Lecture Series
 On

"Convex analysis with applications in inverse problems"
Lecture 1: Convex analysis: basics, conjugation and duality

Radu Ioan Boț

Chemnitz University of Technology
Department of Mathematics
09107 Chemnitz
www.tu-chemnitz.de/ ~rabot

Institute for Numerical and Applied Mathematics
University of Goettingen
June 11, 2012

TECHNISCHE UNIVERSITÄT
CHEMNITZ

Lecture Series

on
"Convex analysis with applications in inverse problems"

- Lecture 1: Convex analysis: basics, conjugation and duality (Monday, June 11, 2012)
- Lecture 2: Proximal methods in convex optimization (Wednesday, June 13, 2012)
- Lecture 3: Convex regularization techniques for linear inverse problems (Thursday, June 14, 2012)

Contents

Convex functions
Algebraic properties of convex functions
Topological properties of convex functions

Conjugacy and subdifferentiability
Conjugate functions
The convex subdifferential

Convex duality
Fenchel duality
Lagrange duality

Convex functions

Algebraic properties of convex functions
Let $(X,\|\cdot\|)$ be a normed space, $\left(X^{*},\|\cdot\|_{*}\right)$ its topological dual space and the duality pairing on $X^{*} \times X,\langle\cdot, \cdot\rangle: X^{*} \times X \rightarrow \mathbb{R},\left\langle x^{*}, x\right\rangle=x^{*}(x)$.
Convex function
A function $f: X \rightarrow \overline{\mathbb{R}}:=\mathbb{R} \cup\{ \pm \infty\}$ is said to be convex, if

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y) \forall x, y \in X \forall \lambda \in[0,1] .
$$

- Conventions: $(+\infty)+(-\infty)=+\infty, 0(+\infty)=+\infty, 0(-\infty)=0$.
- The effective domain of the function $f: X \rightarrow \overline{\mathbb{R}}$ is the set $\operatorname{dom} f:=\{x \in X: f(x)<+\infty\}$. If f is convex, then $\operatorname{dom} f$ is a convex set.
- A function $f: X \rightarrow \overline{\mathbb{R}}$ is said to be proper if $f(x)>-\infty \forall x \in X$ and $\operatorname{dom} f \neq \emptyset$.

Some examples of convex functions

- The norm $\|\cdot\|: X \rightarrow \mathbb{R}$ is a convex function.
- The indicator function of a set $S \subseteq X$ is defined as

$$
\delta_{S}: X \rightarrow \overline{\mathbb{R}}, \delta_{S}(x)=\left\{\begin{aligned}
0, & \text { if } x \in S \\
+\infty, & \text { otherwise }
\end{aligned}\right.
$$

The function δ_{S} is convex if and only if S is a convex set.

- When $A \in \mathbb{R}^{n \times n}$ is a symmetric matrix, then $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, f(x)=x^{T} A x$, is convex if and only if A is positive semidefinite.
- The epigraph of a function $f: X \rightarrow \overline{\mathbb{R}}$ is the set

$$
\text { epi } f=\{(x, r) \in X \times \mathbb{R}: f(x) \leq r\}
$$

- The function f is convex if and only if the set epi f is convex.

Level set

If $f: X \rightarrow \overline{\mathbb{R}}$ is a convex function, then for each $\lambda \in \mathbb{R}$ its upper level set

$$
\{x \in X: f(x) \leq \lambda\}
$$

is convex. However, the opposite statement is not true. A counterexample in this sense is provided by the function $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x^{3}$.

Sublinear function

A function $f: X \rightarrow \overline{\mathbb{R}}$ is said to be sublinear, if it is:

- positively homogeneous: $f(0)=0$ and $f(\lambda x)=\lambda f(x) \forall \lambda>0 \forall x \in X$;
- subadditive: $f(x+y) \leq f(x)+f(y) \forall x, y \in X$.
- A function is sublinear if and only if it is positively homogeneous and convex.
- A function $f: X \rightarrow \overline{\mathbb{R}}$ is sublinear if and only if epi f is a convex cone with $(0,-1) \notin$ epi f.
Composition with an affine mapping
When $(Y,\|\cdot\|)$ is another normed space, the operator $T: X \rightarrow Y$ is said to be affine, if

$$
T(\lambda x+(1-\lambda) y)=\lambda T(x)+(1-\lambda) T(y) \forall x, y \in X \forall \lambda \in \mathbb{R} .
$$

When $f: Y \rightarrow \overline{\mathbb{R}}$ is convex and $T: X \rightarrow Y$ is affine, then $f \circ T: X \rightarrow \overline{\mathbb{R}}$ is convex.

Pointwise supremum

The pointwise supremum of a family of convex functions $f_{i}: X \rightarrow \overline{\mathbb{R}}$,

$$
\sup _{i \in I} f_{i}: X \rightarrow \overline{\mathbb{R}}, \sup _{i \in I} f_{i}(x)=\sup \left\{f_{i}(x): i \in I\right\}
$$

is convex. Notice that epi $\left(\sup _{i \in I} f_{i}\right)=\bigcap_{i \in I}$ epi f_{i}.

Infimal value function

When $\Phi: X \times Y \rightarrow \overline{\mathbb{R}}$ is convex, then its infimal value function

$$
h: Y \rightarrow \overline{\mathbb{R}}, h(y)=\inf \{\Phi(x, y): x \in X\}
$$

is convex, too.

Infimal convolution

The infimal convolution of two functions $f, g: X \rightarrow \overline{\mathbb{R}}$ is defined as

$$
f \square g: X \rightarrow \overline{\mathbb{R}},(f \square g)(x)=\inf \{f(x-y)+g(y): y \in X\}
$$

One has epi $(f \square g)=$ epi $f+$ epi g. When f and g are convex, then $f \square g$ is convex, too.

Example (distance function)

When $S \subseteq X$ is a convex set, then its distance function $d_{S}: X \rightarrow \overline{\mathbb{R}}$ fulfills

$$
d_{S}(x)=\inf \{\|x-y\|: y \in S\}=\left(\|\cdot\| \square \delta_{S}\right)(x) \forall x \in X
$$

thus it is convex.

Topological properties of convex functions

Lower semicontinuous function

A function $f: X \rightarrow \overline{\mathbb{R}}$ is said to be

- lower semicontinuous at $x \in X$, if $\liminf _{y \rightarrow x} f(y):=\sup _{\delta>0} \inf _{y \in B(x, \delta)} f(y) \geq f(x)$;
- lower semicontinuous, if it is lower semicontinuous at every $x \in X$.

For a given function $f: X \rightarrow \overline{\mathbb{R}}$ the following statements are equivalent:

- f is lower semicontinuous;
- epi f is closed;
- every upper level set $\{x \in X: f(x) \leq \lambda\}, \lambda \in \mathbb{R}$, is closed.

Example (indicator function)

For the indicator function δ_{S} of a set $S \subseteq X$ one has epi $\delta_{S}=S \times \mathbb{R}_{+}$. Thus δ_{S} is lower semicontinuous if and only if S is closed.

Pointwise supremum

The pointwise supremum of a family of lower semicontinuous functions $f_{i}: X \rightarrow \overline{\mathbb{R}}$,

$$
\sup _{i \in I} f_{i}: X \rightarrow \overline{\mathbb{R}}, \sup _{i \in I} f_{i}(x)=\sup \left\{f_{i}(x): i \in I\right\}
$$

is lower semicontinuous.

Lower semicontinuous hull

The lower semicontinuous hull of a function $f: X \rightarrow \overline{\mathbb{R}}$ is defined as

$$
\bar{f}: X \rightarrow \overline{\mathbb{R}}, \bar{f}(x)=\inf \{r:(x, r) \in \operatorname{cl}(\text { epi } f)\}
$$

The following statements are true:

- $\liminf f(y)=\bar{f}(x) \forall x \in X$;

$$
y \rightarrow x
$$

- epi $\bar{f}=\operatorname{cl}(\operatorname{epi} f)$;
- $\bar{f}=\sup \{h: X \rightarrow \overline{\mathbb{R}}: h \leq f$ and h is lower semicontinuous $\}$.

Affine minorant

One says that $x \mapsto\left\langle x^{*}, x\right\rangle+\alpha$, where $\left(x^{*}, \alpha\right) \in X^{*} \times \mathbb{R}$, is an affine minorant of $f: X \rightarrow \overline{\mathbb{R}}$, if

$$
\left\langle x^{*}, y\right\rangle+\alpha \leq f(y) \forall y \in X .
$$

Fundamental result

A function $f: X \rightarrow \overline{\mathbb{R}}$ is convex, lower semicontinuous and it fulfills $f>-\infty$ if and only if there exists $\left(x^{*}, \alpha\right) \in X^{*} \times \mathbb{R}$ such that $\left\langle x^{*}, y\right\rangle+\alpha \leq f(y)$ for all $y \in X$ and

$$
f(x)=\sup \left\{\left\langle x^{*}, x\right\rangle+\alpha:\left(x^{*}, \alpha\right) \in X^{*} \times \mathbb{R},\left\langle x^{*}, y\right\rangle+\alpha \leq f(y) \forall y \in X\right\} \forall x \in X .
$$

Weak lower semicontinuity

- A function $f: X \rightarrow \overline{\mathbb{R}}$ is said to be weakly lower semicontinuous, if epi f is weakly closed.
- Since

$$
\operatorname{epi} f \subseteq \operatorname{cl}(\operatorname{epi} f) \subseteq \operatorname{cl}_{\omega\left(X, X^{*}\right) \times \mathbb{R}}(\operatorname{epi} f)
$$

every weakly lower semicontinuous function is lower semicontinuous, too.

- If $f: X \rightarrow \overline{\mathbb{R}}$ is convex, then f is weakly lower semicontinuous if and only if f is lower semicontinuous.

Continuity via convexity

If a convex function $f: X \rightarrow \overline{\mathbb{R}}$ is bounded above on a neighborhood of a point of its domain, then f is continuous on $\operatorname{int}(\operatorname{dom} f)$.

Local Lipschitz continuity via convexity

If a proper and convex function $f: X \rightarrow \overline{\mathbb{R}}$ is bounded above on a neighborhood of a point of its domain, then f is locally Lipschitz continuous on $\operatorname{int}(\operatorname{dom} f)$, i.e. for all $x \in \operatorname{int}(\operatorname{dom} f)$ there exist $\varepsilon>0$ and $L \geq 0$ such that

$$
|f(y)-f(z)| \leq L\|y-z\| \forall y, z \in B(x, \varepsilon) .
$$

An intermezzo: the algebraic interior of a convex set
The algebraic interior of a convex set $S \subseteq X$ is

$$
\operatorname{core}(S):=\{s \in S: \operatorname{cone}(S-s)=\underset{\lambda>0}{\cup} \lambda(S-s)=X\} .
$$

- One always has $\operatorname{int}(S) \subseteq \operatorname{core}(S)$.
- If $\operatorname{int}(S) \neq \emptyset$ or X is finite-dimensional, then $\operatorname{int}(S)=\operatorname{core}(S)$.

Example

Let $x^{\sharp}: X \rightarrow \mathbb{R}$ be a discontinuous linear functional and $S:=\left\{x \in X:\left|\left\langle x^{\sharp}, x\right\rangle\right| \leq 1\right\}$. Then $\operatorname{int}(S)=\emptyset$, while $0 \in \operatorname{core}(S) \neq \emptyset$.

From lower semicontinuity to continuity
If X is a Banach space and $f: X \rightarrow \overline{\mathbb{R}}$ is a convex and lower semicontinuous function, then $\operatorname{int}(\operatorname{dom} f)=\operatorname{core}(\operatorname{dom} f)$ and f is continuous on $\operatorname{int}(\operatorname{dom} f)$.

Example

If X is a Banach space and $S \subseteq X$ is a convex and closed set, then $\operatorname{int}(S)=\operatorname{int}\left(\operatorname{dom} \delta_{S}\right)=\operatorname{core}\left(\operatorname{dom} \delta_{S}\right)=\operatorname{core}(S)$. However, these sets can be also empty. This is, for instance, the case when

$$
p \in[1,+\infty), X=\ell^{p} \text { and } S=\ell_{+}^{p}:=\left\{\left(x_{k}\right)_{k \geq 1} \in \ell_{p}: x_{k} \geq 0 \forall k \geq 1\right\} .
$$

Conjugacy and subdifferentiability

Conjugate functions
(Fenchel-Legendre-) Conjugate function of a function $f: X \rightarrow \overline{\mathbb{R}}$:

$$
f^{*}: X^{*} \rightarrow \overline{\mathbb{R}}, f^{*}\left(x^{*}\right)=\sup _{x \in X}\left\{\left\langle x^{*}, x\right\rangle-f(x)\right\} .
$$

Properties of the conjugate function (I)

For a given function $f: X \rightarrow \overline{\mathbb{R}}$ we have:

- f^{*} is convex and weak* lower semicontinuous;
- Young-Fenchel-inequality:

$$
f(x)+f^{*}\left(x^{*}\right) \geq\left\langle x^{*}, x\right\rangle \forall\left(x, x^{*}\right) \in X \times X^{*}
$$

- when, for $g: X \rightarrow \overline{\mathbb{R}}, f \leq g$, then $g^{*} \leq f^{*}$;
- $f^{*}=(\bar{f})^{*}$.

Examples

- The conjugate function of the indicator function of a set $S \subseteq X$ is the so-called support function of S,

$$
\sigma_{S}: X^{*} \rightarrow \overline{\mathbb{R}}, \sigma_{S}\left(x^{*}\right)=\delta_{S}^{*}\left(x^{*}\right)=\sup _{x \in S}\left\langle x^{*}, x\right\rangle
$$

- For $f=\|\cdot\|$, one has $f^{*}\left(x^{*}\right)= \begin{cases}0, & \text { if }\left\|x^{*}\right\|_{*} \leq 1 \text {, } \\ +\infty, & \text {, }\end{cases}$

For $f=\frac{1}{2}\|\cdot\|^{2}$, one has $f^{*}=\frac{1}{2}\|\cdot\|_{*}^{2}$.

Properties of the conjugate function (II)

For a given function $f: X \rightarrow \overline{\mathbb{R}}$ we have:
$--f^{*}(0)=\inf _{x \in X} f(x)$;

- $(\lambda f)^{*}\left(x^{*}\right)=\lambda f^{*}\left(\frac{1}{\lambda} x^{*}\right) \forall \lambda>0 \forall x^{*} \in X^{*}$;
- for $\bar{x} \in X$:

$$
(f(\cdot+\bar{x}))^{*}\left(x^{*}\right)=f^{*}\left(x^{*}\right)-\left\langle x^{*}, \bar{x}\right\rangle \forall x^{*} \in X^{*} ;
$$

- $\operatorname{for} \bar{x}^{*} \in X^{*}$:

$$
\left(f+\left\langle\bar{x}^{*}, \cdot\right\rangle\right)^{*}\left(x^{*}\right)=f^{*}\left(x^{*}-\bar{x}^{*}\right) \forall x^{*} \in X^{*} .
$$

Properties of the conjugate function (III)

Let be $\Phi: X \times Y \rightarrow \overline{\mathbb{R}}$.

- If

$$
h: Y \rightarrow \overline{\mathbb{R}}, h(y)=\inf \{\Phi(x, y): x \in X\}
$$

then

$$
h^{*}\left(y^{*}\right)=\Phi^{*}\left(0, y^{*}\right) \forall y^{*} \in Y^{*} .
$$

- If

$$
\Phi(x, y)=f(x)+g(y)
$$

where $f: X \rightarrow \overline{\mathbb{R}}$ and $g: Y \rightarrow \overline{\mathbb{R}}$, then

$$
\Phi^{*}\left(x^{*}, y^{*}\right)=f^{*}\left(x^{*}\right)+g^{*}\left(y^{*}\right) \forall\left(x^{*}, y^{*}\right) \in X^{*} \times Y^{*} .
$$

The conjugate of the infimal convolution
For $f, g: X \rightarrow \overline{\mathbb{R}}$ proper functions one has

$$
(f \square g)^{*}=f^{*}+g^{*} .
$$

Biconjugate function of a function $f: X \rightarrow \overline{\mathbb{R}}$

$$
f^{* *}: X \rightarrow \overline{\mathbb{R}}, f^{* *}(x)=\sup _{x^{*} \in X^{*}}\left\{\left\langle x^{*}, x\right\rangle-f^{*}\left(x^{*}\right)\right\} .
$$

- When X^{*} is endowed with the weak* topology, then $f^{* *}=\left(f^{*}\right)^{*}$.
- One always has: $f^{* *} \leq \bar{f} \leq f$.

Theorem of Fenchel-Moreau
If $f: X \rightarrow \overline{\mathbb{R}}$ is a proper, convex and lower semicontinuous function, then f^{*} is proper and it holds $f^{* *}=f$.

Conjugate of the biconjugate
For $f: X \rightarrow \overline{\mathbb{R}}$ a given function it holds

$$
f^{* * *}=\left(f^{* *}\right)^{*}=\left(f^{*}\right)^{* *}=f^{*} .
$$

The conjugate of the sum
For $f, g: X \rightarrow \overline{\mathbb{R}}$ proper, convex and lower semicontinuous functions with $\operatorname{dom} f \cap \operatorname{dom} g \neq \emptyset$ it holds

$$
(f+g)^{*}=\left(f^{* *}+g^{* *}\right)^{*}=\left(f^{*} \square g^{*}\right)^{* *}=\left(\overline{f^{*} \square g^{*}}\right)^{* *}=\overline{f^{*} \square g^{*}} .
$$

The convex subdifferential
The convex subdifferential of f at $x \in X$:

$$
\partial f(x):=\left\{x^{*} \in X^{*}: f(y)-f(x) \geq\left\langle x^{*}, y-x\right\rangle \forall y \in X\right\}
$$

for $f(x) \in \mathbb{R}$. Otherwise, $\partial f(x):=\emptyset$.

Properties of the convex subdifferential (I)
For a given function $f: X \rightarrow \overline{\mathbb{R}}$ and $x \in X$ we have:

- the set $\partial f(x)$ is convex and weak* closed and it can be empty, even if $f(x) \in \mathbb{R}$;
- $x^{*} \in \partial f(x) \Leftrightarrow f(x)+f^{*}\left(x^{*}\right)=\left\langle x^{*}, x\right\rangle$;
- if $\partial f(x) \neq \emptyset$, then $\bar{f}(x)=f(x)$ and $\partial \bar{f}(x)=\partial f(x)$;
- when f proper:
x is a global minimum of $f \Leftrightarrow 0 \in \partial f(x)$.

Examples

- The convex subdifferential of the indicator function of a set $S \subseteq X$ at $x \in X$ is the so-called normal cone of S at X,

$$
N_{S}(x):=\partial\left(\delta_{S}\right)(x)= \begin{cases}\left\{x^{*} \in X^{*}:\left\langle x^{*}, y-x\right\rangle \leq 0 \forall y \in S\right\}, & \text { if } x \in S, \\ \emptyset, & \text { otherwise. }\end{cases}
$$

- One has

$$
\partial\|\cdot\|(x)= \begin{cases}\left\{x^{*} \in X^{*}:\left\|x^{*}\right\|_{*} \leq 1\right\} & \text { if } x=0 \\ \left\{x^{*} \in X^{*}:\left\|x^{*}\right\|_{*}=1,\|x\|=\left\langle x^{*}, x\right\rangle\right\}, & \text { otherwise. }\end{cases}
$$

- One has $\partial\left(\frac{1}{2}\|\cdot\|^{2}\right)(x)=\left\{x^{*} \in X^{*}:\left\|x^{*}\right\|_{*}=\|x\|,\left\|x^{*}\right\|_{*}\|x\|=\left\langle x^{*}, x\right\rangle\right\}$.

Properties of the convex subdifferential (II)
For a given function $f: X \rightarrow \overline{\mathbb{R}}$ and $x \in X$ we have:

- $\partial(\lambda f)(x)=\lambda \partial f(x) \forall \lambda>0$;
- for $\bar{x} \in X$:

$$
\partial f(\cdot+\bar{x})(x)=\partial f(x+\bar{x}) ;
$$

- for $\bar{x}^{*} \in X^{*}$:

$$
\partial\left(f+\left\langle\bar{x}^{*}, \cdot\right\rangle\right)(x)=\partial f(x)+x^{*}
$$

Properties of the convex subdifferential (III)

For a proper function $f: X \rightarrow \overline{\mathbb{R}}$ and $x \in \operatorname{dom} f$ we have:

- $x^{*} \in \partial f(x) \Rightarrow x \in \partial f^{*}\left(x^{*}\right)$, where

$$
\partial f^{*}\left(x^{*}\right):=\left\{z \in X: f^{*}\left(y^{*}\right)-f^{*}\left(x^{*}\right) \geq\left\langle y^{*}-x^{*}, z\right\rangle \forall y^{*} \in X^{*}\right\} ;
$$

- if f is convex and lower semicontinuous at x, then

$$
x^{*} \in \partial f(x) \Leftrightarrow x \in \partial f^{*}\left(x^{*}\right) .
$$

The convex subdifferential of the sum of two functions
For $f: X \rightarrow \overline{\mathbb{R}}, g: Y \rightarrow \overline{\mathbb{R}}$ given functions and $A: X \rightarrow Y$ a linear continuous operator it holds

$$
\partial f(x)+A^{*}(\partial g(A x)) \subseteq \partial(f+g \circ A)(x) \forall x \in X
$$

where $A^{*}: Y^{*} \rightarrow X^{*}$,

$$
\left\langle A^{*} y^{*}, x\right\rangle=\left\langle y^{*}, A x\right\rangle \forall\left(x, y^{*}\right) \in X \times Y^{*},
$$

denotes the adjoint operator of A.
Thus, when $X=Y$ and A is the identity on X, it holds

$$
\partial f(x)+\partial g(x) \subseteq \partial(f+g)(x) \forall x \in X
$$

Convex subdifferential and directional derivatives

Let $f: X \rightarrow \overline{\mathbb{R}}$ be a proper and convex function and $x \in \operatorname{dom} f$. The following statements are true:

- the directional derivative of f at x fulfills for every direction $d \in X$:

$$
f^{\prime}(x ; d)=\lim _{t \downarrow 0} \frac{f(x+t d)-f(x)}{t}=\inf _{t>0} \frac{f(x+t d)-f(x)}{t} \in \overline{\mathbb{R}}
$$

- it holds:

$$
\partial f(x)=\left\{x^{*} \in X^{*}: f^{\prime}(x ; d) \geq\left\langle x^{*}, d\right\rangle \forall d \in X\right\}
$$

- if f is Gâteaux differentiable at x, i.e

$$
\exists \nabla f(x) \in X^{*} \text { such that } f^{\prime}(x ; d)=\langle\nabla f(x), d\rangle \forall d \in X
$$

then

$$
\partial f(x)=\{\nabla f(x)\}
$$

Examples

When $(X,\|\cdot\|)$ is a Hilbert space one has
$\triangleright \partial\|\cdot\|(x)= \begin{cases}\left\{x^{*} \in X:\left\|x^{*}\right\| \leq 1\right\}, & \text { if } x=0, \\ \left\{\frac{1}{\|x\|} x\right\}, & \text { otherwise. }\end{cases}$

- $\partial\left(\frac{1}{2}\|\cdot\|^{2}\right)(x)=\{x\}$ for all $x \in X$.

Subdifferentiability via continuity

Let $f: X \rightarrow \overline{\mathbb{R}}$ be proper, convex and continuous at $x \in \operatorname{dom} f$. The following statements are true:

- $\partial f(x) \neq \emptyset$;
$\downarrow \partial f(x)$ is weak* compact and, consequently, norm-bounded;
- $f^{\prime}(x ; \cdot)$ is continuous and it holds

$$
f^{\prime}(x ; d)=\max \left\{\left\langle x^{*}, d\right\rangle: x^{*} \in \partial f(x)\right\} \forall d \in X
$$

- if $\partial f(x)$ is a singleton, then f is Gâteaux differentiable at x.

Example

When $f: X \rightarrow \overline{\mathbb{R}}$ is a proper, convex and lower semicontinuous function at $x \in \operatorname{dom} f$, which fails to be continuous at $x \in \operatorname{dom} f, \partial f(x)$ may be empty. For

$$
f: \mathbb{R} \rightarrow \overline{\mathbb{R}}, f(x)= \begin{cases}-\sqrt{1-x^{2}}, & \text { if }|x| \leq 1 \\ +\infty, & \text { otherwise }\end{cases}
$$

one has $\partial f(1)=\emptyset$.
Moreover,

$$
\emptyset=0 \partial f(1) \neq \partial(0 f)(1)=\mathbb{R}_{-} .
$$

Convex duality

Fenchel duality
For $f: X \rightarrow \overline{\mathbb{R}}$ and $g: Y \rightarrow \overline{\mathbb{R}}$ proper and convex functions fulfilling $A(\operatorname{dom} f) \cap \operatorname{dom} g \neq \emptyset$, we consider the unconstrained optimization problem

$$
(P) \quad \inf _{x \in X}\{f(x)+g(A x)\}
$$

Particular case included (I)

For $X=Y, A$ the identity operator on X and $f, g: X \rightarrow \overline{\mathbb{R}}$ proper and convex functions fulfilling $\operatorname{dom} f \cap \operatorname{dom} g \neq \emptyset$, problem (P) reads

$$
\inf _{x \in X}\{f(x)+g(x)\} .
$$

Particular case included (II)

Let $f_{i}: X \rightarrow \overline{\mathbb{R}}, i=1, \ldots, k$, be proper and convex functions fulfilling $\cap_{i=1}^{k} \operatorname{dom} f_{i} \neq \emptyset$. By taking $Y:=\prod_{i=1}^{k} X, A: X \rightarrow Y, A x=(x, \ldots, x), f(x)=0$ for all $x \in X$ and $g: Y \rightarrow \overline{\mathbb{R}}, g\left(x_{1}, \ldots, x_{k}\right)=\sum_{i=1}^{k} f_{i}\left(x_{i}\right)$, problem (P) becomes

$$
\inf _{x \in X}\left\{\sum_{i=1}^{k} f_{i}(x)\right\}
$$

Fenchel dual problem to (P) :

$$
\text { (D) } \sup _{y^{*} \in Y^{*}}\left\{-f^{*}\left(-A^{*} y^{*}\right)-g^{*}\left(y^{*}\right)\right\} .
$$

Weak duality (is always fulfilled):

$$
\inf _{x \in X}\{f(x)+g(A x)\} \geq \sup _{y^{*} \in Y^{*}}\left\{-f^{*}\left(-A^{*} y^{*}\right)-g^{*}\left(y^{*}\right)\right\}
$$

Strong duality holds, if:

$$
\inf _{x \in X}\{f(x)+g(A x)\}=\max _{y^{*} \in Y^{*}}\left\{-f^{*}\left(-A^{*} y^{*}\right)-g^{*}\left(y^{*}\right)\right\}
$$

Example (nonzero duality gap)

Let $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, A\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{2}\right)$,

$$
f: \mathbb{R}^{2} \rightarrow \overline{\mathbb{R}}, f\left(x_{1}, x_{2}\right)=\max \left\{-1,-\sqrt{x_{1} x_{2}}\right\}+\delta_{\mathbb{R}_{+}^{2}}\left(x_{1}, x_{2}\right)
$$

and

$$
g: \mathbb{R}^{2} \rightarrow \overline{\mathbb{R}}, g\left(x_{1}, x_{2}\right)=\delta_{\{0\} \times \mathbb{R}}\left(x_{1}, x_{2}\right)
$$

The optimal objective value of (P) is equal to 0 , while the optimal objective value of (D) is equal to -1 .

Example (zero duality gap, but no strong duality)
Let $A: \mathbb{R} \rightarrow \mathbb{R}, A x=x$,

$$
f: \mathbb{R} \rightarrow \overline{\mathbb{R}}, f(x)= \begin{cases}x(\ln x-1), & \text { if } x>0 \\ 0, & \text { if } x=0 \\ +\infty, & \text { otherwise }\end{cases}
$$

and

$$
g: \mathbb{R} \rightarrow \overline{\mathbb{R}}, g(x)=\frac{1}{2} x^{2}+\delta_{\mathbb{R}_{-}}(x)
$$

The optimal objective values of (P) and (D) are both equal to 0 , however the dual problem has no optimal solution.

An intermezzo: the strong-quasi relative interior The strong-quasi relative interior of a convex set $S \subseteq X$ is

$$
\operatorname{sqri}(S):=\{s \in S: \text { cone }(S-s) \text { is a closed linear subspace }\} .
$$

- Recall: core $(S)=\{s \in S: \operatorname{cone}(S-s)=X\}$.
- One always has $\operatorname{int}(S) \subseteq \operatorname{core}(S) \subseteq \operatorname{sqri}(S)$.
- If $\operatorname{int}(S) \neq \emptyset$, then $\operatorname{int}(S)=\operatorname{core}(S)=\operatorname{sqri}(S)$.
- If X is finite-dimensional, then

$$
\operatorname{int}(S)=\operatorname{core}(S) \text { and } \operatorname{sqri}(S)=\operatorname{ri}(S)=\operatorname{int}_{\mathrm{aff}(S)}(S)
$$

Interiority-type qualification conditions for Fenchel duality:

- $(F): \exists x^{\prime} \in \operatorname{dom} f \cap A^{-1}(\operatorname{dom} g)$ such that g is continuous at $A x^{\prime}$;
- (MR) (Moreau-Rockafellar, 1966): $0 \in \operatorname{core}(A(\operatorname{dom} f)-\operatorname{dom} g)$;
- $(A B)$ (Attouch-Brezis, 1986): $0 \in \operatorname{sqri}(A(\operatorname{dom} f)-\operatorname{dom} g)$.

Strong duality statements:

- $(F) \Rightarrow$ strong duality for $(P)-(D)$;
- When X and Y are Banach spaces and f, g are lower semicontinuous, then $(F) \Rightarrow(M R) \Rightarrow(A B) \Rightarrow$ strong duality for $(P)-(D)$.

The finite-dimensional case
If $X=\mathbb{R}^{n}$ and $Y=\mathbb{R}^{m}$, then $(A B) \Leftrightarrow A(\operatorname{ri}(\operatorname{dom} f)) \cap \operatorname{ri}(\operatorname{dom} g) \neq \emptyset \Rightarrow$ strong duality for $(P)-(D)$.

Closedness-type qualification condition for Fenchel duality:

- $(B):\left(A^{*} \times \operatorname{id}_{\mathbb{R}}\right)\left(\right.$ epi $\left.f^{*}\right)+\operatorname{epi} g^{*}$ is closed in $\left(X^{*}, \omega\left(X^{*}, X\right)\right) \times \mathbb{R}$.
- If f, g are lower semicontinuous, then $(B) \Rightarrow$ strong duality for $(P)-(D)$.
- If X, Y are Banach spaces and f, g are lower semicontinuous, then $(F) \Rightarrow(M R) \Rightarrow(A B) \Rightarrow(B)$.

Example

Let $A: \mathbb{R} \rightarrow \mathbb{R}, A x=x$,

$$
f: \mathbb{R} \rightarrow \overline{\mathbb{R}}, f(x)=\frac{1}{2} x^{2}+\delta_{\mathbb{R}_{+}}(x) \text { and } g: \mathbb{R} \rightarrow \overline{\mathbb{R}}, g(x)=\delta_{\mathbb{R}_{-}}(x)
$$

The functions f and g are proper, convex and lower semicontinuous and none of the interiority-type qualification conditions is fulfilled. On the other hand,

$$
\left(A^{*} \times \operatorname{id}_{\mathbb{R}}\right)\left(\operatorname{epi} f^{*}\right)+\operatorname{epi} g^{*}=\mathbb{R} \times \mathbb{R}_{+}
$$

and (B) is valid, i.e. for (P) and (D) one has strong duality.

Subdifferential formulae

- Recall:

$$
\partial(f+g \circ A)(x) \supseteq \partial f(x)+A^{*}(\partial g(A x)) \forall x \in X .
$$

- Each of the qualification conditions $(F),(M R),(A B)$ and (B) guarantees (under corresponding topological assumptions) that

$$
\partial(f+g \circ A)(x)=\partial f(x)+A^{*}(\partial g(A x)) \forall x \in X .
$$

Optimality conditions for (P)
Assume that one of the qualification conditions $(F),(M R),(A B)$ and (B) (under corresponding topological assumptions) is fulfilled. Then $\bar{x} \in X$ is an optimal solution to (P) if and only if

$$
0 \in \partial f(\bar{x})+A^{*}(\partial g(A \bar{x}))
$$

Lagrange duality

Consider the geometric and cone-constrained optimization problem
$(P) \quad \inf \quad f(x)$,

$$
\begin{array}{ll}
\text { s.t. } & g(x) \in-K \\
& x \in S
\end{array}
$$

where

- X, Z are two normed spaces;
- $K \subseteq Z$ is a nonempty convex cone, i.e., $\forall \lambda \geq 0 \forall k \in K \Rightarrow \lambda k \in K$. By \leq_{K} we denote the partial order induced by K on Z, i.e.,

$$
\text { for } u, v \in Z \text { it holds } u \leq_{K} v \Leftrightarrow v-u \in K
$$

and by

$$
K^{*}:=\left\{\lambda \in Z^{*}:\langle\lambda, k\rangle \geq 0 \forall k \in K\right\}
$$

the dual cone of K;

- $S \subseteq X$ is a convex set;
- $f: X \rightarrow \overline{\mathbb{R}}$ is a proper and convex function;
- $g: X \rightarrow Z$ is a K-convex function, i.e.,
the K-epigraph of g, epi ${ }_{K} g=\left\{(x, z) \in X \times Z: g(x) \leq_{K} z\right\}$, is convex or, equivalently,

$$
g(\lambda x+(1-\lambda) y) \leq_{K} \lambda g(x)+(1-\lambda) g(y) \forall x, y \in X \forall \lambda \in[0,1] ;
$$

- the feasiblity condition $\operatorname{dom} f \cap \mathcal{A} \neq \emptyset$ is fulfilled, with

$$
\mathcal{A}:=\{x \in S: g(x) \in-K\} .
$$

Particular case included (I)

For $Z=\mathbb{R}^{m}, K=\mathbb{R}_{+}^{m}$ and $g=\left(g_{1}, \ldots, g_{m}\right)^{T}: X \rightarrow \mathbb{R}^{m}$, problem (P) reads

$$
\begin{array}{ll}
\inf & f(x) . \\
\text { s.t. } & g_{i}(x) \leq 0, i=1, \ldots, m, \\
& x \in S
\end{array}
$$

The function g is K-convex $\Leftrightarrow g_{i}, i=1, \ldots, m$, is convex.

Particular case included (II)

For $Z=\mathbb{R}^{m+p}, K=\mathbb{R}_{+}^{m} \times\left\{0_{\mathbb{R}^{p}}\right\}$ and $g=\left(g_{1}, \ldots, g_{m}, h_{1}, \ldots, h_{p}\right)^{T}: X \rightarrow \mathbb{R}^{m+p}$, problem (P) reads

$$
\begin{array}{ll}
\inf & f(x) . \\
\text { s.t. } & g_{i}(x) \leq 0, i=1, \ldots, m, \\
& h_{j}(x)=0, j=1, \ldots, p, \\
& x \in S
\end{array}
$$

The function g is K-convex $\Leftrightarrow g_{i}, i=1, \ldots, m$, is convex and $h_{j}, j=1, \ldots, p$, is affine.

Particular case included (III)

For an arbitrary index set $I, Z=\mathbb{R}^{I}:=\{z \mid z: I \rightarrow \mathbb{R}\}$, $K=\left(\mathbb{R}^{I}\right)_{+}:=\left\{z \in \mathbb{R}^{I} \mid z(i) \geq 0 \forall i \in I\right\}$ and $g=\left(g_{i}\right)_{i \in I}: \mathcal{X} \rightarrow \mathbb{R}^{I}$, problem (P) reads

$$
\begin{array}{ll}
\inf & f(x) . \\
\text { s.t. } & g_{i}(x) \leq 0, i \in I, \\
& x \in S
\end{array}
$$

The function g is K-convex $\Leftrightarrow g_{i}$ is convex for every $i \in I$.

Lagrange dual problem to (P) :

$$
(D) \sup _{\lambda \in K^{*}} \inf _{x \in S}\{f(x)+\langle\lambda, g(x)\rangle\}
$$

Weak duality (is always fulfilled):

$$
\inf _{x \in \mathcal{A}} f(x) \geq \sup _{\lambda \in K^{*}} \inf _{x \in S}\{f(x)+\langle\lambda, g(x)\rangle\}
$$

Strong duality holds, if:

$$
\inf _{x \in \mathcal{A}} f(x)=\max _{\lambda \in K^{*}} \inf _{x \in S}\{f(x)+\langle\lambda, g(x)\rangle\}
$$

Example (nonzero duality gap)

Let $X=\mathbb{R}^{2}, Z=\mathbb{R}, K=\mathbb{R}_{+}, S=\{0\} \times[3,4] \cup(0,2] \times(1,4] \subseteq \mathbb{R}^{2}$,

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad f\left(x_{1}, x_{2}\right)=x_{2}
$$

and

$$
g: \mathbb{R}^{2} \rightarrow \mathbb{R}, g\left(x_{1}, x_{2}\right)=x_{1}
$$

Then $\mathcal{A}=0 \times[3,4]$ and the optimal objective value of (P) is equal to 3 , while the optimal objective value of (D) is equal to 1 .

Interiority-type qualification conditions for Lagrange duality:

- (S) (Slater qualification condition): $\exists x^{\prime} \in \operatorname{dom} f \cap S$ such that $g\left(x^{\prime}\right) \in-\operatorname{int}(K)$;
- (R) (Rockafellar, 1974): $0 \in \operatorname{core}(g(\operatorname{dom} f \cap S)+K)$;
- $(J W)$ (Jeyakumar-Wolkowicz, 1992): $0 \in \operatorname{sqri}(g(\operatorname{dom} f \cap S)+K)$.

Strong duality statements:

- $(S) \Rightarrow$ strong duality for $(P)-(D)$;
- If X and Z are Banach spaces, S is closed, f is lower semicontinuous and g is K-epi closed (i.e. epi ${ }_{K} g$ is closed), then $(S) \Rightarrow(R) \Rightarrow(J W) \Rightarrow$ strong duality for $(P)-(D)$.

The finite-dimensional case
If $X=\mathbb{R}^{n}, Y=\mathbb{R}^{m}, K=\mathbb{R}_{+}^{m}$ and $g=\left(g_{1}, \ldots, g_{m}\right)^{T}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, then the three conditions become

$$
\exists x^{\prime} \in \operatorname{dom} f \cap S \text { such that } g_{i}\left(x^{\prime}\right)<0, i=1, \ldots, m
$$

Recall also the following weak Slater qualification condition

- (WS) (Rockafellar, 1970): $\exists x^{\prime} \in \operatorname{ri}(\operatorname{dom} f \cap S)$ such that $g_{i}\left(x^{\prime}\right) \leq 0, i \in L$, and $g_{i}\left(x^{\prime}\right)<0, i \in N$,
where $L=\left\{i \in\{1, \ldots, m\}: g_{i}\right.$ is affine $\}$ and $N=\{1, \ldots, m\} \backslash L$.

Closedness-type qualification condition for Lagrange duality:

- $(B): \bigcup_{\lambda \in K^{*}} \operatorname{epi}\left(f+\langle\lambda, g\rangle+\delta_{S}\right)^{*}$ is closed in $\left(X^{*}, \omega\left(X^{*}, X\right)\right) \times \mathbb{R}$.
- If S is closed, f is lower semicontinuous and g is K-epi closed, then $(B) \Rightarrow$ strong duality for $(P)-(D)$.
- If X and Z are Banach spaces, S is closed, f is lower semicontinuous and g is K-epi closed, then $(S) \Rightarrow(R) \Rightarrow(J W) \Rightarrow(B)$.

Example

Let $X=Z=\mathbb{R}^{2}, K=\mathbb{R}_{+}^{2}, S=\mathbb{R}_{+}^{2}$,

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}, f\left(x_{1}, x_{2}\right)=\frac{1}{2} x_{1}^{2}+x_{2} \text { and } g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, g\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{2}-x_{1}\right)
$$

The set S is convex and closed, the function f is proper, convex and lower semicontinuous, the function g is \mathbb{R}_{+}^{2}-convex and \mathbb{R}_{+}^{2}-epi closed and none of the interiority-type qualification conditions is fulfilled. On the other hand,

$$
\underset{\lambda \in \mathbb{R}_{+}^{2}}{\cup} \operatorname{epi}\left(f+\langle\lambda, g(\cdot)\rangle+\delta_{\mathbb{R}_{+}^{2}}\right)^{*}=\mathbb{R}^{2} \times \mathbb{R}_{+}
$$

and (B) is valid, i.e. for (P) and (D) one has strong duality.

Subdifferential formulae

- One always has:

$$
\partial\left(f+\delta_{\mathcal{A}}\right)(x) \supseteq \bigcup_{\substack{\lambda \in K^{*},\langle\lambda, g(x)\rangle=0}} \partial\left(f+\langle\lambda, g\rangle+\delta_{S}\right)(x) \forall x \in \operatorname{dom} f \cap \mathcal{A} .
$$

Each of the qualification conditions $(S),(R),(J W),(W S)$ and (B) guarantees (under corresponding topological assumptions) that

$$
\partial\left(f+\delta_{\mathcal{A}}\right)(x)=\bigcup_{\substack{\lambda \in K^{*},\langle\lambda, g(x)\rangle=0}} \partial\left(f+\langle\lambda, g\rangle+\delta_{S}\right)(x) \forall x \in \operatorname{dom} f \cap \mathcal{A} .
$$

Generalized KKT optimality conditions for (P)
Assume that one of the qualification conditions $(S),(R),(J W),(W S)$ and (B) is (under corresponding topological assumptions) fulfilled. Then $\bar{x} \in X$ is an optimal solution to (P) if and only if there exists $\bar{\lambda} \in K^{*}$ such that

$$
0 \in \partial\left(f+\langle\bar{\lambda}, g\rangle+\delta_{S}\right)(\bar{x})
$$

and

$$
\langle\bar{\lambda}, g(\bar{x})\rangle=0
$$

References

H.H. Bauschke, P.-L. Combettes (2011): Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer-Verlag, New York
J.M. Borwein, A.S. Lewis (2006): Convex Analysis and Nonlinear Optimization, Springer-Verlag, New York
J.M. Borwein, J.D. Vanderwerff (2010): Convex Functions: Constructions, Characterizations and Counterexamples, Cambridge University Press, New York

R.I. Boț (2010): Conjugate Duality in Convex Optimization, Lecture Notes in Economics and Mathematical Systems, Vol. 637, Springer-Verlag, Berlin HeidelbergR.I. Boț, S.-M. Grad, G. Wanka (2009): Duality in Vector Optimization, Springer-Verlag, Berlin Heidelberg

I. Ekeland, R. Temam (1976): Convex Analysis and Variational Problems, North-Holland Publishing Company, AmsterdamR.T. Rockafellar (1970): Convex Analysis, Princeton University Press, Princeton
C. Zălinescu (2002): Convex Analysis in General Vector Spaces, World Scientific, River Edge

