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Abstract
Based on a new finite element method, which is introduced in [1], for the numerical solutions of partial
differential equations posed on moving domains, this thesis extends the stabilized implicit Euler method
in time to some higher order stabilized mehtods in time. A standard geometrically unfitted finite element
method with a stabilization term is still using for space discretization. This thesis includes a stability analysis
on the full discretization mehtod. The numerical example demonstrate the practical efficiency of the higher
order methods.

Keywords : moving domains, higher order, unfitted finite element method.
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Chapter 1

Introduction

Partial differential equations(PDEs) arise in a wide variety of sciences and engineering applications.
Many cases are PDEs posed on moving domains, we may call theses cases as moving domain
problems. This remains a challenge within the general subject of numerical simulation of PDEs.
One example is the simulation of two cells mergeing into one big cell. The interfaces that separate
these two cells may have large deformations and even topology changes when they are merging.
Hence, the essential framework of moving domain problems is geometric since the domains
on which PDEs posed change all the time. Hence, relative to static domain problems, moving
domain problems are more complicated. The efficient and accurate simulations of moving domain
problems require the development of advanced numerical techniques.

The finite element method(FEM), cf. Figure (1.1(a)), is a standard numerical method for solving
PDEs by approximating continuous quantities as a linear combination of discrete basis functions,
regularly spaces the domain into so-called elements and employs a mesh fitted to the geometry i.e.
the boundary of the physical domain coincides with the boundaries of the elements. Although FEM
can be applied to the problems of complex geometry, when the geometry is evolving with strong
deformation, keeping the mesh conforming to the geometry may lead to significant complications.
Thus, unfitted finite element method (unfitted FEM), cf. Figure (1.1(b)) is receiving rapidly
increasing interest in recent years. Relative to FEM uses a fitted mesh, unfitted FEM uses an
unfitted mesh which means the mesh is independent of the geometry i.e. the boundary of the
physical domain may not coincide with the boundaries of the elements. Therefore, it simplifies
the construction of numerical methods for the moving domain problems that exhibit strong
deformation or even topology changes.

In unfitted FEM method, level set methods are used to describe the geometry. The level set function
make it easy to represent the shapes that are changing and provides numerical computations
without having to parameterize the objects.

Since in the unfitted FEM method the mesh is not fitted to the geometry, an implementation of

1



2 CHAPTER 1. INTRODUCTION

such method thus requires an evaluation of integrals on the so-called cut elements [2]. Cutting the
elements can lead to elements with very small intersections, or we say small cut elements, with
the boundary of domain. Such small cut elements may cause ill-conditioning when we compute
numerical solution of PDEs and prohibit the application of a whole set of inverse inequalities. To
this end, a stabilization term is often added to control the discrete functions on small cut elements by
close-by neighbors with large intersection to overcome the ill-conditioning and stability problems.

In [1] and [3], a new FEM to solve numerical solution of PDEs posed on moving domains has been
proposed and analyzed. Instead of using a space-time variational framework, the time derivatives
are discretized by finite difference approximation and a standard geometrically unfitted finte
element with a stabilization term is used to accommodate spacial variations. This method, unlike
space-time Galerkin methods, does not require a reconstruction of physical domain on each time
slab.

Based on the results from [1] and [3], in this thesis we introduce some higher order mehtods for
time discretization. We also give three characterizations of tripazoidal rules for moving domains
and a midpoint rule for moving domains. A geometrically unfitted FEM with a stabilization term
which is introduced in [1] is used for the spacial discretization. The goal of this thesis is to construct
a fully discrete method with higher order stabilized time stepping for PDEs posed on moving
domains.

1.1 Outline of the thesis

The outline of the thesis is given as follows:

• In Chapter 2 we describe a mathematical model of PDEs posed on time-dependent domains
and the fundamental numerical techniques for solving this type of problem.

• In Chapter 3, with an extension operator we discuss some higher order semi-disretizations
for moving domains. We extend the implicit Euler time stepping method to BDF2 and BDF3
time stepping methods. We introduce an explicit Euler semi-discretization, and combine with
the implicit Euler semi-discretization we introduce three characterizations of trapezoidal
rules for moving domains and a midpoint rule for moving domains.

• In Chapter 4, in the full discretization of the methods introduced in chapter 3, we combine
the solution with a stabilization term.

• In Chapter 5, we present the stability analysis of a full discretization based on stabilized
BDF2 time stepping mehtod, a full discretization based on stabilized explicit time stepping
method and first and second characterizations of tripazoidal rules.

• Chapter 6, we presents the numerical experiments of the implicit Euler stabilized time
stepping method, BDF stabilized time stepping methods and the explicit Euler time stepping
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method.

• Conclusion in Chapter 7 with a summary of the thesis. Open problems will be discussed and
we propose some directions for further research.
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(a) Mesh fits PDEs domain. The boundary of physical
domain coincides with the boundaries of the elements.
The mesh is called fitted mesh.

(b) Mesh contains PDEs domain. The boundary of
physical domain does not coincide with the boundaries
of the elements. The mesh is called unfitted mesh.

(c) Elements cutted by the boundary of domain. The
thick color elements are elements cutted by the bound-
ary of domain.

Figure 1.1: Finite elements. Sketch(a) illustrates fitted finite elements. Sketch(b) illustrates unfitted
finite elements. Sketch(c) illustrates the elements which are cutted by the boundary.
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Chapter 2

Mathematical model and fundamental nu-
merical techniques

In this chapter, we describe a mathematical model of PDEs posed on moving domains. Further, we
briefly introduce the numerical techniques which are used to solve this type of problem.

2.1 Mathematical model

2.1.1 Notation

We define Ωt := Ω(t), Γt := Γ(t) = ∂Ωt. We are given a sufficently regular time-dependent domain

Ωt ⊂ Rd, d = 2, 3, t ∈ [0, T ], T > 0. (2.1)

We assume that Ωt moves smoothly for all t ∈ [0, T ]. Suppse there is a one-to-one continuous
mapping which is introduced in [1]

Ψ(t) : Ω0 → Ωt, ∀t ∈ [0, T ] (2.2)

from the reference domain Ω0 ⊂ Rd. For all t ∈ [0, T ], the time-dependent domain Ωt together with
its neighborhood

Oδ(Ωt) := {x ∈ Rd : dist(x,Ωt) ≤ δ}. (2.3)

are contained in a polygnoal background domain Ω̃, cf. Figure 2.1,where

δ = cδw
n
∞∆t, cδ > 0. (2.4)

with wn
∞ := maxt∈[0,T )‖w · n‖L∞(Γt)

.

7
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Ωt

Oδ(Ωt) Ω̃t

Figure 2.1: δ-neighborhood Oδ(Ωt) of Ωt

2.1.2 Mathmatical model

The mathematical model is taken from [1]. Let w : Ωt → Rd be the material velocity of the particles
from Ωt, then the continuous mapping Ψt can be defined as a Lagrangian mapping from Ω0 to Ωt,
i.e. ∀y ∈ Ω0, Ψ(t, y) solves the ODE system

Ψ0(y) = y,

∂Ψt(y)

∂t
= w(t,Ψt(y)), t ∈ [0, T ]

(2.5)

Then the transient convection-diffusion equation in conservative form in Ωt is given by

∂u

∂t
+ div(uw)− ν∆u = f, t ∈ [0, T ] (2.6)

where ν > 0 is the constant diffusion coefficient and w is the velocity field. Let n be the unit normal
on the boundary Γt := ∂Ωt. In this thesis we assume that the flux is zero on Γt i.e.

∇u · n = 0 on Γt, t ∈ (0, T ]. (2.7)

Then the time-dependent convection-diffusion problem is complemented by the governing equa-
tion (2.6), the initial condition u(x, 0) = u0(x) at time t=0 and flux boundary condition (2.7), cf.
Figure 2.2 for an example.
Remark 1. (2.7) is a suitable boundary condition for the conservation of u which can be obtained by
applying Reynold’s transport theorem for moving domains.
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Boundary condiation:
∇u · n = 0 on Γt

∂tu+ div(uw)− (α∆u) = f in Ωt

Ωt

Ω̃t

Level set approximation:
∂Ωt := {φ(·, t) = 0}

w

Figure 2.2: Mathematical model of PDEs posed on moving domain. Ω̃t is a polynomial background
domain. Ωt is a time-dependent domain which is approximated by a level set {φ(·, t)} and moves
smoothly in the w velocity field. Γt can be described by {φ(·, t) = 0}. The flux is zero on Γt

.

2.2 Numerical setting for the space discretization

The numerical setting for the moving domains in this thesis is based on an unfitted FEM for the
space discretization, a representation of the geometry by a level set and time discretization by
methods based on finite differences.

2.2.1 Unfitted discretization in space

Motivation

Standard FEM is usually a fitted discretization method which means that the mesh fits the PDEs
domain. Relative to standard FEM, unfitted FEM means that mesh contains the PDEs domain, cf.
Figure 1.1. The advantages of unfitted FEM is that it avoids remeshing when strong deformations
or topology changes occur and mesh generation for complex geometries can be much cheaper.

Construction of unfitted finite element spaces

Let {Th}h>0 be a family of shape regular triangulation of Ω̃ consisting of simplexes Ts with a
characteristic mesh size h := max{hTs |Ts ∈ Th}, cf Figure 2.3. In Figure 2.3 we observe that
the boundary Γt does not coincide with elements boundaries, so the triangulation is unfitted.
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Ωt

Ω̃t

Γt

Cut elements

Figure 2.3: Unfitted triangulation. The background domain Ω̃ is covered by a triangulation {Th}h>0.
The triangulation {Th}h>0 contains the physcial domain Ωt. The boundary Γt does not coincide
with the elements boundaries, so the triangulation is unfitted. The yellow elements are example
elements which are cutted by the boundary Γt

The elements TΓt,s with Γt
⋂
Ts 6= ∅ are called cut elements. We introduce some notation for

unfitted triangulation. We define Ωn := Ωtn , Γn := Γtn , n = 0, 1, ..., N . ∀Ts ∈ Th, we denote
Tns := Ts

⋂
Ωn the part of Ts in Ωn and ΓnTs := Ts

⋂
Γn the part of the boundary lies in Ts. We

denote ΓnΓ,s := {Ts : Ts
⋂

Γn 6= ∅} the set of elements that are cutted by the boundary.

In semi-discretization method, we combine the solution with its extension in each time step. In
full discretization method, the extension can be realized by a stabilization term which is used to
combine the solution and the extension on a discretely extended domain. We can choose a suitable
δh so that Ωn+1

h is contained in the extended domain Oδh(Ωnh). To this end, we consider a active
mesh, cf. Figure 2.4 which is defined in a slightly simpler version in [1]. It is the set of all elements
that have some parts in the extended domain,

T n,lδ := {S ∈ Th : dist(x,Ωnh) ≤ l · δhfor some x ∈ S},
On,lδh,T := {x ∈ S : S ∈ T n,lδ }.

(2.8)

Here l ∈ N indicates the number of time steps in which the domains Ωnh,Ω
n+1
h , . . . ,Ωn+l

h are still
contained in the domain corresponding to T n,lδ . On these (extended) active meshes, we construct
the unfitted finite element spaces

V n,lh := {v ∈ C(On,lδh,T ) : v ∈ Pk(S),∀S ∈ T n,lh }, k ≥ 1. (2.9)

These spaces are the restricions of the time-independent bulk space Vh on all simplices from Tn,lδ .
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Ωt

Ω̃t

Γt

Figure 2.4: Active mesh. The yellow mesh is the active mesh at time t on which we define the
unfitted finite element space V nh = V n,1h .

If no index l is used, we assume l = 1, i.e. we extend the domain only for the next time step and
define T nδ := T n,1δ , Onδh,T := On,1δh,T and V nh := V n,1h .

2.2.2 Representation of geometry

Level set methods are a conceptual framework for using level sets as a tool for describing surfaces
and shapes. The advantage of the level set model is that one can perform numerical computations
by the Euclidian approach [4]. Also, the level set method makes it convenient to follow shapes
that change topology, for example a cell spliting in two cells or two cells merging into a cell. All
these make level set method a suitable tool for modeling time-varying objects of moving domain
problems.

Level set methods amount to representing a closed curve using a function φ which is called level
set function. In moving domain problems, this closed curve is the boundary of the moving domain
Ωt defined as Γt := ∂Ωt. It can be represented as the zero level set of φ by

Γt = {(φ(·, t) = 0}, t ∈ [0, T ]. (2.10)

The level set method describes the boundary Γt implicitly through the level set funtion φ. The
function φ takes positive value outside the region delimited by Γt and negative values inside. See
Figure 2.5 for an example.
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Γt1

Ωt1

Ωt2

Level set approximation:
∂Ω := {φ(·, t1) = 0}

φ(·, t1) < 0 φ(·, t1) > 0

w

Figure 2.5: An example of geometry description by level set method.

2.3 Basic finite difference method for time integration of ODEs

2.3.1 Motivation

For a moving domain problem, the system of equations generated by spacial discretization is not a
system of ODEs. So we can not directly apply standard numerical methods to time discretization.
The modified numerical methods for time discretization will be introduced in next chapter. Before
that, we recall some basic finite difference methods for time derivatives.

2.3.2 Ordinary Differential Equations

First-order ODE system can typically be written in explicit form

u′t = f(t, ut) (2.11)

where f : [t0,∞)× Rd → Rd, u : [t0,∞) → Rd. If the value of u(t0) = u0 ∈ Ω is given, then the
pair of equations

u′t = f(t, ut), ut0 = u0 (2.12)

is known as an initial value problem.
Remark 2. Numerical methods for solving first-order initial value problems often fall into one of two large
categories: linear multistep methods or Runge-Kutta methods. A further division can be realized by dividing
methods into those that are explicit and those that are implicit.
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2.3.3 Finite difference based methods

The Euler methods

To discretize the ODE in time with t ∈ [0, T ], the time interval is discretized by a temporal grid

0 = t0 < t1 < t2 < ... < tn−1 < tn = T. (2.13)

The standard finite difference discretization of the time derivative is given by

un+1 − un
∆t

= λf(un+1, tn+1) + (1− λ)f(un, tn), 0 ≤ λ ≤ 1 (2.14)

where ∆t = tn+1 − tn be the time step size and λ is the implicitness parameter with

λ = 0, the forward Euler method with local truncation error O(∆t2)

λ =
1

2
, Crank-Nicolson method with local truncation error O(∆t3)

λ = 1, the backward Euler method with local truncation error O(∆t2)

(2.15)

Remark 3. The forward Euler method is an example of an explicit method with first order of accuracy. This
means that the new value un+1 is defined in terms of things that are already known, like un. The backward
Euler method is an implicit method with first order of accuracy, meaning that we have to solve an equation
to find un+1. Crank-Nicolson method is an average step of the forward and the backward Euler method with
second order of accuracy.

Backward differentation formulas (BDF methods)

The backward difference is a finite difference defined as

δnu ≡ δun ≡ un − un−1. (2.16)

where δ denotes the backward difference operator. Repeating the operation of the backward
difference operator, we obtain the higher order differences

δ2
nu = δ(δun) = δ(un − un−1)

= δun − δu(n− 1)

= (un − un−1)− (un−1 − un−2)

= un − 2un−1 + un−2

(2.17)
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The differentiation of Newton’s interpolation fomular which is introduced in [5] leads to the
equation

k∑
j=1

σjδ
jun+1 = ∆tfn+1 (2.18)

where ∆t denotes the time step and σj are coefficients generated by Taylor extension. Here, we
expand (2.18) by only choosing k = 1, 2, 3 and obtain the BDF schemes:

un+1 − un =∆tfn+1,

3

2
un+1 − 2un +

1

2
un−1 =∆tfn+1,

11

6
un+1 − 3un +

3

2
un−1 − 1

3
un−2 =∆tfn+1.

(2.19)

Remark 4. It is well known that only first- and second-order BDF schemes are A-stable. The definition of
A-stability is given in [6].
Definition 2.3.1 (A-stability). A k-step method is called A-stable, if all solutions of of (2.20) tend to zero,
as n→∞, when the method is applied with fixed positive ∆t to any differential equation of the form

u′ = cu, u(0) = u0 ∈ C (2.20)

where c is a complex constant with negative real part.
Remark 5. Let p be polynomial order of temporal discretization. An A-stable multistep method must be of
order p ≤ 2. More details on A-stability are available in [6] and [7].

Stability of BDF methods

The stability regions for the BDF methods of order 1 to 6 are shown in Figure 2.6. The stable regions
are the exterior of the contours indicated. Note that BDF methods of order 1 to 6 are suitable for
stiff equations, since they are stable along the whole of the negative real axis. The contour of the
BDF method of order 7 crosses the negative real axis, making it and any higher order BDF method
of no value, cf Figure 2.6.
Remark 6. The second-barrier of Dahlquist limits the utility of the BDF schemes for order great than 3 as a
general purpose scheme. References [8] and [9] show that we can solve many computational fluid dynamics
problem using BDF3 scheme but still face numerical instabilities when simulating unsteady problems. The
reference [10] gives an idea of constructing an optimized, 2nd order, backward differencing formulation
BDF2OPT by a linear combination of BDF2 and BDF3 four time levels schemes or BDF2, BDF3 and BDF4
five time level schemes, with an error constant half as large as the conventional BDF2 scheme.

Summary

So far we described a mathematical model of PDEs posed on moving domains and introduce
the numerical settings for this type of problem. Further, we recall some classical finite difference-
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 2.6: Stability region of BDF methods. The plot are generated using the Nodepy python
package [11]
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based methods for ODE systems such as the Euler methods and BDF methods. Since the system
generated by spacial discretization is not a system of ODEs for moving domain problems in an
unfitted setting, in order to compute numerical solution we introduce a spacial extension operator
and some modified finite difference methods in next chapter.
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Chapter 3

Semi-discretization method

In this chapter we apply some of the basic ODE integrators to time integration of moving domain
problems. The remain challenge is that the system of equations which are generated by spacial
discretization are not systems of ODEs. To this end, we introduce a modified numerical mehtod for
time discretization. The method is based on the fundamental result of the existence of continuous
extension operators in Sobolov spaces. The result allows to identify the solution to the PDE with
its smooth extension and further to design a finite element method, which solves at each discrete
time instance for the extended solution in the computational domain.

Using the continuous spacial extension operator E we can deal with time derivatives by finite
differences in the physical domain at least within one time step. We add a stabilization term to
the unfitted finite element formulation which yields a numerical approximation to the extension
operator without any explicit extension step. This stabilization term acts in a narrow band
containing the physical domain boundary.

3.1 A continuous spacial extension operator E
In chapter 2 we define a δ-neighborhood Oδ(Ωn) of Ωn, cf. Figure 2.1. Oδ(Ωn) is set to be large
enough so that

Ωn+1 ⊂ Oδ(Ωn), n = 0, 1, ..., N. (3.1)

The continuous spacial extension operator E

Suppose Ω ∈ Rd with Lipschitz boundary, the Sobolev space W1,p(Ω), 1 ≤ p ≤ ∞, consists of all
u ∈ Lp(Ω) with∇u ∈ Lp(Ω). It is a Banach space equipped the norm

‖u‖W1,p(Ω) =‖u‖Lp(Ω) +‖∇u‖Lp(Ω) (3.2)

19
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When p=2, it is a Hilbert space equipped the norm

‖u‖H1(Ω) =‖u‖L2(Ω) +‖∇u‖L2(Ω) (3.3)

We call Ω is a W1,p-extension domain with a bounded linear operator

E : W1,p(Ω)→W1,p(Rd) such that Eu|Ω = u|Ω (3.4)

Remark 7. Domains with Lipschitz boundary are uniform domains, in [12] Jone Peter.W shows that
uniform domains are W1,p-extension domains.

In order to define the extension operator for the time dependent domain Ωn with Lipschitz boundary
to its neighborhood O(Ωn), we can assume that the initial domain Ω0 is a W1,p-extension domain
with the bounded linear operator

E0 : W1,p(Ω0)→W1,p(Rd) s.t. E0u|Ω0 = u|Ω0 (3.5)

and define a corresponding extension by transformation

Eut := (E0(ut ◦Ψt)) ◦Ψ−1
t , ∀t ∈ (0, T ]. (3.6)

In [1], C. Lehrenfeld and M.A. Olshanskii give a detailed description to show the existence of the
extension operator E and complete proofs [ [1], Section 3.22] of numerical stability of E . Using this
extension operator, we can obtain the semi-discretizations for PDEs posed on moving domain.
Remark 8. The extension operator En.k means the extension layer has size k · δ and starts from Ωn. If
k = 1 we skip the index, i.e. En = En,1.
Lemma 1. Assume the extension operator E : H1(Ω) → H1(Oδ(Ω)) is continuous. Then it can be
identified with a continuous extension operator E∗ : H−1(Ω)→ H−1(Oδ(Ω)).

Proof. Let g ∈ H−1(Ω), then there is ug ∈ H1(Ω) with g(v) = (ug, v)H1(Ω) for all v ∈ H1(Ω) (Riesz).
We define u∗g := Eug and define (E∗g)(v) := (Eug, v)H1(Oδ(Ω)), v ∈ H1(Oδ(Ω)). As the Riesz
representation is an isomorphism continuity follows directly.

3.2 Stabilized time stepping based on implicit methods

For simplicity, we use uniform time steps ∆t = T
N , tn = n∆t, n=0, 1, ..., N . We define the time

inteval as In := [tn, tn+1) and the boundary at time step tn as Γn := Γtn .

3.2.1 Stabilized time stepping based on the implicit Euler method

In this method we combine the numerical solution for un with its extension on Oδ(Ωn) in each
time step by a continuous spacial extension operator En : H1(Ωn)→ H1(Oδ(Ωn)) which extends
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funcions on Ωn to functions on Oδ(Ωn). This setup guanrantees that un−1 is well-defined on Ωn.
To be more precise, an implicit Euler semi-discrete scheme consists of sampling (2.6) at tn and
approximating the time derivatives by a backward difference

D−n,t,En−1
u :=

un − En−1u
n−1

∆t
, n=1, 2, ..., N. (3.7)

The approximation (3.7) turns (2.6) into a differential equation which is discrete in time.

With (3.7) we can obtain the semi-discretization as

D−n,t,En−1
u :=

un − En−1u
n−1

∆t
= Aun + fn, n=1, 2, ..., N (3.8)

holds in H−1(Ωn), where fn ∈ H−1(Ωn). The operator A is defined as

Aun := α∆un − div(unwn). (3.9)

Hence, the variational formulation is : Suppose u0 ∈ H1(Ω0), find un ∈ H1(Ωn), s.t. ∀v ∈ H1(Ωn)

there holds ∫
Ωn

(un − En−1u
n−1)

∆t
vdx+ an(un, v) =

∫
Ωn
fnvdx, n=1, 2, ..., N (3.10)

where an(·, ·) defines the bilinear form for diffusion and convection parts.
Remark 9. The coercivity of the bilinear form on the l.h.s of (3.10) implies that we can choose a suitable
small time step and in each time step there is an unique solution. This is argued by Lemma 3.1 in [1].
Remark 10. In the spatial discretization the extension operator En−1 from (3.10) is directly incorporated
in the (stabilized) solution of the previous time step so that only one linear problem has to be solved in each
time step of the implicit Euler method. The result of each linear solution step corresponds to Enun so that it
is defined already on Ωn+1.

3.2.2 Stabilized time stepping method based on BDF methods

In this section, we extend the implicit Euler time stepping method to BDF2 and BDF3 time stepping
methods for moving domains.

Stabilized time stepping based on BDF2 method

We obtain the formulation by induction. In order to compute the approximated solution u2 ∈
H1(Ω2) we need first to obtain the approximated solution u1 ∈ H1(Ω1). Suppose u0 ∈ H1(Ω0), we
extend Ω0 to its 2δ-neighborhood O2δ(Ω

0) by an extension operator E0 : H1(Ω0)→ H1(O2δ(Ω
0))

s.t. Ω1,Ω2 ⊂ O2δ(Ω
0). This setup makes u0 and u1 well-defined in {Ω1, Ω2}. When n=1, it is an
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Figure 3.1: BDF2 method for moving domains. We extend Ω0 to O2δ(Ω
0) s.t. Ω1 ⊂ O2δ(Ω

0).
The green line illustrates an implicit step. Within the step we apply an extension operator E0
to u0 to compute u1. The orange line illustrates the extension from Ω1 to Oδ(Ω1). This setup
makes Ω2 ⊂ Oδ(Ω1) ⊂ O2δ(Ω

0). The red line illustrates the first BDF2 step. ε0 := O2δ(Ω
0)\Ω0.

ε1 := Oδ(Ω1)\Ω1.

implicit Euler time stepping, we compute the approximated solution u1 by using (3.8)

u1 − E0u0

∆t
= Au1 + f1, (3.11)

where Au1 ∈ H−1(Ω1) and f1 ∈ H−1(Ω1).

When n=2, it is an BDF2 time stepping, we extend Ω1 to its δ-neighborhoodOδ(Ω1) by an extension
operator E1 : H1(Ω1)→ H1(Oδ(Ω1)) s.t. u1 is well-defined in Ω2, then we obtain the approximated
solution u2 ∈ H1(Ω2) by

3

2
u2 − 2E1u1 +

1

2
E0u0 = ∆t(Au2 + f2), (3.12)

where Au2 ∈ H−1(Ω2) and f2 ∈ H−1(Ω2), cf. Figure 3.1.

By the analogy, we obtain the semi-discretization based on stabilized BDF2 time stepping method
as : Suppose u0 ∈ H1(Ω0), u1 ∈ H1(Ω1), for n = 2, 3, ..., N there holds

3un − 4En−1u
n−1 + En−2u

n−2

2∆t
= Aun + fn, (3.13)

with En−1 : H1(Ωn−1) → H1(Oδ(Ωn−1)), En−2 : H1(Ωn−2) → H1(O2δ(Ω
n−2)), where Aun ∈

H−1(Ωn) and fn ∈ H−1(Ωn).

The variational form is : Suppose u0 ∈ H1(Ω0), u1 ∈ H1(Ω1), find un ∈ H1(Ωn), s.t. ∀v ∈
H1(Ωn), n = 2, 3, ..., N , there holds∫

Ωn
(
3

2
un − 2En−1u

n−1 +
1

2
En−2u

n−2)vdx+ an(un, v) =

∫
Ωn
fnvdx. (3.14)

where an(un, v) is the bilinear form for diffusion and convection parts.
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Stabilized time stepping based on BDF3 method

Based on the stabilized implicit Euler and stabilized BDF2 semi-discretizations, we can obtain the
semi-discretization based on stabilized BDF3 time stepping method as

11un − 18En−1u
n−1 + 9En−2u

n−2 − 2En−3u
n−3

6∆t
= Aun + fn, n=3, 4, ..., N. (3.15)

where Aun ∈ H−1(Ωn) and fn ∈ H−1(Ωn). The extension operator En−3 : H1(Ωn−3) →
H1(O3δ(Ω

n−3)) extends the functions on Ω0 to the functions on O3δ(Ω
0) s.t. un−3, un−2, un−1

are well-defined on Ωn.

The variational form is :

Suppose u0 ∈ H1(Ω0), u1 ∈ H1(Ω1) and u2 ∈ H1(Ω2), find un ∈ H1(Ωn), ∀v ∈ H1(Ωn), n =

3, 4, ..., N there holds∫
Ωn

(
11

6
un − 3En−1u

n−1 +
3

2
En−2u

n−2 − 1

3
En−3u

n−3)vdx+ an(un, v) =

∫
Ωn
fnvdx, (3.16)

where an(un, v) is the bilinear form for diffusion and convection parts.

3.3 Stabilized time stepping based on explicit Euler

Compared to the implicit time stepping methods, the explicit time stepping methods calculate the
new approximated solution based only on previous time levels.

3.3.1 The explicit time stepping method

A naive idea is that applying the extension first and then stepping on the new domain, i.e. we
extend functions on Ω0 to Oδ(Ω0) by an extension operator E0 s.t. Ω1 ⊂ Oδ(Ω0) and u0 is well-
defined in Ω1. Suppose u0 is well-defined on Ω0, using the explicit Euler time stepping method we
formally have

u1 − E0u0

∆t
= AE0u0 + E0f0 in Ω1. (3.17)

Remark 11. The problem (3.17) is neither well-posed in L2(Ω1) nor in H1(Ω1). On the one hand the
operator norm‖A‖=sup<Av,v>‖v‖ is unbounded if the problem is posed in L2(Ω1). On the other hand the
l.h.s. bilinear form is not coercive (and not inf-sup stable) if the problem is posed in H1(Ω1). This is why we
treat the development of discretizations in this section only formally. The resulting discretizations are of
value anyway as after spatial discretization the problem will become well-posed again. The operator norm
‖A‖=sup<Av,v>‖v‖ of the discrete problem will be bounded (depending on h though) even if the problem is
posed only in L2(Ω1) (due to inverse inequalities).

We assume now that u1 is well-defined on Ω1. Similarly, we extend functions on Ω1 to Oδ(Ω1) by
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Figure 3.2: The naive explicit Euler method with an extension operator E . The green line illustrates
the first explicit step. We extend Ω0 to Oδ(Ω0) by using E0 s.t. Ω1 is a subset of Oδ(Ω0). ε1 :=
Oδ(Ω0)\Ω0. The red line illustrates the second explicit step. We extend Ω1 to Oδ(Ω1) by using E1
s.t. Ω2 is a subset of Oδ(Ω1). ε2 := Oδ(Ω1)\Ω1

an extension operator E1 s.t. Ω2 ⊂ Oδ(Ω1) and u1 is well-defined in Ω2. Using the explicit Euler
time stepping method we obtain (formally)

u2 − E1u1

∆t
= (AE1u1 + E1f1) in Ω2, (3.18)

cf. Figure (3.2).

By the analogy, we obtain the naive explict Euler time stepping method for moving domain
problems : Suppose u0 is well-defined on Ω0 so that for n=1, 2, ..., N , there holds

u1 = E0u0 + ∆t(AE0u0 + E0f0) in Ω1,

u2 = E1u1 + ∆t(AE1u1 + E1f1) in Ω2,

...

un = En−1u
n−1 + ∆t(AEn−1u

n−1 + En−1f
n−1) in Ωn.

(3.19)

Another idea is that applying the explicit Euler time stepping method on the last domain first
before extending to the current domain. Suppose u0 is well-defined on Ω0, then using the explicit
Euler time stepping method we formally have

ũ1 − u0

∆t
= Au0 + f0 in Ω0. (3.20)

Let us stress that the setting and conclusions from Remark 11 are also valid here. We assume ũ1

is well-defined on Ω0 and extend ũ1 to u1 by a proper extension E0 s.t. u1 is well-defined in Ω1.
We obtain the approximated solution u1=E0ũ1. Similarly, using the explicit Euler time stepping
method we have

ũ2 − u1

∆t
= Au1 + f1 in Ω1. (3.21)
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Figure 3.3: The explicit Euler method with an extension operator E . The green line illustrates the
first explicit step. We extend Ω0 toOδ(Ω0) by using E0 s.t. Ω1 is a subset ofOδ(Ω0). ε1 := Oδ(Ω0)\Ω0.
The red line illustrates the second explicit step. We extend Ω1 to Oδ(Ω1) by using E1 s.t. Ω2 is a
subset of Oδ(Ω1). ε2 := Oδ(Ω1)\Ω1

Assume ũ2 is well-defined in Ω1 and extend ũ2 to u2 by E1 s.t. Ω2 ∈ Oδ(Ω1) and u2 is well-defined
in Ω2. We obtain the approximated solution u2=E1ũ2, cf. Figure (3.3).

By the analogy, we conclude an explicit Euler formulation for moving domains which different to
the previous formulation in (3.19): Suppose u0 is well-defined on Ω0 so that for n=1, 2, ..., N , there
holds

ũn = un−1 + ∆t(Aun−1 + fn−1) in Ωn−1,

un = En−1ũ
n.

(3.22)

We write down a formal variational formulation for each time step that becomes: Suppose un−1 is
given in H1(Ωn−1) with sufficient regularity to evaluate an−1(un−1, ·), find ũn ∈ H1(Ωn−1) and
un ∈ H1(Ωn), s.t. ∀v ∈ H1(Ωn−1) and w ∈ H1(Ωn), n = 1, 2, ..., N , there holds∫

Ωn−1

ũn − un−1

∆t
vdx+ an−1(un−1, v) =

∫
Ωn−1

fn−1vdx. (3.23a)∫
Ωn
unwdx =

∫
Ωn
En−1ũ

nwdx. (3.23b)

where an−1(un−1, v) defines the bilinear form for diffusion and convection corresponding to Ωn−1.
We note that according to Remark 11 the variational formulation is not well-posed. However, after
spatial discretization it will become well-posed due to the equivalence of discrete version of the H1

and L2 spaces (with constants depending on h) if proper stabilizations are applied (to deal with
cut elements).
Remark 12. In the spatial discretization the extension operator En−1 from (3.23b) is incorporated already
in the (stabilized) solution in (3.23a) so that only one linear problem has to be solved in each time step of the
explicit Euler method.
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3.4 Trapezoidal rule (TR) for moving domains

The trapezoidal rule is an implicit second order numerical method to solve ODEs which is also
considered as both a Runge-Kutta method and a linear multistep method. For example, consider
the initial value problem

u′ = F (t, u), u(0) = u0 (3.24)

The trapezoidal rule is given by

un − un−1 =
1

2
∆t(F (tn, u

n) + F (tn−1, u
n−1)), n=1, 2, ...N (3.25)

with time step ∆t. One possible method for solving (3.25) is the Newton’s method if F is nonlinear.

3.4.1 Different characterizations of TR

Below, we want to generalize the trapezoidal rule to moving domains. To this end, we first give
three different characterizations of the standard method:

1. We can rewrite the trapezoidal rule as a subsequent execution of half time step of explicit
Euler and half time step of an implicit Euler method yielding the following characterizationun+ 1

2 = un + ∆t
2 F (tn, u

n)

un+1 = un+ 1
2 + ∆t

2 F (tn+1, u
n+1)

2. Alternatively, in the linear case F (un, tn) = Aun + fn we can characterize the trapezoidal
rule as the average of an explicit and an implicit Euler step as can be seen from the following
characterization 

un+1
e = un + ∆t(Aun + fn)

un+1
i = un + ∆t(Aun+1 + fn+1)

un+1 = 1
2 (un+1

e + un+1
i )

3. As a last characterization we directly consider (3.25):

un − un−1 =
1

2
∆t(F (tn, u

n) + F (tn−1, u
n−1)), n=1, 2, ...N (3.25)

3.4.2 Trapezoidal rules for moving domains

Based on the previously mentioned characterizations, we construct different generalizations which
can in principle be applied to moving domains.
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A trapezoidal rule based on subsequent Euler half steps

We divide the global time step ∆t into two uniform sized substeps ∆t
2 . In the first substep is an

explicit Euler time step, in the second substep is an implicit Euler time step. As we have discussed
in Section 3.3 there are two strategies for the explicit Euler time stepping. One is applying the
extension first and then stepping on the new domain, while the other does the time stepping first
and then extension. Here we use latter.

Suppose u0 is well-defined on Ω0, applying (3.22) we have

ũ
1
2 − u0 =

∆t

2
(Au0 + f0), in Ω0 (3.26)

we refer to Remark 11 for the (non-)well-poseness of this problem on the continuous and disrete
level. We extend Ω0 to its δ

2 -neighborhood O δ
2
(Ω0) by an extension operator E0, 12 s.t. Ω

1
2 ⊂ O δ

2
(Ω0)

and u
1
2 is well-defined in Ω

1
2 , we obtain the appoximated solution by

u
1
2 := E0, 12 ũ

1
2 , in Ω

1
2 ⊂ O δ

2
(Ω0). (3.27)

Next, we extend Ω
1
2 to its δ

2 -neighborhoodO δ
2
(Ω

1
2 ) by an extension operator E 1

2 ,
1
2

s.t. Ω1 ⊂ O δ
2
(Ω

1
2 )

and u1 is well defined in Ω1. Then applying (3.8) we obtain

u1 − E 1
2 ,

1
2
u

1
2 =

1

2
∆t(Au1 + f1), in Ω1. (3.28)

Substituting (3.26) into (3.27) and combining with (3.28) we obtain

u1 − E1u0 =
∆t

2
(Au1 + f1 + E1(Au0 + f0)), (3.29)

where E1 := E 1
2 ,

1
2
E0, 12 , cf. Figure (3.4) for an example. By the analogy, we obtain the first characteri-

zation of trapezoidal rule for moving domains as :

Suppose u0 is well-defined on Ω0, find un in Ωn, for n = 1, 2, ..., N there holds

un − Enun−1 =
1

2
∆t(Aun + fn + En(Aun−1 + fn−1)), (3.30)

where En := E 2n−1
2 , 2n−1

2
En−1, 2n−1

2
. The variational form is given by:

Suppose u0 ∈ H1(Ω0), find un ∈ H1(Ωn) s.t. for ∀v ∈ H1(Ωn), n=1, 2, ..., N there holds∫
Ωn

un − Enun−1

∆t
2

vdx+ an(un, v) + Enan−1(un−1, v) =

∫
Ωn
fnvdx+ Enfn−1vdx (3.31)

where an(un, v) and an−1(un−1, v) are the bilinear forms for diffusion and convection parts.
Remark 13. The problem (3.31) is well-poseness as En is a bounded linear operator in H−1, cf. Lemma 1.
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Figure 3.4: The first characterization. The green line represents an explicit Euler step. We extend
Ω0 to O δ

2
(Ω0) by an extension operator E0, 12 s.t. Ω

1
2 ⊂ O δ

2
(Ω0). ε0, 12 := O δ

2
(Ω0)\Ω0. The red line

represents an implicit Euler step. We extend Ω
1
2 to O δ

2
(Ω

1
2 ) by using an extension operator E 1

2 ,
1
2

s.t.

Ω1 ⊂ O δ
2
(Ω

1
2 ). ε 1

2 ,
1
2

:= O δ
2
(Ω

1
2 )\Ω 1

2

.

A trapezoidal rule based on averaged Euler steps

Second characterization is an average of the implicit and the modified explicit Euler steps.

Suppose u0 is well-defined on Ω0, applying (3.22) we have

ũ1 − u0

∆t
= Au0 + f0, in Ω0. (3.32)

we refer to Remark 11 for the (non-)well-poseness of this problem on the continuous and disrete
level. We extend Ω0 to Oδ(Ω0) by a proper extension operator E0 s.t. Ω1 ⊂ Oδ(Ω0) and u1 is
well-defined in Ω1. We obtain the approximated solution u1 by

u1 := E0ũ1, in Ω1 (3.33)

and we set u1
e := u1. Similarly, applying (3.8) we obtain

u1 − E0u0 = ∆t(Au1 + f1), in Ω1 (3.34)

and we set u1
i := u1, cf. Figure (3.5) for an example.

Hence, we obtain the approximated solution u1 by the computation of average value of u1
e and u1

i

u1 =
u1
e + u1

i

2

=
1

2
(E0u0 + ∆tE0(Au0 + f0)) +

1

2
(E0u0 + ∆t(Au1 + f1))

= E0u0 +
1

2
∆t((Au1 + f1) + E0(Au0 + f0)).

(3.35)
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Figure 3.5: The second characterization. The green line illustrates that we compute ũ1 in an explicit
step and then extend it to u1

e : E0ũ1. The red line illustrates an implicit step within which we
compute u1

i . ε := Oδ(Ω0)\Ω0.

By the analogy, the second characterization of the trapezoidal rule for moving domains is given by

un − En−1u
n−1 =

1

2
∆t(Aun + fn + En−1(Aun−1 + fn−1)), n=1, 2, ..., N (3.36)

The variational form is given by :

Suppose u0 is well-defined on Ω0, find un on Ωn so that for ∀v ∈ H1(Ωn), n=1, 2, ..., N there holds∫
Ωn

un − En−1u
n−1

∆t
2

vdx+ an(un, v) + an−1(En−1u
n−1, v) =

∫
Ωn
fnvdx+ En−1f

n−1vdx (3.37)

where an(un, v) and an−1(En−1u
n−1, v) are the bilinear forms for diffusion and convection parts.

Remark 14. The difference between the extension operator in (3.31) and (3.37) is that En in (3.31) is a
two-steps extenstion operator while En−1 in (3.37) is a one-step extension operator.

A naive trapezoidal rule for moving domains

Relative to first and second characterizations, we obtain the last characterization directly by
substituting u to its extension Eu and rewrite the formular (3.25) as

un − En−1u
n−1 =

1

2
∆t(Aun + fn + (AEn−1u

n−1 + fn−1)), in Ωn. (3.38)

The variational form is given by:

Suppose u0 is well-defined on Ω0, find un in Ωn so that for ∀v ∈ H1(Ωn), n=1, 2, ..., N there holds∫
Ωn

un − En−1u
n−1

∆t
2

vdx+ an(un, v) + an−1(En−1u
n−1, v) =

∫
Ωn
fnvdx+ fn−1vdx (3.39)

where an(un, v) and an−1(En−1u
n−1, v) are the bilinear forms for diffusion and convection parts.
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Observation

We observe that for En−1A = AEn−1 the previously discussed formulations (3.36) and (3.38)
coincide. However, we can not expect AEn−1 = En−1A to hold in general.

3.5 Midpoint rule for moving domains

The discussion on midpoint rule for moving domains is similar to the discussion on first character-
ization of trapezoidal rule for moving domains. We divide global time step ∆t into two uniform
sized substeps ∆t

2 . In the first substep is an implicit Euler time step, in the second substep is an
explicit Euler time step. As we have discussed in Section 3.3 there are two strategies for the explicit
Euler time stepping. One is applying the extension first and then stepping on the new domain,
while the other does the time stepping first and then extension. Here we use latter.

We extend Ω0 to its δ
2 -neighborhood O δ

2
by an extension operator E0 s.t. Ω

1
2 ⊂ O δ

2
(Ω0) and u

1
2 is

well-defined in Ω
1
2 . Applying (3.8) we have

u
1
2 − E0u0 =

∆t

2
(Au

1
2 + f

1
2 ), (3.40)

where Au
1
2 ∈ H−1(Ω

1
2 ) and f

1
2 ∈ H−1(Ω

1
2 ).

Next, applying (3.22) we have

ũ1 − u 1
2 =

∆t

2
(Au

1
2 + f

1
2 ), inΩ

1
2 . (3.41)

As we have discussed above, we refer to Remark 11 for the (non-)well-poseness of this problem on
the continuous and discrete level. Substituting (3.40) into (3.41) we obtain

ũ1 − E0u0 = ∆t(Au
1
2 + f

1
2 ). (3.42)

We extend Ω
1
2 to its δ

2 -neighborhood O δ
2
(Ω

1
2 ) by an extension operator E 1

2
s.t. Ω1 is a subset of

O δ
2
(Ω

1
2 ) and u1 is well-defined in Ω1. We obtain the approximated solution by

u1 := E 1
2
ũ1. (3.43)

Hence, by the analogy we obtain the midpoint rule for moving domains : Suppose u0 ∈ H1(Ω0),
find un ∈ H1(Ωn), for n = 1, 2, ..., N there holds

un
′

= En−1u
n−1 +

1

2
∆t(Aun

′
+ fn

′
),

ũn = un
′
+ ∆t(Aun

′
+ fn

′
),

un = En′En−1u
n−1 + ∆tEn′(Aun

′
+ fn

′
),

(3.44)



3.6. SUMMARY 31

x

t

Γ∗ Γ∗

∂u

∂t
|t=t 1

2

≈ u
1
2 − E0u0

∆t
2

∂u

∂t
|t=t1 ≈ ũ1 − u

1
2

∆t
2

E0u0

ε0

E 1
2
ũ1 ε1

t0

t 1
2

t1

Figure 3.6: Midpoint rule for moving domains. We extend Ω0 to O δ
2
(Ω0) s.t. Ω

1
2 ⊂ O δ

2
(Ω0) and

u
1
2 is well-defined in Ω

1
2 . The green line represents an implicit step, we obtain the approximated

solution u
1
2 . ε0 := O δ

2
(Ω0)\Ω0. The red line represents an explicit step. Within the explicit step

we compute ũ1. We assume ũ1 ∈ H1(Ω1), apply an extension operator E 1
2

to ũ1 to obtain u1.

ε1 := O δ
2
(Ω

1
2 )\Ω 1

2

where n′ := 2n−1
2 .

The variational form is given as :

Suppose u0 ∈ H1(Ω0), find un ∈ H1(Ωn) so that for ∀v ∈ H1(Ωn), n=1, 2, ..., N there holds∫
Ωn

un − En′En−1u
n−1

∆t
vdx+ En′an

′
(un

′
, v) =

∫
Ωn
En′fn

′
vdx (3.45)

where an
′
(un

′
, v) is the bilinear form for difussion and convection parts.

3.6 Summary

In this chapter, we discuss several higher oder stabilized time stepping methods for moving
domains. In these methods, the solution for un on the domain Ωn is combined with its extension
on Oδ(Ωn) in each time step. In the next chapter, the extension can be realized by a stabilization
term in the numerical methods.





Chapter 4

Full discretization method

In chapter 3, based on first order implicit Euler and explicit Euler time stepping methods for
moving domains, we have discussed several higher order time stepping methods. In each time
step we extend domain Ωn by a layer of thinkness δ s.t. Ωn+1 is a subset of the extended domain to
Ωn, i.e. Oδ(Ωn). This setup makes un well-defined in Ωn+1. In this chapter, we realize the extension
operator En by a stabilization term which is combined with the approximated solution in the full
discretization mehtod.

4.1 Motivation

Unfitted FEM provides an extension of FEM to deal with such as strong deformation of geometry
or topology changes. which relys on basic idea of choosing FEM based approximation of the
physical fields independently. Cut finite element method (CutFEM) which is introduced in details
in [2] is a numerical method for solving cutting off finite elements and their associated discrete
approaches at boundaries and interfaces of the domains, cf. Figure 4.1 for an example.
Remark 15 (Ghost penalty). Cutting the mesh can lead to a problem that it leads boundary elements to
very small intersections with physical domain. This may cause ill-conditioned system matrix or failure of
stability of the numerical scheme. A useful mehtod which is introduced in [13] is to add a penalty term
around the boundary that extends the coercivity to active mesh. This penalty term must be carefully designed
to add sufficient stability, while remaining weakly consistent for smooth solutions.

4.2 Full discretization for the implicit methods

Recall the unfitted finte element space V n,lh refers to chapter 2 section 2.2.1

V n,lh := {v ∈ C(On,lδh,T ) : v ∈ Pk(S),∀S ∈ T n,lh }, k ≥ 1. (4.1)

33
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Ω+
1

Ω+
2

Γ

Ω−
2

Ω−
1

ΩΓ

Figure 4.1: CutFEM. In left sketch, the pink mesh is active mesh which contains moving domain.
In middel sketch, the white mesh is the mesh which is entirely contained in moving domain. In
right sketch, the grey mesh represents the mesh cutted by the boundary of moving doamin. In
the right sketch we can find that there are some elements cutted by the boundary with very small
intersection parts, this may lead to a ill-conditioned system matrix, a penalty term will be added
around the boundary to extend the coercivity to the active mesh.

where Pk(S) is the space of polynomials of at most degree k on S. The elements which are in a
boundary strip are defined as

T n,lS± := {S ∈ T n,lδ : dist(x,Γnh) ≤ l · δhfor some x ∈ S}. (4.2)

Here, we recall the definition of T n,lδ , cf. chapter 2, where l indicates the number of time steps in
which the domains Ωnh,Ω

n+1
h , . . . ,Ωn+l

h are still contained in the domain corresponding to T n,lδ . In
the boundary strip there are cutted elements and the elements completely inside or outside Ωnh.
The set of facests between elements in T n,lδ and T n,lS± is defined as

Fn,lh := {T̄1

⋂
T̄2 : T1 ∈ T n,lδ , T2 ∈ T n,lS± , T1 6= T2,measd−1(T1

⋂
T2) > 0}. (4.3)

cf. Figure 4.2 for an example. If no index l is used, we assume l = 1, i.e. we define T nS± := T n,1S± ,
Fnh := Fn,1h .

4.2.1 Stabilization bilinear form

In [1], C.Lehrenfeld and M.A.Olshanskii introduce three possible choices of the stabilization term.
In this thesis, we use one of these three stabilization terms : the "Direct" version of the ghost penaly
stabilization. This version has the advantage that an implementation of the bilinear form is only
implicitly through the extension EP depending on the polynomial degree k. It is proposed for the
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Figure 4.2: The purple line represents Γnh := Ωnh. Thick blue meshes are cutted elements cutted
by Γnh. Light blue meshes are elements completely outside Ωnh and white meshes are elements
completely inside Ωnh The right line represents the facets in Fnh .

first time in [14].

Suppose F ∈ Fn,lh , wF be the facet patch, i.e.

wF = T1

⋃
T2, T1 ∈ T nh , T2 ∈ T nS± . (4.4)

Then for u, v ∈ V n,lh ,

sn,lh (u, v) :=
∑

F∈Fn,lh

1

h2

∫
wF

(u1 − u2)(v1 − v2)dx, (4.5)

where
u1 = EPu|T1 , u2 = EPu|T2 , (4.6)

and the operator
EP : Pk(S)→ Pk(Rd) (4.7)

is the canonical extension operator of a polynomial to Rd.
Remark 16. The role of stabilization term sn,lh (·, ·) is responsible for the implicit definition of an extension
to Ωn,lδ,T . It provides condition number bounds that are independent of the cut position, cf. Remark 5.3 in [1]
for details.
Remark 17. There are other variants of the ghost penalty stabilization in (4.5). All of variants have in
common that they add stabilization term on facets in the region of the boundary Γnh , they also share the same
important properties. We do not discuss those here, but instead refer to [1].
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4.2.2 Full discretization

Stabilized time stepping based on the implicit Euler method

The numerical method is based on (3.10). We extend Ωnh to Onδh,T s.t. Ωnh ⊂ Onδh,T . We realize the
discrete extension by a stabilization term snh(·, ·). The stabilization term snh(·, ·) guarantees that unh
is well defined in Ωnh . Then, the full discretization read as :

Suppose u0
h ∈ V 0

h , find unh ∈ V nh so that for n = 1, 2, ..., N there holds∫
Ωnh

unh − un−1
h

∆t
vh + anh(unh, vh) + γss

n
h(unh, vh) =

∫
Ωnh

fnh vh, ∀vh ∈ V nh , (4.8)

where γs = γs(h, δh) is a stabilization parameter and bilinear form anh(uh, vh) is defined as

anh(uh, vh) :=

∫
Ωnh

ν∇uh · ∇vhdx+
1

2

∫
Ωnh

(we · ∇uh)vh − (we · ∇vh)uhdx

+
1

2

∫
Ωnh

div(we)uhvhdx+
1

2

∫
Γnh

(we · n)uhvhdx, uh, vh ∈ H1(Ωnh),

(4.9)

we is a suitable smooth extension of the velocity field w and it only depends on Ωn 6= Ωnh .

Stabilized time stepping based on BDF2 method

The numerical method is based on (3.14). When n=1, it is an implicit Euler time stepping. The dis-
crete extension is realized by a stabilization term s1,2

h (u1
h, vh) s.t. Ω2

h,Ω
3
h ⊂ O1

2δh,T and s1,2
h (u1

h, vh)

guarantees that u1
h is well defined in {Ω2

h, Ω3
h}. By (4.8) we have∫

Ω1
h

u1
h − u0

h

∆t
vh + a1

h(u1
h, vh) + γss

1,2
h (u1

h, vh) =

∫
Ω1
h

f1
hvh, ∀vh ∈ V 1

h . (4.10)

When n=2, it is a BDF2 time stepping. The discrete extension is realized by a stabilization term
s2,2(u2

h, vh) s.t. Ω4
h ⊂ O2

δh,T and s2,2(u2
h, vh) guarantees that u2

h is well defined in {Ω3
h,Ω4

h}, then we
have ∫

Ω2
h

3u2
h − 4u1

h + u0
h

2∆t
vh + a2

h(u2
h, vh) + γss

2,2
h (u2

h, vh) =

∫
Ω2
h

f2
hvh, ∀vh ∈ V 2

h . (4.11)

Hence, by the analogy the full discretezation read as : Suppose u0 ∈ V 0
h , u1 ∈ V 1

h , find unh ∈ V nh , for
n = 2, 3, ..., N there holds∫

Ωnh

3unh − 4un−1
h + un−2

h

2∆t
vh + anh(unh, vh) + γss

n,2
h (unh, vh) =

∫
Ωnh

fnh vh, ∀vh ∈ V nh , (4.12)

where γs = γs(h, δh) is a stabilization parameter and bilinear form anh(uh, vh) is defined as (4.9).
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Stabilized time stepping based on BDF3 method

The numerical method is based on (3.16). Assume un−1
h well-defined in Ωnh, Ωn+1

h , Ωn+2, un−2

well-defined on Ωnh, Ωn+1
h and un−3 well-defined on Ωnh , then the full discretization read as :

Suppose u0
h ∈ V 0

h , u1
h ∈ V 1

h and u2
h ∈ V 2

h , n=3, 4, ..., N satisfying∫
Ωn
h

11un
h − 18un−1

h + 9un−2
h − 2un−3

h

6∆t
vh + anh(un

h, vh) + γss
n,3
h (un

h, vh) =

∫
Ωn
h

fn
h vh, ∀vh ∈ V n

h . (4.13)

where γs = γs(h, δh) is a stabilization parameter and bilinear form anh(uh, vh) is defined as (4.9).
we is a suitable smooth extension of the velocity field w and it only depends on Ωn 6= Ωnh. The
stabilization term sn,3(unh, vh) guarantees that Ωn+1

h ,Ωn+2
h ,Ωn+3

h ⊂ On−3
3δh,T and unh is well defined

in Ωn+3
h , Ωn+2

h and Ωn+1
h .

4.3 Full discretization for the explicit method

The numerical method is based on (3.22). When n=1, the discrete extension is realized by a stabiliza-
tion term s0

h(u1
h, vh) and s0

h(u1
h, vh) guarantees u1 well-defined in Ω1. Then the full discretization

read as : ∫
Ω0
h

u1
h − u0

h

∆t
vh + a0

h(u0
h, vh) + γss

0
h(u1

h, vh) =

∫
Ω0
h

f0
hvh, ∀vh ∈ V 0

h . (4.14)

Hence, by the analogy we have: Suppose u0
h ∈ V 0

h , find unh ∈ V nh , for n=1, 2, ..., N there holds∫
Ωn−1
h

unh − un−1
h

∆t
vh + an−1

h (un−1
h , vh) + γss

n−1
h (unh, vh) =

∫
Ωn−1
h

fn−1
h vh, ∀vh ∈ V n−1

h . (4.15)

where γs = γs(h, δh) is a stabilization parameter and bilinear form an−1
h (uh, vh) is defined as (4.9).

4.4 Full discretizations of trapezoidal rules

4.4.1 Full discretization of first characterization

As we have discussed in chapter 3, the first characterization of trapezoidal rule is trapezodial
rule based on subsequent half Euler steps. The numerical method is based on (3.31). We divide
global time step ∆t into two uniform sized substeps ∆t

2 . In the first substep is an explicit Euler
time step. We extend Ω0

h to its δh
2 -neighborhood O0

δh
2 ,T

. This discrete extension can be realized by

a stabilization term s
0, 12
h (u

1
2

h , vh) and s0, 12 (u
1
2

h , vh) guarantees that u
1
2

h is well defined in Ω
1
2

h . Then
suppose u0 ∈ V 0

h we have

∫
Ω0
h

u
1
2

h − u0
h

∆t
2

vh + a0
h(u0

h, vh) + γss
0, 12
h (u

1
2

h , vh) =

∫
Ω0
h

f0
hvh, ∀vh ∈ V 0

h (4.16)
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γs is a stabilization parameter. In the second substep is an implicit Euler time step. We extend
Ω

1
2

h to its δh
2 -neighborhood O

1
2
δh
2 ,T

. This discrete extension can be realized by a stablization term

s
1
2 ,

1
2 (u1

h, vh) and s
1
2 ,

1
2 (u1

h, vh) guarantees that u1
h is well defined in {Ω

1
2

h , Ω1
h}.

∫
Ω1
h

u1
h − u

1
2

∆t
2

vh + a1
h(u1

h, vh) + γss
1
2 ,

1
2

h (u1
h, vh) =

∫
Ω1
h

f1
hvh, ∀vh ∈ V 1

h , (4.17)

Hence, by the analogy the full discretization of first characterization of trapezoidal rule reads as:
Suppose u0

h ∈ V 0
h , find unh ∈ V nh , for n=1, 2, ..., N there holds

∫
Ωn−1
h

un
′

h − un−1
h

∆t
2

vh + an−1
h (un−1

h , vh) + γss
n−1, 12
h (un

′

h , vh) =

∫
Ωn−1
h

fn−1
h vh, ∀vh ∈ V n−1

h , (4.18a)∫
Ωnh

unh − un
′

∆t
2

vh + anh(unh, vh) + γss
n′, 12
h (unh, vh) =

∫
Ωnh

fnh vh, ∀vh ∈ V nh . (4.18b)

where n′ := 2n−1
2 and an−1

h (·, ·) and anh(·, ·) are discrete bilinear forms defined as (4.9).

4.4.2 Full discretization of second characterization

The second characterization of trapezodial rule is a trapezodial rule based on an averaged Euler
steps. The numerical method is based on (3.37). When n=1, for the explicit Euler time stepping, we
extend Ω0

h to its δh-neighborhood O0
δh,T , i.e. we extend Ω0

h by thinkness δh so that Ω0
h, Ω1

h and Ω2
h

are subsets of O0
δh,T . This discrete extendsion can be realized by a stabilization term s0,2

h (u1,e
h , vh)

and s0,2
h (u1,e

h , vh) guarantees that u1,e
h is well defined on {Ω0

h, Ω1
h, Ω2

h}. Then suppose u0
h ∈ V 0

h we
have ∫

Ω0
h

u1,e
h − u0

h

∆t
vh + a0

h(u0
h, vh) + γss

0,2
h (u1,e

h , vh) =

∫
Ω0
h

f0
hvh, ∀vh ∈ V 0

h . (4.19)

For the implicit Euler time stepping, we extend Ω1
h to O1

δh,T by thinkness δh s.t. Ω1
h and Ω2 are

subsets of O1
δh,T , this discrete extension can be realized by a stabilization term s1,1

h (u1,i
h , vh) and

s1,1
h (u1,i

h , vh) guarantees that u1,i
h is well defined on {Ω1

h, Ω2
h}. Then suppose u0

h ∈ V 0
h we have

∫
Ω1
h

u1,i
h − u0

h

∆t
vh + a1

h(u1,i
h , vh) + γss

1,1
h (u1,i

h , vh) =

∫
Ω1
h

f1
hvh, ∀vh ∈ V 1

h . (4.20)

Therefore, we obtain u1
h by a computation of average of (4.19) and (4.20)

u1
h =

u1,e
h + u1,i

h

2
, in O0

2δh,T

⋂
O1
δh,T . (4.21)
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Hence, by the analogy the full discretization for the second characterization of trapezodial rule
reads as : Suppose u0

h ∈ V 0
h , find unh ∈ V nh , for n=1, 2, ..., N there holds∫

Ωn−1
h

un,eh − un−1
h

∆t
vh + an−1

h (un−1
h , vh) + γss

n−1,2
h (un,eh , vh) =

∫
Ωn−1
h

fn−1
h vh, ∀vh ∈ V n−1

h ,

(4.22a)∫
Ωnh

un,ih − un−1
h

∆t
vh + anh(un,ih , vh) + γss

n,1
h (un,ih , vh) =

∫
Ω1
h

fnh vh, ∀vh ∈ V nh , (4.22b)

where an−1
h (·, ·) and anh(·, ·) are disrete bilinear forms for diffusion and convection parts defined

as (4.9),

unh =
un,eh + un,ih

2
, in On−2

2δh,T

⋂
On−1
δh,T . (4.23)

4.4.3 Full discretization of third characterization

Third characterization is a naive extension version of (3.25). The numerical method is based on
(3.39). The full discretiztion for the third characterization of trapezodial rule is reads as: Suppose
u0
h ∈ V 0

h , find unh ∈ V nh , for n=1, 2, ..., N there holds∫
Ωnh

unh − un−1
h

∆t
2

vh + anh(unh, vh) + an−1
h (un−1

h , vh) + γss
n
h(unh, vh) =

∫
Ωnh

fnh vh + fn−1
h vh, ∀vh ∈ V nh ,

(4.24)
where anh(·, ·) and an−1

h (·, ·) are the disrete bilinear forms for diffusion and convection parts defined
as (4.9).

4.5 Full discretezation of midpoint rule

As we have discussed in chapter 3, midpoint rule is also based on subsequent Euler half steps. The
numerical method is based on (3.45). When n = 1, suppose u0

h ∈ V 0
h , applying (3.8) we have

∫
Ω

1
2
h

u
1
2

h − u0
h

∆t
2

vh + a
1
2

h (u
1
2

h , vh) + γss
1
2

h (u
1
2

h , vh) =

∫
Ω

1
2
h

f
1
2

h vh, ∀vh ∈ V
1
2

h . (4.25)

There is no extension within this time step, the stabilization term s
1
2

h (u
1
2

h , vh) just guarantees the
stability. Next, we extend Ω

1
2

h to its δh
2 -neighborhood O

1
2

δh,T by a thinkness of δh
2 . This discrete

extension can be realized by a stabilization term s
1
2 ,1

h (u1
h, vh) s.t. Ω

3
2

h ⊂ O
1
2

δh,T , then applying (3.22)
we have ∫

Ω
1
2
h

u1
h − u

1
2

h
∆t
2

+ a
1
2

h (u
1
2

h , vh) + γss
1
2 ,1

h (u1
h, vh) =

∫
Ω

1
2
h

f
1
2

h vh, ∀vh ∈ V
1
2

h . (4.26)

The stabilization term s
1
2 ,1

h (u1
h, vh) guarantees that u1

h is well defined in Ω
3
2

h .
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Combine the (4.25) and (4.26) we obatin∫
Ω

1
2
h

u1
h − u0

h

∆t
+ a

1
2

h (u
1
2

h , vh) +
1

2
(γss

1
2

h (u
1
2

h , vh) + γss
1
2 ,1

h (u1
h, vh)) =

∫
Ω

1
2
h

f
1
2

h vh, ∀vh ∈ V
1
2

h . (4.27)

Hence, by the analogy the full discretization for midpoint rule reads as :∫
Ωn
′
h

unh − un−1
h

∆t
vh + an

′

h (un
′

h , vh) +
1

2
(γss

n′

h (un
′

h , vh) + γss
n′,1
h (unh, vh)) =

∫
Ωn
′
h

fn
′

h vh, ∀vh ∈ V n
′

h ,

(4.28)
where n′ := 2n−1

2 and an
′

h (·, ·) is the discrete bilinear form for diffusion and convection parts

defined as (4.9). The numerical solution unh ∈ On−1
2δh,T

⋂O 2n−1
2

δh,T . We note that the formulation (4.28)
is not directly implementable. The numerical implementation of (4.28) can be via two half steps.
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Chapter 5

Stability analysis of the fully discrete meth-
ods

In the analysis we make use of time-dependent domains stemming from extensions. To this end,we
define a strip in each time step which is sharp and can include full and cut elements:

S±l·δh(Ωnh) := {x ∈ Ω̃ : dist(x,Γnh) ≤ l · δh}
S+
l·δh(Ωnh) := {x ∈ Ω̃\Ωnh : dist(x,Γnh) ≤ l · δh}.

(5.1)

We notice that S±l·δh includes points from the interior of Ωnh as well as points from the outside Ωnh .
All elements with parts in S±l·δh are collected in T nS± . In the analysis we ask for δ large enough so
that

On,lδh,T ⊂ Ol·δ(Ω
n),

Ωnh ⊂ Ol·δ(Ωt), t ∈ In.
(5.2)

where we recall the definition of On,lδh,T and Ol·δ(Ωn) from chapter 2.

We specify
δh = cδhw∞∆t, with 1 < cδh < cδ. (5.3)

where w∞ is the (global in time) maximum absolute value of the velocity. With this condition there
holds

cδh large enough⇒ Ωnh ⊂ On−l,lδh,T , l ∈ {1, 2, ..., n}, n ∈ {1, 2, ..., N}. (5.4)

5.1 Stability of discrete extension

In ( [1], section 5.3) C.Lehrenfeld and M.A.Olshanskii have proven the numerical stability of
discrete extensions through a stabilization term snh(·, ·) by the Lemma as follows:
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Lemma 2. Let T1 ∈ T nS± and T 2 ∈ T nδ , T1 6= T2 so that for F = T1

⋂
T2 there holds measd−1(F ) > 0.

Then we have for u|Ti ∈ Pk(Ti), i=1, 2 that there holds

‖u‖2T1
≤‖u‖2T2

+ sh,F (u, u),

‖∇u‖2T1
≤‖∇u‖2T2

+
1

h2
sh,F (u, u).

(5.5)

In order to apply this stabilizing mechanism globally, they make a significant assumption on the
meshes T nS+ and T nδ .
Assumption 1. To every element in T nS+ we require an element in T nδ \T nS+ that can be reached by repeatedly
passing through facets in Fnh . We assume that there is a mapping that maps every element T ∈ T nS+ to such
a path with the following properties. The number of facets passed through during this path is bounded by
K ≤ (1 + δh

h ). Further, every uncut element T ∈ T nδ \T nS+ is the final element of such a path in at most M
of these paths where M is a number that is bounded independent of h and ∆t.

This is a reasonable assumption if the boundary Γn is sufficiently well-resolved by the mesh, the
comment on this assumption is in Remark 5.2 in [1]. This assumption provides some important
results (Lemma 5.2, Lemma 5.3, Lemma 5.4 and Lemma 5.5 in [1]) which are useful mathmatical tools
to prove the numerical stability of fully disrete methods.

5.2 Stability analysis

5.2.1 Stability analysis of full discretization of BDF2 method in time

For the simplicity, in the following analysis f is set to be 0. Theorem 5.1 in [1] proves a stability of a
full discretization based on the stabilized implicit Euler time stepping method. Using the result of
Theorem 5.1 we give a stability analysis on a full discretization based on the stabilized BDF2 time
stepping method. First, we introduce two important results from [1]
Lemma 3. Using Assumption 1, for u ∈ V nh and ∀ε > 0 there holds

‖u‖2S+
δh

(Ωnh) ≤ δh(1 + ε−1)‖u‖2Ωnh + δhε‖∇u‖2Ωnh + δhK((1 + ε−1)h2 + ε)snh(u, u). (5.6)

As a direct consequence we have for a constant cL2
independent of h and ∆t

‖u‖2Oδh (Ωnh) ≤ (1 + cL2a(ε)∆t)‖u‖2Ωnh + cL2b
ν(ε)‖∇u‖2Ωnh + cL2c(ε, h)∆tKsnh(u, u). (5.7)
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where

cL2a
(ε) = cL2

cδhw
n
∞(1 + ε−1),

cL2b
(ε) = cL2

cδhw
n
∞
ε

ν
,

cL2c(ε, h) = cL2cδhw
n
∞(ε+ h2 + h2ε−1).

(5.8)

Remark 18. Unique solvability Similarity to Lemma 3.1 in [1] we can easily check that

anh(uh, uh) ≥ α

2
‖∇uh‖2Ωnh − ξh‖uh‖

2
Ωnh
, (5.9)

if
∆t < ξ−1

h := 2(
∥∥div(we)

∥∥
L∞(Ωnh)

+ α+ c2Ωnh‖w
e · n‖L∞(Ωnh) /4α)−1. (5.10)

Now, we give a stability analysis on the full discretization based on the stabilized BDF2 time
stepping method.
Theorem 1. Under Assumption 1, we assume that u0

h and u−1
h which is given in advanced are given as

functions on Ω1
h, cγ large enough and ∆t sufficiently small, the numerical solution of (4.12) satisfies the

following estimate

∥∥∥ukh∥∥∥2

Ωkh

+ ∆t

k∑
n=2

(ν
∥∥∥∇un−1

h

∥∥∥2

Ωn−1
+ 2γs∆ts

n
h(unh, u

n
h)) ≤ exp(cT1

tk)(
∥∥∥u0

h

∥∥∥2

Ω1
h

+
∥∥∥2u0

h − u−1
h

∥∥∥2

Ω1
h

)

+ ∆t|||u0
h|||0,

(5.11)

with cT1
independent of h, ∆t. The norm |||·|||0 is defined as

|||v|||0:= (ν‖∇v‖2Ω0
h

+ cγss
0,0
h (v, v))

1
2 . (5.12)

Proof. With the relationship

2a(3a− 4b+ c) = |a|2+|2a− b|2+|a− 2b+ c|2−|b|2−|2b− c|2 (5.13)
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we test (4.12) with 2unh and multiply by 2∆t which yields

‖unh‖2Ωnh +
∥∥∥2unh − un−1

h

∥∥∥2

Ωnh

+
∥∥∥unh − 2un−1

h + un−2
h

∥∥∥2

Ωnh

+ 4∆tanh(uh, uh) + 4∆tγss
n,2
h (uh, uh)

=
∥∥∥un−1

h

∥∥∥2

Ωnh

+
∥∥∥2un−1

h − un−2
h

∥∥∥2

Ωnh

.

(5.14)

Since
∥∥∥unh − 2un−1

h + un−2
h

∥∥∥2

Ωnh

> 0, we have

‖unh‖2Ωnh +
∥∥∥2unh − un−1

h

∥∥∥2

Ωnh

+ 4∆tanh(uh, uh) + 4∆tγss
n,2
h (uh, uh)

≤
∥∥∥un−1

h

∥∥∥2

Ωnh

+
∥∥∥2un−1

h − un−2
h

∥∥∥2

Ωnh

.

(5.15)

Using the lower bound on anh(·, ·) which is given in Remark 18 we have

(1− 4∆tξh)‖unh‖2Ωnh +
∥∥∥2unh − un−1

h

∥∥∥2

Ωnh

+ 2ν∆t‖∇unh‖2Ωnh + 4∆tγss
n,2
h (uh, uh)

≤
∥∥∥un−1

h

∥∥∥2

Ωnh

+
∥∥∥2un−1

h − un−2
h

∥∥∥2

Ωnh

.

(5.16)

To go from
∥∥∥un−1

h

∥∥∥
Ωnh

to
∥∥∥un−1

h

∥∥∥
Ωn−1
h

(and similarity for
∥∥∥2un−1

h − un−2
h

∥∥∥) use Lemma 2 we obtain

(1− 4∆tξh)‖unh‖2Ωnh +
∥∥∥2unh − un−1

h

∥∥∥2

Ωnh

+ 2ν∆t‖∇unh‖2Ωnh + 4∆tγss
n,2
h (uh, uh)

≤
∥∥∥un−1

h

∥∥∥2

Ωnh

+
∥∥∥2un−1

h − un−2
h

∥∥∥2

Ωnh

≤
∥∥∥un−1

h

∥∥∥2

Oδ(Ωn−1
h )

+
∥∥∥2un−1

h − un−2
h

∥∥∥2

Oδ(Ωn−1
h )

≤ (1 + cL2a(ε)∆t)
∥∥∥un−1

h

∥∥∥2

Ωn−1
h

+ cL2b
(ε)∆tν

∥∥∥∇un−1
h

∥∥∥2

Ωn−1
h

+ cL2c(ε, h)∆tKsn−1,1
h (un−1

h , un−1
h )

+ (1 + cL2a
(ε)∆t)

∥∥∥2un−1
h − un−2

h

∥∥∥2

Ωn−1
h

+ cL2b
(ε)∆tν

∥∥∥∇(2un−1
h − un−2)

∥∥∥2

Ωn−1
h

+ cL2c(ε, h)∆tKsn−1,1
h (2un−1

h − un−2
h , 2un−1

h − un−2
h ).

(5.17)

Since

sn−1,1
h (2un−1

h − un−2
h , 2un−1

h − un−2
h )

= 4sn−1,1
h (un−1

h , un−1
h )− 4sn−1,1

h (un−1
h , un−2

h ) + sn−1,1
h (un−2

h , un−2
h )

≤ 4sn−1,1
h (un−1

h , un−1
h ) + 2γsn−1

h (un−1
h , un−1

h ) +
2

γ
sn−1,1
h (un−2

h , un−2
h ) + sn−1,1

h (un−2
h , un−2

h ),

(5.18)
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with Cauchy-Schwarz inequality.

Let γ = 1
2 which yields

sn−1,1
h (2un−1

h − un−2
h , 2un−1

h − un−2
h ) ≤ 5sn−1,1

h (un−1
h , un−1

h ) + 5sn−1,1
h (un−2

h , un−2
h ). (5.19)

Similarly, ∥∥∥∇(2un−1
h − un−2

h )
∥∥∥2

Ωn−1
h

≤ 5
∥∥∥∇un−1

h

∥∥∥2

Ωn−1
h

+ 5
∥∥∥∇un−2

h

∥∥∥2

Ωn−1
h

(5.20)

Use the Lemma 5.2 in [1]∥∥∥∇un−2
h

∥∥∥2

Ωn−1
h

≤
∥∥∥∇un−2

h

∥∥∥
Ωn−2
h

+Ksn−1,1
h (un−2

h , un−2
h ) (5.21)

Hence∥∥∥∇(2un−1
h − un−2

h )
∥∥∥2

Ωn−1
h

≤ 5
∥∥∥∇un−1

h

∥∥∥2

Ωn−1
h

+ 5
∥∥∥∇un−2

h

∥∥∥2

Ωn−1
h

≤ 5
∥∥∥∇un−1

h

∥∥∥2

Ωn−1
h

+ 5
∥∥∥∇un−2

h

∥∥∥
Ωn−2
h

+ 5Ksn−1,1
h (un−2

h , un−2
h )

(5.22)

Substitute (5.19) and (5.22) into (5.17) we obtain

(1− 4∆tξh)‖unh‖2Ωnh +
∥∥∥2unh − un−1

h

∥∥∥2

Ωnh

+ 2ν∆t‖∇unh‖2Ωnh + 4∆tγss
n,2
h (uh, uh)

≤
∥∥∥un−1

h

∥∥∥2

Ωnh

+
∥∥∥2un−1

h − un−2
h

∥∥∥2

Ωnh

≤
∥∥∥un−1

h

∥∥∥2

Oδ(Ωn−1
h )

+
∥∥∥2un−1

h − un−2
h

∥∥∥2

Oδ(Ωn−1
h )

≤ (1 + cL2a
(ε)∆t)

∥∥∥un−1
h

∥∥∥2

Ωn−1
h

+ 6cL2b
(ε)∆tν

∥∥∥∇un−1
h

∥∥∥2

Ωn−1
h

+ 6cL2c
(ε, h)∆tKsn−1,1

h (un−1
h , un−1

h )

+ (1 + cL2a
(ε)∆t)

∥∥∥2un−1
h − un−2

h

∥∥∥2

Ωn−1
h

+ 5cL2b
(ε)∆tν

∥∥∥∇un−2
h

∥∥∥2

Ωn−2
h

+ 5(cL2c
(ε, h) + cL2b

(ε))∆tKsn−1,1
h (un−2

h , un−2
h ).

(5.23)

Set cL2c
(ε, h) + cL2b

(ε) ≤ 2cL2c
yields the last term of (5.23)

5(cL2c
(ε, h) + cL2b

(ε))∆tKsn−1,1
h (un−2

h , un−2
h ) ≤ 10cL2c

∆tKsn−1,1
h (un−2

h , un−2
h ) (5.24)

We choose ε ≤ ν
12cL2

cδhw
n
∞

so that cL2b
(ε) ≤ 1

12 , cL2a
(ε) and cL2c

(ε, h) are bounded independent of
h and ∆t. We define

(1− 4∆tξh)qn := (1− 4∆tξh)‖unh‖2Ωnh +
∥∥∥2unh − un−1

h

∥∥∥2

Ωnh

. (5.25)
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Then (5.23) can be written as

(1− 4∆tξh)qn + 2ν∆t‖∇unh‖2Ωnh + 4∆tγss
n,2
h (uh, uh)

≤ (1 + cL2a(ε)∆t)qn−1 +
∆t

2
ν
∥∥∥∇un−1

h

∥∥∥2

Ωn−1
h

+
∆t

2
ν
∥∥∥∇un−2

h

∥∥∥2

Ωn−2
h

+ 6cL2c
(ε, h)∆tKsn−1,1

h (un−1
h , un−1

h ) + 10cL2c
∆tKsn−2,2

h (un−2
h , un−2

h ).

(5.26)

We assume γs ≥ 8cL2cK and summe up over n = 1, 2, ..., k, k ≤ N yields

(1− 4∆tξh)qk + ν∆t

k∑
n=1

‖∇unh‖2Ωnh + 2∆tγs

k∑
n=1

sn,2h (uh, uh)

≤
∥∥∥u0

h

∥∥∥2

Ω1
h

+
∥∥∥2u0 − u−1

∥∥∥2

Ω1
h

+ +∆t|||u0
h|||0+cT1

∆t

k−1∑
n=1

qn

(5.27)

Applying Gronwall’s Lemma with ξh∆t ≤ 1
8 we obtain the result with cT1

= cL2a
+ 2ξh.

5.2.2 Stability analysis of full discretization of the explicit Euler method in
time

Theorem 2. Under Assumption 1 we assume u0
h well-definded in Ω0

h and ∆t ≤ Cνh
2 for a Cν only

depending on ν, the numerical solution of (4.15) satisfies the following estimate

∥∥∥ukh∥∥∥2

Ωk−1
h

+ ν∆t

k∑
n=1

‖∇unh‖2Ωn−1
h

+ 2γs∆t

k∑
n=1

sn−1
h (unh, u

n
h) ≤ exp(cT1

tk)
∥∥∥u0

h

∥∥∥2

Ω0
h

(5.28)

for a cT1
only depending on ξh.

Proof. Together with the relationship

2a(a− b) = |a|2+|a− b|2−|b|2 (5.29)

we test (4.15) with 2un and multiply by 2∆t which yields

‖unh‖2Ωn−1
h

+
∥∥∥unh − un−1

h

∥∥∥2

Ωn−1
h

+ 2∆tan−1
h (un−1

h , unh) + 2∆tγss
n−1
h (unh, u

n
h) =

∥∥∥un−1
h

∥∥∥2

Ωn−1
h

. (5.30)
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Use the lower bound on an−1(·, ·) and Jensen inequality we have

an−1
h (un−1

h , unh) = an−1
h (unh, u

n
h) + an−1

h (un−1
h − unh, unh)

≥ ν

2
‖∇unh‖2Ωn−1

h
− ξh‖unh‖2Ωn−1

h
−
∥∥∥an−1

h

∥∥∥∥∥∥un−1
h − unh

∥∥∥
Ωn−1
h

‖∇unh‖Ωn−1
h

≥ ν

2
‖∇unh‖2Ωn−1

h
− ξh‖unh‖2Ωn−1

h
− ch

∥∥∥un−1
h − unh

∥∥∥
Ωn−1
h

‖∇unh‖Ωn−1
h

≥ ν

2
‖∇unh‖2Ωn−1

h
− ξh‖unh‖2Ωn−1

h
− Ch−1

∥∥∥unh − un−1
h

∥∥∥
Ωn−1
h

‖∇unh‖Ωn−1
h

≥ ν

2
‖∇unh‖2Ωn−1

h
− ξh‖unh‖2Ωn−1

h
− 2C2h−2

ν

∥∥∥unh − un−1
h

∥∥∥2

Ωn−1
h

− ν

4
‖∇unh‖2Ωn−1

h

≥ ν

4
‖∇unh‖2Ωn−1

h
− ξh‖unh‖2Ωn−1

h
− 2C2h−2

ν

∥∥∥unh − un−1
h

∥∥∥2

Ωn−1
h

(5.31)

with ch :=
∥∥∥an−1

h

∥∥∥ = supvh,wh∈V n−1
h

an−1
h (vh,∇wh)

‖vh‖L2‖∇wh‖L2
≤ Ch−1.

Substituting (5.31) into (5.30) we obtain

(1− 2ξh∆t)‖unh‖2Ωn−1
h

+ (1− 2C2h−2

ν
∆t)
∥∥∥unh − un−1

h

∥∥∥2

Ωn−1
h

+
ν

2
∆t‖∇unh‖2Ωn−1

h

+ 2∆tγss
n−1
h (unh, u

n
h) ≤

∥∥∥un−1
h

∥∥∥2

Ωn−1
h

.

(5.32)

We set 1− 2C2h−2

ν ∆t ≥ 0 i.e. ∆t ≤ ν
2C2h−2 = Cνh

2 s.t.

(1− 2C2h−2

ν
∆t)
∥∥∥unh − un−1

h

∥∥∥2

Ωn−1
h

≥ 0 (5.33)

and together we have

(1− 2ξh∆t)‖unh‖2Ωn−1
h

+
ν

2
∆t‖∇unh‖2Ωn−1

h
+ 2γs∆ts

n−1
h (unh, u

n
h) ≤

∥∥∥un−1
h

∥∥∥2

Ωn−1
h

, (5.34)

Summing up over n = 1, 2, ..., k, k ≤ N we obtain

∥∥∥ukh∥∥∥2

Ωk−1
h

+
ν

2
∆t

k∑
n=1

‖∇unh‖2Ωn−1
h

+ 2γs∆t

k∑
n=1

sn−1
h (unh, u

n
h)

≤
∥∥∥u0

h

∥∥∥2

Ω0
h

+ 2ξh∆t

k∑
n=1

‖unh‖2Ωn−1
h

(5.35)

Applying Gronwall’s Lemma with ξh∆t ≤ 1
8 we obtain the result with cT1

:= 2ξh.
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5.2.3 Stability analysis of full discretization of trapezoidal rules

Stability analysis of first characterization

Theorem 3. Under Assumption 1 we assume u0
h well-defended in Ω0

h and ∆t ≤ min{ 1
cL2a

(ε) , Cνh
2}, the

numerical solution of (4.18) satisfies the following estimate

∥∥∥ukh∥∥∥2

Ωkh

+
ν

4
∆t

k∑
n=1

‖∇unh‖2Ωnh + γs∆t

k∑
n=1

(s
n′, 12
h (unh, u

n
h) + k1s

n−1, 12
h (un

′

h , u
n′

h )) ≤ exp(cT1
tk)
∥∥∥u0

h

∥∥∥2

Ω0
h

(5.36)
for Cν only depending on ν, cT1 depending on ξh, k′ := 2k−1

2 and n′ := 2n−1
2 .

Proof. We test (4.18a) with 2un
′

h and multiply with ∆t
2 we obtain

∥∥∥un′h ∥∥∥2

Ωn−1
h

+
∥∥∥un′h − un−1

h

∥∥∥2

Ωn−1
h

+ ∆tan−1
h (un−1

h , un
′

h ) + 2∆tγss
n−1, 12
h (un

′

h , u
n′

h ) =
∥∥∥un−1

h

∥∥∥2

Ωn−1
h

(5.37)

Then we test (4.18b) with 2unh and multiply with ∆t
2 we obtain

‖unh‖2Ωnh +
∥∥∥unh − un′h ∥∥∥2

Ωnh

+ ∆tanh(unh, u
n
h) + 2∆tγss

n′, 12
h (unh, u

n
h) =

∥∥∥un′h ∥∥∥2

Ωnh

(5.38)

Combine (5.37) and (5.38) we have

‖unh‖2Ωnh +
∥∥∥un′h ∥∥∥2

Ωn−1
h

+
∥∥∥unh − un′h ∥∥∥2

Ωnh

+
∥∥∥un′h − un−1

h

∥∥∥2

Ωn−1
h

+ ∆t(anh(unh, u
n
h) + an−1

h (un−1
h , un

′

h ))

+ 2∆tγs(s
n′, 12
h (unh, u

n
h) + s

n−1, 12
h (un

′

h , u
n′

h )) =
∥∥∥un′h ∥∥∥2

Ωnh

+
∥∥∥un−1

h

∥∥∥2

Ωn−1
h

(5.39)

Using the lower bound on an(·, ·) we have

anh(unh, u
n
h) ≥ ν

2
‖∇unh‖2Ωnh − ξh‖u

n
h‖2Ωnh . (5.40)

Using the lower bound on an−1(·, ·) we have

an−1
h (un−1

h , un
′

h ) = an−1
h (un

′

h , u
n′

h ) + an−1
h (un−1

h − un′h , un
′

h )

≥ ν

2

∥∥∥∇un′h ∥∥∥2

Ωn−1
h

− ξh
∥∥∥un′h ∥∥∥2

Ωn−1
h

−
∥∥∥an−1

h

∥∥∥∥∥∥un−1
h − un′h

∥∥∥
Ωn−1
h

∥∥∥∇un′h ∥∥∥
Ωn−1
h

≥ ν

2

∥∥∥∇un′h ∥∥∥2

Ωn−1
h

− ξh
∥∥∥un′h ∥∥∥2

Ωn−1
h

− ch
∥∥∥un′h − un−1

h

∥∥∥
Ωn−1
h

∥∥∥∇un′h ∥∥∥
Ωn−1
h

≥ ν

2

∥∥∥∇un′h ∥∥∥2

Ωn−1
h

− ξh
∥∥∥un′h ∥∥∥2

Ωn−1
h

− 2C2h−2

ν

∥∥∥un′h − un−1
h

∥∥∥2

Ωn−1
h

− ν

4

∥∥∥∇un′h ∥∥∥2

Ωn−1
h

≥ ν

4

∥∥∥∇un′h ∥∥∥2

Ωn−1
h

− ξh
∥∥∥un′h ∥∥∥2

Ωn−1
h

− 2C2h−2

ν

∥∥∥un′h − un−1
h

∥∥∥2

Ωn−1
h

(5.41)
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with ch :=
∥∥∥an−1

h

∥∥∥ = supvh,wh∈V n−1
h

an−1
h (vh,∇wh)

‖vh‖L2‖∇wh‖L2
≤ Ch−1.

Substituting (5.40) and (5.41) into (5.39) we have

(1−∆tξh)(‖unh‖2Ωnh +
∥∥∥un′h ∥∥∥2

Ωn−1
h

) +
ν

4
∆t(‖∇unh‖2Ωnh +

∥∥∥∇un′h ∥∥∥2

Ωn−1
h

) +
∥∥∥unh − un′h ∥∥∥2

Ωnh

+ (1− 2C2h−2

ν
∆t)
∥∥∥un′h − un−1

h

∥∥∥2

Ωn−1
h

+ 2∆tγs(s
n′, 12
h (unh, u

n
h) + s

n−1, 12
h (un

′

h , u
n′

h ))

≤
∥∥∥un′h ∥∥∥2

Ωnh

+
∥∥∥un−1

h

∥∥∥2

Ωn−1
h

(5.42)

Let 1− 2C2h−2

ν ∆t ≥ 0 i.e. ∆t ≤ ν
2C2h−2 = Cνh

2 we have

(1− C2h−2

2ν
∆t)
∥∥∥un′h − un−1

h

∥∥∥2

Ωn−1
h

≥ 0. (5.43)

Since
∥∥∥unh − un′h ∥∥∥2

Ωnh

≥ 0, (5.42) can be written as

(1−∆tξh)(‖unh‖2Ωnh +
∥∥∥un′h ∥∥∥2

Ωn−1
h

) +
ν

4
∆t(‖∇unh‖2Ωnh +

∥∥∥∇un′h ∥∥∥2

Ωn−1
h

)

+ 2∆tγs(s
n′, 12
h (unh, u

n
h) + s

n−1, 12
h (un

′

h , u
n′

h )) ≤
∥∥∥un′h ∥∥∥2

Ωnh

+
∥∥∥un−1

h

∥∥∥2

Ωn−1
h

(5.44)

From Lemma (2) we know that∥∥∥un′h ∥∥∥2

Ωnh

≤
∥∥∥un′h ∥∥∥2

O δh
2

(Ωn
′
h )
≤ (1 + cL2a

(ε)∆t)
∥∥∥un′∥∥∥2

Ωn
′
h

+ cL2b
(ε)∆tν

∥∥∥∇un′h ∥∥∥2

Ωn
′
h

+ cL2c
(ε, h)∆tKs

n′, 12
h (unh, u

n
h)∥∥∥un′h ∥∥∥2

Ωn
′
h

≤
∥∥∥un′h ∥∥∥2

O δh
2

(Ωn−1
h )

≤ (1 + cL2a
(ε)∆t)

∥∥∥un′h ∥∥∥2

Ωn−1
h

+ cL2b
(ε)∆tν

∥∥∥∇un′h ∥∥∥2

Ωn−1
h

+ cL2c
(ε, h)∆tKs

n−1, 12
h (un

′

h , u
n′

h )

(5.45)

Rearranging (5.45) we obtain∥∥∥un′h ∥∥∥2

Ωnh

≤ (1 + cL2a
(ε)∆t)

∥∥∥un′∥∥∥2

Ωn
′
h

+ cL2b
(ε)∆tν

∥∥∥∇un′h ∥∥∥2

Ωn
′
h

+ cL2c
(ε, h)∆tKs

n′, 12
h (unh, u

n
h)

≤ (1 + cL2a
(ε)∆t)2

∥∥∥un′h ∥∥∥2

Ωn−1
h

+ (1 + cL2a
(ε)∆t)cL2b

(ε)∆tν
∥∥∥∇un′h ∥∥∥2

Ωn−1
h

+ (1 + cL2a
(ε)∆t)cL2c

(ε, h)∆tKs
n−1, 12
h (un

′

h , u
n′

h ) + cL2b
(ε)∆tν

∥∥∥∇un′h ∥∥∥2

Ωn
′
h

+ cL2c(ε, h)∆tKs
n′, 12
h (unh, u

n
h)

(5.46)
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Substituting (5.46) into (5.44) we have

(1−∆tξh)‖qnh‖2Ωnh +
ν

4
∆t‖∇qnh‖2Ωnh + ∆t(2γs − cL2c

(ε, h)K)s
n′, 12
h (unh, u

n
h)

+ ∆t(2γs − (1 + cL2a(ε)∆t)cL2c(ε, h)K)s
n−1, 12
h (un

′

h , u
n′

h ) ≤
∥∥∥un−1

h

∥∥∥2

Ωn−1
h

(5.47)

with

(1−∆tξh)‖qnh‖2Ωnh := (1−∆tξh)‖unh‖2Ωnh + (1−∆tξh − (1 + cL2a
(ε)∆t)2)

∥∥∥un′h ∥∥∥2

Ωn−1
h

(5.48a)

ν

4
∆t‖∇qnh‖2Ωnh :=

ν

4
∆t‖∇unh‖2Ωnh + ν∆t(

1

4
− (1 + cL2a(ε))cL2b

(ε))
∥∥∥∇un′h ∥∥∥2

Ωn−1
h

− cL2b
(ε)∆tν

∥∥∥∇un′h ∥∥∥2

Ωn
′
h

(5.48b)

We choose ε ≤ ν
2cL2

cδhw
n
∞

so that cL2b
(ε) ≤ 1

2 and cL2a
(ε) and cL2c

(ε, h) are bounded independent
of h and ∆t. Assume γs ≥ cL2c

(ε, h)K and summe up over n = 1, 2, ..., k, k ≤ N yields

(1−∆tξh)
∥∥∥ukh∥∥∥2

Ωkh

+
ν

4
∆t

k∑
n=1

‖∇unh‖2Ωnh + γs∆t

k∑
n=1

(s
n′, 12
h (unh, u

n
h) + k1s

n−1, 12
h (un

′

h , u
n′

h ))

≤
∥∥∥u0

h

∥∥∥2

Ω0
h

+ ξh∆t

k∑
n=1

∥∥∥un−1
h

∥∥∥2

Ωn−1
h

+ γs∆tk1s
0, 12
h (u

1
2

h , u
1
2

h )

(5.49)

where k1 = 1 + cL2a(ε)∆t. Applying Grownwall’s Lemma with ∆tξh ≤ 1
4 we obtain the result

with cT1
:= ξh∆t.

Stability analysis of second characterization

Theorem 4. Under Assumption 1 we assume u0
h well-defended in Ω0

h, 1
2ξh
≤ ∆t ≤ Cνh2 and ν ≤ 1, the

numerical solution of (4.22) satisfies the following estimate

∥∥∥ukh∥∥∥2

Ωkh

+ ∆t(
ν

4

k∑
n=1

‖∇unh‖2Ωnh + γs

k∑
n=1

(sn−1,2
h (un,eh , un,eh ) + sn,1h (un,ih , un,ih ))) ≤ exp(cT1

tk)|||u0
h|||0

(5.50)
with cT1

independent of h and ∆t and |||·|||0 defined as

|||v|||0:= (
∥∥∥v0
∥∥∥2

Ω0
+

1

4
∆tν

∥∥∥∇v0
∥∥∥2

Ω0
+

1

2
γs∆ts

0(v0, v0))
1
2 (5.51)
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Proof. We test the first equation of (4.22) with 2un,eh and multiply wiht ∆t we obtain

∥∥un,eh ∥∥2

Ωn−1
h

+
∥∥∥un,eh − un−1

h

∥∥∥2

Ωn−1
h

+ 2∆tan−1
h (un−1

h , un,eh ) + 4∆tγss
n−1,2
h (un,eh , un,eh ) =

∥∥∥un−1
h

∥∥∥2

Ωn−1
h

(5.52)
Then we test the second equation of (4.22) with 2un,ih and multiply with ∆t we obtain∥∥∥un,ih ∥∥∥2

Ωnh

+
∥∥∥un,ih − un−1

h

∥∥∥2

Ωnh

+ 2∆tanh(un,ih , un,ih ) + 4∆tγss
n,1
h (un,ih , un,ih ) =

∥∥∥un−1
h

∥∥∥2

Ωnh

(5.53)

Combine (5.52) and (5.53) we have

∥∥un,eh ∥∥2

Ωn−1
h

+
∥∥∥un,ih ∥∥∥2

Ωnh

+
∥∥∥un,eh − un−1

h

∥∥∥2

Ωn−1
h

+
∥∥∥un,ih − un−1

h

∥∥∥2

Ωnh

+ 2∆t(an−1
h (un−1

h , un,eh ) + anh(un,ih , un,ih )) + 4∆tγs(s
n−1,2
h (un,eh , un,eh ) + sn,1h (un,ih , un,ih ))

=
∥∥∥un−1

h

∥∥∥2

Ωn−1
h

+
∥∥∥un−1

h

∥∥∥2

Ωnh

(5.54)

Using the lower bound on an(·, ·) we have

anh(un,ih , un,ih ) ≥ ν

2

∥∥∥∇un,ih ∥∥∥2

Ωnh

− ξh
∥∥∥un,ih ∥∥∥2

Ωnh

. (5.55)

Using the lower bound on an−1(·, ·) we have

an−1
h (un−1

h , un,eh ) = an−1
h (un,eh , un,eh ) + an−1

h (un−1
h − un,eh , un,eh )

≥ ν

2

∥∥∇un,eh ∥∥2

Ωn−1
h

− ξh
∥∥un,eh ∥∥2

Ωn−1
h

−
∥∥∥an−1

h

∥∥∥∥∥∥un−1
h − un,eh

∥∥∥
Ωn−1
h

∥∥∇un,eh ∥∥
Ωn−1
h

≥ ν

2

∥∥∇un,eh ∥∥2

Ωn−1
h

− ξh
∥∥un,eh ∥∥2

Ωn−1
h

− ch
∥∥∥un,eh − un−1

h

∥∥∥
Ωn−1
h

∥∥∇un,eh ∥∥
Ωn−1
h

≥ ν

2

∥∥∇un,eh ∥∥2

Ωn−1
h

− ξh
∥∥un,eh ∥∥2

Ωn−1
h

− 2C2h−2

ν

∥∥∥un,eh − un−1
h

∥∥∥2

Ωn−1
h

− ν

4

∥∥∇un,eh ∥∥2

Ωn−1
h

≥ ν

4

∥∥∇un,eh ∥∥2

Ωn−1
h

− ξh
∥∥un,eh ∥∥2

Ωn−1
h

− 2C2h−2

ν

∥∥∥un,eh − un−1
h

∥∥∥2

Ωn−1
h

(5.56)

with ch :=
∥∥∥an−1

h

∥∥∥ = supvh,wh∈V n−1
h

an−1
h (vh,∇wh)

‖vh‖L2‖∇wh‖L2
≤ Ch−1.
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Substituting (5.55) and (5.56) into (5.54) we have

(1− 2ξh∆t)(
∥∥∥un,ih ∥∥∥2

Ωnh

+
∥∥un,eh ∥∥2

Ωn−1
h

) + ν∆t(
∥∥∥∇un,ih ∥∥∥2

Ωnh

+
1

2

∥∥∇un,eh ∥∥2

Ωn−1
h

) +
∥∥∥un,ih − un−1

h

∥∥∥2

Ωnh

+ (1− 4C2h−2

ν
∆t)
∥∥∥un,eh − un−1

h

∥∥∥2

Ωn−1
h

+ 4∆tγs(s
n−1,2
h (un,eh , un,eh ) + sn,1h (un,ih , un,ih ))

≤
∥∥∥un−1

h

∥∥∥2

Ωnh

+
∥∥∥un−1

h

∥∥∥2

Ωn−1
h

(5.57)

Let 1− 4C2h−2

ν ∆t ≥ 0 i.e. ∆t ≤ ν
4C2h−2 = 2Cνh

2 we have

(1− 4C2h−2

ν
∆t)
∥∥∥un,eh − un−1

h

∥∥∥2

Ωn−1
h

≥ 0. (5.58)

Since
∥∥∥un,ih − un−1

h

∥∥∥2

Ωnh

≥ 0, (5.57) can be written as

(1− 2∆tξh)(
∥∥∥un,ih ∥∥∥2

Ωnh

+
∥∥un,eh ∥∥2

Ωn−1
h

) +
ν

2
∆t(2

∥∥∥∇un,ih ∥∥∥2

Ωnh

+
∥∥∇un,eh ∥∥2

Ωn−1
h

)

+ 4∆tγs(s
n−1,2
h (un,eh , un,eh ) + sn,1h (un,ih , un,ih )) ≤

∥∥∥un−1
h

∥∥∥2

Ωnh

+
∥∥∥un−1

h

∥∥∥2

Ωn−1
h

(5.59)

Since unh =
un,ih +un,eh

2 ,

2‖unh‖2Ωnh ≤
∥∥∥un,ih ∥∥∥2

Ωnh

+
∥∥un,eh ∥∥2

Ωnh
(5.60a)

2‖∇unh‖2Ωnh ≤
∥∥∥∇un,ih ∥∥∥2

Ωnh

+
∥∥∇un,eh ∥∥2

Ωnh
(5.60b)

(5.59) can be written as

(1− 2ξh∆t)2‖unh‖2Ωnh + ν∆t‖∇unh‖2Ωnh + 4∆tγs(s
n−1,2
h (un,eh , un,eh ) + sn,1h (un,ih , un,ih ))

≤
∥∥∥un−1

h

∥∥∥2

Ωnh

+
∥∥∥un−1

h

∥∥∥2

Ωn−1

(5.61)

Applying Lemma (2) to (5.61) we obtain

(1− 2ξh∆t)‖unh‖2Ωnh +
1

2
ν∆t‖∇unh‖2Ωnh + 2∆tγs(s

n−1,2
h (un,eh , un,eh ) + sn,1h (un,ih , un,ih ))

≤ 1

2
(
∥∥∥un−1

h

∥∥∥2

Ωnh

+
∥∥∥un−1

h

∥∥∥2

Ωn−1
h

) ≤ 1

2
(
∥∥∥un−1

h

∥∥∥2

Oδh (Ωn−1
h )

+
∥∥∥un−1

h

∥∥∥2

Ωn−1
h

)

≤ (1 +
cL2a

(ε)∆t

2
)
∥∥∥un−1

h

∥∥∥2

Ωn−1
h

+
1

2
cL2b

(ε)∆tν
∥∥∥∇un−1

h

∥∥∥2

Ωn−1
h

+
1

2
cL2c

(ε, h)∆tKsn−1
h (un−1

h , un−1
h )

(5.62)
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We choose ε ≤ ν
2cL2

cδhw
n
∞

so that cL2b
(ε) ≤ 1

2 and cL2a(ε) and cL2c(ε, h) are bounded independent
of h and ∆t. We assume γs ≥ cL2cK and summ up over n = 1, 2, ..., k, k ≤ N yields

∥∥∥ukh∥∥∥2

Ωkh

+
1

4
ν∆t

k∑
n=1

‖∇unh‖2Ωnh + ∆tγs

k∑
n=1

(sn−1,2
h (un,eh , un,eh ) + sn,1h (un,ih , un,ih ))

≤
∥∥∥u0

h

∥∥∥2

Ω0
h

+ (
cL2a

(ε)

2
+ 2ξh)∆t

k−1∑
n=0

‖unh‖2Ωnh +
1

4
∆tν

∥∥∥∇u0
h

∥∥∥2

Ω0
h

+
1

2
γs∆ts

0
h(u0

h, u
0
h)

(5.63)

We apply Gronwall’s Lemma with ξh∆t ≤ 1
4 and obtain the result with cT1

=
cL2a

(ε)

2 + 2ξh.





Chapter 6

Numerical Experiments

In this section, we present numerical experiments for higher order stabilized time stepping mehtods
proposed and analyzed in the last chapters.

6.1 Setup

In all numerical experiment we use a bilinear form which is slightly different with the bilinear
form used in the analysis section, it is given as

anh(uh, vh) =

∫
Ωnh

ν∇uh · ∇vhdx+

∫
Ωnh

(we · ∇uh)vh +

∫
Ωnh

div(we)uhvhdx (6.1)

We also use a right hand side source term

f(vh) :=

∫
Ωnh

fvhdx. (6.2)

All the implementations are done in ngsxfem [15] which is an Add-on package for unfitted FEM in
the general purpose finite element solver Netgen/NGSolve.

In numerical experiments, the discrete domains Ωnh are approximated by an interpolation φnh
of a level set φ(tn) i.e. Ωnh := {φnh < 0}. The strip domains S±l·δh can be realized by a level set
{|φnh|≤ l · δh}which is a approximate signed distance function.

6.2 Example: Traveling circle

We consider a circle
Ωt = {x ∈ R2 : φ(x, t) < 0} (6.3)

57
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as moving domain traveling with a time-dependent velocity field that is constant in space through
a background mesh, where

φ(x, t) =
∥∥x− ρ(x, t)

∥∥−R0

ρ(x, t) = (
1

π
sin(2πt), 0)T

w(x, t) = ∂tρ(x, t)

(6.4)

with R0 = 0.5. Fixing the background domain Ω̃ = (−1.2, 1.2) × (−1, 1) we consider the time
interval [0, T ] with T = 0.5 for implicit stabilized time stepping mehtods and T = 0.1 for explcit
stabilized time stepping method.

For the simplicity, we set the parameter ν = 1 and the extended solution is given as

ue(x, t) = cos2(
π

2R0

∥∥x− ρ(x, t)
∥∥

2
) (6.5)

which fullfills the flux boundary condition given in chapter 2. We set mesh size h = 0.2 and
∆t ∈ { 1

16 ,
1
32 ,

1
64 ,

1
128 ,

1
256} for stabilized implicit Euler time stepping method, stabilized BDF2

time stepping method and stabilized BDF3 time stepping method. Due to Theorem 2, we have
∆t ≤ Cνh2, therefore we set mesh size h = 0.2 and ∆t ∈ { 1

256 ,
1

512 ,
1

1024 ,
1

2048 ,
1

4096 ,
1

8192 ,
1

16384} for
stablized explicit Euler time stepping method. We compute asymptotical convergence rates in
space and time by "experimental order of convergence" as

order =
Log(error1)− Log(error2)

Log(∆h1)− Log(∆h2)
(6.6)

6.2.1 Convergence in space and time

We consider the errors in the discrete space-time errors

∥∥uh − ue
∥∥
L2(L2)

:=

N∑
n=1

∆t
∥∥uh − ue

∥∥2

Ωnh
. (6.7)

The results are given in the form of Tables. The columns represent the different levels of space
refinements. The rows represent the different levels of time refinements. The last column shows
the experimental order of convergence with respect to time refinements on the fines spacial mesh.
Similarly, the second last row shows the experimental order of convergence in space with respect
to the smallest time step. The last row for stabilized implicit Euler time stepping method shows
the experimental order of convergence with respect to space refinement on each level and time
refinement on each two levels. The last row for stabilized BDF2 and BDF3 time stepping methods
shows the experimental order of convergence with respect to both time and space refinements
on each level. We also add the eoc of combined refinement on each space level and 3 levels of
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Lt ↓ Lx → 0 1 2 eoct
0 2.2× 10−2 1.6× 10−2 1.6× 10−2 -
1 2.0× 10−2 9.2× 10−3 8.3× 10−3 0.95
2 1.9× 10−2 6.2× 10−3 4.5× 10−3 0.92
3 1.9× 10−2 5.2× 10−3 2.5× 10−3 0.90
4 1.9× 10−2 4.9× 10−3 1.7× 10−3 0.81
eocx - 1.96 1.53
eocxtt - 0.91 0.93

Table 6.1: L2(L2) error for stabilized implicit Euler time stepping method

Lt ↓ Lx → 0 1 2 3 eoct
0 1.4× 10−2 7.0× 10−3 6.3× 10−3 6.2× 10−3 -
1 1.3× 10−2 4.2× 10−3 2.5× 10−3 2.2× 10−3 1.49
2 1.3× 10−2 3.4× 10−3 1.2× 10−3 7.6× 10−4 1.53
3 1.3× 10−2 3.2× 10−3 8.9× 10−4 3.2× 10−4 1.25
eocx - 2.02 1.85 1.48
eocxt - 1.74 1.80 1.91

Table 6.2: L2(L2) error for BDF2 stabilized time stepping method

refinements in time eocxttt for stabilized explicit Euler time stepping method.

Results of implicit methods

I. In Table 6.1 we display the L2(L2) norm for the 5 different time levels and 3 different space
levels and corresponding eocs for stabilized implicit Euler time stepping method. We observe
that the convergence‖uh − ue‖L2(L2) ≤ h2 + ∆t.

II. In Table 6.2 we display the L2(L2) norm for four different time and space levels and corre-
sponding eocs for stabilized BDF2 time stepping method. We observe that the convergence
‖uh − ue‖L2(L2) ≤ h2 + ∆t2 and there is an improved rate in time.

III. In Table 6.3 we display the L2(L2) norm for the four different time and space levels and cor-
responding eocs for stabilized BDF3 time stepping method. We observe that the convergence
‖uh − ue‖L2(L2) ≤ h2 + ∆t3.

Results of explicit methods

In Table 6.4 we display the the L2(L2) norm for the 7 different time levels and 3 different
space levels and corresponding eocs for stabilized explicit Euler time stepping method. We
observe that the method tends to be stable after refining time on 6 levels and space on 2 levels.
We find that the convergence behavior in space is better than the convergence behavior in
time. We expect that the convergence can be‖uh − ue‖L2(L2) ≤ h2+∆t after more refinements
on time and space, but it may lead to much cost on computation.
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Lt ↓ Lx → 0 1 2 3 eoct
0 2.4× 10−2 1.3× 10−2 1.1× 10−2 1.0× 10−2 -
1 2.1× 10−2 6.4× 10−3 3.4× 10−3 2.7× 10−3 1.89
2 2.0× 10−2 5.0× 10−3 1.5× 10−3 6.0× 10−4 2.17
3 2.0× 10−2 4.9× 10−3 1.2× 10−3 3.3× 10−4 0.86
eocx - 2.03 2.03 1.86
eocxt - 1.91 2.09 2.18

Table 6.3: L2(L2) error for stabilized BDF3 time stepping method

Lt ↓ Lx → 0 1 2 eoct
0 1.0× 10−1 - - -
1 1.2× 10−1 - - -
2 1.5× 10−1 - - -
3 1.7× 10−1 3.3× 10−2 - -
4 2.0× 10−1 4.0× 10−2 - -
5 2.1× 10−1 4.6× 10−2 6.8× 10−3 -
6 2.1× 10−1 5.1× 10−2 8.1× 10−3 -

eocx - 2.04 2.65
eocxttt - 1.60 2.03

Table 6.4: L2(L2) error for stabilized explicit Euler time stepping method
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Chapter 7

Conclusion

In this thesis we have introduced some higher order unfitted finite element methods for solving
PDEs posed on moving domains. The numerical methods are based on a standard geometrically
unfitted finite element with a stabilization term for space discretization and higher order time
discretizations such as BDF2, BDF3 methods and tripezoidal rules. In the analysis, We give a full
stability analysis on stabilized BDF2 and explicit time stepping mehtods. We also give a reasonable
argument on the stability analysis on tripezoidal rules for moving domains.

For the implementation, we were able to derive optimal order error bounds in the L2 norm for
BDF2 and BDF3 stabilized time stepping methods. We also presented a interesting result of
stabilized explicit Euler time stepping method.

Open Problems

I. In the numerical experiments we only implement BDF2, BDf3 and explicit stabilized time
stepping methods. We are intereted in implementing tripezoidal rules and want to expect to
obatin an interesting and reasonable result.

II. We only consider a simple model problem, travelling circle. Many applications involve more
complex problems, e.g. random travelling object with random change of shape and two-
phase Navier-Stokes equations,etc. An extension of this method to those complex problems
will be challenging and interesting, it should be investigated and analyzed in the future.

III. The numerical example we have treated is only in 2D simple model, hence it is a clearly
challenge to implement a 3D simple model and extend it to a 3D comlex model. It will be an
interesting task and worth pursuing.
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