Convergence Rates for Inverse Problems with Impulsive Noise

Frank Werner (joint work with Thorsten Hohage)

Institute for Numerical and Applied Mathematics
University of Göttingen, Germany

Workshop on Inverse Problems and Regularization Theory, Shanghai
September 27th, 2013
Outline

1. Impulsive Noise
2. Analysis of Tikhonov regularization
3. Application to Impulsive Noise
4. Numerical simulations
5. Conclusion
Outline

1 Impulsive Noise

2 Analysis of Tikhonov regularization

3 Application to Impulsive Noise

4 Numerical simulations

5 Conclusion
What is Impulsive Noise?

- noise ξ is small in large parts of the domain \mathbb{M}, but large on small parts of the domain
- occurs e.g. in digital image acquisition
- caused by faulty memory locations, malfunctioning pixels etc.
- popular example: salt-and-pepper noise
A continuous model for impulsive noise

Suppose $\xi \in L^1(M)$, $\mathcal{B}(M) \doteq Borel \ \sigma$-algebra of M.

Noise model

There exist two parameters $\varepsilon, \eta \geq 0$ such that

$$\exists \ P \in \mathcal{B}(M) : \|\xi\|_{L^1(M\setminus P)} \leq \varepsilon, \quad |P| \leq \eta.$$
Inverse Problems with Impulsive Noise

- we want to reconstruct f^\dagger from

$$g^{\text{obs}} = F \left(f^\dagger \right) + \xi =: g^\dagger + \xi$$

where ξ is impulsive noise
- natural setup: $F : D(F) \subset \mathcal{X} \rightarrow L^1(M) \subseteq \mathcal{Y}$, possibly nonlinear
- Favorable method: Tikhonov regularization

$$\hat{f}_\alpha \in \arg\min_{f \in D(F)} \left[\frac{1}{\alpha r} \left\| F(f) - g^{\text{obs}} \right\|_Y^r + \mathcal{R}(f) \right]$$

- Minimizer \hat{f}_α exists under reasonable assumptions.
Impulsive Noise

How to choose \mathcal{Y} and r

here: $F = \text{linear integral operator (two times smoothing)}$ on $M = [0, 1]$

$$
f^r_\alpha = \arg\min_{f \in L^2(M)} \left[\frac{1}{r\alpha} \left\| F(f) - g^{\text{obs}} \right\|^{r}_{L^r(M)} + \left\| f \right\|^2_{L^2(M)} \right], \quad r = 1, 2$$

computation of f^1_α via dual formulation, see e.g.

C. Clason, B. Jin, K. Kunisch.
A semismooth Newton method for L^1 data fitting with automatic choice of regularization parameters and noise calibration.

Outline

1. Impulsive Noise
2. Analysis of Tikhonov regularization
3. Application to Impulsive Noise
4. Numerical simulations
5. Conclusion
Theoretical state of the art

- known theory provides rates of convergence as \(\|\xi\|_Y \) tends to 0
- this does not fully explain the remarkable quality of the \(L^1 \)-reconstruction!

Example: 'Most impulsive' noise. \(Y = M(\mathcal{M}) \) (space of all signed measures) and

\[
\xi = \sum_{j=1}^{N} c_j \delta_{x_j}
\]

with \(N \in \mathbb{N}, c_j \in \mathbb{R} \) and \(x_j \in \mathcal{M} \) for \(1 \leq j \leq N \).

Then \(\|\xi\|_{\mathcal{M}(\mathcal{M})} = \sum_{j=1}^{N} |c_j| \) might be large! However

\[
\|g - g^{\text{obs}}\|_{\mathcal{M}(\mathcal{M})} = \|g - g^\dagger\|_{L^1(\mathcal{M})} + \sum_{j=1}^{N} |c_j| = \|g - g^\dagger\|_{L^1(\mathcal{M})} + \|\xi\|_{\mathcal{M}(\mathcal{M})}.
\]

So \(\xi \) does not influence the minimizer \(\hat{f}_\alpha \)!
Improving the noise level

'Most impulsive' noise ξ influences $g \mapsto \|g - g^{\text{obs}}\|_{\mathcal{M}(\mathcal{M})}$ only as an additive constant, no influence on \hat{f}_α!
Idea: For general ξ study the influence of ξ on the data fidelity term $\|g - g^{\text{obs}}\|_\gamma$ for all g.

Variational noise assumption

Suppose there exist $C_{\text{err}} > 0$ and a noise level function $\text{err} : F(D(F)) \to [0, \infty]$ such that
\[
\|g - g^{\text{obs}}\|_\gamma^r - \|\xi\|_\gamma^r \geq \frac{1}{C_{\text{err}}} \|g - g^\dagger\|_\gamma^r - \text{err}(g), \quad g \in F(D(F)).
\]
Examples for the noise function err

$$\| g - g^{\text{obs}} \|_Y^r - \| \xi \|_Y^r \geq \frac{1}{C_{\text{err}}} \| g - g^\dagger \|_Y^r - \text{err}(g), \quad g \in F(D(F)).$$

1. It follows from the triangle inequality that the Assumption is always fulfilled with

$$C_{\text{err}} = 2^{r-1} \quad \text{and} \quad \text{err} \equiv 2 \| \xi \|_Y^r.$$

2. In the Example of 'most impulsive' noise ($\mathcal{Y} = \mathcal{M}(\mathbb{M}), r = 1$) the Assumption holds true with the optimal parameters

$$C_{\text{err}} = 1 \quad \text{and} \quad \text{err} \equiv 0.$$
Convergence analysis under the variational noise assumption

- **Bregman distance:**

\[
D_{\mathcal{R}}^{f^*} \left(f, f^\dagger \right) := \mathcal{R}(f) - \mathcal{R}(f^\dagger) - \langle f^*, f - f^\dagger \rangle
\]

where \(f^* \in \partial \mathcal{R}(f^\dagger) \subset \mathcal{X}' \).

- **use a variational inequality as source condition:**

\[
\beta D_{\mathcal{R}}^{f^*} \left(f, f^\dagger \right) \leq \mathcal{R}(f) - \mathcal{R}(f^\dagger) + \varphi \left(\| F(f) - g^\dagger \|_y \right)
\]

for all \(f \in D(F) \) with \(\beta > 0 \). \(\varphi \) is assumed to fulfill

- \(\varphi(0) = 0 \),
- \(\varphi \uparrow \),
- \(\varphi \) concave.
Convergence rates

suppose

- the noise assumption is fulfilled with a function $\text{err} \geq 0$ and
- the variational inequality holds true.

Theorem (error decomposition)

\[
\beta D^f_R (\hat{f}_\alpha, f^\dagger) \leq \frac{\text{err} \left(F \left(\hat{f}_\alpha \right) \right)}{r \alpha} + \left(-\varphi \right)^* \left(-\frac{1}{r C_{\text{err}} \alpha} \right),
\]

\[
\left\| F \left(\hat{f}_\alpha \right) - g^\dagger \right\|_Y^r \leq \frac{C_{\text{err}}}{\lambda} \text{err} \left(F \left(\hat{f}_\alpha \right) \right) + \frac{r C_{\text{err}} \alpha}{\lambda} \left(-\varphi \right)^* \left(-\frac{1 - \lambda}{r C_{\text{err}} \alpha} \right)
\]

for all $\alpha > 0$ and $\lambda \in (0, 1)$.

Fenchel conjugate:

\[
\left(-\varphi \right)^* (s) = \sup_{\tau \geq 0} (s \tau + \varphi (\tau)).
\]
Outline

1 Impulsive Noise
2 Analysis of Tikhonov regularization
3 Application to Impulsive Noise
4 Numerical simulations
5 Conclusion
Working schedule

• consider Tikhonov regularization for Inverse Problems with Impulsive Noise ($\mathcal{Y} = \mathbb{L}^{-1}(\mathbb{M})$, $r = 1$):

$$\hat{f}_\alpha \in \underset{f \in D(F)}{\text{argmin}} \left[\frac{1}{\alpha} \left\| F(f) - g^{\text{obs}} \right\|_{\mathbb{L}^{-1}(\mathbb{M})} + \mathcal{R}(f) \right]$$

• recall: noise ξ fulfills

$$\exists \mathcal{P} \in \mathcal{B}(\mathbb{M}) : \left\| \xi \right\|_{\mathbb{L}^{-1}(\mathbb{M} \setminus \mathcal{P})} \leq \varepsilon, \quad |\mathcal{P}| \leq \eta$$

$\overset{\sim}{\Rightarrow}$ need to estimate $\text{err}(g)$ with $g = F(\hat{f}_\alpha)$ defined by

$$\left\| g - g^{\text{obs}} \right\|_{\mathbb{L}^{-1}(\mathbb{M})} - \left\| \xi \right\|_{\mathbb{L}^{-1}(\mathbb{M})} \geq \frac{1}{C_{\text{err}}} \left\| g - g^{\dagger} \right\|_{\mathbb{L}^{-1}(\mathbb{M})} - \text{err}(g)$$
First step: triangle inequalities

\[
\|g - g^{\text{obs}}\|_{L^1(M)} - \|\xi\|_{L^1(M)} \geq \frac{1}{C_{\text{err}}} \|g - g^\dagger\|_{L^1(M)} - \text{err}(g)
\]

\[
\|g - g^{\text{obs}}\|_{L^1(M)} - \|\xi\|_{L^1(M)} = \int_{M\setminus P} \left[|g^{\text{obs}} - g| - |\xi|\right] \, dx + \int_{P} \left[|g^{\text{obs}} - g| - |\xi|\right] \, dx
\]

\[
\quad \geq \|g - g^\dagger\|_{L^1(M\setminus P)} - 2\varepsilon - |P| \|g - g^\dagger\|_{L^\infty(P)}
\]

\[
\quad \geq \|g - g^\dagger\|_{L^1(M)} - 2\varepsilon - 2\eta \|g - g^\dagger\|_{L^\infty(P)}
\]

Here we used

- the first triangle inequality on \(M \setminus P\) and
- the second triangle inequality on \(P\).
Second step: improving the bound

\[\| g - g^{\text{obs}} \|_{L^1(M)} - \| \xi \|_{L^1(M)} \geq \| g - g^\dagger \|_{L^1(M)} - 2\varepsilon - 2\eta \| g - g^\dagger \|_{L^\infty(P)} \]

If \(F \) is smoothing and \(g = F(f) \), then \(\| g - g^\dagger \|_{L^\infty(P)} \) also decays with \(\eta \)!

Theorem (Hohage, W.)

If \(k > d/p \), then for all \(C_{\text{err}} > 1 \) there exist \(C > 0 \) and \(\eta_0 > 0 \) such that

\[\| v \|_{L^\infty(M)} \leq C\eta^{d-1/p} \| v \|_{W^{k,p}(M)} + \frac{C_{\text{err}} - 1}{2C_{\text{err}}\eta} \| v \|_{L^1(M)} \]

for all \(v \in W^{k,p}(M) \) and \(\eta \in (0, \eta_0] \).

Follows from techniques used in approximation theory / FEM analysis (Ehrling’s lemma and Sobolev’s embedding theorem).
Second step: improving the bound (cont’)

Smoothing assumption on F

$\mathbb{M} \subset \mathbb{R}^d$ bounded & Lipschitz, $\exists \ k \in \mathbb{N}_0$, $p \in [1, \infty]$, $k > d/p$ and $q \in (1, \infty)$ such that

$$F(D(F)) \subset W^{k,p}(\mathbb{M}) \quad \text{and} \quad \left| F(f) - g^\dagger \right|_{W^{k,p}(\mathbb{M})} \leq C_{F,k,p} D^f_R \left(f, f^\dagger \right)^{\frac{1}{q}}$$

for all $f \in D(F)$ with some $C_{F,k,p} > 0$.

This allows us to use $\nu = F(f) - g^\dagger$, e.g. it follows

$$\left\| F(f) - g^\dagger \right\|_{L^\infty(\mathbb{M})} \leq C\eta^{\frac{k}{d} - \frac{1}{p}} \left| F(f) - g^\dagger \right|_{W^{k,p}(\mathbb{M})} + \frac{C_{\text{err}} - 1}{2C_{\text{err}} \eta} \left\| F(f) - g^\dagger \right\|_{L^1(\mathbb{M})}$$

whenever η is sufficiently small.
Second step: improving the bound (cont’)

\[
\| F(f) - g^{\text{obs}} \|_{L^1(M)} - \| \xi \|_{L^1(M)} \\
\geq \| F(f) - g^\dagger \|_{L^1(M)} - 2\varepsilon - 2\eta \| F(f) - g^\dagger \|_{L^\infty(P)} \\
\geq \left(1 - \frac{C_{\text{err}} - 1}{C_{\text{err}}} \right) \| F(f) - g^\dagger \|_{L^1(M)} - 2\varepsilon - 2C\eta^{\frac{k}{d} - \frac{1}{p} + 1} \| F(f) - g^\dagger \|_{W^{k,p}(M)} \\
\geq \frac{1}{C_{\text{err}}} \| F(f) - g^\dagger \|_{L^1(M)} - 2\varepsilon - 2C C_{F,k,p} \eta^{\frac{k}{d} - \frac{1}{p} + 1} D^*_R (f, f^\dagger)^{\frac{1}{q}} \\
\geq \frac{1}{C_{\text{err}}} \| F(f) - g^\dagger \|_{L^1(M)} - \text{err} (F(f))
\]

\[
\| F(f) - g^\dagger \|_{L^\infty(M)} \leq C\eta^{\frac{k}{d} - \frac{1}{p}} \| F(f) - g^\dagger \|_{W^{k,p}(M)} + \frac{C_{\text{err}} - 1}{2C_{\text{err}}\eta} \| F(f) - g^\dagger \|_{L^1(M)}
\]

\[
\| F(f) - g^\dagger \|_{W^{k,p}(M)} \leq C_{F,k,p} D^*_R (f, f^\dagger)^{\frac{1}{q}}
\]

Thus for any $C_{\text{err}} > 1$ we can choose

\[
\text{err} (F(f)) = 2\varepsilon + 2C_{F,k,p} C\eta^{\frac{k}{d} - \frac{1}{p} + 1} D^*_R (f, f^\dagger)^{\frac{1}{q}}
\]
Third step: final estimate for $\text{err} \left(F \left(\hat{f}_\alpha \right) \right)$

Calculation above:

$$\text{err} \left(F \left(\hat{f}_\alpha \right) \right) = 2\varepsilon + 2C_{F,k,p}C\eta^{\frac{k}{d} - \frac{1}{p}} + 1D_{R}^{f^*} \left(\hat{f}_\alpha, f^\dagger \right)^{\frac{1}{q}}$$

General convergence analysis:

$$\beta D_{R}^{f^*} \left(\hat{f}_\alpha, f^\dagger \right) \leq \frac{\text{err} \left(F \left(\hat{f}_\alpha \right) \right)}{\alpha} + (-\varphi)^* \left(-\frac{1}{C_{\text{err} \alpha}} \right)$$

This implies using Young’s inequality and $(a + b)\frac{1}{q} \leq a\frac{1}{q} + b\frac{1}{q}$ that

$$\text{err} \left(F \left(\hat{f}_\alpha \right) \right) \leq 2q'\varepsilon + (q' - 1)\frac{q'^k + q'(p-1)}{\alpha q'^{-1}} + C' (-\varphi)^* \left(-\frac{1}{C_{\text{err} \alpha}} \right)$$

where $1/q + 1/q' = 1$ and $C' > 0$ whenever $\alpha > 0$ and $\eta \geq 0$ is sufficiently small.
Error bound for Tikhonov regularization

Insert the estimate for $\text{err} \left(F \left(\hat{f}_\alpha \right) \right)$ into the general error decomposition to obtain

Theorem (Hohage, W.)

Suppose the variational inequality is fulfilled and F obeys the smoothing assumption. Then we have for arbitrary $C_{\text{err}} > 1$ and all $\alpha > 0$ and $\eta > 0$ sufficiently small

$$
\beta D_{\mathcal{R}}^f \left(\hat{f}_\alpha, f^\dagger \right) \leq 2q' \frac{\varepsilon}{\alpha} + (q' - 1) \frac{\eta \frac{q'k}{d} + \frac{q'(p-1)}{p}}{\alpha q'} + C' (-\varphi)^* \left(-\frac{1}{C_{\text{err}} \alpha} \right)
$$

$$
\left\| F \left(\hat{f}_\alpha \right) - g^\dagger \right\|_{L^1(\mathcal{M})} \leq 4q' \varepsilon + 2(q' - 1) \frac{\eta \frac{q'k}{d} + \frac{q'(p-1)}{p}}{\alpha q' - 1} + 2C' C_{\text{err}} \alpha (-\varphi)^* \left(-\frac{1}{C_{\text{err}} \alpha} \right)
$$

For simplicity we study only $q = 2$ and $\varphi (\tau) = c \tau^\kappa$ with $c > 0$ and $\kappa \in (0, 1)$ in the following.
An optimal a priori parameter choice

\[
\beta D^*_{\mathcal{R}} \left(\hat{f}_\alpha, f^\dagger \right) \leq 4 \frac{\varepsilon}{\alpha} + \frac{\eta}{\alpha^2} d + \frac{2(p-1)}{p} \quad + C' \left(-\varphi \right)^* \left(-\frac{1}{C_{\text{err}} \alpha} \right)
\]

If \(\varphi(t) = c \cdot t^\kappa \) with \(c > 0 \) and \(\kappa \in (0, 1) \), then \((-\varphi)^* \left(-\frac{1}{\alpha}\right) = C \cdot \alpha^{\kappa/(1-\kappa)} \).

So for \(\alpha \sim \max \left\{ \varepsilon^{1-\kappa}, \eta^{\left(\frac{1-\kappa}{2-\kappa}\right)} \left(\frac{2k}{d} + \frac{2(p-1)}{p}\right) \right\} \) we obtain

\[
D^*_{\mathcal{R}} \left(\hat{f}_\alpha, f^\dagger \right) = O \left(\max \left\{ \varepsilon^{\kappa}, \eta^{\frac{\kappa \gamma}{2-\kappa}} \right\} \right)
\]

with \(\gamma := \frac{2k}{d} + \frac{2(p-1)}{p} \) as \(\max \{ \varepsilon, \eta \} \searrow 0 \).
Functional dependence of ε and η

$$\exists \ P \in \mathcal{B}(M) : \quad \|\xi\|_{L^1(M\setminus P)} \leq \varepsilon, \quad |P| \leq \eta \quad \text{(1)}$$

- model allows for different choices of ε and η which depend on each other
- study the dependence function

$$\varepsilon_\xi(\eta) := \inf \left\{ \|\xi\|_{L^1(M\setminus P)} \mid P \in \mathcal{B}(M), |P| \leq \eta \right\} .$$

- then for any $\eta \geq 0$ eq. (1) is fulfilled with $\varepsilon = \varepsilon_\xi(\eta)$
- for $\xi \in L^1(M)$ the following holds true:
 1. $\varepsilon_\xi(0) = \|\xi\|_{L^1(M)}$, $\varepsilon_\xi(|M|) = 0$
 2. ε_ξ is continuous, decreasing, and convex
Examples for ε_ξ
Convergence rates in terms of an optimal \(\eta \)

- Recall: \(\mathcal{D}_{f^*}^R \left(\hat{f}_\alpha, f^\dagger \right) = \mathcal{O} \left(\max \{ \varepsilon^\kappa, \eta^{2-\kappa} \} \right) \)

- Substituting \(\varepsilon \) by \(\varepsilon_\xi (\eta) \) yields

\[
\mathcal{D}_{f^*}^R \left(\hat{f}_\alpha, f^\dagger \right) \leq C \inf_{0 \leq \eta \leq |\mathcal{M}|} \left[\varepsilon_\xi (\eta)^\kappa + \eta^{2-\kappa} \gamma \right] \quad \text{as} \quad \xi \to 0
\]

- Note that \(\xi \) and \(\varepsilon_\xi \) are unknown in general, but possibly an upper bound for \(\varepsilon_\xi \) can be calculated

- As \(\varepsilon_\xi \downarrow \) and \(\eta^{2-\kappa} \uparrow \) in \(\eta \), there exists an intersecting point \(\bar{\eta} > 0 \)

- Thus we have

\[
\mathcal{D}_{f^*}^R \left(\hat{f}_\alpha, f^\dagger \right) \leq 2C \varepsilon_\xi (\bar{\eta})^\kappa \quad \text{as} \quad \xi \to 0
\]

- The state-of-the-art analysis yields (\(\eta = 0 \))

\[
\mathcal{D}_{f^*}^R \left(\hat{f}_\alpha, f^\dagger \right) \leq \bar{C} \varepsilon_\xi (0)^\kappa \quad \text{as} \quad \xi \to 0.
\]

\(\sim \) improvement measured by the factor \((\varepsilon_\xi (0) / \varepsilon_\xi (\bar{\eta}))^{\kappa} \), which is arbitrary large for impulsive noise
Outline

1. Impulsive Noise
2. Analysis of Tikhonov regularization
3. Application to Impulsive Noise
4. Numerical simulations
5. Conclusion
Considered operator

- $\mathbb{M} = [0, 1]$ and $T : L^2(\mathbb{M}) \rightarrow L^2(\mathbb{M})$ defined by
 \[
 (Tf)(x) = \int_{0}^{1} k(x, y) f(y) \, dy, \quad x \in \mathbb{M}
 \]
 with kernel $k(x, y) = \min\{x \cdot (1 - y), y \cdot (1 - x)\}, \ x, y \in \mathbb{M}$.

- then $(Tf)'' = f$ for any $f \in L^2(\mathbb{M})$ and T is 2 times smoothing ($k = 2$ and $p = 2$).

- the smoothing Assumption is valid with exponent
 $\gamma = \frac{2k}{d} + 2(p - 1)/p = 5$ and $q = 2$.

- discretization: equidistant points $x_1 = \frac{1}{2n}, x_2 = \frac{3}{2n}, \ldots, x_n = \frac{2n-1}{2n}$ and composite midpoint rule
 \[
 (Tf)(x) = \int_{0}^{1} k(x, y) f(y) \, dy \approx \frac{1}{n} \sum_{i=1}^{n} k(x, x_i) f(x_i).
 \]
Simulations

- f^\dagger and g^\dagger are calculated analytically to avoid an inverse crime
- we consider 'purely impulsive noise' ($\varepsilon = 0$) for different values of η
- generation of ξ:
 - given η, choose randomly $\lceil\eta \cdot n\rceil$ grid points forming \mathbb{P}
 - simulate ξ such that $\xi|_{\mathcal{M}\setminus\mathbb{P}} = 0$ and $\xi|_{\mathbb{P}} = \pm 1/\eta$ with probability $1/2$ respectively for each $x_i \in \mathbb{P}$
- for each $\eta_j = (4/5)^j, j = 1, \ldots$ we perform 10 experiments
- in each experiment α is chosen optimally by trial and error
- following plots show η vs. empirical mean of $D^f_{\mathcal{R}}(\hat{f}_\alpha, f^\dagger)$
Example 1

(a) Exact solution f^\dagger

(b) Estimated index function φ

(c) mean convergence in \mathcal{X}
Example 2

(d) Exact solution f^\dagger

(e) Estimated index function φ

(f) mean convergence in \mathcal{X}

$\varphi \quad t \mapsto c \cdot t^{0.35}$
Outline

1. Impulsive Noise
2. Analysis of Tikhonov regularization
3. Application to Impulsive Noise
4. Numerical simulations
5. Conclusion
Presented results and future work

- Inverse Problems with Impulsive noise
 - continuous model for Impulsive noise
 - improved convergence rates
- numerical examples suggest order optimality
- future work: infinitely smoothing operators!

T. Hohage and F. Werner
Convergence rates for Inverse Problems with Impulsive Noise.

Thank you for your attention!