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Abstract

In many signal processing applications, one wishes to acquire images that are sparse in trans-

form domains such as spatial finite differences or wavelets using frequency domain samples. For such

applications, overwhelming empirical evidence suggests that superior image reconstruction can be

obtained through variable density sampling strategies that concentrate on lower frequencies. The

wavelet and Fourier transform domains are not incoherent because low-order wavelets and low-order

frequencies are correlated, so compressed sensing theory does not immediately imply sampling strate-

gies and reconstruction guarantees. In this paper we turn to a more refined notion of coherence –

the so-called local coherence – measuring for each sensing vector separately how correlated it is to

the sparsity basis. For Fourier measurements and Haar wavelet sparsity, the local coherence can be

controlled, so for matrices comprised of frequencies sampled from suitable power-law densities, we can

prove the restricted isometry property with near-optimal embedding dimensions. Consequently, the

variable-density sampling strategies we provide — which are independent of the ambient dimension

up to logarithmic factors — allow for image reconstructions that are stable to sparsity defects and

robust to measurement noise. Our results cover both reconstruction by `1-minimization and by total

variation minimization.

1 Introduction

The measurement process in a wide range of imaging applications such as radar, sonar, astronomy, and

computer tomography, can be modeled – after appropriate approximation and discretization – as taking

samples from weighted discrete Fourier transforms [16]. Similarly, it is well known in the medical imaging

literature that the measurements taken in Magnetic Resonance Imaging (MRI) are well modeled as Fourier

coefficients of the desired image. Within all of these scenarios, one seeks strategies for taking frequency

domain measurements so as to reduce the number of measurements without degrading the quality of

image reconstruction. A central feature of natural images that can be exploited in this process is that

they allow for approximately sparse representation in suitable bases or dictionaries.
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The theory of compressed sensing, also termed compressive sampling, as introduced in [14, 8], fits

comfortably into this set-up: its key observation is that signals which allow for a sparse or approximately

sparse representation can be recovered from relatively few linear measurements via convex approximation,

provided these measurements are sufficiently incoherent with the basis in which the signal is sparse.

1.1 Imaging with partial frequency measurements

Much work in compressed sensing has focused on the setting of imaging with frequency domain mea-

surements [8, 7, 34] and, in particular, towards accelerating the MRI measurement process [22, 21]. For

images that are localized in the pixel domain, the incoherence between pixel and Fourier bases implies

that uniformly subsampled discrete Fourier transform measurements can be used to achieve near-optimal

oracle reconstruction bounds: up to logarithmic factors in the discretization size, any image can be ap-

proximated from s such frequency measurements up to the error that would be incurred if the image

were first acquired in full, and then compressed by setting all but the s largest-magnitude pixels to zero

[34, 31, 7, 9]. Compressed sensing recovery guarantees hold more generally subject to incoherence be-

tween sampling and sparsity transform domains. Unfortunately, natural images are generally not directly

sparse in the pixel basis, but rather with respect to transform domains more closely resembling wavelet

bases. As low-scale wavelets are highly correlated (coherent) with low frequencies, sampling theorems for

compressive imaging with partial Fourier transform measurements have remained elusive.

A number of empirical studies, including the very first papers on compressed sensing MRI [22, 21],

suggest that better image restoration is possible by subsampling frequency measurements from variable

densities preferring low frequencies to high frequencies. In fact, variable-density MRI sampling had been

proposed previously in a number of works outside the context of compressed sensing, although there

did not seem to be a consensus on an optimal density [23, 36, 38, 28, 18]. For a thorough empirical

comparison of different densities from the compressed sensing perspective, see [39].

Guided by these observations, the authors of [30] estimated the coherence between each element of

the sensing basis with elements of the sparsity basis separately as a means to derive optimal sampling

strategies in the context of compressed sensing MRI. In particular, they observe that incoherence-based

results in compressed sensing imply exact recovery results for more general systems if one samples a row

from the measurement basis proportionally to its squared maximal correlation with the sparsity-inducing

basis. For given problem dimensions, they find the optimal distribution as the solution to a convex

problem. In [29], the approach of optimizing the sampling distribution is combined with premodulation

by a chirp, which by itself is another measure to reduce the coherence [3, 20]. A similar variable-density

analysis already appeared in [33] in the context of sampling strategies and reconstruction guarantees

for functions with sparse orthogonal polynomial expansions and will also be the guiding strategy of this

paper (cf. Section 5).
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1.2 Contributions of this paper

In this paper we derive near-optimal reconstruction bounds for variable-density subsampled discrete

Fourier transform measurements for both wavelet sparsity and gradient sparsity models. More precisely,

up to logarithmic factors in the discretization size, any image can be approximated from s such mea-

surements up to the error that would be incurred if the wavelet transform or the gradient of the image,

respectively, were first computed in full, and then compressed by setting all but the s largest-magnitude

coefficients to zero. Note that the reconstruction results that have been derived for uniformly-subsampled

frequency measurements [8, 15] are not optimal in this sense.

A major role in determining the best sampling density will be played by the local coherence of the

sensing basis with respect to the sparsity basis, as introduced in Section 5. Consequently, an important

ingredient of our analysis is Theorem 6.2, which provides frequency-dependent bounds on inner products

between rows of the orthonormal discrete Fourier transform and rows of the orthonormal discrete Haar

wavelet transform. In particular, the maximal correlation between a fixed row in the discrete Fourier

transform and any row of the discrete Haar wavelet transform decreases according to an inverse power

law of the frequency, and decays sufficiently quickly that the sum of squared maximal correlations scales

only logarithmically with the discretization size N . This implies, according to the techniques used in

[33, 32, 4], that subsampling rows of the discrete Fourier matrix proportionally to the squared correlation

results in a matrix that has the restricted isometry property of near-optimal order subject to appropriate

rescaling of the rows.

For reconstruction, total variation minimization [35, 5, 27, 37, 11, 10] will be our algorithm of choice.

In the papers [25] and [26], total variation minimization was shown to provide stable and robust image

reconstruction provided that the sensing matrix is incoherent with the Haar wavelet basis. Following the

approach of [25], we prove that from variable density frequency samples, total variation minimization can

be used for stable image recovery guarantees. Due to the effects of variable density sampling we will no

longer need the samples to be incoherent to the Haar basis.

1.3 Outline

The remainder of this paper is organized as follows. Preliminary notation is introduced in Section 2.

The main results of this paper along with a numerical illustration are contained in Section 3. Section

4 reviews compressed sensing theory and Section 5 presents recent results on sampling strategies for

coherent systems. The main results on the coherence between Fourier and Haar wavelet bases is provided

in Section 6, and proofs of the main results are contained in Section 7. We conclude with a summary

and a discussion of open problems in Section 8.
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2 Preliminaries

2.1 Notation

In this paper, we consider discrete images, that is, N ×N blocks of pixels, and represent them as discrete

functions f ∈ CN×N . We write f(t1, t2) to denote any particular pixel value and for a positive integer

N , we denote the set {1, 2, . . . , N} by [N ]. By f1 ◦ f2 we denote the Hadamard product, i.e., the image

resulting from pointwise products of the pixel values, f1 ◦ f2(t1, t2) = f1(t1, t2)f2(t1, t2). On the space

of such images, the `p vector norm is given by ‖f‖p =
(∑

t1,t2
|f(t1, t2)|p

)1/p
, 1 ≤ p < ∞, and ‖f‖∞ =

max(t1,t2) |f(t1, t2)|. The inner product inducing the `2 vector norm is 〈f, g〉 =
∑
t1,t2

f̄(t1, t2)g(t1, t2),

where z̄ denotes the complex conjugate of number z ∈ C. By an abuse of notation, the “`0-norm”

‖f‖0 = #{(t1, t2) : f(t1, t2) 6= 0} counts the number of non-zero entries of f .

An image f is called s-sparse if ‖f‖0 ≤ s. The error of best s-term approximation of an image f in

`p is defined as

σs(f)p = inf
g:‖g‖0≤s

‖f − g‖p.

Clearly, σs(f)p = 0 if f is s-sparse. Informally, f is called compressible if σs(f)1 decays quickly as s

increases.

For two nonnegative functions f(t) and g(t) on the real line, we write f & g (or f . g) if there exists

a constant C > 0 such that f(t) ≥ Cg(t) (or f(t) ≤ Cg(t), respectively) for all t > 0.

The discrete directional derivatives of f ∈ CN×N are defined pixel-wise as

fx ∈ CN−1×N , fx(t1, t2) = f(t1 + 1, t2)− f(t1, t2)

fy ∈ CN×N−1, fy(t1, t2) = f(t1, t2 + 1)− f(t1, t2)

The discrete gradient transform∇ : CN×N → CN×N×2 is defined in terms of the directional derivatives

via

∇f(t1, t2) :=
(
fx(t1, t2), fy(t1, t2)

)
,

where the directional derivatives are extended to N × N by adding zero entries. The total variation

semi-norm is the `1 norm of the image gradient,

‖f‖TV := ‖∇f‖1 =
∑
t1,t2

(
|fx(t1, t2)|+ |fy(t1, t2)|

)
.

Here we note that our definition is the anisotropic version of the total variation semi-norm. The
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isotropic total variation semi-norm becomes the sum of terms

∣∣fx(t1, t2) + ify(t1, t2)
∣∣ =

(
fx(t1, t2)2 + fy(t1, t2)2

)1/2
.

The isotropic and anisotropic total variation semi-norms are thus equivalent up to a factor of
√

2.

2.2 Bases for sparse representation and measurements

The Haar wavelet basis is a simple basis which allows for good sparse approximations of natural images.

We will work primarily in two dimensions, but first introduce the univariate Haar wavelet basis as it will

nevertheless serve as a building block for higher dimensional bases.

Definition 2.1 (Univariate Haar wavelet basis). The univariate discrete Haar wavelet system is an

orthonormal basis of C2p

consisting of the constant function h0(t) ≡ 2−p/2, the step function h1
0,0 = h1

given by

h1(t) =

 2−p/2, 1 ≤ t ≤ 2p−1,

−2−p/2, 2p−1 < t ≤ 2p,

along with the dyadic step functions

h1
n,`(t) = 2

n
2 h1(2nt− `)

=


2

n−p
2 for `2p−n ≤ t < `2p−n + 2p−n−1

−2
n−p

2 for `2p−n + 2p−n−1 ≤ t < `2p−n + 2p−n

0 else,

for (n, `) ∈ Z2 satisfying 0 < n < p and 0 ≤ ` < 2n.

To define the bivariate Haar wavelet basis of C2p×2p

, we extend the univariate system by the window

functions

h0
n,`(t) = 2

n
2 h0(2nt− `) =


2

n−p
2 for `2p−n ≤ t < (`+ 1)2p−n

0 else.

The bivariate Haar wavelet system can now be defined via tensor products of functions in the extended

univariate system. In order for the system to form an orthonormal basis of C2p×2p

, only tensor products

of univariate functions with the same scaling parameter n are included.

Definition 2.2 (Bivariate Haar wavelet basis). The bivariate Haar system of C2p×2p

consists of the
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constant function h(0,0) given by

h(0,0)(t1, t2) = h0(t1)h0(t2) ≡ 2−p

and the functions hen,` with indices in the range 0 ≤ n < p, ` = (`1, `2) ∈ Z2 ∩ [0, 2n)2, and

e = (e1, e2) ∈
{
{0, 1}, {1, 0}, {1, 1}

}
given by

hen,`(t1, t2) = he1n,`1(t1)he2n,`2(t2).

We denote by H the bivariate Haar transform f →
(
〈f, hn,`〉

)
n,`

and, by a slight abuse of notation, also

the unitary matrix representing this linear map.

We will also work with discrete Fourier measurements.

Definition 2.3 (Discrete Fourier basis). Let N = 2p. The one-dimensional discrete Fourier system is an

orthonormal basis of CN consisting of the vectors

ϕk(t) =
1√
N
ei2πtk/N , −N/2 + 1 ≤ t ≤ N,

indexed by discrete frequencies in the range −N/2 + 1 ≤ k ≤ N/2. The two-dimensional discrete Fourier

basis of CN×N is just a tensor product of one-dimensional bases, namely

ϕk1,k2(t1, t2) =
1

N
ei2π(t1k1+t2k2)/N , −N/2 + 1 ≤ t1, t2 ≤ N/2, (2.3)

indexed by discrete frequencies in the range −N/2 + 1 ≤ k1, k2 ≤ N/2.

We denote by F the two-dimensional discrete Fourier transform f →
(
〈f, ϕk1,k2〉

)
k1,k2

and, again, also

the associated unitary matrix. Finally, we denote by FΩ its restriction to a set of frequencies Ω ⊂ [N ]2.

3 Main results

Our main results say that appropriate variable density subsampling of the discrete Fourier transform will

with high probability result in a set of measurements admitting stable image reconstruction via total

variation minimization or `1-minimization.

While our recovery guarantees are robust to measurement noise, the model we consider corresponds

to a weighted `2-norm such that high-frequency measurements have higher sensitivity to noise. Loosely

speaking, this compensates for the smaller number of samples in regions of low sampling probability. Our

first result concerns stable recovery guarantees for total variation minimization.
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Theorem 3.1. Fix integers N = 2p,m, and s such that s & log(N) and

m & s log3(s) log5(N).

Select m frequencies {(ωj1, ω
j
2)}mj=1 ⊂ {−N/2 + 1, . . . , N/2}2 i.i.d. according to

Prob
[
(ωj1, ω

j
2) = (k1, k2)

]
= CN min

(
C,

1

k2
1 + k2

2

)
=: η(k1, k2), −N/2 + 1 ≤ k1, k2 ≤ N/2, (3.1)

where C is an absolute constant and CN is chosen such that η is a probability distribution.

Consider the weight vector ρ = (ρj)
m
j=1 with ρj = (1/η(ωj1, ω

j
2))1/2, and assume that the noise vector

ξ = (ξj)
m
j=1 satisfies ‖ρ ◦ ξ‖2 ≤ ε

√
m, for some ε > 0. Then with probability exceeding 1 − N−C log3(s),

the following holds for all images f ∈ CN×N :

Given noisy partial Fourier measurements y = FΩf + ξ, the estimation

f# = argmin
g∈CN×N

‖g‖TV such that ‖ρ ◦ (FΩg − y)‖2 ≤ ε
√
m, (3.2)

approximates f up to the noise level and best s-term approximation error of its gradient:

‖f − f#‖2 .
‖∇f − (∇f)s‖1√

s
+ ε.

Disregarding measurement noise, the error rate provided in Theorem 3.1 (and also the one in Theo-

rem 3.2 below) is optimal up to logarithmic factors in the ambient image dimension. This follows from

classical results about the Gel’fand width of the `1-ball due to Kashin [19] and Garnaev–Gluskin [17].

Numerical results such as those detailed in [39] and illustrated below in Figure 1 confirm that variable-

density sampling strategies significantly outperform uniform sampling strategies as well as deterministic

sampling strategies, and Theorem 3.1 provides theoretical justification for such observations.

Our second result focuses on stable image reconstruction by `1-minimization in the Haar wavelet

transform domain. It is a direct consequence of applying the Fourier-wavelet incoherence estimates

derived in Theorem 5.2 to Theorem 6.2.

Theorem 3.2. Fix integers N = 2p,m, and s such that s & log(N) and

m & s log2(N) log3(s).

Select m frequencies Ω = {(ωj1, ω
j
2)}mj=1 ⊂ {−N/2 + 1, . . . , N/2}2 i.i.d. according to the density η as in

(3.1) and assume again that the noise vector ξ = (ξj)
m
j=1 satisfies the weighted `2-constraint with weight ρ

and noise level ε as in Theorem 3.1. Then with probability exceeding 1−N−C log3(s), the following holds
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for all images f ∈ CN×N : Given noisy measurements y = FΩf + ξ, the estimation

f# = argmin
g∈CN×N

‖Hg‖1 such that ‖ρ ◦ (FΩg − y)‖2 ≤ ε
√
m

approximates f up to the noise level and best s-term approximation error in the bivariate Haar basis:

‖f − f#‖2 .
‖Hf − (Hf)s‖1√

s
+ ε.

Even though the required number of samples m in Theorem 3.2 is smaller than the number of samples

required for the total variation minimization guarantees in Theorem 3.1, we find that total variation

minimization requires fewer measurements empirically. This may be due to the fact that the gradient of

a natural image has stronger sparsity than its Haar wavelet representation. For this reason we focus on

total variation minimization. Independent of this observation, we strongly suspect that the additional

logarithmic factors in the number of measurements stated in Theorem 3.1 are an artifact of the proof,

and that it should be possible to strengthen the result to obtain a similar recovery guarantee with the

number of measurements as in Theorem 3.2.

4 Compressed sensing background

4.1 The restricted isometry property

Under very mild assumptions on the matrix Φ : CN → Cm, any k-sparse x ∈ CN can be recovered from

y = Φx as the solution to the optimization problem:

x = argmin ‖z‖0 such that Φz = y

One of the fundamental results in compressed sensing is that this optimization problem, which is NP-hard

in general, can be relaxed to an `1-minimization problem if one asks that the matrix Φ restricted to any

subset of 2k columns be well-conditioned. This property is quantified via the so-called restricted isometry

property as introduced in [9]:

Definition 4.1 (Restricted isometry property). Let Φ ∈ Cm×N . For s ≤ N , the restricted isometry

constant δs associated to Φ is the smallest number δ for which

(1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22

for all s-sparse vectors x ∈ CN . If δs ≤ δ, one says that Φ has the restricted isometry property (RIP) of
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order s and level δ.

The restricted isometry property ensures stability: not only sparse vectors, but also compressible

vectors can be recovered from the measurements via `1-minimization. It also ensures robustness to

measurement errors.

Proposition 4.2 (Sparse recovery for RIP matrices). Assume that the restricted isometry constant δ5s

of Φ ∈ Cm×N satisfies δ5s <
1
3 . Let x ∈ CN and assume noisy measurements y = Φx+ ξ with ‖ξ‖2 ≤ ε.

Then

x# = arg min
z∈CN

‖z‖1 subject to ‖Φz − y‖2 ≤ ε

satisfies

‖x− x#‖2 ≤
2σs(x)1√

s
+ ε.

In particular, reconstruction is exact, x# = x, if x is s-sparse and ε = 0.

There are stronger versions of this result which allow for weaker constraints on the restricted isometry

constant [24]. However, our version is a corollary of the following proposition, which generalizes the

results from [8] and seem to have appeared first in [25]. This proposition will also play an important role

in the proof of our main results.

Proposition 4.3 (Stable recovery for RIP matrices, [25]). Suppose that γ ≥ 1 and Φ ∈ Cm×N satisfies

the restricted isometry property of order 5kγ2 and level δ < 1/3, and suppose that u ∈ CN satisfies a tube

constraint

‖Φu‖2 . ε.

Suppose further that for a subset S of cardinality |S| = k, the signal u satisfies a cone constraint

‖uSc‖1 ≤ γ‖uS‖1 + ξ.

Then

‖u‖2 .
ξ

γ
√
k

+ ε. (4.1)

Proposition 4.2 follows from Proposition 4.3 by noting that the minimality of x# implies a cone con-

straint for the residual x−x# over the support of the s largest-magnitude entries of x. For completeness,

the proof of Proposition 4.3 is recalled in the appendix.
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4.2 Bounded orthonormal systems

While the strongest known results on the restricted isometry property concern random matrices with

independent entries such as Gaussian or Bernoulli, a scenario that has proven particularly useful for

applications is that of structured random matrices with rows chosen from a basis incoherent to the basis

inducing sparsity (see below for a detailed discussion on the concept of incoherence). The resulting

sampling schemes correspond to bounded orthonormal systems, and such systems have been extensively

studied in the compressed sensing literature (see [31] for an expository article including many references).

Definition 4.4 (Bounded orthonormal system). Consider a set T equipped with probability measure ν.

• A set of functions {ψj : T → C, j ∈ [N ]} is called an orthonormal system with respect to ν if∫
T
ψ̄j(x)ψk(x)dν(x) = δjk, where δjk denotes the Kronecker delta.

• An orthonormal system is said to be bounded with bound K if supj∈[N ] ‖ψj(x)‖∞ ≤ K.

For example, the basis of complex exponentials ψj(x) = exp (i2πjx) forms a bounded orthonormal

system with optimally small constantK = 1 with respect to the uniform measure on T = {0, 1
N , . . . ,

N−1
N },

and d-dimensional tensor products of complex exponentials form bounded orthonormal systems with

respect to the uniform measure on the set T d. A random sample of an orthonormal system is the vector

(ψ1(x), . . . , ψN (x)), where x is a random variable drawn according to the associated distribution ν. Any

matrix whose rows are independent random samples of a bounded orthonormal system, such as the

uniformly subsampled discrete Fourier matrix, will have the restricted isometry property:

Proposition 4.5 (RIP for bounded orthonormal systems, [31]). Consider the matrix Ψ ∈ Cm×N whose

rows are independent random samples of a orthonormal system {ψj, j ∈ [N ]} with bound K ≥ 1 and

orthogonalization measure ν. If

m & δ−2K2s log3(s) log(N),

for some s & log(N)1, then with probability at least 1 − N−C log3(s), the restricted isometry constant δs

of 1√
m

Ψ satisfies δs ≤ δ.

An important special case of a bounded orthonormal system arises by sampling a function with sparse

representation in one basis using measurements from a different, incoherent basis. The mutual coherence

between a unitary matrix A ∈ CN×N with rows (aj)
N
j=1 and a unitary matrix B ∈ CN×N with rows

(bj)
N
j=1 is given by

µ(A,B) = sup
j,k
| 〈aj , bk〉 |

1For matrices consisting of uniformly subsampled rows of the discrete Fourier matrix, it has been shown in [12] that this
constraint is not necessary.
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The smallest possible mutual coherence is µ = N−1/2, as realized by the discrete Fourier matrix and

the identity matrix. We call two orthonormal bases A and B mutually incoherent if µ = O(N−1/2) or

µ = O(logα(N)N−1/2). In this case, the rows (b̃j)
N
j=1 of the basis B̃ =

√
NBA∗ constitute a bounded

orthonormal system with respect to the uniform measure. Propositions 4.5 and 4.2 then imply that,

with high probability, signals f ∈ CN of the form f = Ax for x sparse can be stably reconstructed from

uniformly subsampled measurements y = Bf = B̃x, as B̃ has the restricted isometry property.

Corollary 4.6 (RIP for incoherent systems, [34]). Consider orthonormal bases A,B ∈ CN×N with mutual

coherence bounded by µ(A,B) ≤ KN−1/2. Fix δ > 0 and integers N,m, and s such that s & log(N) and

m & δ−2K2s log3(s) log(N). (4.2)

Consider the matrix Φ ∈ Cm×N formed by uniformly subsampling m rows i.i.d. from the the matrix

B̃ =
√
NBA∗. Then with probability at least 1−N−c log3(s), the restricted isometry constant δs of 1√

m
Φ

satisfies δs ≤ δ.

5 Local coherence

The coherence-based sparse recovery results implied by Corollary 4.6 do not take advantage of the

full range of applicability of bounded orthonormal systems. As argued in [33], Proposition 4.5 implies

comparable sparse recovery guarantees for a much wider class of sampling/sparsity bases through pre-

conditioning resampled systems. In the following, we formalize this approach through the notion of local

coherence.

Definition 5.1 (Local coherence). The local coherence of an orthonormal basis {ϕj}Nj=1 of CN with

respect to the orthonormal basis {ψk}Nk=1 of CN is the function µloc(Φ,Ψ) ∈ RN defined coordinate-wise

by

µlocj (Φ,Ψ) = sup
1≤k≤N

|〈ϕj , ψk〉|.

The following result shows that we can reduce the number of measurements m in (4.6) by replacing the

bound K on the coherence in (4.2) by a bound on the `2-norm of the local coherence, provided we sample

rows from Φ appropriately using the local coherence function. It can be seen as a direct finite-dimensional

analog to Theorem 2.1 in [33], but for completeness, we include a short self-contained proof.

Theorem 5.2. Let Φ = {ϕj}Nj=1 and Ψ = {ψk}Nk=1 be orthonormal bases of CN . Assume the local

coherence of Φ with respect to Ψ is pointwise bounded by the function κ, that is sup
1≤k≤N

|〈ϕj , ψk〉| ≤ κj.

Let s & log(N), suppose

m & δ−2‖κ‖22s log3(s) log(N),
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and choose m (possibly not distinct) indices j ∈ Ω ⊂ [N ] i.i.d. from the probability measure ν on [N ]

given by

ν(j) =
κ2
j

‖κ‖22
.

Consider the matrix A ∈ Cm×N with entries

Aj,k = 〈ϕj , ψk〉, j ∈ Ω, k ∈ [N ],

and consider the diagonal matrix D = diag(d) ∈ CN with dj = ‖κ‖2/κj. Then with probability at least

1−N−c log3(s), the restricted isometry constant δs of the preconditioned matrix 1√
m
DA satisfies δs ≤ δ.

Proof. We show that the system {ϕ̃j} = {djϕj} is an orthonormal system with respect to ν in the sense

of Definition 4.4. Indeed,

N∑
j=1

ϕ̃j(k1)ϕ̃j(k2)ν(j) =

N∑
j=1

(‖κ‖2
κj

ϕj(k1)
)(‖κ‖2

κj
ϕj(k2)

) κ2
j

‖κ‖22

=

N∑
j=1

ϕj(k1)ϕj(k2) = δk1,k2 ;

hence the ϕ̃j form an orthonormal system with respect to ν. Noting that this system is bounded with

bound ‖κ‖2, the result follows from Proposition 4.5.

Remark 5.3. Note that the local coherence not only appears in the embedding dimension m, but also

in the sampling measure. Hence a priori, one cannot guarantee the optimal embedding dimension if one

only has suboptimal bounds for the local coherence. That is why the sampling measure in Theorem 5.2

is defined via the (known) upper bounds κ and ‖κ‖2 rather than the (usually unknown) exact values

µloc and ‖µloc‖2, showing that suboptimal bounds still lead to meaningful bounds on the embedding

dimension.

Remark 5.4. For µ ≤ KN−1/2 (as in Corollary 4.6), one has ‖µloc‖2 ≤ K , so Theorem 5.2 is a direct

generalization of Corollary 4.6. As one has equality if and only if µloc is constant, however, Theorem 5.2

will be stronger in most cases.

6 Local coherence estimates for frequencies and wavelets

Due to the tensor product structure of both of these bases, the two-dimensional local coherence of the

two-dimensional Fourier basis with respect to bivariate Haar wavelets will follow by first bounding the

local coherence of the one-dimensional Fourier basis with respect to the set of univariate building block

functions of the bivariate Haar basis.

12



Lemma 6.1. Fix N = 2p with p ∈ N. For the space CN , the one-dimensional Fourier basis vectors ϕk,

k 6= 0, and the one-dimensional Haar wavelet basis building blocks hen,k, e = 0, 1, satisfy the incoherence

relation

|〈ϕk, hen,`〉| ≤ min
(6 · 2n

2

|k|
, 3π2−

n
2

)
.

Proof. We estimate

〈ϕk, hen,`〉 =

2p−n`+2p−n−1−1∑
j=2p−n`

2
n−p

2 2−
p
2 e2πi2−pkj + (−1)e

2p−n`+2p−n−1∑
j=2p−n`+2p−n−1

2
n−p

2 2−
p
2 e2πi2−pkj

= e2πi2−n`k
(

1 + (−1)ee2πi2−n−1k
)

2
n
2−p

2p−n−1−1∑
j=0

e2πi2−pkj

= e2πi2−n`k
(

1 + (−1)ee2πi2−n−1k
)

2
n
2−p

1− e2πi2−n−1k

1− e2πi2−pk
.

To estimate this expression, we note that

|1− e2πi2−n−1k| ≤ min(2, π2−n|k|) (6.1)

and distinguish two cases:

If 0 6= |k| ≤ 2p−2, we bound |1− e2πi2−pk| ≥ 2−p|k| and apply (6.1) to obtain

|〈ϕk, hen,`〉| ≤ 2 · 2n
2−p

min(2, π2−n|k|)
2−p|k|

≤ min(
4 · 2n

2

|k|
, 2π2−

n
2 ).

For 2p−2 < |k| ≤ 2p−1, and hence 2−p ≤ 1
2 |k|

−1, we note that |1− e2πi2−pk| ≥
√

2
2 and bound, again using

(6.1),

|〈ϕk, hen,`〉| ≤ 2 · 2n
2 |k|−1 min(2, π2−n|k|)

√
2

2

≤ min
(6 · 2n

2

|k|
, 3π2−

n
2

)
.

This lemma enables us to derive the following incoherence estimates for the bivariate case.

Theorem 6.2. Let N = 2p for N 3 p ≥ 8. Then the local coherence µloc of the orthonormal two-

dimensional Fourier basis {ϕk1,k2} with respect to the orthonormal bivariate Haar wavelet basis {hen,`} in

13



CN×N , as defined in (2.3) and (2.2), respectively, is bounded by

µlock1,k2 ≤ κ(k1, k2) := min

(
1,

18π

max(|k1|, |k2|)

)
≤ κ′(k1, k2) := min

(
1,

18π
√

2

(|k1|2 + |k2|2)
1/2

)
,

and one has ‖κ‖2 ≤ ‖κ′‖2 ≤ 52
√
p = 52

√
log2(N).

Proof. First note that the bivariate Fourier coefficients decompose into the product of univariate Fourier

coefficients:

〈ϕk1,k2 , hen,`〉 = 〈ϕk1 , h
e1
n,`1
〉〈ϕk2 , h

e2
n,`2
〉.

For ki 6= 0, the factors can be bounded using Lemma 6.1, which, for k1 6= 0 6= k2, yields the bound

|〈ϕk1,k2 , hen,`〉| ≤ min
(6 · 2n

2

|k1|
, 3π2−

n
2

)
min

(6 · 2n
2

|k2|
, 3π2−

n
2

)
≤ 18π

max(|k1|, |k2|)
.

Next we consider the case where either k1 = 0 or k2 = 0; w.l.o.g., assume k1 = 0. We use that in one

dimension, we have 〈ϕ0, h
1
n,`〉 = 0 as well as 〈ϕ0, h

0
n,`〉 = 2−

n
2 . So we only need to consider the case that

e1 = 0 and hence e2 = 1. Thus we obtain

|〈ϕ0,k2 , h
e
n,`〉| ≤ 2−

n
2

6 · 2n
2

|k2|
=

6

max(|k1|, |k2|)
.

In both cases, we obtain µlock1,k2 ≤
18π

max(|k1|,|k2|) . The bound µlock1,k2 ≤ 1 follows directly from the Cauchy-

Schwartz inequality. We conclude µlock1,k2 ≤ κ(k1, k2) ≤ κ′(k1, k2).

For the `2-bound, we use an integral estimate,

‖κ′‖22 ≤ #{(k1, k2) : k2
1 + k2

2 ≤ 648π2}+

2p−1∑
k1,k2=−2p−1+1
|k1|2+|k2|2>648π2

648π2

|k1|2 + |k2|2

≤ 20600 +

2p− 1
2∫∫

r=18π
√

2−1

18π
√

2r−1drdφ

≤ 17200 + 502 log2(N) ≤ 2700 log2(N) = 2700p,

where we used that p ≥ 8. Taking square root implies the result.

As the infimum of a strictly decreasing function and a strictly increasing function is bounded uniformly

by its value at the intersection point of the two functions, Lemma 6.1 also gives frequency-dependent

bounds for the local coherence between frequencies and wavelets in the univariate setting.
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Corollary 6.3. Fix N = 2p with p ∈ N. For the space CN , the one-dimensional Fourier basis vectors

ϕk, k 6= 0, and the one-dimensional Haar wavelets satisfy the incoherence relation

|〈ϕk, hn,`〉| ≤ 3
√

2π/
√
k.

7 Recovery guarantees

7.1 Proof of Theorem 3.2

The proof of Theorem 3.2 concerning recovery from `1-minimization in the bivariate Haar transform

domain follows by combining the local incoherence estimate of Theorem 6.2 with the local coherence

based reconstruction guarantees of Theorem 5.2. Under the conditions of Theorem 5.2, the stated recovery

results follow directly from Theorem 4.2. The weighted `2-norm in the noise model is a consequence of

the preconditioning.

7.2 Preliminary lemmas for the proof of Theorem 3.1

The proof of Theorem 3.1 proceeds along similar lines to that of Theorem 3.2, but we need a few more

preliminary results relating the bivariate Haar transform to the gradient transform. Each of the following

results are derived from a more general statement involving the continuous bivariate Haar system and

the bounded variation seminorm.

Proposition 7.1. Suppose f ∈ CN2

, and suppose its bivariate Haar transform w = Hf ∈ CN2

is

arranged such that w(k) is the k-th largest-magnitude coefficient. Then there is a universal constant

C > 0 such that for all k ≥ 1,

|w(k)| ≤ C
‖f‖TV
k

In words, this proposition says that the bivariate Haar coefficient sequence of a function f is in weak

`1 and its weak `1 semi-norm is bounded by the total variation semi-norm of f . See [25] for a derivation

of Proposition 7.1 from Theorem 8.1 of [13].

We also have the following result about the bivariate Haar system.

Lemma 7.2. Let N = 2p. For any indices (t1, t2) and (t1, t2 + 1), there are at most 6p bivariate Haar

wavelets hen,` satisfying |hen,`(t1, t2 + 1)− hen,`(t1, t2)| > 0.

Proof. The lemma follows by showing that for fixed dyadic scale n in 0 < n ≤ p, there are at most 6

Haar wavelets with edge length 2p−n satisfying |hen,`(t1, t2 + 1) − hen,`(t1, t2)| > 0. If the edge between

(t1, t2) and (t1, t2 + 1) coincides with a dyadic edge at scale n, then the 3 wavelets supported on each of

the bordering dyadic squares transition from being zero to nonzero along this edge. On the other hand,
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if (t1, t2) coincides with a dyadic edge at dyadic scale n+ 1 but does not coincide with a dyadic edge at

scale n, then 2 of the 3 wavelets supported on the dyadic square having (t1, t2 + 1), (t1, t2) as a center

edge can satisfy the stated bound.

Lemma 7.3.

‖∇hen,`‖1 ≤ 8 ∀n, `, e.

Proof. hen,` is supported on a dyadic square of side-length 2p−n, and on its support, its absolute value is

constant, |hen,`| = 2n−p. Thus at the four boundary edges of the square, there is a jump of 2n−p, at the

(at most two) dyadic edges in the middle of the square where the sign changes there is a jump of 2 ·2n−p.

Hence ‖∇hen,`‖1 ≤ ‖∇h
{1,1}
n,` ‖1 ≤ 8 · 2p−n · 2n−p = 8.

We are now ready to prove Theorem 3.1.

7.3 Proof of Theorem 3.1

Recall that H : CN2 → CN2

denotes the bivariate Haar transformation f 7→
( 〈
f, hen,`

〉 )
n,`,e

,, let wf(j)

denote the j-th largest-magnitude Haar coefficient, and let h(j) denote the associated Haar wavelet.

Let D ∈ CN2×N2

be the diagonal matrix encoding the weights in the noise model, i.e., D =

diag(ρ), where, for κ′ as in Theorem 6.2, ρ(k1, k2) = ‖κ′‖2/κ′(k1, k2) = C
√

log2(N) max
(

1, (|k1|2 +

|k2|2)1/2/18π
)

. Note that Dg ≡ ρ ◦ g.

By Theorem 5.2 combined with the bivariate incoherence estimates from Theorem 6.2, we know that

with high probability A := 1√
m
DFΩH∗ has the restricted isometry property of order s and level δ once

m & sδ−2 log3(s) log5N.

Thus, for the stated number of measurements m with an appropriate hidden constant, we can assume

that A has the restricted isometry property of order

s = 24C̃2s log3(N),

where the exact value of the constant C̃ will be determined below. In the remainder of the proof we show

that this event implies the result.

Let u = f − f# denote the residual error of (3.2). Then we have

• Cone Constraint on ∇u. Let S denote the support of the best s-sparse approximation to ∇f .
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Since f# = f − u is the minimizer of (TV) and f is also a feasible solution,

‖(∇f)S‖1 − ‖(∇u)S‖1 − ‖(∇f)Sc‖1 + ‖(∇u)Sc‖1

≤ ‖(∇f)S − (∇u)S‖1 + ‖(∇f)Sc − (∇u)Sc‖1

= ‖∇f#‖1

≤ ‖∇f‖1

= ‖(∇f)S‖1 + ‖(∇f)Sc‖1

Rearranging yields the cone constraint

‖(∇u)Sc‖1 ≤ ‖(∇u)S‖1 + 2‖∇f − (∇f)S‖1. (7.1)

• Cone Constraint on wu = Hu. Proposition 7.1 allows us to pass from a cone constraint on

the gradient to a cone constraint on the Haar transform. More specifically, we obtain

|wu(j)| ≤ C
‖∇u‖1
j

.

Now consider the set S̃ consisting of the s edges indexed by S. By Lemma 7.2, the set Λ index-

ing those wavelets which change sign across edges in S̃ has cardinality at most |Λ| = 6s log(N).

Decompose u as

u =
∑
j

wu(j)h(j) =
∑
j∈Λ

wu(j)h(j) +
∑
j∈Λc

wu(j)h(j) =: uΛ + uΛc

and note that by linearity of the gradient,

∇u = ∇uΛ +∇uΛc .

Now, by construction of the set Λ, we have that (∇uΛc)S = 0 and so (∇u)S = (∇uΛ)S . By Lemma

7.3 and the triangle inequality,

‖(∇u)S‖1 = ‖(∇uΛ)S‖1 ≤ ‖∇uΛ‖1

≤
∑
j∈Λ

|w(j)|‖∇h(j)‖1

≤ 8
∑
j∈Λ

|w(j)|.

Combined with Lemma 7.1 concerning the decay of the wavelet coefficients and the cone constraint
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(7.1), and letting

s̃ = 6s log(N) = |Λ|,

this gives rise to a cone constraint on the wavelet coefficients:

N2∑
j=s̃+1

|wu(j)| ≤
N2∑

j=s+1

|wu(j)|

≤ C log(N2/s)‖∇u‖1

= C log(N2/s)
(
‖(∇u)S‖1 + ‖(∇u)Sc‖1

)

≤ C log(N2/s)
(
‖2(∇u)S‖1 + 2‖∇f − (∇f)S‖1

)

≤ C log(N2/s)
(

16
∑
j∈Λ

|w(j)|+ 2‖∇f − (∇f)S‖1
)

≤ C̃ log(N2/s)
( s̃∑
j=1

|w(j)|+ ‖∇f − (∇f)S‖1
)

• Tube constraint, ‖AHu‖2 ≤
√

2ε.

By assumption, A = 1√
m
DFΩH∗ : CN2 → Cm has the RIP of order s > s. Also by assumption,

‖DFΩf −Dy‖2 = ‖ρ ◦ (FΩf − y)‖2 ≤
√
mε, so f is a feasible solution to (3.2).

Since both f and f# are in the feasible region of (3.2), we have for u = f − f#,

m‖AHu‖22 = ‖DFΩH∗Hu‖22 = ‖DFΩu‖22

≤ ‖DFΩf −Dy‖22 + ‖DFΩf
# −Dy‖22

≤ 2mε2.

• Using the derived cone and tube constraints on Hu along with the assumed RIP bound on A, the

proof is complete by applying Proposition 4.3 using γ = C̃ log(N2/s) ≤ 2C̃ log(N), k = 6s logN ,

and ξ = C̃ log(N2/s)‖∇f − (∇f)S‖1. In fact, this is where we need that the RIP order is s, to

accomodate for the factors γ and k.

8 Summary and outlook

We established reconstruction guarantees for variable-density discrete Fourier measurements in both the

wavelet sparsity and gradient sparsity setup. Our results build on local coherence estimates between
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Fourier and wavelet bases. The resulting sampling strategies are specific to two-dimensional discrete

images, that is, N × N blocks of pixels. A priori, our results do not directly generalize to higher

dimensional or univariate signal models. In particular, optimal sampling strategies as well as stable

image recovery guarantees remain open for higher-dimensional signals.

Variable density sampling in compressive imaging has often been justified as taking into account the

tree-like sparsity structure of natural images in wavelet bases (e.g., in [39]). We note that our theory does

not directly exploit this additional structure, and depends only on the local incoherence between Fourier

and wavelet bases. We expect, however, that this additional structure can be used to derive sampling

strategies with stronger reconstruction guarantees, as indicated by the suboptimality of the sampling

densities predicted by our results in numerical simulations (Figure 1).

All the recovery guarantees in this paper are uniform, that is, we seek measurement ensembles which

allow for approximate reconstruction of all images. For non-uniform recovery guarantees, we expect that

the number of measurements required in our main results can be reduced by several logarithmic factors

by following a probabilistic and “RIP-less” approach [6].

It should also be noted that this paper does not address the important issue of errors arising from

discretization of the image and Fourier measurements. In particular, as observed for example in [1],

the use of discrete rather than continuous Fourier representations can be a significant source of error

in compressed sensing. The authors of [1] propose to resolve this issue using uneven sections, that is,

the number of discretization points in frequency is chosen to be larger than the number of discretization

points in time. Nevertheless, the results in [1] are again just formulated for incoherent samples. Recently,

it has been proposed to overcome this issue by sampling all of the low frequencies in addition to uniformly

sampling the higher frequencies [2], but to date, no provable reconstruction guarantees have been provided.

We expect that our approach can be applied to this setup – due to the variable density, it may even be

possible to sample from the infinite set rather than restricting to a finite subset based on an intricate

criterion. Such a generalization is out of reach for the optimization-based approaches such as in [30],

which will always be specific to the given problem dimension. In this sense, we expect that the additional

understanding provided by this paper can eventually lead to optimized sampling schemes. All these

questions, however, are left for future work.

A Proof of Proposition 4.3.

Write uSc = u(1) + u(2) + · · · + u(r) where r = b N
4kγ2 c. Here u(1) is the 4kγ2-sparse image consisting of

the 4kγ2 largest-magnitude components of uSc , u(2) consists of the 4kγ2 largest-magnitude components

among the remaining entries of uSc , and so on. Since the magnitude of each component of u(j−1) is at
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least as large as the average magnitude of the components of u(j), we obtain

‖u(j)‖2 ≤
‖u(j−1)‖1

2γ
√
k

, j = 2, 3, . . .

Combining this with the cone constraint gives

r∑
j=2

‖u(j)‖2 ≤
1

2γ
√
k
‖uSc‖1 ≤

γ

2γ
√
k
‖uS‖1 +

1

2γ
√
k
ξ ≤ 1

2
‖uS‖2 +

1

2γ
√
k
ξ.

Together with the tube constraint and the RIP, we obtain

ε & ‖Au‖2

≥ ‖A(uS + u(1))‖2 −
r∑
j=2

‖A(u(j))‖2

≥
√

1− δ‖uS + u(1)‖2 −
√

1 + δ

r∑
j=2

‖u(j)‖2

≥
√

1− δ‖uS + u(1)‖2 −
√

1 + δ
(1

2
‖uS‖2 +

1

2γ
√
k
ξ
)

≥
(√

1− δ −
√

1 + δ

2

)
‖uS + u(1)‖2 −

√
1 + δ

1

2γ
√
k
ξ.

Then, since δ < 1/3,

‖uS + u(1)‖2 ≤ 5ε+
3ξ

γ
√
k
.

Finally, because ‖
∑r
j=2 u

(j)‖2 ≤
∑r
j=2 ‖u(j)‖2 ≤ 1

2‖uS + u(1)‖2 + 1
2γ
√
k
ξ we have

‖u‖2 ≤ 8ε+
5ξ

γ
√
k
,

confirming (4.1).
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Figure 1: Various reconstructions of an MRI image x ∈ R256×256 with total variation minimization as in Theorem 3.1 with

ε = 0 and using m = 6400 noiseless partial DFT measurements y = FΩx with frequencies Ω = (k1, k2) sampled from various

distributions. Beside each reconstruction is a plot of K-space {(k1, k2) : −N/2 + 1 ≤ k1, k2 ≤ N/2} and the frequencies

used in its reconstruction. (a) Original image (and all of K-space). (b) Reconstruction using only lowest frequencies:

Ω = {(k1, k2) : k2
1 + k2

2 ≤ 80}. (c) Prob
(
(k1, k2) ∈ Ω

)
∼ 1 (Uniform subsampling) (d) Ω comprised of frequencies in

equispaced radial lines. (e) Prob
(
(k1, k2) ∈ Ω

)
∝ (k2

1 + k2
2 + 1)−1/2(f) Prob

(
(k1, k2) ∈ Ω

)
∝

(
max(|k1|, |k2|) + 1

)−1
(g)

Prob
(
(k1, k2) ∈ Ω

)
∝ (k2

1 + k2
2 + 1)−1. (h) Prob

(
(k1, k2) ∈ Ω

)
∝ (k2

1 + k2
2 + 1)−3/2. Theorem 3.1 guarantees stable

and robust recovery for the inverse square-distance distribution in (g); a slightly stronger guarantee can be obtained for

the inverse-max sampling distribution given in (f) from the stronger local coherence bound in Theorem 6.2. The relative

reconstruction error ‖f − f#
TV ‖2/‖f‖2 corresponding to each reconstruction is (b) .2932, (c) .8229, (d) .4074, (e) .3192, (f)

.2603, (g) .2537, and (h) .2463.
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Figure 2: The same reconstructions as in Figure 1, magnified to the chin region: (a) Original image (and all of K-

space). (b) Reconstruction using only lowest frequencies: Ω = {(k1, k2) : k2
1 + k2

2 ≤ 80}. (c) Ω comprised of frequencies

in equispaced radial lines. (d) Prob
(
(k1, k2) ∈ Ω

)
∝ (k2

1 + k2
2 + 1)−1/2 (e) Prob

(
(k1, k2) ∈ Ω

)
∝ (k2

1 + k2
2 + 1)−1. (f)

Prob
(
(k1, k2) ∈ Ω

)
∝ (k2

1 + k2
2 + 1)−3/2. Theorem 3.1 concerns stable and robust recovery for method (e).

25


