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ABSTRACT. Compressed sensing and its extensions have recently triggered interest in
randomized signal acquisition. A key finding is that random measurements provide sparse
signal reconstruction guarantees for efficient and stable algorithms with a minimal number
of samples. While this was first shown for (unstructured) Gaussian random measurement
matrices, applications require certain structure of the measurements leading to structured
random measurement matrices. Near optimal recovery guarantees for such structured mea-
surements have been developed over the past years in a variety of contexts. This article sur-
veys the theory in three scenarios: compressed sensing (sparse recovery), low rank matrix
recovery, and phaseless estimation. The random measurement matrices to be considered
include random partial Fourier matrices, partial random circulant matrices (subsampled
convolutions), matrix completion, and phase estimation from magnitudes of Fourier type
measurements. The article concludes with a brief discussion of the mathematical tech-
niques for the analysis of such structured random measurements.

1. INTRODUCTION

In the theory of inverse problems, structural properties of signals and images have al-
ways played an important role. Namely, most inverse problems arising in practical appli-
cations are ill-posed, which makes them impossible to solve in a robust manner without
imposing additional assumptions. The expected or observed structure of the signal can
then serve as a regularizer necessary to allow for efficient solution methods. At the same
time, it was well-known that the success of such approaches heavily depended on the na-
ture of the observed measurements. Usually, these measurements were considered to be
given by the application, and the goal was to formulate properties that allow for successful
reconstruction.

A different perspective was taken in a number of works over the last decade, starting
with the seminal works of Donoho [45] and Candès, Romberg, and Tao [27]. Namely, the
goal was to use the degrees of freedom of the underlying applications to design measure-
ment systems that by construction are well-suited for successful reconstruction of struc-
tured signals. In many cases, as it turned out, measurements selected at random were shown
to lead to superior, often near-optimal recovery guarantees. The tightest recovery guaran-
tees are typically obtained when structural constraints on the measurements as prescribed
by the application are ignored and the measurement parameters are chosen completely at
random, for example following independent normal distributions. In a next step, the con-
straints then need to be reintroduced, resulting in structured random measurements. Error
analysis and recovery guarantees for such structured random measurement systems shall
be the main focus of this survey article. We will focus on three types of signal recovery
problems: compressed sensing, low rank matrix recovery, and phaseless estimation.

Compressed sensing is concerned with the recovery of approximately sparse signals
from linear measurements. A signal is said to be k-sparse in a given basis or frame, if it can
be expressed as a linear combination of only k of the basis or frame elements. Approximate
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FIGURE 1. Sparse recovery of sparse Fourier expansion

sparsity is a common model in signal and image processing, as natural signals are observed
to be extremely well represented by restricting to just the very few largest representation
coefficients in a suitable basis or frame and setting the remaining ones to zero. In fact,
lossy compression schemes including JPEG, MPEG or MP3 are based on this empirical
finding. Suitable representation systems include wavelet bases and shearlet frames, and
approximate sparsity is also observed for the discrete gradient (though it does not constitute
a basis or frame representation). Motivating applications for this problem setup include
magnetic resonance imaging (MRI) [81, 108], coded aperture imaging [82], remote sensing
[66, 51, 68], and infrared imaging [46].

Figure 1 illustrates the recovery of a sparse Fourier expansion from few random samples
via compressive sensing techniques, and for comparison also shows a traditional recon-
struction technique which clearly performs very poorly. Figure 2 considers the practical
example of a 256× 256 MRI spine image, which is reconstructed from 6400 Fourier sam-
ples, that is, less than 10% of the information. It shows the need for variable density
sampling schemes as they form the basis of Theorem 4 below.

For low-rank matrix recovery, one also considers linear measurements, but the structural
signal model is that the signal is approximated by a low-rank matrix. This problem closely
relates to applications in recommender systems and signal processing [4, 3, 26, 41], but
also has connections to quantum physics [63, 60].
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FIGURE 2. Recovering a 256×256 MRI image from 6400 Fourier sam-
ples using Total Variation minimization [74]. We compare a uniform
sampling distribution to a sampling density proportional to (ℓ21 + ℓ22)

−1.

In phaseless estimation, only the modulus of each measurement is observed. Such a
measurement setup can be found in various applications in physics, such as diffraction
imaging and X-ray crystallography. As the phases of an image are known to carry most
of its information, this is a difficult problem, even when a number of measurements con-
siderably larger than the dimension is used. Besides the general setup with no structural
assumptions on the signal, the case of sparse signals has also in the phaseless estimation
problem received considerable attention.

A major reason for the large research activity in compressive sensing and its extensions
in the recent years is due to its potential for a large number of applications in signal pro-
cessing and beyond. Besides MRI (as illustrated in Figure 2 and described in more detail
below), compressive sensing has applications to various signal processing applications. Let
us mention a few. Compressive sensing may improve several types of radar imaging. Espe-
cially when observing the sky, the fact that usually only a very limited number of airplanes
is present at a time, naturally leads to sparsity of the image to be reconstructed. Moreover,
the radar measurements can often be designed such that good measurement matrices for
compressing arise. This has been worked out for delay/Doppler radar [66, 88, 89], for a
setup with multiple antennas at random locations [51, 68], for sparse MIMO radar [58],
and more [49]. Another promising signal processing application of compressive sens-
ing appears in microscopy for materials science applications [18]. It is also possible to
implement certain measurement matrices directly on CMOS chips, so that cameras may
operate with fewer measurements or may increase resolution by keeping the costs down
[69, 67, 99]. This may also be useful in order to reduce the power consumption of imaging
sensors. Further optical and imaging applications of compressive sensing are described for
instance in the overview articles [111, 100]. Further applications of compressive sensing
and its extensions will be described in the individual sections below.

In the remainder of this paper, we will consider each of these scenarios separately,
giving an overview over recovery algorithms and reconstruction guarantees for structured
measurements. In Section 2, we discuss compressed sensing, in Section 3, we consider
low rank matrix recovery, and the topic of Section 4 is phaseless estimation. In Section 5,
we give a brief overview of the mathematical proof techniques used to achieve the results,
which are somewhat similar in all the three areas. We concentrate on structured random
measurements in this article rather than giving a basic general introduction to the field.
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For introductory survey papers on compressed sensing we refer to [10, 32, 55, 93] and for
recent books to [47, 57].

2. COMPRESSED SENSING

Throughout most of this section, we focus on the following setup. Note that we consider
complex-valued signals and matrices, but the reader may as well imagine just the real case.

• Signals: Let x ∈ CN be approximately k-sparse in a basis B = {bi}Nj=1, that is,
x ≈

∑
j∈S xjbj , for S ⊂ [N ] := {1, 2, . . . , N} of cardinality k. The important

case that the representation system is a frame rather than a basis will not be covered
in this survey, we refer the reader to [95], [22], and many follow-up papers. To
quantify the sparse approximation quality, we define for 0 < p < ∞ the ℓp best k-
term approximation error σk(x)p := inf

z∈CN :z is k−sparse
∥x−z∥p. A common model

for approximately sparse vectors is given by the unit ℓp ball, p < 1. Namely,
∥x∥ℓp ≤ 1, p < 1, is known to imply σk(x)1 ≤ k1−1/p∥x∥p [57]. As p → 0, these
quasinorms converge to the support size ∥x∥0 := |{j : xj ̸= 0}|. For all of these
concepts, when no sparsity basis is specified or clear from the context, we will
work with the standard basis. Note that in contrast to a noisy sparse signal, there
is no underlying sparse “truth”. The goal will be to estimate the approximately
sparse signal and the result will not necessarily have to be sparse either.

• Measurements: We consider m linear measurements, represented in matrix form
by A ∈ Cm×N . The measurements are affected by additive noise e ∈ CN . Thus
the observed measurements are given by y = Ax + e ∈ Cm. We will mainly
consider adversarial noise, i.e., we are looking for worst case bounds for the re-
construction error. However, random noise models have also been considered,
mainly in a statistical context, see e.g. [13, 30].

As mentioned in the introduction, the general paradigm that we will follow in all three
application scenarios will be to design the measurements in a random fashion such that
efficient reconstruction can be guaranteed. As such, the resulting reconstruction guarantees
will be probabilistic, namely reconstruction is only guaranteed with high probability. There
are two fundamentally different interpretations of such probabilistic guarantees. Uniform
recovery guarantees concern all (approximately) sparse signals at the same time. That is,
one seeks random matrix construction whose realizations, with high probability, allow for
the recovery of all sparse signals. Non-uniform recovery guarantees, on the other hand,
establish that for any given signal, recovery is possible with high probability. That is, in
the latter case, the matrices for which reconstruction fails can differ for different signals
and there is no guarantee that one matrix can be generated that allows for the recovery of
all sparse vectors.

The techniques used to establish uniform versus non-uniform recovery guarantees are
somewhat different. An important tool that has been successfully used to establish uniform
recovery guarantees is the restricted isometry property.

Definition 0.1. A matrix A ∈ Cm×N is said to have the restricted isometry property of
order k and level δ with respect to a basis B (in short, the (k, δ)-RIP), if it satisfies

(1) (1− δ)∥x∥22 ≤ ∥Ax∥22 ≤ (1 + δ)∥x∥22
for all x ∈ CN which are k-sparse with respect to B. The smallest δ that satisfies (1) is
called the restricted isometry constant of order k and denoted by δk.
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If the measurement matrix has restricted isometry property of order k and suitably small
level δ, then reconstruction of sparse vectors can be guaranteed for various algorithms. A
simple tractable recovery approach which is arguably best understood in the context of
compressed sensing is ℓ1-minimization (basis pursuit) [37]. Here it is assumed that the
noise level ϵ = ∥e∥2 is known at least approximately. Furthermore, B denotes the change
of basis matrix associated to the sparsity basis B. Then the resulting minimization problem
is as follows,

(ℓ1) x̂ = argminx:∥Ax−y∥2≤ϵ ∥Bx∥1.
It may not be obvious that ℓ1-minimization promotes sparsity, but there are many theoret-
ical results indicating this fact in general, see e.g. Theorem 3.1 in [57]. More specifically,
the following theorem proved in [17] shows that this convex optimization problem suc-
cessfully recovers approximately sparse solutions provided the measurement matrix has a
sufficiently small restricted isometry constant.

Theorem 1. Let x ∈ CN , assume A ∈ Cm×N has the restricted isometry property of
order 2k and level δ < 1√

2
≈ 0.707 with respect to the basis B, and let y = Ax+ e, where

the noise vector e satisfies ∥e∥2 ≤ ϵ. Then the vector x̂ recovered by the minimization
problem (ℓ1) satisfies

(2) ∥x̂− x∥2 ≤ C1
σk(Bx)1√

k
+ C2ϵ.

Here C1 and C2 are absolute constants.

Note that for ϵ = 0, the theorem implies that under the same conditions on A, every
k-sparse vector is recovered exactly by (ℓ1) provided the measurements are not affected by
noise. The constant 1/

√
2 above is optimal [43] and the error bound (2) as well, see also

below. Moreover, also error bounds in ℓp with 1 ≤ p ≤ 2 can be shown [57].
Similar recovery guarantees, though for smaller thresholds for δ, have been derived

for other recovery algorithms than ℓ1-minimization. Examples include CoSaMP, Iterative
Hard Thresholding and Iterative Hard Thresholding Pursuit [57].

Subgaussian random matrices. In order to deduce recovery results using these results,
the measurement systems under consideration must have restricted isometry constants be-
low some constant threshold. This can be achieved by choosing a measurement matrix
with independent entries drawn according to a subgaussian distribution as given in the fol-
lowing definition (see for example [109] for a detailed discussion of subgaussian random
variables including a number of equivalent definitions).

Definition 1.1. A real or complex random variable X is called subgaussian with parame-
ter β > 0 if

P(|X| ≥ t) ≤ 2e−βt2 .

A random matrix A is called subgaussian with parameter β if its entries are independent
mean zero subgaussian random variables with parameter β.

Examples of subgaussian random variables include centered Gaussian random variables
and centered bounded random variables such as Rademacher random variables, i.e., P(ξ =
±1) = 1

2 .
The following theorem concerning the RIP for subgaussian random matrices is well-

known, a particularly simple proof can be found in [11], see also [57]. This and most
following results in this survey are probabilistic, that is, they hold with high probability on
the draw of the measurement matrices. The precise meaning of this is that we can make the
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probability of failure arbitrarily small by (slightly) increasing the number m of samples.
For reasons of simpler presentation, we will not specify this dependence, but refer to the
original research articles.

Theorem 2. Let B be an orthonormal basis of CN , A ∈ Cm×N be a subgaussian random
matrix with parameter β, and assume that m ≥ Cβδ

−2(k log
(
n
k

)
+ log(γ−1)). Then with

probability at least 1− γ, the matrix 1√
m
A has the restricted isometry property of order k

and level δ with respect to the basis B. Here Cβ is a constant, which only depends on β.

Combined with Theorem 1, this result yields recovery guarantees for ℓ1-minimization
for embedding dimensions m ≥ C ′

βk log
(
n
k

)
. In particular, if k is much smaller than

n then also the number m of measurements can be chosen smaller than the signal length
n and still signal recovery is ensured. An embedding dimension of order k log

(
n
k

)
is

known to be necessary to achieve recovery guarantees of the form (2) [39]. For the case
of subgaussian matrices, also the non-uniform approach mentioned above does not yield
recovery guarantees for embedding dimensions of a smaller order. Note that the result is
universal in the sense that the recovery guarantees do not depend on the choice of B.

Subgaussian compressed sensing matrices are often considered a benchmark to judge
the quality of a randomized construction. Thus one is typically interested in embedding
dimensions which scale linearly in the sparsity k, up to logarithmic factors. Deterministic
constructions to date are nowhere near this benchmark. Efficient constructions are known
for embedding dimensions which scale quadratically in k [57], the best known infinite fam-
ily that beats this quadratic bottle neck uses heavy machinery from additive combinatorics
to achieve a scaling of k2−µ [14], where the best currently available estimate of µ is on the
order of 10−26 [84].

Random Fourier measurements. From the very beginning, one of the main moti-
vating applications of compressed sensing was magnetic resonance imaging (MRI). MRI
measurements are known to be well modeled with the (continuous) Fourier transform. We
will follow the common approach to approximate this setup by discrete Fourier transform
(DFT) measurements. In this article we work with the non-normalized discrete Fourier
transform matrix with entries given by Fjℓ = e−2πi jℓ

N , −N
2 + 1 ≤ j, ℓ ≤ N

2 (where we
assume N to be even). The discrete Fourier basis then consists of the normalized rows
of F . This discretization approach also has the advantage that the resulting (approximate)
measurement matrix can be efficiently computed using the Fast Fourier Transform (FFT).
We note, however, that refined models for compressed sensing MRI have been developed;
we mention infinite dimensional compressed sensing [1] and discrete prolate spheroidal
sequences [42].

In the undersampled setup that we consider here, only a subset of the rows of the DFT
are chosen. Randomness is introduced into the model by selecting these rows at random.
Note that this simple subsampling model does not incorporate certain technical side con-
straints of the MRI acquisition process. For example, samples are in practice acquired on
continuous trajectories, which is not in line with drawing the samples at random. Building
this and other technical constraints into the compressed sensing model remains an active
area of research, see for example [36] for a recent attempt to address the continuity con-
straint. In this survey, we will, however, stick with the simplified model of randomly
chosen DFT measurements.

Because of the structure of the resulting random matrix, the recovery guarantees must
depend on the basis in which the signal is sparse. This is most easily seen by considering
signals sparse in the discrete Fourier basis. Then most DFT coefficients of a sparse signal
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are zero by construction, so one requires a number of measurements much larger than what
is needed for subgaussian measurement matrices. As it turns out, a sufficient property to
ensure recovery guarantees is incoherence between the sparsity basis and the measurement
basis (in this case, the discrete Fourier basis).

Definition 2.1. The coherence between two orthonormal bases B1 and B2 of CN is defined
as

(3) µ(B1,B2) = sup
b1∈B1,b2∈B2

|⟨b1, b2⟩|.

A main example for incoherent bases are the standard basis and the Fourier basis, their
coherence has the minimal value of N−1/2. Though often formulated specifically for the
standard basis as the sparsity basis and the Fourier basis as the measurement bases, the
uniform recovery results directly generalize to arbitrary incoherent bases. The first results
of the type below were introduced in [29, 28] and later refined in [102, 91, 38, 96].

Theorem 3. Consider orthonormal bases B1 and B2 of CN with coherence bounded by
µ(B1,B2) ≤ LN−1/2. Fix δ, γ ∈ (0, 1) and integers N,m, and k such that

(4) m ≥ Cδ−2L2kmax{log3(k) log(N), log(γ−1)}.

Consider the matrix Φ ∈ Cm×N formed by subsampling m vectors of B2 independently
according to the uniform distribution. Then A =

√
N√
m
Φ has the restricted isometry property

of order k and level δ with respect to the sparsity basis B1 with probability at least 1− γ.
The constant C > 0 is universal (independent of all other quantities).

Note that the normalization factor implies that the rows rather than the columns are
(approximately) normalized. This renormalization is necessary as the restricted isometry
property requires that the columns are approximately unit norm.

In contrast to the case of subgaussian matrices, the best known recovery guarantees for
the non-uniform approach are considerably stronger than in the uniform case. Namely, the
number of measurements required to guarantee recovery of k-sparse signals in N dimen-
sions with high probability is of order k log(N) (see for example [27, 90, 93, 24, 57]).

The direct applicability of Theorem 3 is somewhat limited. While for certain applica-
tions, such as angiography, sparsity in the standard basis can be assumed, most sparsity
inducing representation systems for images, such as wavelets or shearlets are not incoher-
ent with the Fourier basis. For Haar wavelets, for example, the constant Fourier mode and
the constant wavelet mode even agree, so the bases are maximally coherent, that is, µ = 1
or, in the notation of Theorem 3, L =

√
N . In contrast to the case of sparsity in the Fourier

basis, where hardly any subsampling is possible, this high coherence only concerns very
few of the measurement vectors. Most measurement vectors have uniformly small inner
products with all vectors in the sparsity basis. This can be exploited by sampling according
to a variable density based on a localized refinement of the coherence. In this way, one can
obtain recovery guarantees for Fourier measurements and images approximately sparse in
the Haar wavelet basis. As the result for noisy measurements becomes quite technical, we
only state the recovery guarantees without noise and refer to [74] for details on the noisy
case. In the following result, H denotes the Haar wavelet transform matrix. Due to its
appearance we restrict N to be a power of 2 for notational simplicity.

Theorem 4 ([74]). Fix integers N = 2p,m, k and γ ∈ (0, 1) such that

(5) m ≥ C1kmax{log3(k) log2(N), log(γ−1)}.
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Select m frequencies Ω = {(ωj
1, ω

j
2)}mj=1 ⊂ {−N/2 + 1, . . . , N/2}2 independently ac-

cording to

P
[
(ωj

1, ω
j
2) = (ℓ1, ℓ2)

]
= CN min

(
C, 1

ℓ21+ℓ22

)
, −N

2 + 1 ≤ ℓ1, ℓ2 ≤ N
2 ,(6)

where C is an absolute constant and CN is chosen such that (6) defines a probability
distribution.

Then with probability at least 1 − γ, the following holds for all images f ∈ CN×N :
Given measurements y = FΩf , the estimation

(7) f# = argming∈CN×N ∥Hg∥1 such that FΩg = y

approximates f up to the best k-term approximation error in the bivariate Haar basis:

(8) ∥f − f#∥2 ≤ C2
σk(Hf)1√

k
.

It should be noted that while it is not clear whether the decay of second argument of the
min in (6) can be improved (maybe for different families of wavelets), the cut-off intro-
duced by the first argument is crucially tied to our sampling model. As we are sampling
with replacement, it is necessary to prevent frequencies near the origin from being sampled
too often.

Similar recovery guarantees can be derived for images with approximately sparse dis-
crete gradients, where the recovery algorithm is based on total variation minimization (see
[74] for details). Figure 2 above illustrates the need for variable density sampling by com-
paring a uniform sampling density and an inverse square density.

In parallel to this refinement of the concept of Fourier/wavelet incoherence, the con-
cept of sparsity has also been refined to better reflect the fact that wavelet coefficients
on larger scales exhibit less sparsity than on smaller scales. In [96], the authors study a
weighted sparsity model and derive RIP-based guarantees for uniform recovery. In [2], the
authors work in an infinite-dimensional setup and consider both coherence and sparsity in
the asymptotic limit. These observations may also serve as an explanation that empirically,
sampling densities with a faster decay seem to outperform those predicted by Theorem 4.

Subsampled random convolutions. Later, further applications of compressed sensing
arose that require different structural constraints on the measurements. For application in
remote sensing [66, 101] and coded aperture imaging [82], the model of choice is often that
of subsampled convolutions. For simplicity, we consider the circular convolution (x, ξ) ∈
CN × CN 7→ x ∗ ξ ∈ CN given by

(9) (x ∗ ξ)j =
N∑
i=1

xiξj⊖i,

where ⊖ denotes subtraction mod N . These convolution measurements are then subsam-
pled by an operator PΩ, Ω ⊂ {1, . . . N}, which restricts a vector to only those entries
indexed by Ω. That is, after normalizing the columns, we obtain a measurement matrix
A ∈ Cm×N of the form

(10) Ax := 1√
m
PΩ(ξ ∗ x).

A matrix A of this form is called a partial circulant matrix. For this setup there are two
alternative ways to introduce randomness into the system. One can again choose the sub-
sampling pattern Ω at random, or one can choose Ω deterministically and randomize the
vector ξ. For both scenarios, recovery guarantees have been derived. In the case of random
Ω, the key concept determining the success is the autocorrelation of ξ. Namely, as shown
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in [77], a sufficient condition is that ξ is a nearly perfect sequence in the sense that for
ℓ ∈ {1, . . . N − 1} its off-peak autocorrelation, that is, the values

(11) Rξ(ℓ) =
N∑
j=1

ξj ξ̄j⊕ℓ

for ℓ not a multiple of N , is bounded by a small constant c independent of N . Here ⊕
denotes addition mod N . With this definition, the result in [77] reads as follows.

Theorem 5. Let ξ ∈ CN be a nearly perfect sequence, |Rξ(ℓ)| ≤ c for all ℓ not a
multiple of N , such that |(Fξ)i| =

√
N for i ∈ {1, . . . , N} and assume m ≥ C(1 +

c)δ−2kmax{log4(N), log(γ−1)}, where C is an absolute constant. Then with probability
at least 1−γ the matrix A ∈ Cm×N as defined in (10) has the restricted isometry property
of order k and level δ both with respect to the standard and the Fourier basis.

The proof is closely related to the case of random partial Fourier matrices as discussed
above. In a similar way, one also obtains non-uniform recovery guarantees for embedding
dimensions of order k log(N). For a detailed discussion of examples for nearly perfect
sequences, we refer the reader to [77] and the references therein.

As in the partial Fourier case, this setup is based on random subsampling. That is, the
sampling setup cannot be truly designed for lower sampling frequencies, as with very high
probability, some subsequent samples will be selected. For this reason, the setup of choos-
ing Ω deterministically and randomizing y has received considerable attention. In coded
aperture imaging, this corresponds to choosing a random aperture pattern, and in remote
sensing, this concerns a random pulse that is transmitted. Both are often considerably
easier to implement than subsampling at random.

The first results on this problem required embedding dimensions significantly worse
than the linear benchmark scaling in k, namely cubic [6], quadratic [64], and k3/2 [94]. In
[72], linear scaling up to logarithmic factors has been achieved, as given in the following
result. Here the random vector ξ consists of independent subgaussian entries. Again, this
includes the important examples of a Gaussian and a Rademacher random vector.

Theorem 6. Let ξ ∈ CN be a random vector with independent subgaussian entries with
parameter β and let A ∈ Cm×n be a draw of the associated partial random circulant
matrix generated by ξ as given in (10). If

(12) m ≥ Cβδ
−2kmax{(log2 k)(log2 n), log(γ−1},

then A has the RIP of order k and level δ with probability at least 1 − γ. The constant
Cβ > 0 only depends on the subgaussian parameter β.

There are also non-uniform recovery guarantees available for subsampled convolutions
[92]. The best known such result again achieves a scaling of order k log(N) for the em-
bedding dimension [92, 93, 70].

There have been various works on other structured random measurement matrices for
compressed sensing. Time-frequency structured random matrices, a class of examples
which arises in wireless communication and radar, have been studied in [89, 72] (uniform
recovery guarantees) and [88] (non-uniform recovery guarantees). For a class of matrices
which arises in radar imaging with randomly located antennas, only non-uniform guaran-
tees are available to date [68].
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3. LOW RANK MATRIX RECOVERY

Low rank matrix recovery represents an interesting extension of compressive sensing,
where the sparsity assumption is replaced by a low rank assumption. More precisely, the
task is to reconstruct a matrix of low rank (or approximately low rank) from incomplete
linear measurements. This problem arises for instance in recommender system design [26]
and a number of signal processing applications, described briefly next.

Suppose that several sensors observe different aspects of the same phenomenon, for
instance weather time series at locations distributed in some area. Collecting the signals
corresponding to each sensor data as columns into a data matrix, correlatedness of the data
may lead to an (approximately) low rank of this matrix. Therefore, low rank matrix recov-
ery techniques help in such situations to accurately reconstruct signals from observed data
and/or to work with fewer sensor measurements, see [4] . In wireless communications it is
a main task to estimate both the transmission channel as well as the sent signal from the re-
ceived signal. In [3], this blind deconvolution problem is reformulated as a low rank matrix
recovery problem and recovery guarantees for this scenario are shown. Another important
task arising in so-called cognitive radio is to decide whether certain frequency bands are
occupied or not so that free bands may be potentially used for wireless transmission by a
user. In [41] an approach to this problem via low rank matrix recovery was introduced.

In mathematical terms, the measurements of a matrix X ∈ Cn1×n2 are provided by a
linear map A : Cn1×n2 → Cm, i.e.,

y = A(X).

We are interested in the underdetermined case that m < n1n2. A prominent special case is
the matrix completion problem, where one samples entries of a low rank matrix and tries
to fill in the missing entries, see also below.

The rank minimization problem

min rank(X) subject to A(X) = y

is unfortunately NP-hard. (In fact, the NP-hard problem of finding for an underdetermined
linear system the solution with the smallest support – as it appears in compressed sensing
context – can be cast as a rank-minimization problem.) Let σ(X) = (σ1(X), σ2(X), . . . , σn(X)),
n = min{n1, n2}, be the vector of singular values of X . Observing that rank(X) =
∥σ(X)∥0 and having the ℓ1-minimization approach for the standard compressed sensing
problem in mind, we are led to consider the nuclear norm

∥X∥∗ = ∥σ(X)∥1 =
n∑

j=1

σj(X),

and the corresponding nuclear norm minimization problem [52, 98]

(N) min ∥X∥∗ subject to A(X) = y.

This is a convex optimization problem for which a number of algorithms exist [16, 35,
59]. For instance, it can be reformulated as a semidefinite optimization program. Other
algorithmic approaches for the low rank matrix recovery problem including iterative hard
thresholding [75, 106], iteratively reweighted least squares [56] and a variant of CoSaMP
called ADMiRA can be pursued as well [71].

Similarly as in the standard compressed sensing case, we are interested in suitable mea-
surement maps A and the minimal number m of samples required to reconstruct an n1×n2

matrix of rank r. It should not be a surprise by now that again, random measurement maps
are optimal with high probability in this context in the sense of working with a minimal
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number of measurements. We also distinguish uniform and nonuniform recovery guaran-
tees here.

A prominent approach for deriving uniform guarantees consists in studying a version of
the restricted isometry property for the low rank case [98]. Similarly as in (1) we define
the restricted isometry constant δr to be the smallest number such that
(13)
(1− δr)∥X∥2F ≤ ∥A(X)∥22 ≤ (1 + δr)∥X∥2F for all X ∈ Cn1×n2 with rank(X) ≤ r.

If δ2r < 1/
√
2, then nuclear norm minimization (N) uniquely recovers every matrix of rank

at most r from y = A(X). Moreover, recovery is stable under noise on the measurements
and passing to approximately low-rank matrices [98].

The simplest model of a random measurement map is a Bernoulli or Gaussian map,
where all the entries of the tensor Ajkℓ, i.e., A(X)j =

∑
k,ℓ AjkℓXkℓ, are chosen as

independent mean-zero Rademacher or standard Gaussian random variables. The restricted
isometry constant of the rescaled map 1√

m
A satisfies δr ≤ δ with probability at least 1−γ

provided that [25]
m ≥ Cδ−2

(
r(n1 + n2)) + log(γ−1)

)
.

This implies rank-r matrix recovery with high probability via nuclear norm minimization
from m ≥ Cr(n1 + n2) measurements. This bound is optimal as the right hand side
represents essentially the number of degrees of freedom of a matrix of rank r in dimension
n1 × n2. Clearly, if r ≪ min{n1, n2}, then m can be chosen smaller than the dimension
n1n2 of the underlying matrix space Cn1×n2 .

While Bernoulli and Gaussian measurement maps are comparably easy to analyze, they
are of limited practical use due to lack of structure. As in the standard sparsity case, we
therefore rather look for structured random measurement maps. (Optimal deterministic
constructions are not available at this point and likely very hard to achieve.)

Matrix completion. Imagine an online vendor system which asks clients to rate the
products which they have purchased. Such recommendations can be organized in a big
matrix where the columns represent products and the rows the clients. The corresponding
ratings are kept as the entries of this matrix. Since not every client rates every product,
a lot of entries of the matrix are missing. For obvious reasons, a recommender system
needs to guess such missing entries in order to make good suggestions of products that a
client will probably like. In other words, we would like to complete this matrix. (This was
basically the task of the famous netflix prize.) In practice there are only a few types of
significantly different client behavior which results in the matrix being essentially of low
rank. In abstract terms, we are given a matrix like this one

? 10 ? 2 ? ?
3 ? ? ? 3 ?
? ? 14 ? ? 14
? 15 6 ? ? ?
6 ? 4 ? 6 4

 ,

and the problem is to replace the question marks with numbers making the whole matrix
being of low rank.

Let Ω ⊂ [n1] × [n2] of size m be the location set of the known entries, where [n] :=
{1, 2, . . . , n}. Let PΩ(X) ∈ Cm be the restriction of a matrix X ∈ Cn1×n2 to its entries
in the set Ω. The measurements in the matrix completion setup can then be written as
y = PΩ(X). Compared to the subgaussian random measurement maps, PΩ as a coordinate
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projection can be considered a structured measurement map. Later on, we will randomize
this map by considering random subsets Ω, and thereby obtain a structured random map.

Matrix completion, i.e., considering maps of the form PΩ, has some limitations in terms
of low rank recovery. Consider the rank-one matrix X = eje

∗
k, where ej and ek are the j-

th and k-th canonical unit vectors in Cn1 and Cn2 , respectively. Then X is also one-sparse
and if (j, k) /∈ Ω then PΩ(X) = 0. Clearly, any reasonable algorithm would recover the
zero matrix from the zero measurement vector, so that X cannot be recovered although it
is of rank one. For this reason, PΩ will not satisfy the rank restricted isometry property of
any order. This means that we have to impose further conditions on the matrix apart from
being low rank in order to guarantee recovery.

It is natural to impose that the singular vectors of the matrix X are incoherent with
respect to the canonical basis. In order to make this precise, for a subspace U of Cn of
dimension r we introduce the coherence of U as

µ(U) =
n

r
max

j=1,...,n
∥PUej∥22,

where PU denotes the orthogonal projection onto U and the ej are the canonical unit
vectors in Cn. If U contains a canonical unit vector, say ej , then PUej = ej and the
coherence takes the maximal value µ(U) = n/r. The other extreme case is given for
example by a space U spanned by r orthonormal vectors uk maximally incoherent with
respect to the canonical basis, i.e., |⟨uk, ej⟩| = 1/

√
n. In this case, the matrix RU with

rows uk has all entries of modulus 1/
√
n. Now PU = R∗

URU , so ∥PUej∥2 = ∥RUej∥2 =√
r
n , and µ(U) takes the minimal value µ(U) = 1.
When restricting to low rank matrices X whose right and left singular vectors span

incoherent subspaces in the sense that their coherence is small, it was shown by Candès
and Recht in [26] that nuclear norm minimization is able to recover X from PΩ(X) from
a random choice of Ω with high probability provided that enough measurements are taken.
The following statement [60, 97] is a refinement of the first results in [26, 31].

Theorem 7. Let X ∈ Cn1×n2 of rank r with reduced singular value decomposition UΣV ∗

with U ∈ Cn1×r,Σ ∈ Cr×r and V ∈ Cn2×r. Assume that the row and column spaces
of X satisfy µ(U), µ(V ) ≤ µ0 for some µ0 ≥ 1, where with abuse of notation U and
V also denote the subspaces spanned by the left and right singular vectors, respectively.
Moreover, assume that

max
j,k

|(UV ∗)j,k| ≤ µ1

√
r

n1n2

for some µ1 ≥ 1. Let the entries of Ω ⊂ [n1] × [n2] be sampled independently and
uniformly at random. If

(14) m ≥ Cmax{µ2
1, µ0}r(n1 + n2) log

2(n1 + n2)

then X is uniquely recovered from PΩ(X) via nuclear norm minimization with probability
at least 1− (n1 + n2)

−2.

The bound (14) on the number of measurements is almost optimal in the sense that
one can derive a lower bound where only the exponent 2 at the log-factor is replaced by
1. Moreover, note that the bound on m requires µ0 to be small, which excludes that the
pathological sparse rank-one matrices eje∗k are recovered from fewer than n1n2 measure-
ments.

Random measurements with respect to an operator basis. Motivated by problems
from quantum tomography, Gross [60] generalized the matrix completion setup to the fol-
lowing scenario. Let Bj ∈ Cn1×n2 , j = 1, . . . , n1n2, be an orthonormal basis with respect
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to the Frobenius inner product, i.e., ⟨Bj , Bk⟩F = tr(BjB
∗
k) = δjk. Measurements of a

matrix X are taken with respect to this basis, i.e.,

yℓ = ⟨X,Bjℓ⟩, ℓ = 1, . . . ,m,

for some jℓ ∈ [n1n2]. In this context, we define again a coherence parameter µ, this time
for the basis {Bj}, as

µ :=
n1 + n2

2
max

j=1,...,n1n2

∥Bj∥22→2.

The intuition is that sampling with respect to an operator basis having a small coherence
parameter µ preserves information about low rank matrices, and works well even for the
pathological example X = ejek. In the symmetric case n1 = n2 = n, the optimal
parameter µ = 1 is taken for an operator basis {Bj} for which

√
nBj is unitary for each

j ∈ [n2]. An example for such an operator basis is provided by the Pauli matrices, see [60],
which are important in quantum mechanics. Another example is formed by time-frequency
shift operators. The following result from [60] establishes low rank matrix recovery with
respect to randomly chosen coefficients with respect to the orthonormal basis.

Theorem 8. Let {Bj}n1n2
j=1 be an operator basis with coherence µ ≥ 1. Let X ∈ Rn1×n2

be of rank r and Ω ⊂ [n1n2] be a subset of size m which is chosen uniformly at random.
If, for ε > 0,

m ≥ Cµr(n1 + n2) log(n1n2),

then X is uniquely recovered from the samples yj = ⟨X,Bj⟩, j ∈ Ω, via nuclear norm
minimization with probability at least 1− (n1 + n2)

−2.

Another version of this result, which includes the matrix completion setup as a special
case by considering the operator basis ejek, j = 1, . . . , n1, k = 1, . . . , n2, can be found in
[60]. Moreover, for the map of Theorem 8, also the rank-restricted isometry property (13)
holds with probability at least 1− γ under the condition

m ≥ Cδ−2µr(n1 + n2)max{log6(n1 + n2), log(γ
−1)},

see [79]. This implies uniformity of reconstruction as well as stability under passing to
approximately low rank matrices and adding noise on the measurements. (Recall however,
that for the matrix completion map the restricted isometry property fails.)

Fourier type measurements. Let us now describe a structured measurement map con-
nected to the Fourier transform for which the rank restricted isometry holds. This map
is the concatenation of random sign flips and a randomly subsampled two-dimensional
Fourier transform.

In mathematical terms, for an n1 × n2 matrix E with independent ±1 Rademacher
entries ϵj,k, we denote by DE : Cn1×n2 → Cn1×n2 the Hadamard multiplication with E ,
i.e.,

(DE(X))j,k = ϵj,kXj,k.

In other words, DE performs independent random sign flips on all entries of a matrix.
Moreover, let F : Cn1×n2 → Cn1×n2 denote the two-dimensional Fourier transform, i.e.,

(FX)j,k =

n1∑
r=1

n2∑
t=1

Xr,te
−2πi(rj/n1+kt/n2).

Finally, for a set Ω ⊂ [n1] × [n2] of size m we let PΩ : Cn1×n2 → Cm be the restriction
operator (PΩX)j,k = Xj,k for (j, k) ∈ Ω. With these ingredients our measurement map
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A : Cn1×n2 → Cm can be written as

A(X) =
1√
m
PΩ(F(DE(X))),

where Ω is chosen uniformly at random among all subsets of [n1]× [n2] of cardinality m.
Exploiting the FFT, the map A can be applied fast.

It is argued in the introduction of [56] (but details are not worked out), that A possesses
the rank restricted isometry property (13) with high probability provided that

m ≥ Cδ−2r(n1 + n2) log
4(n1n2).

It is interesting to note that this result follows from a combination of several facts: 1√
m
PΩF

satisfies the standard restricted isometry property (1) with high probability. Together with
the main result in [73] relating Johnson-Lindenstrauss embeddings and the restricted isom-
etry property if follows that 1√

m
PΩF(DE(X)) satisfies a certain concentration inequality

which can then be used along with ϵ-net arguments [25] in order to establish the rank
restricted isometry property.

4. PHASELESS ESTIMATION

While the signal model used for low-rank matrix recovery and compressed sensing are
considerably different, phaseless estimation problems consider structurally different, non-
linear measurements. Namely, of each linear measurement, only the (squared) modulus is
observed, and the phase is lost. Such a measurement setup arises in various applications
such as X-ray crystallography and diffraction imaging. Losing the phase here corresponds
to observing only the intensity of the measurements.

In more mathematical terms, the measurements take the form

y = A(x),

where the non-linear map A : CN or RN → Rm is given by (Ax)j = |⟨aj , x⟩|2, where
{ai}mi=1 are given measurement vectors. Note that in this setup, the two cases of signal
entries in R and C are structurally different as in the real case, the phase corresponds to the
sign and hence only allows for the two different values ±1 whereas in the complex case,
there are infinitely many possible phases.

In the motivating application scenarios, the natural measurement vectors ai are again
discrete Fourier basis vectors. As this obviously does not suffice for recovery, not even in
certain cases or under additional assumptions, one often considers, in addition, phaseless
coordinate measurements. That is, ai = ei, where ei is the i-th standard basis vector. This
extended set of measurements is, in general, also known to not suffice to ensure uniqueness
of the solution. However, as additional measurements are typically not available, there
have been numerous works in the physics and optimization literature proposing efficient
algorithms, showing empirically that they often yield good solutions, and deriving run time
guarantees, see for example [53], [12], and the references therein.

We will again take a different viewpoint here. Namely, the goal will be to design mea-
surements such that they allow for guaranteed recovery of the signal. As the measurements
are always invariant under multiplication by a phase factor, all one can hope for, however,
is recovery up to a global phase.

A first natural question to ask concerns the minimal number of measurements such that
the measurement map is injective. A number of works have been studying this question,
often combining methods from frame theory and algebraic geometry. Typically, they show
injectivity for generic sets of measurement vectors. Here generic means that the set of
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measurement vector configurations that yield an injective map A (up to a global phase)
is open and dense in the set of frames. Recall that a frame is a set {fj}mj=1 of vectors in
RN or CN such that there exists A,B > 0 such that for all x in RN or CN it holds that
A∥x∥22 ≤

∑m
j=1 |⟨fj , x⟩|2 ≤ B∥x∥22.

In the real case, the question of injectivity is completely answered in the following result
from [7].

Theorem 9. For a generic frame {aj}mj=1 ⊂ RN , the phaseless measurement operator A
corresponding to the measurement vectors aj is injective provided m ≥ 2N − 1. On the
other hand, no set of m < 2N −1 measurement vectors in RN yields an injective operator
A.

The complex case is less understood. It is known that m = 4N−4 generic measurement
vectors suffice to achieve injectivity [40], and that 4N−o(N) measurements are necessary
[65], see also [85]. While it has been conjectured that m = 4N − 4 measurements are also
necessary [84], this question is currently open.

While injectivity is certainly a useful indicator for when the phaseless estimation prob-
lem has a chance of being solved, it does not imply anything about the existence of tractable
recovery algorithms nor about the conditioning (and hence the possibility of an efficient
inversion in case of noisy measurements). A number of works addressing such issues
are based on the observation that the measurement information can be expressed in ma-
trix form. Namely, for X = xx∗ ∈ CN×N and Ai = aia

∗
i ∈ CN×N , the constraint

|⟨ai, x⟩|2 = yi can be reexpressed as ⟨Ai, X⟩ = yi, where one considers the Hilbert-
Schmidt inner product of matrices ⟨B,C⟩ = trA∗B. In this formulation, the constraints
are again linear in A. Thus for on the order of m = N(N+1)

2 (in the real case) or m = N2

suitably chosen measurements, one can directly solve for the N(N+1)
2 or N2 entries of the

matrix X [8] (the reduced number of entries in the real case stems from the fact that then
X is symmetric). The global phase ambiguity mentioned above is also incorporated in this
formulation, as changing x by a global phase does not change X (and x can be determined
from X up to a global phase).

A number of measurements quadratic in the signal dimension, however, is quite far
from the injectivity benchmark of linear scaling in N . One may hope for a significantly
smaller sufficient number of measurements because X is of rank one. Hence while for
a subquadratic number of measurements, the matrix reformulation admits additional (ma-
trix) solutions, X is definitely the one of smallest rank. Thus the problem boils down to
recovering a low-rank matrix from linear measurements. In contrast to the setup derived in
Section 3, however, the measurements correspond to inner products with rank one matrices
and do not satisfy any of the conditions required in the results presented there. As it turns
out, however, the same strategy of convex relaxation still works. As the matrices consid-
ered here are all positive semi-definite, the nuclear norm of the matrix is just the trace. The
resulting algorithm, coined PhaseLift, is introduced in [19] as the following minimization
problem.

(PL) X̂ = argminX≽0,AX=y tr(X)

Here X ≽ 0 means that X is a positive semi-definite matrix. Similar to (ℓ1), the formu-
lation can also be adapted to noisy measurements. As noted in [20] and [44], with high
probability there is just a single positive semi-definite matrix X that satisfies the measure-
ment constraints. Hence, the problem becomes a feasibility problem rather than a convex
optimization problem.
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PhaseLift is a tractable algorithm, but not comparable in efficiency to the heuristic al-
gorithms mentioned above. Nevertheless, PhaseLift is considered a breakthrough for the
analysis of the phaseless estimation problem, as for the first time, recovery guarantees
could be established. The first scenario considered was that the measurements are chosen
to be Gaussian vectors or uniformly distributed on the unit sphere. As the measurement
vector and hence also its length is known, these two measurement setups are equivalent
when no noise is considered. In [21], non-uniform recovery guarantees were established
with high probability for a number of measurements on the order of N log(N). In [20],
these results were refined to yield uniform recovery guarantees for a number of measure-
ments scaling linearly in N . As obviously no recovery is possible for less measurements
than the dimension, these embedding dimensions are optimal up to an absolute constant.
The result from [20] reads as follows.

Theorem 10. Assume that the number of measurements satisfies m ≥ c0N , where c0 is a
sufficiently large constant. For i = 1, . . . ,m, define yi(x) = |⟨ai, x⟩|2, where the ai are
independent standard Gaussian vectors. Then with probability at least 1 − e−c1m on the
draw of the measurement vectors, it holds that for all x, the solution to the minimization
problem (PL) exactly agrees with the signal x. The recovery is uniform in the sense that
the same draw guarantees recovery for all x from y(x) simultaneously.

Note that in contrast to compressed sensing, a direct generalization from Gaussian vec-
tors to vectors with subgaussian entries is not possible. Namely, for Rademacher measure-
ment vectors recovery cannot be possible, as each of the standard unit vectors yields the
exact same phaseless measurements, so they cannot be distinguished. Thus one needs an
additional condition on the small ball probabilities of the entries of the measurement vec-
tors. We refer to [48] for details, where the authors do not consider a specific algorithm,
but rather derive stability in the sense that signals that significantly differ also yield mea-
surements that are not too close. Moreover, [110] considers recovery via PhaseLift from
measurements with random unitary matrices.

A first attempt to derive recovery guarantees for different, more efficient algorithms
was the polarization algorithm provided in [5]. Later, in [86], the authors consider an al-
ternating minimization algorithm, which is inspired by the heuristic algorithms mentioned
above. Both these papers provide recovery guarantees for independent Gaussian measure-
ment vectors.

The first paper that derived theoretical guarantees for structured measurements in phase
retrieval was [9]. Their work is motivated by applications in diffraction imaging. As
mentioned above, measurements in this setup are absolute values of Fourier coefficients,
which, a priori, do not suffice to recover the signal. As suggested in [50], however, one
can introduce masks into the measurement setup, which have the effect that only parts of
the object are illuminated. By varying the mask, one can obtain multiple images and thus
more information in total. With this modification, the above limitations do not apply, so
recovery of the signal is possible. In [9], the authors derive recovery guarantees for the
polarization algorithm introduced in [5] and masked Fourier measurements. The number
of measurements they require is of order N log(N).

For PhaseLift, the first structured measurement setup is provided in [61]. The paper
considers measurements selected uniformly at random from spherical designs; the number
of measurements necessary to guarantee recovery depends on the order of the design. Ba-
sically at the same time, [23] considers PhaseLift for masked Fourier measurements and
derives recovery guarantees for a number of measurements on the order of N log4(N),
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that is, log4 N masks. Subsequently, these guarantees have been improved to require only
log2 N masks [62].

In many works on the phaseless estimation problem, there have been attempts to in-
corporate sparsity assumptions into the problems to reduce the number of required mea-
surements, see [103, 104] for first algorithmic and applied contributions. Refined recovery
guarantees for k-sparse signals have first been provided in [78]. They provide recovery
guarantees for a modification of PhaseLift and a number of measurements on the order of
k2 log(N). As they show, the quadratic dependence on k is necessary in their algorithmic
setup, see also [87] for similar lower bounds. As shown in [48], the number of Gauss-
ian measurements required for stability is of order k log(N), hence considerably smaller.
Thus for sparse signals, the PhaseLift approach cannot work with optimal embedding di-
mensions. Based on this work, [54] provides recovery guarantees for sparse vectors with
an additional decay condition using a greedy algorithm for a number of measurements on
the order of k log(N).

5. MATHEMATICAL PROOF TECHNIQUES

Due to the comprehensive nature of this survey article, we cannot give a self-contained
mathematical exposition of the proof techniques. In the following, however, we provide
some key words and references for the different classes of results presented in this article.

For unstructured random matrices/maps, the proof of the restricted isometry property
is by-now rather standard: Using Bernstein’s inequality one establishes a concentration
inequality for ∥Ax∥22 for a fixed x. Then one covers the ℓ2-sphere restricted to the sparse
vectors/low rank matrices with a relatively dense but finite collection of vectors, a so-
called ϵ-net, takes a union bound of the concentration inequality over the net, and extends
the resulting estimate to the whole infinite set of interest by a bootstrapping argument
[11, 25, 57, 83].

As one can imagine, proving recovery guarantees for structured random measurement
matrices/maps is considerably harder because these matrices contain much less random-
ness. For instance, in order to establish the restricted isometry property for random partial
Fourier matrices, one first applies symmetrization [57, 76], followed by the Dudley in-
equality for the expected supremum of a subgaussian processes which leads to an integral
over covering numbers with respect to a certain metric. Then one uses techniques such as
the Maurey Lemma [33, 72] in order to bound the resulting covering numbers.

The Dudley inequality just mentioned is itself proved using the so-called chaining tech-
nique. Talagrand has developed a much more general theory of generic chaining [105], and
in fact, the bound of the restricted isometry property for partial random circulant matrices
(Theorem 6) is based on a new generic chaining bound for certain chaos processes [72],
which then again requires to obtain bounds for associated covering numbers.

One ingredient for establishing nonuniform recovery guarantees are condition number
bounds for a single submatrix of the measurement matrix corresponding to the columns
indexed by the support set. These often require to estimate the operator norm of a sum
of independent random matrices. Traditionally, noncommutative Khintchine inequalities
[15, 80, 93] were used for this purpose, but recently, Tropp [107] developed extensions of
many classical deviation inequalities such as Bernstein’s inequality to the matrix setting,
which are much simpler to use. In the case of partial random circulant matrices [92, 93]
and similar setups [88] one ends up with a double sum of random matrices, a so-called
second-order matrix-valued chaos for which an extension of Khintchine’s inequality can
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be used to obtain operator norm bounds [92, 93]. Alternatively, the so-called trace method
leads to combinatorial estimates [27, 90, 88, 70].

In addition to establishing condition number bounds for the submatrix of the measure-
ment matrix corresponding to the support of the sparse vector, one essentially needs to
show that this submatrix behaves well with respect to the columns outside the support.
This task is often the harder part of the analysis in the nonuniform setting. In the initial
contribution [27], it was established by following complicated combinatorial arguments,
see also [90, 88, 68]. A more elegant approach – called golfing scheme – was developed
by Gross [60] in the context of matrix completion. It proceeds via introducing an artificial
iteration by partitioning the matrix into smaller blocks of rows. However, so far it seems
that this approach is restricted to matrices with stochastically independent rows. We refer
to [24, 57, 60, 97] for details.

For more information on corresponding probabilistic techniques and for background
information on nonasymptotic random matrix theory in general, we refer to [34, 57, 93,
76, 47, 105, 109].
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