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Abstract

In this note, we show that by quantizing theN -dimensional frame coefficients of signals inRd using r-th-

order Sigma-Delta quantization schemes, it is possible to achieve root-exponential accuracy in the oversampling rate

λ := N/d. In particular, we construct a family of finite frames tailored specifically for coarse Sigma-Delta quantization

that admit themselves as both canonical duals and Sobolev duals. Our construction allows for error guarantees that

behave ase−c
√

λ, where under a mild restriction on the oversampling rate, the constants are absolute. Moreover, we

show that harmonic frames can be used to achieve the same guarantees, but with the constants now depending ond.

I. I NTRODUCTION

Signal quantization is a fundamental problem in signal processing. Viewing a signal as a vector inRd, quantization

involves replacing the vector with coefficients that are each chosen from a finite alphabetA. In particular, one can

represent a vectorx in R
d by a vectorq in AN , whereN > d, in the following way. First, one computes a

finite-frame expansiony := Ex, whereE is an appropriately chosen full-rank matrix inRN×d (see Section II for

a precise definition). Next, one applies a quantization scheme to replacey with q. This approach will be referred to

asframe quantizationin the sequel. More specifically, the quantization schemes we study in this paper are designed

to allow for goodlinear reconstructionof x, i.e., we focus on approximation formulas of the form̃x := Fq where

F is one of the infinitely many left-inverses ofE.

Clearly, the goal of a good quantization scheme is to allow for an accurate reconstruction ofx from q. Thus,

for reasonable frame quantization schemes, one expects that q ∈ AN should allow for increasingly accurate and

robust approximation ofx asN increases. In the following paragraphs, we will introduce two frame quantization

schemes, the second of which,Σ∆ quantization, will be the main focus of this paper.
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A. Memoryless scalar quantization

In the context of quantization using finite-frame representations, the most intuitive approach ismemoryless scalar

quantization(MSQ), which requires replacing each coefficient ofy = Ex with its nearest element fromA. That

is, y is replaced byq̃, where q̃i = argmin
v∈A

|yi − v|. On the other hand, this naive approach treats each of the

coefficients ofy independently, and does not exploit the correlations between coefficients ofy resulting from the

lower-dimensional representationy = Ex. Goyal et al. [1] show that, even when using an optimal reconstruction

scheme to approximatex from its MSQ quantized frame coefficients, the expected value of the error cannot be

better thanO(λ−1). Here, the expectation is with respect to some probability measure onx that is, for example,

absolutely continuous. One can do much better with other quantization schemes. In particular, Sigma-Delta (Σ∆)

quantization schemes are more complex, but can achieve better error rates than MSQ by exploiting the redundancy

inherent iny.

B. Σ∆ quantization of oversampled bandlimited functions

Σ∆ schemes were introduced for the quantization of oversampled bandlimited functions [2], and have since been

studied extensively. In the setting of bandlimited functions, the oversampling rateλ is the ratio of the actual sampling

rate to the Nyquist rate and the signal is reconstructed fromthe samples via a low-pass filter. Since the time-shifted

versions of the low-pass filter as they are used in the reconstruction formula form an infinite dimensional frame,

this setup can be seen as analogous to the finite-frame case discussed in this paper. In particular, the oversampling

rate in the framework of bandlimited functions correspondsto the oversampling rate for finite frame expansions as

above.

Daubechies and Devore [3] showed that if the samples of a bandlimited function are quantized according to a

stabler-th-orderΣ∆ scheme, theL∞ approximation error‖f − f̃‖∞ is O(λ−r). Subsequently, Güntürk [4] showed

that certain1-bit Σ∆ schemes (that is,A = {−1, 1}) can achieve exponential precision, i.e., anL∞ error decay

of order e−C1λ, by choosing the orderr as a function ofλ. HereC1 < 1 is a small constant1. This work was

improved on by Deift et al. [5], who showed that the above constant can be pushed toC1 ≈ 0.102. In order to

achieve exponential precision, these works use stable families of r-th-orderΣ∆ schemes with approximation errors

bounded byC2(r)λ
−r . For well behavedC2(r), the optimal choicer#(λ) achieves exponential precision.

C. Σ∆ quantization of finite frame expansions

The use ofΣ∆ quantization in the setting of finite frames was first explored by Benedetto et al. [6]. In contrast

to the setting of bandlimited functions where the error is most naturally measured with respect to theL∞-norm,

in the finite-dimensional setting it is more amenable to measure error with respect to the Euclidean, i.e.ℓ2(R
d),

metric. In [6], it was shown that with linear reconstruction, even first-orderΣ∆ schemes outperform MSQ when

1SubsequentlyCi will denote a constant, indexed by order of appearance.
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the frames are sufficiently redundant and chosen from appropriate families. Subsequent work showed that it is

possible to achieve error bounds with respect to the Euclidean metric that decay likeO(λ−r). For example, in [7],

Bodmann et al. proved that with tight frames of special design, r-th-order schemes achieve an error decay rate of

O(λ−r), when the left-inverse of the matrixE used in linear reconstruction is the Moore-Penrose inverse. Using a

different approach, Blum et al. [8] showed that such an errorrate can be achieved by using alternative left-inverses,

calledSobolev duals, for any frame that arises via uniform sampling from piecewise smooth frame-paths. Recently,

Güntürk et al. [9] showed that for randomly-generated frames, error bounds ofO(λ−(r−1/2)α), for α ∈ (0, 1), are

attainable via the use of Sobolev duals. In particular, the parameterα controls the probability (on the draw of the

frame) with which the result holds. This allowed [9] to applyΣ∆ quantization in the context of compressed sensing

[10], [11].

In this note, we combine the techniques of Blum et al. [8] and Güntürk [4]/Deift et al. [5] to show that it is

possible to achieve root-exponential accuracy in the finiteframe setting. In particular, we show that for a family of

tight frames of special design that admit themselves as Sobolev duals, and for harmonic frames, root-exponential

error rates ofO(e−C
√

λ) are achievable.

Remark1. In [7], Bodmann et al. studyr-th orderΣ∆ schemes that employ scalar quantizers operating on[−L, L].

Their schemes require the input sequence, i.e., the frame expansion ofx, to be bounded byL− (2r − 1)δ/2 where

δ is the quantization step size. Consequently, there is an upper bound on admissible values ofr for these schemes

to work and this does not allow one to optimize the value ofr freely as a function ofλ. A similar issue arises in

[9], where the frames are random. On the other hand, in the bandlimited setting, [4] and [5] proposedΣ∆ schemes

that do not suffer from anr-dependent constraint on the input sequence. However, the involved constants grow inr.

By freely optimizingr as a function ofλ, [4] and [5] one can balance these effects obtaining exponential precision

in λ (measured in theL∞ norm). In this paper, we use theΣ∆ schemes of [4] and [5] for frame quantization and

Sobolev duals as in [8] for linear reconstruction. Consequently, we can freely optimizer as a function ofλ. This

allows us to obtain root-exponential precision in theℓ2(R
d) norm.

D. Organization of the paper

The remainder of the paper is organized as follows. In Section II, we introduce the relevant basic concepts from

frame theory and we describeΣ∆ quantization. In Section III, we construct a family of frames that admit themselves

as both canonical and Sobolev duals and we show that they allow root exponential approximation errors. We derive

explicit bounds on the constants; in particular, we show that the error is bounded byC3e
−C4

√
λ, except for very

small oversampling ratesλ := N
d . (log d)2, where the constantsC3 andC4 do not depend on the dimensiond.

In Section IV, we study the performance of harmonic frames, showing that they too allow root-exponential bounds

on the reconstruction error, albeit without the explicit analysis of the dimension dependence of the error. Finally,

in Section V, we include the results of numerical experiments showing that the effective decay rate of the error
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as a function ofλ, when using the proposed schemes, is indeed root-exponential. This highlights the fact that our

mathematical analysis (for the proposed frames and reconstruction method) is not sub-optimal but matches the

empirically observed error decay.

II. PRELIMINARIES

A. Finite frames

We say that a finite collection of vectors{en}N
n=1 is a frame forRd with frame bounds0 < A ≤ B < ∞ if

∀x ∈ R
d, A‖x‖2

2 ≤
N∑

n=1

|〈x, en〉|2 ≤ B‖x‖2
2, (1)

where‖ · ‖2 denotes the Euclidean norm, andA andB are the largest and smallest numbers such that (1) holds,

respectively. IfA = B we say that the frame is tight. If‖en‖2 = 1 for eachn ∈ {1, ..., N}, then we say that the

frame is unit-norm. Given the frame vectors{en}N
n=1, for convenience, we define the frame matrixE ∈ RN×d

with ek as its k-th row. A matrix E ∈ RN×d is thus a frame matrix if and only if it has rankd. Let x be a

vector inRd. Then we say thaty = Ex is the frame expansion ofx with respect toE. Equivalently we say that

yn, n ∈ {1, ..., N}, are the frame coefficients ofx.

Consider a frame{fn}N
n=1 and letF be the matrix whosek-th column isfk. F is called adual (or synthesis)

frameassociated with{en}N
n=1 if the frame matrixF in Rd×N satisfiesFE = Id, whereId ∈ Rd×d is the identity

matrix. In other words, a dual frame matrixF is a left inverse ofE. As N > d, there are infinitely-many such

left-inverses. In particular, thecanonical dual frame(the Moore-Penrose inverse) ofE is given by

E† := (E∗E)−1E∗.

B. Sigma-Delta Quantization of Finite Frame Expansions

A midrise quantization alphabetis a set of the type

A = Aδ
K = {±(m − 1/2)δ : 1 ≤ m ≤ K, m ∈ Z}.

For such an alphabet, we define the associatedscalar quantizer

Q : R → A, Q(h) := arg min
q∈A

|h − q|.

A quantization schemeis a procedure that employs such a quantizer to represent multi- or even infinite-dimensional

signals by a sequence of symbols from the alphabetA. In the context of redundant representations, MSQ is the

most basic form of quantization; here,x in Rd is encoded by quantizing the entries of its frame expansiony = Ex

independently to obtain a vectorq of quantized coefficients, i.e.qn = Q(yn). Subsequently, decoding is achieved by

using a dual frameF to obtain the approximatioñx = Fq. However, as mentioned previously, MSQ is suboptimal

since it makes no use of the fact that the frameE mapsR
d to a d-dimensional subspace ofR

N , spanned by the

columns ofE. On the other hand,Σ∆ schemes, a class of recursive algorithms first applied to thesetting of finite
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frame expansions in [6], explicitly make use of the dependencies in the vectors of the reconstruction frameF to

achieve robust, high precision quantization (see, e.g., [8]). Adopting the notation generally more common in the

framework of bandlimited functions ([4],[5]), a generalr-th-orderΣ∆ scheme with alphabetA runs the following

iteration forn = 1, 2, . . . , N ,

qn = Q (ρ(un−1, un−2, · · · , un−r, yn))

(∆ru)n = yn − qn.
(2)

Here the operator∆r results fromr subsequent concatenations of the finite difference operator (∆w)n = wn−wn−1,

ρ : Rr+1 7→ R is a fixed function known as the quantization rule, andQ is the scalar quantizer associated withA
as above. We refer to the sequenceun as thestate sequence. In vector form, (2) can be restated as

Dru = y − q, (3)

whereD is the first-orderN × N difference matrix defined by

Dij :=





1, if i = j,

−1, if i = j + 1,

0, otherwise.

(4)

In this formulation, the iterative nature of (2) is reflectedin the invertibility of D. Suppose thatF ∈ Rd×N is the

dual frame toE used for linear reconstruction, and suppose thatx̃ = Fq is the reconstructed approximation tox.

Using thatFDru = F (y − q) = FEx − x̃ = x − x̃, it was shown in [12] that the linear reconstruction error ofa

stabler-th-orderΣ∆ scheme with state variablesu can be bounded by

‖x − x̃‖2 = ‖FDru‖2 ≤ ‖FDr‖2→2‖u‖2 ≤ N1/2‖FDr‖2→2‖u‖∞. (5)

Here ‖ · ‖2→2 denotes the matrix norm‖M‖2→2 := max
‖v‖2=1

‖Mv‖2. In absence of further information about the

vectoru (which is typically the case), a reasonable quantization procedure should yield good bounds for both norm

estimates on the right hand side of (5). To control the factor‖u‖∞, we concentrate on schemes that arestable, that

is, there exist constantsC5 > 0 andC6 > 0 such that for anyN > 0 andy ∈ RN one has

‖y‖∞ ≤ C5 =⇒ ‖u‖∞ ≤ C6. (6)

The constantsC5 andC6 may depend on the orderr, the quantization ruleρ, and the alphabetA, but they should

not depend onN (and hence not on the oversampling rateλ either). Stability is a crucial concept in the theory of

Σ∆ quantization both for bandlimited signals (compare [13]) and for frames (see for example [6]). The construction

of stable schemes that allow for good bounds onC6 will be discussed in the next section. Now we can bound

‖y‖∞ = max
n∈{1,...,N}

|〈en, x〉| ≤ max
n∈{1,...,N}

‖en‖2‖x‖2. Thus in order to ensure that‖y‖∞ ≤ C5 uniformly for all x

with ‖x‖2 ≤ C7, we need thatmaxn∈{1,...,N} ‖en‖2 ≤ C5

C7
.
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For such a frameE we then seek to find a dual frameF such that‖FDr‖2→2 is minimized. This is achieved

by theSobolev dualintroduced in [8]. Ther-th-order Sobolev dual frame of a given frameE is given by

Fr := (D−rE)†D−r.

As desired,Fr is the left-inverse ofE that minimizes the norm‖FDr‖2→2 over all left inversesF, FE = I (see

[8]). Now two approaches are conceivable: On the one hand, one can attempt to designE to yield particularly

good bounds for this minimum. We will follow this approach inSection III introducing a class of frames where the

canonical dual and the Sobolev dual coincide. On the other hand, one can work with a given frame. We will follow

this approach in Section IV, analyzing the bounds for the harmonic frame, as it has been discussed for example in

[6].

C. Superpolynomial Sigma-Delta Quantization

Note that the constantsC5 andC6 in (6) depend onr, so a sharper analysis will require taking these dependencies

into account. The first deduction of superpolynomial decay from explicitly r-dependent bounds for the solution of

system (2) was provided in [3] in the context ofΣ∆ quantization for bandlimited functions. In [3], the core idea

is to choose the orderr of the Σ∆ modulator adaptively as a function of the oversampling rateand to choose the

underlying quantization rule to be a non-linear function that involves a concatenation of sign functions.

In [4], the author derives a framework that allows for stronger error decay rates (exponential in the context of

bandlimited functions). The approach is based on an auxiliary sequencevn that is defined recursively in terms of

r of its non-subsequent previous values and an associated linear quantization rule. The optimal error decay in this

framework is provided in [5].

More specifically, one formally substitutesu = g ∗ v for a giveng ∈ R{0,...,m} for somem ≥ r with g0 = 1 and

chooses the quantization rule in terms of the new variables to beρ(vn, vn−1, . . . , yn, yn−1, . . . ) = (h ∗ v)n + yn,

whereh = δ(0) − ∆rg with δ(0) the Kronecker delta. Then (2) reads as follows.

qn = Q((h ∗ v)n + yn) (7)

vn = (h ∗ v)n + yn − qn, (8)

Note that as(∆rg)0 = g0 = 1 and henceh0 = 0, this formula describes again howvn is computed recursively

from vj , j < n. Now by definition of the midrise quantization alphabetAδ
K and its scalar quantizerQ, one has

|vn| ≤ max

(
δ

2
, ‖h‖1‖(vj)

n−1
j=1 ‖∞ + ‖y‖∞ −

(
K − 1

2

)
δ

)
,

which inductively shows that‖vn‖∞ ≤ δ
2 , i.e., stability, for all input sequencesy with ‖y‖∞ ≤ µ provided that

‖h‖1
δ
2 + µ ≤ Kδ. Here‖ · ‖1 denotes theℓ1 norm given by‖v‖1 =

∑
|hj |.

Stability of this auxiliary scheme automatically implies that the scheme in the original variablesu = g ∗ v is also

stable as long as the quantized bits are computed using thevn’s. One estimates

‖u‖∞ ≤ ‖g‖1‖v‖∞ ≤ δ

2
‖g‖1. (9)
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These estimates motivate the study of the following optimization problem first posed in [4].

Minimize ‖g‖1 over all g ∈ ℓ1 subject to‖h‖1 = ‖∆rg‖1 − 1 ≤ 2K − 2µ

δ
. (10)

To make this problem more tractable, the author restricts the problem to minimally sparseh, i.e., with only r

non-zero entries (albeit distributed over a longer interval). This idea allows for the construction of admissible pairs

(g, h) that yield the bound

‖g‖1 ≤ C8C
r
9rr (11)

for some constantsC8, C9 that depend onµ. With the currently best-known constants resulting from the optimized

constructions derived in [5], we can summarize these considerations as follows.

Proposition 2. There exists a universal constantC8 > 0 such that for any midrise quantization alphabetA = Aδ
K ,

for any orderr ∈ N, and for all µ < δ
(
K − 1

2

)
, there existsg ∈ Rm for somem > r such that theΣ∆ scheme

given in (7) is stable for all input signalsy with ‖y‖∞ ≤ µ and

‖u‖∞ ≤ C8C
r
9rr δ

2
, (12)

whereu = g ∗ v as above andC9 =
(⌈

π2

(cosh−1 γ)2

⌉
e
π

)
with γ := 2K − 2µ

δ .

III. SOBOLEV SELF-DUAL FRAMES

In this section we construct a family of framesFd,N(r) for Rd, parametrized explicitly by an orderr ∈ Z, r ≥ 1.

In particular, for anyd, N, andr, we construct frames that admit themselves as both canonical and Sobolev duals

of orderr. We show that the optimal choice of frames from this family allows for a root-exponential error decay

rate (by linear reconstruction) when used for the redundantΣ∆ quantization of signals inRd. Constructing such

frames forr = 1 andr > 1 will be the focus of the next two subsections, respectively.To that end we now focus

on some useful properties ofD, defined in (4).

Recall that for any matrix M inRm×n of rankk, there exists a singular value decomposition (SVD) of the form

M = UMSMV ∗
M , whereUM ∈ Rm×k is a matrix with orthonormal columns,SM ∈ Rk×k is a diagonal matrix with

strictly non-negative entries, andVM ∈ Rn×k is a matrix with orthonormal columns. We will use an equivalent form

of the above factorization, withM = ŨM S̃MV ∗
M . Here,ŨM ∈ R

m×m is orthonormal,S̃M ∈ R
m×k is “diagonal”

(that is, it contains ak×k diagonal submatrix, with the remaining entries being zero), andVM ∈ Rn×k is a matrix

with orthonormal columns as before.

In particular, the difference matrixD admits a singular value decompositionD = UDSDVD
∗ whereUD andVD

are orthonormal matrices andSD is a diagonal matrix given respectively (see [14], [15]) by

UD(k, l) =

√
2

N + 1/2
cos

(
2(k − 1/2)(N − l + 1/2)π

2N + 1

)
, (13)

VD(k, l) = (−1)k+1

√
2

N + 1/2
sin

(
2klπ

2N + 1

)
, (14)
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SD(k, l) = 2δ(k,l) cos

(
lπ

2N + 1

)
. (15)

Above, k, l ∈ {1, . . . , N}, δ(k,l) is the Kronecker delta, andM(k, l) indicates the entry on thek-th row andl-th

column ofM .

We now briefly summarize how Sobolev self-dual frames arise.Let E andF be dual frames, i.e.,FE = I and

note that in this section we will design bothE andF . Recall that in the context ofΣ∆ quantization of redundant

frame expansions, we aim to control the error associated with linear reconstruction. Since the above error is given

by ‖x − FQΣ∆(Ex)‖2 ≤ ‖FDr‖2→2‖u‖2 (where QΣ∆ denotesr-th-orderΣ∆ quantization), we seekE and

F such that‖FDr‖2→2 is nicely bounded. In particular, it is natural to consider only the Sobolev duals, which

minimize ‖FDr‖2→2 over all duals ofE. With this choice ofF , ‖FDr‖2→2 = 1
σmin(D−rE) . On the other hand,

for stability considerations we seekE so that‖Ex‖2 is bounded, and thus it is reasonable to restrict our attention

to tight frames with frame bound 1. With this choice, the expression 1
σmin(D−rE) is minimized whenE consists

of the right singular vectors ofD−r corresponding to the largest singular values. As a result, the Sobolev dual and

the canonical dual ofE agree, the frame is Sobolev self-dual. This argument is madeprecise in Lemma 3 and

Theorem 8.

A. First-order Sobolev self-dual frames

We begin with the construction for the caser = 1 and some of its useful properties.

Lemma 3. Suppose thatE ∈ RN×d is a frame matrix forRd, with frame vectors{en}N
n=1 given by

en(l) =

√
2

N + 1/2
cos

(
(n − 1/2)(d − l + 1/2)π

N + 1/2

)
, l ∈ {1, . . . , d}. (16)

Let F and E† be the first order Sobolev dual and canonical dual ofE, respectively. Then

(i) E is a tight frame with frame bound1,

(ii) F = E† = E∗,

(iii) ‖FD‖2→2 = 2 cos
(

(N−d+1)π
2N+1

)
.

Proof: By definition, E = [uN−d+1| · · · |uN−1|uN ], whereui are the columns ofUD as above. AsUD is

unitary, the columns are orthonormal, which implies (i). Furthermore,R := U∗
DUE ∈ RN×d is of the form

R(i, j) = δ(N−d−i,j). (17)

In other words, the entries ofR are zero except on the diagonal of its lowermost squared × d submatrix, where

they are 1. Thus,

E† = R∗U∗
D = E∗.
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To finish the proof of (ii), recall thatFD =
(
D−1E

)†
, which directly gives

F =
(
VD(S−1

D R)
)†

VDS−1
D U∗

D

= R∗U∗
D = E∗.

To prove (iii) we writeFD using the SVDs ofF andD to get

FD = (R∗U∗
D)(UDSDV ∗

D)

= (R∗SD)V ∗
D,

which is itself an SVD ofFD. Therefore,

‖FD‖2→2 = 2 cos

(
(N − d + 1)π

2N + 1

)
.

B. Higher order self-dual frames

To deal with the caser > 1, we examine the properties ofDr. To that end, letDr = UDrSDrV ∗
Dr with r ≥ 1,

be the singular value decomposition ofDr, and note thatDr is a Toeplitz matrix. In what follows, we will assume

that UDr can been computed (numerically), but we do not provide an explicit expression for its elements. Our

technique in generalizing the results of the previous section to the caser ≥ 1 will be very similar to the approach

used in the proof of Lemma 3. The main difference is that rather than computeSDr , we will approximate it by

(SD)r using Weyl’s inequalities (see, e.g., [16, Thm 4.3.6]) as in[9].

Theorem 4 (Weyl). Let Σ and ∆ be N × N Hermitian matrices with eigenvalues

λ1(Σ) ≥ λ2(Σ) ≥ . . . ≥ λN (Σ) and λ1(∆) ≥ λ2(∆) ≥ . . . ≥ λN (∆).

Let λ1(X) ≥ λ2(X) ≥ . . . ≥ λN (X) be the eigenvalues ofX = Σ + ∆. Then,

1) λi(X) ≥ λi+j(Σ) + λN−j(∆) ∀j ∈ {0, 1, 2, ..., N − i}
2) λi(X) ≤ λi−j(Σ) + λj+1(∆) ∀j ∈ {0, 1, 2, ..., i− 1}.

We will apply Weyl’s theorem toΣ = (DD∗)r, ∆ = −(DD∗)r + DrD∗r and X = DrD∗r. This will yield

estimates of the eigenvalues ofDrD∗r and hence estimates of the singular values ofSDr in terms of(SD)r (ther-th

powers of the singular values ofD). To that end, we require estimates of the singular values ofDrD∗r − (DD∗)r.

Proposition 5. Let ∆ ∈ RN×N be as above and letI = {(i, j) : (i, j) ∈ {1, ..., r} × {1, ..., r} ∪ {N − r +

1, ..., N}× {N − r + 1, ..., N}. Then∆i,j = 0 except possibly when(i, j) ∈ I. We make no claims over the value

of ∆i,j when(i, j) ∈ I.

The proof of this proposition follows trivially from explicitly evaluatingΣi,j and Xi,j on Ic = {(i, j) : i ∈
{1, ..., N}, j ∈ {1, ..., N}, (i, j) /∈ I} and noting that they are equal. The details are omitted. In fact, the middle
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N − 2r rows of Σ and X form identical matrices. Specifically, the entries in the(r + 1)-th row comprise the

coefficients of the polynomial(−1)r(1 − z)2r. The (r + 1 + j)-th rows,j ∈ {0, ..., N − 2r − 1}, are formed by

shifting the coefficients in the(r + 1)-th row j times to the right. For a full proof, see [9].

Thus, ∆ has at most2r non-zero eigenvalues. We make no assumptions about their signs (the ordering of

eigenvalues matters in applying Weyl’s inequalities). On the other hand, we are certain that theN − 2r middle

eigenvalues are zero. Denoting byλj(M) the j-th largest eigenvalue of a Hermitian matrixM ∈ RN×N , we are

now ready to prove the following proposition.

Proposition 6. For D ∈ RN×N as before and withN > 4r,

λmin(j+2r,N)(DD∗)r ≤ λj(D
rD∗r) ≤ λmax(j−2r,1)(DD∗)r, j = 1, . . . , N.

Proof: Noting that(DD∗)r andDrD∗r are Hermitian, using Weyl’s inequalities we will first boundthe middle

eigenvalues ofDrD∗r. Specifically,

λj+2r((DD∗)r) ≤ λj(D
rD∗r) ≤ λj−2r((DD∗)r) ∀j ∈ {2r + 1, ..., N − 2r}.

This leaves the largest2r and smallest2r eigenvalues. We start with the largest ones noting thatλ2r(D
rD∗r) ≤

... ≤ λ1(D
rD∗r) = ‖Dr‖2

2→2 by definition. But‖Dr‖2
2→2 ≤ ‖D‖2r

2→2 = λ1((DD∗)r), so we have a bound from

above for the largest2r eigenvalues. Now to bound them from below just apply the relevant Weyl inequalities. This

yields

λj+2r((DD∗)r) ≤ λj(D
rD∗r) ≤ λ1((DD∗)r), ∀j ∈ {1, ..., 2r}.

We now turn to the smallest eigenvalues. To that end, recall that for any invertible matrixM ∈ RN×N ,

λj(MM∗) = (σj(M))2, whereσj(M) denotes thej-th largest singular value ofM . Moreover,σj(M) = (σN−j+1(M
−1))−1.

Now note that(σ1(D
−r))2 = ‖D−r‖2

2→2 ≤ ‖D−1‖2r
2→2 = (σ1(D

−1))2r . We can thus conclude that

λN−2r+1(D
rD∗r) ≥ ... ≥ λN (DrD∗r) ≥ λN ((DD∗)r).

We have thus bounded all the smallest eigenvalues from below. To obtain upper bounds, we again use Weyl’s

inequalities. This yields

λN ((DD∗)r) ≤ λj(D
rD∗r) ≤ λj−2r((DD∗)r) ∀j ∈ {N − 2r + 1, ..., N}.

This trivially yields the following bounds on the singular values ofDr, i.e., the diagonal entries ofSDr which

we will refer to byσj(D
r), j ∈ {1, ..., N}, whereσ1(D

r) ≥ σ2(D
r) ≥ · · · ≥ σN (Dr).

Proposition 7. For D ∈ RN×N as before and withN > 4r, one has

σmin(j+2r,N)(D)r ≤ σj(D
r) ≤ σmax(j−2r,1)(D)r ,

10



We can now present a main result of this section.

Theorem 8. Let UDr = [u1|u2| · · · |uN ] be the matrix containing the left singular vectors ofDr, corresponding to

the decreasing arrangement of the singular values ofDr. Let E = [uN−d+1| · · · |uN−1|uN ] and denote byF and

E† the r-th-order Sobolev dual and canonical dual ofE, respectively. Then

(i) E is a tight frame with frame bound1,

(ii) F = E† = E∗,

(iii) ‖FDr‖2→2 ≤
(
2 cos

(
(N−d−2r+1)π

2N+1

))r

.

Proof: The proof of this theorem traces exactly the same steps as theproof of Lemma 3. The only exception is

that to obtain (iii) we need to apply the conclusions of Proposition 7 with j = N − d + 1. The details are omitted.

C. Root-exponential accuracy

The main result of this section is the following.

Theorem 9. For 0 < K ∈ Z and0 < δ ∈ R, let x ∈ Rd be such that‖x‖2 ≤ µ < δ
(
K − 1

2

)
, and suppose that we

wish to quantize a redundant representation ofx with oversampling rateλ = N/d using the alphabetA = Aδ
K . If

λ ≥ C12(log d)2, then there exists a Sobolev self-dual frameE and an associated Sigma-Delta quantization scheme

QΣ∆, both of orderr# = r(λ), such that

‖x − E∗QΣ∆(Ex)‖2 ≤ C3e
−C4

√
λ.

Here, C3, C4 and C12 are constants independent ofd and x.

Proof: Let E andF be as in Theorem 8. A quick calculation shows that

‖FDr‖2→2 ≤
(

2 cos

(
(N − d − 2r + 1)π

2N + 1

))r

≤ πr

(
d + 2r

N

)r

.

Let ‖ · ‖2→∞ denote the matrix norm defined by‖M‖2→∞ := max
‖v‖2=1

‖Mv‖∞. We will now bound‖E‖2→∞,

recalling thatE is a restriction of the matrixU of left singular vectors, which is orthonormal. We obtain

‖E‖2→∞ = max
n∈{1,..,N}

‖en‖2 ≤ 1,

and consequently, for anyx with ‖x‖2 ≤ µ, ‖Ex‖∞ ≤ µ.

Let us now use theΣ∆ quantization schemes of Proposition 2 (see also (7)). Theseschemes yield the bound

11



‖u‖∞ ≤
(
C8

δ
2

)
Cr

9rr for ‖Ex‖∞ ≤ µ (see (9) and (11)). LettingC10 = 3πC9 we obtain

‖FDru‖2 ≤ ‖FDr‖2→2‖u‖2 ≤ ‖FDr‖2→2‖u‖∞
√

N

≤ C8 (πC9)
r

(
d + 2r

N

)r

rrN1/2 δ

2

≤ C8C
r
10 max

((
1

N

)r−1/2

r2r,

(
d

N

)r

rrN1/2

)
δ

2

≤ C8C
r
10

(
d

N

)r−1/2

max
(
r2r , rrd1/2

) δ

2
. (18)

Thus, the family of Sobolev self-dual frames (of arbitrary order) satisfies the above error bounds. Assuming that

the first term in the maximum dominates, we optimize over the order r for a given oversampling rateλ = N/d.

Thus, we set

r# =
⌊
arg min

r
(C10)

rλ−rr2r
⌋

=

⌊
e−1

√
λ

C10

⌋
.

Substitutingr# in (18), i.e., choosingE = Er# (the Sobolev self-dual frame of orderr#) yields the error bound

(see, e.g., [4])

‖x − EQΣ∆(Ex)‖2 = ‖Fr#Dr#

u‖2 ≤
(

C8e
2 δ

2

)√
λe−C11

√
λ ≤ C3 exp(−C4

√
λ) (19)

whereC11 = 2√
C10e

, C3 = δ
2

C8

C11
e2, andC4 = C11/2.

The above bound holds provided that(r#)2r# ≥ (r#)r#

d1/2, i.e., provided that(C11

2

√
λ)

C11
2

√
λ > d1/2.

Equivalently, we requireC11

2

√
λ log (C11

2

√
λ) ≥ 1

2 log d. This is satisfied ifC11

2

√
λ ≥ 2 log d andlog (C11

2

√
λ) ≥ 1

4 .

Sinced ≥ 2, we have2 log d > e1/4 and the latter condition is redundant. Thus, for (19) to holdit suffices to have

λ ≥
(

4 log(d)
C11

)2

=: C12(log d)2.

Remark10. The above estimates provide an error bound even when the minimum requirement for the oversampling

rate is not met. In fact, when the termrrd1/2 dominates in the maximization of (18), we obtain a bound of

C13d
1
2 e−C14λ. The explicit d-dependence of the constant for comparatively small oversampling rates is to be

expected, because forλ = 1, the errors arising at each sample are independent. Thus thetotal error will behave

like d
1
2 if the quantization accuracy for the individual samples stays fixed.

Remark11. Using Proposition 2, the constantC4 can be bounded explicitly byC4 ≤
(
3e2
⌈

π2

(cosh−1 γ)2

⌉)− 1
2

, where

γ = 2K − 2µ
δ .

Remark12. In Lemma 3 and Theorem 8 we may replaceE with Ẽ := EW , whereW ∈ Rd×d is any orthonormal

matrix, without changing the conclusions. In fact, the proof is invariant under a right multiplication byW . In

Theorem 9 one can then choose any suchẼ in place ofE.

IV. B OUNDS FOR HARMONIC FRAMES

In this section, we show that harmonic frames allow for root-exponential error decay, in the oversampling rate

λ = N/d, when used for theΣ∆ quantization of redundant frame expansions. In particular, here too, we will use

12



the Σ∆ scheme (7). We start by defining the harmonic frames forR
d. Let

E0(t) =
1√
2

E2j−1(t) = cos(2πjt), j ≥ 1

E2j(t) = sin(2πjt), j ≥ 1.

The harmonic frameE ∈ R
N×d is given by the coefficients

ekn =

√
2

d
Ek

( n

N

)
,

wheren ranges from1 to N andk ranges from0 to 2m (whend = 2m+1 is odd) or from1 to 2m (whend = 2m

is even). Note that in both cases, the harmonic frame is a unit-norm tight frame, thus‖Ex‖2
2 = N

d ‖x‖2
2.

As in the previous section, we seek to bound‖FDr‖2→2, whereF is ther-th-order Sobolev dual of the harmonic

frame E. To that end, we will provide a lower bound for the smallest singular value of the matrixD−rE. This

allows us to bound from above the largest singular value (i.e., the norm) of the canonical dual ofD−rE, which is

FDr. The Riemann sum argument of [8] plays a crucial role in our proof. The underlying idea of this argument

is to interpret the iterated sum corresponding to the application of the operatorD−r as a Riemann sum and then

to approximate it by the corresponding integral. We hence need to estimate the vector valued functionsE(r) ∈ Rd

whose coordinates are defined recursively via

E
(0)
k (t) =Ek(t)

E
(r)
k (t) =

t∫

0

E
(r−1)
k (s)ds.

We will proceed by providing a lower bound for the coordinates of E(r)(t) in Proposition 15 using a Taylor

expansion. Then we obtain a lower bound forσmin (D−rE) by controlling inf
v∈Rd:‖v‖2=1

∣∣〈v, E(r)(t)
〉∣∣ explicitly,

via Proposition 16 below. The main idea here is that the resulting bound can be expressed using a Vandermonde

matrix; then the estimate follows from the invertibility ofVandermonde matrices. We will then use this result and

the Riemann sum argument to obtain our upper bound on‖FDr‖2→2 in Lemma 17. Equipped with this bound,

we will then be able to show our desired result onΣ∆ quantization for harmonic frame expansions, Theorem 18.

Remark13. It is interesting to note thatDr is a banded Toeplitz matrix, hence “close” to being a circulant matrix

Cr. Circulant matrices are diagonal in the discrete Fourier transform basis. In particular, here, the columns of the

Harmonic frame correspond to the singular vectors ofCr associated with the smallest singular values. In other

words, hadDr been circulant, the Harmonic frame and its canonical dual could be used to obtain root-exponential

precision in theΣ∆ frame quantization context. However, sinceDr is only “close” to circulant, it is not true that

the Harmonic frame diagonalizes it; hence, more work is necessary to obtain root-exponential precision and the use

of Sobolev duals is warranted. Furthermore, we note that it is not possible to modify theΣ∆ scheme to induce a
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circulant matrix in the analysis, as that would correspond to a non-causal system where updating the current state

variable requires knowledge of future values of the sequence.

Remark14. We will assume from now on thatr is above a sufficiently larged-dependent threshold, in particular

large enough to satisfy equation (21) below. This assumption is justified, as root-exponential decay will eventually

be achieved by choosing the orderr for eachN such thatr(N) → ∞ whenN → ∞. The values ofr below this

threshold hence correspond to finitely many values ofN and can be treated by possibly introducing an additional

(d-dependent) constant, thus adjusting the values ofC15, C16, etc., in the following results.

Proposition 15. Let 0 ≤ t ≤ 1, j > 0, r sufficiently large, and letE(r)
k (t) be as above. Then

|E(r)
0 (t)| =

tr√
2r!

(20)

|E(r)
2j (t)| ≥ tr

r!

m−1∑

ℓ=0

(−1)ℓ

(
2πjt

r + 2m

)2ℓ+1

− 2

(
t

r

)r+2m

|E(r)
2j−1(t)| ≥

tr

r!

m−1∑

ℓ=0

(−1)ℓ

(
2πjt

r + 2m

)2ℓ

− 2

(
t

r

)r+2m

.

Proof: The identity (20) follows directly by induction inr. For j > 0, we have by repeated integration of the

series expansions of sine and cosine, forr odd

E
(r)
2j−1(t) =

(−1)
r−1
2

(2πj)r

∞∑

ℓ=0

(−1)ℓ (2πjt)r+2ℓ

(r + 2ℓ)!

E
(r)
2j (t) =

(−1)
r+1
2

(2πj)r

∞∑

ℓ=0

(−1)ℓ (2πjt)r+2ℓ+1

(r + 2ℓ + 1)!

and forr even

E
(r)
2j−1(t) =

(−1)
r
2

(2πj)r

∞∑

ℓ=0

(−1)ℓ (2πjt)r+2ℓ

(r + 2ℓ)!

E
(r)
2j (t) =

(−1)
r
2

(2πj)r

∞∑

ℓ=0

(−1)ℓ (2πjt)r+2ℓ+1

(r + 2ℓ + 1)!
.

Using that forr large enough (cf. Remark 14), each term dominates the subsequent one, we write
∣∣∣∣∣

∞∑

ℓ=0

(−1)ℓ (2πjt)r+2ℓ

(r + 2ℓ)!

∣∣∣∣∣ =
∞∑

ℓ′=0

(2πjt)r+4ℓ′

(r + 4ℓ′)!
− (2πjt)r+4ℓ′+2

(r + 4ℓ′ + 2)!
. (21)

To bound this expression, we estimate for integers0 < γ < 2m:

1

(r + γ)!
− 1

r!(r + 2m)γ
=

r!(r + 2m)γ − (r + γ)!

(r + γ)!r!(r + 2m)γ
=

rγ−1 (2γm−∑γ
k=1 k) + O(rγ−2)

(r + γ)!(r + 2m)γ

=
rγ+3 (

∑γ
k=1(2m − k)) + O(rγ+2)

(r + γ + 2)!(r + 2m)γ+2
>

r2

3

(
rγ+1

(∑γ+2
k=1(2m − k)

)
+ O(rγ)

)

(r + γ + 2)!(r + 2m)γ+2

>
(2πjt)2

(r + γ + 2)!
− (2πjt)2

r!(r + 2m)γ+2
.

14



Denoting byIA the indicator (characteristic) function of the eventA, and combining the above estimate for each

γ = 4ℓ′ with (21), we obtain
∣∣∣∣∣

∞∑

ℓ=0

(−1)ℓ (2πjt)r+2ℓ

(r + 2ℓ)!

∣∣∣∣∣

≥
⌊m

2 ⌋−1∑

ℓ′=0

(2πjt)r+4ℓ′

(r + 4ℓ′)!
− (2πjt)r+4ℓ′+2

(r + 4ℓ′ + 2)!
+ Im is odd

(2πjt)r+2m−2

(r + 2m − 2)!
−

∞∑

α=m

(2πjt)r+2α

(r + 2α)!

≥(2πjt)r

r!



⌊m

2 ⌋−1∑

ℓ′=0

(2πjt)4ℓ′

(r + 2m)4ℓ′
− (2πjt)4ℓ′+2

(r + 2m)4ℓ′+2
+ Im is odd

(2πjt)r+2m−2

(r + 2m)r+2m−2
−

∞∑

α=m

(2πjt)2α

r2α




≥(2πjt)r

r!

(
m−1∑

ℓ=0

(−1)ℓ (2πjt)2ℓ

(r + 2m)2ℓ
−
(

2πjt

r

)2m
1

1 −
(

2πjt
r

)2

)

≥(2πjt)r

r!

(
m−1∑

ℓ=0

(−1)ℓ (2πjt)2ℓ

(r + 2m)2ℓ
− 2

(
2πjt

r

)2m
)

and thus

|E(r)
2j−1| ≥

tr

r!

(
m−1∑

ℓ=0

(−1)ℓ (2πjt)2ℓ

(r + 2m)2ℓ
− 2

(
2πjt

r

)2m
)

.

Similarly, one obtains

|E(r)
2j | ≥ tr

r!

(
m−1∑

ℓ=0

(−1)ℓ (2πjt)2ℓ+1

(r + 2m)2ℓ+1
− 2

(
2πjt

r

)2m
)

.

Proposition 16. Let v ∈ Rd, be such that‖v‖2 = 1. There exist constantsC15, C16 andC17 independent ofv and

r (but possibly depending ond) such that for allr large enough
∣∣∣
〈
v, E(r)(t)

〉∣∣∣ ≥ tr

r!
C15

(
t

r + d

)d−1

and
∫ 1

0

∣∣∣
〈
v, E(r)(t)

〉∣∣∣
2

dt ≥ C16e
r

r2r+C17

Proof: By Proposition 15, we have
〈
v, E(r)(t)

〉

≥ tr

r!



 v0√
2

Id is odd+

m∑

j=1

v2j−1

(
m−1∑

ℓ=0

(−1)ℓ

(
2πjt

r + d

)2ℓ
)

+ v2j

(
m−1∑

ℓ=0

(−1)ℓ

(
2πjt

r + d

)2ℓ+1
)

+ O

((
t

r

)r+2m
)

=
tr

r!


 v0√

2
Id is odd+

m−1∑

ℓ=0

(−1)ℓ

(
2πt

r + d

)2ℓ



m∑

j=1

v2j−1j
2ℓ


+ (−1)ℓ

(
2πt

r + d

)2ℓ+1



m∑

j=0

v2jj
2ℓ+1




+ O

((
t

r

)r+2m
)

(22)

Noting thatV =
(
(j2)ℓ

)m,m−1

j=1,ℓ=0
is a Vandermonde matrix, hence invertible, three scenariosare possible:
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• v0 6= 0

• v′ = (v1, v3, . . . , v2m−1) 6= 0, then
∑m

j=1 v2j−1j
2ℓ = (V v′)ℓ 6= 0 for somej.

• v′′ = (v2, v4, . . . , v2m) 6= 0, which implies that alsov′′′ = (1 · v2, 2 · v4, . . . , m · v2m) 6= 0. In this case
∑m

j=1 v2jj
2ℓ+1 = V v′′′ 6= 0, for somej.

In all three cases, the polynomial

Pv(s) :=
v0√
2

Id is odd+

m−1∑

ℓ=0

(−1)ℓs2ℓ




m∑

j=1

v2j−1j
2ℓ



+ (−1)ℓs2ℓ+1




m∑

j=1

v2jj
2ℓ+1





is not identically zero. As at most2m− 1 derivatives ofPv can vanish at0, we can bound|Pv(t)| near zero from

below byC18t
2m−1. Let

Cv = sup{C ≤ 1 : |Pv(t)| ≥ 2Ctd−1 in some neighborhood of 0}

and

qv = sup{q ≤ 1 : |Pv(t)| ≥ Cvtd−1 for all |t| ≤ q}.

Note that by the factor2 in the definition ofCv, all qv are strictly greater than0. Both Cv andqv are continuous

functions ofv, so they assume their minimum on the compact setS = {v : ‖v‖2 = 1}. Hence we findC19 =

min{Cv} andC20 = min{qv} such that for allv ∈ S, one has, for all0 ≤ s ≤ C20

Pv(s) ≥ C19s
d−1.

With (22), this implies that there exists a constantC15 independent ofv such that for allr large enough

∣∣∣
〈
v, E(r)(t)

〉∣∣∣ ≥ tr

r!
C15

(
t

r + d

)d−1

.

Then
∫ 1

0

∣∣∣
〈
v, E(r)(t)

〉∣∣∣
2

dt ≥
∫ 1

0

C2
15t

2r+2d−2

(r!)2(r + d)2d−2
dt

=
C2

15

(r!)2(r + d)2d−2(r + 2d − 1)

≥ C16e
r

r2r+C17
.

The next lemma provides a bound for‖FDr‖2→2.

Lemma 17. Let F be ther-th-order Sobolev dual of the harmonic frameE ∈ RN×d, then there exist (possibly

d-dependent) constantsC21 and C22 , such that

‖FDr‖2→2 ≤ C21e
−r/2N−(r+1/2)rr+C22

(
1 + O(N−1)

)
.
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Proof: By Proposition 16 and following the Riemann sum argument (LemmaA.1) in [8] we can now estimate

the smallest singular value ofD−rE as follows.

(
σmin(D−rE)

)2
= inf

v∈RN :‖v‖2=1

N∑

ir=1

∣∣∣∣∣∣

〈
v,

ir∑

ir−1=1

· · ·
i2∑

i1=1

i1∑

i0=1

E
( i0

N

)〉
∣∣∣∣∣∣

2

≥ inf
v∈RN :‖v‖2=1

N2r+1

∫ 1

0

∣∣∣
〈
v, E(r)(t)

〉∣∣∣
2

dt + O(N2r)

≥ C16e
r

r2r+C17
N2r+1 + O(N2r) =: α.

By the definition of the Sobolev dual,FDr is the canonical dual frame ofD−rE, hence‖FDr‖2→2 = σmin(D−rE)

one obtains

‖FDr‖2→2 ≤ α−1/2 = C21e
−r/2N−(r+1/2)rr+C22

(
1 + O(N−1)

)
.

We are now ready to prove the main result of this section.

Theorem 18. For 0 < K ∈ Z and 0 < δ ∈ R, let x ∈ R
d be such that‖x‖2 ≤ µ < δ

(
K − 1

2

)
, and suppose

that we wish to quantize the harmonic frame expansion ofx with oversampling rateλ = N/d using the alphabet

A = Aδ
K . There exists a Sigma-Delta quantization schemeQΣ∆ of orderr# = r(λ) such that‖x−FQΣ∆(Ex)‖2 ≤

C23e
−C24

√
λ. Here,E is the harmonic frame as above,F its r#-th order Sobolev dual, andC23, C24 are constants,

depending ond but independent ofx.

Proof: Again, we use theΣ∆ schemes given in (7) withg, h as in [4] or [5]. Let x̃ = FQΣ∆(Ex) be the

linear reconstruction ofx from its quantization. Then by Proposition 2 we have that‖u‖∞ ≤ C8C
r
9rr , and using

Lemma 17, we conclude that

‖x − x̃‖2 = ‖FDru‖2

≤ ‖FDr‖2→2‖u‖∞N1/2

≤ C25C
r
26N

−rr2r+C27

As in Theorem 9, the optimal order will be of the formr = ⌊C28N
1/2⌋, yielding

‖x − x̃‖2 ≤ C23 · e−C24λ1/2

as desired.

V. NUMERICAL EXPERIMENTS

In this section, we illustrate our results with some numerical experiments. First, ford = 2 and d = 6, we

generate 100 random vectorsx ∈ Rd (from the Gaussian ensemble) and normalize their magnitudeto ‖x‖2 =

17



2 − cosh(π/
√

6) ≈ 0.0584. For eachx, we obtain the redundant representationy = Ex whereE ∈ R
N×d is the

harmonic frame or the Sobolev self-dual frame of orderr. For r ∈ {1, ..., 10} and several values ofN , we perform

1-bit Σ∆ quantization ony according to the schemes in Proposition 2. Subsequently, anapproximation ofx is

obtained by linear reconstruction using ther-th-order Sobolev dual ofE, and the approximation error is computed.

For eachN , the smallest (overr) of the maximum error (over the 100 runs) is computed. The resulting error curves

for d = 2 and 6 are illustrated in Figure 1(a) and 1(b) respectively. Similarly, the smallest (overr) of the mean

error (over the 100 runs) is reported in Figure 2 (a) and 2(b).Next, the same experiment is repeated withd = 20,

this time with 3-bit Σ∆ quantization and 1500 random vectors. In particular, we increase the number of vectors

to compensate for the larger size ofd in the hope that we can capture the true behavior of the error curves. As

before, for eachN , the smallest (overr) of the maximum error (over the 1500 runs) is computed and theresulting

error curves are illustrated in Figure 3.

From all these experiments, we see that the observed performance indeed matches our predictions both for

Sobolev self-dual and harmonic frames. In particular, we observe the root exponential error decay (both for the

worst-case and average error). This indicates that at leastfor these frames, one cannot hope to derive exponential

error bounds in the framework ofΣ∆ quantization and linear reconstruction via Sobolev duals.
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Fig. 1. The maximum error from linear reconstruction ofΣ∆ quantized redundant representations, with (a)d = 2, and (b)d = 6. The error

is plotted (in log scale) as a function of the oversampling rate λ.
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Fig. 2. The mean error from linear reconstruction ofΣ∆ quantized redundant representations, with (a)d = 2, and (b)d = 6. The error is

plotted (in log scale) as a function of the oversampling rateλ.
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