
Convex functions
Conjugacy and subdifferentiability

Convex duality

Lecture Series
on

“Convex analysis with applications in inverse problems”

Lecture 1: Convex analysis: basics, conjugation and duality

Radu Ioan Boţ

Chemnitz University of Technology
Department of Mathematics

09107 Chemnitz
www.tu-chemnitz.de/∼rabot

Institute for Numerical and Applied Mathematics
University of Goettingen

June 11, 2012

Radu Ioan Boţ Convex analysis: basics, conjugation and duality 1 / 36



Convex functions
Conjugacy and subdifferentiability

Convex duality

Lecture Series
on

“Convex analysis with applications in inverse problems”

I Lecture 1: Convex analysis: basics, conjugation and duality (Monday, June 11,
2012)

I Lecture 2: Proximal methods in convex optimization (Wednesday, June 13, 2012)
I Lecture 3: Convex regularization techniques for linear inverse problems (Thursday,

June 14, 2012)

Radu Ioan Boţ Convex analysis: basics, conjugation and duality 2 / 36



Convex functions
Conjugacy and subdifferentiability

Convex duality

Contents

Convex functions
Algebraic properties of convex functions
Topological properties of convex functions

Conjugacy and subdifferentiability
Conjugate functions
The convex subdifferential

Convex duality
Fenchel duality
Lagrange duality

Radu Ioan Boţ Convex analysis: basics, conjugation and duality 3 / 36



Convex functions
Conjugacy and subdifferentiability

Convex duality
Algebraic properties of convex functions
Topological properties of convex functions

Convex functions
Algebraic properties of convex functions
Let (X, ‖ · ‖) be a normed space, (X∗, ‖ · ‖∗) its topological dual space and the
duality pairing on X∗ ×X, 〈·, ·〉 : X∗ ×X → R, 〈x∗, x〉 = x∗(x).
Convex function
A function f : X → R := R ∪ {±∞} is said to be convex, if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) ∀x, y ∈ X ∀λ ∈ [0, 1].

I Conventions: (+∞) + (−∞) = +∞, 0(+∞) = +∞, 0(−∞) = 0.
I The effective domain of the function f : X → R is the set
dom f := {x ∈ X : f(x) < +∞}. If f is convex, then dom f is a convex set.
I A function f : X → R is said to be proper if f(x) > −∞ ∀x ∈ X and dom f 6= ∅.
Some examples of convex functions
I The norm ‖ · ‖ : X → R is a convex function.
I The indicator function of a set S ⊆ X is defined as

δS : X → R, δS(x) =
{

0, if x ∈ S,
+∞, otherwise.

The function δS is convex if and only if S is a convex set.
I When A ∈ Rn×n is a symmetric matrix, then f : Rn → R, f(x) = xTAx, is convex
if and only if A is positive semidefinite.
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I The epigraph of a function f : X → R is the set

epi f = {(x, r) ∈ X × R : f(x) ≤ r}.

I The function f is convex if and only if the set epi f is convex.
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Level set
If f : X → R is a convex function, then for each λ ∈ R its upper level set

{x ∈ X : f(x) ≤ λ}

is convex. However, the opposite statement is not true. A counterexample in this sense
is provided by the function f : R→ R, f(x) = x3.

Sublinear function
A function f : X → R is said to be sublinear, if it is:
I positively homogeneous: f(0) = 0 and f(λx) = λf(x) ∀λ > 0 ∀x ∈ X;
I subadditive: f(x+ y) ≤ f(x) + f(y) ∀x, y ∈ X.

I A function is sublinear if and only if it is positively homogeneous and convex.
I A function f : X → R is sublinear if and only if epi f is a convex cone with
(0,−1) /∈ epi f .
Composition with an affine mapping
When (Y, ‖ · ‖) is another normed space, the operator T : X → Y is said to be affine, if

T (λx+ (1− λ)y) = λT (x) + (1− λ)T (y) ∀x, y ∈ X ∀λ ∈ R.

When f : Y → R is convex and T : X → Y is affine, then f ◦ T : X → R is convex.
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Pointwise supremum
The pointwise supremum of a family of convex functions fi : X → R,

supi∈I fi : X → R, supi∈I fi(x) = sup{fi(x) : i ∈ I},

is convex. Notice that epi
(
supi∈I fi

)
=
⋂
i∈I epi fi.

Infimal value function
When Φ : X × Y → R is convex, then its infimal value function

h : Y → R, h(y) = inf{Φ(x, y) : x ∈ X},
is convex, too.

Infimal convolution
The infimal convolution of two functions f, g : X → R is defined as

f�g : X → R, (f�g)(x) = inf{f(x− y) + g(y) : y ∈ X}.
One has epi(f�g) = epi f + epi g. When f and g are convex, then f�g is convex, too.

Example (distance function)
When S ⊆ X is a convex set, then its distance function dS : X → R fulfills

dS(x) = inf{‖x− y‖ : y ∈ S} = (‖ · ‖�δS)(x) ∀x ∈ X,
thus it is convex.
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Topological properties of convex functions

Lower semicontinuous function
A function f : X → R is said to be
I lower semicontinuous at x ∈ X, if lim inf

y→x
f(y) := sup

δ>0
inf

y∈B(x,δ)
f(y) ≥ f(x);

I lower semicontinuous, if it is lower semicontinuous at every x ∈ X.

For a given function f : X → R the following statements are equivalent:
I f is lower semicontinuous;
I epi f is closed;
I every upper level set {x ∈ X : f(x) ≤ λ}, λ ∈ R, is closed.

Example (indicator function)
For the indicator function δS of a set S ⊆ X one has epi δS = S × R+. Thus δS is
lower semicontinuous if and only if S is closed.

Pointwise supremum
The pointwise supremum of a family of lower semicontinuous functions fi : X → R,

supi∈I fi : X → R, supi∈I fi(x) = sup{fi(x) : i ∈ I},
is lower semicontinuous.
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Lower semicontinuous hull
The lower semicontinuous hull of a function f : X → R is defined as

f̄ : X → R, f̄(x) = inf{r : (x, r) ∈ cl(epi f)}.

The following statements are true:
I lim inf

y→x
f(y) = f̄(x) ∀x ∈ X;

I epi f̄ = cl(epi f);
I f̄ = sup{h : X → R : h ≤ f and h is lower semicontinuous}.

Affine minorant
One says that x 7→ 〈x∗, x〉+ α, where (x∗, α) ∈ X∗ × R, is an affine minorant of
f : X → R, if

〈x∗, y〉+ α ≤ f(y) ∀y ∈ X.

Fundamental result
A function f : X → R is convex, lower semicontinuous and it fulfills f > −∞ if and
only if there exists (x∗, α) ∈ X∗ × R such that 〈x∗, y〉+ α ≤ f(y) for all y ∈ X and

f(x) = sup{〈x∗, x〉+ α : (x∗, α) ∈ X∗ × R, 〈x∗, y〉+ α ≤ f(y) ∀y ∈ X} ∀x ∈ X.
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Weak lower semicontinuity
I A function f : X → R is said to be weakly lower semicontinuous, if epi f is weakly
closed.
I Since

epi f ⊆ cl(epi f) ⊆ clω(X,X∗)×R(epi f),

every weakly lower semicontinuous function is lower semicontinuous, too.
I If f : X → R is convex, then f is weakly lower semicontinuous if and only if f is
lower semicontinuous.

Continuity via convexity
If a convex function f : X → R is bounded above on a neighborhood of a point of its
domain, then f is continuous on int(dom f).

Local Lipschitz continuity via convexity
If a proper and convex function f : X → R is bounded above on a neighborhood of a
point of its domain, then f is locally Lipschitz continuous on int(dom f), i.e. for all
x ∈ int(dom f) there exist ε > 0 and L ≥ 0 such that

|f(y)− f(z)| ≤ L‖y − z‖ ∀y, z ∈ B(x, ε).
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An intermezzo: the algebraic interior of a convex set
The algebraic interior of a convex set S ⊆ X is

core(S) := {s ∈ S : cone(S − s) = ∪
λ>0

λ(S − s) = X}.

I One always has int(S) ⊆ core(S).
I If int(S) 6= ∅ or X is finite-dimensional, then int(S) = core(S).

Example
Let x] : X → R be a discontinuous linear functional and S := {x ∈ X : |〈x], x〉| ≤ 1}.
Then int(S) = ∅, while 0 ∈ core(S) 6= ∅.

From lower semicontinuity to continuity
If X is a Banach space and f : X → R is a convex and lower semicontinuous function,
then int(dom f) = core(dom f) and f is continuous on int(dom f).

Example
If X is a Banach space and S ⊆ X is a convex and closed set, then
int(S) = int(dom δS) = core(dom δS) = core(S). However, these sets can be also
empty. This is, for instance, the case when

p ∈ [1,+∞), X = `p and S = `p+ := {(xk)k≥1 ∈ `p : xk ≥ 0 ∀k ≥ 1}.
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Conjugacy and subdifferentiability

Conjugate functions

(Fenchel-Legendre-) Conjugate function of a function f : X → R:

f∗ : X∗ → R, f∗(x∗) = sup
x∈X
{〈x∗, x〉 − f(x)}.

Properties of the conjugate function (I)
For a given function f : X → R we have:
I f∗ is convex and weak∗ lower semicontinuous;
I Young-Fenchel-inequality:

f(x) + f∗(x∗) ≥ 〈x∗, x〉 ∀(x, x∗) ∈ X ×X∗;

I when, for g : X → R, f ≤ g, then g∗ ≤ f∗;
I f∗ = (f̄)∗.
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Examples
I The conjugate function of the indicator function of a set S ⊆ X is the so-called
support function of S,

σS : X∗ → R, σS(x∗) = δ∗S(x∗) = sup
x∈S
〈x∗, x〉.

I For f = ‖ · ‖, one has f∗(x∗) =
{

0, if ‖x∗‖∗ ≤ 1,
+∞, otherwise.

I For f = 1
2‖ · ‖

2, one has f∗ = 1
2‖ · ‖

2
∗.

Properties of the conjugate function (II)
For a given function f : X → R we have:
I −f∗(0) = inf

x∈X
f(x);

I (λf)∗(x∗) = λf∗
(

1
λ
x∗
)
∀λ > 0 ∀x∗ ∈ X∗;

I for x̄ ∈ X:
(f(·+ x̄))∗(x∗) = f∗(x∗)− 〈x∗, x̄〉 ∀x∗ ∈ X∗;

I for x̄∗ ∈ X∗:
(f + 〈x̄∗, ·〉)∗(x∗) = f∗(x∗ − x̄∗) ∀x∗ ∈ X∗.
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Properties of the conjugate function (III)
Let be Φ : X × Y → R.
I If

h : Y → R, h(y) = inf{Φ(x, y) : x ∈ X},

then
h∗(y∗) = Φ∗(0, y∗) ∀y∗ ∈ Y ∗.

I If
Φ(x, y) = f(x) + g(y),

where f : X → R and g : Y → R, then

Φ∗(x∗, y∗) = f∗(x∗) + g∗(y∗) ∀(x∗, y∗) ∈ X∗ × Y ∗.

The conjugate of the infimal convolution
For f, g : X → R proper functions one has

(f�g)∗ = f∗ + g∗.
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Biconjugate function of a function f : X → R

f∗∗ : X → R, f∗∗(x) = sup
x∗∈X∗

{〈x∗, x〉 − f∗(x∗)}.

I When X∗ is endowed with the weak∗ topology, then f∗∗ = (f∗)∗.
I One always has: f∗∗ ≤ f̄ ≤ f .

Theorem of Fenchel-Moreau
If f : X → R is a proper, convex and lower semicontinuous function, then f∗ is proper
and it holds f∗∗ = f .

Conjugate of the biconjugate
For f : X → R a given function it holds

f∗∗∗ = (f∗∗)∗ = (f∗)∗∗ = f∗.

The conjugate of the sum
For f, g : X → R proper, convex and lower semicontinuous functions with
dom f ∩ dom g 6= ∅ it holds

(f + g)∗ = (f∗∗ + g∗∗)∗ = (f∗�g∗)∗∗ =
(
f∗�g∗

)∗∗
= f∗�g∗.
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The convex subdifferential

The convex subdifferential of f at x ∈ X:

∂f(x) := {x∗ ∈ X∗ : f(y)− f(x) ≥ 〈x∗, y − x〉 ∀y ∈ X},

for f(x) ∈ R. Otherwise, ∂f(x) := ∅.

Properties of the convex subdifferential (I)
For a given function f : X → R and x ∈ X we have:
I the set ∂f(x) is convex and weak∗ closed and it can be empty, even if f(x) ∈ R;
I x∗ ∈ ∂f(x)⇔ f(x) + f∗(x∗) = 〈x∗, x〉;
I if ∂f(x) 6= ∅, then f̄(x) = f(x) and ∂f̄(x) = ∂f(x);
I when f proper:

x is a global minimum of f ⇔ 0 ∈ ∂f(x).
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Examples
I The convex subdifferential of the indicator function of a set S ⊆ X at x ∈ X is the
so-called normal cone of S at X,

NS(x) := ∂(δS)(x) =
{
{x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ 0 ∀y ∈ S}, if x ∈ S,
∅, otherwise.

I One has

∂‖ · ‖(x) =
{
{x∗ ∈ X∗ : ‖x∗‖∗ ≤ 1}, if x = 0,
{x∗ ∈ X∗ : ‖x∗‖∗ = 1, ‖x‖ = 〈x∗, x〉}, otherwise.

I One has ∂
(

1
2‖ · ‖

2
)

(x) = {x∗ ∈ X∗ : ‖x∗‖∗ = ‖x‖, ‖x∗‖∗‖x‖ = 〈x∗, x〉}.

Properties of the convex subdifferential (II)
For a given function f : X → R and x ∈ X we have:
I ∂(λf)(x) = λ∂f (x) ∀λ > 0;
I for x̄ ∈ X:

∂f(·+ x̄)(x) = ∂f(x+ x̄);

I for x̄∗ ∈ X∗:
∂(f + 〈x̄∗, ·〉)(x) = ∂f(x) + x∗.
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Properties of the convex subdifferential (III)
For a proper function f : X → R and x ∈ dom f we have:
I x∗ ∈ ∂f(x)⇒ x ∈ ∂f∗(x∗), where

∂f∗(x∗) := {z ∈ X : f∗(y∗)− f∗(x∗) ≥ 〈y∗ − x∗, z〉 ∀y∗ ∈ X∗};

I if f is convex and lower semicontinuous at x, then

x∗ ∈ ∂f(x)⇔ x ∈ ∂f∗(x∗).

The convex subdifferential of the sum of two functions
For f : X → R, g : Y → R given functions and A : X → Y a linear continuous
operator it holds

∂f(x) +A∗(∂g(Ax)) ⊆ ∂(f + g ◦A)(x) ∀x ∈ X,

where A∗ : Y ∗ → X∗,

〈A∗y∗, x〉 = 〈y∗, Ax〉 ∀(x, y∗) ∈ X × Y ∗,

denotes the adjoint operator of A.
Thus, when X = Y and A is the identity on X, it holds

∂f(x) + ∂g(x) ⊆ ∂(f + g)(x) ∀x ∈ X.
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Convex subdifferential and directional derivatives
Let f : X → R be a proper and convex function and x ∈ dom f . The following
statements are true:
I the directional derivative of f at x fulfills for every direction d ∈ X:

f ′(x; d) = lim
t↓0

f(x+ td)− f(x)
t

= inf
t>0

f(x+ td)− f(x)
t

∈ R;

I it holds:
∂f(x) = {x∗ ∈ X∗ : f ′(x; d) ≥ 〈x∗, d〉 ∀d ∈ X};

I if f is Gâteaux differentiable at x, i.e

∃∇f(x) ∈ X∗ such that f ′(x; d) = 〈∇f(x), d〉 ∀d ∈ X,

then
∂f(x) = {∇f(x)}.

Examples
When (X, ‖ · ‖) is a Hilbert space one has

I ∂‖ · ‖(x) =
{
{x∗ ∈ X : ‖x∗‖ ≤ 1}, if x = 0,{

1
‖x‖x

}
, otherwise.

I ∂
(

1
2‖ · ‖

2
)

(x) = {x} for all x ∈ X.
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Subdifferentiability via continuity
Let f : X → R be proper, convex and continuous at x ∈ dom f . The following
statements are true:
I ∂f(x) 6= ∅;
I ∂f(x) is weak∗ compact and, consequently, norm-bounded;
I f ′(x; ·) is continuous and it holds

f ′(x; d) = max{〈x∗, d〉 : x∗ ∈ ∂f(x)} ∀d ∈ X;

I if ∂f(x) is a singleton, then f is Gâteaux differentiable at x.

Example
When f : X → R is a proper, convex and lower semicontinuous function at
x ∈ dom f , which fails to be continuous at x ∈ dom f , ∂f(x) may be empty.
For

f : R→ R, f(x) =
{
−
√

1− x2, if |x| ≤ 1,
+∞, otherwise,

one has ∂f(1) = ∅.
Moreover,

∅ = 0∂f(1) 6= ∂(0f)(1) = R−.
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Convex duality
Fenchel duality
For f : X → R and g : Y → R proper and convex functions fulfilling
A(dom f) ∩ dom g 6= ∅, we consider the unconstrained optimization problem

(P ) inf
x∈X
{f(x) + g(Ax)}.

Particular case included (I)
For X = Y , A the identity operator on X and f, g : X → R proper and convex
functions fulfilling dom f ∩ dom g 6= ∅, problem (P ) reads

inf
x∈X
{f(x) + g(x)}.

Particular case included (II)
Let fi : X → R, i = 1, ..., k, be proper and convex functions fulfilling
∩ki=1 dom fi 6= ∅. By taking Y :=

∏k

i=1 X, A : X → Y , Ax = (x, ..., x), f(x) = 0 for
all x ∈ X and g : Y → R, g(x1, ..., xk) =

∑k

i=1 fi(xi), problem (P ) becomes

inf
x∈X

{∑k

i=1
fi(x)

}
.
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Fenchel dual problem to (P ):

(D) sup
y∗∈Y ∗

{−f∗(−A∗y∗)− g∗(y∗)} .

Weak duality (is always fulfilled):

inf
x∈X
{f(x) + g(Ax)} ≥ sup

y∗∈Y ∗
{−f∗(−A∗y∗)− g∗(y∗)} .

Strong duality holds, if:

inf
x∈X
{f(x) + g(Ax)} = max

y∗∈Y ∗
{−f∗(−A∗y∗)− g∗(y∗)} .
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Example (nonzero duality gap)
Let A : R2 → R2, A(x1, x2) = (x1, x2),

f : R2 → R, f(x1, x2) = max{−1,−√x1x2}+ δR2
+

(x1, x2)

and

g : R2 → R, g(x1, x2) = δ{0}×R(x1, x2).

The optimal objective value of (P ) is equal to 0, while the optimal objective value of
(D) is equal to -1.

Example (zero duality gap, but no strong duality)
Let A : R→ R, Ax = x,

f : R→ R, f(x) =

{
x(lnx− 1), if x > 0,
0, if x = 0,
+∞, otherwise,

and

g : R→ R, g(x) = 1
2x

2 + δR− (x).

The optimal objective values of (P ) and (D) are both equal to 0, however the dual
problem has no optimal solution.
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An intermezzo: the strong-quasi relative interior
The strong-quasi relative interior of a convex set S ⊆ X is

sqri(S) := {s ∈ S : cone(S − s) is a closed linear subspace}.

I Recall: core(S) = {s ∈ S : cone(S − s) = X}.
I One always has int(S) ⊆ core(S) ⊆ sqri(S).
I If int(S) 6= ∅, then int(S) = core(S) = sqri(S).
I If X is finite-dimensional, then

int(S) = core(S) and sqri(S) = ri(S) = intaff(S)(S).
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Interiority-type qualification conditions for Fenchel duality:
I (F ): ∃x′ ∈ dom f ∩A−1(dom g) such that g is continuous at Ax′;

I (MR) (Moreau-Rockafellar, 1966): 0 ∈ core(A(dom f)− dom g);

I (AB) (Attouch-Brezis, 1986): 0 ∈ sqri(A(dom f)− dom g).

Strong duality statements:
I (F )⇒ strong duality for (P )− (D);
I When X and Y are Banach spaces and f, g are lower semicontinuous, then

(F )⇒ (MR)⇒ (AB)⇒ strong duality for (P )− (D).

The finite-dimensional case
If X = Rn and Y = Rm, then (AB)⇔ A(ri(dom f)) ∩ ri(dom g) 6= ∅ ⇒ strong
duality for (P )− (D).
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Closedness-type qualification condition for Fenchel duality:
I (B): (A∗ × idR)(epi f∗) + epi g∗ is closed in (X∗, ω(X∗, X))× R.

I If f, g are lower semicontinuous, then (B)⇒ strong duality for (P )− (D).
I If X,Y are Banach spaces and f, g are lower semicontinuous, then

(F )⇒ (MR)⇒ (AB)⇒ (B).

Example
Let A : R→ R, Ax = x,

f : R→ R, f(x) = 1
2x

2 + δR+ (x) and g : R→ R, g(x) = δR− (x).

The functions f and g are proper, convex and lower semicontinuous and none of the
interiority-type qualification conditions is fulfilled. On the other hand,

(A∗ × idR)(epi f∗) + epi g∗ = R× R+

and (B) is valid, i.e. for (P ) and (D) one has strong duality.
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Subdifferential formulae
I Recall:

∂(f + g ◦A)(x) ⊇ ∂f(x) +A∗(∂g(Ax)) ∀x ∈ X.

I Each of the qualification conditions (F ), (MR), (AB) and (B) guarantees (under
corresponding topological assumptions) that

∂(f + g ◦A)(x) = ∂f(x) +A∗(∂g(Ax)) ∀x ∈ X.

Optimality conditions for (P )
Assume that one of the qualification conditions (F ), (MR), (AB) and (B) (under
corresponding topological assumptions) is fulfilled. Then x̄ ∈ X is an optimal solution
to (P ) if and only if

0 ∈ ∂f(x̄) +A∗(∂g(Ax̄)).
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Lagrange duality
Consider the geometric and cone-constrained optimization problem

(P ) inf f(x),
s.t. g(x) ∈ −K,

x ∈ S

where
I X,Z are two normed spaces;
I K ⊆ Z is a nonempty convex cone, i.e., ∀λ ≥ 0 ∀k ∈ K ⇒ λk ∈ K.

By ≤K we denote the partial order induced by K on Z, i.e.,

for u, v ∈ Z it holds u ≤K v ⇔ v − u ∈ K

and by
K∗ := {λ ∈ Z∗ : 〈λ, k〉 ≥ 0 ∀k ∈ K}

the dual cone of K;
I S ⊆ X is a convex set;
I f : X → R is a proper and convex function;
I g : X → Z is a K-convex function, i.e.,

the K-epigraph of g, epiK g = {(x, z) ∈ X × Z : g(x) ≤K z}, is convex

or, equivalently,
g(λx+ (1− λ)y) ≤K λg(x) + (1− λ)g(y) ∀x, y ∈ X ∀λ ∈ [0, 1];

I the feasiblity condition dom f ∩ A 6= ∅ is fulfilled, with

A := {x ∈ S : g(x) ∈ −K}.
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Particular case included (I)
For Z = Rm, K = Rm+ and g = (g1, ..., gm)T : X → Rm, problem (P ) reads

inf f(x).
s.t. gi(x) ≤ 0, i = 1, ...,m,

x ∈ S

The function g is K-convex ⇔ gi, i = 1, ...,m, is convex.

Particular case included (II)
For Z = Rm+p, K = Rm+ × {0Rp} and g = (g1, ..., gm, h1, ..., hp)T : X → Rm+p,
problem (P ) reads

inf f(x).
s.t. gi(x) ≤ 0, i = 1, ...,m,

hj(x) = 0, j = 1, ..., p,
x ∈ S

The function g is K-convex ⇔ gi, i = 1, ...,m, is convex and hj , j = 1, ..., p, is affine.
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Particular case included (III)
For an arbitrary index set I, Z = RI := {z|z : I → R},
K = (RI)+ := {z ∈ RI |z(i) ≥ 0 ∀i ∈ I} and g = (gi)i∈I : X → RI , problem (P )
reads

inf f(x).
s.t. gi(x) ≤ 0, i ∈ I,

x ∈ S

The function g is K-convex ⇔ gi is convex for every i ∈ I.
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Lagrange dual problem to (P ):

(D) sup
λ∈K∗

inf
x∈S
{f(x) + 〈λ, g(x)〉} .

Weak duality (is always fulfilled):

inf
x∈A

f(x) ≥ sup
λ∈K∗

inf
x∈S
{f(x) + 〈λ, g(x)〉} .

Strong duality holds, if:

inf
x∈A

f(x) = max
λ∈K∗

inf
x∈S
{f(x) + 〈λ, g(x)〉} .
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Example (nonzero duality gap)
Let X = R2, Z = R, K = R+, S = {0} × [3, 4] ∪ (0, 2]× (1, 4] ⊆ R2,

f : R2 → R, f(x1, x2) = x2

and

g : R2 → R, g(x1, x2) = x1.

Then A = 0× [3, 4] and the optimal objective value of (P ) is equal to 3, while the
optimal objective value of (D) is equal to 1.
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Interiority-type qualification conditions for Lagrange duality:
I (S) (Slater qualification condition): ∃x′ ∈ dom f ∩ S such that g(x′) ∈ − int(K);

I (R) (Rockafellar, 1974): 0 ∈ core(g(dom f ∩ S) +K);

I (JW ) (Jeyakumar-Wolkowicz, 1992): 0 ∈ sqri(g(dom f ∩ S) +K).

Strong duality statements:
I (S)⇒ strong duality for (P )− (D);
I If X and Z are Banach spaces, S is closed, f is lower semicontinuous and g is
K-epi closed (i.e. epiK g is closed), then (S)⇒ (R)⇒ (JW )⇒ strong duality
for (P )− (D).

The finite-dimensional case
If X = Rn, Y = Rm, K = Rm+ and g = (g1, ..., gm)T : Rn → Rm, then the three
conditions become

∃x′ ∈ dom f ∩ S such that gi(x′) < 0, i = 1, ...,m.

Recall also the following weak Slater qualification condition
I (WS) (Rockafellar, 1970): ∃x′ ∈ ri(dom f ∩ S) such that gi(x′) ≤ 0, i ∈ L, and
gi(x′) < 0, i ∈ N ,

where L = {i ∈ {1, ...,m} : gi is affine} and N = {1, ...,m} \ L.
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Closedness-type qualification condition for Lagrange duality:
I (B):

⋃
λ∈K∗

epi(f + 〈λ, g〉+ δS)∗ is closed in (X∗, ω(X∗, X))× R.

I If S is closed, f is lower semicontinuous and g is K-epi closed, then (B)⇒
strong duality for (P )− (D).

I If X and Z are Banach spaces, S is closed, f is lower semicontinuous and g is
K-epi closed, then (S)⇒ (R)⇒ (JW )⇒ (B).

Example
Let X = Z = R2, K = R2

+, S = R2
+,

f : R2 → R, f(x1, x2) = 1
2x

2
1 + x2 and g : R2 → R2, g(x1, x2) = (x1, x2 − x1).

The set S is convex and closed, the function f is proper, convex and lower
semicontinuous, the function g is R2

+-convex and R2
+-epi closed and none of the

interiority-type qualification conditions is fulfilled. On the other hand,

∪
λ∈R2

+

epi(f + 〈λ, g(·)〉+ δR2
+

)∗ = R2 × R+

and (B) is valid, i.e. for (P ) and (D) one has strong duality.
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Subdifferential formulae
I One always has:

∂ (f + δA) (x) ⊇
⋃

λ∈K∗,
〈λ,g(x)〉=0

∂(f + 〈λ, g〉+ δS)(x) ∀x ∈ dom f ∩ A.

I Each of the qualification conditions (S), (R), (JW ), (WS) and (B) guarantees
(under corresponding topological assumptions) that

∂ (f + δA) (x) =
⋃

λ∈K∗,
〈λ,g(x)〉=0

∂(f + 〈λ, g〉+ δS)(x) ∀x ∈ dom f ∩ A.

Generalized KKT optimality conditions for (P )
Assume that one of the qualification conditions (S), (R), (JW ), (WS) and (B) is
(under corresponding topological assumptions) fulfilled. Then x̄ ∈ X is an optimal
solution to (P ) if and only if there exists λ̄ ∈ K∗ such that

0 ∈ ∂(f + 〈λ̄, g〉+ δS)(x̄)

and 〈λ̄, g(x̄)〉 = 0.

Radu Ioan Boţ Convex analysis: basics, conjugation and duality 35 / 36



Convex functions
Conjugacy and subdifferentiability

Convex duality
Fenchel duality
Lagrange duality

References
H.H. Bauschke, P.-L. Combettes (2011): Convex Analysis and Monotone
Operator Theory in Hilbert Spaces, Springer-Verlag, New York

J.M. Borwein, A.S. Lewis (2006): Convex Analysis and Nonlinear Optimization,
Springer-Verlag, New York

J.M. Borwein, J.D. Vanderwerff (2010): Convex Functions: Constructions,
Characterizations and Counterexamples, Cambridge University Press, New York

R.I. Boţ (2010): Conjugate Duality in Convex Optimization, Lecture Notes in
Economics and Mathematical Systems, Vol. 637, Springer-Verlag, Berlin
Heidelberg

R.I. Boţ, S.-M. Grad, G. Wanka (2009): Duality in Vector Optimization,
Springer-Verlag, Berlin Heidelberg

I. Ekeland, R. Temam (1976): Convex Analysis and Variational Problems,
North-Holland Publishing Company, Amsterdam

R.T. Rockafellar (1970): Convex Analysis, Princeton University Press, Princeton

C. Zălinescu (2002): Convex Analysis in General Vector Spaces, World Scientific,
River Edge

Radu Ioan Boţ Convex analysis: basics, conjugation and duality 36 / 36


	Convex functions
	Algebraic properties of convex functions
	Topological properties of convex functions

	Conjugacy and subdifferentiability
	Conjugate functions
	The convex subdifferential

	Convex duality
	Fenchel duality
	Lagrange duality


