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Abstract

In this note, we show that by quantizing thé-dimensional frame coefficients of signals Rf* using r-th-
order Sigma-Delta quantization schemes, it is possibleciiese root-exponential accuracy in the oversampling rate
A := N/d. In particular, we construct a family of finite frames taédrspecifically for coarse Sigma-Delta quantization
that admit themselves as both canonical duals and Sobol#g.dDur construction allows for error guarantees that
behave ag~°V*, where under a mild restriction on the oversampling rate,dbnstants are absolute. Moreover, we
show that harmonic frames can be used to achieve the samentees, but with the constants now dependingi.on

|. INTRODUCTION

Signal quantization is a fundamental problem in signal pssing. Viewing a signal as a vectorid, quantization
involves replacing the vector with coefficients that areheelcosen from a finite alphabgt. In particular, one can
represent a vectar in R? by a vectorqg in AN, where N > d, in the following way. First, one computes a
finite-frame expansion := Ex, whereE is an appropriately chosen full-rank matrix &Y *¢ (see Section Il for
a precise definition). Next, one applies a quantization meht replace; with ¢. This approach will be referred to
asframe quantizatiorn the sequel. More specifically, the quantization schemestwdy in this paper are designed
to allow for goodlinear reconstructiorof z, i.e., we focus on approximation formulas of the foim= Fq where
F' is one of the infinitely many left-inverses @f.

Clearly, the goal of a good quantization scheme is to allowafio accurate reconstruction offrom ¢. Thus,
for reasonable frame quantization schemes, one expedtg thad” should allow for increasingly accurate and
robust approximation of as N increases. In the following paragraphs, we will introduse frame quantization

schemes, the second of whicBA quantization, will be the main focus of this paper.
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A. Memoryless scalar quantization

In the context of quantization using finite-frame repreagahs, the most intuitive approachrisemoryless scalar
guantization(MSQ), which requires replacing each coefficientyo Ex with its nearest element fromd. That
is, y is replaced byg, whereg; = arg{j%iﬁm — v|. On the other hand, this naive approach treats each of the
coefficients ofy independently, and does not exploit the correlations betmeoefficients ofy resulting from the
lower-dimensional representatign= Ex. Goyal et al. [1] show that, even when using an optimal rerangon
scheme to approximate from its MSQ quantized frame coefficients, the expected esalfithe error cannot be
better thanO(A~1). Here, the expectation is with respect to some probabiligasare onv that is, for example,
absolutely continuous. One can do much better with othentigaion schemes. In particular, Sigma-Delt)
guantization schemes are more complex, but can achiewer leetor rates than MSQ by exploiting the redundancy

inherent iny.

B. XA quantization of oversampled bandlimited functions

A schemes were introduced for the quantization of oversairadlimited functions [2], and have since been
studied extensively. In the setting of bandlimited funeipthe oversampling rateis the ratio of the actual sampling
rate to the Nyquist rate and the signal is reconstructed tf@samples via a low-pass filter. Since the time-shifted
versions of the low-pass filter as they are used in the rengi&in formula form an infinite dimensional frame,
this setup can be seen as analogous to the finite-frame csmessied in this paper. In particular, the oversampling
rate in the framework of bandlimited functions correspotwdthe oversampling rate for finite frame expansions as
above.

Daubechies and Devore [3] showed that if the samples of aligitet! function are quantized according to a
stabler-th-orderX A scheme, thd.>° approximation erroﬁf—ﬂ\oO is O(A~"). Subsequently, Guntirk [4] showed
that certainl-bit XA schemes (that isA = {—1,1}) can achieve exponential precision, i.e., B¥ error decay
of ordere=“1*, by choosing the order as a function of\. Here C; < 1 is a small constaht This work was
improved on by Deift et al. [5], who showed that the above tamtscan be pushed 6, ~ 0.102. In order to
achieve exponential precision, these works use stabldiéanaif »-th-orderX A schemes with approximation errors

bounded byCs(r)\~". For well behaved’s(r), the optimal choice# (\) achieves exponential precision.

C. XA quantization of finite frame expansions

The use of£A quantization in the setting of finite frames was first explbby Benedetto et al. [6]. In contrast
to the setting of bandlimited functions where the error isstmmaturally measured with respect to th&°-norm,
in the finite-dimensional setting it is more amenable to meagrror with respect to the Euclidean, ifg(R?),

metric. In [6], it was shown that with linear reconstructi@ven first-orde®A schemes outperform MSQ when

1subsequentlyC; will denote a constant, indexed by order of appearance.



the frames are sufficiently redundant and chosen from apiatepfamilies. Subsequent work showed that it is
possible to achieve error bounds with respect to the Euatideetric that decay lik&(A~"). For example, in [7],
Bodmann et al. proved that with tight frames of special desigth-order schemes achieve an error decay rate of
O(A™"), when the left-inverse of the matriX used in linear reconstruction is the Moore-Penrose invéising a
different approach, Blum et al. [8] showed that such an awmte can be achieved by using alternative left-inverses,
calledSobolev dualsfor any frame that arises via uniform sampling from piesmémooth frame-paths. Recently,
Guntiirk et al. [9] showed that for randomly-generatednes, error bounds aP(A~("—1/2)%) for o € (0, 1), are
attainable via the use of Sobolev duals. In particular, taie@meter controls the probability (on the draw of the
frame) with which the result holds. This allowed [9] to applA quantization in the context of compressed sensing
[10], [11].

In this note, we combine the techniques of Blum et al. [8] anihi@rk [4]/Deift et al. [5] to show that it is
possible to achieve root-exponential accuracy in the fiingme setting. In particular, we show that for a family of
tight frames of special design that admit themselves as IBolimals, and for harmonic frames, root-exponential

error rates of0(e~CV?) are achievable.

Remarkl. In [7], Bodmann et al. study-th orderXA schemes that employ scalar quantizers operating-dn L.
Their schemes require the input sequence, i.e., the frampension ofz, to be bounded by, — (2" — 1)§/2 where

0 is the quantization step size. Consequently, there is aeruppund on admissible values offor these schemes
to work and this does not allow one to optimize the value dfeely as a function of\. A similar issue arises in
[9], where the frames are random. On the other hand, in thdlipaited setting, [4] and [5] proposedA schemes
that do not suffer from an-dependent constraint on the input sequence. Howevemtodved constants grow in.

By freely optimizingr as a function of\, [4] and [5] one can balance these effects obtaining expgalgmecision

in A (measured in thd > norm). In this paper, we use theA schemes of [4] and [5] for frame quantization and
Sobolev duals as in [8] for linear reconstruction. Consetjyewe can freely optimize: as a function of\. This

allows us to obtain root-exponential precision in théR<¢) norm.

D. Organization of the paper

The remainder of the paper is organized as follows. In Sedtiowve introduce the relevant basic concepts from
frame theory and we descrii@\ quantization. In Section Ill, we construct a family of frasrtbat admit themselves
as both canonical and Sobolev duals and we show that they edlat exponential approximation errors. We derive
explicit bounds on the constants; in particular, we show tha error is bounded bﬁ’ge*@ﬁ, except for very
small oversampling rates := % < (logd)?, where the constantS; and C, do not depend on the dimensian
In Section IV, we study the performance of harmonic frambewéng that they too allow root-exponential bounds
on the reconstruction error, albeit without the explicibbsis of the dimension dependence of the error. Finally,

in Section V, we include the results of numerical experimesitowing that the effective decay rate of the error



as a function of\, when using the proposed schemes, is indeed root-expaherttis highlights the fact that our
mathematical analysis (for the proposed frames and remamistn method) is not sub-optimal but matches the

empirically observed error decay.

Il. PRELIMINARIES
A. Finite frames

We say that a finite collection of vectofs,, })_; is a frame forR? with frame bound$) < A < B <  if

N
Ve € RY, Allzll3 <Y (@ en)l® < Blla|3, 1)

n=1

where|| - |2 denotes the Euclidean norm, ariddand B are the largest and smallest numbers such that (1) holds,
respectively. IfA = B we say that the frame is tight. |fe,,|[» = 1 for eachn € {1, ..., N}, then we say that the
frame is unit-norm. Given the frame vectofs,}~ ,, for convenience, we define the frame matfixe R4
with e, as its k-th row. A matrix £ € RY*? is thus a frame matrix if and only if it has rank Let = be a
vector inR<. Then we say thay = Ex is the frame expansion af with respect toE. Equivalently we say that
yn,n € {1,..., N}, are the frame coefficients of.

Consider a framd f,,}_, and letF’ be the matrix whosé-th column isf,. F is called adual (or synthesis)
frameassociated wit{e,, } Y, if the frame matrixF” in R4*V satisfiesF E = I;, wherel; € R4 is the identity
matrix. In other words, a dual frame matriX is a left inverse ofE. As N > d, there are infinitely-many such

left-inverses. In particular, theanonical dual framgthe Moore-Penrose inverse) éf is given by

E" .= (E*E)"'E".

B. Sigma-Delta Quantization of Finite Frame Expansions

A midrise quantization alphabés$ a set of the type
A=A% ={£(m—-1/2)0:1<m < K,meZ}.
For such an alphabet, we define the associatadar quantizer
@:R— A, Q(h) :=argmin |h — q|.

A quantization schemis a procedure that employs such a quantizer to represetit muéven infinite-dimensional
signals by a sequence of symbols from the alphabeln the context of redundant representations, MSQ is the
most basic form of quantization; herejn R¢ is encoded by quantizing the entries of its frame expangienEx
independently to obtain a vectgrof quantized coefficients, i.@,, = Q(y,). Subsequently, decoding is achieved by
using a dual framé" to obtain the approximatiom = F'¢q. However, as mentioned previously, MSQ is suboptimal
since it makes no use of the fact that the framenapsR? to a d-dimensional subspace &, spanned by the

columns of E. On the other hand,.A schemes, a class of recursive algorithms first applied teeitigng of finite
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frame expansions in [6], explicitly make use of the deperdEnin the vectors of the reconstruction fraffeto
achieve robust, high precision quantization (see, e.3)., f8lopting the notation generally more common in the
framework of bandlimited functions ([4],[5]), a generath-order: A scheme with alphabed runs the following

iteration forn =1,2,..., N,

g =Q (p(un—lv Un—2," " Up—r, yn)) @

Here the operatoA” results fromr subsequent concatenations of the finite difference opefato),, = w,, —w,_1,
p:R™1— R is a fixed function known as the quantization rule, @pds the scalar quantizer associated with

as above. We refer to the sequenggas thestate sequenceén vector form, (2) can be restated as
D'u=1y—q, 3
where D is the first-orderNV x N difference matrix defined by
1, ifi=j,
Dij:=q —1, ifi=j+1, (4)
0, otherwise.
In this formulation, the iterative nature of (2) is reflectiedthe invertibility of D. Suppose thaf’ €¢ RV is the
dual frame toE used for linear reconstruction, and suppose that Fiq is the reconstructed approximation o

Using thatFD"u = F(y — q) = FEx — T = x — Z, it was shown in [12] that the linear reconstruction erromof

stabler-th-order> A scheme with state variablescan be bounded by
|z = Z|l2 = [ FD"ull2 < [|[FD"[|la—2[lulla < N'2||[FD"|j3—s|[u/loo- (5)

Here|| - ||2—2 denotes the matrix norfiM ||a—2 := leﬁax [|Mv]||2. In absence of further information about the
v 2:1

vectoru (which is typically the case), a reasonable quantizatiat@dure should yield good bounds for both norm

estimates on the right hand side of (5). To control the fafttdf.., we concentrate on schemes that stable that

is, there exist constantSs > 0 andCs > 0 such that for anyV > 0 andy € RY one has
[Ylle <C5 = |ulls < Cs. (6)

The constant€’s and Cs may depend on the order the quantization rule, and the alphabet, but they should
not depend onV (and hence not on the oversampling rateither). Stability is a crucial concept in the theory of
YA quantization both for bandlimited signals (compare [13i) éor frames (see for example [6]). The construction
of stable schemes that allow for good bounds@nwill be discussed in the next section. Now we can bound
lylloo = max |{en,x)| < max }|\en||2|\x||2. Thus in order to ensure thfiy||- < Cs uniformly for all x

ne{l,...N} nefl,.,N
Cs

with [|z][2 < C7, we need thatnax,c(1,... .y llen]2 < o




For such a frame” we then seek to find a dual franfé such that|| FF D" || is minimized. This is achieved

by the Sobolev dualntroduced in [8]. Ther-th-order Sobolev dual frame of a given framkis given by
F.:= (D "E)ID".

As desired,F.. is the left-inverse ofF that minimizes the nornfj F D" || over all left inversed’, FE = I (see
[8]). Now two approaches are conceivable: On the one hane,cam attempt to desigh to yield particularly
good bounds for this minimum. We will follow this approachSection Il introducing a class of frames where the
canonical dual and the Sobolev dual coincide. On the othed hane can work with a given frame. We will follow

this approach in Section IV, analyzing the bounds for theriwaric frame, as it has been discussed for example in

[6].

C. Superpolynomial Sigma-Delta Quantization

Note that the constants; andCj in (6) depend om, so a sharper analysis will require taking these dependsnci
into account. The first deduction of superpolynomial deaayf explicitly »-dependent bounds for the solution of
system (2) was provided in [3] in the context BA quantization for bandlimited functions. In [3], the coreed&d
is to choose the order of the XA modulator adaptively as a function of the oversampling eatd to choose the
underlying quantization rule to be a non-linear functioattmvolves a concatenation of sign functions.

In [4], the author derives a framework that allows for strengrror decay rates (exponential in the context of
bandlimited functions). The approach is based on an anxiaquence,, that is defined recursively in terms of
r of its non-subsequent previous values and an associatal lquantization rule. The optimal error decay in this
framework is provided in [5].

More specifically, one formally substitutes= g * v for a giveng € R{%-} for somem > r with go = 1 and
chooses the quantization rule in terms of the new varialddsetp(v,,, vn—1,- .., Yn, Yn—1,-.-) = (h*0)p + Yn,

whereh = 69 — Arg with §(9) the Kronecker delta. Then (2) reads as follows.

Gn = Q((h * V) + yn) ()
Un:(h*v)n+yn_Qna (8)

Note that asA"g)o = go = 1 and henceh, = 0, this formula describes again howy, is computed recursively

from v;, j < n. Now by definition of the midrise quantization alphab&} and its scalar quantiz&p, one has

J n— .
ol s (5, 033 + Il = (- 5) )

which inductively shows thajv, || < % i.e., stability, for all input sequenceswith ||y||.. < p provided that

[All1§ + 1 < K6. Here|| - ||; denotes the/; norm given byl[v[, = 3 |h;].
Stability of this auxiliary scheme automatically implidgat the scheme in the original variables- g * v is also

stable as long as the quantized bits are computed using,teeOne estimates

0
lulloo < llgllillvliee < S gl 9)
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These estimates motivate the study of the following optatian problem first posed in [4].

L . 2
Minimize ||g||; over allg € ¢! subject to||h|j; = |ATg|l; — 1 < 2K — Tﬂ (10)

To make this problem more tractable, the author restrickspitoblem to minimally sparse, i.e., with only r
non-zero entries (albeit distributed over a longer intBrvehis idea allows for the construction of admissible pair
(g, h) that yield the bound

llglls < CsCqr” (11)

for some constant§’s, Cy that depend om. With the currently best-known constants resulting from ¢gptimized

constructions derived in [5], we can summarize these cenaitbns as follows.

Proposition 2. There exists a universal constafit > 0 such that for any midrise quantization alphabét= A%,
for any orderr € N, and for all u < ¢ (K — %) there existyy € R™ for somem > r such that the2A scheme

given in(7) is stable for all input signalg with ||yl < p and

4]
lulloe < CsCEr72, (12)

2

whereu = g x v as above and’y = ([mw %) with v := 2K — 27“

Ill. SOBOLEV SELFDUAL FRAMES

In this section we construct a family of fram@&g y (r) for R¢, parametrized explicitly by an orderc Z,r > 1.
In particular, for anyd, N, andr, we construct frames that admit themselves as both carl@ardaSobolev duals
of orderr. We show that the optimal choice of frames from this famillpwab for a root-exponential error decay
rate (by linear reconstruction) when used for the redundaktquantization of signals iiR¢. Constructing such
frames forr = 1 andr > 1 will be the focus of the next two subsections, respectivetythat end we now focus
on some useful properties @, defined in (4).

Recall that for any matrix M ilR™*™ of rank k, there exists a singular value decomposition (SVD) of threnfo
M = Up Sy Vi, whereUy, € R™*F is a matrix with orthonormal columns,,, € R¥** is a diagonal matrix with
strictly non-negative entries, and, € R™** is a matrix with orthonormal columns. We will use an equivaferm
of the above factorization, with/ = Uy, Sy, Vy;. Here, Uy € R™*™ is orthonormal Sy, € R™*F is “diagonal”
(that is, it contains & x k diagonal submatrix, with the remaining entries being zemajl V3, € R"** is a matrix
with orthonormal columns as before.

In particular, the difference matrik admits a singular value decompositibh= UpSpVp™* whereUp andVp

are orthonormal matrices arff}, is a diagonal matrix given respectively (see [14], [15]) by

B 2 (20 —1/2)(N—1+1/2)7
Up(k,i) = | N+1/2 COS( ON + 1 ) (13)
Vp(k,1) = (—1)F1, /ﬁsin (%) , (14)
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I
— 95D g
Sp(k,l) =26 COb<2N+1>' (15)

Above, k,1 € {1,...,N}, 6 is the Kronecker delta, andi/(k, 1) indicates the entry on the-th row andi-th
column of M.

We now briefly summarize how Sobolev self-dual frames atis¢.F and I’ be dual frames, i.el’E = I and
note that in this section we will design both and F'. Recall that in the context cfA quantization of redundant
frame expansions, we aim to control the error associatel Migar reconstruction. Since the above error is given
by ||z — FQ¥*(Ex)||2 < ||FD"||2—2|lull2 (where @~ denotesr-th-order A quantization), we seelE and
F such that|FD"||2—2 is nicely bounded. In particular, it is natural to considefyothe Sobolev duals, which
minimize ||F'D"||2—2 over all duals ofE. With this choice ofF, |FD"||s—2 = m On the other hand,
for stability considerations we sedk so that||Ez|| is bounded, and thus it is reasonable to restrict our attenti
to tight frames with frame bound 1. With this choice, the WOnm is minimized whenFE consists
of the right singular vectors ab~" corresponding to the largest singular values. As a reqdtSobolev dual and
the canonical dual oFf agree, the frame is Sobolev self-dual. This argument is nmaeeise in Lemma 3 and

Theorem 8.

A. First-order Sobolev self-dual frames
We begin with the construction for the case= 1 and some of its useful properties.
Lemma 3. Suppose thatl € RV*4 is a frame matrix forR<, with frame vectorge, }V_; given by

2 (n—1/2)(d—=1+1/2)7
en(l) = N—|—1/2COS( N1/ ), led{l,...,d}. (16)

Let I and ET be the first order Sobolev dual and canonical dualmfrespectively. Then

(i) E is a tight frame with frame bount],
(i) F=E"=FE",
(i) |FDll2—2 = 2cos (W) .

Proof: By definition, £ = [un_g4+1]| - |lun—1|un], whereu; are the columns o/, as above. AdJp is
unitary, the columns are orthonormal, which implies (i)rthermore,R := U}, Ur € RV*4 is of the form
R(i, j) = 60 —d=00), (17)

In other words, the entries ok are zero except on the diagonal of its lowermost sqdaked submatrix, where
they are 1. Thus,
E' = R*U};, = E*.



To finish the proof of (i), recall that’D = (D‘lE)Jr , which directly gives
F o= (Vb(Sp'R) VbSp'Up
= R'U}=E"
To prove (iii) we write F'D using the SVDs off' and D to get
FD = (R*Up)(UpSpVp)
= (R*Sp)Vp,

which is itself an SVD ofF D. Therefore,

(N—d+ )7
FDl|l22=2cos | —————— | .
17Dl = 2c0s (5

B. Higher order self-dual frames

To deal with the case > 1, we examine the properties é". To that end, letD” = Up-Sp- V. with r > 1,
be the singular value decomposition Bf, and note thaD" is a Toeplitz matrix. In what follows, we will assume
that Up- can been computed (numerically), but we do not provide adigipxpression for its elements. Our
technique in generalizing the results of the previous sadi the case > 1 will be very similar to the approach
used in the proof of Lemma 3. The main difference is that rathan computeSp-, we will approximate it by

(Sp)" using Weyl's inequalities (see, e.g., [16, Thm 4.3.6]) afoin

Theorem 4 (Weyl). LetX and A be N x N Hermitian matrices with eigenvalues
A(E) > (X)) > ... =2 An(E) and A (A) > A2 (A) > ... > An(A).
Let A\ (X) > Aa(X) > ... > An(X) be the eigenvalues of = X + A. Then,
1) Xi(X) = A (B
2) Mi(X) < j(Z

-‘r/\N_j(A) Vj e {0,1,2,...,N—i}
+ Aj+1 (A) Vje {0, 1,2,...,1— 1}.

NN

We will apply Weyl's theorem t&~ = (DD*)", A = —(DD*)" + D"D*" and X = D"D*". This will yield
estimates of the eigenvaluesBf D*" and hence estimates of the singular valueS©f in terms of(Sp)” (ther-th

powers of the singular values @). To that end, we require estimates of the singular value®@*" — (DD*)".

Proposition 5. Let A € R¥*Y pe as above and lef = {(i,5) : (i,5) € {1,...,r} x {1,..,7} U{N —r +
1,...N}x{N —r+1,..,N}. ThenA, ; = 0 except possibly whefi, j) € Z. We make no claims over the value
of A; ; when(i, j) € Z.

The proof of this proposition follows trivially from explity evaluating®; ; and X; ; onZ¢ = {(i,5) : i €
{1,..,N},j € {l,...N},(i,5) ¢ Z} and noting that they are equal. The details are omitted. ¢ fae middle



N — 2r rows of ¥ and X form identical matrices. Specifically, the entries in the+ 1)-th row comprise the
coefficients of the polynomial—1)"(1 — 2)?". The (r + 1 + j)-th rows,j € {0,..., N — 2r — 1}, are formed by
shifting the coefficients in thér + 1)-th row j times to the right. For a full proof, see [9].

Thus, A has at mostr non-zero eigenvalues. We make no assumptions about tlggis gthe ordering of
eigenvalues matters in applying Weyl's inequalities). @a bther hand, we are certain that the— 2r middle
eigenvalues are zero. Denoting By()M) the j-th largest eigenvalue of a Hermitian matd¥ € RV*Y, we are

now ready to prove the following proposition.

Proposition 6. For D € RN*Y as before and withV > 4r,
Amin(j-ﬁ-2r,N) (DD*)T < )\j(DTD*T) < )\max(j—Qr,l) (DD*)Ta .] = 17 ceey N.

Proof: Noting that(DD*)" and D" D*" are Hermitian, using Weyl's inequalities we will first boutie: middle

eigenvalues ofD” D*". Specifically,
/\j+2r((DD*)T) < )\j(DTD*T) < )\j_gr((DD*)T) Vj e {2T‘+ 1,...., N — 2’(‘}.

This leaves the large&t- and smalles2r eigenvalues. We start with the largest ones noting laatD” D*") <
.. <X\ (D"D*") = | D"||5_ by definition. But||D"||3_, < || D]|3".5 = A\ ((DD*)"), so we have a bound from
above for the largestr eigenvalues. Now to bound them from below just apply theveaieWey! inequalities. This
yields

At (DD)) € X\ (D"D™") < M((DD*)"), Vj € {1,....2r}.

We now turn to the smallest eigenvalues. To that end, rebtall for any invertible matrix\/ € RY*N,
\j(MM*) = (0;(M))?, whereo; (M) denotes thg-th largest singular value dff. Moreoverg; (M) = (on—j41 (M 1)) 7L

Now note that(c1(D~"))? = [|[D7"||3_, < ||D7 Y375 = (01(D71))? . We can thus conclude that
AN_2r11(D"D*") > . > An(D"D*") > An ((DD*)").

We have thus bounded all the smallest eigenvalues from bé&lowobtain upper bounds, we again use Weyl's

inequalities. This yields
AN((DD*)") < X\j(D"D*") < X\j_or((DD*)") Vje{N—-2r+1,..,N}

[ |
This trivially yields the following bounds on the singulaalues of D", i.e., the diagonal entries &fp- which
we will refer to byo;(D"),j € {1,..., N}, whereo,(D") > 02(D") > -+ > on(D").

Proposition 7. For D € RY*Y as before and withV > 4r, one has

Omin(j+2r,N) (D) < 05(D") < Omax(j—2r,1) (D))",

10



We can now present a main result of this section.

Theorem 8. Let Upr = [uq]uz| - - - |un] be the matrix containing the left singular vectorsiof, corresponding to
the decreasing arrangement of the singular value®bf Let E = [un—_q4+1| - - - |[un—1|un] @and denote by and
ET the r-th-order Sobolev dual and canonical dual Bf respectively. Then

(i) E is a tight frame with frame bount],

(iy F=FE"=FE*,

(i) |FD"[|2s < (2cos (W)) .

Proof: The proof of this theorem traces exactly the same steps gwdloé of Lemma 3. The only exception is
that to obtain (iii) we need to apply the conclusions of Psippon 7 withj = N — d + 1. The details are omitted.
|

C. Root-exponential accuracy

The main result of this section is the following.

Theorem 9. For 0 < K € Z and0 < § € R, letz € R? be such thaf|z||; < u < § (K — ), and suppose that we
wish to quantize a redundant representationrofiith oversampling rate\ = N/d using the alphabe#d = A%. If

A > C12(log d)?, then there exists a Sobolev self-dual fram@nd an associated Sigma-Delta quantization scheme
Q*2, both of orderr# = r()), such that

|lx — E*QEA(E(E)HQ < 036—04\&_

Here, C5, C4 and C12 are constants independent éfand x.

Proof: Let £ and F' be as in Theorem 8. A quick calculation shows that

(N—d—-2r+1Dm\\"
FD" oo < 2 cos
1D a2 < <C05< IN T 1
d+2r\"
< " :
< (%)
Let || - |o—~ denote the matrix norm defined By\/||>—.o = max || Mv|. We will now bound| E||2— o,

llvl2=1

recalling thatF is a restriction of the matri¥y of left singular vectors, which is orthonormal. We obtain

[Ell200 = max len][2 <1,
ne{l,..,N}

and consequently, for any with ||z|j2 < g, |Ez|le < p.

Let us now use th& A quantization schemes of Proposition 2 (see also (7)). Thelsemes yield the bound
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[ullso < (Cs3) Cor™ for || Bzl < p (see (9) and (11)). Letting o = 37Cy we obtain

IFD ullz < |[FD|la—z2llullz < [|FD"||l2—a]|ulloc VN

s fd+2r\" . o
08(7709) ( N ) T‘N1/25

. 1 r—1/2 i d\" . 5
CsC1, max ((N) ", (N) r N1/2> 3

T d e 2r r g1/2 J
< CgCy, N max(r ,r’d )5 (18)

Thus, the family of Sobolev self-dual frames (of arbitrargler) satisfies the above error bounds. Assuming that

IN

IN

the first term in the maximum dominates, we optimize over tieeor for a given oversampling raté = N/d.

[ A
# : ry—r,2r | __ —1
= {argmrm (Cro)" A7 "r J = \‘e _CIOJ .

Substitutingr# in (18), i.e., choosing® = E,» (the Sobolev self-dual frame of ordef) yields the error bound

Thus, we set

(see, e.g., [4])

0
e~ EQ®(Ex)|> = | Fos D™ ull2 < (08625) Vaem @ < Gy exp(=Cav/) (19)
Wher6011 = ﬁ, C3 = %Cc—i€2, andC4 = 011/2.

The above bound holds provided that#)>™ > (##)*q/2, ie., provided that(%\/})%ﬁ > d'/2.
Equivalently, we requiréztv/Xlog (<4+/X) > Llogd. This is satisfied i1t v/X > 2log d andlog (%1 v/\) > 1.
Sinced > 2, we have2logd > ¢'/* and the latter condition is redundant. Thus, for (19) to hbklffices to have
A > (“g—f;f‘i))z =: C12(logd)?. ]
Remark10. The above estimates provide an error bound even when thenominirequirement for the oversampling
rate is not met. In fact, when the ternid'/? dominates in the maximization of (18), we obtain a bound of
C13dze—C14X, The explicit d-dependence of the constant for comparatively small ovepting rates is to be
expected, because for = 1, the errors arising at each sample are independent. Thu®tdeerror will behave

like dz if the guantization accuracy for the individual sampleystfixed.

1
2

Remarkll. Using Proposition 2, the constafij can be bounded explicitly by, < (3@2 [ﬁ] ) R , where
v=2K — 27“.

Remarkl2. In Lemma 3 and Theorem 8 we may repla€eavith E := EW, whereW € R%*4 s any orthonormal
matrix, without changing the conclusions. In fact, the frsoinvariant under a right multiplication byV. In

Theorem 9 one can then choose any SHCh place of E.

IV. BOUNDS FOR HARMONIC FRAMES

In this section, we show that harmonic frames allow for rexponential error decay, in the oversampling rate

A = N/d, when used for th&A quantization of redundant frame expansions. In partictilare too, we will use

12



the LA scheme (7). We start by defining the harmonic framesRfér Let

Eijl(t) :COS(27Tjt), _] Z 1
Egj(t) :Sin(2ﬂ'jt), ] > 1.

The harmonic framez € RV*4 is given by the coefficients

e =3 (57)

wheren ranges froml to N andk ranges fron0 to 2m (whend = 2m +1 is odd) or froml to 2m (whend = 2m
is even). Note that in both cases, the harmonic frame is anamin tight frame, thug{ Ex(|3 = &|z||3.

As in the previous section, we seek to boyddD"||.—.2, whereF is ther-th-order Sobolev dual of the harmonic
frame E. To that end, we will provide a lower bound for the smallestgsilar value of the matrixX®~"E. This
allows us to bound from above the largest singular value, the norm) of the canonical dual & ~"FE, which is
FDr. The Riemann sum argument of [8] plays a crucial role in owofprThe underlying idea of this argument
is to interpret the iterated sum corresponding to the agfitin of the operatoD~" as a Riemann sum and then
to approximate it by the corresponding integral. We henceslrie estimate the vector valued functiah§) ¢ R?
whose coordinates are defined recursively via

B () =Ex(t)
t

E (1) = / EU Y (s)ds.
0
We will proceed by providing a lower bound for the coordisatef £(")(¢) in Proposition 15 using a Taylor
expansion. Then we obtain a lower bound o, (D~"F) by controlling veRdizllllszzl ‘<v,E(T)(t)>’ explicitly,
via Proposition 16 below. The main idea here is that the tiegubound can be expressed using a Vandermonde
matrix; then the estimate follows from the invertibility ®andermonde matrices. We will then use this result and
the Riemann sum argument to obtain our upper bound BP"||>—.» in Lemma 17. Equipped with this bound,

we will then be able to show our desired result A quantization for harmonic frame expansions, Theorem 18.

Remark13. It is interesting to note thab” is a banded Toeplitz matrix, hence “close” to being a cinstifaatrix

C,. Circulant matrices are diagonal in the discrete Fouri@ndform basis. In particular, here, the columns of the
Harmonic frame correspond to the singular vectorsgCpfassociated with the smallest singular values. In other
words, hadD" been circulant, the Harmonic frame and its canonical dualccbe used to obtain root-exponential
precision in theXx A frame quantization context. However, sinb¥ is only “close” to circulant, it is not true that
the Harmonic frame diagonalizes it; hence, more work is s&sg to obtain root-exponential precision and the use

of Sobolev duals is warranted. Furthermore, we note that iitot possible to modify th&A scheme to induce a

13



circulant matrix in the analysis, as that would correspand hon-causal system where updating the current state

variable requires knowledge of future values of the segeienc

Remark14. We will assume from now on that is above a sufficiently largé-dependent threshold, in particular
large enough to satisfy equation (21) below. This assumps$iqustified, as root-exponential decay will eventually
be achieved by choosing the ordefor eachN such that(N) — oo when N — oo. The values of- below this
threshold hence correspond to finitely many valuesvond can be treated by possibly introducing an additional

(d-dependent) constant, thus adjusting the value§'gf C1¢, etc., in the following results.

Proposition 15. Let0 <t <1, j > 0, r sufficiently large, and IeE,(;) (t) be as above. Then
tT‘

B0 = 5 0)
t_ ﬂlz g 27T]t 20+1 L E r+2m
r! r+2m r
|E t Z l 27Tjt 2¢ ) ¢ r4+2m
2= i 7! — r+2m r '

Proof: The identity (20) follows directly by induction in. For j > 0, we have by repeated integration of the

series expansions of sine and cosine,fardd

, -1)7 & 2mjt)"+2¢

B )7 & (2mjit)r 20+t
(t) = . Z(—l)zm

and forr even

r) (— 1)§ - (2mjt)"+3
By (t) = Z(—l)gm

1) 0 (27Tjt)r+2€+1
D

Using that forr large enough (cf. Remark 14), each term dominates the subseqne, we write

> \T+20 o0 T T4 +2
S (-1 (2mjt) -y (2mjt) _ (2mjt) _ (21)
— (r+20)! = (r+Ar)! (r +4¢ + 2)!
To bound this expression, we estimate for inteders v < 2m:
o 1 _ rli(r +2m)Y — (r ++)! _ T (2ym = Y] k) + O 2)
(r+y!  rl(r+2m)Y (r 4+ rl(r + 2m)y (r +(r + 2m)”
RSl -k 00 5 (7 (S em k) £ 067)
N (r+~+2)!(r +2m)7+2 (r+v+2)/(r+2m)7+2
Crjt? (@it

(r+~y+2)!  7l(r+2m)r+2’
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Denoting byl 4 the indicator (characteristic) function of the evehtand combining the above estimate for each
~ = 4¢" with (21), we obtain

Sy m

P (r+20)!

m | _q , ,
- |_ 2 J (27Tjt)r+42 (27Tjt)r+42 +2 L (27Tjt)7“+2m72 Z (27Tjt)r+2a
S A At a2l T am =) & (r + 20)

N Lmel i ’ . / 2 oo ' N

> (2mjt) 223 (2mjt)* B (2mjt) 4 +2 L M - Z (2mjt)2
= T! (T + 2m)4g’ (T 4 2m)4l/+2 m IS Odd(’l’ ¥+ 2m)r+2m72 77’20(

a=m

Z/
omit) [ (2mjt)2¢ omit) 2™ 1
> 1)
- 7l Z T—|—2m)25 T _ (2mit)?
=0 1 ( T )
N7 -1 . . 2m
>(27Tjt) (—1)f (2mjt)?* . 2mjt
- 7! (r 4+ 2m)?2¢ r

and thus .
20 s (N N (2mjt)* ., (2mjt am
| 23 1l _| é—o (r +2m)2 r '

ks ! by (2mjt)20+1 , (2mit 2m
_' éz (r +2m)2+1 r '

~
Il
o

Similarly, one obtains

Proposition 16. Letv € R9, be such thaf|v||, = 1. There exist constantS;s, C;¢ and C;; independent of and

r (but possibly depending af) such that for allr large enough

‘<U,E<T)(t)>’>£c ( ! )dl
7! r+d

and

1 2 C r
(r) 16€
<U,E (t)>‘ at > 10

0

Proof: By Proposition 15, we have

<v,E(T)(t)>
g <“<—1>f<3f2>ﬂ>+w (mz?—w(fzj;)”“) o))

tr —

= \/—Hd is odd EZ

,_.
/‘\
=
+
IS
S~
R
()=
<
L
L
<
(]
~
+
|
—_
S~—
o~
/N
=
[N
k!
QU
~——
R
+
==
]z
<
L
<.
(]
~
+
-
+
Q
/N
/N
S
S~
5
+
[ V]
3
~_—

Noting thatV = ((j2)f);”:’71";:10 is a Vandermonde matrix, hence invertible, three scenaegossible:
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e v #0

o V= (v1,03,...,02m—1) # 0, then}7" | vaj_17% = (Vu')y # 0 for somej.

o v = (v2,v4,...,02m) # 0, which implies that als@”’ = (1 -v2,2 - v4,...,m - v2y,) # 0. In this case
ST 02 = V' #£ 0, for someyj.

In all three cases, the polynomial

m m

m—1
Py(s) := Hd is odd T Z )Es? ngj,lj” + (—1)fs2 L Zv 2+
£=0 j=1 =

is not identically zero. As at mo&m — 1 derivatives ofP, can vanish ab, we can boundP,(¢)| near zero from

below by Cist?™ !, Let
C, = sup{C < 1:|P,(t)| > 2Ct*! in some neighborhood of}0

and
qu = sup{q < 1:|P,(t)| > C,t¢ for all |t| < q}.

Note that by the facto? in the definition ofC,, all ¢, are strictly greater thaf. Both C,, andg, are continuous
functions ofv, so they assume their minimum on the compactSset {v : ||v||2 = 1}. Hence we findCy9 =

min{C, } andCyy = min{g,} such that for allb € S, one has, for alD < s < Cy
P,(s) > Cygs?™?

With (22), this implies that there exists a constéft independent of) such that for all- large enough

(0= o (57)

Then
025t2r+2d—2

1
<v,E(T)(t)>‘2dt 2/0 Wdt

/

02
_ 15
(r)2(r +d)?=2(r +2d — 1)
Clger
— p2r+Ci7’

The next lemma provides a bound fipF D" ||2_.».

Lemma 17. Let F be ther-th-order Sobolev dual of the harmonic franiz € RY <4, then there exist (possibly

d-dependent) constants,; and Csy, , such that

HFDTH2~>2 < 02187T/2N7(T+1/2)7’T+C22 (1 + O(Nfl))
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Proof: By Proposition 16 and following the Riemann sum argumentir&e A.1) in [8] we can now estimate

the smallest singular value @~ "F as follows.
2

N ir ia 41 .
(omin(D7"E))" = veRNi;Iﬁf,HFl Z <v, Z Z Z E(NO)>

ir=1 ir—1=1 i1=11%0=1

1 2
> inf Nm*{/ <uE“KUN dt + O(N?")
vERN:||v]2=1 0
Cise” \ort1 2ry .
> 7«2r+017N + O(N-") =: a.

By the definition of the Sobolev duah D" is the canonical dual frame @ ~"E, hence| FD"||2—2 = omin(D™"E)

one obtains

HFDTH2~>2 < 0471/2 _ 02187T/2N7(T+1/2)7’T+C22 (1 +O(N71)).

We are now ready to prove the main result of this section.

Theorem 18. For 0 < K € Z and0 < § € R, letz € R? be such that|z|| < p < § (K — 1), and suppose
that we wish to quantize the harmonic frame expansion wfith oversampling rate\ = N/d using the alphabet
A = A3 There exists a Sigma-Delta quantization schénté of orderr# = r(\) such that|z— FQ®2(Ez)| s <

0236*024ﬁ. Here, E is the harmonic frame as abov, its r#-th order Sobolev dual, an€ss, Cs4 are constants,

depending onl but independent af.

Proof: Again, we use thécA schemes given in (7) witl, i as in [4] or [5]. Letz = FQ¥*(Ez) be the
linear reconstruction of: from its quantization. Then by Proposition 2 we have thaf.. < CsC§r", and using

Lemma 17, we conclude that
[z — 2|2 = [|[FD"ul2
<||[FD"||ao]|uf oo N
S 025056N_TT2T+027
As in Theorem 9, the optimal order will be of the form= |Cos N'/2], yielding
|z —Z[]2 < Cas - emCaN?

as desired. [ |

V. NUMERICAL EXPERIMENTS

In this section, we illustrate our results with some nunariexperiments. First, fod = 2 andd = 6, we

generate 100 random vectarsc R? (from the Gaussian ensemble) and normalize their magnitoder|, =
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2 — cosh(m/+/6) =~ 0.0584. For eachz, we obtain the redundant representatios: Ex whereE € RV*4 is the
harmonic frame or the Sobolev self-dual frame of ordefforr € {1, ...,10} and several values d¥, we perform
1-bit XA quantization ony according to the schemes in Proposition 2. Subsequentlgpanoximation ofx is
obtained by linear reconstruction using th#h-order Sobolev dual of’, and the approximation error is computed.
For eachN, the smallest (over) of the maximum error (over the 100 runs) is computed. Theltieg error curves
for d = 2 and 6 are illustrated in Figure 1(a) and 1(b) respectively. Samy, the smallest (over) of the mean
error (over the 100 runs) is reported in Figure 2 (a) and 2{ext, the same experiment is repeated with: 20,
this time with 3-bit XA quantization and 1500 random vectors. In particular, weeiase the number of vectors
to compensate for the larger size &fin the hope that we can capture the true behavior of the ermres. As
before, for eachV, the smallest (over) of the maximum error (over the 1500 runs) is computed anddhelting
error curves are illustrated in Figure 3.

From all these experiments, we see that the observed perfmenindeed matches our predictions both for
Sobolev self-dual and harmonic frames. In particular, weeobe the root exponential error decay (both for the
worst-case and average error). This indicates that at feashese frames, one cannot hope to derive exponential

error bounds in the framework &fA quantization and linear reconstruction via Sobolev duals.
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