
Moreau envelope and proximal mapping
Regularization algorithms

Splitting methods

Lecture Series
on

“Convex analysis with applications in inverse problems”

Lecture 2: Proximal methods in convex optimization

Radu Ioan Boţ

Chemnitz University of Technology
Department of Mathematics

09107 Chemnitz
www.tu-chemnitz.de/∼rabot

Institute for Numerical and Applied Mathematics
University of Goettingen

June 13, 2012

Radu Ioan Boţ Proximal methods in convex optimization 1 / 39



Moreau envelope and proximal mapping
Regularization algorithms

Splitting methods

Lecture Series
on

“Convex analysis with applications in inverse problems”

I Lecture 1: Convex analysis: basics, conjugation and duality (Monday, June 11,
2012)

I Lecture 2: Proximal methods in convex optimization (Wednesday, June 13, 2012)
I Lecture 3: Convex regularization techniques for linear inverse problems (Thursday,

June 14, 2012)

Radu Ioan Boţ Proximal methods in convex optimization 2 / 39



Moreau envelope and proximal mapping
Regularization algorithms

Splitting methods

Contents

Moreau envelope and proximal mapping
Strongly convex functions
Moreau envelope
Further properties of the proximal mapping

Regularization algorithms
The proximal point algorithm
A proximal-like algorithm with Bregman functions
Tikhonov regularization algorithm

Splitting methods
Forward-Backward algorithm
Douglas-Rachford algorithm

Radu Ioan Boţ Proximal methods in convex optimization 3 / 39



Moreau envelope and proximal mapping
Regularization algorithms

Splitting methods

Strongly convex functions
Moreau envelope
Further properties of the proximal mapping

Moreau envelope and proximal mapping
Strongly convex functions
Let (H, 〈·, ·〉) be a real Hilbert space and ‖ · ‖ :=

√
〈·, ·〉.

Strictly convex versus strongly convex function
A function f : H → R is said to be
I strictly convex, if

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y) ∀x, y ∈ dom f, x 6= y ∀λ ∈ (0, 1);
I strongly convex (with modulus β > 0), if
f(λx+(1−λ)y)+λ(1−λ)β2 ‖x−y‖

2 ≤ λf(x)+(1−λ)f(y) ∀x, y ∈ dom f ∀λ ∈ (0, 1).

Strongly convex function: characterization
A function f : H → R is strongly convex with modulus β > 0 if and only if
f − β

2 ‖ · ‖
2 is convex.

Coercive versus supercoercive function
A function f : H → R is said to be
I coercive, if lim

‖x‖→+∞
f(x) = +∞;

I supercoercive, if lim
‖x‖→+∞

f(x)
‖x‖ = +∞.
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I Obviously, every supercoercive function is coercive.

Coercivity versus boundedness
A function f : H → R is coercive if and only if for every λ ∈ R its upper level set
{x ∈ H : f(x) ≤ λ} is bounded.

Strong convexity implies supercoercivity
Every proper, strongly convex and lower semicontinuous function f : H → R is
supercoercive.
I Indeed, there exists β > 0 such that

f(x) = β
2 ‖x‖

2 +
(
f(x)− β

2 ‖x‖
2
)
∀x ∈ H.

Since f − β
2 ‖ · ‖

2 is proper, convex and lower semicontinuous, there exists
(x∗, α) ∈ H × R such that

f(x) ≥ β
2 ‖x‖

2 + 〈x∗, x〉+ α ≥ β
2 ‖x‖

2 − ‖x‖‖x∗‖+ α ∀x ∈ H.
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Minimization of strongly convex functions
Every proper, convex, lower semicontinuous and coercive function f : H → R has a
minimizer in H. Thus, every proper, strongly convex, lower semicontinuous function
f : H → R has exactly one minimizer in H.
I Indeed, there exists λ ∈ R such that {x ∈ H : f(x) ≤ λ} 6= ∅ and

inf
x∈H

f(x) = inf
{y∈H:f(y)≤λ}

f(x).

Since {y ∈ H : f(y) ≤ λ} is bounded and closed, it is weakly compact, thus f , being
weakly lower semicontinuous, has at least one minimizer in {y ∈ H : f(y) ≤ λ}, which
is actually a minimizer of f in H. When f is strongly convex, the uniqueness of the
minimizer follows from the fact that f is strictly convex, too.

The strong convexity of the conjugate
For a proper, convex and lower semicontinuous function f : H → R the following
properties are equivalent:
I dom f = H, f is Fréchet differentiable on H and ∇f is β-Lipschitz continuous
(Lipschitz continuous with Lipschitz constant β > 0);
I dom f = H, f is Fréchet differentiable on H and the descent formula holds

f(y) ≤ f(x) + 〈∇f(x), y − x〉+ β
2 ‖x− y‖

2 ∀x, y ∈ H;

I f∗ is strongly convex with modulus 1
β
.
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Moreau envelope

Moreau envelope of parameter γ > 0
For a proper, convex and lower semicontinuous function f : H → R and γ > 0 the
Moreau envelope of f of parameter γ is the convex function

γf(x) =
(
f� 1

2γ ‖ · ‖
2
)

(x) = inf
y∈H

{
f(y) + 1

2γ ‖x− y‖
2
}
∀x ∈ H.

For all x ∈ H the function y 7→ f(y) + 1
2γ ‖x− y‖

2 is proper, strongly convex and
lower semicontinuous, thus the infimum is attained and γf(x) ∈ R. This means that

γf : H → R.

Proximal point
For a proper, convex and lower semicontinuous function f : H → R and x ∈ H, the
unique minimum of

y 7→ f(y) + 1
2‖x− y‖

2

is called proximal point of f at x and it is denoted by proxf (x). The mapping

proxf : H → H

is well-defined and is said to be the proximal mapping of f .
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Since for γ > 0 one has γf = 1
γ

1(γf), it holds

γf(x) = f(proxγf (x)) + 1
2γ ‖x− proxγf (x)‖2 ∀x ∈ H.

Example
When S ⊆ H is a nonempty, convex and closed set and γ > 0, one has

γδS(x) = inf
y∈S

{
1

2γ ‖x− y‖
2
}

= 1
2γ d

2
S(x) ∀x ∈ H.

Consequently,
proxδS (x) = PS(x) ∀x ∈ H,

where PS : H → S denotes the metric projection on S.

Characterization of the proximal mapping
For a proper, convex and lower semicontinuous function f : H → R and x, p ∈ H one
has

p = proxf (x)⇔ x− p ∈ ∂f(p).

I Indeed, p = proxf (x)⇔ 0 ∈ ∂
(
f + 1

2‖x− ·‖
2
)

(p) = ∂f(p) +∇
(

1
2‖x− ·‖

2
)

(p)
⇔ 0 ∈ ∂f(p) + p− x⇔ x− p ∈ ∂f(p).
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Firmly nonexpansive operators versus nonexpansive operators
For a nonempty set D ⊆ H, an operator T : D → H is said to be
I firmly nonexpansive, if

‖T (x)− T (y)‖2 + ‖(Id−T )(x)− (Id−T )(y)‖2 ≤ ‖x− y‖2 ∀x, y ∈ D;

I nonexpansive, if it is 1-Lipschitz continuous, i.e.,

‖T (x)− T (y)‖ ≤ ‖x− y‖ ∀x, y ∈ D.

Here, Id : H → H, Id(x) = x ∀x ∈ H, denotes the identity operator on H.

I Obviously, every firmly nonexpansive operator is nonexpansive.

Firmly nonexpansive operator: equivalent characterizations
For a nonempty set D ⊆ H let be T : D → H. The following statements are
equivalent:
I T is firmly nonexpansive;
I Id−T is firmly nonexpansive;
I 2T − Id is firmly nonexpansive;
I ‖T (x)− T (x)‖2 ≤ 〈T (x)− T (y), x− y〉 ∀x, y ∈ D.

Radu Ioan Boţ Proximal methods in convex optimization 9 / 39



Moreau envelope and proximal mapping
Regularization algorithms

Splitting methods

Strongly convex functions
Moreau envelope
Further properties of the proximal mapping

Example
For a proper, convex and lower semicontinuous function f : H → R the operators

proxf : H → H and Id− proxf : H → H

are firmly nonexpansive, thus nonexpansive.

Fixed points of the proximal mapping
For a proper, convex and lower semicontinuous function f : H → R one has

Fix proxf = argmin f,

where, for an operator T : D → H, by Fix T := {x ∈ D : T (x) = x} we denote the
set of fixed points of T .
I Indeed, x ∈ argmin f ⇔ 0 ∈ ∂f(x)⇔ x− x ∈ ∂f(x)⇔ proxf (x) = x.
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Differentiability of the Moreau envelope
Let f : H → R be a proper, convex and lower semicontinuous function and γ > 0.
Then γf : H → R is Fréchet differentiable on H and it holds

∇(γf)(x) = 1
γ

(x− proxf (x)) = 1
γ

(Id− proxf )(x) ∀x ∈ H.

Consequently,
‖∇(γf)(x)−∇(γf)(y)‖ ≤ 1

γ
‖x− y‖ ∀x, y ∈ H.

Notice also that

x ∈ argmin(γf)⇔∇(γf)(x) = 0⇔ x = proxf (x)⇔ x ∈ Fix proxf ⇔ x ∈ argmin f,

in which case
γf(x) = f(x).

Example
When S ⊆ H is a nonempty, convex and closed set and γ > 0, then d2

S is Fréchet
differentiable on H and it holds

∇(d2
S)(x) = 2γ∇(γδS)(x) = 2(Id−PS)(x) ∀x ∈ H.
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Further properties of the proximal mapping

Moreau’s decomposition
For a proper, convex and lower semicontinuous function f : H → R and γ > 0 the
following statements hold:
I γf +

1
γ (f∗) ◦ 1

γ
Id = 1

2γ ‖ · ‖
2;

I proxγf +γ proxf∗/γ ◦ 1
γ

Id = Id;
I proxf∗/γ(x/γ) ∈ ∂f(proxγf (x)) ∀x ∈ H.

The case γ = 1
For a proper, convex and lower semicontinuous function f : H → R it holds:

proxf + proxf∗ = Id .

Example (the proximal mapping of the norm)
For f = ‖ · ‖ we have f∗ = δ

B(0,1). For all x ∈ H it holds

proxf (x) = x− proxf∗ (x) = x− P
B(0,1)(x) =

{ (
1− 1

‖x‖

)
x, if ‖x‖ > 1,
0, if ‖x‖ ≤ 1.

Radu Ioan Boţ Proximal methods in convex optimization 12 / 39



Moreau envelope and proximal mapping
Regularization algorithms

Splitting methods

Strongly convex functions
Moreau envelope
Further properties of the proximal mapping

Example (the proximal mapping of the support function)
Let S ⊆ H be a nonempty, convex and closed set. Then

proxσS (x) = x− proxδS (x) = x− PS(x) ∀x ∈ H.

Further formulae for the proximal mapping
Let f : H → R be a proper, convex and lower semicontinuous function. Then
I for x̄ ∈ H and g(x) = f(x− x̄) it holds proxg(x) = x̄+ proxf (x− x̄) for all x ∈ H;
I for ρ 6= 0 and g(x) = f

(
1
ρ
x
)
it holds proxg(x) = ρ prox 1

ρ2 f

(
1
ρ
x
)
for all x ∈ H;

I for g(x) = f(−x) it holds proxg(x) = − proxf (−x) for all x ∈ H.

The proximal mapping of the Moreau envelope
Let f : H → R be a proper, convex and lower semicontinuous function. Then

prox(1f)(x) = 1
2 (x+ prox2f (x)) ∀x ∈ H.

Example
Let S ⊆ H be a nonempty, convex and closed set. Then

prox 1
2 d

2
S

(x) = 1
2 (x+ prox2δS (x)) = 1

2 (x+ PS(x)) ∀x ∈ H.
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Regularization algorithms
For f : H → R a proper, convex and lower semicontinuous function we discuss several
regularization algorithms for solving the optimization problem

inf
x∈H

f(x).

I Let be v(P ) := inf
x∈H

f(x) ∈ R ∪ {−∞} and argmin f := {x ∈ H : f(x) = v(P )}

the (possibly empty) set of optimal solutions.
The proximal point algorithm

Proximal point algorithm
Initialization: Choose x0 ∈ dom f and set k := 0

For k ≥ 0 : Choose γk > 0 and set
xk+1 := proxγkf (xk) = argmin

x∈H

{
f(x) + 1

2γk
‖x− xk‖2

}
I The proximal point algorithm is well-defined!

Notations
For k ≥ 0 let be

sk+1 :=
xk − xk+1
γk+1

and σk :=
k∑
j=0

γj .

Radu Ioan Boţ Proximal methods in convex optimization 14 / 39



Moreau envelope and proximal mapping
Regularization algorithms

Splitting methods

The proximal point algorithm
A proximal-like algorithm with Bregman functions
Tikhonov regularization algorithm

Facts on the proximal point algorithm
I For every k ≥ 0 it holds sk+1 ∈ ∂f(xk+1), since

0 ∈ ∂
(
f + 1

2γk
‖· − xk‖2) (xk+1) = ∂f(xk+1)+ 1

γk
(xk+1−xk) = ∂f(xk+1)−sk+1;

I For every k ≥ 1 it holds ‖sk+1‖ ≤ ‖sk‖;
I Fundamental estimate: For every k ≥ 1 and every x ∈ H it holds

f(xk)− f(x) ≤
‖x− x0‖2

2σk−1
−
‖x− xk‖2

2σk−1
−
σk−1

2
‖sk‖2.

Convergence of the proximal point algorithm
For every k ≥ 1 and every x ∈ H it holds

f(xk)− f(x) ≤
‖x− x0‖2

2σk−1
.

I If limk→+∞ σk = +∞, then f(xk)→ v(P )(k → +∞);
I If, additionally, argmin f 6= ∅, then (xk)k≥0 converges weakly to a minimizer of f
and

f(xk)− v(P ) ≤
d2

argmin f (x0)
2σk−1

∀k ≥ 1.
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I The assumption limk→+∞ σk = +∞ is, for instance, fulfilled when (γk)k≥0 is a
constant sequence.

Strong convergence of the proximal point algorithm
If f is strongly convex and limk→+∞ σk = +∞, then (xk)k≥0 converges strongly to
the unique minimizer of f .

Improved convergence rate
If limk→+∞ σk = +∞, argmin f 6= ∅ and (xk)k≥0 converges strongly to a minimizer
of f , then

lim
k→+∞

σk−1(f(xk)− v(P )) = 0.

Weak convergence versus strong convergence (Güler, 1991)
There exists a proper, convex and lower semicontinuous function f : `2 → R such that
given any bounded positive sequence (γk)k≥0, there exists a point x0 ∈ dom f for
which the proximal point algorithm with

xk+1 := proxγkf (xk) ∀k ≥ 0

converges weakly, but not strongly to a minimizer of f .
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A proximal-like algorithm with Bregman functions

Bregman distance
We call Bregman distance

Dψ : cl(Z)× Z → R, Dψ(x, y) = ψ(x)− ψ(y)− 〈∇ψ(y), x− y〉

where Z ⊆ Rn is an open set and ψ : cl(Z)→ R is a so-called Bregman function with
zone Z, namely it has the following properties:
I ψ is continuously differentiable on Z;
I ψ is strictly convex and continuous on cl(Z);
I the partial upper level sets {x ∈ cl(Z) : Dψ(y, x) ≤ λ} and {y ∈ Z : Dψ(x, y) ≤ λ}
are bounded for every λ ∈ R, y ∈ Z and x ∈ cl(Z);
I if (yk)k≥0 ⊆ Z converges to y, then Dψ(y, yk)→ 0(k → +∞);
I if (yk)k≥0 is a sequence converging to y ∈ cl(Z) and (xk)k≥0 is a bounded
sequence such that Dψ(xk, yk)→ 0(k → +∞), then xk → y(k → +∞).

Some properties of the Bregman distance
I Dψ(·, ·) is not a distance (it might not be symmetric and might not satisfy the
triangle inequality);
I since ψ is strictly convex, it holds Dψ(x, y) ≥ 0 for all (x, y) ∈ Z × cl(Z) and
Dψ(x, y) = 0 if and only if x = y.
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Example (half square Euclidean distance)
For Z = Rn and ψ : Rn → R and ψ(x) = 1

2‖x‖
2 one obtains

Dψ : Rn × Rn → R, Dψ(x, y) = 1
2‖x− y‖

2.

Example (Kullback-Leibler relative entropy distance)
For Z = int(Rn+) and ψ : Rn+ → R and ψ(x) =

∑n

i=1 xi log xi − xi (with the
convention 0 log 0 = 0) one obtains

Dψ : Rn+ × int(Rn+)→ R, Dψ(x, y) =
n∑
i=1

xi log
xi

yi
+ yi − xi.

Proximal-like algorithm with Bregman functions for H = Rn

Initialization: Choose x0 ∈ dom f and set k := 0
For k ≥ 0 : Choose γk > 0 and set

xk+1 := argmin
x∈Rn

{
f(x) + 1

γk
Dψ(x, xk)

}
I The proximal point algorithm is well-defined!
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Facts on the proximal-like algorithm with Bregman functions
If dom f ⊆ Z, the following statements are true:
I For every k ≥ 0 it holds f(xk+1) ≤ f(xk);
I For every k ≥ 1 and every x ∈ argmin f it holds Dψ(x, xk+1) ≤ Dψ(x, xk);
I Fundamental estimate: For every k ≥ 1 and every x ∈ cl(Z) it holds

f(xk)− f(x) ≤
Dψ(x, x0)
σk−1

−
Dψ(x, xk)
σk−1

−
k−1∑
j=1

σj

γj
Dψ(xj , xj−1).

Convergence of the proximal-like algorithm with Bregman functions
For every k ≥ 1 and every x ∈ cl(Z) it holds

f(xk)− f(x) ≤
Dψ(x, x0)
σk−1

.

I If limk→+∞ σk = +∞, then f(xk)→ v(P )(k → +∞);
I If, additionally, argmin f 6= ∅, then (xk)k≥0 converges to a minimizer of f and

f(xk)− v(P ) ≤
Dψ(x, x0)

2σk−1
∀k ≥ 1 ∀x ∈ argmin f.
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Tikhonov regularization algorithm

Tikhonov regularization algorithm
Initialization: Choose x0 ∈ dom f and set k := 0

For k ≥ 0 : Choose εk > 0 and set
xk+1 := argmin

x∈H

{
f(x) + εk

2 ‖x‖
2
}

I The Tikhonov regularization algorithm is well-defined!

Facts on the Tikhonov regularization algorithm
or every k ≥ 0 let be sk+1 := −εkxk+1. It holds sk+1 ∈ ∂f(xk+1), since

0 ∈ ∂
(
f + εk

2 ‖·‖
2) (xk+1) = ∂f(xk+1) + εkxk+1 = ∂f(xk+1)− sk+1.

Convergence of the Tikhonov regularization algorithm
Let (εk)k≥0 be such that limk→+∞ εk = 0.
I Then (xk)k≥0 converges strongly if and only if argmin f is nonempty;
I In this case, (xk)k≥0 converges strongly to Pargmin f (0), which is nothing else than
the unique optimal solution of the problem

inf
x∈argmin f

‖x‖.
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Example (Moore-Penrose inverse)
For K a real Hilbert space, A : H → K a linear continuous operator with
ranA := A(H) closed and y ∈ K, the equation Az = y has at least one least-squares
solution, i.e., an optimal solution of the problem

min
x∈H

1
2
‖Ax− y‖2.

The element x ∈ H is a least-squares solution to Az = y if and only if A∗Ax = A∗y.

The Moore-Penrose inverse of A is the linear continuous operator A† : K → H
defined as

A†(y) = P{x∈H:A∗Ax=A∗y}(0).

I If A∗A is invertible, then A† = (A∗A)−1A. If A is invertible, then A† = A−1.
I Let be εk > 0 for all k ≥ 0 with limk→+∞ εk = 0. Then

xk = (A∗A+ εk Id)−1A∗y = argmin
x∈H

{
1
2‖Ax− y‖

2 + εk
2 ‖x‖

2
}
∀k ≥ 0.

Consequently,
lim

k→+∞
(A∗A+ εk Id)−1A∗y = A†(y).
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Generalized regularization function
Let r : H → R be a proper, strictly convex, coercive and lower semicontinuous
function with argmin f ∩ dom r 6= ∅. Then the optimization problem

min
x∈argmin f

r(x)

has an unique optimal solution.

Generalized Tikhonov-type regularization algorithm
Initialization: Choose x0 ∈ dom f and set k := 0

For k ≥ 0 : Choose εk > 0 and set
xk+1 := argmin

x∈H
{f(x) + εkr(x)}

I The generalized Tikhonov-type regularization algorithm is well-defined!

Convergence of the generalized Tikhonov-type regularization algorithm
Let (εk)k≥0 be such that limk→+∞ εk = 0.
I Then (xk)k≥0 converges weakly to argminargmin f r. Moreover,
limk→+∞ r(xk) = r(argminargmin f r);
I If r is strongly convex, then (xk)k≥0 converges strongly to argminargmin f r.
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Splitting methods
The splitting methods are motivated by the need to solve optimization problems of the
form

inf
x∈H
{f(x) + g(x)}.

One should notice that usable formulae for

proxf+g ,

namely, formulae involving proxf and proxg are in general not available!

Forward-Backward splitting
Let f : H → R be a proper, convex and lower semicontinuous function and g : H → R
a convex and Fréchet differentiable function with β-Lipschitz continuous gradient. We
consider the optimization problem

inf
x∈H
{f(x) + g(x)},

for which we assume that argmin(f + g) 6= ∅.

A characterization of the optimal solution as starting point
For γ > 0 one has

x ∈ argmin(f + g)⇔ 0 ∈ ∂(f + g)(x)⇔ 0 ∈ ∂f(x) + ∂g(x)⇔ −∇g(x) ∈ ∂f(x)

⇔ (x− γ∇g(x))− x ∈ ∂(γf)(x)⇔ x = proxγf (x− γ∇g(x)).
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Forward-Backward algorithm
Initialization: Choose x0 ∈ H and set k := 0

For k ≥ 0 : Choose γk > 0 and set xk+1 := proxγkf (xk − γk∇g(xk))

The case f = 0
The Forward-Backward algorithm reduces to the gradient method:

Initialization: Choose x0 ∈ H and set k := 0
For k ≥ 0 : Choose γk > 0 and set xk+1 := xk − γk∇g(xk)

The case g = 0
The Forward-Backward algorithm reduces to the proximal point algorithm:

Initialization: Choose x0 ∈ H and set k := 0
For k ≥ 0 : Choose γk > 0 and set xk+1 := proxγkf (xk)

Convergence of the Forward-Backward algorithm
Let (γk)k≥0 be such that

0 < infk≥0 γk ≤ supk≥0 γk <
2
β
.

I Then (xk)k≥0 converges weakly to an element in argmin(f + g) and (∇g(xk))k≥0
converges to ∇g(x) for every x ∈ argmin(f + g);
I If f or g is strongly convex, then (xk)k≥0 converges strongly to the unique element
in argmin(f + g).

Radu Ioan Boţ Proximal methods in convex optimization 24 / 39



Moreau envelope and proximal mapping
Regularization algorithms

Splitting methods
Forward-Backward algorithm
Douglas-Rachford algorithm

Linear convergence of the Forward-Backward algorithm
Assuming, additionally, that f : H → R is strongly convex with modulus α > 0 and
that we are in one of the following two situations:
I (γk)k≥0 is such that

0 < infk≥0 γk and ξ := supk≥0

(√
1+γ2

k
β2

1+αγk

)
< 1;

I (γk)k≥0 is such that γk := γ ∈
(
0, 2
β

)
for all k ≥ 0 and ξ := 1

1+αγ ;
then (xk)k≥0 converges (strongly) linear with constant ξ ∈ (0, 1) to the unique
element in x̄ ∈ argmin(f + g), namely

‖xk+1 − x̄‖ ≤ ξ‖xk − x̄‖ ∀k ≥ 0.

Radu Ioan Boţ Proximal methods in convex optimization 25 / 39



Moreau envelope and proximal mapping
Regularization algorithms

Splitting methods
Forward-Backward algorithm
Douglas-Rachford algorithm

Forward-Backward algorithm: a variant incorporating relaxation
parameters

Initialization: Choose x0 ∈ H and set k := 0
For k ≥ 0 : Choose γk > 0 and set yk := xk − γk∇g(xk)

Choose λk > 0 and set xk+1 := xk + λk(proxγkf (yk)− xk)

I If λk = 1 for all k ≥ 0, then one rediscovers the classical version of the
Forward-Backward algorithm;

Let be ε ∈
(
0,min{1, 1

β
}
)
fixed and (λk)k≥0 and (γk)k≥0 such that

γk ∈
[
ε, 2
β
− ε
]
and λk ∈ [ε, 1] ∀k ≥ 0.

I Then (xk)k≥0 converges weakly to an element in argmin(f + g) and (∇g(xk))k≥0
converges to ∇g(x) for every x ∈ argmin(f + g);
I If f or g is strongly convex, then (xk)k≥0 converges strongly to the unique element
in argmin(f + g).
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Particular instance (of the classical version): the projected gradient
algorithm
Assuming that f := δS , where S ⊆ H is a convex closed set such that argminS g 6= ∅,
the problem to be solved becomes

infx∈S g(x).

Since proxγf = proxf = PS for all γ > 0, the Forward-Backward algorithm gives in
this case rise to the so-called projected gradient algorithm:

Initialization: Choose x0 ∈ H and set k := 0
For k ≥ 0 : Choose γk > 0 and set xk+1 := PS(xk − γk∇g(xk)).
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Particular instance (of the classical version): the Backward-Backward
algorithm
For f, g : H → R be a proper, convex and lower semicontinuous functions we consider
the optimization problem

infx∈H{f(x) +1g(x)},

for which we assume that argmin(f +1g) 6= ∅.
I Recall that 1g : H → R is convex and Fréchet differentiable in H,
∇(1g)(x) = x− proxg(x) for all x ∈ H and ∇(1g) is 1-Lipschitz continuous.
Taking γk = 1 for all k ≥ 0, the Forward-Backward algorithm gives rise to the
so-called Backward-Backward algorithm:

Initialization: Choose x0 ∈ H and set k := 0
For k ≥ 0 : Set xk+1 := proxf (proxg(xk))

I (xk)k≥0 converges weakly to an element in argmin(f +1 g);
I If f is strongly convex, then (xk)k≥0 converges strongly to the unique element in
argmin(f +1g).
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Particular instance (of the Backward-Backward algorithm): the
alternating projections algorithm
Taking f := δS and g := δT , where S, T ⊆ H are convex closed sets, such that one of
them is bounded, the problem

inf
x∈H
{f(x) +1g(x)},

becomes
inf
x∈S

1
2d

2
T ,

which amounts to finding an element in S at closest distance from T .

I If S is bounded, then argminS
(

1
2d

2
T

)
= argminS dT 6= ∅, since 1

2d
2
T is continuous;

I If T is bounded, then argminS
(

1
2d

2
T

)
= argminS dT 6= ∅, since 1

2d
2
T is coercive.

Since proxf = PS and proxg = PT , the Backward-Backward algorithm yield the
alternating projections algorithm:

Initialization: Choose x0 ∈ H and set k := 0
For k ≥ 0 : Set xk+1 := PS(PT (xk))

I (xk)k≥0 converges weakly to an element in argminS dT 6= ∅.
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The case when g is composed with a linear continuous operator
Let f : H → R be a proper, convex and lower semicontinuous function, g : K → R a
convex and Fréchet differentiable function with β-Lipschitz continuous gradient and
A : H → K a nonzero linear and continuous operator. We consider the optimization
problem

inf
x∈H
{f(x) + g(Ax)},

for which we assume that argmin(f + g ◦A) 6= ∅.
I Notice that g ◦A : H → R is convex and Fréchet differentiable in H,
∇(g ◦A)(x) = A∗(∇g(Ax)) for all x ∈ H and ∇(g ◦A) is β‖A‖2-Lipschitz
continuous.
The Forward-Backward algorithm reads:

Initialization: Choose x0 ∈ H and set k := 0
For k ≥ 0 : Choose γk > 0 and set xk+1 := proxγkf (xk − γkA∗∇g(Axk))

Let (γk)k≥0 be such that

0 < infk≥0 γk ≤ supk≥0 γk <
2

β‖A‖2 .

I Then (xk)k≥0 converges weakly to an element in argmin(f + g ◦A) and
(∇g(Axk))k≥0 converges to ∇g(Ax) for every x ∈ argmin(f + g ◦A);
I If f is strongly convex, then (xk)k≥0 converges strongly to the unique element in
argmin(f + g ◦A).
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Particular instance: the projected Landweber algorithm
Taking f = δS , where S ⊆ H is a nonempty, convex and closed set, and g : K → R,
g(z) = 1

2‖z − y‖
2, where y ∈ K, which is a convex and Fréchet differentiable function

with 1-Lipschitz continuous gradient, the problem

inf
x∈H
{f(x) + g(Ax)}

yields the constrained least-squares problem

inf
x∈S

1
2‖Ax− y‖

2.

We assume that argminS
(

1
2‖A(·)− y‖2

)
6= ∅.

The above Forward-Backward algorithm gives rise to the projected Landweber
algorithm:

Initialization: Choose x0 ∈ H and set k := 0
For k ≥ 0 : Choose γk > 0 and set xk+1 := PS(xk + γkA

∗(y − Axk))
Let (γk)k≥0 be such that

0 < infk≥0 γk ≤ supk≥0 γk <
2
‖A‖2 .

I Then (xk)k≥0 converges weakly to an element in argminS
(

1
2‖A(·)− y‖2

)
.
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Douglas-Rachford algorithm
Let f, g : H → R be a proper, convex and lower semicontinuous functions with
dom f ∩ dom g 6= ∅ and the optimization problem

inf
x∈H
{f(x) + g(x)}.

We assume that argmin(f + g) 6= ∅ and that one of the following qualification
conditions:
I (AB): 0 ∈ sqri(dom f − dom g);
I (B): epi f∗ + epi g∗ is closed;
is fulfilled.
I Recall that, in this circumstances, ∂(f + g)(x) = ∂f(x) + ∂g(x) for all x ∈ H.

A characterization of the optimal solution as starting point
For γ > 0 one has

x ∈ argmin(f+g)⇔ 0 ∈ ∂(f+g)(x)⇔ 0 ∈ ∂f(x)+∂g(x)⇔ ∃y ∈ H : x−y ∈ γ∂f(x)

and y − x ∈ γ∂g(x)⇔ ∃y ∈ H : (2x− y)− x ∈ ∂(γf)(x) and y − x ∈ ∂(γg)(x)

⇔ ∃y ∈ H : x = proxγf (2x− y) and x = proxγg(y)

⇔ ∃y ∈ H : x = proxγg(y) and 0 = proxγf (2x− y)− x

⇔ ∃y ∈ H : x = proxγg(y) and y = y + proxγf (2x− y)− x.
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Douglas-Rachford algorithm
Initialization: Choose γ > 0, y0 ∈ H and set k := 0

For k ≥ 0 : Set xk := proxγg(yk)
yk+1 := yk +

(
proxγf (2xk − yk)− xk

)
The case f = 0
The Douglas-Rachford algorithm reduces to the proximal point algorithm:

Initialization: Choose γ > 0, y0 ∈ H and set k := 0
For k ≥ 0 : Set xk := proxγg(yk)

yk+1 := xk

The case g = 0
The Douglas-Rachford algorithm reduces to the proximal point algorithm:

Initialization: Choose γ > 0, y0 ∈ H and set k := 0
For k ≥ 0 : Set xk := yk

yk+1 := proxγg(xk)

Convergence of the Douglas-Rachford algorithm
There exists x ∈ H with proxγg(x) ∈ argmin(f + g) such that (yk)k≥0 converges
weakly to x and:
I (xk)k≥0 converges weakly to proxγg(x);
I whenever f or g is strongly convex, (xk)k≥0 converges strongly to proxγg(x),
which is the unique element in argmin(f + g).
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Douglas-Rachford algorithm: a variant incorporating relaxation
parameters

Initialization: Choose γ > 0, y0 ∈ H and set k := 0
For k ≥ 0 : Set xk := proxγg(yk)

Choose λk > 0 and set yk+1 := yk + λk(proxγf (2xk − yk)− xk)

I If λk = 1 for all k ≥ 0, then one rediscovers the classical version of the
Douglas-Rachford algorithm;
Let be ε ∈ (0, 1) fixed and (λk)k≥0 such that

λk ∈ [ε, 2− ε] ∀k ≥ 0.

There exists x ∈ H with proxγg(x) ∈ argmin(f + g) such that (yk)k≥0 converges
weakly to x and:
I (xk)k≥0 converges weakly to proxγg(x);
I whenever f or g is strongly convex, (xk)k≥0 converges strongly to proxγg(x),
which is the unique element in argmin(f + g).
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Particular instance (of the classical version): determining an element in a
set S at closest distance from a set T
Taking f := δS and g := 1

2d
2
T , where S, T ⊆ H are convex closed sets, such that one

of them is bounded, the problem

inf
x∈H
{f(x) + g(x)},

becomes
inf
x∈S

1
2d

2
T ,

which amounts to finding an element in S at closest distance from T .

I If S is bounded, then argminS
(

1
2d

2
T

)
= argminS dT 6= ∅, since 1

2d
2
T is continuous;

I If T is bounded, then argminS
(

1
2d

2
T

)
= argminS dT 6= ∅, since 1

2d
2
T is coercive.

I Since dom g = H, the qualification condition (AB) is fulfilled;
The Douglas-Rachford algorithm with γ = 1 yields, since proxf = PS and
proxg(x) = 1

2 (x+ PT (x)):
Initialization: Choose y0 ∈ H and set k := 0

For k ≥ 0 : Set xk := 1
2 (xk + PT (xk))

yk+1 := PS(PT (yk)) + yk − xk
There exists x ∈ H with 1

2 (x+ PT (x)) ∈ argminS dT such that (yk)k≥0 converges
weakly to x and (xk)k≥0 converges weakly to 1

2 (x+ PT (x)).
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The case when g is composed with a linear continuous operator
Let f, g : H → R be proper, convex and lower semicontinuous functions, A : H → K
a nonzero linear and continuous operator with A(dom f) ∩ dom g 6= ∅ and the
optimization problem

inf
x∈H
{f(x) + g(Ax)}.

We assume that argmin(f + g ◦A) 6= ∅, AA∗ = α Id, for α > 0, and that one of the
following qualification conditions:
I (AB): 0 ∈ sqri(A(dom f)− dom g);
I (B): A∗ × idR(epi f∗) + epi g∗ is closed;
is fulfilled.
I Recall that, in this circumstances, ∂(f + g ◦A)(x) = ∂f(x) + ∂A∗(g(Ax)) for all
x ∈ H.
For γ > 0 one has

x ∈ argmin(f + g ◦A)⇔ ∃y ∈ H : x = proxγg◦A(y) and x = proxγf (2x− y)

⇔ ∃y ∈ H : x = y + 1
α
A∗(proxαγg(Ay)−Ay) and x = proxγf (2x− y).
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The case when g is composed with a linear continuous operator
(continuation)
The Douglas-Rachford algorithm reads:

Initialization: Choose γ > 0, y0 ∈ H and set k := 0
For k ≥ 0 : Set xk := yk + 1

αA
∗(proxαγg(Ayk)− Ayk)

yk+1 := yk +
(

proxγf (2xk − yk)− xk
)

There exists x ∈ H with proxγg◦A(x) ∈ argmin(f + g) such that (yk)k≥0 converges
weakly to x and:
I (xk)k≥0 converges weakly to proxγg◦A(x);
I whenever f is strongly convex, (xk)k≥0 converges strongly to proxγg◦A(x), which
is the unique element in argmin(f + g).
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Particular instance
By taking g = δ{y}, for y ∈ A(dom f), the optimization problem

inf
x∈H
{f(x) + g(Ax)}

becomes inf
x∈H
Ax=y

f(x).

We assume that argminA−1(y) f 6= ∅, where A−1(y) = {x ∈ H : Ax = y},
AA∗ = α Id, for α > 0, and that one of the following qualification conditions:
I (AB): y ∈ sqri(A(dom f));
I (B): A∗ × idR(epi f∗) + {(y∗, r) ∈ K∗ × R : 〈y∗, y〉 ≤ r} is closed;
is fulfilled.
Since proxαγg(z) = y for all z ∈ K, the Douglas-Rachford algorithm reads:

Initialization: Choose γ > 0, y0 ∈ H and set k := 0
For k ≥ 0 : Set xk := yk + 1

αA
∗(y − Ayk)

yk+1 := yk +
(

proxγf (2xk − yk)− xk
)

There exists x ∈ H with PA−1(y)(x) ∈ argminA−1(y) f such that (yk)k≥0 converges
weakly to x and:
I (xk)k≥0 converges weakly to PA−1(y)(x);
I whenever f is strongly convex, (xk)k≥0 converges strongly to PA−1(y)(x), which is
the unique element in argminA−1(y) f .
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