that ‖q − y‖2 ≤ 2r−1∆

√
m. Thus one obtains that `1 minimization recovers

the correct support set provided that 1√
m

Φ has restricted isometry constant

δ2s <
1√
2

and minj |xj | ≥ K2r−
1
2 ∆.

2.2.2 Estimating the error and the Sobolev dual

When the support set T has been identified, we solve for x using some left
inverse of ΦT , say L. Then the reconstruction `2-error is given by

‖x− x̂‖2 = ‖Ly − Lq‖2 = ‖L(y − q)‖2
= ‖L(Dru)‖2 ≤ ‖LDr‖2→2‖u‖2.

The Sobolev dual matrix Lsob,r, first introduced in [4], is a left inverse of ΦT
defined to minimize ‖LDr‖2→2, i.e.,

Lsob,r = arg minL ‖LDr‖2→2 subject to LΦT = I.

The geometric intuition is that this dual frame is smoothly varying.
As in [17], the explicit formula Lsob,rD

r = (D−rΦT )† yields the error bound

‖x− x̂‖2 ≤ ‖(D−rΦT )†‖2→2‖u‖2

=
1

σmin(D−rΦT )
‖u‖2 ≤

∆
√
m

2σmin(D−rΦT )
, (3)

where the last inequality is derived in [17].
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A key ingredient to bounding σmin(D−rΦT ) is the following result from the
study of Toeplitz matrices, which depends heavily on Weyl’s inequality [20] (see
for example [17]).

Proposition 2. Let r be any positive integer and D be as in (2). There are
positive constants cs1(r) and cs2(r), independent of m, such that

cs1(r)(
m

j
)r ≤ σj(D−r) ≤ cs2(r)(

m

j
)r, j = 1, . . . ,m.

3 RIP-based error analysis

In this section we will give the quantized compressed sensing problem a math-
ematical model, and explain how we approach the reconstruction error via the
RIP. In the next two sections we show its applications. From Section 2.2.2, the
main issue to estimate the reconstruction error is to estimate σmin(D−rΦT ).
Finding the supremum of this expression over all potential support sets T can
be interpreted as finding the supremum of the smallest image under D−rΦ over
all unit norm s-sparse vectors. This motivates the connection to the RIP.

In the following proof we show how the RIP can be applied to find this
effective smallest singular value.

Proof of Theorem 1. As the assumptions of the theorem are stronger than those
of Proposition 1, we conclude that the support is correctly recovered. Based on
this observagtion, we now show the error bound. Recall thatD−r = UD−rSD−rV ∗D−r .
Then, as S is a diagonal matrix,

σmin(D−rΦT ) = σmin(SD−rV ∗D−rΦT )

≥ σmin(P`SD−rV ∗D−rΦT )

= σmin((P`SD−rP ∗` )(P`V
∗
D−rΦT ))

≥ s`σmin(P`V
∗
D−rΦT )

& (
m

`
)rσmin(P`V

∗
D−rΦT ), (4)

where the final inequality follows from Proposition 2.
Thus we need to bound σmin(P`V

∗
D−rΦT ) uniformly over all possible sup-

port sets T . Indeed by the RIP assumption for 1√
`
P`V

∗
D−rΦ, we obtain that

σmin(P`V
∗
D−rΦT ) is uniformly bounded from below by

√
`
√

1− 1√
2
. (5)

The theorem follows by combining (3), (4), and (5).
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4 Gaussian and subgaussian matrices

To illustrate the simplicity of our method, we first present a proof of Theorem
2 for standard Gaussian matrices, i.e. matrices with independent entries Φi,j ∼
N (0, 1).

Proof of Theorem 2 for Gaussian matrices. Set ` := m( sm )α. As the second
factor is less than 1, one always has 1 ≤ ` ≤ m. Since Φ is a standard Gaussian
random matrix, due to rotation invariance Φ̃ := (P`V

∗
D−rΦ) is also a standard

Gaussian random matrix. The assumption on λ implies that its embedding
dimension satisfies ` ≥ Cs log( eNk ), so standard results (see, e.g., [2]) yield that

for C and C ′ large enough, both 1√
`
Φ̃ and 1√

m
Φ have the RIP with constant

δ2s ≤ 1√
2
. Applying Theorem 1 (choose K ′ = K2r−

1
2 ), we obtain

‖x− x̂‖2 . ∆(
m

s
)−α(r−

1
2 ),

again with high probability, as desired.

Sketch of proof of Theorem 2 for subgaussian matrices:
The proof proceeds long the same lines as for Gaussian matrices, except that one
cannot use the rotation invariance. To bound the RIP constant of 1√

`
P`V

∗
D−rΦ,

we note that for any x ∈ Ds,N , ‖P`V ∗D−rΦx‖22 is a quadratic form in the “vec-
torization” of Φ. Hence its tail decay can be estimated via the Hanson-Wright
inequality [19, 30]. The RIP then follows via a union bound over an ε-net of
Ds,N . This approach is related to certain steps in the original proof in [25].

Remark 1. Note that a complete proof for Σ∆ recovery guarantees needs both
support set recovery and fine recovery (cf. [17, 25]) and in this paper we omitted
the details of the former. We argue, however, that this coarse recovery step is
straightforwardly based on standard compressed sensing results. Hence the core
of our error estimate is really just captured in a few lines.

5 Generalization

In contrast to the techniques presented in [25], our method generalizes to cer-
tain random matrices with independent subgaussian columns, but no entrywise
independence. As an additional criterion, one needs a type of small ball condi-
tion for P`V

∗
D−r applied to one of the random columns of Φ, (which denoted by

Φj in the following). That is, one needs to exclude that ‖P`VD−rΦj‖2 is small
with too large probability. If such a condition holds, the necessary RIP bound
follows from a modified version of the RIP bound for matrices with independent
subgaussian columns [32]. While we do not consider this to be an important
generalization (which is why we refrain from presenting the details), we still
believe it shows that our method is stronger than previous approaches, so we
see the potential to apply it to more relevant, structured measurement scenarios
such as partial random Fourier matrices, partial random circulant matrices, etc.
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6 Conclusion

In this work we provided a new technique for bounding the reconstruction error
arising in Σ∆ quantization for compressed sensing. In addition to greatly sim-
plifying the proofs for the best known recovery guarantees, the new viewpoint
hopefully opens the possibility to study broader classes of measurement matries.
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