
RESEARCH STATEMENT

HAO CHEN

Initially educated as a physicist, I received doctoral training in mathematics,
and started my career as a discrete geometer. My research interest was Coxeter
groups, polytopes, and sphere packings, etc.

Around 2016/2017, I switched my topic to differential geometry, focusing on
Triply Periodic Minimal Surfaces (TPMSs), a fantastic geometric object that com-
bines the beauty of bubble films with locally minimized area, and crystals with
repeating patterns. The topic finds applications in material sciences of soft matter
physics.

I recognize two golden ages in the history of TPMS. The first examples were
constructed by Schwarz in the 1860s [Sch72]. Later, Schoen’s Gyroid [Sch70] and
Meeks’ 5-parameter family [Mee90], both constructed in the 1970s, inspired fruitful
transdisciplinary collaborations until the 1990s.

I made surprising discoveries of new TPMSs of genus 3 (TPMSg3s), for the first
time in almost 20 years, with rigorous mathematical proofs. In the process, I
built up an international and interdisciplinary research network. In partic-
ular, long-term collaborations with physicists and material scientists have
been established.

At the moment, I am dedicated to promote another golden age of TPMSs.
The goal is to make progress towards an ultimate classification of all TPMSs
of genus three. For this purpose, I’m trying to expand my expertise to complex
dynamics and bifurcation theory in order to deal with the singularities that
are known to exist in the moduli space of TPMSg3s.

1. Recent and ongoing projects

1.1. Motivations from physics. In 2011, Lu Han et al. [HXBC11] synthesized
silica mesoporous crystals with polyhedral hollow cavities. Crystallographic anal-
ysis reveals TPMS structures. Most interestingly, they observe twinning structure
at the domain boundaries: The TPMSs on different sides are symmetrically related
by a reflection in the boundary plane. My physicist wife, Dr. Chenyu Jin, was
collaborating with Han et al. to explain the observed twinning structure. I was
helping her with differential geometry, but soon developed better insight into their
problem, partially thanks to my physics background.

In the beginning, I was conducting this research in my spare time for fun. My
main tool was Surface Evolver [Bra92], a software that minimizes various ener-
gies on triangulated surfaces. It allowed me to numerically reproduce the twinning
structure observed [Che21a, HFC+20]. With an innovative use of the software, I
also implemented an energetic model of TPMSs that was long expected by physi-
cists [CJ17]. At the same time, I used the software to play with TPMSg3s and their
deformations (see [Che21a]) and noticed clues for many TPMSg3s that I discovered
later or plan to work on in the future.

1.2. Mathematical treatment of defects. Twinning is an example of crystal
defects, i.e. interruptions of the periodic pattern. As a mathematician, I was not
satisfied with the numerical results. Hence I wrote a proposal aiming at rigorous
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mathematical treatments of crystal defects in TPMSs. This project received an
individual funding from Deutsche Forschungsgemeinschaft (DFG).

In search of a rigorous proof of the twinning phenomenon, I began to talk with
mathematicians including Karsten Große-Brauckmann, David Hoffman, Matthias
Weber, and Martin Traizet. It became clear that Traizet’s node-opening technique
is the appropriate tool for my purpose.

I then collaborated with Traizet to open nodes between infinitely many flat 2-
tori in a non-periodic way [CT21a]. Due to the complexity, we decided to open
only one node between each adjacent tori to ease the setting up. Despite this
considerable simplification, the technique turns out to be much more powerful than
I originally thought. Most of our examples would be considered by crystallographers
as disordered stackings of nodes. Twinning and other planar defects are merely
special cases. This is surprising for mathematicians as well as for physicists.

A side product of this work was a complete description of the catenoid limits of
TPMSg3s. It turns out that the catenoid limits are described by pairs of solutions
of the equation

F (q; τ) = ζ(q; τ)− ξ(q; τ) = C

for fixed (τ, C) ∈ C2, where ζ is the Weierstrass zeta function and

ξ(x+ yτ ; τ) = 2xζ(1/2; τ) + 2yζ(τ/2; τ).

This established an unexpected connection to PDEs [LW10, CKLW18], complex
dynamics [BE16], and mathematical physics.

1.3. New TPMSg3s. In physics, knowledge of defects often leads to deeper in-
sights into crystals. This is also the case for TPMSg3s. My study on defects leads
to the discovery of new TPMSg3s.

During the preliminary numerical work [Che19], I noticed a 1-parameter family
that shares many symmetries with the classical tetragonal deformation family tD
of Schwarz’s D surface, yet completely different. Most surprisingly, it seems to
intersect with tD, suggesting a singularity in the moduli space of TPMSg3s.

Shortly after receiving the DFG grant, I became aware that the new family can
be constructed using the techniques of Fujimori–Weber [FW09]. Weber was quite
surprised by my discovery, as this is the first new TPMSg3s in almost 20 years.
Most surprisingly, the new TPMSg3s is not in Meeks’ family.

We then collaborated to expand the family into a 2-parameter family o∆ [CW21a].
Later, we collaborated to discover another 2-parameter deformation family oH us-
ing similar techniques [CW21b]. They are all outside Meeks’ family, but intersect
Meeks’ family in 1-parameter subfamilies. So they exhibit, for the first time con-
cretely, singularities in the moduli space of TPMSg3s.

These new families renewed the interest in explicit constructions of new TPMSs.
Soon later, new TPMSs of genus four were found using similar techniques [FWYY18].

Weber suggested that, for an eventual classification of TPMSg3s, one needs to
fully understand the deformations of the gyroid. Two deformations families were
numerically discovered by physicists in the 1990s [Fog93, FH99]. An attempted of
rigorous proof only succeeded in small neighborhoods [Wey08]. With an innovative
use of elliptic functions, I managed to provide a rigorous existence proof [Che21a].

1.4. Gluing constructions. I’m currently working on projects to construct min-
imal surfaces by gluing saddle towers and helicoids. These are again motivated by
physicists [MSSTM18] and biologists [BCH+16]. Such constructions were previ-
ously implemented assuming extra symmetry [Tra96, You09, TW05]. My purpose
is to break these symmetries.
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The constructions of TPMSs and Singly Periodic Minimal Surfaces (SPMSs) by
gluing saddle towers are recently published as preprints [CT21b,Che21b]. It turns
out that, in addition to the horizontal balancing condition that was previously
known, the saddle towers must also be balanced under a very subtle vertical inter-
action. This interaction vanishes in the presence of an horizontal reflection plane,
hence was not perceived in previous constructions that assumes symmetry. As a
consequence, we obtain new 5-parameter families of TPMSg3s near saddle tower
limits. Follow-up papers are coming soon.

A manuscript that glues helicoids into minimal surfaces is under preparation.
The main message is an interdisciplinary connection between balancing configu-
rations of helicoids in minimal surfaces and rigid configurations of point vortices
in 2D Euler fluids. This manuscript will focus on minimal surfaces with screw or
translational symmetries and planar or helicoidal ends. A similar construction for
TPMSs will be delayed to a future project about weak limits of TPMSg3s (see
below).

These ongoing projects already shows that the helicoid limits and saddle-tower
limits of TPMSg3s have a much simpler structure than the catenoid limits. This
motivates many of my future projects below.

1.5. Interdisciplinary collaborations. On the interdisciplinary aspects, I es-
tablished a long-term collaboration with the team of Lu Han. They are observing
interesting structures in the laboratory, and I can explain many of them with my
knowledge on minimal surfaces [BCCH21, SCM+21]. Inversely, these observations
guide me in the search for new TPMSs. Many other experimental teams are also
making contact with me, hoping for mathematical insights and numerical inputs
for their experiments. At the same time, I have been in close contact with physi-
cists that care about TPMSs, including Gerd Schröder-Turk and Stephen Hyde.
Because of my proof for the deformations of Gyroid, I’m established as the go-to
person about Gyroid and related topics.

2. Future projects

In the coming years, I plan to work towards an ultimate classification of all
embedded TPMSs of genus 3 (TPMSg3s). There are several motivations for such
an ambitious goal:

• There have been many classifications of complete, embedded minimal sur-
faces of finite topology in Euclidean space forms. TPMSg3s are the natural
next target.

• In all previous classifications, the moduli spaces were found to be smooth
manifolds. The moduli space of TPMSg3s, on the other hand, is known
to have a very rich structure that was never seen before. In particular,
my recent works demonstrated various types of singularities. This presents
great yet manageable challenges.

• TPMS structures are ubiquitous in nature and laboratories. Many recent
observations in material science can only be explained by deformations of
classical TPMSs. Hence the impact expands across disciplines.

I would like to compare the space of TPMSg3s to a jigsaw puzzle. To solve a
jigsaw puzzle, one usually starts from special pieces or boundary pieces, and expand
from there. This is also the strategy for hunting TPMSg3s, both in history and in
my planned projects.

Here is a summary of what is known or strongly believed about TPMSg3s

• The moduli space contains a very well-behaving manifold, known as Meeks’
family. I constructed a few families of TPMSg3s that do not belong to but
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intersect with Meeks’ family, namely o∆, oH, tG and rGL. These known
examples are special pieces for our puzzle.

• There are 6 possibilities for the limit of a TPMSg3s, namely catenoids, heli-
coids, saddle-towers, doubly periodic Scherk surfaces, and Karcher–Meeks–
Rosenberg (KMR) examples. They are boundary pieces for our puzzle.

• Among the six limits of TPMSg3s, we understand best the helicoid and
saddle-tower limits. We know how to describe the space catenoid limits,
but do not understand the concrete structure. There is no published result
about Riemann limits, doubly periodic Scherk limits, and KMR limits, but
they seem easy.

• We know the existence of new 5-parameter families near the catenoid limits
and saddle-tower limits.

Hence my plan for the near future are

(1) Construct new families of TPMSg3s. In particular, I plan to construct
two tetragonal deformation family of Gyroid, and expand them into an
orthorhombic deformation family. I also plan to expand my oH family
into an orthorhombic deformation family. In the best scenario, I might
construct two new 5-parameter families of TPMSg3s, which would be a
major step towards an ultimate classification. For this purpose, I need to
deepen my knowledge on elliptic and hyper-elliptic functions, and develop
new techniques.

(2) Better understanding the weak limits. First of all, I plan to write
down the gluing construction for the helicoid limits, doubly periodic Scherk
limits, and KMR limits of TPMSg3s. These should not be difficult with my
previous experience. Then I plan to classify all the catenoid limits. It boils
down to investigate the solutions of F (q; τ) = C. I already have numerical
results about the solution space. But for a rigorous treatment, I need to
expand my expertise to PDEs and bifurcation theory.

(3) Bifurcation instants and Morse index. A bifurcation instant refers
to a TPMSg3 for which the same deformation of the lattice may lead to
different deformations of the surface. They are therefore potential starting
points for discovering new TPMSg3s. Bifurcation instants are hinted by a
jump in the Morse index. In [KPS14], bifurcation instants were confirmed
at odd jumps in the Morse index. But for technical reasons, they were
not able to conclude for even jumps. My recent works on o∆, oH, tG and
rGL reveals bifurcation branches that was not known to [KPS14]. Most
surprisingly, I also find a surprising branch from the H surface with an
even jump in the Morse index. This provides a strong motivation to extend
the result of [KPS14] to even jumps.

(4) Assess the feasibility of an ultimate classification. I conjecture that
the moduli space of TPMSg3s is connected. In particular, all TPMSg3s
can be deformed continuously to a Meeks surface, and all TPMSg3s can be
deformed continuously to a catenoid limit. Proving any of these conjectures
would be a very good news for an ultimate classification.

(5) Continue the collaboration with physicists. The physicists are in-
terested in the “energy” of TPMSg3s to explain the frequent appearance
of cubic TPMSg3s. In particular, the frustration of Gaussian curvature is
proposed as a phenomenological energy to explain the dominance of Gyroid
and Schwarz’ D and P structures in material sciences [STFH06]. The new
TPMSg3s produced within our project make it possible to verify this theory.
Moreover, TPMSg3s can be used as photonic crystals and exhibit interest-
ing optical properties, but only cubic TPMSg3s have been investigated in
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detail. I plan to study the optical properties of non-cubic TPMSg3s, which
might lead to adjustable photonic materials.

(6) Migration existing codes to open source platforms. At the moment,
the most advanced and precise calculations about TPMSg3s are imple-
mented in Mathematica. The choice is justified by the powerful built-in
elliptic functions of Mathematica. However, unfortunately, the code is not
accessible to everyone. I plan to migrate the calculations to an open source
platform, presumably Python based. This will facilitate the dissemination
of our results.

3. Discrete geometry

In the last part this statement, I would like to briefly summarize some of my
works on discrete geometry before my switch of topic.

My doctoral thesis [Che14] was about the combinatorics and symmetries of ball
packings. The goal was to generalize the circle packing theorem into higher di-
mensions, that is, to study the tangency graph of higher dimensional ball packings.
My major achievement was a generalization of the famous Apollonian ball packing
using a large variety of hyperbolic reflection groups [CL15, Che16a]. My research
naturally extended to other related topics, including root systems [CL17] and poly-
topes [Che16b].

After obtaining my PhD degree in 2014, I continued working on some related
problems in discrete geometry.

3.1. Chromatic number of ball packings. Inspired by a MathOverflow prob-
lem, I studied the chromatic number χ(d) for the tangency graph of d-dimensional
ball packings. At the time, only trivial bounds are known for χ(d), i.e. a linear lower
bound and an exponential upper bound. I recognized a similarity of the problem to
the famous Borsuk conjecture. A recent construction of Bondarenko [Bon14] leads
to a counter-example of the Borsuk conjecture of dimension 64. I used his technique
and found many ball packings with strongly regular tangency graphs, whose chro-
matic number is significantly higher than the trivial lower bound. In particular, for
every prime power q, I found a unit ball packing of dimension d = q3 − q2 + q with
chromatic number χ(d) = q3 + 1 [Che17].

3.2. Selectively balancing unit vectors. In my doctoral thesis [Che14], I stud-
ied the dot product representation of graphs. Such a representation maps vertices of
a graph to vectors in Rd such that two vertices are connected by an edge if and only
if the dot product of the corresponding vectors is bigger than 1. I disproved a con-
jecture [LC14] asserting that a (d+1)-cube graph has no dot product representation
in Rd. Hoping to improve this result, I collaborated with Blokhuis on a distantly
related topic: A set of unit vectors in Rn is said to be selectively balancing if the
Euclidean norm of some linear combination of them, with only coefficients −1, 0 or
1, is at most 1. Let σ(n) be the minimum integer m such that any m unit vectors
in Rn are selectively balancing. We proved that σ(n) ∼ 1

2n log n [BC18]. Based on
this result, I conjecture the existence of a constant c such that the (cn log n)-cube
admits a dot product representation in Rn for infinitely many n.

3.3. Scribability of polytopes. Apart from the projects above, my research has
been focusing on scribability problems of polytopes. Such problems trace back
to 1832, when Steiner [Ste81] asked whether every polyhedron is inscribable. It
received a negative answer only in 1928, when Steinitz [Ste28] constructed the first
non-inscribable polyhedron.

Schulte [Sch87] proposed higher dimensional analogues of the problem. He asked
about realizations of d-dimensional polytopes with all their k-faces tangent to the
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sphere (k-scribed). For all d ≥ 2 and (d, k) 6= (3, 1), he found polytopes with no
such realization (not k-scribable). He also proposed a weak version of the problem,
and find non-scribable examples for most but not all cases. Joint with Padrol, we
considered Schulte’s problems and the more general (i, j)-scribabilities in the more
proper setting of projective space [CP17]. We completely settled Schulte’s weak
problems. Then we studied scribabilities of stacked polytopes and cyclic polytopes,
the two extremes of polytopes in terms of their f -vectors. On the one hand, we
proved that every stacked d-polytope is k-scribable for k = d − 1 or d − 2 but
non-examples exist for every smaller k. On the other hand, we proved that a cyclic
d-polytope with sufficiently many vertices is not k-scribable.

Back to Steiner’s problem, inscribable polyhedra are completely characterized by
Rivin et al. [HRS92] in 1992. But Steiner’s original question also asked about qua-
dratic surfaces other than the sphere. Recently, Danciger–Maloni–Schlenker [DMS20]
obtained Riven-type characterizations for polyhedra inscribable to a cylinder or a
hyperboloid, under the assumption that the interiors of the polyhedra do not inter-
sect the quadratic surface. Joint with Schlenker, we obtained complete character-
izations for polyhedra inscribed to two-sheet hyperboloids, including, remarkably,
a purely graph theoretical characterization [CS21]. In this project, we had to con-
sider the projective space RP 3 as a combination of the hyperbolic space and the
de-Sitter space.
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