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Abstract. After investigating the ball-packability of some small graphs, we

give a full characterisation, in terms of forbidden induced subgraphs, for the
stacked 4-polytopes whose 1-skeletons can be realised by the tangency relations

of a ball packing.

1. Introduction

A ball packing is a collection of balls with disjoint interiors. A graph is said to
be ball packable if it can be realized by the tangency relations of a ball packing.
Formal definitions will be given later.

The combinatorics of disk packings (2-dimensional ball packings) is well un-
derstood thanks to the Koebe–Andreev–Thurston’s disk packing theorem, which
says that every planar graph is disk packable. However, we know little about the
combinatorics of ball packings in higher dimensions.

In this paper we study the relation between Apollonian ball packings and stacked
polytopes: An Apollonian ball packing is formed by repeatedly filling new balls into
holes in a ball packing. A stacked polytope is formed, starting from a simplex, by
repeatedly gluing new simplices onto facets. Detailed and formal introductions can
be found respectively in Section 2.3 and in Section 2.4.

There is a 1-to-1 correspondence between 2-dimensional Apollonian ball packings
and 3-dimensional stacked polytopes: a graph can be realised by the tangency
relations of an Apollonian disk packing if and only if it is the 1-skeleton of a stacked
3-polytope.

As we will see, this relation does not hold in higher dimensions:
On one hand, the 1-skeleton of a stacked polytope may not be realizable by

the tangency relations of any Apollonian ball packing. Our main result, proved in
Section 4, give a condition on stacked 4-polytopes to restore the correspondence in
this direction:

Theorem 1.1 (Main result). The 1-skeleton of a stacked 4-polytope is 3-ball pack-
able if and only if it does not contain six 4-cliques sharing a 3-clique.

For higher dimensions, we propose Conjecture 4.11 at the end of this paper.
On the other hand, the tangency graph of a ball packing may not be the 1-

skeleton of any stacked polytope. However, we will show (Theorem 4.9) that this
can only happen for 3-dimensional ball packings. So the correpondence remains in
this direction for ball packings of dimension higher than 3.

The proofs are based on a method used by Graham et al. in [16]. Before prov-
ing the main result, we will investigate the ball packability of some small graphs
in Section 3 as a preparation. These graphs can all be written in form of graph
joins. The advantage is that ball packings can be explicitly constructed. Since ball
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packability is a property closed under induced subgraph operations, this investiga-
tion will provide many forbidden induced subgraphs for ball packable graphs. The
forbidden subgraph in our main result is one of them.

2. Definitions and Preliminaries

2.1. Ball packings. We work in the d-dimensional extended Euclidean space R̂d =
Rd ∪ {∞}. A d-ball of curvature κ means one of the following sets:

• {x | ‖x− c‖ ≤ 1/κ} if κ > 0;
• {x | ‖x− c‖ ≥ −1/κ} if κ < 0;
• {x | 〈x, n̂〉 ≥ b} ∪ {∞} if κ = 0,

where ‖·‖ is the Euclidean norm, and 〈·, ·〉 is the Euclidean inner product. In the
first two cases, c ∈ Rd is called the center of the ball. In the last case, the unit
vector n̂ is called the normal vector of a half-space, and b ∈ R. The boundary of a
d-ball is a (d− 1)-sphere.

Two balls are tangent at a point t ∈ R̂d if t is the only element of their intersec-
tion. We call t the tangency point, which can be the infinity point ∞ if it involves
two balls of curvature 0.

For a ball S ⊂ R̂d, the curvature-center coordinates is introduced by Lagarias,
Mallows and Wilks in [22]

m(S) =

{
(κ, κc) if κ 6= 0;

(0, n̂) if κ = 0.

Here, the term “coordinate” is an abuse of language, since the curvature-center
coordinates do not uniquely determine a ball when κ = 0. A real global coordinate
system would be the augmented curvature-center coordinates [22]. However, the
curvature-center coordinates are good enough for our use.

Definition 2.1. A d-ball packing is a collection of d-balls with disjoint interiors.

For a ball packing S, its tangency graph G(S) takes the balls as vertices and the
tangency relations as the edges. It is invariant under Möbius transformations and
reflections.

Definition 2.2. A graph G is said to be d-ball packable if there is a d-ball packing
S whose tangency graph is isomorphic to G. In this case, we say that S is a d-ball
packing of G.

Disk packings, or 2-ball packings, are well understood thanks to the following
famous theorem:

Theorem 2.3 (Koebe–Andreev–Thurston theorem [19,32]). Every connected sim-
ple planar graph is disk packable. If the graph is a finite triangulated planar graph,
then it has a unique disk packing up to Möbius transformations.

We know little about the combinatorics of ball packings in higher dimensions.
Some attempts of generalizing the disk packing theorem to higher dimensions in-
clude [3, 9, 21,24].

An induced subgraph of a d-ball packable graph is also d-ball packable. In
other words, the class of ball packable graphs is closed under the induced subgraph
operation.

Throughout this paper, ball packings are always in dimension d. The dimensions
of other objects will vary correspondingly.
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2.2. Descartes configurations. A Descartes configuration in dimension d is a
d-ball packing consisting of d+ 2 pairwisely tangent balls. The tangency graph of
a Descartes configuration is the complete graph on d+ 2 vertices. This is the basic
element for the construction of many ball packings in this paper.

The following relation was first established for dimension 2 by René Descartes
in a letter [11] to Princess Elizabeth of Bohemia, then generalized to dimension 3
by Soddy in the form of a poem [31], and finally generalized to any dimension by
Gossett [14].

Theorem 2.4 (Descartes–Soddy–Gossett Theorem). In dimension d, if d+ 2 balls
S1, · · · , Sd+2 form a Descartes configuration, let κi be the curvature of Si (1 ≤ i ≤
d+ 2), then

(1)

d+2∑
i=1

κ2i =
1

d

( d+2∑
i=1

κi

)2
Equivalently, KᵀQdK = 0, where K = (κ1, · · · , κd+2)ᵀ is the vector of curva-

tures, and Qd := I − 1
deeᵀ is a square matrix of size d + 2, where e is the all-one

column vector, and I is the identity matrix.
A more generalized relation on the curvature-center coordinates was proved

in [22]:

Theorem 2.5 (Generalized Descartes–Soddy–Gossett Theorem). In dimension d,
if d+ 2 balls S1, · · · , Sd+2 form a Descartes configuration, then

(2) MᵀQdM =

(
0 0
0 2I

)
where M is the curvature-center matrix of the configuration, whose i-th row is
m(Si).

Given a Descartes configuration S1, · · · , Sd+2, we can construct another Descartes
configuration by replacing S1 with an Sd+3, such that the curvatures κ1 and κd+3

are the two roots of (1) treating κ1 as unknown. So we have the relation

(3) κ1 + κd+3 =
2

d− 1

d+2∑
i=2

κi

We see from (2) that the same relation holds for all the entries in the curvature-
center coordinates, i.e.

(4) m(S1) + m(Sd+3) =
2

d− 1

d+2∑
i=2

m(Si)

These equations are essential for the calculations in the paper.
By recursively replacing Si with a new ball Si+d+2 in this way, we obtain an

infinite sequence of balls S1, S2, · · · , in which any d + 2 consecutive balls form a
Descartes configuration. This is Coxeter’s loxodromic sequences of tangent balls [10].

2.3. Apollonian cluster of balls.

Definition 2.6. A collection of d-balls is said to be Apollonian if it can be built
from a Descartes configuration by repeatedly introducing, for d+ 1 pairwisely tan-
gent balls, a new ball that is tangent to all of them.

Please note that a ball, when added, is allowed to touch more than d+ 1 balls,
and may intersect some other balls. So the result may not be a packing. Coxeter’s
loxodromic sequence is Apollonian, for example.
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We reformulate the replacing operation in the previous part by inversions: Given
a Descartes configuration S = {S1, · · · , Sd+2}, let Ri be the inversion in the sphere
that orthogonally intersects the boundary of Sj for all 1 ≤ j 6= i ≤ d + 2, then
RiS forms a new Descartes configuration, which keeps all the balls except that Si
is replaced by RiSi.

With this point of view, a Coxeter’s sequence can be obtained from an initial
Descartes configuration S0 by recursively constructing a sequence of Descartes con-
figurations by Sn+1 = Rj+1Sn where j = n (mod d+ 2), and taking the union.

More generally, the groupW generated by the Ri’s is called the Apollonian group.
The union of the orbits ∪S∈S0WS is called the Apollonian cluster (of balls) [16].

The Apollonian cluster is an infinite ball packing in dimensions two [15] and
three [4]. That is, the interiors of any two balls in the cluster are either identical
or disjoint.

This is unfortunately not true for higher dimensions. However, if we do not
require S0 to be a Descartes configuration, i.e. if S1, · · · , Sd+2 are not forced to
be pairwisely tangent, then a similar generating method yields a non-Apollonian
infinite ball packing under certain conditions [4]. Maxwell [23] related this fact to
hyperbolic reflection groups, and showed that this generating method works only
up to dimension nine.

Define

Ri := I +
2

d− 1
eie

ᵀ − 2d

d− 1
eie

ᵀ
i

where ei is a (d + 2)-vector whose entries are 0 except the i-th entry being 1. So
Ri coincide with the identity matrix at all rows except the i-th row, where the
diagonal entry is −1 and the off-diagonal entries is 2/(d− 1).

One can then verify that Ri induces a representation of the Apollonian group.
In fact, if M is the curvature-center matrix of a Descartes configuration S, then
RiM is the curvature-center matrix of RiS.

2.4. Stacked polytopes. For a simplicial polytope, a stacking operation glues a
new simplex onto a facet.

Definition 2.7. A simplicial d-polytope is stacked if it can be iteratively con-
structed from a d-simplex by a sequence of stacking operations.

We call the 1-skeleton of a polytope P the graph of P, denoted by G(P). For
example, the graph of a d-simplex is the complete graph on d+ 1 vertices.

The graph of a stacked d-polytope is a d-tree, that is, a chordal graph whose
maximal cliques are of a same size d+ 1. Inversely,

Theorem 2.8 (Kleinschmidt [17]). A d-tree is the graph of a stacked d-polytope if
and only if there is no three (d+ 1)-cliques sharing d vertices.

d-trees satisfying this condition will be called stacked d-polytopal graphs.
A simplicial d-polytope P is stacked if and only if it admits a triangulation T with

only interior faces of dimension (d − 1). For d ≥ 3, this triangulation is unique,
whose simplices correspond to the maximal cliques of G(P). This implies that
stacked polytopes are uniquely determined by their graph (i.e. stacked polytopes
with isomorphic graphs are combinatorially equivalent). The dual tree [13] of P
takes the simplices of T as vertices, and connect two vertices if the corresponding
simplices share a (d− 1)-face.

The following correspondence between Apollonian 2-ball packings and stacked
3-polytopes can be easily seen by comparing the construction processes and using
Theorem 2.3:
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Theorem 2.9. If a disk packing is Apollonian, then its tangency graph is stacked
3-polytopal. If a graph is stacked 3-polytopal, then it is disk packable, and its disk
packing is Apollonian and unique up to Möbius transformations.

The first part of this theorem will be generalized to higher dimensions as Theorem
4.9.

The relation between 3-tree, stacked 3-polytope and Apollonian 2-ball packing
can be illustrated as follows:

3-tree
no three 4-cliques−−−−−−−−−−−→
sharing a 3-clique

stacked 3-polytope←→ Apollonian 2-ball packing

3. Ball-packability of Graph Joins

Notations. We use Gn to denote any graph on n vertices, and use the following
notations for some special graphs.

Pn: the path on n vertices (therefore of length n− 1);
Cn: the cycle on n vertices;
Kn: the complete graph on n vertices;
K̄n: the empty graph on n vertices;
♦d: the 1-skeleton of the d-dimensional orthoplex;

The join of two graphs G and H, denoted by G ? H, is the graph obtained by
connecting every vertex of G to every vertex of H. Most of the graphs in this paper
will be expressed in term of graph joins. Notably, ♦d = K̄2 ? · · · ? K̄2︸ ︷︷ ︸

d

.

3.1. Graphs in form of Kd ? Pm. The following theorem is a reformulation of a
result first obtained by Wilker [33]. A proof was sketched in [4]. Here we present a
very elementary proof, suitable for our further generalization.

Theorem 3.1. Let d ≥ 2 and m ≥ 0.

(i) K2 ? Pm is 2-ball packable for any m;
(ii) Kd ? Pm is d-ball packable if m ≤ 4;
(iii) Kd ? Pm is not d-ball packable if m ≥ 6;
(iv) Kd ? P5 is d-ball packable if and only if 2 ≤ d ≤ 4;

Proof. (i) is trivial.
For dimensions d > 2, we construct a ball packing for the (d+1)-simplex Kd+2 =

Kd?P2 as follows: The two vertices of P2 are represented by two disjoint half-spaces
A and B distance 2 apart, and the d vertices of Kd are represented by d pairwisely
tangent unit balls touching both A and B. Figure 1 shows the situation for d = 3,
where red balls represent vertices of K3.

The idea of the proof is the following: We construct the ball packing of Kd ? Pm
from the ball packing above of Kd ?P2, by appending new balls to the chain of balls
representing the path. Every new ball is forced to touch all the d unit balls of Kd,
therefore must center on a straight line perpendicular to the hyperplanes defining
A and B. The construction fails if the sum of the diameters exceeds 2.

We now construct Kd ?P3 by adding a ball C tangent to A. By (3), the diameter
of C is 2/κC = (d− 1)/d < 1. So the construction of Kd ? P3 succeeded since C is
disjoint from B.

Then we add the ball D tangent to B. It has the same diameter as C, and they
sum up to 2(d− 1)/d < 2. So the construction of Kd ? P4 succeeded, which proves
the statement (ii).

We now add the ball E tangent to C. Still by (3), the diameter of E is

2

κE
=

(d− 1)2

d(d+ 1)
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A

B

C

E

F

D

Figure 1. An attempt of constructing the ball packing of K3?P6

results in K3 ? C6.

If we sum up the diameters of C, D and E, we get

(5) 2
d− 1

d
+

(d− 1)2

d(d+ 1)
=

3d2 − 2d− 1

d(d+ 1)

which is smaller then 2 if and only if d ≤ 4. Therefore the construction can succeed
only if 2 ≤ d ≤ 4, which proves (iv).

Now for 2 ≤ d ≤ 4, we continue to add the ball F tangent to D. It has the same
diameter as E. If we sum up the diameters of C, D, E and F , we get

(6) 2

(
d− 1

d
+

(d− 1)2

d(d+ 1)

)
= 4

d− 1

d+ 1

which is smaller then 2 if and only if d < 3. Therefore (iii) is proved. �

Remark. Figure 1 shows the attempt of constructing the ball packing of K3 ? P6

but yields the ball packing of K3 ? C6. This packing is called Soddy’s hexlet [30].
It’s an interesting configuration since the sum of diameters of C, D, E and F is
exactly 2.

Remark. Let’s point out the main differences between dimension 2 and higher di-
mensions: If d = 2, a Descartes configuration divides the space into 4 disjoint
regions, and the radius of a circle tangent to the two unit circles of K2 can tends
to 0. However, if d > 2, the complement of a Descartes configuration is always
connected, and the radius of a ball tangent to all the d balls of Kd can not be too
small. Using the Descartes–Soddy–Gossett theorem, one can verify that the radius
is at least d−2

d+
√
2d2−2d , which tends to 1

1+
√
2

as d tends to infinity.

3.2. Graphs in form of Kn ? Gm. The following is a corollary of Theorem 3.1.

Corollary 3.2. For d = 3 or 4, Kd ?G6 are not d-ball packable, with the exception
of K3 ? C6. For d ≥ 5, Kd ? G5 are not d-ball packable.
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Proof. For construction of Kd ?Gm, we just repeat the construction in the proof of
Theorem 3.1.

Since the centers of the balls of Gm are situated on a straight line, Gm can only
be a path, a cycle Cm or a disjoint union of paths. The first possibility is ruled out
by Theorem 3.1. The cycle is only possible when d = 3 and m = 6, in which case
the ball packing of K3 ? C6 is Soddy’s hexlet.

If Gm is a disjoint union of paths, we have to leave gaps between balls, which
makes it more difficult to avoid self-intersection. For the graphs in the theorem, a
ball packing is impossible even without any gap. So the construction must fail. �

We study in the following some other graphs in form of Kn ? Gm, using kissing
configuration and spherical codes.

A d-kissing configuration is a packing of unit d-balls all touching another unit
ball. The d-kissing number k(d, 1) (we use this notation for the convenience of later
generalizations) is the maximum number of balls in a d-kissing configuration.

For lower dimensions, the kissing number are known to be 2 for dimension 1, 6
for dimension 2, 12 for dimension 3 [8], 24 for dimension 4 [25], 240 for dimension
8 and 196560 for dimension 24 [26].

We have immediately the following theorem.

Theorem 3.3. K3 ? G is d-ball packable if and only if G is the tangency graph of
a (d− 1)-kissing configuration.

For the proof, just represent K3 by one unit ball and two disjoint half-spaces
distance 2 apart, then the other balls must form a (d− 1)-kissing configuration.

For example, K3 ? G13 is not 4-ball packable, K3 ? G25 is not 5-ball packable,
and in general, K3 ? Gm is not d-ball packable if m > k(d− 1, 1).

We can generalize this idea as follows: A (d, α)-kissing configuration is a packing
of unit balls touching α pairwisely tangent unit balls. The (d, α)-kissing number
k(d, α) is the maximum number of balls in a (d, α)-kissing configuration.

So the d-kissing configuration discussed before is actually the (d, 1)-kissing con-
figuration. It is easy to see that if G is the tangency graph of a (d, α)-kissing
configuration, G ? K1 must be the graph of a (d, α − 1)-kissing configuration, and
G ?Kα−1 must be the graph of a d-kissing configuration.

With a similar argument as before, we have

Theorem 3.4. K2+α ? G is d-ball packable if and only if G is the tangency graph
of a (d− 1, α)-kissing configuration.

For the proof, just represent K2+α by two half-spaces distance 2 apart and α
pairwisely tangent unit balls, then the other balls must form a (d − 1, α)-kissing
configuration.

For example, K2+α ?Gm is not d-ball packable if m > k(d− 1, α). The following
corollary is from the fact that k(d, d) = 2 for all d > 0

Corollary 3.5. Kd+1 ? G3 is not d-ball packable.

From Theorem 2.8, we see that a (d+1)-tree is d-ball packable only if it is stacked
(d+ 1)-polytopal.

A (d, cos θ)-spherical code [8] of minimal angle θ is a set of points on the unit
(d − 1)-sphere such that the spherical distance between any two points in the set
is at least θ. We denote by A(d, cos θ) the maximal number of points in such a
spherical code. This is in fact a generalization of kissing configurations: the minimal
angle corresponds to the tangency relations, and A(d, cos θ) = k(1, d) if θ = π/3.
Corresponding to the tangency graph, the minimal-angle graph of a spherical code
takes the points as vertices and connects two vertices if the corresponding points
achieve the minimal spherical distance.
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As noticed by Bannai and Sloane [2, Theorem 1], the centers of unit balls in a
(d, α)-kissing configuration correspond to a (d − α + 1, 1

α+1 )-spherical code after
rescaling. Therefore:

Corollary 3.6. K2+α ? G is (d+ α)-ball packable if and only if G is the minimal-
angle graph of a (d, 1

α+1 )-spherical code.

We give in Table 1 an incomplete list of (d, 1
α+1 )-spherical codes for integer values

of α. They are therefore (d+ α− 1, α)-kissing configurations for the α and d given
in the table.

The first column is the name of the polytope whose vertices form the spherical
code. Some of them are from Klitzing’s list of segmentochora [18], which can be
viewed as a special type of spherical codes. Some others are inspired from Sloane’s
collection of optimal spherical codes [29]. For those polytopes with no conventional
name, we keep Klitzing’s notation, or give a name following Klitzing’s method.

The second column is the corresponding minimal-angle graph, if it is possible
to write out. Here are some notations used in the table: For a graph G, its line
graph L(G) takes the edges of G as vertices, and two vertices are adjacent iff
the corresponding edges share a vertex in G. The Johnson graph Jn,k takes the
k-element subsets of an n-element set as vertices, and two vertices are adjacent
whenever their intersection contains k− 1 elements. Especially, Jn,2 = L(Kn). For
two graph G and H, G�H denotes the Cartesian product.

We would like to point out that for 1 ≤ α ≤ 6, vertices of the uniform (5− α)21 poly-
tope form an (8, α)-kissing configuration. These codes are derived from the E8

Table 1. Some known (d, 1
α+1 )-spherical codes for integer α

spherical code minimal distance graph α d

k-orthoplicial prism ♦k�K2 2 k + 1

k-orthoplicial-pyramidal prism (♦k ? K1)�K2 2 k + 2
rectified k-orthoplex L(♦k) 1 k

augmented k-simplicial prism k k + 1

2-simplicial prism(−121) [18, 3.4.1] K3�K2 6 3

3-simplicial prism(−131) [18, 4.9.2] K4�K2 4 4
5-simplicial prism K6�K2 3 6

triangle-triangle duoprism(−122)[18, 4.10] K3�K3 3 4
tetrahedron-tetrahedron duoprism K4�K4 2 6

triangle-hexahedron duoprism K3�K6 2 7

rectified 4-simplex(021) [1] J5,2 5 4

rectified 5-simplex(031) J6,2 3 5
rectified 7-simplex J8,2 2 7

birectified 5-simplex(022) J6,3 2 5

birectified 8-simplex J9,3 1 8
trirectified 7-simplex J8,4 1 7

5-demicube(121) [29, pack.5.16] 4 5

6-demicube(131) 2 6

8-demicube 1 8

122 1 6
231 1 7

221 [7, Appendix A] 3 6
321 [2] 2 7
421 [2] 1 8

3p‖refl ortho 3p [18, 4.13] 2 4

3g‖gyro 3p [18, 4.6.2] 5 4

3g‖ortho 4g [18, 4.7.3] 5 4
3p‖ortho line [18, 4.8.2] 5 4

oct‖hex [29, pack.5.14] 4 5
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root lattice [2, Example 2]. They are optimal and unique except for the trigonal
prism((−1)21 polytope) [1; 7, Appendix A]. There are also spherical codes similarly
derived from the Leech lattice [2, Example 3; 6].

As another example, since

k(d, α) = A
(
d− α+ 1,

1

α+ 1

)
.

the following fact provides another way for proving Corollary 3.2:

k(d, d− 1) = A(2, 1/d) =


4 if d ≥ 4

5 if d = 3

6 if d = 2(optimal)

To end this part, the following theorem is trivial but more general.

Theorem 3.7. K2?G is d-ball packable if and only if G is (d−1)-unit-ball packable.

For the proof, just use disjoint half-spaces to represent K2, then G has to be
representable by a packing of unit balls.

3.3. Graphs in form of ♦d ? Gm.

Theorem 3.8. ♦d−1 ? P4 is not d-ball packable, but ♦d+1 = ♦d−1 ? C4 is.

Proof. ♦d−1 is the graph of the (d − 1)-dimensional orthoplex. The vertices of a

regular orthoplex of edge length
√

2 forms an optimal spherical code of minimal
angle π/2.

As in the proof of Theorem 3.1, we first construct the ball packing of ♦d−1 ? P2,
where P2 is represented by two disjoint half-spaces, and ♦d−1 is represented by
2(d− 1) unit balls, whose centers are the vertices of a regular (d− 1)-dimensional
orthoplex of edge length 2. Therefore the unit balls are centered on a (d−2)-sphere

of radius
√

2.
We now construct ♦d−1 ? P3 by adding the unique ball that is tangent to all the

unit balls and also to one half-space. After an elementary calculation, the radius
of this ball is 1/2. By symmetry, a ball touching the other half-space has the same
radius. These two balls must be tangent since their diameters sum up to 2.

Therefore, an attempt for constructing a ball packing of ♦d−1 ? P4 results in a
ball packing of ♦d+1 = ♦d−1 ? C4. �

For example, C4 ? C4 is 3-ball packable.
By the same argument as in the proof of Corollary 3.2, we have

Corollary 3.9. ♦d−1 ? G4 is not d-ball packable, with the exception of ♦d+1 =
♦d−1 ? C4.

3.4. Graphs in form of Gn ? Gm. The following is a corollary of Corollary 3.2.

Corollary 3.10. G6 ? G3 is not 3-ball packable, with the exception of C6 ? C3.

Proof. As in the proof of Theorem 3.1, we first construct a 3-ball packing of P2?G3,
where P2 is represented by two disjoint half-spaces distance 2 apart, and G3 by three
unit balls touching both hyperplanes, whose tangency graph is Gd.

If the centers of these unit balls are collinear, further construction is not possible.
Otherwise, they must be on a circle in a 2-dimensional hyperplane parallel to the
half-spaces. A ball touching all the three unit balls must center on the straight line
passing through the center of this circle and perpendicular to this hyperplane.

We then continue the construction as in the proof of Theorem 3.1. However,
since the three unit balls are not pairwisely tangent, a ball must have a larger
radius in order to touch all of them. Again, this makes it more difficult to avoid
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self-intersection, which is already a mission impossible when the unit balls are
pairwisely tangent.

And as in the proof of Corollary 3.2, gaps on the path make the situation even
worse. So the construction must fail. �

Therefore, if a graph is 3-ball packable, any induced subgraph in form of G6 ?G3

must be in form of C6 ? K3.
By the same argument, we derive the following corollary from the fact that C4?P4

is not 3-ball packable

Corollary 3.11. G4 ? G4 is not 3-ball packable, with the exception of C4 ? C4.

Therefore, if a graph is 3-ball packable, any induced subgraph in form of G4 ?G4

must be in form of C4 ? C4.
From the fact that ♦3?P4 is not 4-ball packable, we derive the following corollary,

but the argument is slightly different:

Corollary 3.12. G4 ? G6 is not 4-ball packable, with the exception of C4 ? ♦3.

Proof. The proof is basically the same as Corollary 3.10.
Two vertices of G4 are represented by half-spaces, and G6 are represented by

unit balls. If the centers of these unit balls are collinear, further construction is not
possible. If the centers are on a 2-sphere, its diameter reaches its minimum only
when G6 = ♦3. If G6 is in any other form, a ball touching all the unit balls must
have a larger radius, and the construction must fail.

We should be careful that it is possible to have the six unit balls centered on a
circle. In this case, the radius of a ball touching all of them is at least 1 (luckily),
which rules out the possibility of further construction. �

Remark. The argument in the proof of Corollaries 3.10 and 3.12 should be used
with caution. As mentioned in the proof of Corollary 3.12, one must check carefully
the non-generic cases, and make sure that nothing goes wrong.

For example, Corollary 3.12 can not be derived from the fact that K4 ?P6 is not
4-ball packable. If we use the same argument, unit balls representing G4 must be
centered on a 2-sphere, whose radius is minimum when G4 = K4. However, it is
possible to have the centers on a circle, for example when G4 = C4. In this case, a
ball touching all the four unit balls can have a radius as small as 1/2, and its center
is not restricted on a line. Indeed, we have the counterexample ♦3 ? C4.

4. Ball Packable Stacked-polytopal Graphs

4.1. More on stacked polytopes. Since Kd?Pm is the graph of a stacked (d+1)-
polytope, Theorem 3.1 provides some examples of stacked (d + 1)-polytope whose
graph is not d-ball packable, and C3 ? C6 provides an example of Apollonian 3-ball
packing whose tangency graph is not stacked 4-polytopal. Therefore, in higher
dimensions, the relation between Apollonian ball packings and stacked polytopes
becomes much weaker.

The following remains true:

Theorem 4.1. If the graph of a stacked (d+ 1)-polytope is d-ball packable, its ball
packing is Apollonian and unique up to Möbius transformations and reflections.

Proof. The Apollonianity can be easily seen by comparing the construction pro-
cesses.

The uniqueness can be proved by an induction on the construction process.
While a stacked polytope is built from a simplex, we construct its ball packing
from a Descarte configuration, which is unique up to Möbius transformations and
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reflections. For every stacking operation, a new ball was added into the packing
to form a new Descartes configuration. We have an unique choice for every newly
added ball, so the uniqueness is preserved at every step of construction. �

Given a ball packing S = {S1, · · · , Sn}, let ci be the center of Si, a stress of S
is a real function T on the edge set of G(S) such that for all Si ∈ S∑

SiSj edge of G(S)

T (SiSj)(cj − ci) = 0

We can view stress as forces between tangent balls when all the balls are in equi-
librium. We say that S is stress-free if it has no non-zero stress.

Theorem 4.2 (Stress free). If the graph of a stacked (d + 1)-polytope is d-ball
packable, its ball packing is stress-free.

Proof. We construct the ball packing as we did in the proof of Theorem 4.1, and
assume a non-zero stress.

The last ball S that is added into the packing has d+ 1 “neighbor” balls tangent
to it. If the stress is not zero on all the d + 1 edges incident to S, they can not
be of the same sign, so there must be a hyperplane separating positive edges and
negative edges. This contradicts the assumption that S is in equilibrium. So the
stress must vanish on the edges incident to S. We then remove S and repeat the
same argument on the second last ball, and so on, and finally conclude that the
stress has to be zero on all the edges of G(S). �

The theorem and the proof above was informally discussed in Section 8 in Kotlov,
Lovász and Vempala’s famous paper on Colin de Verdière number [20]. In that
paper, they defined another graph invariant ν(G) using the notion of stress-freeness
(a slightly different version), which turns out to be strongly related to Colin de
Verdière number. Applying their results on stress-freeness, they concluded that (in
our formulation) if the graph G of a stacked (d+1)-polytope with n vertices is d-ball
packable, then ν(G) ≤ d+2, and the upper bound is achieved if n ≥ d+4. However,
they didn’t pay much attention to the existence of the ball packing in question.
Theorem 3.1 shows that this kind of ball packing is not always constructible.

For a d-polytope P, the link of a k-face F is the subgraph of G(P) induced
by the common neighbors of the vertices of F . The following observation will be
useful:

Lemma 4.3. If P is a stacked d-polytope, then the link of every k-face is stacked
(d− k − 1)-polytopal.

4.2. Weighted mass of a word. The following theorem was proved in [16]

Theorem 4.4. The 3-dimensional Apollonian group is a hyperbolic Coxeter group
generated by the relations RiRi = I and (RiRj)

3 = I for 1 ≤ i 6= j ≤ 5.

As a sketch, their proof was based on the study of reduced words.

Definition 4.5. A word U = U1U2 · · ·Un over the generator of the 3-dimensional
Apollonian group (i.e. Ui ∈ {R1, · · · ,R5}) is reduced if it does not contain

• subword of form RiRi for 1 ≤ i ≤ 5; or
• subword of form V1V2 · · ·V2m in which V1 = V3, V2m−2 = V2m and

V2j = V2j+3 for 1 ≤ j ≤ 2m− 2.

Notice that m = 2 excludes the subwords of form (RiRj)
2. One can verify

that non-reduced words can be simplified to reduced words using the generating
relations. Then it suffices to prove that no nonempty reduced word, treated as
product of matrices, is identity.
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For proving this, they studied the sum of entries in the i-th row of U, i.e.
σi(U) := eᵀ

i Ue, and the sum of all the entries in U, i.e. Σ(U) := eᵀUe. The latter
is called the mass of U. The quantities Σ(U),Σ(RjU), σi(U), σi(RjU) satisfy a
series of linear equations, which was used to inductively prove that Σ(U) > Σ(U′)
for a reduced word U = RiU

′. Therefore U is not an identity since Σ(U) ≥
Σ(Ri) = 7 > Σ(I) = 5.

We propose the following adaption: Given a weight vector w, we define σwi (U) =
eᵀ
i Uw the weighted sum of entries in the i-th row of U, and Σw(U) = eᵀUw the

weighted mass of U. We find that the following lemma can be proved with an
argument similar as in [16]:

Lemma 4.6. For dimension 3, if Σw(Ri) ≥ Σw(I) for any 1 ≤ i ≤ 5, then for a
reduced word U = RiU

′, we have Σw(U) ≥ Σw(U′).

Sketch of proof. It suffices to replace “sum” by “weighted sum”, “mass” by “weighted
mass”, and “>” by “≥” in the proof of [16, Theorem 5.1].

It turns out that the following relations hold for 1 ≤ i, j ≤ 5.

σwi (RjU) =

{
σwi (U) if i 6= j

Σw(U)− 2σwi (U) if i = j
(7)

Σw(RiU) = 2Σw(U)− 3σwi (U)

Then, if we define δwi (U) := Σw(RiU)− Σw(U), the following relations hold:

δwi (RjU) =

{
δwi (U) + δwj (U) if i 6= j

−δwi (U) if i = j

δwi (RjU) = δwj (RiU) if i 6= j

δwi (RjRiU) = δwj (U)

These are all the relations that are useful for the induction. The base case is already
assumed in the condition of the theorem, which reads δwi (I) ≥ 0 for 1 ≤ i ≤ 5.

So the rest of the proof is exactly the same as in the proof of [16, Theorem 5.1].
For details of the induction, please refer to the original proof.

The conclusion is δwi (U′) ≥ 0, i.e. Σw(U) ≥ Σw(U′). �

4.3. A generalization of Coxeter’s sequence. Let U = Un · · ·U2U1 be a word
over the generators of the 3-dimensional Apollonian group (we have a good reason
for inversing the order of the index). Let M0 be the curvature-center matrix of
an initial Descartes configuration, consisting of the first five balls in the sequence
S1, · · · , S5.

The curvature-center matrices recursively defined by Mi = UiMi−1(1 ≤ i ≤ n),
define a sequence of Descartes configurations. We take S4+i to be the single ball
that is in the configuration at step i but not in the configuration at step i−1. This
generates a sequence of 4 + n balls.

Coxeter’s loxodromic sequence in dimension 3 is therefore generated by an infinite
word of period 5, e.g. U = · · ·R2R1R5R4R3R2R1, which can be viewed as a
special case of our sequence.

The following is a corollary of Lemma 4.6:

Corollary 4.7. If U is reduced and U1 = R1, then in the sequence constructed as
above, S1 is disjoint from all balls except the first five.

Proof. We take the initial configuration to be the configuration used in the proof
of Theorem 3.1. Assume S1 to be the lower half-space x1 ≤ 0, then the initial
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curvature-center matrix is

M0 =


0 −1 0 0
0 1 0 0

1 1 1
√

1/3

1 1 −1
√

1/3

1 1 0 −2
√

1/3


Every row corresponds to the curvature-center coordinates m of a ball. The first
coordinate m1 is the curvature κ. If the curvature is not zero, the second coordinate
m2 is the “height” of the center times the curvature, i.e. x1κ.

Now take the second column of M0 to be the weight vector w. That is,

w = (−1, 1, 1, 1, 1)ᵀ.

We have Σw(R1) = 9 > Σw(I) = 3 and Σw(Rj) = 3 = Σw(I) for j > 1. Applying
Lemma 4.6 we have

Σw(UkUk−1 · · ·U2R1) ≥ Σw(Uk−1 · · ·U2R1)

By (7), this means that

σwj (Uk · · ·U2R1) ≥ σwj (Uk−1 · · ·U2R1)

if Uk = Rj , or equality if Uk 6= Rj .
The key observation is that σwj (Uk · · ·R1) is exactly the second curvature-center

coordinate m2 of j-th ball in the k-th Descartes configuration. So at every step,
a ball is replaced by another ball with a larger or same value for m2. Especially,
since σwj (R1) ≥ 1 for 1 ≤ j ≤ 5, we conclude that m2 ≥ 1 for every ball.

Four balls in the initial configuration have m2 = 1. Once they are replaced, the
new ball must have a strictly larger value of m2. This can be seen from (4) and
notice that the r.h.s. of (4) is at least 4 since the very first step of the construction.
We then conclude that m2 > 1 for all balls except the first five. This exclude the
possibility of curvature zero, so x1κ > 1 for all balls except the first five.

For dimension 3, Equation (4) is integral. Therefore the curvature-center co-
ordinates of all balls are integral (see [16] for more on integrality of Apollonian
packings). Since the sequence is a packing (by the result of [4]), no ball in the
sequence has a negative curvature. By the definition of the curvature-center coor-
dinates, the fact that m2 > 1 exclude the possibility of curvature 0. Therefore all
balls have a positive curvature κ ≥ 1 except the first two.

For conclusion, x1κ > 1 and κ ≥ 1 implies that x1 > 1/κ, therefore disjoint from
the half-space x1 ≤ 0. �

4.4. Main result.

Lemma 4.8. Let G be a stacked 4-polytopal graph. If G has an induced subgraph
of form G3 ? G6, G must have an induced subgraph of form K3 ? P6.

Note that C6 ? K3 is not an induced subgraph of any stacked polytopal graph.

Proof. Let H be an induced subgraph of G of form G3 ? G6. Let v ∈ V (H) be the
last vertex in H that is added into the polytope during the construction. We have
degH v = d+ 1, and the neighbors of v induce a complete graph.

Since `(d) = 6 > d + 1 = 4, v must be a vertex in the part G`(d) = G6, so
that the other part, being an induced subgraph of K4, is the complete graph K3.
Therefore H is of the form K3 ? G6.

By Lemma 4.3, in the stacked 4-polytope with graph G, the link of every 2-face
is stacked 1-polytopal. In other words, the common neighbors of K3 induce a path
Pn where n ≥ 6. Therefore G must have an induced subgraph of form P6 ?K3. �



14 HAO CHEN

proof of Theorem 1.1. The “only if” is by Theorem 3.1 and Lemma 4.8. We prove
“if” by induction on number of vertices.

The complete graph on 5 vertices is of course 3-ball packable. Assume that every
stacked 4-polytope with less than n vertices satisfies this theorem. We now study
a stacked 4-polytope P of n+ 1 vertices that do not have six 4-cliques in its graph
with 3 vertices in common, and assume that G(P) is not ball packable.

Let u, v be two vertices of G(P) of degree 4. Deleting v from P leaves a stacked
polytope P ′ of n vertices that satisfies the condition of the theorem, so G(P ′) is
ball packable by the assumption of induction. In the ball packing of P ′, the four
balls corresponding to the neighbors of v are pairwisely tangent. We then construct
the ball packing of P by adding a ball Sv that is tangent to these four balls. We
have only one choice (the other choice will coincide with another ball), but since
G(P) is not ball packable, Sv must intersect some other balls.

However, deleting u also leaves a stacked polytope whose graph is ball packable.
Therefore Sv must intersect Su and only Su. Now if there is another vertex w of
degree 4 different from u and v, deleting w leaves a stacked polytope whose graph
is ball packable, which produces a contradiction. Therefore u and v are the only
vertices of degree 4.

Let T be the dual tree of P, its leaves correspond to vertices of degree 4. So T
must be a path, whose two ends correspond to u and v.

We can therefore construct the ball packing of P as a generalised Coxeter’s
sequence that we just studied. The first ball is Su. The construction word does not
contain any subword of form (RiRj)

2 (which produces C6 ? K3 and violates the
condition) or RiRi, one can therefore always simplify the word into a non-empty
reduced word. This does not change the corresponding matrix, so the last ball in
the sequence, Sv, remains the same.

Then Corollary 4.7 implies that Su and Sv are disjoint which contradicts our
previous discussion. Therefore G(P) is ball packable. �

Therefore, the relation between 4-trees, stacked 4-polytopes and Apollonian 3-
ball packings can be illustrated as follows:

4-tree
no three 5-cliques−−−−−−−−−−−→
sharing a 4-clique

stacked 4-polytope
no six 4-cliques−−−−−−−−−−−→

sharing a 3-clique
Apollonian 3-ball packing

However, there exist Apollonian 3-ball packings whose tangency graphs are not
4-trees.

4.5. Higher dimensions. In this part, we would like to show that the following
theorem is not valid only in dimension 3.

Theorem 4.9. For d > 3, if a d-ball packing is Apollonian, then its tangency graph
is stacked (d+ 1)-polytopal.

We will need the following lemma:

Lemma 4.10. Let d 6= 3 and w is a (d+2) dimensional vector (−1, 1, . . . , 1)ᵀ. Let
U = U1U2 · · ·Un be a word over the generator of the d-dimensional Apollonian
group (i.e. Ui ∈ {R1, · · · ,Rd+2}). If U does not contain any subword in form of
RiRi, then σwi (U) 6= 1 for 1 ≤ i ≤ d+ 2.

Proof. It is shown in [16, Theorem 5.2] that the j-th row of U − I is a linear
combination of rows of a matrix A = 1

d−1eeᵀ−dI. However, the weighted row sum

σwi (A) of the i-th row of A is 0 except for i = 1, whose weighted row sum is 2
d−1 .

So σ2
i (U− I) = 2Ci

d−1 , where Ci is the coefficient in the linear combination.
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According to the calculation in [16], Ci is a polynomial in the variable xd = 1
d−1

in form of

Ci(xd) =

ni−1∑
k=0

ck2k+1xkd

where ni is the length of the longest subword that starts with Ui and ends with U1,
and ck are integer coefficients. The leading term is 2nixni−1

d (i.e. cni−1 = 1). Then,
by the same argument as in [16], we can show that Ci(xd) is not zero. Therefore,
for i 6= 1,

σwi (U) =
2Ci
d− 1

+ σwi (I) =
2Ci
d− 1

+ 1 6= 1.

For i = 1, since σw1 (I) = −1, we need to prove that C1 6= d−1. So the calculation
is slightly different.

If C1 = d − 1, then xd is a root of the polynomial xdC1(xd) − 1, whose leading
term is (2xd)

n1 . By the rational root theorem, d− 1 divides 2n1 . So we must have
d− 1 = 2p for some p > 1, that is, xd = 2−p. We then have

n1∑
k=1

ck−12k(1−p) = 1.

Multiply both side by 2(p−1)n1 , we got
n1∑
k=1

ck−12(p−1)(n1−k) = 2(p−1)n1 .

The right hand side is even since (p−1)n1 > 0. The terms in the summation are even
except for the last one since (p− 1)(n1 − k) > 0. The last term in the summation
is cn1−120 = 1, so the left hand side is odd, which is the desired contradiction.
Therefore

σw1 (U) =
2C1

d− 1
+ σw1 (I) 6= 1.

�

proof of Theorem 4.9. Consider a construction process of the Apollonian ball pack-
ing. The theorem is true at the first step. Assume that it remains true before the
introduction of a ball S, we are going to prove that, when added, S touches exactly
d+ 1 pairwisely tangent balls in the packing.

If this is not the case, assume a (d+ 2)-th ball S′ touching S, then we can find
a sequence of Descartes configurations, with S′ in the first configuration and S in
the last one, that is generated by a word over the generators of the d-dimensional
Apollonian group with distinct adjacent terms.

Without loss of generality, we arrange the first Descartes configuration in the
sequence as in the proof of the Corollary 4.7, and let S′ be the lower half-space
x1 ≤ 0. Then Lemma 4.10 says that no ball (except for the first d+ 2 balls) in this
sequence is tangent to S′, contradicting our assumption.

By induction, every newly added ball touches exactly d + 1 pairwisely tangent
balls, so the tangency graph is a (d+ 1)-tree, and therefore (d+ 1)-polytopal. �

Now the remaining problem is to characterise stacked (d + 1)-polytopal graphs
that are d-ball packable. From Corollary 3.5, we know that if a (d+1)-tree is d-ball
packable, the number of (α+3)-cliques sharing a (α+2)-clique is at most k(d−1, α)
for all 1 ≤ α ≤ d− 1. Following the patterns in Theorems 1.1 and 2.8, we propose
the following conjecture:

Conjecture 4.11. For an integer d ≥ 2, there is d− 1 integers n1, . . . , nd−1 such
that a (d + 1)-tree is d-ball packable if and only if the number of (α + 3)-cliques
sharing an (α+ 2)-clique is at most nα for all 1 ≤ α ≤ d− 1.
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5. A Discussion on Edge-tangent polytopes

A convex (d + 1)-polytope is edge-tangent if all of its edges are tangent to a
d-sphere called midsphere.

One can derive from the disk packing theorem that1:

Theorem 5.1. Every convex 3-polytope has an edge-tangent realization.

Eppstein, Kuperberg and Ziegler have proved in [12] that no stacked 4-polytopes
with more than six vertices has an edge-tangent realization. Comparing to Theo-
rem 1.1, we see that ball packings and edge-tangent polytopes are not so closely
related in higher dimensions: a polytope with ball packable graph does not, in
general, have an edge-tangent realization.

In this last section, we would like to discuss about this difference in detail.
Let Sd ⊂ Rd+1 be the unit sphere {x | x20 + · · · + x2d = 1}. For a spherical cap

C ⊂ Sd of radius smaller than π/2, its boundary can be viewed as the intersection
of Sd with a d-dimensional hyperplane H, which can be uniquely written in form
of H = {x ∈ Rd | 〈x,v〉 = 1}.

Explicitly, if c ∈ Sd is the center of C, and θ < π/2 is its spherical radius, then
v = c/ cos θ. We can interpret v as the center of the unique sphere that intersects
Sd orthogonally along the boundary of C, or as the apex of the unique cone whose
boundary is tangent to Sd along the boundary of C. We call v the polar vertex of
C, and H the hyperplane of C.

We see that 〈v,v〉 > 1. If the boundary of two caps C and C ′ intersect orthog-
onally, their polar vertices v and v′ satisfy 〈v,v′〉 = 1, i.e. the polar vertex of one
is on the hyperplane of the other. If C and C ′ have disjoint interiors, 〈v,v′〉 < 1.
If C and C ′ are tangent at t ∈ Sd, the segment vv′ is tangent to Sd at t.

Now, given a d-ball packing S = {S0, · · · , Sn} in R̂d, we can construct a (d+ 1)-
polytope P as follows:

View R̂d as the hyperplane x0 = 0 in R̂d+1. Then a stereographic projection
maps R̂d to Sd, and S is mapped to a packing of spherical caps on Sd. We may
assume that the radii of all caps are smaller than π/2. If it is not the case, we
apply a Möbius transformation. Then P is obtained by taking the convex hull of
the polar vertices of all the spherical caps.

Theorem 5.2. If a (d + 1)-polytope P is constructed as described above from a
d-sphere packing S, then G(S) is isomorphic to a spanning subgraph of G(P).

Proof. For every Si ∈ S, the polar vertex vi of the corresponding cap is a vertex of
P, since the hyperplane {x | 〈vi,x〉 = 1} divides vi from other vertices.

For every edge SiSj of G(S), vivj is an edge of P. Since vivj is tangent to the
unit sphere, 〈v,v〉 ≥ 1 for all points v on the segment vivj . If vivj is not an edge
of P, some point v = λvi + (1 − λ)vj (0 ≤ λ ≤ 1) can be written as a convex
combination of other vertices v =

∑
k 6=i,j λkvk, where λk ≥ 0 and

∑
λk ≤ 1. Then

we have:

1 ≤ 〈v,v〉 =
〈
λvi + (1− λ)vj ,

∑
k 6=i,j

λkvk

〉
< 1

since 〈vi,vj〉 < 1 if i 6= j. This is a contradiction. �

Now consider a d-ball packing S. If a polytope P is constructed from S as
described above, it is possible that G(P) is not isomorphic to G(S). That is, there

1Schramm [28] said that the theorem is first claimed by Koebe [19], who only proved the
simplicial and simple cases. He credits the full proof to Thurston [32], but the online version of
Thurston’s lecture notes only gave a proof for simplicial cases.
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may be an edge of P that does not correspond to any edge of G(S). This edge will
intersect Sd, and P is therefore not edge-tangent.

On the other hand, if the graph of a polytope P is isomorphic to G(S), since the
graph does not determine the combinatorial type of a polytope, P may be different
from the one constructed from S. So a polytope whose graph is ball packable may
not be edge-tangent.

A polytope is edge-tangent if it’s constructed from a ball packing, and its graph
is isomorphic to the tangency relation of this ball packing. Neither condition can
be removed. For the other direction, given an edge-tangent polytope P, one can
always obtain a ball packing of G(P) by reversing the construction above.

Disk packings are excepted from these problems. In fact, it is easier [27] to
derive Theorem 5.1 from the following version of the disk packing theorem, which
is equivalent but contains more information:

Theorem 5.3 (Brightwell and Scheinerman [5]). For every 3-polytope P, there is
a pair of disk packings, one consists of vertex-disks representing G(P), the other
consists of face-disks representing the dual G(P∗), such that:

• For each edge e of P, the vertex-disks corresponding to the two endpoints
of e and the face-disks corresponding to the two faces bounded by e meet at
a same point;

• A vertex-disk and a face-disk intersect iff the corresponding vertex is on the
boundary of the corresponding face, in which case their boundaries intersect
orthogonally.

This representation is unique up to Möbius transformations.

The presence of the face-disks and the orthogonal intersections guarantee the
incidence relations between vertices and faces, and therefore fix the combinatorial
type of the polytope.

We can generalize this into higher dimensions:

Theorem 5.4. Given a (d+ 1)-polytope P, if there is a packing of d-dimensional
vertex-balls representing G(P), together with a collection of (d − 1)-dimensional
facet-balls indexed by the facets of P, such that:

• For each edge e of P, the vertex-balls corresponding to the two endpoints of
e and the boundaries of the facet-balls corresponding to the facets bounded
by e meet at a same point;

• Either a vertex-ball and a facet-ball are disjoint, or their boundaries inter-
sect at a nonobtuse angle;

• The boundary of a vertex-ball and the boundary of a facet-ball intersect
orthogonally iff the corresponding vertex is on the boundary of the corre-
sponding facet.

Then P has an edge-tangent realization.

Again, the convexity is guaranteed by the disjointness and nonobtuse intersec-
tions, and the incidence relations are guaranteed by the orthogonal intersections.

For an edge-tangent polytope, the facet-balls can be obtained by intersecting the
midsphere with the facets. However, they do not form a d-ball packing for d > 2.

For an arbitrary polytope of dimension 4 or higher, even if its graph is ball
packable, the facet-balls satisfying the conditions of Theorem 5.4 do not in general
exist.

For example, consider the stacked 4-polytope with 7 vertices. The packing of
its graph K3 ? P4 is constructed in the proof of Theorem 3.1. We notice that a
ball whose boundary orthogonally intersects the boundary of the three unit balls
and the boundary of ball C, have to intersect the boundary of ball D orthogonally
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(see Figure 1), thus violates the last condition in Theorem 5.4. One can check
the polytope constructed from this packing, and find that it’s not stacked and not
simplicial.
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