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Abstract. Suppose that the collection {ei}mi=1 forms a frame for Rk,
where each entry of the vector ei is a sub-Gaussian random variable. We
consider expansions in such a frame, which are then quantized using a
Sigma-Delta scheme. We show that an arbitrary signal in Rk can be re-
covered from its quantized frame coefficients up to an error which decays
root-exponentially in the oversampling rate m/k. Here the quantization
scheme is assumed to be chosen appropriately depending on the over-
sampling rate and the quantization alphabet can be coarse. The result
holds with high probability on the draw of the frame uniformly for all
signals. The crux of the argument is a bound on the extreme singular val-
ues of the product of a deterministic matrix and a sub-Gaussian frame.
For fine quantization alphabets, we leverage this bound to show poly-
nomial error decay in the context of compressed sensing. Our results
extend previous results for structured deterministic frame expansions
and Gaussian compressed sensing measurements. compressed sensing,
quantization, random frames, root-exponential accuracy, Sigma-Delta,
sub-Gaussian matrices
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1. Introduction

1.1. Main problem. In this paper we address the problem of digitizing, or
quantizing, generalized linear measurements of finite dimensional signals. In
this setting a signal is a vector x ∈ RN , and the acquired measurements are
inner products of x with elements from a collection ofmmeasurement vectors
in RN . This generalized linear measurement model has received much atten-
tion lately, both in the frame theory literature where one considers m ≥ N ,
e.g., [1], and in the compressed sensing literature where m � N , e.g., [2].
For concreteness, let {ai}mi=1 ⊂ RN denote the measurement vectors. The
generalized linear measurements are given by yi = 〈ai, x〉, i ∈ {1, ...,m},
and can be organized as a vector y, given by y = Ax. Note that here and
throughout the paper, we always consider column vectors. Our goal is to
quantize the measurements, i.e., to map the components yi of y to elements
of a fixed finite set so that the measurements can be stored and transmitted
digitally. A natural requirement for such maps is that they allow for accu-
rate recovery of the underlying signal. As the domain of the forward map is
typically an uncountable set and its range is finite, an exact inversion is, in
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general, not possible. Accordingly we seek an approximate inverse, which
we shall refer to as a reconstruction scheme or decoder. More precisely, let
A ⊂ R be a finite set, which we shall refer to as the quantization alphabet,
and consider a set X of signals, which is compact in RN . Then a quantization
scheme is a map

Q : AX → Am

and a reconstruction scheme is of the form

∆ : Am → RN .

For ∆ to be an approximate inverse of Q, we need that the reconstruction
error

ε(x) := ‖x−∆(Q(Ax))‖2
viewed as a function of x is as small as possible in some appropriate norm.
Typical choices are ‖ε‖L∞(X ), the worst case error, and ‖ε‖2L2(X ), the mean
square error.

We are interested in quantization and reconstruction schemes that yield
fast error decay as the number of measurements increases. Next, we give a
brief overview of the literature on quantization in both frame quantization
and compressed sensing settings and explain how these two settings are
intimately connected. Below, we use different notations for the two settings
to make it easier to distinguish between them.

1.2. Finite frame setting. Let {ei}mi=1 be a frame for Rk, i.e., m ≥ k, and
assume that the matrix E whose ith row is eTi has rank k, thus the map
x 7→ Ex is injective. Accordingly, one can reconstruct any x ∈ Rk exactly
from the frame coefficients y = Ex using, e.g., any left inverse F of E. As
we explained above, the frame coefficients y can be considered as generalized
measurements of x and our goal is to quantize y such that the approximation
error is guaranteed to decrease as the number of measurements, i.e., m,
increases.

1.2.1. Memoryless scalar quantization. The most naive (and intuitive) quan-
tization method is rounding off every frame coefficient to the nearest element
of the quantizer alphabet A. This scheme is generally called memoryless
scalar quantization (MSQ) and yields (nearly) optimal performance when
m = k and E is an orthonormal basis. However, as redundancy increases
(say, we keep k fixed and increase m) MSQ becomes highly suboptimal.
In particular, one can prove that the (expected) approximation error via
MSQ with a given fixed alphabet A can never decay faster than (m/k)−1

regardless of the reconstruction scheme that is used and regardless of the
underlying E [3]. This is significantly inferior compared to another family
of quantization schemes, called Σ∆ quantizers, where one can have an ap-
proximation error that decays like (m/k)−s for any integer s > 0, provided
one uses an appropiate order quantizer.



SIGMA-DELTA QUANTIZATION OF SUB-GAUSSIAN FRAME EXPANSIONS 3

1.2.2. Sigma-Delta quantization. Despite its use in the engineering commu-
nity since the 1960’s as an alternative quantization scheme for digitizing
band-limited signals (see, e.g., [4]), a rigorous mathematical analysis of
Σ∆ quantization was not done until the work of Daubechies and Devore
[5]. Since then, the mathematical literature on Σ∆ quantization has grown
rapidly.

Early work on the mathematical theory of Σ∆ quantization has focused
on understanding the reconstruction accuracy as a function of oversampling
rate in the context of bandlimited functions, i.e., functions with compactly
supported Fourier transform. Daubechies and DeVore constructed in their
seminal paper [5] stable rth-order Σ∆ schemes with a one-bit alphabet.
Furthermore, they proved that when such an rth-order scheme is used to
quantize an oversampled bandlimited function, the resulting approximation
error is bounded by Crλ

−r where λ > 1 is the oversampling ratio and Cr
depends on the fine properties of the underlying stable Σ∆ schemes. For a
given oversampling rate λ one can then optimize the order r to minimize the
associated worst-case approximation error, which, in the case of the stable
Σ∆ family of Daubechies and DeVore, yields that the approximation error
is of order O(λ−c log λ).

In [6], Güntürk constructed an alternative infinite family of Σ∆ quantizers
of arbitrary order—refined later by Deift et al. [7]—and showed that using
these new quantizers one can do significantly better. Specifically, using
such schemes (see Section 2.2) in the bandlimited setting, one obtains an
approximation error of order O(2−cλ) where c = 0.07653 in [6] and c ≈
0.102 in [7]. In short, when quantizing bounded bandlimited functions, one
gets exponential accuracy in the oversampling rate λ by using these Σ∆
schemes. In other words, one can refine the approximation by increasing
the oversampling rate λ, i.e., by collecting more measurements, exponentially
in the number of measurements without changing the quantizer resolution.
Exponential error decay rates are known to be optimal [8, 6]; lower bounds
for the constants c for arbitrary coarse quantization schemes are derived in
[9]. In contrast, it again follows from [3] that independently quantizing the
sample values at best yields linear decay of the average approximation error.

Motivated by the observation above that suggests that Σ∆ quantizers
utilize the redundancy of the underlying expansion effectively, Benedetto et
al. [10] showed that Σ∆ quantization schemes provide a viable quantization
scheme for finite frame expansions in Rd. In particular, [10] considers x ∈ Rk
with ‖x‖2 ≤ 1 and shows that the reconstruction error associated with the
first-order Σ∆ quantization (i.e., r = 1) decays like λ−1 as λ increases. Here
the “oversampling ratio” λ is defined as λ = m/k if the underlying frame
for Rk consists of m vectors. This is analogous to the error bound in the
case of bandlimited functions with a first-order Σ∆ quantizer. Following
[10], there have been several results on Σ∆ quantization of finite frames
expansions improving on the O(λ−1) approximation error by using higher
order schemes, specialized frames, and alternative reconstruction techniques,
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e.g., [11, 12, 13, 14, 15]. Two of these papers are of special interest for
the purposes of this paper: Blum et al. showed in [14] that frames with
certain smoothness properties (including harmonic frames) allow for the Σ∆
reconstruction error to decay like λ−r, provided alternative dual frames—
called Sobolev duals—are used for reconstruction. Soon after, [15] showed
that by using higher order Σ∆ schemes whose order is optimally chosen
as a function of the oversampling rate λ, one obtains that the worst-case

reconstruction error decays like e−C
√

m
k , at least in the case of two distinct

structured families of frames: harmonic frames and the so-called Sobolev
self-dual frames which were constructed in [15]. For a more comprehensive
review of Σ∆ schemes and finite frames, see [16]. One of the fundamental
contributions of this paper is to extend these results to wide families of
random frames.

1.2.3. Gaussian frames and quantization. Based on the above mentioned re-
sults, one may surmise that structure and smoothness are in some way crit-
ical properties of frames, needed for good error decay in Σ∆ quantization.
Using the error analysis techniques of [14], it can be seen, though, that what
is critical for good error decay in Σ∆ quantization is the “smoothness” and
“decay” properties of the dual frame that is used in the reconstruction—see
Section 2.3, cf. [16]. This observation is behind the seemingly surprising fact
that Gaussian frames, i.e., frames whose entries are drawn independently
according to N (0, 1), allow for polynomial decay in λ of the reconstruction
error [17, Theorem A]—specifically, one can show that the approximation er-

ror associated with an rth-order Σ∆ scheme is of order O(λ−r+
1
2 ). The proof

relies on bounding the extreme singular values of the product of powers of a
deterministic matrix—the difference matrix D defined in Section 2.3—and a
Gaussian random matrix. This result holds uniformly with high probability
on the draw of the Gaussian frame.

1.3. Compressed sensing setting. Compressed sensing is a novel para-
digm in mathematical signal processing that was spearheaded by the seminal
works of Candes, Romberg, Tao [18], and of Donoho [19]. Compressed sens-
ing is based on the observation that various classes of signals such as audio
and images admit approximately sparse representations with respect to a
known basis or frame. Central results of the theory establish that such
signals can be recovered with high accuracy from a small number of ap-
propriate, non-adaptive linear measurements by means of computatinally
tractable reconstruction algorithms.

More precisely, one considers N -dimensional, k-sparse signals, i.e., vectors
in the set

ΣN
k := {z ∈ RN , |supp(z)| ≤ k}.

The generalized measurements are acquired via the m×N matrix Φ where
k < m � N . The goal is to recover z ∈ ΣN

k from y = Φz. In this paper,
we focus on random matrices Φ with independent sub-Gaussian entries in
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the sense of Definitions 3.2 and 3.5 below. It is well-known [20] that if
m > Ck log(N/k), where C is an absolute constant, with high probability,
such a choice of Φ allows for the recovery of all z ∈ ΣN

k as the solution z#

of the `1-minimization-problem

z# = arg min
x
‖x‖1 subject to y = Φx.

1.3.1. Quantized compressed sensing. The recovery guarantees for compressed
sensing are provably stable with respect to measurement errors. Conse-
quently, this allows to incorporate quantization into the theory, albeit naively,
as one can treat the quantization error as noise. The resulting error bounds
for quantized compressed sensing, however, are not satisfactory, mainly be-
cause additional quantized measurements will, in general, not lead to higher
reconstruction accuracy [17]. The fairly recent literature on quantization of
compressed sensing measurements mainly investigates two families of quanti-
zation methods: the 1-bit or multibit memoryless scalar quantization (MSQ)
[21, 22, 23, 24] and Σ∆ quantization of arbitrary order [17].

The results on the MSQ scenario focus on replacing the naive recon-
struction approach outlined above by recovery algorithms that exploit the
structure of the quantization error. For Gaussian random measurement ma-
trices, it has been shown that approximate reconstruction is possible via
linear programming even if the measurements are coarsely quantized by just
a single bit [23]. For non-Gaussian measurements, counterexamples with
extremely sparse signals exist which show that, in general, corresponding
results do not hold [23]. These extreme cases can be controlled by intro-
ducing the `∞-norm of the signal as an additional parameter, establishing
recovery guarantees for arbitrary sub-Gaussian random measurement ma-
trices, provided that this norm is not too large [24]. All these results yield
approximations where the error does not decay faster than λ−1, where in
this case the oversampling rate λ is defined as the ratio of m, the number
of measurements, to k, the sparsity level of the underlying signal. Again, it
follows from [3] that for independently quantized measurements, i.e., MSQ,
no quantization scheme and no recovery method can yield an error decay
that is faster than λ−1.

This bottleneck can be overcome by considering Σ∆ quantizers, which
take into account the representations of previous measurements in each
quantization step [17]. The underlying observation is that the compressed
sensing measurements are in fact frame coefficients of the sparse signal re-
stricted to its support. Accordingly, the problem of quantizing compressed
sensing measurements is a frame quantization problem, even though the
“quantizer” does not know what the underlying frame is. This motivates a
two-stage approach for signal recovery:

In a first approximation, the quantization error is just treated as noise, a
standard reconstruction algorithm is applied, and the indices of the largest
coefficients are retained as a support estimate. Once the support has been
identified, the measurements carry redundant information about the signal,
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which is exploited in the quantization procedure by applying frame quanti-
zation techniques.

This two-stage approach has been analyzed in [17] for the specific case
of Gaussian random measurement matrices. In particular, it was shown
that under mild size assumptions on the non-zero entries of the underlying
sparse signals, this approach can be carried through. Consequently, in the
case of Gaussian measurement matrices, one obtains that the approximation

error associated with an rth-order Σ∆ quantizer is of order O(λα(−r+ 1
2 ))

where α ∈ (0, 1)—see [17, Theorem B]. These results hold uniformly with
high probability on the draw of the Gaussian measurement matrix provided
m ≥ Ck(logN)1/(1−α).

1.4. Contributions. Our work in this paper builds on these results, and
generalizes them. Our contributions are two-fold. On the one hand, we es-
tablish corresponding results in the compressed sensing setting which allow
arbitrary, independent, fixed variance sub-Gaussian (in the sense of Defini-
tion 3.2 below) random variables as measurement matrix entries. In particu-
lar, this includes the important case of Bernoulli matrices, whose entries are
renormalized independent random signs. More precisely, in Theorem 4.10
we prove a refined version of the following.

Theorem 1.1. Let Φ be an m×N matrix whose entries are appropriately
normalized independent sub-Gaussian random variables and suppose that

λ := m/k ≥
(
C log(eN/k)

) 1
1−α

where α ∈ (0, 1). With high probability the

r-th order Σ∆ reconstruction ẑ satisfies

‖z − ẑ‖2 ≤ Cλ−α(r−1/2)δ,

for all z ∈ ΣN
k for which min

j∈supp(z)
|zj | > Cδ. Here δ is the resolution of the

Σ∆ quantization alphabet and C is an appropriate constant that depends
only on r.

Our second line of contributions is on frame quantization: We show that
using appropriate Σ∆ quantization schemes, we obtain root-exponential de-
cay of the reconstruction error with both Gaussian and sub-Gaussian frame
entries. In particular, in Theorem 4.4 we prove a refined version of the
following result.

Theorem 1.2. Let E be an m × k matrix whose entries are appropriately
normalized independent sub-Gaussian random variables. Suppose that λ :=
m/k satisfies λ ≥ λ0, where λ0 is a constant independent of k and m. Then
with high probability on the draw of E, the corresponding reconstruction x̂
from a Σ∆ scheme of appropriate order satisfies

‖x− x̂‖2 ≤ Ce−c
√
λ.

for all x with ‖x‖2 ≤ 1. Here c, C are appropriate constants.
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Note that a key element of our proof, which may be of independent inter-
est, pertains to the extreme singular values of the product of a deterministic
matrix with quickly decaying singular values and a sub-Gaussian matrix,
see Proposition 4.1.

Remark 1.3. All of the constants in the above theorems can be made ex-
plicit. Moreover, the quantization schemes are explicit and tractable, as are
the reconstruction algorithms; however, the quantization scheme and recon-
struction algorithms are different between Theorems 1.1 and 1.2. Please see
Theorems 4.4 and 4.10 for the full details.

1.5. Organization. The remainder of the paper is organized as follows. In
Section 2 we review Σ∆ quantization and basic error analysis techniques that
will be useful in the rest of the paper. In Section 3 we introduce the concept
of a sub-Gaussian random matrix and recall some of its key properties as well
as some important probabilistic tools. In Section 4, we prove a probabilistic
lower bound on the singular values of the product of the matrix D−r, where
r is a positive integer and D is a difference matrix, and a sub-Gaussian
random matrix. Finally, we use this result in combination with some known
results on the properties of various Σ∆ quantization schemes to prove the
main theorems.

2. Sigma-Delta quantization

An rth order Σ∆ quantizer Q(r) : Rm 7→ Am maps a sequence of inputs
(yi)

m
i=1 to a sequence (qi)

m
i=1 whose elements take on values from A via the

iteration

qi = Q (ρ(ui−1, · · · , ui−r, yi, · · · , yi−r+1))(1)

(∆ru)i = yi − qi.

Here ρ is a fixed function known as the quantization rule and (ui)
m
i=1 is a

sequence of state variables initialized to zero, i.e., ui = 0 for all i ≤ 0. It
is worth noting that designing a a good quantization rule in the case r > 1
is generally non-trivial, as one seeks stable Σ∆ schemes, i.e., schemes that
satisfy

(2) ‖y‖∞ ≤ C1 =⇒ ‖u‖∞ ≤ C2,

for constants C1 and C2 that do not depend on m (note that for the remain-
der of this paper, the constants are numbered in the order of appearance;
this allows to refer to constants introduced in previous results and proofs).
In particular, stability is difficult to ensure when one works with a coarse
quantizer associated with a small alphabet, the extreme case of which is
1-bit quantization corresponding to A = {±1}.

In this work we consider two different sets of assumptions. Our re-
sults on compressed sensing reconstruction require sufficiently fine alpha-
bets, whereas the results on frame quantization make no assumptions on
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the size of the alphabet —in particular, allowing for very coarse alphabets.
In both cases we will work with the 2L level mid-rise alphabet

(3) A =
{
± (2j + 1)δ/2, j ∈ {0, ..., L− 1}

}
.

2.1. Greedy sigma-delta schemes. We will work with the greedy Σ∆
quantization schemes

qi = Q
( r∑
j=1

(−1)j−1

(
r

j

)
ui−j + yi

)
(4)

ui =
r∑
j=1

(−1)j−1

(
r

j

)
ui−j + yi − qi.

It is easily seen by induction that for the 2L level mid-rise alphabet and
‖y‖∞ ≤ C, a sufficient condition for stability is L ≥ 2dCδ e + 2r + 1 as this
implies

(5) ‖u‖∞ ≤ δ/2.
Note that to satisfy this stability condition, the number of levels L must
increase with r.

2.2. Coarse sigma-delta schemes. We are also interested in coarse Σ∆
quantization, i.e., schemes where the alphabet size is fixed. In this case,
guaranteeing stability with a smaller alphabet typically entails a worse (i.e.,
larger) stability constant. The coarse Σ∆ schemes that we employ were first
proposed by Güntürk [6] and refined by Deift et al. [7]. Originally designed
to obtain exponential accuracy in the setting of bandlimited functions, they
were used to obtain root-exponential accuracy in the finite frame setup in
[15]. At their core is a change of variables of the form u = g ∗ v, where u
is as in (1) and g ∈ Rd+1 for some d ≥ r (with entries indexed by the set
{0, . . . , d}) such that g0 = 1. The quantization rule is then chosen in terms

of the new variables as ρ(vi, vi−1, . . . , yi) = (h∗v)i+yi, where h = δ(0)−∆rg

with δ(0) the Kronecker delta. Then (1) reads as

qi = Q((h ∗ v)i + yi)(6)

vi = (h ∗ v)i + yi − qi,
where, again, Q is the scalar quantizer associated with the 2L level mid-rise
alphabet (3). By induction, one concludes

‖h‖1
δ

2
+ ‖y‖∞ ≤ Lδ =⇒ ‖v‖∞ ≤

δ

2
=⇒ ‖u‖∞ ≤ ‖g‖1

δ

2
,

i.e., a sufficient condition to guarantee stability for all bounded inputs
‖y‖∞ ≤ µ is

(7) ‖h‖1 ≤ 2L− 2µ

δ
.
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Thus, one is interested in choosing g with minimal ‖g‖1 subject to h =

δ(0)−∆rg and (7). This problem was studied in [6, 7] leading to the following
proposition (cf. [15]).

Proposition 2.1. There exists a universal constant C3 > 0 such that for
any midrise quantization alphabet A = AδL, for any order r ∈ N, and for

all µ < δ
(
L− 1

2

)
, there exists g ∈ Rd+1 for some d ≥ r such that the Σ∆

scheme given in (6) is stable for all input signals y with ‖y‖∞ ≤ µ and

(8) ‖u‖∞ ≤ cCr3rr
δ

2
,

where u = g ∗ v as above, C3 =
(⌈

π2

(cosh−1 γ)2

⌉
e
π

)
and γ := 2L− 2µ

δ .

2.3. Sigma-Delta error analysis. As above, assume that x ∈ Rk and the
frame matrix E ∈ Rm×k. If the vector of frame coefficients y = Ex ∈ Rm
is Σ∆ quantized to yield the vector q ∈ Am, then linear reconstruction of x
from q using some dual frame F of E (i.e., FE = I) produces the estimate
x̂ := Fq. We would like to control the reconstruction error η := x − x̂.
Writing the state variable equations (1) in vector form, we have

(9) Dru = y − q,

where D is the m×m difference matrix with entries given by

(10) Dij =

 1 i = j
−1 i = j + 1
0 otherwise

.

Thus,

(11) η = x− Fq = F (y − q) = FDru.

Working with with stable Σ∆ schemes, one can control ‖u‖2 via ‖u‖∞.
Thus, it remains to bound the operator norm ‖FDr‖ := ‖FDr‖`m2 7→`k2 and

a natural choice for F is

(12) F := arg min
G:GE=I

‖GDr‖ = (D−rE)†D−r.

This so-called Sobolev dual frame was first proposed in [14]. Here A† :=
(A∗A)−1A∗ is the k ×m Moore-Penrose (left) inverse of the m × k matrix
A. Since (12) implies that FDr = (D−rE)†, the singular values of D−rE
will play a key role in this paper.

We begin by presenting some important properties of the matrix D. The
following proposition is a quantitative version of Proposition 3.1 of [17].

Proposition 2.2. The singular values of the matrix D−r satisfy

1

(3πr)r

(
m

j

)r
≤ σj(D−r) ≤ (6r)r

(
m

j

)r
.
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Proof. Note that (see, e.g., [17])

1

π

(
m+ 1/2

j − 1/2

)
≤ σj(D−1) ≤ 1

2

(
m+ 1/2

j − 1/2

)
.

Moreover, by Weyl’s inequalities [25] on the singular values of Hermitian
matrices, it holds that (see [17] for the full argument)(

σmin(j+2r,m)(D
−1)
)r ≤ σj(D−r) ≤ (σmax(j−2r,1)(D

−1)
)r
.

Combining the above inequalities, we obtain

1

πr
(m+ 1/2)r

min(j + 2r − 1/2,m− 1/2)r
≤ σj(D−r) ≤

1

2r
(m+ 1/2)r

max(j − 2r − 1/2, 1/2)r
.

Observing that

min(j + 2r − 1/2,m− 1/2) ≤ j + 2r ≤ 3rj

for r, j ∈ Z+ establishes the lower bound.
For the upper bound, note that j−2r−1/2 ≥ (2r+1)−1j/2, for j ≥ 2r+1

and 1/2 ≥ (2r + 1)−1j/2 for j ∈ {1, ..., 2r}. Thus,

(m+ 1/2)r

2r max (j − 2r − 1/2, 1/2)r
≤ 2rmr

2r(4r + 2)−rjr
≤ (6r)r

(
m

j

)r
.

�

3. Sub-Gaussian random matrices

Here and throughout, x ∼ D denotes that the random variable x is drawn
according to a distribution D. Furthermore, N (0, σ2) denotes the zero-mean
Gaussian distribution with variance σ2. The following definition provides a
means to compare the tail decay of two distributions.

Definition 3.1. If two random variables η ∼ D1 and ξ ∼ D2 satisfy P (|η| >
t) ≤ KP (|ξ| > t) for some constant K and all t ≥ 0, then we say that η is
K-dominated by ξ (or, alternatively, by D2).

Definition 3.2. A random variable is sub-Gaussian with parameter c > 0
if it is e-dominated by N (0, c2).

Remark 3.3. One can also define sub-Gaussian random variables via their
moments or, in case of zero mean, their moment generating functions. See
[20] for a proof that all these definitions are equivalent.

Remark 3.4. Examples of sub-Gaussian random variables include Gaussian
random variables, all bounded random variables (such as Bernoulli), and
their linear combinations.

Definition 3.5. We say that a matrix E is sub-Gaussian with parameter c,
mean µ and variance σ2 if its entries are independent sub-Gaussian random
variables with mean µ, variance σ2, and parameter c.
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The contraction principle (see, for example, Lemma 4.6 of [26]) will allow
us to derive estimates for sub-Gaussian random variables via the correspond-
ing results for Gaussians.

Lemma 3.6 (Contraction Principle). Let G : R+ 7→ R+ be a non-decreasing
convex function and let (ηi) and (ξi) be two finite symmetric sequences of
random variables such that there exists a constant K ≥ 1 such that for each
i, ηi is K-dominated by ξi. Then, for any finite sequence (xi) in a Banach
space equipped with a norm ‖ · ‖ we have

EG(‖
∑
i

ηixi‖) ≤ EG(K‖
∑
i

ξixi‖).

While the contraction principle as well as the following chaos estimate
are formulated for random vectors, we mainly work with random matrices.
Thus, it is convenient to “vectorize” the matrices: for a matrix A, we denote

by ~A the vector formed by stacking its columns into a single column vector.
To state the more refined chaos estimate, we need the concept of the

Talagrand γ2-functional (see, e.g., [26] for more details).

Definition 3.7. For a metric space (T, d), an admissible sequence of T is a
collection of subsets of T , {Tr : r ≥ 0}, such that for every s ≥ 1, |Tr| ≤ 22r

and |T0| = 1. The γ2 functional is defined by

γ2(T, d) = inf sup
t∈T

∞∑
r=0

2r/2d(t, Tr),

where the infimum is taken with respect to all admissible sequences of T .

Furthermore, for A a set of matrices, we denote by dFr(A) := sup
A∈A
‖A‖Fr

and d`2→`2(A) := sup
A∈A
‖A‖`2→`2 the diameter in the Frobenius norm ‖ · ‖Fr

and the spectral norm ‖ · ‖`2→`2 , respectively. Here the Frobenius norm

is given by ‖A‖Fr = ‖ ~A‖2 and the spectral norm is given by ‖A‖`2→`2 =
sup
‖x‖2=1

‖Ax‖2. The following theorem is a slightly less general version of [27,

Thm. 3.1].

Theorem 3.8. Let A be a symmetric set of matrices, that is, A = −A, and
let ξ be a random vector whose entries ξj are independent, sub-Gaussian
random variables of mean zero, variance one, and parameter c. Set

µ = γ2(A, ‖ · ‖`2→`2) (γ2(A, ‖ · ‖`2→`2) + dFr(A)) ,

ν1 = d`2→`2(A)(γ2(A, ‖ · ‖`2→`2) + dFr(A)), and ν2 = d2
`2→`2(A).

Then, for t > 0,

P
(

sup
A∈A

∣∣‖Aξ‖22 − E‖Aξ‖22
∣∣ ≥ C4µ+ t

)
≤ 2 exp

(
−C5 min

{
t2

ν2
1

,
t

ν2

})
.

The constants C4, C5 depend only on c.
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4. Main results

4.1. Estimates of singular values and operator norms. As argued
above, a key quantity to control the Σ∆ reconstruction error both in the
context of compressed sensing and frame quantization is the norm ‖FDru‖2,
where F is the Sobolev dual of a sub-Gaussian frame E and u is the asso-
ciated state vector. This quantity can be controlled by the product of the
operator norm ‖FDr‖ = 1

σmin(D−rE)
and the vector norm ‖u‖2. We will

estimate these quantities separately in the following two propositions. An
estimate for the first quantity can be deduced from the following proposition
together with two observations: First, recall that singular values are invari-
ant under unitary transformations, so σmin(D−rE) = σmin(SV ∗E), where
USV ∗ is the singular value decomposition of D−r. Second, when estimated
using Proposition 2.2, the singular values of D−r are bounded exactly as in
the following assumptions.

Proposition 4.1. Let E be an m× k sub-Gaussian matrix with mean zero,
unit variance, and parameter c, let S = diag(s) be a diagonal matrix, and
let V be an orthonormal matrix, both of size m ×m. Further, let r ∈ Z+

and suppose that sj ≥ Cr6

(
m
j

)r
, where C6 is a positive constant that may

depend on r. Then there exist constants C7, C8 > 0 (depending on c and

C6) such that for 0 < α < 1 and λ := m
k ≥ C

1
1−α
7

P
(
σmin( 1√

m
SV ∗E) ≤ λα(r−1/2)

)
≤ 2 exp(−C8m

1−αkα).

In particular, C8 depends only on c, while C7 can be expressed as f(c)C
− 2r

2r−1

6
provided C6 ≤ 1/2.

Proof. The matrix SV ∗E has dimensions m and k, so by the Courant min-
max principle applied to the transpose one has

σmin(SV ∗E) = min
W⊂Rm

dimW=m−k+1

sup
z∈W :‖z‖2=1

‖E∗V Sz‖2(13)

Noting that, for m ≥ k̃ := C9m
1−αkα > k, where the constant C9 will be

determined later, each m − k + 1-dimensional subspace intersects the span

V
k̃

of the first k̃ standard basis vectors in at least a k̃ − k + 1-dimensional
space, this expression is bounded from below by

min
W⊂V

k̃

dimW=k̃−k+1

sup
z∈W :‖z‖2=1

‖E∗V Sz‖2 ≥ min
W⊂V

k̃

dimW=k̃−k+1

sup
z∈W :‖z‖2=s

k̃

‖E∗V z‖2
(14)

= min
W⊂Rk̃

dimW=k̃−k+1

sup
z∈W :‖z‖2=1

s
k̃
‖E∗V P ∗

k̃
z‖2.(15)

The inequality follows from the observation that V
k̃

is invariant under S and

the smallest singular value of S|V
k̃

is s
k̃
. In the last step, P

k̃
∈ Rk̃×m denotes
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the projection of an m-dimensional vector onto its first k̃ components. We
note that (15), again by the Courant min-max principle, is equal to

s
k̃
σk(E

∗V P ∗
k̃

) = s
k̃
σmin(P

k̃
V ∗E) = s

k̃
inf

y∈Sk−1
‖P

k̃
V ∗Ey‖2(16)

Now, as E‖P
k̃
V ∗Ey‖22 = k̃,

inf
y∈Sk−1

‖P
k̃
V ∗Ey‖22 ≥

(
k̃ − sup

y∈Sk−1

∣∣‖P
k̃
V ∗Ey‖22 − E‖P

k̃
V ∗Ey‖22

∣∣).(17)

Thus, noting that λα(r−1/2)

s
k̃

< mα(r−1/2)k−α(r−1/2)C−r6 m−rk̃r = C−r6 C
r− 1

2
9

√
k̃√
m

and that by choosing C9 = min(1
2C

2r
2r−1

6 , 1
2) we ensure that 1−C−2r

6 C2r−1
9 ≥

1
2 ,

P(σmin( 1√
m
SV ∗E) ≤ λα(r−1/2))

(18)

≤ P( sup
y∈Sk−1

∣∣‖ 1√
m
P
k̃
V ∗Ey‖22 − E‖ 1√

m
P
k̃
V ∗Ey‖22

∣∣ ≥ (1− C−2r
6 C2r−1

9 )
k̃

m
)

(19)

≤ P( sup
y∈Sk−1

∣∣‖ 1√
m
P
k̃
V ∗Ey‖22 − E‖ 1√

m
P
k̃
V ∗Ey‖22

∣∣ ≥ k̃

2m
).

(20)

Note that this choice of C9 also ensures k̃ ≤ m, which is required above. We
will estimate (20) using Theorem 3.8, similarly to the proof of [27, Thm.
A.1]. Indeed, we can write

(21) 1√
m
P
k̃
V ∗Ey = Wyξ,

where ξ =
−→
E∗ is a vector of length km with independent sub-Gaussian

entries of mean zero and unit variance, and

(22) Wy =
1√
m
P
k̃
V ∗


yT 0 · · · 0
0 yT · · · 0
...

...
...

...
0 · · · 0 yT

 .

In order to apply Theorem 3.8, we need to estimate, for A = {Wy : y ∈
Sk−1}, dFr(A), d`2→`2(A), and γ2(A, ‖·‖`2→`2). We obtain for A = Wy ∈ A:

(23) ‖A‖2Fr =
1

m

k∑
j=1

k̃,m∑
p1,p2=1

y2
jV

2
p1,p2 =

k̃

m
, so dFr(A) =

√
k̃

m
.
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Furthermore, we have, for z ∈ Rk,
(24)

‖Wz‖`2→`2 =

∥∥∥∥∥∥∥∥∥
1√
m
P
k̃
V ∗


zT 0 · · · 0
0 zT · · · 0
...

...
...

...
0 · · · 0 zT


∥∥∥∥∥∥∥∥∥
`2→`2

≤

∥∥∥∥∥∥∥∥∥
1√
m


zT 0 · · · 0
0 zT · · · 0
...

...
...

...
0 · · · 0 zT


∥∥∥∥∥∥∥∥∥
`2→`2

,

so the quantities d`2→`2(A) and γ2(A, ‖ · ‖`2→`2) can be estimated in exact
analogy to [27, Thm. A.1]. This yields d`2→`2(A) = 1√

m
and γ2(A, ‖ ·

‖`2→`2) ≤ C10

√
k
m for some constant C10 depending only on c. With these

estimates, we obtain for the quantities µ, ν1, ν2 in Theorem 3.8

µ ≤(2C10 + 2)

√
kk̃

m
(25)

ν1 ≤(C10 + 1)

√
k̃

m
(26)

ν2 ≤
1

m
,(27)

so the resulting tail bound reads

P( sup
y∈Sk−1

∣∣‖ 1√
m
P
k̃
V ∗Ey‖22 − E‖ 1√

m
P
k̃
V ∗Ey‖22

∣∣ ≥ C4(2C10 + 2)

√
kk̃

m
+ t) ≤ e−C5 min

(
t2m2

(C10+1)k̃
,mt
)
.

(28)

where C4 and C5 are the constants depending only on c as they appear

in Theorem 3.8. Note that k = k̃ λ
−(1−α)

C9
, so for oversampling rates λ >(

(4C4(2C10 +2))2/C9

) 1
1−α =: C

1
1−α
7 , we obtain C4E ≤ k̃

4m and hence, choos-

ing t = k̃
4m , we obtain the result

(29) P( sup
y∈Sk−1

∣∣‖ 1√
m
P
k̃
V ∗Ey‖22 − E‖ 1√

m
P
k̃
V ∗Ey‖22

∣∣ ≥ k̃

2m
) ≤ e−C8k̃

where, as desired, the constant C8 := C5
16(C10+1) depends only on the sub-

Gaussian parameter c. �

In contrast to the term ‖FDr‖ analyzed in the previous proposition, ‖u‖2
crucially depends on the quantization procedure that is employed. The
procedure employed will be fundamentally different in the frameworks of
compressed sensing and frame quantization. While the quantization level
in the compressed sensing scheme is chosen sufficiently fine to allow for
accurate support recovery via standard compressed sensing techniques, there
is no need for this in the context of frame quantization and the quantization
scheme employed can be coarse.
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In both cases, we will employ Σ∆ schemes which are stable in the sense
of (2). As explained in Section 2, ‖u‖2 can be controlled for such schemes
via the input Ex. More precisely, to bound ‖u‖2, we require a bound on
‖Ex‖∞ ≤ ‖E‖`2→`∞‖x‖2. Since the matrices E = E(ω) are random we de-
rive bounds on the operator norms ‖E‖`2→`∞ that hold with high probability
on the draw of E.

Proposition 4.2. Let Ẽ be an m× k sub-Gaussian matrix with mean zero,

unit variance, and parameter c, let E = 1√
m
Ẽ and fix α ∈ (0, 1). Denote the

associated oversampling rate by λ := m/k. Then, with probability at least

1− e−
1
4
λ1−αk, we have for all λ > C

1
1−α
11

(30) ‖E‖`2→`∞ ≤ e1/2λ−
α
2 .

Here C11 is a constant that may depend on c, but that is independent of k
and α.

Proof. Since

(31) ‖E‖`2→`∞ = max
i∈{1,...,m}

( k∑
j=1

e2
ij

)1/2
= max

η is a row of E
‖η‖2,

we will focus on bounding the norm ‖η‖2 for random vectors η ∈ Rk con-
sisting of independent sub-Gaussian entries ηi with parameter 1√

m
. Using

Markov’s inequality as well as the contraction principle applied to the in-

creasing convex function G : x 7→ ex
2t/2 and the sequence xi = ei of stan-

dard basis vectors, we reduce to the case of a k-dimensional random vector
ξ ∼ N (0, 1

mI):

P
(
‖η‖22 ≥ Θ/λ

)
≤ inf

t>0
e−tΘ/(2λ)Ee‖η‖

2
2t/2(32)

≤ inf
t>0

e−tΘ/(2λ)Eee‖ξ‖
2
2t/2(33)

= inf
t>0

e−tΘ/(2λ)
(
1− et/m

)−k/2
(34)

≤
(Θ

e

)k/2
exp

(
− (Θ/e− 1)k/2

)
(35)

= Θk/2 exp
(
− Θ

e

k

2

)
,(36)

where we set t = m(1
e −

1
Θ) to obtain the third inequality. Applying a union

bound over the m rows and specifying Θ = eλ1−α we obtain for λ sufficiently
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large:

P(‖E‖`2→`∞ ≥ e1/2λ−α/2) ≤ mek/2λ(1−α)k/2 exp
(
− λ1−αk/2

)(37)

= kλ

(
λ1−α exp

(
− 1

2
λ1−α

))k/2
e−

1
4
m1−αkα(38)

=: kλf(λ1−α)−k/2e−
1
4
m1−αkα(39)

≤ e−
1
4
m1−αkα ,(40)

where we used that f is independent of k and grows superlinearly, so above

some threshold C
1

1−α
11 , f(λ1−α)−k/2 can absorb both λ and k.

�

Remark 4.3. Clearly, when the entries of Ẽ are bounded random vari-
ables, there exists a finite, deterministic upper bound on the operator norm
‖E‖`2→`∞, obtained via the bounds on the matrix entries. In fact, for
Bernoulli matrices, the resulting bounds are sharp.

4.2. Root-exponential accuracy for sub-Gaussian frames.

Theorem 4.4. Let Ẽ be an m × k sub-Gaussian matrix with mean zero,

unit variance, and parameter c, let E = 1√
m
Ẽ and suppose that

λ :=
m

k
≥ C12,

where C12 is an appropriate constant that only depends on c. For a vector
x ∈ Rk, denote by Q(r∗)(Ex) the 2L-level Σ∆ quantization of Ex using a

scheme as given in (6) which satisfies (8) with order r∗ := bλ1/2/(2C13)c
and δ > 4e1/2

λ1/4L
. Denote by F the r∗-th order Sobolev dual of E. Then, with

probability exceeding 1 − 3e−C14

√
mk on the draw of E, the reconstruction

error satisfies

‖x− FQ(r)(Ex)‖2 ≤ C15

√
ke−C13λ1/2δ

uniformly for all x with ‖x‖2 ≤ 1, where C13, C14, and C15 are appropriate

constants depending only on c. If the entries of Ẽ are bounded by an absolute
constant K almost surely, the condition on δ can be relaxed to δ > 4K

L λ
−1/2.

Proof. Observe the following facts:

(I) Since FDr = (D−rE)†, then ‖FDr‖ = 1
σmin(D−rE)

= 1
σmin(SV ∗E) ,

where D−r = USV ∗ is the singular value decomposition of D−r.
Thus, by Proposition 4.1 with C6 = 1/(3πr) and α = 1/2, it holds

that with probability greater than 1− 2e−C8

√
mk,

‖FDr‖ ≤ λ−
1
2

(r−1/2)
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provided λ ≥ C2
16(3πr)

4r
(2r−1) . Since (3πr)

1
2r−1 is decreasing with r ≥

1, the condition is satisfied if

(41) λ1/2 ≥ C16(3π)2r =: C17r.

Without loss of generality, we may assume C17 ≥ 1.
(II) By Proposition 4.2 with α = 1/2 and for λ > C2

11, we have

‖E‖`2→`∞ ≤ e1/2λ−1/4

with probability greater than 1 − e−
1
4

√
mk. If the entries of E are

bounded by K/
√
m a.s. then

‖E‖`2→`∞ = max
η is a row of E

‖η‖2 ≤ Kλ−1/2 almost surely.

(III) As this implies that the quantizer input satisfies ‖Ex‖∞ ≤ e1/2λ−1/4‖x‖2
or ‖Ex‖∞ ≤ Kλ−1/2‖x‖2, respectively, our assumption (8) implies
that for all signals x ∈ Rk with ‖x‖2 ≤ 1, the resulting state vector
satisfies

‖u‖∞ ≤ C18C
r
19r

rδ/2,

where C19 = d π2

(cosh−1 γ)2
e eπ for γ = 2L − 2e1/2λ−1/4/δ or γ = 2L −

2Kλ−1/2/δ. By Cauchy-Schwarz, this entails

‖u‖2 ≤ C18C
r
19r

rδ/2
√
m.

The respective constraints on δ ensure that in both cases, 3
2L < γ <

2L, so C19 is well-defined and bounded above by 10. Moreover, γ
and C19 effectively do not depend on λ.

Thus, the reconstruction error x− FQ(r)(Ex) = FDru satisfies

‖FDru‖2 ≤ C18C
r
19r

rλ−
1
2

(r−1/2) δ

2

√
m =: f(r).

Motivated by the observation

arg min
r
f(r) = e−1λ

1/2

C19

we define r∗ =
⌊
e−1λ1/2

C17C5

⌋
, which is adjusted to satisfy (41). As the above

argument only works for r ≥ 1, we need the additional requirement that
λ ≥ C20 := 100e2C2

17. We estimate for such λ

f(r∗) ≤ C4e ·m1/2λ1/4(C17e)
− 1
e
λ1/2

C17C5 δ/2 ≤ C4e
√
kλ3/4 exp

(
−1

e

λ1/2

C17C5

)
δ/2

(42)

≤ C21

√
kλ

3
4 e−2C13λ1/2δ,

(43)

≤ C22

√
ke−C13λ1/2δ,

(44)
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where C13, C21, and C22 are appropriate constants. Here the last inequality
stems from the observation that the polynomial factor is dominated by the
exponential term. The theorem follows by choosing C12 = max{C2

11, C20}.
�

By combining slight modifications of (I), (II), (III) in the proof of Theorem
4.4 above, one can deduce the following proposition which will be useful
when dealing with quantization in the compressed sensing context. Below
F is r-th order Sobolev dual of E and Q(r)(Ex) is the r-th order, 2L-level
greedy Σ∆ scheme, with step-size δ as in Section 2.1.

Proposition 4.5. Let Ẽ be an m× k sub-Gaussian matrix with mean zero,

unit variance, and parameter c, let E = 1√
m
Ẽ, and fix an integer r ≥ 1.

Suppose that

λ :=
m

k
≥ C ′12,

where C ′12 is an appropriate constant that only depends on c and r. Let

0 < α < 1. For an integer L ≥ d e1/2λ−α/2δ e+2r+1, with probability exceeding

1− 3e−C
′
14m

1−αkα on the draw of E, the reconstruction error satisfies

‖x− FQ(r)(Ex)‖2 ≤ λ−
α
2

(r−1/2) δ

2

√
m

uniformly for all x with ‖x‖2 ≤ 1, where C ′14, is an appropriate constant

depending only on c. If the entries of Ẽ are bounded by an absolute constant

K almost surely, the condition on δ can be relaxed to L ≥ dKλ−1/2

δ e+ 2r + 1.

Proof. The proof proceeds along the same lines as the proof of Thm 17. In
fact, parts (I) and (II) are identical, albeit with a general α rather than
α = 1

2 . In part (III) we obtain that the state vector satisfies

‖u‖∞ ≤ δ/2,
which entails

‖u‖2 ≤
δ

2

√
m.

Combining (I) and (III) we see that

‖FDru‖2 = ‖x− FQ(r)(Ex)‖2 ≤ λ−
α
2

(r−1/2) δ

2

√
m.

Since the involved constants only depend on c, the statement follows. �

Remark 4.6. Note that in Theorem 4.4, the normalization of the entries
depends on the number of measurements taken. In particular, this entails
that the number of measurements needs to be assigned a-priori. In practice,
however, one may wish to acquire as many measurements as possible and
quantize the measurements on the fly. This can be accomplished when the

entries of Ẽ are bounded by some constant K. In this case, E consists of
entries bounded by K/

√
m, so Theorem 4.4 predicts root-exponential accu-

racy for all quantization levels δ > 2Kλ−1/2. Hence the quantization level
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can be chosen independently of m even if the whole system is multiplied by√
λ. This multiplication yields normalized rows rather than columns, so the

normalization does not depend on m, as desired.

4.3. Polynomial accuracy for compressed sensing quantization. Anal-
ogously to [17], the above bounds on the singular values can be used to
establish recovery guarantees from Σ∆ quantized compressed sensing mea-
surements. To obatin these guarantees, as in [17], the decoding is performed
via a two-stage algorithm: First, a robust compressed sensing decoder is used
to recover a coarse estimate and particularly the support of the underlying
sparse signal from the quantized measurements. Next, the estimate is refined
using a Sobolev-dual based reconstruction method.

Definition 4.7. The restricted isometry constant (see, e.g., [18]) γk of a
matrix Φ ∈ Rm×N is the smallest constant for which

(1− γk)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + γk)‖x‖22
for all x ∈ ΣN

k .

Definition 4.8. Let ε > 0, let m,N be positive integers such that m < N
and suppose that Φ ∈ Rm×N . We say that ∆ : Rm×N×Rm → RN is a robust
compressed sensing decoder with parameters (k, a, γ), k < m, and constant
C if

(45) ‖x−∆(Φ,Φx+ e)‖ ≤ Cε,
for all x ∈ ΣN

k , ‖e‖2 ≤ ε, and all matrices Φ with a restricted isometry
constant γak < γ.

Remark 4.9. Examples for robust compressed sensing decoders include `1-
minimization [18], greedy algorithms such as orthogonal matching pursuit
[28], and greedy-type algorithms such as CoSaMP [29].

One then obtains the following result.

Theorem 4.10. Let r ∈ Z+, fix a ∈ N, γ < 1, and c, C > 0. Then there
exist constants C23, C24, C25, C26 depending only on these parameters such
that the following holds.

Fix 0 < α < 1, let Φ be an m×N sub-Gaussian matrix with mean zero,
unit variance, and parameter c, and suppose that k ∈ N satisfies

λ :=
m

k
≥
(
C23 log(eN/k)

) 1
1−α

.

Furthermore, suppose that ∆ : Rm×N ×Rm → RN is a robust compressed
sensing decoder with parameters (k, a, γ) and constant C.

Consider the 2L-level rth order greedy Σ∆ schemes with step-size δ, L ≥
dKλ−1/2

δ e + 2r + 1. Denote by q the quantization output resulting from Φz

where z ∈ RN . Then with probability exceeding 1 − 4e−C24m1−αkα for all
z ∈ ΣN

k having min
j∈supp(z)

|zj | > C25δ:
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(i) The support of z, T , coincides with the support of the best k-term
approximation of ∆(q).

(ii) Denoting by E and F the sub-matrix of Φ corresponding to the sup-
port of z and its rth order Sobolev dual respectively, and by x ∈ Rk
the restriction of z to its support, we have

‖x− Fq‖2 ≤ C26λ
−α(r−1/2)δ.

The proof essentially traces the same steps as in [17]. In particular, as Φ
is a sub-Gaussian matrix, and by choosing C23 large enough, we can ensure
that m ≥ 2C27γ

−2ak ln eN
ak and obtain γak ≤ γ with probability exceeding

1 − 2e−γ
2m/(2C27) (see, e.g., [30, Theorem 9.2]). Here C27 depends only

c. Since ∆ is a robust compressed sensing decoder, (i) follows from [17,
Proposition 4.1].

Once the support of x, say T , is recovered, Proposition 4.5 applies to the
m×k sub-Gaussian matrix ΦT , the submatrix of Φ consisting of columns of
Φ indexed by T . Finally, (ii) follows from a union bound over all submatrices
consisting of k columns of Φ. This union bound, coupled with the probability
bound used to obtain a restricted isometry constant γak < γ yields the
probability in the statement of the theorem as well as the condition on λ. As
all the proof ingredients established above follow closely the corresponding
results in [17], we omit the details.

Remark 4.11. Note that root-exponential error decay, using quantization
with a fixed number of levels, as obtained for the frame quantization case in
Theorem 4.4 is hindered in the compressed sensing scenario by the support
recovery step of the two stage algorithm in [17].

Funding

This work was supported in part by a Banting Postdoctoral Fellowship
administered by the Natural Sciences and Engineering Research Counsel
of Canada (NSERC) [to R.S.]; an NSERC Discovery Grant [to Ö.Y.]; an
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Acknowledgment

The authors thank Evan Chou for useful conversations and comments
that greatly improved this manuscript.

References

[1] P. G. Casazza and G. Kutyniok, Eds., Finite frames: Theory and applications.
Springer, 2013.

[2] Y. C. Eldar and G. Kutyniok, Eds., Compressed Sensing: Theory and Applications.
Cambridge University Press Cambridge, 2012, vol. 95.

[3] V. Goyal, M. Vetterli, and N. Thao, “Quantized overcomplete expansions in RN :
analysis, synthesis, and algorithms,” IEEE Trans. Inf. Theory, vol. 44, no. 1, pp.
16–31, Jan 1998.



SIGMA-DELTA QUANTIZATION OF SUB-GAUSSIAN FRAME EXPANSIONS 21

[4] H. Inose and Y. Yasuda, “A unity bit coding method by negative feedback,” Proc.
IEEE, vol. 51, no. 11, pp. 1524–1535, 1963.

[5] I. Daubechies and R. DeVore, “Approximating a bandlimited function using very
coarsely quantized data: a family of stable sigma-delta modulators of arbitrary order,”
Ann. Math., vol. 158, no. 2, pp. 679–710, 2003.
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random frames and quantization of compressed sensing measurements,” Foundations
of Computational Mathematics, vol. 13, no. 1, pp. 1–36, 2013.

[18] E. J. Candès, J. Romberg, and T. Tao, “Stable signal recovery from incomplete and
inaccurate measurements,” Comm. Pure Appl. Math., vol. 59, pp. 1207–1223, 2006.

[19] D. Donoho, “Compressed sensing.” IEEE Trans. Inf. Theory, vol. 52, no. 4, pp. 1289–
1306, 2006.

[20] R. Vershynin, “Introduction to the non-asymptotic analysis of random matrices,”
in Compressed Sensing: Theory and Applications, Y. Eldar and G. Kutyniok, Eds.
Cambridge: Cambridge Univ Press, 2012, pp. xii+544.

[21] L. Jacques, D. Hammond, and J. Fadili, “Dequantizing compressed sensing: When
oversampling and non-gaussian constraints combine,” IEEE Trans. Inf. Theory,
vol. 57, no. 1, pp. 559–571, 2011.

[22] L. Jacques, J. Laska, P. Boufounos, and R. Baraniuk, “Robust 1-bit compressive
sensing via binary stable embeddings of sparse vectors,” IEEE Trans. Inf. Theory,
vol. 59, no. 4, pp. 2082–2102, 2013.

[23] Y. Plan and R. Vershynin, “One-bit compressed sensing by linear programming,”
arXiv preprint arXiv:1109.4299, 2011.



22 FELIX KRAHMER, RAYAN SAAB, AND ÖZGÜR YILMAZ
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