

Showcase: Convection-Diffusion on a moving domain F. Heimann, C. Lehrenfeld, J. Preuß Institute for Numerical and Applied Mathematics

University of Göttingen

Convection-Diffusion problem

- Imagine a chemical species in a volume Ω , such as a liquid.
- Concentration can be represented as u = u(x, y, z, t).
- Physical process I: **Diffusion** will smear out close-by differences in concentration.
- Physical process II: **Convection** by a velocity field w represents transport.
- These are given by the following differential equation: Find u(x, y, z, t) s.t.

 $\partial_t u + \mathbf{w} \cdot \nabla u - \alpha \Delta u = f$ in Ω for all t, $\nabla u \cdot \mathbf{n}_{\partial\Omega} = 0$ on $\partial\Omega$ for all t.

• Example: Concentration of ink in water:

Example 1: Kite Geometry

- Test geometry: Circle in 2D deforms into a kite shape.
- To assess numerical quality of the simulation, we prescribe a solution function u.
- The according right hand side f is calculated by pen and paper.
- \Rightarrow Measurement of the numerical error possible. We achieve errors of order h^p for arbitrary p.

Generalisation moving domain

- We consider a moving domain, i.e. $\Omega = \Omega(t)$. • This is motivated e.g. by multi-phase flows. • Example: droplet of oil in water.
- These are particulary challenging for computer simulations.

Example 2: Moving *n*-sphere

- Next, we consider a moving circle in 2D/ sphere in 3D. Method performs similarly.
- 1D convergence study in Binder available.

Space-Time DG method, $k_s = k_t = 4, t = 0.78$

Discrete regions

Numerical error

Finite Element Method (Fitted)

• A mesh is generated in alignment with geometry. • 2D: Triangles/ rectangles, 3D: Tetrahedrons/ boxes. • Problem is posed on each element, yielding a linear algebra problem $A\mathbf{x} = \mathbf{b}$. • Solving for x, one obtains a solution function, consisting of polynomials per element. • Challenge: Mesh transfer can be complicated in flow cases with topology changes:

Unfitted Finite Element Method

- To solve these problems, we decouple mesh generation and geometry.
- A levelset function $\phi(x, y, z)$ is used to define geometry:
 - $\Omega = \{ (x, y, z) \in \mathbb{R}^3 \, | \, \phi(x, y, z) \le 0 \}.$

Example 3: Colliding circles

• In particular, elementwise linear ϕ^{lin} are computationally feasible. These correspond to polygonal geometry approximations.

Higher order geometry approximation

- Let h denote the maximum size of an element.
- Then, the polygonal geometry approximation will lead to a error of order h^2 . • A mapping/mesh deformation Θ is used to increase the accuracy of the approximation.

- Two circles merge and seperate afterwards. \Rightarrow Topologically challenging test case.
- Method captures geometry even in one time step (coarsest time resolution possible).

Reference

F. Heimann, C. Lehrenfeld, J. Preuß (2022): Geometrically Higher Order Unfitted Space-Time Methods for PDEs on Moving Domains, arXiv preprint, https://arxiv.org/abs/ 2202.02216.