Lecture Series
on
“Convex analysis with applications in inverse problems”

Lecture 2: Proximal methods in convex optimization

Radu loan Bot

Chemnitz University of Technology
Department of Mathematics
09107 Chemnitz
www.tu-chemnitz.de/~rabot

Institute for Numerical and Applied Mathematics
University of Goettingen
June 13, 2012

I 1
) 3 Deutsche
L L Forschungsgemeinschaft
TECHNISCHE UNIVERSITAT
CHEMNITZ DFG

Radu loan Bot Proximal methods in convex optimization 1/39



Lecture Series
on
“Convex analysis with applications in inverse problems”

> Lecture 1: Convex analysis: basics, conjugation and duality (Monday, June 11,
2012)

> Lecture 2: Proximal methods in convex optimization (Wednesday, June 13, 2012)

> Lecture 3: Convex regularization techniques for linear inverse problems (Thursday,
June 14, 2012)

Radu loan Bot Proximal methods in convex optimization



Contents

Moreau envelope and proximal mapping
Strongly convex functions
Moreau envelope
Further properties of the proximal mapping

Regularization algorithms
The proximal point algorithm
A proximal-like algorithm with Bregman functions
Tikhonov regularization algorithm

Splitting methods
Forward-Backward algorithm
Douglas-Rachford algorithm

Radu loan Bot Proximal methods in convex optimization 3/39



Moreau envelope and proximal mapping Strongly functions

oreau
Further s of the proximal mapping

Moreau envelope and proximal mapping
Strongly convex functions

Let (H,(-,-)) be a real Hilbert space and || - || := / (-, ).
Strictly convex versus strongly convex function

A function f : H — R is said to be
» strictly convex, if

FOz+ (1= Ny) <Af(@) + (1= A)f(y) Yo,y € dom f,z # y VA € (0, 1);
» strongly convex (with modulus 8 > 0), if

FOa+(1=2)+M1= 0§ 2=yl < Af(x)+(1-X)f(1) Y,y € dom [ YA € (0.1).

Strongly convex function: characterization

A function f : H — R is strongly convex with modulus 8 > 0 if and only if
- g” - ||? is convex.

Coercive versus supercoercive function

A function f : H — R is said to be
» coercive, if lim  f(z) = 4o0;
llz]| =00

I (=)

lll

» supercoercive, if  lim = 400.

[lz]| =00
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Moreau envelope and proximal mapping Strongly convex functions
Mo

Further properties of the proximal mapping

» Obviously, every supercoercive function is coercive.

Coercivity versus boundedness

A function f : H — R is coercive if and only if for every A € R its upper level set
{z € H: f(z) < A} is bounded.

Strong convexity implies supercoercivity

Every proper, strongly convex and lower semicontinuous function f : H — R is
supercoercive.

» Indeed, there exists 8 > 0 such that
f(@) = Bllal® + (F(2) — Slle]?) Vo € .

Since f — g” - ||? is proper, convex and lower semicontinuous, there exists
(z*,a) € H x R such that

f(@) > Sllzl® + (@*,2) + a > § 2] — llz|l|lz* ]| + « Va € H.
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Moreau envelope and proximal mapping

Minimization of strongly convex functions

Every proper, convex, lower semicontinuous and coercive function f : H — R has a
minimizer in H. Thus, every proper, strongly convex, lower semicontinuous function
f + H — R has exactly one minimizer in H.

» Indeed, there exists A € R such that {z € H : f(z) < A} # 0 and
inf f(x)= inf ).
»'Cer( ) {yeH:f(y)<A} 1)
Since {y € H : f(y) < A} is bounded and closed, it is weakly compact, thus f, being
weakly lower semicontinuous, has at least one minimizer in {y € H : f(y) < A}, which
is actually a minimizer of f in H. When f is strongly convex, the uniqueness of the
minimizer follows from the fact that f is strictly convex, too.

The strong convexity of the conjugate

For a proper, convex and lower semicontinuous function f : H — R the following
properties are equivalent:

» dom f = H, f is Fréchet differentiable on H and V f is 3-Lipschitz continuous
(Lipschitz continuous with Lipschitz constant 8 > 0);

» dom f = H, f is Fréchet differentiable on H and the descent formula holds

fy) < f(@) + (Vf(@),y — ) + S|z — y||? Va,y € H;

» f* is strongly convex with modulus %

Radu loan Bot Proximal methods in convex optimization




Moreau envelope and proximal mapping Strong| unctions
Moreau envelo

Further properties of the proximal mapping

Moreau envelope

Moreau envelope of parameter v > 0
For a proper, convex and lower semicontinuous function f : H — R and v > 0 the

Moreau envelope of f of parameter 7 is the convex function

(@) = (%1 12) (@) = it {7@) + e~ vl?} Ve e B

For all x € H the function y — f(y) + %Hw — y||? is proper, strongly convex and

lower semicontinuous, thus the infimum is attained and 7 f(x) € R. This means that

TfiH >R

Proximal point

For a proper, convex and lower semicontinuous function f: H — R and z € H, the
unique minimum of
2
y = fy) + 5l =yl
is called proximal point of f at « and it is denoted by PTOX ¢ (z). The mapping
proxy; : H — H

is well-defined and is said to be the proximal mapping of f.
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Moreau envelope and proximal mapping Strong ex functions

pe
Further properties of the proximal mapping

Since for v > 0 one has 7 f = 1('yf), it holds

1
5

7 (@) = J(prox, s (2)) + & |z — prox, ; (2)[* Ve € H.

Example

When S C H is a nonempty, convex and closed set and v > 0, one has

Y5s(z —mf{2 Hr—y”}f%% z) Vo € H.

Consequently,
proxs (z) = Ps(z) Vz € H,

where Pg : H — S denotes the metric projection on S.

Characterization of the proximal mapping

For a proper, convex and lower semicontinuous function f : H — R and z,p € H one
has

p = prox;(z) &z —p € f(p).

> Indeed, p = prox;(z) < 0 € 0 (f + 3|z —|12) () = () + V (3l1z — II?) ()
S 0€df(p)+p—xz o x—pedfip).
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Moreau envelope and proximal mapping S g functions

Further pr es of the proximal mapping

Firmly nonexpansive operators versus nonexpansive operators

For a nonempty set D C H, an operator T': D — H is said to be
» firmly nonexpansive, if

IT(2) =TI + [|(1d =T)(z) — (1d =T)(y)|1*> < |l — y||* Va,y € D;
» nonexpansive, if it is 1-Lipschitz continuous, i.e.,
IT(x) =TI < |z — yl| Yo,y € D.

Here, Id : H — H,1d(z) = = Vz € H, denotes the identity operator on H.

» Obviously, every firmly nonexpansive operator is nonexpansive.

Firmly nonexpansive operator: equivalent characterizations

For a nonempty set D C H let be T': D — H. The following statements are
equivalent:

» T is firmly nonexpansive;

» Id —T is firmly nonexpansive;

» 27 — Id is firmly nonexpansive;

> [|T(z) = T(2)|]> < (T(z) = T(y),z — y) Y,y € D.
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Moreau envelope and proximal mapping S onvex functions
Moreau envelope

Further properties of the proximal mapping

Example
For a proper, convex and lower semicontinuous function f : H — R the operators
proxy : H — H and Id —proxy: H = H

are firmly nonexpansive, thus nonexpansive.

Fixed points of the proximal mapping
For a proper, convex and lower semicontinuous function f : H — R one has
Fix prox; = argmin f,

where, for an operator T': D — H, by FixT := {z € D : T(z) = x} we denote the
set of fixed points of T.
» Indeed, € argmin f < 0 € 0f(2) & = — z € 0f(x) & prox;(z) = =.
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Moreau envelope and proximal mapping S nvex functions
M

elope
Further properties of the proximal mapping

Differentiability of the Moreau envelope

Let f : H — R be a proper, convex and lower semicontinuous function and > 0.
Then 7 f : H — R is Fréchet differentiable on H and it holds

V(O f)z) = %(m — proxy(z)) = %(Id—proxf)(x) Vz € H.

Consequently,
VO ) - VOHWI < %Hw -yl Vz,y € H.

Notice also that
z € argmin(? f) ©V(7 f)(z) = 0 & = = prox;(z) & = € Fixprox; < = € argmin f,

in which case

Example

When S C H is a nonempty, convex and closed set and v > 0, then d2s is Fréchet
differentiable on H and it holds

V(d2)(z) = 29V (785)(z) = 2(1d —Ps)(x) Va € H.
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Moreau envelope and proximal mapping functions

properties of the proximal mapping

Further properties of the proximal mapping

Moreau's decomposition

For a proper, convex and lower semicontinuous function f : H — R and ~ > 0 the
following statements hold:

1
b ST (F) 0 LA = L%
> Prox.; +7yPproxgs . o%ld =1d;
> proxs« . (z/7) € Of (prox, ¢(z)) Vz € H.

The case v =1

For a proper, convex and lower semicontinuous function f : H — R it holds:

prox; + proxs« = Id.

Example (the proximal mapping of the norm)

For f = || - || we have f* = 6§(0,1)' For all x € H it holds

1— ) e, if |z > 1,
prox¢(z) = & — proxs«(z) = — Pﬁ(o,l)u) = { ( HmH) 0 |l <1
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Moreau envelope and proximal mapping S g ex functions

s of the proximal mapping

Example (the proximal mapping of the support function)

Let S C H be a nonempty, convex and closed set. Then

prox, (z) = x — proxs  (z) = = — Ps(z) Vo € H.

Further formulae for the proximal mapping
Let f: H — R be a proper, convex and lower semicontinuous function. Then
» for & € H and g(z) = f(z — ) it holds prox,(z) = & + proxs(z — ) for all z € H;
» for p#0and g(z) = f (%z) it holds prox,(z) = pprox 1 p (%x) for all z € H;
’ -z
» for g(x) = f(—=) it holds prox,(z) = — prox;(—=z) for diiz € H.

The proximal mapping of the Moreau envelope

Let f : H — R be a proper, convex and lower semicontinuous function. Then

prox p(z) = %(a: + proxys(z)) Vo € H.

Example

Let S C H be a nonempty, convex and closed set. Then

Proxi , (z) = %(m + proxys (7)) = %(x + Ps(z)) Vz € H.
2%
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The proximal point algorithm
A

Regularization algorithms rithm

n algorithm

Regularization algorithms
For f: H — R a proper, convex and lower semicontinuous function we discuss several
regularization algorithms for solving the optimization problem

inf .
Jnf (@)
» Let be v(P) := ing f(z) € RU{—o0} and argmin f :={z € H : f(z) = v(P)}
zE
the (possibly empty) set of optimal solutions.

The proximal point algorithm

Proximal point algorithm

Initialization: Choose ¢ € dom f and set k :=0
For k> 0: Choose 7} > 0 and set

Tht1 1= prox,ykf(wk) = argmin {f(;v) + ﬁ ||z — wkﬂz}
zEH

» The proximal point algorithm is well-defined!

Notations
For k > 0 let be

k
Tk — Tk+1
Sky1 i= 77 and o := E Vi
k+1
+ =0
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The prcmmal point algorithm
Regularization algorithms A orithm th Bregman functions
algot

Facts on the proximal point algorithm

» For every k > 0 it holds s;41 € 8f(xk41), since
0eo (f + 5 I — =kl ) (xr41) = Of (Tp41) + (Zk+1 — k) = Of (Tht1) — Skt

» For every k > 1 it holds ||sk+1]| < |Iskll;
» Fundamental estimate: For every k > 1 and every = € H it holds

”x — xOIIQ _ IICC — kaQ _ k-1 ||3k||2
QUk—l Qo'k_l 2 ’

flay) — fz) <

Convergence of the proximal point algorithm
For every k > 1 and every x € H it holds

Fon) - fla) < Jz=2ol®

2051
» If limg_s 4 o o) = +00, then f(zg) = v(P)(k — +00);

» If, additionally, argmin f # (), then (x)r>0 converges weakly to a minimizer of f
and

dirgmin f(mo)

Vk > 1.
2051

flzr) —v(P) <
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The proximal point algorithm
A

Regularization algorithms rithm

n algorithm

» The assumption limg_, o, 0% = +oo is, for instance, fulfilled when (vz)x>0 is a
constant sequence.
Strong convergence of the proximal point algorithm

If f is strongly convex and limy_, o o) = 400, then (x}),>0 converges strongly to
the unique minimizer of f.

Improved convergence rate

If limy,_, 4 oo 0 = 400, argmin f # 0 and (x)r>0 converges strongly to a minimizer
of f, then

Jm o1 (f(zr) = v(P)) = 0.

Weak convergence versus strong convergence (Giiler, 1991)

There exists a proper, convex and lower semicontinuous function f : £2 — R such that
given any bounded positive sequence (x)x>0, there exists a point zg € dom f for
which the proximal point algorithm with

Tht1 1= proxwkf(xk) Vk >0

converges weakly, but not strongly to a minimizer of f.
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Regularization algorithms

A proximal-like algorithm with Bregman functions

Bregman distance

We call Bregman distance

Dy :cl(Z) x Z = R, Dy(z,y) = ¢(x) —d(y) — (V(y),z — v)

where Z C R™ is an open set and 9 : cl(Z) — R is a so-called Bregman function with
zone Z, namely it has the following properties:

» 1 is continuously differentiable on Z;

» 1) is strictly convex and continuous on cl(Z)

» the partial upper level sets {z € cl(Z) : Dy (y,z) < A} and {y € Z: Dy(z,y) < A}
are bounded for every A € R, y € Z and = € cl( );

> if (yx)k>0 C Z converges to y, then Dy (y,y*) — 0(k — +o0);

» if (yx)r>0 is a sequence converging to y € cl(Z) and (xx)r>0 is a bounded
sequence such that D (2%, y*) — 0(k — +00), then zF — y(k — +oo).

Some properties of the Bregman distance

» Dy (-,-) is not a distance (it might not be symmetric and might not satisfy the
triangle inequality);

» since 4 is strictly conve, it holds Dy, (x,y) > 0 for all (z,y) € Z x cl(Z) and
Dy (z,y) =0 if and only if z = y.

Radu loan Bot Proximal methods in convex optimization
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The proximal point algorithm
Regularization algorithms A proxim rithm with Bregman functions

Tikhonov regularization algorithm

Example (half square Euclidean distance)
For Z =R™ and ¢ : R® — R and ¢(x) = %”xH2 one obtains

Dy :R® x R™ - R, Dy(z,y) = 1|z — y|>.

Example (Kullback-Leibler relative entropy distance)
For Z = int(R7) and ¢ : R? — R and ¢(z) =y " | @;loga; — x; (with the
convention 0log 0 = 0) one obtains

n
Dy i R? X int(R™) — R, Dy(z,y) = Zm log% oy — s

7
=1

Proximal-like algorithm with Bregman functions for H = R"
Initialization: Choose ¢ € dom f and set k :=0
For k> 0: Choose 7 > 0 and set

Tp41 1= argmin {f(z) + ti(a:, wk)}
zERT

» The proximal point algorithm is well-defined!
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Regularization algorithms e algorithm with Bregman functions

Tikhonov regularization algorithm

Facts on the proximal-like algorithm with Bregman functions

If dom f C Z, the following statements are true:

» For every k > 0 it holds f(zg4+1) < f(zk);

» For every k > 1 and every = € argmin f it holds Dy (z,zy41) < Dy (z, zy);
» Fundamental estimate: For every k > 1 and every z € cl(Z) it holds

k—1
D. s D s o
o) = fa) < 22020 i(;j’f) - ;:1: %Dy (a2,

Convergence of the proximal-like algorithm with Bregman functions

For every k > 1 and every z € cl(Z) it holds

Fon) — fa) < 2ulo20),

Ok—1

» If limg_, 4 o o) = +00, then f(zg) = v(P)(k — +00);
» If, additionally, argmin f # (), then (x4)r>0 converges to a minimizer of f and

)< Dy, (x,z0)
T 20,

flzg) —v(P Vk > 1 Vx € argmin f.

Radu loan Bot Proximal methods in convex optimization

19/39



proximal point thm
Regularization algorithms A proximal- hm with Bregman func

Tikhonov regularization algorithm

Tikhonov regularization algorithm

Tikhonov regularization algorithm
Initialization: Choose zg € dom f and set k :=0
For k> 0: Choose € > 0 and set

Ti41 := argmin {f(x) + 57’“ Hz”g}
r€H

» The Tikhonov regularization algorithm is well-defined!

Facts on the Tikhonov regularization algorithm

or every k > 0 let be sx41 := —er@py1. It holds sp 1 € f(zgy1), since

0€0(f+ % IP) @rs1) = 0f(wh41) + ehrir = Of (@rt1) — sk

Convergence of the Tikhonov regularization algorithm

Let (ex)k>0 be such that limg_, | o e = 0.

» Then (z1)r>0 converges strongly if and only if argmin f is nonempty;

» In this case,_(xk)kzo converges strongly to Pargmin £(0), which is nothing else than
the unique optimal solution of the problem

inf |||
x€argmin f
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Regularization algorithms A p

Tikhonov regularization algorithm

Example (Moore-Penrose inverse)

For K a real Hilbert space, A: H — K a linear continuous operator with
ran A := A(H) closed and y € K, the equation Az = y has at least one least-squares
solution, i.e., an optimal solution of the problem

1
min = ||Az — y||?.
erQII yll

The element = € H is a least-squares solution to Az = y if and only if A* Az = A*y.
The Moore-Penrose inverse of A is the linear continuous operator AT : K — H
defined as

AT(y) = P{mEH:A*Am:A*y}(O)'
> If A*A is invertible, then AT = (A*A)~LA. If A is invertible, then AT = A1,
» Let be g, > 0 for all k > 0 with limy_, o € = 0. Then

zp, = (A*A 4 e, Id) "L A*y = argmin {%HAx -yl + %‘HIHQ} Yk > 0.
reH

Consequently,
lim (A*A+ e, 1d)" 1A%y = Af(y).

k—+oo
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proximal point algorithm
Regularization algorithms

Tikhonov regularization algorithm

Generalized regularization function

Letr: H - R be a proper, strictly convex, coercive and lower semicontinuous
function with argmin f N'domr # (). Then the optimization problem

min  r(x)
x€argmin f

has an unique optimal solution.

Generalized Tikhonov-type regularization algorithm

Initialization: Choose zg € dom f and set k :=0
For k> 0: Choose €, > 0 and set
T+ = argmin { f(z) + exr(x)}
r€H

» The generalized Tikhonov-type regularization algorithm is well-defined!

Convergence of the generalized Tikhonov-type regularization algorithm

Let (Ek)kZO be such that limk—)+oo e = 0.

> Then (zx)r>0 converges weakly to argming, gy, s 7. Moreover,
limg 4 oo (k) = r(argming,gmin 5 7);

» If 7 is strongly convex, then (z)x>0 converges strongly to argmin

argmin f .
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Forward-Backward algorithm
Douglas-Rachford algorithm

Splitting methods

Splitting methods
The splitting methods are motivated by the need to solve optimization problems of the
form

inf {f(z) + g(2)}.
zeH
One should notice that usable formulae for
PTOXftg>
namely, formulae involving prox; and prox, are in general not available!

Forward-Backward splitting

Let f: H — R be a proper, convex and lower semicontinuous function and g : H — R
a convex and Fréchet differentiable function with S-Lipschitz continuous gradient. We
consider the optimization problem

inf {/(@)+ 9@},

for which we assume that argmin(f + g) # 0.
A characterization of the optimal solution as starting point

For v > 0 one has
z € argmin(f +g) < 0€ 0(f + g)(z) < 0 € df(z) + dg(z) & —Vg(z) € df(z)

< (z—Vg()) —z € 0(vf)(x) & = = prox ¢ (z — 7Vg(x)).
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Forward-Backward algorithm
D achford algorithm

Splitting methods

Forward-Backward algorithm

Initialization: Choose g € H and set k:= 0
For k> 0: Choose v, > 0 and set 41 = prox,ykf(:v;c — v Vg(zk))

The case f =0
The Forward-Backward algorithm reduces to the gradient method:
Initialization: Choose g € H and set k:= 0

For k> 0: Choose v, > 0 and set 41 := ), — Y Vg(xk)

The case g =0

The Forward-Backward algorithm reduces to the proximal point algorithm:
Initialization: Choose g € H and set k:= 0
For K > 0: Choose v, > 0 and set xp41 := proxwkf(xk)

Convergence of the Forward-Backward algorithm

Let (vk)k>0 be such that
0< inszo e < SUP% >0 Yk < %

» Then (z4)k>0 converges weakly to an element in argmin(f + g) and (Vg(zx))r>0
converges to Vg(z) for every z € argmin(f + g);

» If f or g is strongly convex, then (zj)r>0 converges strongly to the unique element
in argmin(f + g). B
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Forward-Backward algorithm
Dot chford algorithm

Splitting methods

Linear convergence of the Forward-Backward algorithm

Assuming, additionally, that f : H — R is strongly convex with modulus & > 0 and
that we are in one of the following two situations:
» (Y&)k>0 is such that

\ /1+’7;‘:B2) -1

0 <infg>gvyg and § := SUPk>0 ( TTans,

» (Vk)k>0 is such that v := v € (0, %) forall k>0 and £ := ﬁ;
then (z1)r>0 converges (strongly) linear with constant £ € (0, 1) to the unique
element in Z € argmin(f + g), namely

ekt — 2l < gller — 2 VE > 0.
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Forward-Backward algorithm
Dot chford algorithm

Splitting methods

Forward-Backward algorithm: a variant incorporating relaxation
parameters
Initialization: Choose g € H and set k:= 0
For k > 0: Choose v, > 0 and set yi := z) — 7k Vg(xk)
Choose A > 0 and set Tpy1 := T + Ap (prox,ykf(yk) —xk)
» If A\ =1 for all £k > 0, then one rediscovers the classical version of the
Forward-Backward algorithm;

Let be e € (0, min{1, %}) fixed and (Ax)k>0 and (vx)k>0 such that

Y € [e,%—a] and A\ € [¢,1] Vk > 0.

» Then (z1)r>0 converges weakly to an element in argmin(f + g) and (Vg(zr))r>0
converges to Vg(z) for every z € argmin(f + g); -
» If f or g is strongly convex, then (zj)r>0 converges strongly to the unique element
in argmin(f + g). B

v
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Forward-Backward algorithm
Dot chford algorithm

Splitting methods

Particular instance (of the classical version): the projected gradient
algorithm
Assuming that f := dg, where S C H is a convex closed set such that argming g # 0,
the problem to be solved becomes

infres g(x)

Since prox, ; = prox; = Pg for all v > 0, the Forward-Backward algorithm gives in

this case rise to the so-called projected gradient algorithm:
Initialization: Choose g € H and set k:= 0
For k> 0: Choose v > 0 and set xy41 := Ps(zr — v Vg(zy)).
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Forward-Backward algorithm
Dot chford algorithm

Splitting methods

Particular instance (of the classical version): the Backward-Backward
algorithm

For f,g: H — R be a proper, convex and lower semicontinuous functions we consider
the optimization problem

infer{f(ﬂi) +lg(x)}v

for which we assume that argmin(f +'g) # 0.
» Recall that 1g : H — R is convex and Fréchet differentiable in H,
V(ig)(x) =z — prox,(z) for all z € H and V(1g) is 1-Lipschitz continuous.
Taking v = 1 for all kK > 0, the Forward-Backward algorithm gives rise to the
so-called Backward-Backward algorithm:

Initialization: Choose zg € H and set k:=0

For k> 0: Set xpi1 := prox;(prox,(zk))

» (z1)r>0 converges weakly to an element in argmin(f +! g);
> If f is strongly convex, then (2 )k>0 converges strongly to the unique element in

argmin(f +'g).
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Forward-Backward algorithm

Splitting methods

Particular instance (of the Backward-Backward algorithm): the
alternating projections algorithm

Taking f := dg and g := 07, where S, T C H are convex closed sets, such that one of
them is bounded, the problem

Jnf {f(@) +'g(x)},

becomes
soe 142
inf 5d
zeS 27

which amounts to finding an element in S at closest distance from 7'.

» If S is bounded, then argming (%d%) = argming d # 0, since %d% is continuous;

» If T is bounded, then argming (%d%) = argming d # 0, since %d% is coercive.

Since prox; = Pg and prox, = Pr, the Backward-Backward algorithm yield the

alternating projections algorithm:
Initialization: Choose g € H and set k:= 0
For k > 0: Set zp41 := Ps(Pr(zk))
» (z)r>0 converges weakly to an element in argming dr # 0.
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ackward algorithm

Splitting methods hford algorithm

The case when g is composed with a linear continuous operator

Let f: H— R be a proper, convex and lower semicontinuous function, g : K — R a
convex and Fréchet differentiable function with 3-Lipschitz continuous gradient and

A : H — K a nonzero linear and continuous operator. We consider the optimization
problem

inf {(2) + g(4a)},

for which we assume that argmin(f + go A) # 0.

» Notice that go A: H — R is convex and Fréchet differentiable in H,
V(go A)(z) = A*(Vg(Az)) for all z € H and V(g o A) is B||A||?>-Lipschitz
continuous.

The Forward-Backward algorithm reads:

Initialization: Choose g € H and set k :=0
For k > 0: Choose 7, > 0 and set Tp41 := prox,ykf(xk — Y A*Vg(Azy))

Let (vx)x>0 be such that
0 <infg>07k < SUPk>0 VK < sz_

» Then (z1)r>0 converges weakly to an element in argmin(f + g o A) and
(Vg(Azp)) >0 converges to Vg(Az) for every & € argmin(f + g o A);

» If f is strongly convex, then (zk)k>0 converges strongly to the unique element in
argmin(f + go A). -
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Particular instance: the projected Landweber algorithm

Taking f = dg, where S C H is a nonempty, convex and closed set, and g : K — R,
g(z) = %”Z — y||?, where y € K, which is a convex and Fréchet differentiable function
with 1-Lipschitz continuous gradient, the problem

inf {f(z) + g(Az)}
rxeH
yields the constrained least-squares problem

inf LAz — y|?.
int LAz~ y]

We assume that argming (%HA() - yH2> # 0.

The above Forward-Backward algorithm gives rise to the projected Landweber
algorithm:
Initialization: Choose g € H and set k :=0
For k> 0: Choose v, > 0 and set k41 := Ps(xk + A" (y — Azy))
Let (vx)r>0 be such that

0 <infg>07k < Supg>o vk < HAQHQ.

» Then (z4)1>0 converges weakly to an element in argming (%HA() — y||2).
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Douglas-Rachford algorithm

Let f,g: H — R be a proper, convex and lower semicontinuous functions with
dom f Ndomg # @ and the optimization problem

zig{{f(w) +g(z)}.

We assume that argmin(f + g) # 0 and that one of the following qualification
conditions:

» (AB): 0 € sqri(dom f — dom g);

» (B): epi f* + epig* is closed;

is fulfilled.

» Recall that, in this circumstances, O(f + g)(z) = 9f(x) + Og(x) for all z € H.
A characterization of the optimal solution as starting point

For v > 0 one has
x € argmin(f+g) < 0 € 9(f+g)(z) & 0 € 0f(x)+0g(x) & Jy € H : z—y € v0f(x)
andy—z €v0g(z) &Iy e H: 2z —y) —z € I(vf)(z) and y — z € d(vg)(z)
< Jy € H :x = prox,;(2z — y) and = = prox.,(y)
< Jy € H : x = prox,,4(y) and 0 = prox., (2 —y) — =

< Jy € H :x = prox,,(y) and y = y + prox, ;(2z —y) — z.
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Douglas-Rachford algorithm
Initialization: Choose v > 0, yo € H and set k:=0
For k> 0: Set xy := prox.,(yx)
Yk+1 i= Yk + (Proxwf(h’k —Yk) — Ik)

The case f =0

The Douglas-Rachford algorithm reduces to the proximal point algorithm:
Initialization: Choose v > 0, yo € H and set k:=0
For k> 0: Set zg := proxwg(yk)
Yk+1 = Tk

The case g =0

The Douglas-Rachford algorithm reduces to the proximal point algorithm:
Initialization: Choose v > 0, yo € H and set k:=0
For k> 0: Set xy = yi
Ykt1 1= prox,yg(zk)

Convergence of the Douglas-Rachford algorithm

There exists z € H with prox,,(z) € argmin(f + g) such that (yx)r>0 converges
weakly to z and:

> (zx)k>0 converges weakly to prox,,(z);

> whenever f or g is strongly convex, (zx)r>0 converges strongly to prox.,(z),
which is the unique element in argmin(f + g).
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Douglas-Rachford algorithm: a variant incorporating relaxation
parameters
Initialization: Choose v > 0, yo € H and set k:=0
For k> 0: Set xj := prox., (yx)
Choose A > 0 and set Yr41 := yi + )\k(proxw»(2zk — Yk) — Tk)
» If A\ = 1 for all kK > 0, then one rediscovers the classical version of the
Douglas-Rachford algorithm;

Let be € € (0,1) fixed and (A;)r>0 such that
Ak € [6,2 — €] VE > 0.

There exists © € H with prox.,(z) € argmin(f + g) such that (yx)x>o converges
weakly to z and:

> (z1)r>0 converges weakly to prox. . (z);

> whenever f or g is strongly convex, (zx)r>0 converges strongly to prox.,(z),
which is the unique element in argmin(f + g).
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Particular instance (of the classical version): determining an element in a
set S at closest distance from a set T'

Taking f := 05 and g := 7d , where S,T" C H are convex closed sets, such that one
of them is bounded, the problem

zigf{{f(w) +g(z)},

becomes
1nf dT7

which amounts to finding an element in S at closest distance from T'.

» If S is bounded, then argming (%d%) = argming dp # 0, since ldQT is continuous;

» If T is bounded, then argming (%d%) = argming dp # 0, since ld2 is coercive.

» Since dom g = H, the qualification condition (AB) is fulfilled;
The Douglas-Rachford algorithm with v =1 yields, since prox; = Ps and
prox,(z) = %(x + Pr(x)):
Initialization: Choose yo € H and set k:=0
For k > 0: Set xy := %(wk-i-PT(wk))
Yu+1 = Ps(Pr(yx)) + yx — zk
There exists ¢ € H with %(a: + Pr(zx)) € argming dr such that (yz)g>0 converges
weakly to z and (z4)x>0 converges weakly to %(:v + Pr(x)).
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The case when g is composed with a linear continuous operator

Let f,g : H — R be proper, convex and lower semicontinuous functions, A : H — K
a nonzero linear and continuous operator with A(dom f) Ndom g # () and the
optimization problem

inf {f(2) + g(A)}.

We assume that argmin(f + go A) # 0, AA* = aId, for a > 0, and that one of the
following qualification conditions:

» (AB): 0 € sqri(A(dom f) — dom g);

» (B): A* x idg(epi f*) + epig* is closed;

is fulfilled.

» Recall that, in this circumstances, 9(f + g o A)(z) = 9f(z) + 0A*(g(Ax)) for all
re H.

For v > 0 one has

z € argmin(f +go A) & Jy € H : & = prox,g,4(y) and = = prox, ¢(2z — y)

SIyeH:z=y+ éA*(proxavg(Ay) — Ay) and x = prox, (22 — y).
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The case when g is composed with a linear continuous operator
(continuation)

The Douglas-Rachford algorithm reads:
Initialization: Choose v > 0, yo € H and set k:=0
For k> 0: Setxy:=yr + éA*(proxa,yg(Ayk) — Ayy)
Ykt1 1= Yk + (proxwf(hk —Yr) — a"k)
There exists z € H with prox, .4 () € argmin(f + g) such that (yx)x>0 converges
weakly to z and:
> (zx)k>0 converges weakly to prox. g 4();

> whenever f is strongly convex, (zx)r>0 converges strongly to prox. g, 4(z), which
is the unique element in argmin(f + g).
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Particular instance

By taking g = dy,}, for y € A(dom f), the optimization problem
inf {f(z) + g(Az)}
zeH

becomes inf f(z).

z€H
Ax=y

We assume that argmin 4 —1(,) f # 0, where A~ YNy)={z € H: Az =y},
AA* = ald, for a > 0, and that one of the following qualification conditions:
» (AB): y € sqri(A(dom f));
> (B): A* x idg(epi f*) + {(y*,r) € K* x R: (y*,y) <r} is closed;
is fulfilled.
Since prox,.4(2) =y for all z € K, the Douglas-Rachford algorithm reads:
Initialization: Choose v > 0, yo € H and set k:=0
For k> 0: Set xp := yk+éA*(y—Ayk)
Ye+1 = Y + (Prox, ¢ (226 — yr) — wk)
There exists z € H with PAfl(y>($) € argminAfl(y) f such that (y)r>0 converges
weakly to x and:
> (zk)k>0 converges weakly to Py—1(,)(z);
» whenever f is strongly convex, (xj)r>0 converges strongly to PA_l(y)(m), which is
the unique element in argminAq(y) f.

v
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