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Abstract

We present a new bound for suprema of a special type of chaos processes indexed by
a set of matrices, which is based on a chaining method. As applications we show signifi-
cantly improved estimates for the restricted isometry constants of partial random circulant
matrices and time-frequency structured random matrices. In both cases the required con-
dition on the number m of rows in terms of the sparsity s and the vector length n is
m & s log2 s log2 n.
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1 Introduction and Main Results

1.1 Compressive Sensing

Compressive sensing [7, 13, 18, 37] is a method aimed at recovering sparse vectors from
highly incomplete information using efficient algorithms. This discovery has recently trig-
gered various applications in signal and image processing.

To formulate the procedure, a vector x ∈ Cn is called s-sparse if ‖x‖0 := |{` : x` 6= 0}| ≤
s. Given a matrix Φ ∈ Cm×n, called the measurement matrix, the task is to reconstruct x
from the linear measurements

y = Φx.

We are interested in the case m � n, so that this system is under-determined, and thus,
without additional information it is impossible to reconstruct x. On the other hand, if it
is known a priori that x is s-sparse then the situation changes. And, although the naive
approach for reconstruction, namely, `0-minimization,

min ‖z‖0 subject to Φz = y

is NP-hard in general, there are several tractable alternatives – for instance, `1-minimization
[11, 13, 7]

min ‖z‖1 subject to Φz = y,
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(where ‖z‖p denotes the usual `p-norm) which is a convex optimization problem and may
be solved efficiently.

The restricted isometry property streamlines the analysis of recovery algorithms. For a
matrix Φ ∈ Cm×n and s < n, the restricted isometry constant δs is defined as the smallest
number such that

(1− δs)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δs)‖x‖22 for all s-sparse x.

One may show that under conditions of the form δκs ≤ δ∗ for some δ∗ < 1 and some
appropriate small integer κ, a variety of recovery algorithms reconstruct every s-sparse
x from y = Φx. Among these are `1-minimization as mentioned above [8, 19, 31], or-
thogonal matching pursuit [47], CoSaMP [45, 19], iterative hard thresholding [4] and hard
thresholding pursuit [20].

Remarkably, all optimal measurement matrices known so far are random matrices. For
example, a Bernoulli random matrix Φ ∈ Rm×n has entries Φjk = εjk/

√
m, where the

εjk are independent, symmetric {−1, 1}-valued random variables. Its restricted isometry
constant satisfies δs ≤ δ with probability at least 1− η provided that

m ≥ Cδ−2(s ln(en/s) + ln(η−1)),

where C is an absolute constant [9, 30, 3].
In practice, structure is an additional requirement on the measurement matrix Φ. In-

deed, certain applications impose constraints on the matrix and recovery algorithms can
be accelerated when fast matrix vector multiplication routines are available for Φ. Unfor-
tunately, a Bernoulli random matrix does not possess any structure. This motivates the
study of random matrices with more structure. Also, structured random matrix construc-
tions usually involve a reduced degree of randomness. For example, partial random Fourier
matrices Φ ∈ Cm×n arise as random row submatrices of the discrete Fourier matrix and
their restricted isometry constants satisfy δs ≤ δ with high probability provided that

m ≥ Cδ−2s log3 s log n,

see [9, 41].
This article provides a similar estimate for two further types of structured random

matrices, namely partial random circulant matrices and time-frequency structured random
matrices. The key proof ingredients will be new estimates for suprema of chaos processes
of a certain type.

1.2 Partial random circulant matrices

Circulant matrices are connected to circular convolution, defined for two vectors x, z ∈ Cn
by

(z ∗ x)j :=

n∑
k=1

zj	kxk, j = 1, . . . , n,

where j	k = j−k mod n is the cyclic subtraction. The circulant matrixH = Hz ∈ Cn×n
associated with z is given by Hx = z ∗ x and has entries Hjk = zj	k.

We are interested in sparse recovery from subsampled convolutions with a random
vector. Formally, let Ω ⊂ {1, . . . , n} be an arbitrary (fixed) set of cardinality m, and
denote by RΩ : Cn → Cm the operator that restricts a vector x ∈ Cn to its entries
in Ω. Let ε = (εi)

n
i=1 be a Rademacher vector of length n, i.e., a random vector with

independent entries distributed according to P(εi = ±1) = 1
2 . Then the associated partial
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random circulant matrix is given by Φ = m−1/2RΩHε ∈ Rm×n and acts on vectors x ∈ Cn
via

Φx =
1√
m
RΩ(ε ∗ x).

In other words, Φ is a circulant matrix generated by a Rademacher vector, where the rows
outside Ω are removed. Our first main result establishes the restricted isometry property
of Φ in a near-optimal parameter regime:

Theorem 1.1 Let Φ ∈ Rm×n be a draw of a partial random circulant matrix generated by
a Rademacher vector ε. If

m ≥ cδ−2s (log2 s)(log2 n), (1.1)

then with probability at least 1− n−(logn)(log2 s), the restricted isometry constant of Φ sat-
isfies δs ≤ δ. The constant c > 0 is universal.

In Section 4, we will prove a more general version of this theorem, just requiring that
the generating random variable is mean-zero, variance one, and subgaussian. These results
improve the best previously known estimates for a partial random circulant matrix [38],
namely that m ≥ Cδ(s log n)3/2 is a sufficient condition for achieving δs ≤ δ with high
probability (see also [22] for an earlier work on this problem). In particular, Theorem 1.1
removes the exponent 3/2 of the sparsity s, which was already conjectured in [38] to be an
artefact of the proof.

A related non-uniform recovery result is contained in [36, 37] where one considers the
probability that a fixed s-sparse vector is reconstructed via `1-minimization using a draw of
a partial random circulant matrix. The condition derived there is m ≥ Cs log2 n, which is
slightly better than (1.1). However, the statement of Theorem 1.1 is considerably stronger
because it implies uniform and stable recovery of all s-sparse vectors via `1-minimization
and other recovery methods for a single matrix Φ.

Note that in [39], the restricted isometry property has been established for partial
random circulant matrices with random sampling sets and random generators under the
condition m ≥ Cs log6 n. In contrast, our result holds for an arbitrary fixed selection of a
set Ω ⊂ {1, . . . , n}, which is important in applications since in many practical problems, it
is natural or desired to consider structured sampling sets such as Ω = {L, 2L, 3L, . . . ,mL}
for some L ∈ N; these sets are clearly far from being random.

Potential applications of compressive sensing with subsampled random convolutions
include system identification, radar and cameras with coded aperature. We refer to [22,
39, 38] for a discussion on these applications.

Combining our result with the work [26] on the relation between the restricted isometry
property and the Johnson-Lindenstrauss lemma we also obtain an improved estimate for
Johnson-Lindenstrauss embeddings arising from partial random circulant matrices, see also
[24, 46] for earlier work in this direction.

Theorem 1.2 Fix η, δ ∈ (0, 1), and consider a finite set E ⊂ Rn of cardinality |E| = p.
Choose

m ≥ C1δ
−2 log(C2p)(log log(C2p))

2(log n)2,

where the constants C1, C2 depend only on η. Let Φ ∈ Cm×n be a partial circulant matrix
generated by a Rademacher vector ε. Furthermore, let ε′ ∈ Rn be a Rademacher vector in-
dependent of ε and set Dε′ to be the diagonal matrix with diagonal ε′. Then with probability
exceeding 1− η, for every x ∈ E,

(1− δ)‖x‖22 ≤ ‖ΦDε′x‖22 ≤ (1 + δ)‖x‖22.
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1.3 Time-frequency structured random matrices

The translation and modulation operators on Cm are defined by (Th)j = hj	1 and
(Mh)j = e2πij/mhj = ωjhj , where ω = e2πi/m and 	 again denotes cyclic subtraction,
this time modulo m. Observe that

(T kh)j = hj	k and (M `h)j = e2πi`j/nhj = ω`jhj . (1.2)

The time-frequency shifts are given by

π(λ) = M `T k, λ = (k, `) ∈ Z2
m = {0, . . . ,m− 1}2.

For h ∈ Cm \ {0} the system {π(λ)h : λ ∈ Z2
m}, is called a Gabor system [16, 21, 25], and

the m ×m2 matrix Ψh whose columns are the vectors π(λ)h, λ ∈ Z2
m is called a Gabor

synthesis matrix,

Ψh =
[
π(λ)h

]
λ∈Z2

m
∈ Cm×m

2

.

Note that here the signal length n is coupled to the embedding dimension m via n = m2

(so that log n = 2 logm below).
Our second main result establishes the restricted isometry property for Gabor synthe-

sis matrices generated by a random vector. The following formulation again focuses on
normalized Rademacher vectors, postponing a more general version of our results until
Section 5.

Theorem 1.3 Let ε be a Rademacher vector and consider the Gabor synthesis matrix
Ψh ∈ Cm×m2

generated by h = 1√
m
ε. If

m ≥ cδ−2s (log s)2(logm)2, (1.3)

then with probability at least 1 −m−(logm)·(log2 s), the restricted isometry constant of Ψh

satisfies δs ≤ δ.

Again, Theorem 1.3 improves the best previously known estimate from [34], in which the
sufficient condition of m ≥ Cs3/2 log3m was derived. In particular, it implies the first
uniform sparse recovery result with a linear scaling of the number of samples m in the
sparsity s (up to log-factors).

A non-uniform recovery result for Gabor synthesis matrices with Steinhaus generator
(see Section 2 for the definition) appears in [32], where it was shown that a fixed s-sparse
vector is recovered from its image under a random draw of the m ×m2 Gabor synthesis
matrix via `1-minimization with high probability provided that m ≥ Cs logm. Again, the
conclusion of Theorem 1.3 is stronger than this previous result in the sense that it implies
uniform and stable s-sparse recovery. Further related material may be found in [33, 2].

Applications of random Gabor synthesis matrices include operator identification (chan-
nel estimation in wireless communications), radar and sonar [2, 23, 33].

1.4 Suprema of chaos processes

Both for partial random circulant matrices and for time-frequency structured random ma-
trices generated by Rademacher vectors, the restricted isometry constants δs can be written
as a random variable X of the form

X = sup
A∈A

∣∣‖Aε‖22 − E‖Aε‖22
∣∣ , (1.4)

where A is a set of matrices and ε is a Rademacher vector. Due to the identity (1.7) below,
X is the supremum of a chaos process.
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Our third main result – the main ingredient of the proofs of Theorems 1.1 and 1.3,
but also of independent interest – provides expectation and deviation bounds for random
vectors X of this form in terms of two types of complexity parameters of the set of matrices
A. The first one, denoted by dF (A) and d2→2(A), is the radius of A in the Frobenius norm
‖A‖F =

√
tr(A∗A) and the operator norm ‖A‖2→2 = sup‖x‖2≤1 ‖Ax‖2, respectively.

That is, dF (A) = sup
A∈A

‖A‖F and d2→2(A) = sup
A∈A

‖A‖2→2. For the second one, Talagrand’s

functional γ2(A, ‖ · ‖2→2), we refer to Definition 2.1 below for a precise description.
With these notions, our result reads as follows.

Theorem 1.4 Let A ⊂ Cm×n be a symmetric set of matrices, A = −A. Let ε be a
Rademacher vector of length n. Then

E sup
A∈A

∣∣‖Aε‖22 − E‖Aε‖22
∣∣ ≤ C1

(
dF (A)γ2(A, ‖ · ‖2→2) + γ2(A, ‖ · ‖2→2)2

)
=: C1E. (1.5)

Furthermore, for t > 0,

P
(

sup
A∈A

∣∣‖Aε‖22 − E‖Aε‖22
∣∣ ≥ C2E + t

)
≤ 2 exp

(
−C3 min

{
t2

V 2
,
t

U

})
, (1.6)

where
V = d2→2 (A)(γ2(A, ‖ · ‖2→2) + dF (A)) and U = d2

2→2(A).

The constants C1, C2, C3 > 0 are universal.

The symmetry assumption A = −A was made for the sake of simplicity. The more general
Theorem 3.1 below does not use this assumption but requires an additional term on the
right hand side of the estimate. Furthermore, Theorem 3.1 will actually be stated under
more general conditions on the generating random vector.

Let us relate our new bound to previous estimates. By expanding the `2-norms we can
rewrite X in (1.4) as

X = sup
A∈A

∣∣∣∣∣∣
∑
j 6=k

εjεk(A∗A)j,k

∣∣∣∣∣∣ , (1.7)

which is a homogeneous chaos processes of order 2 indexed by the positive semidefinite
matrices A∗A. Talagrand [44] considers general homogeneous chaos process of the form

Y = sup
B∈B

∣∣∣∣∣∣
∑
j 6=k

εjεkBj,k

∣∣∣∣∣∣ ,
where B ⊂ Cn×n is a set of (not necessarily positive semidefinite) matrices. He derives the
bound

EY ≤ C1γ2(B, ‖ · ‖F ) + C2γ1(B, ‖ · ‖2→2) (1.8)

(see Section 2 for the definition of the γα-functional). This estimate was an essential
component in the proofs of the previous bounds for the restricted isometry constants of
partial random circulant matrices [38] and of random Gabor synthesis matrices [34]. In
fact, the appearance of the γ1-functional leads to the non-optimal exponent 3/2 in the
sparsity s in the estimate of the required number m of samples. In contrast, as our bound
for the chaos at hand does not involve the γ1-functional but only the γ2-functional, this
issue does not arise here.
Remark. The benchmark problems of estimating the singular values and the restricted
isometry constant of a Bernoulli matrix (with independent ±1 entries) can also be recast as
a supremum of chaos processes of the form (1.4). The bounds resulting from Theorem 1.4
are then optimal up to a constant factor. Again, we are not aware of a way to deduce such
bounds from (1.8).
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2 Preliminaries

2.1 Chaining

The following definition is due to Talagrand [44] and forms the core of the generic chaining
methodology.

Definition 2.1 For a metric space (T, d), an admissible sequence of T is a collection of
subsets of T , {Ts : s ≥ 0}, such that for every s ≥ 1, |Ts| ≤ 22s

and |T0| = 1. For β ≥ 1,
define the γβ functional by

γβ(T, d) = inf sup
t∈T

∞∑
s=0

2s/βd(t, Ts),

where the infimum is taken with respect to all admissible sequences of T .

Recall that for a metric space (T, d) and u > 0, the covering number N(T, d, u) is the
minimal number of open balls of radius u in (T, d) needed to cover T . The γα-functionals
can be bounded in terms of such covering numbers by the well-known Dudley integral (see,
e.g., [44]). A more specific formulation for the γ2-functional of a set of matrices A equipped
with the operator norm, the scenario which we will focus on in this article, is

γ2(A, ‖ · ‖2→2) ≤ c
∫ d2→2(A)

0

√
logN(A, ‖ · ‖2→2, u)du (2.1)

This type of entropy integral was introduced by Dudley [15] to bound the supremum of
Gaussian processes, and was extended by Pisier [35] as a way of bounding processes that
satisfy different decay properties.

When considered for a set T ⊂ L2, γ2 has close connections with properties of the
canonical Gaussian process indexed by T ; we refer the reader to [14, 44] for detailed expo-
sitions on these connections. One can show that under mild measurability assumptions, if
{Gt : t ∈ T} is a centered Gaussian process indexed by a set T , then

c1γ2(T, d) ≤ E sup
t∈T

Gt ≤ c2γ2(T, d), (2.2)

where c1 and c2 are absolute constants, and for every s, t ∈ T , d2(s, t) = E|Gs − Gt|2.
The upper bound is due to Fernique [17] and the lower bound is Talagrand’s majorizing
measures theorem [42, 44].
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2.2 Subgaussian random vectors

In this section, we will discuss different classes of random vectors that are needed in the
formulation of the main results in a more general framework. In the following definition,
Sn−1 denotes the unit sphere in Rn (resp. in Cn).

Definition 2.2 A mean-zero random vector X on Cn is called isotropic if for every
θ ∈ Sn−1, E|

〈
X, θ

〉
|2 = 1. A random vector X is called L-subgaussian if it is isotropic

and P(|
〈
X, θ

〉
| ≥ t) ≤ 2 exp(−t2/2L2) for every θ ∈ Sn−1, and any t > 0.

It is well known that, up to an absolute constant, the tail estimates in the definition of
a subgaussian random vector are equivalent to the moment characterization

sup
θ∈Sn−1

(
E|
〈
X, θ

〉
|p
)1/p ≤ √pL. (2.3)

Assume that a random vector ξ has independent coordinates ξi, each of which is an
L-subgaussian random variable of mean zero and variance one. One may verify by direct
computation that ξ is L-subgaussian. Rademacher vectors, standard Gaussian vectors,
(that is, random vectors with independent normally distributed entries of mean zero and
variance one), as well as Steinhaus vectors (that is, random vectors with independent
entries that are uniformly distributed on {z ∈ C : |z| = 1}), are examples of isotropic,
L-subgaussian random vectors for an absolute constant L.

We will require the following well-known bound relating strong and weak moments. For
convenience, a proof based on chaining and the majorizing measures theorem is provided
in the appendix.

Theorem 2.3 Let x1, . . . ,xn ∈ CN and T ⊂ CN . If ξ is an isotropic, L-subgaussian
random vector and Y =

∑n
j=1 ξjxj, then for every p ≥ 1,(

E sup
t∈T
|〈t,Y 〉|p

)1/p

≤ c
(
E sup
t∈T
|〈t,G〉|+ sup

t∈T
(E|〈t,Y 〉|p)1/p

)
, (2.4)

where c is a constant which depends only on L and G =
∑N
j=1 gjxj for g1, . . . , gN inde-

pendent standard normal random variables.

Note that if ‖ · ‖ is some norm on CN and B∗ is the unit ball in the dual norm of ‖ · ‖
then the above theorem implies that

(E‖Y ‖p)1/p ≤ c
(
E‖G‖+ sup

t∈B∗
(E|〈t,Y 〉|p)1/p

)
.

In the remainder of this article, we will state and prove generalizations of our main
results Theorem 1.1, Theorem 1.3, and Theorem 1.4 to arbitrary isotropic vectors, whose
coordinates are independent L-subgaussian random variables. Since a Rademacher vector
has all these properties, the above formulations of our results will directly follow.

2.3 Further probabilistic tools

The following decoupling inequality is a slight variation of a result found for instance in
[12], see also [6, 37].

7



Theorem 2.4 Let ξ = (ξ1, . . . , ξn) be a sequence of independent, centered random vari-
ables, and let F be a convex function. If B is a collection of matrices and ξ′ is an indepen-
dent copy of ξ, then

E sup
B∈B

F

 n∑
j,k=1
j 6=k

ξjξkBj,k

 ≤ E sup
B∈B

F

4

n∑
j,k=1

ξjξ
′
kBj,k

 . (2.5)

We require also a slightly stronger decoupling inequality which is valid in the Gaussian
case and follows from specifying results from [1, Section 2] to an order 2 Gaussian chaos.

Theorem 2.5 There exists an absolute constant C such that the following holds for all
p ≥ 1. Let g = (g1, . . . , gn) be a sequence of independent standard normal random variables.
If B is a collection of Hermitian matrices and g′ is an independent copy of g, then

E sup
B∈B

∣∣ n∑
j,k=1
j 6=k

gjgkBj,k +
n∑
j=1

(g2
j − 1)Bj,j

∣∣p ≤ CpE sup
B∈B

∣∣ n∑
j,k=1

gjg
′
kBj,k

∣∣p. (2.6)

Since some steps in our estimates are formulated in terms of moments, the transition
to a tail bound can be established by the following standard estimate, which easily follows
from Markov’s inequality.

Proposition 2.6 Suppose Z is a random variable satisfying

(E|Z|p)1/p ≤ α+ β
√
p+ γp for all p ≥ p0

for some α, β, γ, p0 > 0. Then, for u ≥ p0,

P
(
|Z| ≥ e(α+ β

√
u+ γu)

)
≤ e−u .

2.4 Notation

Absolute constants will be denoted by c1, c2, . . .; their value may change from line to line.
We write A . B if there is an absolute constant c1 for which A ≤ c1B. A ∼ B means
that c1A ≤ B ≤ c2A for absolute constants c1 and c2. If the constants depend on some
parameter r we will write A .r B or A ∼r B.

The Lp-norm of a random variable, or its p-th moment, is given by ‖X‖Lp
= (E|X|p)1/p

.
For a random variable X independent from all other random variables which appear, we
denote the expectation and probability conditional on all variables except X by EX and
PX , respectively. The canonical unit vectors in Cn are denoted ej and Bn2 is the unit `2-ball
in Cn.

Finally, we introduce shorthand notations for some quantities that we will study. To
that end, let A be a set of matrices on Rn or on Cn and set a random vector ξ = (ξi)

n
i=1.

For a given matrix A, denote its j-th column by Aj and set

NA(ξ) := sup
A∈A

‖Aξ‖2, BA(ξ) := sup
A∈A

∣∣∣∣∣∣∣∣
n∑

j,k=1
j 6=k

ξjξk〈Aj ,Ak〉

∣∣∣∣∣∣∣∣ ,
DA(ξ) := sup

A∈A

∣∣∣∣∣∣
n∑
j=1

(
|ξj |2 − E|ξj |2

)
‖Aj‖2

∣∣∣∣∣∣ , and CA(ξ) := sup
A∈A

∣∣‖Aξ‖22 − E‖Aξ‖22
∣∣ .
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3 Chaos processes

We are now well-equipped to prove the following generalized version of Theorem 1.4.

Theorem 3.1 Let A be a set of matrices, and let ξ be a random vector whose entries ξj
are independent, mean-zero, variance 1, and L-subgaussian random variables. Set

E = γ2(A, ‖ · ‖2→2) (γ2(A, ‖ · ‖2→2) + dF (A)) + dF (A)d2→2(A),

V = d2→2(A)(γ2(A, ‖ · ‖2→2) + dF (A)), and U = d2
2→2(A).

Then, for t > 0,

P (CA(ξ) ≥ c1E + t) ≤ 2 exp

(
−c2 min

{
t2

V 2
,
t

U

})
.

The constants c1, c2 depend only on L.

Remark 3.2 Theorem 3.1 directly implies the tail estimate of Theorem 1.4. Indeed, the
symmetry assumption A = −A ensures that d2→2(A) ≤ γ2(A, ‖ · ‖2→2). The estimate for
the expectation in Theorem 1.4 follows from Theorem 3.4 below by choosing p = 1.

The proof is based on estimating the moments of the random variables NA and CA,
followed by applying Proposition 2.6. The first step is a bound on the moments of a
decoupled version of NA.

Lemma 3.3 Let A be a set of matrices, let ξ = (ξi)
n
i=1 be an L-subgaussian random vector,

and let ξ′ be an independent copy of ξ. Then for every p ≥ 1,∥∥∥∥ sup
A∈A

〈
Aξ,Aξ′

〉∥∥∥∥
Lp

.L γ2(A, ‖ · ‖2→2)‖NA(ξ)‖Lp
+ sup
A∈A

‖
〈
Aξ,Aξ′

〉
‖Lp

.

Proof. The proof is based on a chaining argument. Since the space involved is finite
dimensional, one may assume without loss of generality that A is finite. Fix an admissible
sequence (Tr) of A, let πrA = argminB∈Tr

‖B − A‖2→2 and set ∆rA = πrA − πr−1A.

Since A is finite, there is some r0 for which |A| ≤ 22r0
. Given p ≥ 1, let ` be the largest

integer for which 2` ≤ p, and we may assume that ` < r0 as the modifications needed when
` ≥ r0 are minimal.

Note that for every A ∈ A,

|
〈
Aξ,Aξ′

〉
− |
〈
(π`A)ξ, (π`A)ξ′

〉
|

≤
r0−1∑
r=`

|
〈
(∆r+1A) ξ, (πr+1A)ξ′

〉
|+

r0−1∑
r=`

|
〈
(πrA)ξ, (∆r+1A) ξ′

〉
|

Furthermore, conditionally on ξ′,〈
(∆r+1A)ξ, (πr+1A)ξ′

〉
=
〈
ξ, (∆r+1A)∗(πrA)ξ′

〉
is a subgaussian random variable, as for every u > 0,

Pξ
(
|
〈
ξ, (∆r+1A)∗(πr+1A)ξ′

〉
| ≥ uL‖(∆r+1A)∗(πr+1A)ξ′‖2

)
≤ 2 exp(−u2/2). (3.1)

Recall that |{πrA : A ∈ A}| = |Tr| ≤ 22r

, so there are at most 22r+2

possible values that
∆r(A)∗πr+1(A) can assume in (3.1). Therefore, via a union bound over all these choices
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and on all the levels ` < r ≤ r0 (cf. (A.2) below), it is evident that there are constants
c1, c2 > 0 for which if t ≥ c1 then with ξ-probability at least 1− 2 exp(−c22`t2) one has for
every ` < r ≤ r0 and every A ∈ A

|
〈
(∆r+1A)ξ, (πr+1A)ξ′

〉
| ≤ t2r/2‖(∆r+1A)∗(πr+1A)ξ′‖2. (3.2)

Let Et(ξ′) be the event for which (3.2) holds for all the possible choices of r and A as
above. Since

‖ (∆r+1A)
∗

(πr+1A)ξ′‖2 ≤ ‖∆r+1A‖2→2 sup
A∈A

‖Aξ′‖2 = ‖∆r+1A‖2→2NA(ξ′),

one has on Et(ξ′)

S1 :=

r0−1∑
r=`

|
〈
(∆r+1A) ξ, (πr+1A)ξ′

〉
| ≤

r0−1∑
r=`

t2r/2‖∆r+1A‖2→2NA(ξ′)

≤tγ2(A, ‖ · ‖2→2)NA(ξ′).

We will now estimate

‖S1‖pLp
= EξEξ′Sp1 = Eξ′

∫ ∞
0

ptp−1Pξ(S1 > t|ξ′)dt. (3.3)

Setting W (ξ′) = γ2(A, ‖ · ‖2→2)NA(ξ′), observe that∫ ∞
0

ptp−1Pξ(S1 > t|ξ′)dt ≤ cp3W (ξ′)p +

∫ ∞
c3W (ξ′)

ptp−1Pξ(S1 > t|ξ′)dt

≤cp3W (ξ′)p +W (ξ′)p
∫ ∞
c3

pup−1Pξ(S1 > uW (ξ′)|ξ′)du ≤ cp4W (ξ′)p,

where c3 ≥ c1 and c4 are constants that depends only on L. Indeed, for u ≥ c1,

Pξ(S1 > uW (ξ′)|ξ′) ≤ Pξ(Eu(ξ′)|ξ′) ≤ 2 exp(−c2u22`) ≤ 2 exp(−c2u2p/2).

Repeating this argument for S2 =
∑r0−1
r=` |

〈
(πrA)ξ, (∆r+1A) ξ′

〉
|, it follows that

‖S1 + S2‖Lp ≤ c5(L)γ2(A, ‖ · ‖2→2)‖NA(ξ)‖Lp .

Finally, since |{π`A : A ∈ A}| ≤ 22` ≤ exp(p), we conclude

E sup
A∈A

|
〈
(π`A)ξ, (π`A)ξ′

〉
|p ≤

∑
Ã∈T`

E|
〈
Ãξ, Ãξ′

〉
|p

≤ exp(p) sup
A∈A

E|
〈
Aξ,Aξ′

〉
|p.

Thus ‖ supA∈A |
〈
(π`A)ξ, (π`A)ξ′

〉
| ‖Lp ≤ e supA∈A ‖

〈
Aξ,Aξ′

〉
‖Lp , which completes the

proof.

With these preliminary results at hand, we can now proceed to establish moment bounds
for the quantities in questions.

Theorem 3.4 Let L ≥ 1 and ξ = (ξj)
n
j=1, where ξj, j = 1, . . . , n, are independent mean-

zero, variance one, L-subgaussian random variables, and let A be a class of matrices. Then
for every p ≥ 1,

10



(a)
‖NA(ξ)‖Lp

.L γ2(A, ‖ · ‖2→2) + dF (A) +
√
pd2→2(A),

(b)

‖CA(ξ)‖Lp
.Lγ2(A, ‖ · ‖2→2) (γ2(A, ‖ · ‖2→2) + dF (A))

+
√
pd2→2(A) (γ2(A, ‖ · ‖2→2) + dF (A)) + pd2

2→2(A).

Proof. We start by showing that if ξ′ is an independent copy of ξ, then

sup
A∈A

‖
〈
Aξ,Aξ′

〉
‖Lp

.L
√
pdF (A)d2→2(A) + pd2

2→2(A). (3.4)

Indeed, fix A ∈ A and set S = {A∗Ax : x ∈ Bn2 }. Since the random vector ξ is L-
subgaussian, the random variable

〈
ξ,A∗Aξ′

〉
is subgaussian conditionally on ξ′. Therefore,

by (2.3),

‖
〈
Aξ,Aξ′

〉
‖Lp

=
(
Eξ′
((

Eξ|
〈
ξ,A∗Aξ′

〉
|p
)1/p)p)1/p

. (Eξ′L
√
p‖A∗Aξ′‖p2)1/p

= L
√
p

(
Eξ′ sup

y∈S
|〈y, ξ′〉|p

)1/p

.

Note that for a standard Gaussian vector g,

E sup
y∈S
|〈y, g〉| = E‖A∗Ag‖2 ≤

(
E‖A∗Ag‖22

)1/2
= ‖A∗A‖F ≤ ‖A‖F ‖A‖2→2.

Also, if ξ′ =
∑n
j=1 ξ

′
jej then, applying (2.3) again,

sup
y∈S

(E|〈y, ξ′〉|p)1/p = sup
z∈Bn

2

(E|〈A∗Az, ξ′〉|p)1/p . L sup
z∈Bn

2

√
p‖A∗Az‖2 = L

√
p‖A‖22→2.

Hence, Equation (3.4) follows by applying Theorem 2.3 and taking the supremum over
A ∈ A.

As a preliminary step, we will consider the special case of the Gaussian vector g and
show that ENA(g) .L γ2(A, ‖ · ‖2→2) + dF (A), which is (a) for p = 1. To that end observe
that by Theorem 2.5 and Lemma 3.3,

‖CA(g) ‖Lp
=

∥∥∥∥∥∥∥∥ sup
A∈A

∣∣∣∣∣∣∣∣
∑
j,k
j 6=k

gjgk
〈
Aj ,Ak

〉
+
∑
j

(g2
j − 1)‖Aj‖2

∣∣∣∣∣∣∣∣
∥∥∥∥∥∥∥∥
Lp

.

∥∥∥∥∥∥ sup
A∈A

∣∣∣∣∣∣
∑
j,k

gjg
′
k

〈
Aj ,Ak

〉∣∣∣∣∣∣
∥∥∥∥∥∥
Lp

=

∥∥∥∥ sup
A∈A

∣∣〈Ag,Ag′〉∣∣ ∥∥∥∥
Lp

.L γ2(A, ‖ · ‖2→2) ‖NA(g)‖Lp
+ sup
A∈A

∥∥|〈Ag,Ag′〉|∥∥
Lp
. (3.5)

Combining (3.4) with (3.5), it follows that

‖CA(g)‖Lp
.L γ2(A, ‖ · ‖2→2) ‖NA(g)‖Lp

+
√
pdF (A)d2→2(A) + pd2

2→2(A). (3.6)

Specifying p = 1 and using that dF (A) ≥ d2→2(A) as well as E‖Ag‖22 = ‖A‖2F , we conclude

EN2
A(g) ≤ ECA(g) + d2

F (A) .L γ2(A, ‖ · ‖2→2)ENA(g) + d2
F (A).
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Therefore,
ENA(g) ≤ (EN2

A(g))1/2 .L γ2(A, ‖ · ‖2→2) + dF (A),

as desired.
Finally, for general p and arbitrary subgaussian vectors, we apply Theorem 2.3 with the

set S = {A∗x : x ∈ Bn2 , A ∈ A}. Since ξ is L-subgaussian we obtain

‖NA(ξ)‖Lp
= (E sup

A∈A,x∈Bn
2

|
〈
Aξ,x

〉
|p)1/p = (E sup

u∈S
|
〈
ξ,u

〉
|p)1/p

.L ENA(g) + sup
u∈S

(E|
〈
ξ,u

〉
|p)1/p .L ENA(g) +

√
p sup
A∈A,x∈Bn

2

‖A∗x‖2

.L ENA(g) +
√
pd2→2(A),

.L γ2(A, ‖ · ‖2→2) + dF (A) +
√
pd2→2(A),

which proves (a).

For (b), observe that as the ξj are unit variance, we have E‖Aξ‖22 = ‖A‖2F =
n∑
j=1

‖Aj‖22

and, consequently, CA(ξ) can be split up into the diagonal and the off-diagonal contribu-
tions as follows.

CA(ξ) = sup
A∈A

∣∣∣∣∣∣∣∣
n∑

j,k=1
j 6=k

ξjξk〈Aj ,Ak〉+

n∑
j=1

(|ξj |2 − 1)‖Aj‖2

∣∣∣∣∣∣∣∣ ≤ BA(ξ) +DA(ξ).

Hence it suffices to estimate the moments of BA(ξ) and DA(ξ); one concludes using the
triangle inequality.

For the off-diagonal term, we use Theorem 2.4 and Lemma 3.3 to bound

‖BA(ξ)‖Lp
≤ 4

∥∥∥∥∥∥ sup
A∈A

∣∣∣∣∣∣
∑
j,k

ξjξ′k
〈
Aj ,Ak

〉∣∣∣∣∣∣
∥∥∥∥∥∥
Lp

= 4

∥∥∥∥ sup
A∈A

∣∣〈Aξ,Aξ′〉∣∣∥∥∥∥
Lp

.L γ2(A, ‖ · ‖2→2)‖NA(ξ)‖Lp
+ sup
A∈A

‖
〈
Aξ,Aξ′

〉
‖Lp

.

Combining this estimate with (3.4) and part (a), we obtain that

‖BA(ξ)‖Lp
.Lγ2(A, ‖ · ‖2→2) (γ2(A, ‖ · ‖2→2) + dF (A) +

√
pd2→2(A))

+
√
pdF (A)d2→2(A) + pd2

2→2(A). (3.7)

For the diagonal term, observe that by a standard symmetrization argument (see, e.g.,
[27, Lemma 6.3]),

‖DA(ξ)‖Lp
=

∥∥∥∥∥∥ sup
A∈A

∣∣∣∣∣∣
∑
j=1

(|ξj |2 − E|ξj |2)‖Aj‖22

∣∣∣∣∣∣
∥∥∥∥∥∥
Lp

≤ 2

∥∥∥∥∥∥ sup
A∈A

∣∣∣∣∣∣
∑
j

εj |ξj |2‖Aj‖22

∣∣∣∣∣∣
∥∥∥∥∥∥
Lp

where ε = (ε1, . . . , εn) is a Rademacher vector independent of ξ. Furthermore, let g =
(g1, . . . , gn) be a sequence of independent standard normal variables. Then, as ξj is L-
subgaussian, there is an absolute constant c for which P(|ξj |2 ≥ tL2) ≤ cP(g2

j ≥ t) for

every t > 0. Moreover, εj |ξj |2 and εjg
2
j are symmetric, so by the contraction principle (see
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[27, Lemma 4.6]), a rescaling argument, and de-symmetrization [27, Lemma 6.3],

‖DA(ξ) ‖Lp
.L

∥∥∥∥∥∥ sup
A∈A

|
∑
j

εjg
2
j ‖Aj‖22|

∥∥∥∥∥∥
Lp

≤ 2

∥∥∥∥∥∥ sup
A∈A

|
∑
j

(|gj |2 − 1)‖Aj‖22|

∥∥∥∥∥∥
Lp

+

∥∥∥∥∥∥ sup
A∈A

|
∑
j

εj‖Aj‖22|

∥∥∥∥∥∥
Lp

= 2 ‖DA(g)‖Lp
+

∥∥∥∥∥∥ sup
A∈A

|
∑
j

εj‖Aj‖22|

∥∥∥∥∥∥
Lp

.

Now observe that DA(g) ≤ CA(g) +BA(g), and thus, by (3.6) and (3.7),

‖DA(g) ‖Lp
≤‖CA(g) ‖Lp

+ ‖BA(g) ‖Lp

.γ2(A, ‖ · ‖2→2) (γ2(A, ‖ · ‖2→2) + dF (A))

+
√
pdF (A)(d2→2(A) + γ2(A, ‖ · ‖2→2)) + pd2

2→2(A).

Finally, note that A→
∑
j εj‖Aj‖22 is a subgaussian process relative to the metric

d(A,B) =

 n∑
j=1

(‖Aj‖22 − ‖Bj‖22)2

1/2

≤

 n∑
j=1

‖Aj −Bj‖22 · (‖Aj‖2 + ‖Bj‖2)2

1/2

≤ 2dF (A)‖A−B‖2→2.

Therefore, by Theorem 2.3 and a standard chaining argument,∥∥∥∥∥∥ sup
A∈A

|
∑
j

εj‖Aj‖22|

∥∥∥∥∥∥
Lp

. dF (A)γ2(A, ‖ · ‖2→2) +
√
p dF (A)d2→2(A).

This shows that

‖DA(ξ)‖Lp
.Lγ2(A, ‖ · ‖2→2) (γ2(A, ‖ · ‖2→2) + dF (A)) .

+
√
pd2→2(A) (γ2(A, ‖ · ‖2→2) + dF (A)) + pd2

2→2(A),

which, together with (3.7), proves (b).

Remark 3.5 (a) Observe that Theorem 3.1 can be deduced from Theorem 3.4 using
Proposition 2.6.

(b) In the Rademacher case, once the bound for the expectation is derived, one may
alternatively deduce the tail bound from the concentration inequality in [5, Theorem
17], see also [43].

(c) In the Rademacher case, one has DA ≡ 0, so the contraction principle and the more
sophisticated decoupling inequality for Gaussian random variables are not needed in
the proof.

(d) Note that the assumption that ξ has independent coordinates has only been used in
the decoupling steps of the proof of Theorem 3.4.
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4 The Restricted Isometry Property of Partial Ran-
dom Circulant Matrices

In this section we study the restricted isometry constants of a partial random circulant
matrix Φ ∈ Rm×n generated by a random vector ξ = (ξi)

n
i=1, where the ξi’s are independent

mean-zero, L-subgaussian random variables of variance one. Arguably the most important
case is when ξ = ε is a Rademacher vector, as introduced in Section 1.2.

Throughout this section and following the notation of the introduction, let Vxz =
1√
m
PΩ(x ∗ z), where the projection operator PΩ : Cn → Cn is given by PΩ = R∗ΩRΩ, that

is, (PΩx)` = x` for ` ∈ Ω and (PΩx)` = 0 for ` /∈ Ω.
Recalling that Ts = {x ∈ Cn : ‖x‖2 ≤ 1, ‖x‖0 ≤ s}, the restricted isometry constant of

Φ is

δs = sup
x∈Ts

∣∣‖RΩ(ξ ∗ x)‖2 − ‖x‖22
∣∣ = sup

x∈Ts

∣∣‖PΩ(x ∗ ξ)‖2 − ‖x‖22
∣∣ = sup

x∈Ts

|‖Vxξ‖22 − ‖x‖22|.

Since |Ω| = m, it follows that

E‖Vxξ‖22 =
1

m

∑
`∈Ω

E
n∑

k,j=1

ξjξkx`	jx`	k =
1

m

∑
`∈Ω

n∑
k=1

|x`	k|2 = ‖x‖22

and hence
δs = sup

x∈Ts

∣∣‖Vxξ‖22 − E‖Vxξ‖22
∣∣ ,

which shows that δs is the process CA studied in the previous section forA = {Vx : x ∈ Ts}.
Hence the tail decay can be analyzed using Theorem 3.1.

Theorem 4.1 Let ξ = (ξj)
n
j=1 be a random vector with independent mean-zero, variance

one, L-subgaussian entries. If, for s ≤ n and η, δ ∈ (0, 1),

m ≥ cδ−2smax{(log s)2(log n)2, log(η−1)} (4.1)

then with probability at least 1 − η, the restricted isometry constant of the partial random
circulant matrix Φ ∈ Rm×n generated by ξ satisfies δs ≤ δ. The constant c > 0 depends
only on L.

The proof of Theorem 4.1 requires a Fourier domain description of Φ. Let F by the
unnormalized Fourier transform with elements Fjk = e2πijk/n. By the convolution theorem,
for every 1 ≤ j ≤ n, F (x ∗ y)j = (Fx)j · (Fy)j . Therefore,

Vxξ =
1√
m
PΩF

−1X̂Fξ.

where X̂ = diag(Fx) is the diagonal matrix, whose diagonal is the Fourier transform Fx.
In short,

Vx =
1√
m
P̂ΩX̂F ,

where P̂Ω = PΩF
−1.

Proof of Theorem 4.1. In light of Theorem 3.4 and Theorem 3.1, it suffices to control
the parameters d2→2(A), dF (A), and γ2(A, ‖ · ‖2→2) for the set A = {Vx : x ∈ Ts}.

Since the matrices Vx consist of shifted copies of x in all of their m nonzero rows, the
`2-norm of each nonzero row is m−1/2‖x‖2; thus ‖Vx‖F = ‖x‖2 ≤ 1 for all x ∈ Ts and

dF (A) = 1.
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Also, observe that for every x ∈ Ts with associated diagonal matrix X̂,

‖Vx‖2→2 =
1√
m
‖P̂ΩX̂F ‖2→2 ≤

√
n

m
‖PΩF

−1‖2→2‖X̂‖2→2 ≤
1√
m
‖X̂‖2→2

=
1√
m
‖Fx‖∞. (4.2)

Setting ‖x‖∞̂ := ‖Fx‖∞ it is evident that ‖Fx‖∞ ≤ ‖x‖1 ≤
√
s‖x‖2 ≤

√
s for every

x ∈ Ts, and thus
d2→2(A) ≤

√
s/m.

Next, to estimate the γ2 functional, recall from (2.1) that

γ2(A, ‖ · ‖2→2) .
∫ d2→2(A)

0

log1/2N(A, ‖ · ‖2→2, u)du.

By (4.2),
‖Vx − Vy‖ = ‖Vx−y‖ ≤ m−1/2‖x− y‖∞̂,

and hence for every u > 0, N(A, ‖ · ‖2→2, u) ≤ N(Ts,m
−1/2‖ · ‖∞̂, u). Using an argument

due to Carl [10, Prop. 3], (see also [41] or [37, Lemma 8.3]), and setting ∆ =
√
s/m, it is

evident that

logN(Ts,m
−1/2‖ · ‖∞̂, u) ≤ logN(s1/2Bn1 ,m

−1/2‖ · ‖∞̂, u)

.

(
∆

u

)2

log2(nu2/∆2).

Since Ts is the union of s-dimensional Euclidean balls, a standard volumetric argument
(see, e.g., [41] or [37, Chapter 8.4]) yields

logN(Ts,m
−1/2‖ · ‖∞̂, u) . s log(en/su)

(which is stronger than the bound above for u . 1/
√
m).

Combining the two covering number estimates, a straightforward computation of the
entropy integral, (see also [41] or [37, eq. (8.15)]), reveals that

γ2(A, ‖ · ‖2→2) .

√
s

m
(log s)(log n),

which implies that γ2(A, ‖ · ‖2→2) . δ for the given choice of m.
Now, by choosing the constant c in (4.1) appropriately (depending only on L), one

obtains

E ≤ δ

2c1
,

where E and c1 are chosen as in Theorem 3.1. Then Theorem 3.1 yields

P(δs ≥ δ) ≤ P (δs ≥ c1E + δ/2) ≤ exp(−c2(m/s)δ2) ≤ η,

which, after possibly increasing the value of c enough to compensate c2, completes the
proof.
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5 Time-Frequency Structured Random Matrices

In this section, we will treat the restricted isometry property of random Gabor synthesis
matrices, as described in Section 1.3.

Theorem 5.1 Let ξ = (ξj)
m
j=1 be a random vector with independent mean-zero, variance

one, L-subgaussian entries. Let Ψh ∈ Cm×m2

be the random Gabor synthesis matrix gen-
erated by h = 1√

m
ξ. If, for s ∈ N and δ, η ∈ (0, 1),

m ≥ cδ−2smax{(log2 s)(log2m), log(η−1)}

then with probability at least 1 − η the restricted isometry constant of Ψh satisfies that
δs ≤ δ. The constant c > 0 depends only on L.

Before presenting the proof we will need several observations. First, note that for x ∈ Cm,
Ψhx = Vxξ, where the m×m matrix Vx is given by

Vx =
1√
m

∑
λ∈Z2

m

xλπ(λ).

It is straightforward to check that { 1√
m
π(λ) : λ ∈ Z2

m} is an orthonormal system in the

space of complex m×m matrices endowed with the Frobenius norm. Therefore,

E‖Vxξ‖22 = ‖Vx‖2F = ‖m−1/2
∑
λ∈Z2

m

xλπ(λ)‖2F = ‖x‖22.

Hence, if Ts = {x ∈ Cm2

: ‖x‖2 ≤ 1, ‖x‖0 ≤ s} and A = {Vx : x ∈ Ts}, the restricted
isometry constant is

δs = sup
x∈Ts

∣∣‖Ψhx‖22 − ‖x‖22
∣∣ = sup

Vx∈A

∣∣‖Vxξ‖22 − E‖Vxξ‖22
∣∣ .

Thus Theorem 3.1 applies again and we need to estimate the associated Dudley integral.
Note that, as π(λ) is unitary, one has for x ∈ Ts

‖Vx‖2→2 ≤
1√
m

∑
λ∈Z2

m

|xλ| ‖π(λ)‖2→2 ≤ ‖x‖1/
√
m ≤

√
s/m ‖x‖2, (5.1)

so the upper integration limit will be d2→2(A) ≤
√

s
m .

Lemma 5.2 There exists an absolute constant c such that for every 0 < u ≤
√

s
m ,

logN(A, ‖ · ‖2→2, u) ≤ cs
(

log(em2/s) + log(3
√
s/m/u)

)
,

and

logN(A, ‖ · ‖2→2, u) ≤ cs log2m

mu2
.

Before proving the lemma, let us recall the following simple modification of the Maurey
Lemma, essentially due to Carl [10]. For convenience, a proof is provided in the appendix.
Below, for a set U in a vector space, conv(U) denotes its convex hull.

Lemma 5.3 There exists an absolute constant c for which the following holds. Let X
be a normed space, consider a finite set U ⊂ X of cardinality N , and assume that for
every L ∈ N and (u1, . . . ,uL) ∈ UL, Eε‖

∑L
j=1 εjuj‖X ≤ A

√
L, where (εj)

L
j=1 denotes a

Rademacher vector. Then for every u > 0,

logN(conv(U), ‖ · ‖X , u) ≤ c(A/u)2 logN.
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Proof of Lemma 5.2. Define the norm ‖ · ‖ on Rn by ‖x‖ = ‖Vx‖2→2, fix S ⊂ Z2
m of

cardinality s and put BS = {x ∈ Cm2

: ‖x‖2 ≤ 1, supp(x) ⊂ S}. Then, by (5.1) and a
volumetric estimate,

N(BS , ‖ · ‖, u) ≤ N(BS ,
√
s/m‖ · ‖2, u) ≤

(
1 + 2

√
s/m

u

)2s

≤

(
3

√
s/m

u

)2s

,

where the last step uses that u ≤
√
s/m. Since there are at most

(
m2

s

)
≤ (em2/s)s such

subsets S of Z2
m, the first part of the claim follows.

To prove the second part, note that Ts ⊂
√

2s
(
conv(eλ, ieλ,−eλ,−ieλ)λ∈Z2

m

)
. Consider

(uj)
L
j=1 selected from the extreme points (with possible repetitions). Then, by the non-

commutative Khintchine inequality, due to Lust-Picard, [28, 29, 40],

Eε‖
L∑
j=1

εjVuj‖2→2 .
√

logm max

‖
L∑
j=1

VujV
∗
uj
‖2→2, ‖

L∑
j=1

V ∗uj
Vuj‖2→2


1/2

.

Recall that for every such uj , Vuj
= απ(λ) with |α| =

√
2s/m. Therefore, V ∗uj

Vuj
=

Vuj
V ∗uj

= (2s/m)I and thus

Eε‖
L∑
j=1

εjVuj
‖2→2 .

√
logm

√
s/m
√
L.

Applying Lemma 5.3 for A ∼
√
s/m
√

logm, it follows that

logN(Ts, ‖ · ‖, u) . (A/u)2 log(m2) .
s log2m

mu2
.

Proof of Theorem 5.1. The proof follows an identical path to that of Theorem 4.1.
First, as was noted above, dF (A) ≤ 1 and d2→2(A) ≤

√
s/m. Also, using the bound (2.1)

by the Dudley type integral and by a direct application of Lemma 5.2,

γ2(A, ‖ · ‖2→2) .
∫ d2→2(A)

0

√
logN(A, ‖ · ‖, u)du .

√
s/m(log s)(logm).

Here we used the first bound of Lemma 5.2 for u . m−1/2, the second bound for u & m−1/2.
The claim is now a direct application of Theorem 3.1.

Remark 5.4 The only properties of the system {π(λ) : λ ∈ Z2
m} that have been used in

the proof are the facts that all π(λ) are unitary and that {m−1/2π(λ) : λ ∈ Z2
m} is an

orthonormal system with respect to the Frobenius inner product. Therefore, Theorem 5.1
also holds true for general systems of operators with these two properties.

A Appendix

A.1 Proof of Theorem 2.3

Without loss of generality assume that T is finite. Fix an admissible sequence (Tr) of T ,
let πr(t) ∈ Tr, for t ∈ T , be an element in Tr with the smallest `2-distance to t, and choose

17



` for which 2`−1 ≤ 2p ≤ 2`. Since one may assume that πr(t) = t for a sufficiently large r,
one has

sup
t∈T
|〈t, Y 〉| ≤ sup

t∈T
|〈π`(t), Y 〉|+ sup

t∈T

∞∑
r=`

|〈πr+1(t)− πr(t), Y 〉|. (A.1)

The p-th moment of the first term can be estimated as(
E sup
t∈T
|〈π`(t), Y 〉|p

)1/p

≤

(
E
∑
t∈T`

|〈t, Y 〉|p
)1/p

≤ (|T`|)1/p sup
t∈T`

(E|〈t, Y 〉|p)1/p

≤ (22`

)1/p sup
t∈T

(E|〈t, Y 〉|p)1/p ≤ 16 sup
t∈T

(E|〈t, Y 〉|p)1/p
,

where the last inequality follows from the choice of p.
Since ξ is an L-subgaussian vector, one obtains for the second term in (A.1)

P

(
sup
t∈T

∞∑
r=`

|〈πr+1(t)− πr(t), Y 〉| ≥ uL
∞∑
r=`

2r/2‖(〈πr+1(t)− πr(t),xj〉)nj=1‖2

)

≤
∞∑
r=`

∑
t∈Tr+1

∑
t′∈Tr

P

| m∑
j=1

ξj〈t− t′,xj〉| ≥ uL2r/2‖〈t− t′,xj〉nj=1‖2


≤
∞∑
r=`

22r+1

· 22r

exp(−2ru2/2) ≤ 2 exp(−2`u2/4) ≤ 2 exp(−pu2/2), (A.2)

when u ≥ c for an appropriate choice of c (independent of `). Therefore, by integration,(
E sup
t∈T

∞∑
r=`

|〈πr+1(t)− πr(t), Y 〉|p
)1/p

.L

∞∑
r=`

2r/2‖(〈πr+1(t)− πr(t),xj〉)mj=1‖2

.L γ2(T ′, ‖ · ‖2)

where T ′ = {(〈t,xj〉)nj=1 : t ∈ T}. By the majorizing measures theorem,

γ2(T ′, ‖ · ‖2) . E sup
z∈T ′

|
m∑
j=1

zjgj | = E sup
t∈T
|
m∑
j=1

gj〈t,xj〉| = E sup
t∈T
|〈t, G〉|,

which yields the claim.

A.2 Proof of Lemma 5.3

If x ∈ conv(U) then x =
∑N
j=1 θjuj with θj ≥ 0,

∑N
j=1 θj = 1. Let Z ∈ X be a random

vector which takes the value uj with probability θj for j = 1, . . . , N and thus satisfies
EZ = x. Let L be a number to be determined later, set Z1, . . . ,ZL be independent copies
of Z, and put

Y =
1

L

L∑
j=1

Z`.

If (εj)
m
j=1 is a Rademacher sequence independent of (Zj) then by a standard symmetrization

argument (see, e.g., [27]) and because (Zj)
L
j=1 ranges over UL

E‖x− Y ‖X =
1

L
E‖

L∑
j=1

(x−Zj)‖X ≤
2

L
E‖

L∑
j=1

εjZj‖X ≤ 2A/
√
L.
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Thus, for L ∼ (A/u)2 there exists a realization y = 1
L

∑L
j=1 z`, for some z` ∈ U , of Y for

which
‖x− y‖X ≤ u.

As this argument applies for any x ∈ conv(U), any such x can be approximated by some
y of this form. Since y can assume at most NL different values, this yields

logN(conv(U), ‖ · ‖X , u) ≤ L logN ≤ c(A/u)2 logN,

as claimed.
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