Showcase: Convection-Diffusion on a moving domain F. Heimann, C. Lehrenfeld, J. Preuß

Institute for Numerical and Applied Mathematics University of Göttingen

Convection-Diffusion problem

- Imagine a chemical species in a volume Ω, such as a liquid.
- Concentration can be represented as $u=u(x, y, z, t)$.
- Physical process I: Diffusion will smear out close-by differences in concentration.
- Physical process II: Convection by a velocity field w represents transport.
- These are given by the following differential equation: Find $u(x, y, z, t)$ s.t.

$$
\begin{aligned}
\partial_{t} u+\mathbf{w} \cdot \nabla u-\alpha \Delta u=f & \text { in } \Omega \text { for all } t \\
\nabla u \cdot \mathbf{n}_{\partial \Omega}=0 & \text { on } \partial \Omega \text { for all } t .
\end{aligned}
$$

- Example: Concentration of ink in water:

Generalisation moving domain

- We consider a moving domain, i.e. $\Omega=\Omega(t)$.
- This is motivated e.g. by multi-phase flows.
- Example: droplet of oil in water.
- These are particulary challenging for computer simulations.

Finite Element Method (Fitted)

- A mesh is generated in alignment with geometry.
- 2D: Triangles/rectangles, 3D: Tetrahedrons/boxes.
- Problem is posed on each element, yielding a linear algebra problem $A \mathbf{x}=\mathbf{b}$.
- Solving for x, one obtains a solution function, consisting of polynomials per element.
- Challenge: Mesh transfer can be complicated in flow cases with topology changes:

Unfitted Finite Element Method

- To solve these problems, we decouple mesh generation and geometry.
- A levelset function $\phi(x, y, z)$ is used to define geometry:

$$
\Omega=\left\{(x, y, z) \in \mathbb{R}^{3} \mid \phi(x, y, z) \leq 0\right\} .
$$

- In particular, elementwise linear $\phi^{\text {lin }}$ are computationally feasible. These correspond to polygonal geometry approximations.

Higher order geometry approximation

- Let h denote the maximum size of an element.
- Then, the polygonal geometry approximation will lead to a error of order h^{2}.
- A mapping/ mesh deformation Θ is used to increase the accuracy of the approximation.

Example 1: Kite Geometry

- Test geometry: Circle in 2D deforms into a kite shape.
- To assess numerical quality of the simulation, we prescribe a solution function u.
- The according right hand side f is calculated by pen and paper.
\Rightarrow Measurement of the numerical error possible. We achieve errors of order h^{p} for arbitrary p.

Example 2: Moving n-sphere

- Next, we consider a moving circle in 2D/sphere in 3D. Method performs similarly. - 1D convergence study in Binder available.

Space-Time DG method, $k_{s}=k_{t}=4, t=0.78$

Example 3: Colliding circles

- Two circles merge and seperate afterwards. \Rightarrow Topologically challenging test case.
- Method captures geometry even in one time step (coarsest time resolution possible).

Reference

F. Heimann, C. Lehrenfeld, J. Preuß (2022): Geometrically Higher Order Unfitted SpaceTime Methods for PDEs on Moving Domains, arXiv preprint, https://arxiv.org/abs/ 2202.02216.

