Lecture Series on "Convex analysis with applications in inverse problems"

Lecture 1: Convex analysis: basics, conjugation and duality

Radu Ioan Boț

Chemnitz University of Technology Department of Mathematics 09107 Chemnitz www.tu-chemnitz.de/~rabot

Institute for Numerical and Applied Mathematics University of Goettingen June 11, 2012

Deutsche Forschungsgemeinschaft

< ロ > < 同 > < 回 > < 回 >

Lecture Series on "Convex analysis with applications in inverse problems"

- Lecture 1: Convex analysis: basics, conjugation and duality (Monday, June 11, 2012)
- Lecture 2: Proximal methods in convex optimization (Wednesday, June 13, 2012)
- Lecture 3: Convex regularization techniques for linear inverse problems (Thursday, June 14, 2012)

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

3

Convex functions Conjugacy and subdifferentiability Convex duality

Contents

Convex functions

Algebraic properties of convex functions Topological properties of convex functions

Conjugacy and subdifferentiability

Conjugate functions The convex subdifferential

Convex duality

Fenchel duality Lagrange duality

글 > : < 글 >

Convex functions

Algebraic properties of convex functions

Let $(X, \|\cdot\|)$ be a normed space, $(X^*, \|\cdot\|_*)$ its topological dual space and the duality pairing on $X^* \times X$, $\langle \cdot, \cdot \rangle : X^* \times X \to \mathbb{R}, \langle x^*, x \rangle = x^*(x)$.

Convex function

A function $f: X \to \overline{\mathbb{R}} := \mathbb{R} \cup \{\pm \infty\}$ is said to be convex, if

 $f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y) \ \forall x, y \in X \ \forall \lambda \in [0, 1].$

- Conventions: $(+\infty) + (-\infty) = +\infty, 0(+\infty) = +\infty, 0(-\infty) = 0.$
- ▶ The effective domain of the function $f: X \to \overline{\mathbb{R}}$ is the set

dom $f := \{x \in X : f(x) < +\infty\}$. If f is convex, then dom f is a convex set.

▶ A function $f: X \to \overline{\mathbb{R}}$ is said to be proper if $f(x) > -\infty \forall x \in X$ and dom $f \neq \emptyset$.

Some examples of convex functions

- ▶ The norm $\|\cdot\|: X \to \mathbb{R}$ is a convex function.
- ▶ The indicator function of a set $S \subseteq X$ is defined as

$$\delta_S: X \to \overline{\mathbb{R}}, \delta_S(x) = \begin{cases} 0, & \text{if } x \in S, \\ +\infty, & \text{otherwise.} \end{cases}$$

The function δ_S is convex if and only if S is a convex set.

▶ When $A \in \mathbb{R}^{n \times n}$ is a symmetric matrix, then $f : \mathbb{R}^n \to \mathbb{R}$, $f(x) = x^T A x$, is convex if and only if A is positive semidefinite.

Convex functions Conjugacy and subdifferentiability Convex duality

Algebraic properties of convex functions Topological properties of convex functions

▶ The epigraph of a function $f: X \to \overline{\mathbb{R}}$ is the set

 $epi f = \{(x, r) \in X \times \mathbb{R} : f(x) \le r\}.$

▶ The function f is convex if and only if the set epi f is convex.

Level set

If $f: X \to \overline{\mathbb{R}}$ is a convex function, then for each $\lambda \in \mathbb{R}$ its upper level set

 $\{x \in X : f(x) \le \lambda\}$

is convex. However, the opposite statement is not true. A counterexample in this sense is provided by the function $f:\mathbb{R}\to\mathbb{R}, f(x)=x^3$.

Sublinear function

A function $f: X \to \overline{\mathbb{R}}$ is said to be sublinear, if it is: **>** positively homogeneous: f(0) = 0 and $f(\lambda x) = \lambda f(x) \ \forall \lambda > 0 \ \forall x \in X$; **>** subadditive: $f(x + y) \le f(x) + f(y) \ \forall x, y \in X$.

A function is sublinear if and only if it is positively homogeneous and convex.
 A function f : X → R is sublinear if and only if epi f is a convex cone with (0, -1) ∉ epi f.

Composition with an affine mapping

When $(Y, \|\cdot\|)$ is another normed space, the operator $T: X \to Y$ is said to be affine, if

$$T(\lambda x + (1 - \lambda)y) = \lambda T(x) + (1 - \lambda)T(y) \ \forall x, y \in X \ \forall \lambda \in \mathbb{R}$$

When $f: Y \to \overline{\mathbb{R}}$ is convex and $T: X \to Y$ is affine, then $f \circ T: X \to \overline{\mathbb{R}}$ is convex.

Pointwise supremum

The pointwise supremum of a family of convex functions $f_i: X \to \overline{\mathbb{R}}$,

$$\sup_{i \in I} f_i : X \to \overline{\mathbb{R}}, \sup_{i \in I} f_i(x) = \sup\{f_i(x) : i \in I\},\$$

is convex. Notice that $\operatorname{epi}\left(\sup_{i\in I} f_i\right) = \bigcap_{i\in I} \operatorname{epi} f_i$.

Infimal value function

When
$$\Phi: X \times Y \to \overline{\mathbb{R}}$$
 is convex, then its infimal value function
 $h: Y \to \overline{\mathbb{R}}, h(y) = \inf \{ \Phi(x, y) : x \in X \},$

is convex, too.

Infimal convolution

The infimal convolution of two functions $f, g: X \to \overline{\mathbb{R}}$ is defined as

$$f\Box g: X \to \mathbb{R}, (f\Box g)(x) = \inf\{f(x-y) + g(y): y \in X\}.$$

One has $epi(f \Box g) = epi f + epi g$. When f and g are convex, then $f \Box g$ is convex, too.

Example (distance function)

When $S \subseteq X$ is a convex set, then its distance function $d_S : X \to \overline{\mathbb{R}}$ fulfills

$$d_S(x) = \inf\{\|x - y\| : y \in S\} = (\|\cdot\| \Box \delta_S)(x) \ \forall x \in X,$$

thus it is convex.

Topological properties of convex functions

Lower semicontinuous function

A function $f:X\to\overline{\mathbb{R}}$ is said to be

▶ lower semicontinuous at $x \in X$, if $\liminf_{y \to x} f(y) := \sup_{\delta > 0} \inf_{y \in B(x,\delta)} f(y) \ge f(x)$;

lower semicontinuous, if it is lower semicontinuous at every $x \in X$.

For a given function $f:X\to\overline{\mathbb{R}}$ the following statements are equivalent:

- ▶ f is lower semicontinuous;
- ▶ epi f is closed;
- ▶ every upper level set $\{x \in X : f(x) \le \lambda\}$, $\lambda \in \mathbb{R}$, is closed.

Example (indicator function)

For the indicator function δ_S of a set $S \subseteq X$ one has $\operatorname{epi} \delta_S = S \times \mathbb{R}_+$. Thus δ_S is lower semicontinuous if and only if S is closed.

Pointwise supremum

The pointwise supremum of a family of lower semicontinuous functions $f_i : X \to \overline{\mathbb{R}}$, $\sup_{i \in I} f_i : X \to \overline{\mathbb{R}}$, $\sup_{i \in I} f_i(x) = \sup\{f_i(x) : i \in I\}$,

is lower semicontinuous.

Lower semicontinuous hull

The lower semicontinuous hull of a function $f: X \to \overline{\mathbb{R}}$ is defined as

$$\bar{f}:X\to\overline{\mathbb{R}}, \bar{f}(x)=\inf\{r:(x,r)\in \operatorname{cl}(\operatorname{epi} f)\}.$$

The following statements are true:

▶
$$\liminf_{y \to x} f(y) = \overline{f}(x) \ \forall x \in X;$$
▶
$$\operatorname{epi} \overline{f} = \operatorname{cl}(\operatorname{epi} f);$$
▶
$$\overline{f} = \sup\{h : X \to \overline{\mathbb{R}} : h \leq f \text{ and } h \text{ is lower semicontinuous}\}.$$

Affine minorant

One says that
$$x \mapsto \langle x^*, x \rangle + \alpha$$
, where $(x^*, \alpha) \in X^* \times \mathbb{R}$, is an affine minorant of $f: X \to \overline{\mathbb{R}}$, if $\langle x^*, y \rangle + \alpha \leq f(y) \ \forall y \in X$.

Fundamental result

A function $f: X \to \overline{\mathbb{R}}$ is convex, lower semicontinuous and it fulfills $f > -\infty$ if and only if there exists $(x^*, \alpha) \in X^* \times \mathbb{R}$ such that $\langle x^*, y \rangle + \alpha \leq f(y)$ for all $y \in X$ and

 $f(x) = \sup\{ \langle x^*, x \rangle + \alpha : (x^*, \alpha) \in X^* \times \mathbb{R}, \langle x^*, y \rangle + \alpha \leq f(y) \ \forall y \in X \} \ \forall x \in X.$

< D > < A > < B > < B >

Weak lower semicontinuity

A function $f: X \to \mathbb{R}$ is said to be weakly lower semicontinuous, if epi f is weakly closed.

Since

$$\operatorname{epi} f \subseteq \operatorname{cl}(\operatorname{epi} f) \subseteq \operatorname{cl}_{\omega(X,X^*) \times \mathbb{R}}(\operatorname{epi} f),$$

every weakly lower semicontinuous function is lower semicontinuous, too.

▶ If $f: X \to \mathbb{R}$ is convex, then f is weakly lower semicontinuous if and only if f is lower semicontinuous.

Continuity via convexity

If a convex function $f: X \to \mathbb{R}$ is bounded above on a neighborhood of a point of its domain, then f is continuous on int(dom f).

Local Lipschitz continuity via convexity

If a proper and convex function $f: X \to \overline{\mathbb{R}}$ is bounded above on a neighborhood of a point of its domain, then f is locally Lipschitz continuous on $\operatorname{int}(\operatorname{dom} f)$, i.e. for all $x \in \operatorname{int}(\operatorname{dom} f)$ there exist $\varepsilon > 0$ and $L \ge 0$ such that

$$|f(y) - f(z)| \le L ||y - z|| \ \forall y, z \in B(x, \varepsilon).$$

An intermezzo: the algebraic interior of a convex set

The algebraic interior of a convex set $S \subseteq X$ is

$$\operatorname{core}(S) := \{ s \in S : \operatorname{cone}(S-s) = \bigcup_{\lambda > 0} \lambda(S-s) = X \}.$$

One always has int(S) ⊆ core(S).
 If int(S) ≠ Ø or X is finite-dimensional, then int(S) = core(S).

Example

Let $x^{\sharp}: X \to \mathbb{R}$ be a discontinuous linear functional and $S := \{x \in X : |\langle x^{\sharp}, x \rangle| \leq 1\}$. Then $\operatorname{int}(S) = \emptyset$, while $0 \in \operatorname{core}(S) \neq \emptyset$.

From lower semicontinuity to continuity

If X is a Banach space and $f: X \to \mathbb{R}$ is a convex and lower semicontinuous function, then $\operatorname{int}(\operatorname{dom} f) = \operatorname{core}(\operatorname{dom} f)$ and f is continuous on $\operatorname{int}(\operatorname{dom} f)$.

Example

If X is a Banach space and $S \subseteq X$ is a convex and closed set, then $\operatorname{int}(S) = \operatorname{int}(\operatorname{dom} \delta_S) = \operatorname{core}(\operatorname{dom} \delta_S) = \operatorname{core}(S)$. However, these sets can be also empty. This is, for instance, the case when

$$p \in [1, +\infty), X = \ell^p \text{ and } S = \ell^p_+ := \{(x_k)_{k \ge 1} \in \ell_p : x_k \ge 0 \ \forall k \ge 1\}.$$

Conjugacy and subdifferentiability

Conjugate functions

(Fenchel-Legendre-) Conjugate function of a function $f: X \to \overline{\mathbb{R}}$:

$$f^*: X^* \to \overline{\mathbb{R}}, f^*(x^*) = \sup_{x \in X} \{ \langle x^*, x \rangle - f(x) \}.$$

Properties of the conjugate function (I)

For a given function $f: X \to \overline{\mathbb{R}}$ we have: $ightarrow f^*$ is convex and weak* lower semicontinuous; ightarrow Young-Fenchel-inequality: $f(x) + f^*(x^*) \ge \langle x^*, x \rangle \ \forall (x, x^*) \in X \times X^*;$ ightarrow when, for $g: X \to \overline{\mathbb{R}}$, $f \le g$, then $g^* \le f^*$;

► $f^* = (\bar{f})^*$.

- A - E - N

Examples

 \blacktriangleright The conjugate function of the indicator function of a set $S\subseteq X$ is the so-called support function of S,

$$\sigma_S: X^* \to \overline{\mathbb{R}}, \sigma_S(x^*) = \delta_S^*(x^*) = \sup_{x \in S} \langle x^*, x \rangle$$

▶ For
$$f = \| \cdot \|$$
, one has $f^*(x^*) = \begin{cases} 0, & \text{if } \|x^*\|_* \le 1, \\ +\infty, & \text{otherwise.} \end{cases}$
▶ For $f = \frac{1}{2} \| \cdot \|^2$, one has $f^* = \frac{1}{2} \| \cdot \|^2_*$.

Properties of the conjugate function (II)

For a given function
$$f: X \to \overline{\mathbb{R}}$$
 we have:
 $\blacktriangleright -f^*(0) = \inf_{x \in X} f(x);$
 $\blacktriangleright (\lambda f)^*(x^*) = \lambda f^*\left(\frac{1}{\lambda}x^*\right) \quad \forall \lambda > 0 \quad \forall x^* \in X^*;$
 $\blacktriangleright \text{ for } \bar{x} \in X:$
 $(f(\cdot + \bar{x}))^*(x^*) = f^*(x^*) - \langle x^*, \bar{x} \rangle \quad \forall x^* \in X^*;$

▶ for
$$\bar{x}^* \in X^*$$
:
 $(f + \langle \bar{x}^*, \cdot \rangle)^*(x^*) = f^*(x^* - \bar{x}^*) \ \forall x^* \in X$

*

< ロ > < 回 > < 回 > < 回 > < 回 >

э

Convex functions Conjugacy and subdifferentiability Convex duality

Properties of the conjugate function (III)

Let be
$$\Phi: X \times Y \to \overline{\mathbb{R}}$$
.
 If

$$h:Y\to\overline{\mathbb{R}}, h(y)=\inf\{\Phi(x,y):x\in X\},$$

then

$$h^*(y^*) = \Phi^*(0, y^*) \; \forall y^* \in Y^*$$

► If

$$\Phi(x,y) = f(x) + g(y),$$

where $f: X \to \overline{\mathbb{R}}$ and $g: Y \to \overline{\mathbb{R}}$, then

$$\Phi^*(x^*, y^*) = f^*(x^*) + g^*(y^*) \ \forall (x^*, y^*) \in X^* \times Y^*.$$

The conjugate of the infimal convolution

For $f,g:X\to\overline{\mathbb{R}}$ proper functions one has

$$(f\Box g)^* = f^* + g^*.$$

< ∃⇒

Biconjugate function of a function $f: X \to \overline{\mathbb{R}}$

$$f^{**}: X \to \overline{\mathbb{R}}, f^{**}(x) = \sup_{x^* \in X^*} \{ \langle x^*, x \rangle - f^*(x^*) \}.$$

▶ When X^* is endowed with the weak* topology, then $f^{**} = (f^*)^*$. ▶ One always has: $f^{**} \leq \bar{f} \leq f$.

Theorem of Fenchel-Moreau

If $f: X \to \overline{\mathbb{R}}$ is a proper, convex and lower semicontinuous function, then f^* is proper and it holds $f^{**} = f$.

Conjugate of the biconjugate

For $f:X\to\overline{\mathbb{R}}$ a given function it holds

$$f^{***} = (f^{**})^* = (f^*)^{**} = f^*.$$

The conjugate of the sum

For $f,g:X\to\overline{\mathbb{R}}$ proper, convex and lower semicontinuous functions with $\mathrm{dom}\,f\cap\mathrm{dom}\,g\neq\emptyset$ it holds

$$(f+g)^* = (f^{**} + g^{**})^* = (f^* \Box g^*)^{**} = \left(\overline{f^* \Box g^*}\right)^{**} = \overline{f^* \Box g^*}$$

The convex subdifferential

The convex subdifferential of f at $x \in X$:

$$\partial f(x) := \{ x^* \in X^* : f(y) - f(x) \ge \langle x^*, y - x \rangle \ \forall y \in X \},$$

for $f(x) \in \mathbb{R}$. Otherwise, $\partial f(x) := \emptyset$.

Properties of the convex subdifferential (I)

For a given function $f: X \to \overline{\mathbb{R}}$ and $x \in X$ we have:

▶ the set $\partial f(x)$ is convex and weak^{*} closed and it can be empty, even if $f(x) \in \mathbb{R}$;

$$\blacktriangleright x^* \in \partial f(x) \Leftrightarrow f(x) + f^*(x^*) = \langle x^*, x \rangle;$$

▶ if
$$\partial f(x) \neq \emptyset$$
, then $\bar{f}(x) = f(x)$ and $\partial \bar{f}(x) = \partial f(x)$;

▶ when *f* proper:

x is a global minimum of $f \Leftrightarrow 0 \in \partial f(x)$.

A 32 b

Convex functions Conjugacy and subdifferentiability Convex duality

Examples

▶ The convex subdifferential of the indicator function of a set $S \subseteq X$ at $x \in X$ is the so-called normal cone of S at X,

$$N_S(x) := \partial(\delta_S)(x) = \begin{cases} x^* \in X^* : \langle x^*, y - x \rangle \le 0 \ \forall y \in S \}, & \text{ if } x \in S, \\ \emptyset, & \text{ otherwise} \end{cases}$$

One has

$$\partial \| \cdot \|(x) = \begin{cases} \ \{x^* \in X^* : \|x^*\|_* \le 1\}, & \text{if } x = 0, \\ \ \{x^* \in X^* : \|x^*\|_* = 1, \|x\| = \langle x^*, x \rangle\}, & \text{otherwise} \end{cases}$$

• One has $\partial \left(\frac{1}{2} \|\cdot\|^2\right)(x) = \{x^* \in X^* : \|x^*\|_* = \|x\|, \|x^*\|_* \|x\| = \langle x^*, x \rangle \}.$

Properties of the convex subdifferential (II)

For a given function
$$f: X \to \overline{\mathbb{R}}$$
 and $x \in X$ we have:
 $\partial(\lambda f)(x) = \lambda \partial f(x) \quad \forall \lambda > 0;$
For $\overline{x} \in X$:
 $\partial f(\cdot + \overline{x})(x) = \partial f(x + \overline{x});$

▶ for $\bar{x}^* \in X^*$:

$$\partial (f + \langle \bar{x}^*, \cdot \rangle)(x) = \partial f(x) + x^*.$$

< (T) >

< ∃⇒

Properties of the convex subdifferential (III)

For a proper function $f: X \to \overline{\mathbb{R}}$ and $x \in \text{dom } f$ we have: ▶ $x^* \in \partial f(x) \Rightarrow x \in \partial f^*(x^*)$, where

 $\partial f^*(x^*) := \{ z \in X : f^*(y^*) - f^*(x^*) \ge \langle y^* - x^*, z \rangle \ \forall y^* \in X^* \};$

 \blacktriangleright if f is convex and lower semicontinuous at x, then

 $x^* \in \partial f(x) \Leftrightarrow x \in \partial f^*(x^*).$

The convex subdifferential of the sum of two functions

For $f: X \to \overline{\mathbb{R}}$, $q: Y \to \overline{\mathbb{R}}$ given functions and $A: X \to Y$ a linear continuous operator it holds

$$\partial f(x) + A^*(\partial g(Ax)) \subseteq \partial (f + g \circ A)(x) \; \forall x \in X,$$

where $A^*: Y^* \to X^*$

$$\langle A^*y^*,x\rangle=\langle y^*,Ax\rangle \; \forall (x,y^*)\in X\times Y^*,$$

denotes the adjoint operator of A. Thus, when X = Y and A is the identity on X, it holds

 $\partial f(x) + \partial q(x) \subset \partial (f+q)(x) \ \forall x \in X.$

Convex subdifferential and directional derivatives

Let $f:X\to\overline{\mathbb{R}}$ be a proper and convex function and $x\in \mathrm{dom}\, f.$ The following statements are true:

▶ the directional derivative of f at x fulfills for every direction $d \in X$:

$$f'(x;d) = \lim_{t \downarrow 0} \frac{f(x+td) - f(x)}{t} = \inf_{t > 0} \frac{f(x+td) - f(x)}{t} \in \overline{\mathbb{R}};$$

it holds:

$$\partial f(x) = \{x^* \in X^* : f'(x; d) \ge \langle x^*, d \rangle \ \forall d \in X\};$$

▶ if f is Gâteaux differentiable at x, i.e

$$\exists \nabla f(x) \in X^*$$
 such that $f'(x; d) = \langle \nabla f(x), d \rangle \ \forall d \in X$,

then

$$\partial f(x) = \{\nabla f(x)\}.$$

Examples

 $\begin{array}{l} \text{When } (X, \|\cdot\|) \text{ is a Hilbert space one has} \\ \bullet \; \partial \|\cdot\|(x) = \left\{ \begin{array}{l} \{x^* \in X : \|x^*\| \leq 1\}, & \text{ if } x = 0, \\ \left\{\frac{1}{\|x\|}x\right\}, & \text{ otherwise.} \end{array} \right. \\ \bullet \; \partial \left(\frac{1}{2}\|\cdot\|^2\right)(x) = \{x\} \text{ for all } x \in X. \end{array}$

Subdifferentiability via continuity

Let $f:X\to\overline{\mathbb{R}}$ be proper, convex and continuous at $x\in \mathrm{dom}\, f.$ The following statements are true:

- $\blacktriangleright \ \partial f(x) \neq \emptyset;$
- ▶ $\partial f(x)$ is weak^{*} compact and, consequently, norm-bounded;
- $\blacktriangleright f'(x;\cdot)$ is continuous and it holds

$$f'(x;d) = \max\{\langle x^*, d \rangle : x^* \in \partial f(x)\} \ \forall d \in X;$$

▶ if $\partial f(x)$ is a singleton, then f is Gâteaux differentiable at x.

Example

When $f: X \to \overline{\mathbb{R}}$ is a proper, convex and lower semicontinuous function at $x \in \text{dom } f$, which fails to be continuous at $x \in \text{dom } f$, $\partial f(x)$ may be empty. For

$$f:\mathbb{R}\to\overline{\mathbb{R}}, f(x)=\left\{\begin{array}{ll} -\sqrt{1-x^2}, & \text{ if } |x|\leq 1,\\ +\infty, & \text{ otherwise,} \end{array}\right.$$

one has $\partial f(1) = \emptyset$. Moreover,

$$\emptyset = 0\partial f(1) \neq \partial(0f)(1) = \mathbb{R}_{-}$$

< ロ > < 同 > < 回 > < 回 >

э

Convex functions Conjugacy and subdifferentiability Convex duality

Fenchel duality Lagrange duality

Convex duality Fenchel duality

For $f: X \to \overline{\mathbb{R}}$ and $g: Y \to \overline{\mathbb{R}}$ proper and convex functions fulfilling $A(\operatorname{dom} f) \cap \operatorname{dom} g \neq \emptyset$, we consider the unconstrained optimization problem

$$(P) \quad \inf_{x \in X} \{f(x) + g(Ax)\}.$$

Particular case included (I)

For X = Y, A the identity operator on X and $f, g : X \to \overline{\mathbb{R}}$ proper and convex functions fulfilling dom $f \cap \text{dom } g \neq \emptyset$, problem (P) reads

$$\inf_{x \in X} \{f(x) + g(x)\}.$$

Particular case included (II)

Let $f_i: X \to \overline{\mathbb{R}}, i = 1, ..., k$, be proper and convex functions fulfilling $\cap_{i=1}^k \operatorname{dom} f_i \neq \emptyset$. By taking $Y := \prod_{i=1}^k X, A: X \to Y, Ax = (x, ..., x), f(x) = 0$ for all $x \in X$ and $g: Y \to \overline{\mathbb{R}}, g(x_1, ..., x_k) = \sum_{i=1}^k f_i(x_i)$, problem (P) becomes

$$\inf_{x \in X} \left\{ \sum_{i=1}^k f_i(x) \right\}.$$

Fenchel dual problem to (P):

(D)
$$\sup_{y^* \in Y^*} \left\{ -f^*(-A^*y^*) - g^*(y^*) \right\}.$$

Weak duality (is always fulfilled):

$$\inf_{x \in X} \{f(x) + g(Ax)\} \ge \sup_{y^* \in Y^*} \{-f^*(-A^*y^*) - g^*(y^*)\}.$$

Strong duality holds, if:

$$\inf_{x \in X} \left\{ f(x) + g(Ax) \right\} = \max_{y^* \in Y^*} \left\{ -f^*(-A^*y^*) - g^*(y^*) \right\}.$$

э

< ∃ →

Example (nonzero duality gap)

Let
$$A : \mathbb{R}^2 \to \mathbb{R}^2$$
, $A(x_1, x_2) = (x_1, x_2)$,
 $f : \mathbb{R}^2 \to \overline{\mathbb{R}}, \ f(x_1, x_2) = \max\{-1, -\sqrt{x_1 x_2}\} + \delta_{\mathbb{R}^2_+}(x_1, x_2)$

and

$$g: \mathbb{R}^2 \to \overline{\mathbb{R}}, \ g(x_1, x_2) = \delta_{\{0\} \times \mathbb{R}}(x_1, x_2).$$

The optimal objective value of (P) is equal to 0, while the optimal objective value of (D) is equal to -1.

Example (zero duality gap, but no strong duality)

Let $A : \mathbb{R} \to \mathbb{R}$, Ax = x,

$$f: \mathbb{R} \to \overline{\mathbb{R}}, \ f(x) = \left\{ \begin{array}{ll} x(\ln x - 1), & \text{ if } x > 0, \\ 0, & \text{ if } x = 0, \\ +\infty, & \text{ otherwise}, \end{array} \right.$$

and

$$g: \mathbb{R} \to \overline{\mathbb{R}}, \ g(x) = \frac{1}{2}x^2 + \delta_{\mathbb{R}_-}(x).$$

The optimal objective values of (P) and (D) are both equal to 0, however the dual problem has no optimal solution.

An intermezzo: the strong-quasi relative interior

The strong-quasi relative interior of a convex set $S \subseteq X$ is

 $\operatorname{sqri}(S) := \{s \in S : \operatorname{cone}(S - s) \text{ is a closed linear subspace}\}.$

▶ Recall:
$$\operatorname{core}(S) = \{s \in S : \operatorname{cone}(S - s) = X\}.$$

- ▶ One always has $int(S) \subseteq core(S) \subseteq sqri(S)$.
- ▶ If $int(S) \neq \emptyset$, then int(S) = core(S) = sqri(S).
- \blacktriangleright If X is finite-dimensional, then

$$\operatorname{int}(S) = \operatorname{core}(S)$$
 and $\operatorname{sqri}(S) = \operatorname{ri}(S) = \operatorname{int}_{\operatorname{aff}(S)}(S)$.

3

- ∢ ⊒ →

Convex functions Conjugacy and subdifferentiability Convex duality Lagrange duality

Interiority-type qualification conditions for Fenchel duality:

- ▶ (F): $\exists x' \in \operatorname{dom} f \cap A^{-1}(\operatorname{dom} g)$ such that g is continuous at Ax';
- (MR) (Moreau-Rockafellar, 1966): $0 \in \operatorname{core}(A(\operatorname{dom} f) \operatorname{dom} g)$;
- ▶ (AB) (Attouch-Brezis, 1986): $0 \in \operatorname{sqri}(A(\operatorname{dom} f) \operatorname{dom} g)$.

Strong duality statements:

- $(F) \Rightarrow$ strong duality for (P) (D);
- When X and Y are Banach spaces and f, g are lower semicontinuous, then $(F) \Rightarrow (MR) \Rightarrow (AB) \Rightarrow$ strong duality for (P) (D).

The finite-dimensional case

If $X = \mathbb{R}^n$ and $Y = \mathbb{R}^m$, then $(AB) \Leftrightarrow A(\operatorname{ri}(\operatorname{dom} f)) \cap \operatorname{ri}(\operatorname{dom} g) \neq \emptyset \Rightarrow$ strong duality for (P) - (D).

イロト イポト イヨト イヨト

э.

Convex functions Conjugacy and subdifferentiability Convex duality

Closedness-type qualification condition for Fenchel duality:

► (B): $(A^* \times id_{\mathbb{R}})(epi f^*) + epi g^*$ is closed in $(X^*, \omega(X^*, X)) \times \mathbb{R}$.

▶ If f, g are lower semicontinuous, then $(B) \Rightarrow$ strong duality for (P) - (D).

• If X, Y are Banach spaces and f, g are lower semicontinuous, then $(F) \Rightarrow (MR) \Rightarrow (AB) \Rightarrow (B)$.

Example

Let $A: \mathbb{R} \to \mathbb{R}$, Ax = x, $f: \mathbb{R} \to \overline{\mathbb{R}}, \ f(x) = \frac{1}{2}x^2 + \delta_{\mathbb{R}_+}(x) \text{ and } g: \mathbb{R} \to \overline{\mathbb{R}}, \ g(x) = \delta_{\mathbb{R}_-}(x).$

The functions f and g are proper, convex and lower semicontinuous and none of the interiority-type qualification conditions is fulfilled. On the other hand,

 $(A^* \times \mathrm{id}_{\mathbb{R}})(\mathrm{epi}\,f^*) + \mathrm{epi}\,g^* = \mathbb{R} \times \mathbb{R}_+$

and (B) is valid, i.e. for (P) and (D) one has strong duality.

ヘロト 人間ト ヘヨト ヘヨト

Subdifferential formulae

Recall:

$$\partial (f + g \circ A)(x) \supseteq \partial f(x) + A^*(\partial g(Ax)) \ \forall x \in X.$$

 \blacktriangleright Each of the qualification conditions (F), (MR), (AB) and (B) guarantees (under corresponding topological assumptions) that

$$\partial (f + g \circ A)(x) = \partial f(x) + A^*(\partial g(Ax)) \ \forall x \in X.$$

Optimality conditions for (P)

Assume that one of the qualification conditions (F), (MR), (AB) and (B) (under corresponding topological assumptions) is fulfilled. Then $\bar{x} \in X$ is an optimal solution to (P) if and only if

 $0 \in \partial f(\bar{x}) + A^*(\partial q(A\bar{x})).$

くぼう くほう くほう

Conjugacy and subdifferentiability Lagrange duality Convex duality

Lagrange duality

Consider the geometric and cone-constrained optimization problem

(P) inf f(x), s.t. $g(x) \in -K$, $x \in S$

where

- $\blacktriangleright X, Z$ are two normed spaces;
- $K \subseteq Z$ is a nonempty convex cone, i.e., $\forall \lambda \ge 0 \ \forall k \in K \Rightarrow \lambda k \in K$. By \leq_K we denote the partial order induced by K on Z, i.e.,

for $u, v \in Z$ it holds $u \leq_K v \Leftrightarrow v - u \in K$

and by

$$K^* := \{ \lambda \in Z^* : \langle \lambda, k \rangle \ge 0 \ \forall k \in K \}$$

the dual cone of K; $S \subseteq X$ is a convex set:

- $f: X \to \overline{\mathbb{R}}$ is a proper and convex function;
- $q: X \to Z$ is a *K*-convex function, i.e.,

the K-epigraph of q, $epi_K q = \{(x, z) \in X \times Z : q(x) \leq_K z\}$, is convex

or, equivalently

$$g(\lambda x + (1 - \lambda)y) \leq_K \lambda g(x) + (1 - \lambda)g(y) \ \forall x, y \in X \ \forall \lambda \in [0, 1]$$

• the feasiblity condition dom $f \cap \mathcal{A} \neq \emptyset$ is fulfilled, with

$$\mathcal{A} := \{ x \in S : g(x) \in -K \}.$$

(∃)

Convex functions Conjugacy and subdifferentiability Convex duality Lagrange duality

Particular case included (I)

For $Z = \mathbb{R}^m$, $K = \mathbb{R}^m_+$ and $g = (g_1, ..., g_m)^T : X \to \mathbb{R}^m$, problem (P) reads

$$\begin{array}{ll} \inf & f(x).\\ \text{s.t.} & g_i(x) \leq 0, i=1,...,m,\\ & x \in S \end{array}$$

The function g is K-convex $\Leftrightarrow g_i, i = 1, ..., m$, is convex.

Particular case included (II)

For $Z = \mathbb{R}^{m+p}$, $K = \mathbb{R}^m_+ \times \{0_{\mathbb{R}^p}\}$ and $g = (g_1, ..., g_m, h_1, ..., h_p)^T : X \to \mathbb{R}^{m+p}$, problem (P) reads

$$\begin{array}{ll} \inf & f(x).\\ \text{s.t.} & g_i(x) \leq 0, i=1,...,m,\\ & h_j(x)=0, j=1,...,p,\\ & x\in S \end{array}$$

The function g is K-convex $\Leftrightarrow g_i, i = 1, ..., m$, is convex and $h_j, j = 1, ..., p$, is affine.

きょうきょう

Particular case included (III)

For an arbitrary index set $I, Z = \mathbb{R}^I := \{z | z : I \to \mathbb{R}\},\ K = (\mathbb{R}^I)_+ := \{z \in \mathbb{R}^I | z(i) \ge 0 \ \forall i \in I\} \text{ and } g = (g_i)_{i \in I} : \mathcal{X} \to \mathbb{R}^I, \text{ problem } (P) \text{ reads}$

$$\begin{array}{ll} \inf & f(x).\\ \text{s.t.} & g_i(x) \leq 0, i \in I,\\ & x \in S \end{array}$$

The function g is K-convex $\Leftrightarrow g_i$ is convex for every $i \in I$.

A 32 b

Convex functions Conjugacy and subdifferentiability Convex duality Lagrange duality

Lagrange dual problem to (P):

(D)
$$\sup_{\lambda \in K^*} \inf_{x \in S} \left\{ f(x) + \langle \lambda, g(x) \rangle \right\}.$$

Weak duality (is always fulfilled):

$$\inf_{x \in \mathcal{A}} f(x) \ge \sup_{\lambda \in K^*} \inf_{x \in S} \left\{ f(x) + \langle \lambda, g(x) \rangle \right\}.$$

Strong duality holds, if:

$$\inf_{x \in \mathcal{A}} f(x) = \max_{\lambda \in K^*} \inf_{x \in S} \left\{ f(x) + \langle \lambda, g(x) \rangle \right\}.$$

 э

Example (nonzero duality gap)

Let $X = \mathbb{R}^2$, $Z = \mathbb{R}$, $K = \mathbb{R}_+$, $S = \{0\} \times [3,4] \cup (0,2] \times (1,4] \subseteq \mathbb{R}^2$, $f : \mathbb{R}^2 \to \mathbb{R}$, $f(x_1, x_2) = x_2$

and

$$g: \mathbb{R}^2 \to \mathbb{R}, \ g(x_1, x_2) = x_1.$$

Then $\mathcal{A} = 0 \times [3, 4]$ and the optimal objective value of (P) is equal to 3, while the optimal objective value of (D) is equal to 1.

▶ < ∃ >

Interiority-type qualification conditions for Lagrange duality:

- (S) (Slater qualification condition): $\exists x' \in \operatorname{dom} f \cap S$ such that $g(x') \in -\operatorname{int}(K)$;
- (R) (Rockafellar, 1974): $0 \in \operatorname{core}(g(\operatorname{dom} f \cap S) + K);$
- ▶ (JW) (Jeyakumar-Wolkowicz, 1992): $0 \in \operatorname{sqri}(g(\operatorname{dom} f \cap S) + K)$.

Strong duality statements:

- $(S) \Rightarrow$ strong duality for (P) (D);
- ▶ If X and Z are Banach spaces, S is closed, f is lower semicontinuous and g is K-epi closed (i.e. $epi_K g$ is closed), then $(S) \Rightarrow (R) \Rightarrow (JW) \Rightarrow$ strong duality for (P) (D).

The finite-dimensional case

If $X = \mathbb{R}^n$, $Y = \mathbb{R}^m$, $K = \mathbb{R}^m_+$ and $g = (g_1, ..., g_m)^T : \mathbb{R}^n \to \mathbb{R}^m$, then the three conditions become

$$\exists x' \in \operatorname{dom} f \cap S$$
 such that $g_i(x') < 0, i = 1, ..., m$.

Recall also the following weak Slater qualification condition

▶ (WS) (Rockafellar, 1970): $\exists x' \in ri(dom f \cap S)$ such that $g_i(x') \leq 0, i \in L$, and $g_i(x') < 0, i \in N$,

where $L = \{i \in \{1, ..., m\} : g_i \text{ is affine}\}$ and $N = \{1, ..., m\} \setminus L$.

Convex functions Conjugacy and subdifferentiability Convex duality Lagrange duality

Closedness-type qualification condition for Lagrange duality:

$$\blacktriangleright \quad (B): \bigcup_{\lambda \in K^*} \operatorname{epi}(f + \langle \lambda, g \rangle + \delta_S)^* \text{ is closed in } (X^*, \omega(X^*, X)) \times \mathbb{R}.$$

- ▶ If S is closed, f is lower semicontinuous and g is K-epi closed, then $(B) \Rightarrow$ strong duality for (P) (D).
- ▶ If X and Z are Banach spaces, S is closed, f is lower semicontinuous and g is K-epi closed, then $(S) \Rightarrow (R) \Rightarrow (JW) \Rightarrow (B)$.

Example

Let
$$X = Z = \mathbb{R}^2$$
, $K = \mathbb{R}^2_+$, $S = \mathbb{R}^2_+$,

$$f:\mathbb{R}^2\to\mathbb{R},\ f(x_1,x_2)=\tfrac{1}{2}x_1^2+x_2\ \text{and}\ g:\mathbb{R}^2\to\mathbb{R}^2,\ g(x_1,x_2)=(x_1,x_2-x_1).$$

The set S is convex and closed, the function f is proper, convex and lower semicontinuous, the function g is \mathbb{R}^2_+ -convex and \mathbb{R}^2_+ -epi closed and none of the interiority-type qualification conditions is fulfilled. On the other hand,

$$\bigcup_{\lambda \in \mathbb{R}^2_+} \operatorname{epi}(f + \langle \lambda, g(\cdot) \rangle + \delta_{\mathbb{R}^2_+})^* = \mathbb{R}^2 \times \mathbb{R}_+$$

and (B) is valid, i.e. for (P) and (D) one has strong duality.

Convex functions Conjugacy and subdifferentiability Convex duality

Subdifferential formulae

One always has:

$$\partial (f + \delta_{\mathcal{A}}) (x) \supseteq \bigcup_{\substack{\lambda \in K^*, \\ \langle \lambda, g(x) \rangle = 0}} \partial (f + \langle \lambda, g \rangle + \delta_S) (x) \ \forall x \in \mathrm{dom} \ f \cap \mathcal{A}.$$

▶ Each of the qualification conditions (S), (R), (JW), (WS) and (B) guarantees (under corresponding topological assumptions) that

$$\partial (f + \delta_{\mathcal{A}}) (x) = \bigcup_{\substack{\lambda \in K^*, \\ \langle \lambda, g(x) \rangle = 0}} \partial (f + \langle \lambda, g \rangle + \delta_S)(x) \ \forall x \in \mathrm{dom} \ f \cap \mathcal{A}.$$

Generalized KKT optimality conditions for (P)

Assume that one of the qualification conditions (S), (R), (JW), (WS) and (B) is (under corresponding topological assumptions) fulfilled. Then $\bar{x} \in X$ is an optimal solution to (P) if and only if there exists $\bar{\lambda} \in K^*$ such that

$$0 \in \partial (f + \langle \bar{\lambda}, g \rangle + \delta_S)(\bar{x})$$

 $\langle \bar{\lambda}, q(\bar{x}) \rangle = 0.$

and

	Convex functions	Fenchel duality Lagrange duality
Conjugacy a	nd subdifferentiability	
	Convex duality	

References

- H.H. Bauschke, P.-L. Combettes (2011): Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer-Verlag, New York
- J.M. Borwein, A.S. Lewis (2006): *Convex Analysis and Nonlinear Optimization*, Springer-Verlag, New York
- J.M. Borwein, J.D. Vanderwerff (2010): Convex Functions: Constructions, Characterizations and Counterexamples, Cambridge University Press, New York
- R.I. Boţ (2010): Conjugate Duality in Convex Optimization, Lecture Notes in Economics and Mathematical Systems, Vol. 637, Springer-Verlag, Berlin Heidelberg
- R.I. Boţ, S.-M. Grad, G. Wanka (2009): *Duality in Vector Optimization*, Springer-Verlag, Berlin Heidelberg
- I. Ekeland, R. Temam (1976): *Convex Analysis and Variational Problems*, North-Holland Publishing Company, Amsterdam
- R.T. Rockafellar (1970): Convex Analysis, Princeton University Press, Princeton
- C. Zălinescu (2002): *Convex Analysis in General Vector Spaces*, World Scientific, River Edge

э

- 4 同 ト 4 三 ト 4 三 ト