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Abstract

In the present thesis a new numerical method for the simulation of mass transport in
an incompressible immiscible two-phase flow system is presented. The mathematical
model consists of convection diffusion equations on moving domains which are coupled
through interface conditions. One of those conditions, the Henry interface condition,
prescribes a jump discontinuity of the solution across the moving interface. For the
description of the interface position and its evolution we consider interface capturing
methods, for instance the level set method. In those methods the mesh is not aligned
to the evolving interface such that the interface intersects mesh elements. Hence, the
moving discontinuity is located within individual elements which makes the numerical
treatment challenging.

The discretization presented in this thesis is based on essentially three core components.
The first component is an enrichment with an extended finite element (XFEM) space
which provides the possibility to approximate discontinuous quantities accurately without
the need for aligned meshes. This enrichment, however, does not respect the Henry
interface condition. The second component cures this issue by imposing the interface
condition in a weak sense into the discrete variational formulation of the finite element
method. To this end a variant of the Nitsche technique is applied. For a stationary
interface the combination of both techniques offers a good way to provide a reliable
method for the simulation of mass transport in two-phase flows. However, the most
difficult aspect of the problem is the fact that the interface is typically not stationary, but
moving in time. The numerical treatment of the moving discontinuity requires special
care. For this purpose a space-time variational formulation, the third core component
of this thesis, is introduced and combined with the first two components: the XFEM
enrichment and the Nitsche technique. In this thesis we present the components and
the resulting methods one after another, for stationary and non-stationary interfaces.
We analyze the methods with respect to accuracy and stability and discuss important
properties.

For the case of a stationary interface the combination of an XFEM enrichment and the
Nitsche technique, the Nitsche-XFEM method, has been introduced by other authors.
Their method, however, lacks stability in case of dominating convection. We combine
the Nitsche-XFEM method with the Streamline Diffusion technique to provide a stable
method also for convection dominated problems. We further discuss the conditioning of
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the linear systems arising from Nitsche-XFEM discretizations which can be extremely
ill-conditioned.

For the case of a moving interface we propose a space-time Galerkin formulation with
trial and test functions which are discontinuous in time and combine this approach
with an XFEM enrichment and a Nitsche technique resulting in the Space-Time-DG
Nitsche-XFEM method. This method is new. We present an error analysis and discuss
implementation aspects like the numerical integration on arising space-time geome-
tries.

The aforementioned methods have been implemented in the software packages DROPS

for the spatially three-dimensional case. The correctness of the implementation and
the accuracy of the method is analyzed for test cases. Finally, we consider the coupled
simulation of mass transport and fluid dynamics for realistic scenarios.
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Zusammenfassung

In der vorliegenden Arbeit wird eine neue numerische Methode für die Simulation von
Stofftransportprozessen in inkompressiblen unvermischbaren Zweiphasen-Strömungen
vorgestellt. Das mathematische Modell für den Stofftransport besteht hierbei aus Kon-
vektions-Diffusions-Gleichungen auf sich bewegenden Gebieten, welche durch Übergangs-
bedingungen an der Phasengrenze miteinander gekoppelt sind. Eine dieser Bedingungen,
die Henry-Bedingung, schreibt eine Sprung-Unstetigkeit der Lösung über die Phasengrenze
vor. Zur Beschreibung der Phasengrenze und ihrer Entwicklung in der Zeit werden so
genannte “interface capturing” Methoden betrachtet, zum Beispiel die Levelset-Methode.
Bei diesen Methoden ist das Rechengitter nicht an die sich bewegende Phasengrenze
angepasst, sodass die Phasengrenze einzelne Elemente schneidet. Unstetigkeiten bewegen
sich also innerhalb einzelner Elemente, was die numerische Behandlung anspruchsvoll
macht.

Die in dieser Arbeit vorgestellte Methode basiert auf drei Kernkomponenten. Die
erste Komponente ist ein erweiterter Finite-Elemente-Raum (XFEM). Dieser ermöglicht
es Unstetigkeiten genau darzustellen ohne auf Gitter angewiesen zu sein, welche an
die Phasengrenze angepasst sind. Die hierfür verwendete Anreicherung berücksichtigt
jedoch nicht die Sprung-Bedingung an der Phasengrenze. Die zweite Komponente der
Methode, eine Variante der Nitsche-Methode, löst dieses Problem. Die Bedingung an der
Phasengrenze wird hierbei im Rahmen der diskreten Variationsformulierung der Finite-
Elemente-Methode in einem schwachen Sinn gefordert. Für eine stationäre Phasengrenze
bietet die Kombination beider Techniken eine gute Herangehensweise, um eine zuverlässige
Methode zur Simulation des Stofftransports in Zweiphasenströmungen zu erhalten. Der
schwierigste Aspekt an dem betrachteten Problem ist jedoch die Tatsache, dass die
Phasengrenze in der Regel nicht stationär ist, sondern sich mit der Zeit bewegt. Die
numerische Behandlung von sich bewegenden Unstetigkeiten erfordert besondere Sorgfalt.
Zu diesem Zweck wird eine Variationsformulierung in Raum-Zeit eingeführt, welche die
dritte Kernkomponente unserer Methode darstellt. Die Kombination mit den ersten
beiden Komponenten führt zu einer robusten Methode mit hoher Genauigkeit.

Für den Fall einer stationären Phasengrenze wurde die Kombination aus XFEM-An-
reicherung und Nitsche-Methode, die Nitsche-XFEM-Methode, bereits von anderen
Autoren eingeführt. Diese Methode ist jedoch nicht stabil im konvektions-dominierten
Fall. Um auch im Fall dominierender Konvektion eine stabile Methode zu erhalten, wird
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die Nitsche-XFEM-Methode mit der Streamline-Diffusion-Technik kombiniert. Darüber-
hinaus wird die Kondition linearer Gleichungssysteme diskutiert, die aus Diskretisierungen
mit der Nitsche-XFEM-Methode entstehen und extrem schlecht konditioniert sein können.
Für den Fall einer sich bewegenden Phasengrenze wird eine Galerkin-Formulierung
in Raum-Zeit eingeführt, bei der Ansatz- und Testfunktionen verwendet werden, die
unstetig in der Zeit sind. Diese Formulierung wird mit einer XFEM-Anreicherung und
der Nitsche-Methode kombiniert und resultiert in der Space-Time-DG-Nitsche-XFEM-
Methode. Die Methode wird mitsamt einer zugehörigen Fehleranalyse vorgestellt und
Implementierungsaspekte werden diskutiert.

Die behandelten Methoden wurden in dem Softwarepaket DROPS für den dreidimensionalen
Fall implementiert. Die Korrektheit der Implementierung und die Genauigkeit des
Verfahrens wird anhand von Testproblemen analysiert. Abschließend wird die gekoppelte
Simulation des Stofftransports und der Fluiddynamik für ein realistisches Szenario
betrachtet.
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CHAPTER 1

Introduction

1.1 Motivation

In many industrial applications mass transfer from one fluid into another is an important
process. In operations like extraction, gas scrubbing and waste water treatment the
transfer of a certain species from one fluid into another is desired as efficient as possible.
The design of technical installations and reactors requires detailed knowledge of fluid
properties such as the shape of the interface between the fluids, the interfacial forces,
main flow patterns, distribution of the phases and many more. Further, to optimize mass
transfer units a profound knowledge of the mass transport processes, especially close to
the interface, is imperative.

Direct numerical simulations are useful tools to evaluate and optimize the design of
multiphase units. However, the development of reliable and accurate numerical methods
is still challenging and is the topic of ongoing research. In the past decades various
methods for the simulation of the fluid dynamics in such two-phase flow systems have
been developed, e.g. the level set method [OS88, SSO94, Set99] or the Volume of Fluid
(VoF) method [NW76, HN81].

In this thesis we focus on the discussion of numerical methods for a mass transport
model in incompressible immiscible two-phase flows based on an interface description
with interface capturing methods as the level set or Volume of Fluid method. This
leads to an implicit description of the interface with a computational mesh which is not
aligned to the fluid interface. This is in contrast to interface tracking methods, such
as the Arbitrary Lagrangian-Eulerian description [Beh01, DHPRF04], where an explicit
description of the interface is used.

In this thesis we describe new numerical methods for the simulation of mass transport
problems within two-phase flows for stationary and non-stationary interfaces. The
demanding aspect of the mass transport problem in two-phase flows results from the fact
that the equations within the separate phases are coupled through interface conditions
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1 Introduction

which prescribe the conservation of mass and Henry’s law. The latter leads to a jump
discontinuity of the solution across the interface.

For unfitted interface problems with only weak discontinuities, i.e. problems where the
solution is continuous but can have kinks across the interface, a finite element method
based on the extended finite element (XFEM) method and the Nitsche technique, the
Nitsche-XFEM method, has been proposed in the original paper [HH02]. In this paper a
stationary problem without convection is considered. In [Ngu09, RN09] this method has
been extended to unsteady problems including convection and solutions with a jump-
discontinuity. However, in these publications the interface is assumed to be stationary
and diffusion is assumed to be dominating.

The main achievements of this thesis are the extension of existing methods and the
development of new methods for this class of unfitted interface problems :

• For the case of dominating convection and a stationary interface we derive a convec-
tion stabilized formulation of the Nitsche-XFEM method utilizing the Streamline
Diffusion method [HB79, HB82, DH03]. We discuss the interplay between the
Nitsche-XFEM method and the Streamline Diffusion method and prove quasi-
optimal error bounds. The theoretical predictions are confirmed by numerical
experiments which are discussed.

• In the literature for the Nitsche-XFEM method the problem of conditioning of the
arising linear systems is rarely discussed. We investigate the performance of simple
preconditioning techniques and develop a new, more sophisticated preconditioner for
elliptic interface problems which is optimal in the following sense: The application
of the preconditioner has only linear complexity and we can prove condition number
bounds which are independent of the mesh size h and the position of the interface.

• A major contribution of the work is related to the moving interface case. We
propose a space-time Galerkin formulation with trial and test functions which are
discontinuous in time and combine this approach with an XFEM enrichment and
a Nitsche technique. The resulting method is new. We present an error analysis
which results in a proven second order error estimate in space and time which is
confirmed by numerical examples.

• An implementation of the space-time method requires the numerical integration
on four-dimensional geometries which are possibly cut by the implicitly described
interface. The treatment of implicit domain descriptions for the numerical inte-
gration in space-time for the spatially three-dimensional case is not discussed in
the literature. We propose a solution strategy based on an approximation of the
(space-time) interface which allows for an explicit representation. The strategy
contains new decomposition rules for four-dimensional geometries.
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1.2 Mass transport model

In this chapter we introduce the model for the mass transport in two-phase flows
(section 1.2) and explain the key challenges for the numerical discretization arising from
it (section 1.3). In section 1.4 we give an outline of the remainder of the thesis.

1.2 Mass transport model

In this section we derive a mathematical model for the transport of solute species within
an incompressible immiscible two-phase flow. The remainder of this thesis discusses
the numerical treatment of this model. We describe the physical balance laws for the
species that are considered within the fluids and across the interface. We formulate a
mathematical model and discuss a reformulation of the problem.

At this point, we do not discuss the fluid dynamics of incompressible immiscible two-
phase flows but focus on the model for the species transport. In chapter 5, in the
context of complex flows, the fluid dynamics and a suitable numerical discretization is
discussed.

1.2.1 Balance laws

Γ

Ω1

Ω2

Γ

Ω1

Ω2

Figure 1.2.1: Sketch of two phases.

Consider the concentration u of a soluble species inside two immiscible incompressible
fluids. The fluids are immiscible, contained in the domain Ω and separated by an interface.
In reality, there is a transition layer from one phase into the other. In this layer a mixture
of both species exists. However, the thickness of such a layer is in the order of several
nanometers whereas the domain of interest is typically in the order of millimeters or
larger. The resolution of the transition layer is most often circumvented by considering a
sharp interface model where the transition layer thickness is assumed to be zero and the
interface Γ is a lower dimensional manifold. The interface Γ divides Ω into two disjoint
parts, Ω1 and Ω2. One fluid is contained in Ω1 whereas the other is contained in Ω2.
There obviously holds Γ = Ω1 ∩ Ω2.
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1 Introduction

In this thesis we make the following assumption.
Assumption 1.2.1 (Species conservation across the interface). We assume that the
species does not adhere to the interface and no chemical reactions take place at the
interface.

Inside each of the domains the concentration is transported via convection and molecular
diffusion. At the (possibly) moving interface we pose two conditions that we discuss
next.

The amount of a species u has to be conserved through the interface. As the two fluids
are immiscible and we do not consider phase transition, the fluid velocities normal to
the interface of the bulk phases coincide at the interface and determine the interface
motion. The relative velocity of the fluid w.r.t. the interface velocity is zero in the normal
direction n of the interface. Hence, the transport of species through the interface is only
driven by diffusion. We apply Fick’s law to model the flux due to molecular diffusion
and together with the conservation of mass arrive at the first interface condition

α1∇u1 · n = α2∇u2 · n

with the diffusivity constants α1 and α2 of the two fluids. Here n = n1 is the outer normal
on Γ pointing from Ω1 to Ω2. In general we have α1 6= α2. The second interface condition
is the Henry interface condition, that results from a constitutive law known as Henry’s
law. Henry’s law assumes that chemical potentials from both sites are in balance, i.e. an
instantaneous thermodynamical equilibrium is assumed. This assumption is reasonable
as long as kinetic processes at the interface are sufficiently fast. Then, Henry’s law states
that the concentrations at the interface are proportional to the partial pressure of the
species in the fluids p = βiui with constants βi which depend on the solute, the solvent
and the temperature. Using these constants Henry’s law reads as

β1u1 = β2u2.

For further details on the modeling we refer to [Ish75, SAC97, SSO07]. The Henry
interface condition leads to a discontinuity of the quantity u across the (evolving)
interface as we typically have β1 6= β2. Inside the fluid phases we use the same model
for the diffusion as before (Fick’s law) and end up with a linear convection-diffusion
model:

∂tu− div(α∇u) + w · ∇u = f

with f a source term which is typically zero in most applications and w the fluid velocity.
At the boundary of the domain we prescribe the concentration (Dirichlet boundary
conditions) or linear conditions on the flux (Neumann-type boundary conditions).

1.2.2 Mathematical model

All together we arrive at the following model posed on a domain Ω in the time interval
(0, T ]. In the remainder of this thesis we assume that Ω is a simple domain, for instance
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1.2 Mass transport model

a convex polygon. Note that due to the motion of the interface the domains Ωi, i = 1, 2
and the interface Γ depend on time. We sum up the previous balances and conditions:

• bulk equations:

∂tu+ w · ∇u− div(αi∇u) = f in Ωi(t), i = 1, 2, t ∈ (0, T ], (1.2.1a)

• interface conditions:

[[α∇u · n]] = 0 on Γ(t), t ∈ (0, T ], (1.2.1b)

[[βu]] = 0 on Γ(t), t ∈ (0, T ], (1.2.1c)

• initial conditions:

u(·, 0) =u0 in Ωi(0), i = 1, 2, (1.2.1d)

• boundary conditions:

u(·, t) =uD on ∂ΩD, t ∈ (0, T ], (1.2.1e)

α∇u(·, t) · n = gN on ∂ΩN , t ∈ (0, T ], (1.2.1f)

with the jump operator [[·]] at the interface Γ defined as

[[v(x)]] = lim
s→0+

v(x + s · n)− lim
s→0+

v(x− s · n),x ∈ Γ(t), t ∈ (0, T ]. (1.2.2)

The concentration u is double-valued at the interface. To distinguish between those
values we introduce the notation ui := u|Ωi such that

[[βu]] = β1u1 − β2u2 and [[α∇u · n]] =
2∑

i=1

αi∇ui · ni.

Here ni denote the outer normal of Ωi.

Although the discretization methods discussed in this work allow for the boundary
conditions (1.2.1e), (1.2.1f) and linear combinations (Robin-type boundary conditions),
we will mostly restrict ourselves to Dirichlet boundary conditions and set ∂Ω = ∂ΩD.
Assumption 1.2.2 (βi ≥ 1). Scaling the solubilities βi with the same constant c in both
domains does not change the solution. In the following we set βmax = max{β1, β2} and
βmin = min{β1, β2} and assume βmin = 1.
Assumption 1.2.3 (moderate ratios of β). If not addressed otherwise we further assume
that the solubilities in the domains are in the same order of magnitude, i.e. we assume
βmax/βmin = O(1).
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1 Introduction

We assumed that mass transport through the interface is only caused by diffusive transfer.
Therefore we make the following assumption on the velocity field w:
Assumption 1.2.4 (compatible velocity). The velocity field is assumed to originate
from an incompressible flow. Further the interface motion in normal direction, denoted
by V · n, has to coincide with the convective velocity w ∈ H(div,Ω):

− div w = 0 in Ωi, i = 1, 2, w · n = V · n at Γ (1.2.3)

Further we assume that the velocity is bounded in the L∞-norm:

|w|∞ := ‖w‖L∞(Ω) ≤ c <∞ (1.2.4)

1.2.3 A reformulation

To get rid of the discontinuity at the interface one can consider an equivalent problem by
substituting ũ = βu. This formulation is sometimes used in the literature.

β−1∂tũ+ w̃ · ∇ũ− div(α̃∇ũ) = f in Ωi, i = 1, 2, t ∈ (0, T ], (1.2.5a)

[[α̃∇ũ · n]]Γ = 0, (1.2.5b)

[[ũ]]Γ = 0, (1.2.5c)

ũ(·, 0) = ũ0 in Ωi(0), i = 1, 2, (1.2.5d)

ũ(·, t) = ũD on ∂Ω, t ∈ (0, T ]. (1.2.5e)

Problem 1.2.1.

with w̃ = β−1w, α̃ = β−1α, ũ0 = β−1u0 and ũD = β−1uD. The quantity ũ is obviously
continuous in Ω but can still have a kink (discontinuity in the derivative) across the
interface. The reformulation comes at the price of having a β−1-scaled time derivative
and a discontinuous velocity w̃. For the stationary case where w̃ ·n = 0 on Γ and ∂tu = 0
in Ω this reformulation can help simplifying the problem. The reformulation reduces the
problem of having a discontinuity and a kink to a problem with a continuous solution
and a kink across the interface.

1.2.4 Eulerian description

In fluid dynamics a specification of the balance laws which is based on specific fixed
locations in space is called Eulerian. The counterpart of an Eulerian description is the
Lagrangian specification where the balances are formulated relative to a fluid parcel
which moves through space and time following the flow field.

Both (and mixed) formulations are used to derive different discretization methods for flow
problems. Discretizations based on a Lagrangian description offer a natural treatment
for problems with moving boundaries or interfaces. However, Lagrangian methods have
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1.3 Numerical challenges

significant drawbacks if deformations get large or topologies change. These issues can be
overcome by Eulerian methods. However, the discretization of problems with moving
boundaries or interfaces in an Eulerian frame is difficult. A major component of the
numerical difficulties discussed in this work arises from the fact that we consider the
problem in an Eulerian framework with an implicit description of the interface. In contrast
to methods which are based on a Lagrangian formulation at the interface, e.g. a full
Lagrangian method or an Arbitrary-Lagrangian-Eulerian formulation (cf. section 3.1.2),
the computational mesh is not adapted to fit the interface. As a consequence the interface
and thus the discontinuity of the concentration lies or even moves inside a computational
element rather than coinciding with element facets.

1.3 Numerical challenges

We briefly summarize the key issues for the numerical solution of mass transport problems
in two-phase flows with an implicit description of the interface.

Discontinuous solutions across an unfitted interface. Due to the Henry interface
condition the solution of the considered mass transport problem is discontinuous across
the interface. Further, the interface is described only implicitly. Hence, the solution
has a discontinuity the position of which lies within discretization elements. Standard
piecewise polynomial ansatz functions have only a very poor approximation quality in
such a situation. For the approximation of functions which are discontinuous across the
interface we use an extended finite element (XFEM) space.

The interface is moving in time through the mesh and thus the discontinuity is also
moving through the mesh. The application of standard time integration techniques such
as the method of lines rely on solutions which are continuous in time and hence the
method of lines is not applicable. We introduce a space-time formulation to solve this
problem.

Integration on implicitly defined geometries. Finite element discretizations defined
on unfitted meshes utilizing an implicit description of the interface at some point define
integrals on the separated sub-domains and the interface. The numerical approximation
of these integrals needs special solution strategies. Especially the case of intersected
four-dimensional prisms stemming from a space-time formulation requires new strategies.

Convection is dominating in many applications. In many applications diffusion is
small compared to convection. This can lead to very thin boundary layers close to the
interface which can be difficult to resolve numerically. Further, standard finite element
discretizations are known to have stability problems if convection dominates. To handle
also convection dominated problems stabilization techniques are necessary.
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1.4 Outline of the thesis

The thesis is organized as follows.

• In chapter 2 we discuss the special case of a stationary interface. In that case the
interface and the separated sub-domains are independent of time. We introduce a
spatial discretization combining two techniques, which we introduce successively:
the extended finite element method (XFEM) for the approximation of discontinuous
quantities and the Nitsche method for the (weak) imposition of interface conditions.
A convection stabilization of the resulting method for the convection dominated case
is added using the concept of Streamline Diffusion methods and a corresponding
error analysis is carried out. We further discuss preconditioners for this special
method and propose a preconditioner the optimality of which we prove for elliptic
unfitted interface problems. The chapter concludes with the discussion of numerical
examples for the presented discretization methods and preconditioners.

• In chapter 3 we consider the more challenging case of a moving interface. To
account for the moving interface in the discretization we combine the discretization
techniques applied to the stationary problem with a space-time finite element
formulation. The method is derived and an error analysis is carried out which
guarantees second order convergence in space and time. We further discuss the
problem of preconditioning and evaluate the method on interesting numerical
examples.

• In chapter 4 we discuss the topic of numerical integration. The interface in the
setting of this work is typically not given explicitly, but implicitly, for instance as the
zero level of a level set function. The finite element formulations for the considered
methods, however, require a robust and accurate evaluation of integrals on the
interface and the particular sub-domains. An approximation of the interface is
constructed which allows for an explicit representation. This explicit representation
can then be used to obtain polygonal subdomains and interfaces on which numerical
integration is applied. The approximation and the numerical integration is especially
challenging for the space-time method introduced in chapter 3 if the spatial domain
is three-dimensional. In that case, the arising geometries are four-dimensional and
the numerical treatment of the arising polygonal domains is non-standard. We
propose a solution strategy for this problem.

• In chapter 5 we consider realistic two-phase flow problems. Numerical methods
for the solution of the fluid dynamics of incompressible immiscible two-phase flows
are briefly introduced and simulation results for a two-phase flow problem without
mass transport as well as a coupled fluid dynamics problem with mass transport
are presented and discussed.

• In chapter 6 we summarize the main results of this thesis and discuss open
questions and future perspectives.
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CHAPTER 2

Mass transport through a stationary interface

A special case of the problem in (1.2.1) is the case of a stationary interface where
the domains and the interface do not depend on time. In this chapter we discuss
the discretization of the mass transport problem in an unfitted setting for a stationary
interface, that means that the triangulation is not aligned to the stationary interface.

Outline of this chapter

In section 2.1 the mathematical model is presented and a well-posed weak formulation
of this model is given. Section 2.2 discusses the arising numerical challenges for the
discretization and presents an approach to solve the problem numerically. A corresponding
a priori error analysis is presented in section 2.3. One interesting aspect of the Nitsche-
XFEM method presented in section 2.2 is the fact, that the arising linear systems can
become very ill-conditioned. In section 2.4 we will discuss the conditioning of the linear
systems and present solution strategies. We conclude the chapter with numerical examples
in section 2.5.

2.1 Problem description

We consider the problem in (1.2.1) for a stationary interface Γ(t) = Γ.

∂tu+ w · ∇u− div(α∇u) = f in Ωi, i = 1, 2, t ∈ [0, T ], (2.1.1a)

[[α∇u · n]]Γ = 0 on Γ, t ∈ [0, T ], (2.1.1b)

[[βu]]Γ = 0 on Γ, t ∈ [0, T ], (2.1.1c)

u(·, 0) =u0 in Ωi, i = 1, 2, (2.1.1d)

u(·, t) = gD on ∂Ω, t ∈ [0, T ]. (2.1.1e)

Problem 2.1.1.
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2 Mass transport through a stationary interface

Note that due to assumption 1.2.4 (compatible velocity) we require w · n = 0 on Γ and
div w = 0 in Ωi, i = 1, 2. In the next subsections we introduce simplified problems which
are later used to facilitate the presentation of the discretizations and their key properties
in section 2.2. Further we introduce a well-posed weak formulation of the problem 2.1.1
and the simplified versions.

2.1.1 Simplified problems

We introduce two simplified problems which are stationary versions of problem 2.1.1
(with ∂tu = 0). The simplest problem further neglects convection.

2.1.1.1 Two-domain stationary convection-diffusion equation

A stationary solution to problem 2.1.1 solves

w · ∇u− div(α∇u) = f in Ωi, i = 1, 2, (2.1.2a)

[[α∇u · n]]Γ = 0 on Γ, (2.1.2b)

[[βu]]Γ = 0 on Γ, (2.1.2c)

u = gD on ∂Ω. (2.1.2d)

Problem 2.1.2.

This problem, at least with an unfitted interface, is rarely discussed in the literature,
especially when convection dominates.

2.1.1.2 Two-domain Poisson equation

The simplest version of problem 2.1.1 is obtained by considering a stationary problem
without convection:

− div(α∇u) = f in Ωi, i = 1, 2, (2.1.3a)

[[α∇u · n]]Γ = 0 on Γ, (2.1.3b)

[[βu]]Γ = 0 on Γ, (2.1.3c)

u = gD on ∂Ω. (2.1.3d)

Problem 2.1.3.

For β1 = β2 (or after reformulation as in section 1.2.3) the problem is a standard interface
problem in the literature.
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2.1 Problem description

Remark 2.1.1 (Interface problems). In the literature problems with material parameters
which are discontinuous across a given interface leading to discontinuities in the derivative
(kinks) or the function value itself (jumps) are called interface problems. For the
stationary cases ∂tu = 0, i.e. problems (2.1.3) and (2.1.2), we can apply the reformulation
from section 1.2.3 to get rid of the discontinuity. Such a reformulation allows to consider
many ideas and concepts from the literature which typically consider problems with
continuous solutions with discontinuous normal derivatives.

2.1.2 Weak formulation

In this section we discuss a well-posed weak formulation for problem 2.1.1 under reasonable
assumptions on the data. The discussion is kept brief. For a more thorough discussion
we refer to [RN09],[GR11, Chapter 10.2] and the references therein.

For simplicity we only consider homogeneous Dirichlet boundary conditions (gD = 0 in
problem 2.1.1). Since we restrict to the case of a stationary interface, the discontinuity
in the solution is located at a fixed position, independent of time t, which allows for a
rather standard weak formulation. In case of an evolving interface a space-time weak
formulation is more natural, cf. chapter 3.

We need the broken spaces

Hk(Ω1 ∪ Ω2) :={ v ∈ L2(Ω), v|Ωi ∈ Hk(Ωi), i = 1, 2}, k ∈ N (2.1.4)

H1
0 (Ω1 ∪ Ω2) :={ v ∈ H1(Ω1 ∪ Ω2), v|∂Ω = 0 }. (2.1.5)

To abbreviate notation we also write

Hk(Ω1,2) = Hk(Ω1 ∪ Ω2), H1
0 (Ω1,2) = H1

0 (Ω1 ∪ Ω2).

For v ∈ H1
0 (Ω1,2) we write vi := v|Ωi , i = 1, 2. Furthermore we define

L2
β(Ω) := L2(Ω), H1

0,β(Ω) := { v ∈ H1
0 (Ω1,2), [[βv]] = 0 on Γ}. (2.1.6)

Note that v ∈ H1
0,β(Ω) iff βv ∈ H1

0 (Ω). On L2
β(Ω) we use the scalar product

(u, v)0 := (βu, v)L2 =

∫

Ω

βuv dx, (2.1.7)

which is equivalent to the standard scalar product on L2(Ω). The corresponding norm
is denoted by ‖ · ‖0. For u, v ∈ H1(Ωi) we define (u, v)1,Ωi := βi

∫
Ωi
∇ui · ∇vi dx and

furthermore
(u, v)1,Ω1,2 := (u, v)1,Ω1 + (u, v)1,Ω2 , u, v ∈ H1(Ω1,2).

The corresponding semi-norm is denoted by | · |1,Ω1,2 and the norm is

‖ · ‖1,Ω1,2 :=
(
‖ · ‖2

0 + | · |21,Ω1,2

) 1
2 .
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2 Mass transport through a stationary interface

We emphasize that the norms ‖ · ‖0 and ‖ · ‖1,Ω1,2 depend on β. We define the bilinear
forms

a(u, v) :=(αu, v)1,Ω1,2 , u, v ∈ H1(Ω1,2), (2.1.8)

c(u, v) :=(w · ∇u, v)0, u, v ∈ H1(Ω1,2). (2.1.9)

Note that these are well-defined also for functions which do not fulfill the interface
conditions.

2.1.2.1 Weak formulation of stationary problem

We define the following weak formulation of problem 2.1.3. Let H−1
β (Ω) be the dual

space to H1
0,β(Ω) and assume f ∈ H−1

β (Ω). Find u ∈ H1
0,β(Ω), such that

a(u, v) + c(u, v) = 〈f, v〉 ∀ v ∈ H1
0,β(Ω) (2.1.10)

where 〈·, ·〉 denotes the duality pairing between H−1
β (Ω) and H1

0,β(Ω). For smooth data f
we assume the following regularity for the unique solution of (2.1.10)

‖u‖2,Ω1,2 ≤ c‖f‖0 (2.1.11)

for a constant c independent of f .

2.1.2.2 Weak formulation of non-stationary problem

The time derivative ∂tu is defined in a distributional sense using Bochner spaces, ∂tu ∈
L2(0, T ;H−1

β (Ω)) while we have u ∈ L2(0, T ;H1
0,β(Ω)). We introduce the following

space

W 1(0, T ;H1
0,β(Ω)) := { v ∈ L2(0, T ;H1

0,β(Ω)), ∂tv ∈ L2(0, T ;H−1
β (Ω)) }. (2.1.12)

There holds C([0, T ];L2
β(Ω)) ⊂ W 1(0, T ;H1

0,β(Ω)) so that initial values u(·, 0) = u0 are
well-defined. Consider the following weak formulation of the mass transport problem,
problem 2.1.1, for f ∈ H−1

β (Ω), u0 ∈ H1
0,β(Ω):

Determine u ∈ W 1(0, T ;H1
0,β(Ω)) such that u(·, 0) = u0 and for almost all t ∈ (0, T ):

〈∂tu, v〉+ a(u, v) + c(u, v) = 〈f, v〉 for all v ∈ H1
0,β(Ω). (2.1.13)

The weak formulation also has a unique solution, see [GR11, lemma 10.2.3]. For sufficiently
smooth data f and u0 the unique solution of the weak formulation (2.1.13) has a higher
regularity, see [GR11, Theorem 10.2.2].
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2.2 Discretization with Nitsche-XFEM

2.2 Discretization of the stationary problem using
Nitsche-XFEM

In this section we present the Nitsche-XFEM method for the discretization of unfitted
interface problems. We give a short outline. In section 2.2.1 we discuss the problem
of how to approximate unfitted discontinuities. We introduce and discuss the ideas
of fictitious domain and extended finite element methods. Further, we introduce the
extended finite element space V Γ

h which is used in the remainder of this chapter. Since
the presented finite element spaces do not implement the interface conditions as essential
conditions, in section 2.2.2 we present a way to implement the interface condition via a
variational formulation. This is done with a Nitsche technique. The resulting Nitsche-
XFEM method is our favored choice in this work. There are, however, other approaches
to deal with interface conditions with non-conforming spaces. Those are closely related to
a Nitsche discretization. Therefore we discuss some modifications of the Nitsche method
and different approaches in section 2.2.3. As the Nitsche-XFEM method is based on
a standard Galerkin method for the separate domains it also inherits its problems in
the convection dominated case. For standard finite elements in one phase, one typically
applies some method of stabilization. In section 2.2.5 we apply the ideas from Streamline
Diffusion stabilization and discuss the interaction of Nitsche and Streamline Diffusion
method.

Preliminaries

Let {Th}h>0 be a family of shape regular simplex triangulation of Ω. A triangulation Th
consists of simplices T , with hT := diam(T ) and h := max{hT | T ∈ Th}. In general we
have that the interface Γ does not coincide with element boundaries. The triangulation
is unfitted. We introduce some notation for cut elements, i.e. elements T with Γ ∩ T 6= ∅.
For any simplex T ∈ Th, Ti := T ∩ Ωi denotes the part of T in Ωi and ΓT := T ∩ Γ
the part of the interface that lies in T . T Γ

h denotes the set of elements that are “close
to the interface”, T Γ

h := {T : T ∩ Γ 6= ∅}. The corresponding domain is denoted by
ΩΓ = {x ∈ T : T ∈ T Γ

h }. Further, we define the set of elements with nonzero support in
one domain: T ih := {T : T ∩ Ωi 6= ∅}, i = 1, 2, the corresponding domain is denoted by
Ω+
i = {x ∈ T : T ∈ T ih}. We also define the domain of uncut elements in domain i as

Ω−i = Ωi \ ΩΓ = Ω+
i \ ΩΓ.

At some places we use the notation with the relations � and �.
Definition 2.2.1 (Notation: smaller/greater up to a constant (�, �), equivalent (')).
For a, b ∈ R we use the notation a � b (a � b), if there exists a constant c ∈ R such
that there holds a ≤ c b (a ≥ c b), with c independent of h or the cut position. If we have
a � b and b � a, we write a ' b.
Assumption 2.2.1 (Resolution of the interface). We assume that the resolution close to
the interface is sufficiently high such that the interface can be resolved by the triangulation,
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2 Mass transport through a stationary interface

in the sense that if Γ∩T =: ΓT 6= ∅ then ΓT can be represented as the graph of a function
on a planar cross-section of T . We refer to [HH02] for precise conditions.
Remark 2.2.1 (Interface approximation). In implementations of any method with an
unfitted triangulation one needs to deal with the interface Γ in terms of subdomain and
interface integrals. In practice Γ is often defined implicitly, e.g. as the zero level of a
given level set function. As soon as the level set function is not (piecewise) linear the
interface Γ is not (piecewise) planar and an explicit construction is (usually) not feasible.
Often an approximation Γh of Γ is constructed which has an explicit representation and
easily allows for implementations of subdomain and interface integrals. In this chapter
however we neglect this issue and assume that we can evaluate integrals on subdomains
and the interface exactly. In chapter 4 a strategy to construct suitable approximations Γh
is discussed. This strategy is also used in the numerical examples.

2.2.1 Approximation of discontinuous quantities (XFEM)

In this section we consider the approximation quality of certain finite element spaces
w.r.t. domain-wise smooth functions u with a discontinuity across the interface, i.e. the
approximation error of a finite element space Vh

inf
vh∈Vh

‖vh − u‖Hk(Ω1,2) , k = 0, 1.

We consider the finite element space Vh of continuous functions which are polynomials of
degree k on each element:

Vh := {v ∈ H1(Ω) : v|T ∈ Pk(T ), T ∈ Th}.

It is well-known that the approximation of discontinuous functions u (with an unfitted
discontinuity) with piecewise polynomials only allows for an approximation estimates of
the form:

inf
vh∈Vh

‖vh − u‖L2(Ω) ≤ c
√
h ‖u‖Hk(Ω1,2), k ≥ 1

This estimate is sharp, cf. [GR11, Section 7.9.1]) and the numerical example in sec-
tion 2.5.1.2. This result is independent of the choice of continuity restrictions at element
boundaries. Hence, applying standard finite element discretizations (including Discon-
tinuous Galerkin (DG) discretizations) without further adaptations for problems with
discontinuous solutions will not lead to satisfying results.

Consider the simpler problems, problem 2.1.3 and problem 2.1.2 which allow for the
reformulation in section 1.2.3 to get rid of the discontinuity across the interface. After
reformulation the jump discontinuity vanishes but the discontinuity in the derivative
(kink discontinuity) due to different (transformed) diffusivities α̃ remains. In this case
the approximation quality of standard finite element spaces is better, cf. the numerical
results in section 2.5.1.2. Still, the sub-optimal approximation error estimate

inf
vh∈Vh

‖vh − u‖L2(Ω) ≤ ch
3
2 ‖u‖Hk(Ω1,2), k ≥ 1
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2.2 Discretization with Nitsche-XFEM

is sharp, independent of the polynomial degree of the finite element space Vh. In the
next sections a remedy to this problem is presented.

2.2.1.1 The fictitious domain approach

To overcome the approximation problem for kinks and jumps that are not fitted to the
mesh we introduce special finite element spaces. The main idea is sketched in figure 2.2.1
and is as follows: Consider the problem of approximating a function u1 in Ω1 when ∂Ω1

is not fitted to the discretization elements. If that function u1 is sufficiently smooth it
can be extended smoothly to Ω and a standard finite element space Vh with (element-)
piecewise polynomials of degree k can be used to approximate the function with the usual
(good) quality of approximation. We denote the corresponding (continuous) extension
operator as E1 : Hk(Ω1)→ Hk(Ω). For the L2-norm one directly gets

inf
vh∈Vh
‖vh − u‖L2(Ω1)≤ inf

vh∈Vh
‖vh − E1u‖L2(Ω)≤chk+1‖E1u‖Hk+1(Ω)≤chk+1‖u‖Hk+1(Ω1).

It is already sufficient to extend the functions to the smallest set of elements that have
some part in domain i, Ω+

i . This is the basic idea of the fictitious domain approach and
it appears in the literature under different names and in different contexts. We briefly
discuss the literature on fictitious domain approaches in section 2.2.2.

The same idea that we just applied for Ω1 can also be applied for the function in Ω2. In
order to approximate both functions at the same time we have to use twice the degrees
of freedom of Vh in the overlap ΩΓ. We get the finite element space

Ω+
1

Ω+
2

Γ

Ω−2

Ω−1

ΩΓ

Figure 2.2.1: Fictituous domain approach applied for domain Ω1 (left) and Ω2 (center). Com-
bining both results in a finite element space with double-valued representatives in
the overlap region ΩΓ(right).

V Γ
h := { v ∈ H1

0 (Ω1,2) | v|Ti ∈ Pk(Ti) for all T ∈ Th, i = 1, 2. }. (2.2.1)
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2 Mass transport through a stationary interface

which can be characterized as

V Γ
h = R1Vh ⊕R2Vh (2.2.2)

with Ri : L2(Ω)→ L2(Ωi) the restriction operator on domain i.

Note that V Γ
h ⊂ H1

0 (Ω1,2), but V Γ
h 6⊂ H1

0,β(Ω), since the Henry interface condition
[[βvh]] = 0 does not necessarily hold for vh ∈ V Γ

h . The task of enforcing the interface
condition is shifted to the (discrete) variational formulation. This is later discussed in
section 2.2.2.

A different characterization can be made which is typically better suited for implementa-
tion and discussed in the next section.

2.2.1.2 The extended finite element method (XFEM)

In the literature a finite element discretization based on the space V Γ
h is often called an

extended finite element method (XFEM), cf. [MDB99, BMUP01, CB03]. Furthermore, in
the (engineering) literature this space is usually characterized in a different way, which we
briefly explain for linear finite elements (k = 1). Let Vh ⊂ H1

0 (Ω) be the standard finite
element space of continuous piecewise linear functions, corresponding to the triangulation
Th. Define the index set J = {1, . . . , n}, where n = dimVh, and let (ϕi)i∈J be the
nodal basis in Vh. Let JΓ := { j ∈ J | |Γ ∩ supp(ϕj)| > 0 } be the index set of those
basis functions the support of which is intersected by Γ. The Heaviside function HΓ

has the values HΓ(x) = 0 for x ∈ Ω1, HΓ(x) = 1 for x ∈ Ω2. Using this, for j ∈ JΓ we
introduce a so-called enrichment function Φj(x) := |HΓ(x)−HΓ(xj)|, where xj is the
vertex with index j. We introduce new basis functions ϕΓ

j := ϕjΦj, j ∈ JΓ, and define
the space

Vh ⊕ V x
h with V x

h := span{ϕΓ
j | j ∈ JΓ }. (2.2.3)

In figure 2.2.2 a sketch of an added basis function is depicted. The space Vh ⊕ V x
h is the

same as V Γ
h in (2.2.1) and the characterization in (2.2.3) accounts for the name “extended

finite element method”. The new basis functions ϕΓ
j have the property ϕΓ

j (xi) = 0 for
all i ∈ J . From an implementational point of view this is an important property as it
guarantees that v(x) = 0 for x ∈ Ω \ ΩΓ and v ∈ V x

h , i.e. that only on discretization
elements which are cut, (non-zero) enrichment functions exist. An L2-stability property
of the basis (ϕj)j∈J ∪ (ϕΓ

j )j∈JΓ
of V Γ

h (for k = 1) is given in [Reu08].

2.2.1.3 The fictitious domain approach and the extended finite element method
in the literature

The general idea of fictitious domain approaches is to find a solution to a PDE problem
on a complicated domain Ω by replacing the problem with a problem on a larger domain
Ω̃ ⊃ Ω such that the restriction to Ω of the solution coincides with the solution of

16



2.2 Discretization with Nitsche-XFEM

Figure 2.2.2: Example of an XFEM shape functions. On the left a shape function ϕj from the
standard finite element space Vh is shown. On the right the restriction R1ϕj on
Ω1 is shown. The function R1ϕj is a basis function of V x

h .

the original problem. Typically, the domain Ω̃ is chosen as a simple geometry which
is easily meshed. The main motivation for this approach is that one can work with a
simple background mesh that is independent of a (possibly) complex and time-dependent
geometry. This apparent simplification comes at a price. The interface is not aligned to
element boundaries of a triangulation, the interface is unfitted. Managing data structures
pertaining the actual geometry is in general not trivial. Further the imposition of
boundary (or interface) conditions that are posed on the boundary (or interface) of the
physical domain needs special treatments. The latter aspect will be discussed in detail in
section 2.2.2 and as there are several ways to attack this problem many similar methods
exist. They are all based on the main idea of fictitious domains, which is the extension
of the problem in Ω to Ω̃.

The first unfitted finite element methods were based on penalty formulations for Dirichlet
boundary conditions and have been investigated and analyzed in [Bab73a, BE86]. The
fictitious domain method which makes use of Lagrangian multipliers to implement
Dirichlet boundary conditions is discussed and analyzed in a series of papers by Glowinski
et al. [GPP94a, GPP94b, GG95]. We also list other methods which are based on very
similar ideas.

In fluid-structure interaction problems, immersed boundary (IB) methods (see, e.g.,
[PM89]) use non-matching overlapping grids, for example a static mesh for the fluid
and a moving mesh for the object which is in contact with the fluid (and its vicinity).
Typically, on one of the meshes the equations are formulated in an Eulerian framework,
while on the other mesh, which is moving, one uses a Lagrangian (or semi-Lagrangian)
formulation. Force balance is then controlled at a number of points in the intersection of
both domains. A variant of the IB method is the Immersed Interface (II) method (cf.
[LL94]). For problems with perforated domains or domains with single holes, the Fat
Boundary method (FBM) introduced in [Mau01] is another method which adapts the
fictitious domain idea similar to the IB and II method.

Similar to the FBM the finite cell method (FCM) introduced in [PDR07] is a method to
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2 Mass transport through a stationary interface

compute structure problems in solids with randomly shaped voids on regular grids using
higher order elements. In [VvLS08] an overview over several fictitious domain approaches
which are suitable for higher order discretizations is given. A higher order discretization
of an unfitted interface problem (similar to the one discussed in this section) is presented
in [Mas12].

In most of those methods the construction of the underlying finite element spaces follows
standard ideas. On the background mesh standard basis functions are used and on
overlapping domains the basis functions are defined according to the corresponding
meshes. We have already seen that in the context of unfitted interface problems the
(two-domain) fictitious domain approach coincides with the extended finite element
method (XFEM). We briefly discuss the basic idea and original purpose of XFEM
methods. The extended finite element method (XFEM) was introduced by Belytschko et
al in [MDB99]. The XFEM method has its origin in structural mechanics when dealing
with crack phenomena. The core component of the method is the combination of an
implicit (mesh-free) geometry representation and an enrichment of a finite element space
by singular and discontinuous functions. The choice of those enrichment functions is
problem-dependent. For the representation of jumps a Heaviside-enrichment as presented
above is suitable. To approximate kinks an enrichment with a distance function can be
applied, cf. [MCCR03]. In this work we only consider the jump-enrichment.

We also mention the approach in [FR14], where on an unfitted background mesh an
explicit triangulation of the interface is used only locally to define finite element functions
which allow for kinks in the solution.

2.2.2 Imposing interface conditions in non-conforming finite
element spaces (Nitsche)

In the previous section we discussed how to recover the (good) approximation quality of
the standard situation (where no kink or jump discontinuity is present) for problems with
discontinuous solutions across an unfitted interfaces. However, across the interface no
conditions are implemented as essential conditions on the introduced finite element space
V Γ
h . Especially the Henry interface condition is not considered. Thus, the finite element

space is non-conforming w.r.t. the interface condition, i.e. we have V Γ
h 6⊂ H1

0,β(Ω).

In [MBT06] the (simpler) case of one fictitious domain and the problem of imposing
Dirichlet values as essential conditions is considered and it is shown for a simple example
that a strong imposition of boundary conditions can lead to problems (“boundary
locking”). In that case the strong imposition leads to non-physical conditions on the
boundary fluxes which results in an over-constrained solution.

In this section we discuss how interface conditions can be enforced in a weak sense by
means of an adapted discrete variational formulation.

The Nitsche formulation is one approach to tackle the problem. We derive it for our
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2.2 Discretization with Nitsche-XFEM

problem setting in section 2.2.2.1. The basic components of the approach go back to
the original paper [Nit71], in which a (one-phase) Poisson problem with homogeneous
Dirichlet boundary conditions on a fitted boundary is considered. In order to homogenize
the problem, one would need to know a sufficiently smooth function which fulfills the
Dirichlet conditions. To avoid this, a variational principle is introduced to enforce the
boundary condition in a weak sense.

The imposition of Dirichlet-type boundary or interface conditions on finite element
spaces which do not respect the condition automatically is a well-known problem in the
literature and several solution approaches exist. For instance, a fitted interface between
two non-matching meshes across which a continuity condition should be prescribed is a
common situation in domain decomposition methods. The mortar method is a popular
way to deal with this problem. We mention the paper [HP02] where a Nitsche method is
applied and analyzed in this context. In [CH11] such a problem for higher order finite
elements is discussed.

The Nitsche approach for unfitted interface problems has been introduced in the seminal
paper [HH02] for a problem without discontinuity. It has been generalized to the case
with a Henry condition and (small) convection in [RN09].

The Nitsche formulation for a fictitious domain problem has been considered in [BBH11].
A nice overview on the Nitsche method for fitted and unfitted interfaces can be found in
[Han05]. Another interesting overview paper (with a focus on high contrast problems) is
[BZ12].

In this thesis we almost exclusively consider the use of the unfitted Nitsche method. In
section 2.2.3 we discuss variants of it. Important alternatives to the Nitsche method
are penalty methods and especially the Lagrange multiplier method. Both have a close
relation to the Nitsche method. In section 2.2.3.3 and section 2.2.3.4 we briefly discuss
the methods and their close relation to the Nitsche method.

2.2.2.1 Derivation of the Nitsche method

The enforcement of interface or boundary conditions on unfitted meshes can be achieved
in several ways. One way to implement interface conditions is the Nitsche method which
uses a consistent penalization to enforce the interface conditions. This is also our method
of choice in this work. In this section we derive this method. At some places during
the derivation several choices can be made. In this section we always use the “standard”
choices made in the literature. Afterwards we discuss several variants resulting from
different choices and alternatives to the Nitsche approach which however are (closely)
related.

We derive the Nitsche method for the model problem, problem 2.1.3 and assume (for
simplicity) homogeneous Dirichlet conditions gD = 0. For now, we assume that a smooth
solution to problem 2.1.3 exists and fulfills u ∈ H2(Ω1,2), s.t. all appearing differentials
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2 Mass transport through a stationary interface

exist at least in a weak sense. As usual in the context of finite element methods, we test
equation (2.1.3a) with an arbitrary function from our finite element space v ∈ V Γ

h . As u
and v may be discontinuous, integration is done domain-wise. We use the β-weighted
scalar product introduced in (2.1.7). We thus start with

(− div(α∇u), v)0 = (f, v)0 =: 〈f, v〉 (2.2.4)

where we assume f ∈ L2(Ω) such that the duality paring 〈·, ·〉 between H−1(Ω1,2) and
H1

0 (Ω1,2) reduces to the scalar product (·, ·)0. Applying partial integration we get using
(2.1.8) and V Γ

h ⊂ H1
0 (Ω1,2)

a(u, v)−
∑

i=1,2

∫

∂Ωi\∂Ω

α∇u · n βv ds = 〈f, v〉. (2.2.5)

For integrals on the interface we introduce the scalar products

(f, g)Γ :=

∫

Γ

fg ds, (f, g)± 1
2
,h,Γ :=

∑

T∈T Γ
h

h∓1
T (f, g)ΓT (2.2.6)

with correspondingly induced norms ‖ · ‖Γ and ‖ · ‖± 1
2
,h,Γ. For the boundary terms

stemming from partial integration there holds

−
∑

i=1,2

∫

∂Ωi\∂Ω

α∇u · n βv dx =
∑

i=1,2

(−αi∇ui · n, βivi)Γ (2.2.7)

Due to (2.1.3b) we can replace −α1∇u1 · n with −α2∇u2 · n and vice versa or, what we
do here, replace both with a unique value, which in the DG community is often called
the numerical flux σ̂n:

σ̂n = −{{α∇u · n}} = − (κ1α1∇u1 + κ2α2∇u2) · n1 (2.2.8)

with κ1 + κ2 = 1 where κi, i = 1, 2 is typically defined in an element-wise fashion. The
choice of κi is an important issue w.r.t. the stability of the formulation and is discussed
in section 2.2.2.2. We define

Nc : H2(T 1,2
h )×H1(Ω1,2)→ R, Nc(u, v) := −({{α∇u · n}}, [[βv]])Γ (2.2.9)

where Hk(T 1,2
h ) :=

⋃
i=1,2

⋃
T∈T ih

Hk(T ∩ Ωi) and arrive at

a(u, v) +Nc(u, v) = 〈f, v〉

In contrast to the continuous formulation this formulation is no longer symmetric. In order
to retain the symmetry of the continuous problem we add the symmetrical counterpart
of Nc(·, ·) and have

a(u, v) +Nc(u, v) +Nc(v, u) = 〈f, v〉 (2.2.10)
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2.2 Discretization with Nitsche-XFEM

Note that this is also consistent as due to [[βu]] = 0 in (2.1.3c) for the solution u we have
Nc(v, u) = 0. The bilinear form corresponding to the left hand side is now consistent
and symmetric. To make the corresponding bilinear form also coercive we need to add
another integral term, a stabilization term

Ns : H1(Ω1,2)×H1(Ω1,2)→ R. (2.2.11)

This is added in order to control the interface jump [[βu]]. There are several variants
on how to choose Ns(·, ·). The most common stabilization in the case of an unfitted
interface is the one proposed in [HH02], obtained by adding the mesh-dependent bilinear
form

NH
s (u, v) := (

λ

h
ᾱ[[βu]], [[βv]])Γ. (2.2.12)

If not addressed otherwise we set Ns(·, ·) = NH
s (·, ·). This additional term is again

consistent due to [[βu]] = 0 in (2.1.3c). Note that Ns(·, ·) is not scaled with β which is
not a problem due to assumption 1.2.2 (βi ≥ 1).

Here, λ is the stabilization parameter which has to be chosen larger than a constant
depending on the shape regularity and the polynomial degree. This is due to an
inverse trace inequality that is applied to bound the normal derivatives in Nc(·, ·) by the
stabilization form and the domain-wise H1-norm. For details see section 2.2.2.2.

Putting all terms together we define the mesh-dependent bilinear form

ah : H2(T 1,2
h ) ∩H1(Ω1,2)×H2(T 1,2

h ) ∩H1(Ω1,2)→ R
ah(u, v) := a(u, v) +Nc(u, v) +Nc(v, u) +Ns(u, v) (2.2.13)

and have ah(u, v) = 〈f, v〉 for every v ∈ V Γ
h . Accordingly we denote the following discrete

problem as the Nitsche-XFEM discretization of problem 2.1.3:
Find uh ∈ V Γ

h , s.t.
ah(uh, vh) = 〈f, vh〉 ∀ vh ∈ V Γ

h (2.2.14)

Remark 2.2.2 (Stabilized numerical flux). Adding Ns(·, ·) to (2.2.10) can also be viewed
as a change in the numerical flux σ̂n in (2.2.8) to the stabilized numerical flux

σ̂n = −{{α∇u · n}}+ λ
ᾱ

h
[[βu]]. (2.2.15)

This choice is equivalent to the numerical flux of the interior penalty method [DD76] in
the context of Discontinuous Galerkin methods. See [ABCM02] for a nice overview on
choices for the numerical flux. This choice is also important for the stabilized Lagrange
multiplier formulation, cf. section 2.2.3.4. In section 2.2.7 we show a conservation
property of the Nitsche-XFEM discretization w.r.t. the flux σ̂n.

2.2.2.2 Weighted average and the choice of λ

In the derivation of the Nitsche formulation we introduced the weighted average {{·}} with
weights κi, i = 1, 2. For the consistency of the method any convex combination can be
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2 Mass transport through a stationary interface

applied. Nevertheless the choice of the weights influences how well the non-symmetric
term Nc(u, v) for u = v can be bounded by a(u, u) and Ns(u, u). This is important for
the stability of the method. The crucial point is that the following inverse inequality for
discrete functions uh with uh|Ti ∈ Pk(Ti), T ∈ Th, i = 1, 2, holds:

κ2
i

∫

ΓT

h‖∇uh‖2 ds ≤ ctr

∫

Ti

‖∇uh‖2 dx, ∀ T ∈ Th, i = 1, 2, (2.2.16)

with ctr a constant that only depends on the shape regularity of T (not on the shape
regularity of Ti!). The validity of the inequality, however, depends on the choice of κi. A
typical choice for κi for the case of piecewise linear functions for which the inequality
holds (see section 2.3.1.3 for details) has been introduced in [HH02].

Definition 2.2.2. We denote the averaging operator {{v}}H := κH1 v1 +κH2 v2 with κHi = |Ti|
|T |

as the hansbo-averaging.

The hansbo-averaging will be our standard choice and if averaging is not addressed
specifically we set {{v}} = {{v}}H .

If the hansbo-averaging is applied, the constant ctr in (2.2.16) depends only on the
shape regularity of T . The stabilization parameter λ has to be chosen larger than a
constant only depending on ctr (see section 2.3.1.3 for details). It is thus relevant to
know the range in which ctr lies. For simple geometries an explicit description of ctr can
be given. In practice however, λ is typically chosen on the safe side. The benefit of an
increasing λ is two-fold. First, for a sufficiently large λ stability of the discretization
can be ensured. Second, the error in the interface condition is essentially determined
by λ and the mesh resolution. Hence, a large λ leads to a small error in the interface
condition. The only drawback of a large λ is an increase in the condition number (see
section 2.4 and section 2.5.3.5 for details). A compromise is typically to choose λ one
order of magnitude larger than necessary for stability. In section 2.2.3.2 we present a
modification of the Nitsche discretization which is stable and has no such parameter as
λ.

2.2.3 Variants of and alternatives to the Nitsche formulation

In this section we want to put the presented Nitsche formulation in context to other
related methods in the literature.

A careful look at the derivation of the Nitsche formulation displays that the Nitsche
formulation allows for several modifications. E.g. the choice of the numerical flux σ̂n, the
averaging operator {{·}} or the choice to aim for a symmetric formulation are, although
justified, neither necessary nor essential. In section 2.2.3.1 and section 2.2.3.2 we will
discuss two modifications of the Nitsche formulation which are parameter-free, that
means that they do not depend on a parameter like λ which has to be chosen “sufficiently
large” in order to guarantee stability.
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2.2 Discretization with Nitsche-XFEM

In section 2.2.3.4 we briefly present the method of Lagrange multipliers as an alter-
native to the Nitsche formulation. We also highlight its close relation to the Nitsche
formulation.

In [BZ12] it was pointed out that the stability of the Nitsche formulation as presented
in the last section relies on the hansbo-averaging and thereby contradicts with other
weighted averages as they are relevant for high contrast problem. A way to overcome
stability problems (and conditioning problems) is to add another consistent stabilization
which ensures control on the gradient of u independent on the cut position. This is done
with the so called “Ghost penalty” method introduced in a series of paper by Burman
et al. [Bur10, BH10, BH12, BZ12]. This and a similar approach are briefly discussed in
section 2.2.3.5.

2.2.3.1 Non-symmetric formulations

In applications, especially when simulating coupled problems, it is desirable to reduce
the number of free parameters. The Nitsche method presented above however has the
stabilization parameter λ.

In view of stability the simplest modification of the Nitsche-XFEM method presented
before is to replace Nc(v, u) by −Nc(v, u). Then one has (with Ns(·, ·) = NH

s (·, ·))

ah(u, u) = a(u, u) +Nc(u, u)−Nc(u, u) +Ns(u, u) = a(u, u) +Ns(u, u)

which already implies coercivity of ah(u, u) with respect to the norm
(
a(u, u)+Ns(u, u)

) 1
2 .

This approach has already been discussed (for one-domain problems with matched
boundaries) in [FS95]. Note that the statement is true independent of the choice of
λ such that we can fix λ = 1 independent of the shape regularity of the triangulation
Th.

This modification renders the bilinear form ah(·, ·) non-symmetric. That again results in
the fact that the bilinear form is not adjoint consistent which means that the adjoint
of ah(·, ·) does not correspond to a consistent discretization of the continuous adjoint
problem which coincides with the original problem (as the problem is self-adjoint). The
lack of adjoint consistency results in a sub-optimality in the L2-norm for the a priori
error analysis and for the practical results.

In cases however where the adjoint problem does not possess high regularity estimates
w.r.t. the data, the lack of adjoint consistency does not weight so much. This is especially
the case if convection is present and dominant.

It turns out that the penalty term Ns(u, v) can be dropped completely (λ = 0) which
can also be favorable in special applications. A detailed discussion of the method and its
error analysis can be found in [Bur12].
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2 Mass transport through a stationary interface

Another approach which allows to remove the free parameter λ while keeping the
formulation symmetric is presented in the next section. The approach is inspired by
Discontinuous Galerkin (DG) methods.

2.2.3.2 Minimal stabilization

One disadvantage of the Nitsche formulation as presented above is the fact that the
penalty parameter has to be chosen “sufficiently large”. Although the condition on an
upper bound for a minimal λ can be derived, the parameter is typically chosen to be
“on the safe side”. Especially if the mesh is less regular and jumps in the parameters
get larger or the polynomial degree of the discretization is higher, the minimal choice
for λ might be less obvious. The modification presented in this section gets rid of the
stabilization parameter λ by adding an “indirect” stabilization. This approach is inspired
by a method for Discontinuous Galerkin (DG) discretizations. Discontinuous Galerkin
discretizations for elliptic problems need to weakly impose continuity. This is similar to
introducing the interface condition for the XFEM space V Γ

h . In this context the Nitsche
method derived in the preceding sections for our problem is an analoge to the symmetric
interior penalty method for DG discretizations. For DG discretizations a number of other
methods exist to enforce continuity in a weak sense, see [ABCM02] for a nice overview
of different methods. The subsequent method is based on the DG method presented in
[BR97, BRM+97] and analyzed in [BMM+99].

First, we extend the previous definition of the bilinear form a(·, ·) from (2.1.8) to functions
from element-wise broken Sobolev spaces.

a : H1(T 1,2
h )×H1(T 1,2

h )→ R, a(u, v) :=
∑

T∈Th
(αu, v)1,T1,2 (2.2.17)

On a cut element T we further introduce the element-wise lifting operator L.
Definition 2.2.3 (Lifting L). We define the lifting

L : H1(T 1,2
h )→ W ∗

h := {u|Ti ∈ Pk ∩ (P0)⊥, T ∈ Th,i, i = 1, 2}

by its element contributions. Let T be a cut element, T ∈ T Γ
h . We define LT : H1(T1,2)→

{u|Ti ∈ Pk ∩ (P0)⊥, i = 1, 2} =: W ∗
T , such that w := LT (u) is the unique solution of

aT (w, vh) := (αu, v)1,T1,2 = NT
c (vh, u) := −([[βu]], {{α∇vh · n}})ΓT ∀ vn ∈ W ∗

h . (2.2.18)

On uncut elements we set LT (u) = 0 and thus have for every u ∈ H1(T 1,2
h )

a(L(u), vh) = Nc(vh, u), ∀vh ∈ V Γ
h .

Using this lifting operator for uh, vh ∈ V Γ
h yields

a(uh, vh)+Nc(uh, vh)+Nc(vh, uh)+a(L(uh),L(vh)) = a(uh+L(uh), v+L(vh)). (2.2.19)
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2.2 Discretization with Nitsche-XFEM

We immediately get for uh ∈ V Γ
h

2Nc(uh, uh) = 2a(L(uh), uh) ≤ 2a(L(uh),L(uh)) +
1

2
a(uh, uh). (2.2.20)

This motivates the following choice for the stabilizing bilinear form Ns(·, ·)

NLs (u, v) = 2a(L(u),L(v)) + ᾱ‖[[βu]]‖2
1
2
,h,Γ

(2.2.21)

The first term is introduced to guarantee non-negativeness of the bilinear form on V Γ
h

(using (2.2.20)) whereas the second term is introduced in order to add explicit control
on the jump [[βu]]. Note that no generic constants or tuning parameters (e.g. λ) appear
which is an advantage of the method.
Remark 2.2.3. The functional F : H1(Ω1,2) → R, F(u) :=

√
a(u, u) + a(L(u),L(u))

has the kernel {u|Ωi = const} and thus does not define a norm.

We define

aLh (u, v) := a(u, v) +Nc(u, v) +Nc(v, u) +NLs (u, v) (2.2.22)

and the norm

‖u‖2
L := a(u, u) + a(L(u),L(u)) + ᾱ‖[[βu]]‖2

1
2
,h,Γ

. (2.2.23)

Using the relations from above you can show

‖u‖2
L � aLh (u, u) � ‖u‖2

L ∀u ∈ V Γ
h

where the constants for the left and right inequality in this case are bounded by the
factor three.

Controlling the lifting norm. One can bound a(L(u),L(u)) by a constant times
‖[[βu]]‖ 1

2
,h,Γ for u ∈ H1(T 1,2

h ), if the hansbo-averaging is applied. Then, we get, us-

ing the inverse estimate in (2.2.16), and standard estimates

a(L(u),L(u)) = Nc(L(u), u) ≤ᾱctr‖[[βu]]‖2
1
2
,h,Γ

+
1

2
a(L(u),L(u)) ∀u ∈ H1(T 1,2

h )

and thus a(L(u),L(u)) ≤2ctrᾱ‖[[βu]]‖2
1
2
,h,Γ
∀u ∈ H1(T 1,2

h ).

It follows

aLh (u, u) ' ‖u‖2
L ' a(u, u) + ᾱ‖[[βu]]‖2

1
2
,h,Γ

, u ∈ V Γ
h (2.2.24)

with constants only depending on ctr. Note that due to the normal derivative in Nc(·, ·)
(2.2.24) does not hold for u ∈ H1(Ω1,2).
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2 Mass transport through a stationary interface

Implementation aspects. To implement the element-local lifting w = LT (u) of a local
finite element function u, we solve for w with u,w ∈ {u|Ti ∈ Pk}, such that

aT (w, v) +
∑

i=1,2

kTi (w, v) = NT
c (v, u), ∀v ∈ {u|Ti ∈ Pk} (2.2.25)

with the bilinear form

kTi (w, v) := h−(d+2) (w, 1)Ti (v, 1)Ti

which is taylored to eliminate the kernel {u|Ti = const}. We need to compute the element
matrix K corresponding to

∑
i=1,2 k

T
i (·, ·). Note that the local element matrices A and

Nc corresponding to the bilinear form aT (·, ·) and NT
c (·, ·) have to be computed anyway.

We thus get the coefficients w of the local lifting (wi = LT (ϕi)) as

w = L · u with L = (A + K)−1NT
c .

The overall element contribution to the bilinear form ah(·, ·) in matrix notation is:

A + Nc + NT
c + 2 · LTAL + Ns

where Ns is the element matrix corresponding to NT
s (·, ·) = ( ᾱ

h
[[β·]], [[β·]])ΓT .

2.2.3.3 Penalty methods

A very early approach to enforce Dirichlet boundary conditions in a weak sense is to
replace the boundary conditions with similar ones which allow a simple integration into
a weak form. In our context such a boundary condition would be

−αi∇ui · n1 = h−ρᾱ[[βu]] on Γ

for ρ > 0. The corresponding discrete weak formulation would then be:
Find u ∈ V Γ

h so that

a(u, v) +

∫

Γ

h−ρᾱ[[βu]][[βv]] ds = 〈f, v〉 v ∈ V Γ
h

Due to the change in the interface condition, this formulation introduces a consistency
error. However, for different values of ρ the consistency error vanishes fast enough to
obtain optimal error bounds at least in some norms (cf. [Bab73a, BE86]). However
a choice for ρ which gives optimal error estimates in all norms comes at the price of
ill-conditioned system matrices. The Nitsche method can be seen as a consistent variant
of the penalty method with ρ = 1.
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2.2 Discretization with Nitsche-XFEM

2.2.3.4 The method of Lagrange multipliers

The method of Lagrange multipliers to implement Dirichlet boundary conditions has
originally been introduced in [Bab73b]. In the context of fictitious domain methods
the Lagrange multiplier method has been applied (among others) in [GPP94a, GPP94b,
GG95, BH10]. We briefly introduce the method in our two-domain context. We again
assume u ∈ H2(Ω1,2), v ∈ V Γ

h , and start from (2.2.5)

(αu, v)1,Ω1,2 −
∑

i=1,2

∫

∂Ωi\∂Ω

α∇u · n βv ds = 〈f, v〉 (2.2.5)

Now we introduce a new variable, the flux σn := −α∇u · n and get

(u, v)1,Ω1,2 +

∫

Γ

σn[[βv]] ds = 〈f, v〉 (2.2.26)

To impose the interface condition (2.1.3c) we multiply [[βu]] = 0 by sufficiently many test
functions µ and integrate over Γ:

([[βu]], µ)Γ = 0 ∀µ ∈ Q (2.2.27)

with Q to be determined later. Combining both, we define the discrete problem as: Find
(u, σn) ∈ V Γ

h ×Q, such that

(αu, v)1,Ω1,2 + (σn, [[βv]])Γ = 〈f, v〉 ∀u ∈ V Γ
h (2.2.28a)

([[βu]], µ)Γ = 0 ∀µ ∈ Q. (2.2.28b)

This is a saddle point problem which can also be written as: Find (u, σn) ∈ V Γ
h ×Q, such

that

K((u, σn), (v, µ)) = a(u, v) + b(u, µ) + b(v, σn) = 〈f, v〉 ∀ (v, µ) ∈ V Γ
h ×Q

where
b : H1(Ω1,2)× L2(Γ)→ R, b(v, µ) = ([[βv]], µ)Γ.

Note that a(·, ·) is elliptic on the kernel of b(·, ·). A crucial condition for a stable
discretization is the discrete “inf-sup”-condition:

sup
v∈V Γ

h

b(v, µ)

‖v‖1,h

≥ c‖µ‖− 1
2
,h,Γ ∀ µ ∈ Q (2.2.29)

for a c > 0 independent on h where ‖v‖2
1,h := |v|21,Ω1,2

+ ‖[[βv]]‖2
1
2
,h,Γ

. In a series of papers

by Pitkäranta [Pit79, Pit80, Pit81] this problem (with only one phase) has been studied
in detail and it was shown that in order to achieve optimal order of convergence of the
method the space Q has to be chosen very carefully. For example choosing piecewise
linear functions for V Γ

h and piecewise linears on the interface for Q leads to an unstable
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2 Mass transport through a stationary interface

discretization. It turns out that constructing a suitable space Q is an involved procedure
which raises the question of the practical use of the method. To overcome this problem
suitable modifications of the method have been proposed in the literature. In [Ver91]
and [Ste95] the close connection between a modified (“stabilized”) Lagrange multiplier
method and the Nitsche method has been pointed out in the context of fitted one-domain
problems. These ideas have a natural extension to our two-domain problem. In the
next section we present a “stabilized” Lagrange multiplier method which reveals a close
relation to the formulation derived before. In the recent publication [Bur14] a more
general approach based on similar ideas is discussed.

A Stabilized Lagrange multiplier formulation and the relation to the Nitsche method.
The discrete “inf-sup”-condition in (2.2.29) is in general hard to fulfill. Further, already
the saddle-point structure of the Lagrange multiplier formulation is, from a computational
point of view, a drawback of the method. In order to circumvent both, one can introduce
another consistent term which couples σn and µ and allows to eliminate the unknown
σn.

The coupling between µ and σn is introduced by adding the symmetric bilinear form

d : (H2(T 1,2
h ), L2(Γ))× (H2(T 1,2

h ), L2(Γ))→ R,

d((u, σn), (v, µ)) := − δ
ᾱ

(h(σn − σ̂n(u)), µ− σ̂n(v))Γ

(2.2.30)

with a small stabilization parameter δ = const and σ̂n(w) = −{{α∇w·n}} the (unstabilized)
numerical flux as in (2.2.8). In this discretization 1

δ
takes the role of λ in the Nitsche

formulation. By construction σn − σ̂n(u) vanishes for the true solution.

We can now solve the modified version of (2.2.28b) for σn. We have

b([[βu]], µ) + d((u, σn), (0, µ)) = 0 ∀µ ∈ Q

and can thus express σn in terms of u:

σn = ΠQ(−{{α∇u · n}}+
ᾱ

δh
[[βu]]) (2.2.31)

where ΠQ is the L2(Γ)-projection into the space Q. If Q is element-wise discontinuous
this projector is element-local. Substituting σn into (2.2.28a) we get the discrete problem:
Find u ∈ V Γ

h such that

(αu, v)1,Ω1,2 − ({{α∇u · n}},ΠQ([[βv]]))Γ − ({{α∇v · n}},ΠQ([[βu]]))Γ (2.2.32)

+ (
ᾱ

δh
ΠQ[[βu]],ΠQ[[βv]])Γ + (

δh

ᾱ
Π⊥Q{{α∇u · n}},Π⊥Q{{α∇v · n}})Γ (2.2.33)

= 〈f, v〉 ∀ v ∈ V Γ
h (2.2.34)

with Π⊥Q = ΠQ − I.
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2.2 Discretization with Nitsche-XFEM

Note that we no longer need the pair (V Γ
h , Q) to fulfill an inf-sup-condition and we

can choose Q = tr|ΓVh. Hence, we can replace ΠQ with the identity and Π⊥Q with zero.
Additionally choosing δ = 1

λ
and {{·}} = {{·}}H results in

a(u, v) +Nc(u, v) +Nc(v, u) +Ns(u, v) = 〈f, v〉 ∀v ∈ V Γ
h (2.2.35)

which is exactly the Nitsche discretization derived before.
Remark 2.2.4 (Characterization of the flux for Nitsche-XFEM). An advantage of
the Lagrange multiplier method is that the flux σn is an explicit unknown. The above
derivation of the Nitsche-XFEM discretization however reveals that we can use (2.2.31) to
reconstruct a conservative flux also for the Nitsche discretization. See also section 2.2.7
for a discussion on the conservation properties of the Nitsche-XFEM discretization.

2.2.3.5 Ghost penalty

In a series of papers [Bur10, BH10, BH12, BZ12] Burman et al. suggested an additional
stabilization mechanism which enhances the robustness of the Nitsche formulation w.r.t.
the interface cut position. The stability of the method derived before relies on the choice
of the averaging operator {{·}} where we considered the hansbo-choice as a good choice.
For this discretization the condition number of the system matrix is not independent
on the cut position and can get arbitrarily bad. In section 2.4 we discuss this issue and
demonstrate that this issue can easily be solved with diagonal preconditioning. This
result however also depends on the choice of the averaging-operator.

The “ghost penalty” stabilization (cf. [Bur10]) was originally designed for implementing
Dirichlet boundary conditions in the fictitious domain method. Note that for the fictitious
domain method a stable imposition of Dirichlet boundary conditions is even more difficult
as there is no averaging operator which helps to ensure stability. In the two-domain
context the “ghost penalty” stabilization is interesting in cases where the weights of the
averaging operator should be significantly different from the hansbo-choice, for instance
for large contrast problems (see [BZ12]). In this case the Nitsche-XFEM discretization
lacks stability (and suffers from arising ill-conditioned linear systems).

By introducing an additional term, the “ghost penalty” stabilization releases the averaging
operator from a constraint that has been necessary to ensure stability (essentially (2.2.16)).
We briefly present the stabilization with the “ghost penalty” method for piecewise linear
functions (k = 1).

We introduce the set of faces within the band of cut elements

FΓ
i := {F = Ta ∩ Tb, Ta 6= Tb, Ta, Tb ∈ Ω+

i , Ta or Tb ∈ T Γ
h }. (2.2.36)

On this set we add the stabilization bilinear form

J(uh, vh) :=
∑

i=1,2

∑

F∈FΓ
i

αiβiγJhF ([[∇Ei,huh · n]], [[∇Ei,hvh · n]])F , uh, vh ∈ V Γ
h (2.2.37)
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2 Mass transport through a stationary interface

with Ei,h the canonical extension from Ωi to Ω+
i of discrete functions from V Γ

h , hF =
max{hTa , hTb} where F = Ta ∩ Tb and γJ the stabilization parameter. This additional
term penalizes discontinuities in the derivative within the band of cut elements T Γ

h . Note
that the penalty is imposed not only within the domains Ωi, i = 1, 2 but also on the
extension of the functions into Ω+

i . Therefore this stabilization term is independent on
the cut position within the elements which gives the robustness of the method. The
crucial point of the method is the following estimate.

Consider an element T ∈ T Γ
h and assume that a neighbor TN ∈ Th \ T Γ

h with T ∩ Tn =
F 6= ∅ exists. We have (with c a generic constant and i = 1, 2) under the assumption of
shape regularity (|T | ≤ c|TN |, |T | ≤ chF |F |) for u ∈ H2(Ti,h)

‖∇ui · n‖2
− 1

2
,h,ΓT

≤ |ΓT |hT ‖∇ui|T‖2
2 (2.2.38a)

≤ c|T |(‖∇ui|TN‖2
2 + ‖[[∇ui]]‖2

2) (2.2.38b)

≤ c(‖∇ui‖2
L2(TN ) + hF‖[[∇Ei,hui · n]]‖2

L2(F )). (2.2.38c)

The result can be generalized to arbitrary elements in T Γ
h under reasonable (milder)

assumptions, see [BH12] for details. In consequence this estimate states that the normal
derivative on the interface can be controlled by the | · |1-semi-norm and the stabilization
term independent of the cut position and independent of the averaging operator.

Alternative stabilization. Another approach to improve the robustness of the Nitsche
formulation w.r.t. the dependency on the cut position is discussed in [HR09]. In that
paper a stabilized Lagrange multiplier approach (cf. section 2.2.3.4) for a fictitious
domain problem is considered. In the consistent stabilization term that is added (cf.
(2.2.30)) the normal derivative is replaced with a (weakly) consistent representative of
the normal derivative. This is chosen such that forming the gradient on elements with
small cuts is avoided.

2.2.4 The Nitsche-XFEM method with small convection

In the previous section the discretization of the simplified problem, problem 2.1.3 has been
discussed. In this section we reintroduce convection and recall the stationary problem,
problem 2.1.2:

w · ∇u− div(α∇u) = f in Ωi, i = 1, 2, (2.1.2a)

[[α∇u · n]]Γ = 0 on Γ, (2.1.2b)

[[βu]]Γ = 0 on Γ, (2.1.2c)

u = gD on ∂Ω. (2.1.2d)

We remind that due to assumption 1.2.4 (compatible velocity) we have w · n = 0 at the
interface Γ.
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2.2 Discretization with Nitsche-XFEM

Applying the Nitsche discretization for the diffusive part and adding the convection
bilinear form

c(u, v) := (w · ∇u, v)Ω1,2 , u, v ∈ H1(Ω1,2) (2.2.40)

we get the following discrete problem as the Nitsche-XFEM discretization of problem 2.1.2:
Find uh ∈ V Γ

h , s.t.

Bh(uh, vh) := ah(uh, vh) + c(uh, vh) = 〈f, vh〉 ∀ vh ∈ V Γ
h . (2.2.41)

An a priori error analysis of this discretization is presented in section 2.3.1.

2.2.5 The Nitsche-XFEM method with dominating convection

For large convection velocities ‖w‖ or small diffusion parameters α the approach intro-
duced in the last section becomes unstable. This is not related to Nitsche or XFEM, but
is already a problem of the Galerkin discretization for a one phase problem. We will
show that a possible solution to this problem can be achieved by applying the Streamline
Diffusion (SD) stabilization to the two-phase situation. In the next section we recall
the main idea of the Streamline Diffusion stabilization for a one phase problem and
afterwards extend it to the two-domain case.

In the convection dominated case the diffusion parameter is (at least after rescaling, s.t.
|w|∞ ≤ O(1)) a small number. To emphasize this fact, in the literature of convection
dominated problems the diffusion parameter is often denoted as ε and diffusion is seen
as a singular perturbation to a (linear) hyperbolic equation. Hence, we identify εi = αi,
i = 1, 2.

2.2.5.1 The Streamline Diffusion stabilization for a one phase problem

In one phase the stationary convection-diffusion problem is

w · ∇u− div(ε∇u) = f in Ω (2.2.42a)

u = 0 on ∂Ω. (2.2.42b)

Problem 2.2.1.

The Galerkin discretization of this problem is to find uh ∈ Vh, s.t.

(εuh, vh)1,Ω + (w · ∇uh, vh)0,Ω = 〈f, vh〉 ∀ vh ∈ Vh (2.2.43)

For ε→ 0 this discretization lacks control on ∇u. Thus, if convection is dominant, the
control that is obtained due to the symmetric part (εuh, vh)1,Ω degenerates. This results
in stability problems. In many textbooks the problem is discussed, see for instance in
[DH03, ESW05, RST08]. The Streamline Diffusion (SD) method stabilizes the Galerkin
formulation to add additional control.
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2 Mass transport through a stationary interface

At the beginning of the eighties in [HB79, HB82] the Streamline-Upwind-Petrov-Galerkin
(SUPG) method was introduced which has a similar stabilizing effect as “upwinding”
schemes in finite volume and finite difference methods. The SD-method has a very close
relation to the SUPG method and both methods can be identified with each other in
some cases.

The essential idea of the SD-method is to add diffusion to the numerical scheme that
scales with the dominating effect which is the convection. This additional diffusion
however is, in contrast to artificial diffusion methods, added only in streamline direction
and in a consistent way.

One adds a residual term of the form
∑

T∈Th
γT (w · ∇uh − div(ε∇uh)− f,w · ∇vh)0,T (2.2.44)

where γT is an element-wise defined stabilization parameter. Typical choices for γT can
be found in (a.o.) [RST08, ESW05]. We take γT as follows:

γT =

{ 2hT
|w|∞,T if P T

h > 1

h2
T/ε if P T

h ≤ 1.
(2.2.45)

where we use the local Péclet number P T
h := 1

2
|w|∞,ThT/ε. The motivation for this choice

is as follows. For P T
h ≤ 1 no stabilization is necessary and the additional term should

become small very rapidly. For P T
h > 1 the stabilization term should scale as c(·, ·) (w.r.t.

w and h), thus we set γT ∼ hT
|w|∞T

. In practice several variants are used, e.g. if for the

case P T
h ≤ 1 one sets γT = 0 very similar results (both in the theoretical analysis and in

the experiments) are obtained.

2.2.5.2 Application of the SD stabilization for the two phase problem

Consider the basic (hansbo) discretization of the diffusive part which led to the bilinear
form

ah(u, v) := a(u, v)−([[βu]], {{ε∇v · n}})Γ

−([[βv]], {{ε∇u · n}})Γ+λε̄([[βu]], [[βv]]) 1
2
,h,Γ

(2.2.46)

where we recall ε̄ = 1
2
(ε1 + ε2).

This discretization inherits the stability problems of the one phase Galerkin method from
the last section. We thus add the Streamline Diffusion stabilization to the discretization.
For the stabilization of the Nitsche-XFEM method we make obvious modifications related
to the fact that in the XFEM space, close to the interface we have contributions on
elements Ti 6= T , i = 1, 2. For the stabilization we introduce a locally weighted discrete
variant of (·, ·)0:

(u, v)0,h :=
2∑

i=1

∑

T∈Th
βiγT

∫

Ti

uv dx =
∑

T∈Th
γT (u, v)0,T (2.2.47)
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2.2 Discretization with Nitsche-XFEM

where we take γT as in (2.2.45) but replace ε with ε̄. Note that the stabilization parameter
γT does not depend on the position of the interface within the element.

We introduce the following Nitsche-XFEM discretization method with SD stabilization
which will also be denoted as the SD-Nitsche-XFEM discretization:
Find uh ∈ V Γ

h such that

ah(uh, vh) + sSD(uh, vh) + c(uh, vh)

= (f, vh)0 + (f,w · ∇vh)0,h for all vh ∈ V Γ
h .

(2.2.48)

with

sSD(u, v) := (−div(ε∇u) + w · ∇u,w · ∇v)0,h. (2.2.49)

In this discretization, λ is chosen as a “sufficiently large” constant. For stability consid-
erations this constant only depends on the shape regularity of the mesh. The interface
stabilization scales with the diffusion parameter. That means on a fixed spatial mesh for
vanishing diffusion ε→ 0 that the enforcement of the interface conditions vanishes.

Assume convection dominates diffusion in the sense that the mesh Péclet number P T
h :=

1
2
|w|∞,ThT/ε̄ is larger than one. The enforcement of the interface condition would get a

small weight compared to the dominating effects in the subdomains.

The Streamline Diffusion stabilization essentially adds numerical diffusion (although in a
consistent way) to the subdomains. This motivates to scale the interface stabilization
with the convection rather than the diffusion parameter. Both, the scaling with diffusion
as well as the scaling with convection can be justified. Furthermore the analysis in
section 2.3.2 shows that the complete range between these scales allow for an “optimal”
order (w.r.t. one-phase results in the literature) error analysis when the error inside the
fluid domains is considered. Thus we formulate the following restriction on the Nitsche
stabilization parameter λT which we allow to vary between elements.

λd ≤ λT ≤ λcT := λd max(P T
h , 1) (2.2.50)

with λd an O(1) constant only depending on shape regularity. The choice λT = λcT will be
denoted as the convective scaling as in that case the stabilization term ([[βu]], [[βv]]) 1

2
,h,Γ

in (2.2.46) scales with |w|∞ in the convection-dominated case Ph ≥ 1. The other case
λT = λd will be denoted as the diffusive scaling for obvious reasons.

2.2.6 Time discretization for a stationary interface

We recall that the interface is stationary. Hence, from the discretization of the stationary
problem 2.1.2 a corresponding semi-discretizations for problem 2.1.1 directly follows. We
briefly present full discretizations obtained by applying the method of lines.
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2 Mass transport through a stationary interface

2.2.6.1 Diffusion dominates

Using the bilinear form ah(·, ·) we define a method of lines discretization of (2.1.13). Let
û0 ∈ V Γ

h be an approximation of u0. For t ∈ [0, T ] let uh(t) ∈ V Γ
h be such that uh(0) = û0

and

(
duh
dt

, vh)0 + ah(uh, vh) + c(uh, vh) = (f, vh)0 for all vh ∈ V Γ
h . (2.2.51)

As V Γ
h does not depend on time, the semi-discretization in (2.2.51) is a system of ODEs.

For simplicity we assume that w is constant in time (see also remark 2.2.5). We write this
in matrix-vector notation and to this end introduce the following notation for matrices
and vectors and the operator which relates coefficient vectors to finite element functions
in a finite element space W .
Definition 2.2.4 (Galerkin isomorphism). We define the Galerkin isomorphism with
G : Rn → W, Gu =

∑n
j=1 ujϕj, where ϕj are the basis functions of W so that W =

span{ϕj}j=1,..,n.

The Galerkin isomorphism will be used (depending on the context) w.r.t. different finite
element spaces, e.g. Vh, V

x
h or V Γ

h without change of notation.

We define M,A,C ∈ RN×N , with N = dim(V Γ
h ) such that

vTMu := (Gu,Gv)0, vTAu := ah(Gu,Gv) and vTCu := c(Gu,Gv).

Further we define f so that vTf = (f,Gv)0. We thus have with u(0) = G−1û0

∂tMu + Au + Cu = f , t ∈ [0, T ]

or
∂tu = F(u, t) = −M−1(A + C)u + M−1f , t ∈ [0, T ].

The ODE system ∂tu = F(u, t) is stiff and allows for the application of standard time
integration techniques such as Runge-Kutta methods, multi-step methods or the simple
θ-method. The simplest discretization is obtained by applying the θ-scheme and results
in (for a constant in time f)

(M + θ∆t(A + C))un = Mun−1− (1− θ)∆t(A + C)un−1 + ∆tf , t ∈ [0, T ] (2.2.52)

with the time step size ∆t = tn − tn−1 where the time levels within on time steps
are denoted as tn−1, tn. The discrete solutions are marked with corresponding super-
scripts.

2.2.6.2 Convection dominates

If we add the Streamline Diffusion stabilization in a non-stationary context, the stabi-
lization term changes to

(∂tuh + w · ∇uh − div(ε∇uh)− f, w · ∇vh)0,h (2.2.53)
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2.2 Discretization with Nitsche-XFEM

and the corresponding semi-discretization is

(∂tuh, vh)0 + (∂tuh + w · ∇uh − div(ε∇uh)− f, w · ∇vh)0,h + ah(uh, vh)

= (f, vh)0 + (f,w · ∇vh)0,h for all vh ∈ V Γ
h , t ∈ [0, T ].

(2.2.54)

Clearly, this semi-discretization can also be combined with standard methods for time
discretization to obtain a fully discrete problem. We again consider the simple θ-
scheme and the case with piecewise linear functions (k = 1) and introduce notation for
matrices and vectors corresponding to the Streamline Diffusion stabilization. We define
MSD,ASD ∈ RN×N , fSD ∈ RN and M̃, B̃ ∈ RN×N , f̃SD ∈ RN so that

vTMSDu = (Gu,w · ∇Gv)0,h, M̃ = M + MSD

vTASDu := (w · ∇Gu,w · ∇Gv)0,h, B̃ = A + C + ASD

vTfSD := (f,w · ∇Gv)0,h. F̃ = f + fSD

With the time step size ∆t = tn − tn−1, where time levels within one time step are
denoted as tn−1, tn and the discrete solutions are marked with corresponding superscripts,
we get

(M̃ + θ∆tB̃)un = M̃un−1− (1− θ)∆tB̃un−1 + ∆tf̃ , t ∈ [0, T ]. (2.2.55)

In the numerical experiments in section 2.5.5 we used this method with θ = 1.
Remark 2.2.5 (Time dependent velocity field). In general w depends on time which in
addition to an non-stationary matrix C also renders the Streamline Diffusion matrices
MSD,ASD time dependent. That case has to be treated with special care. A generalization
of the θ-scheme should be used. We refer the interested reader to [GR11, Chapter 8].

2.2.7 Conservation properties of the Nitsche-XFEM formulation

We discuss a mass conservation property of the Nitsche-XFEM discretization. On the
one hand we have that global mass is conserved in Ω by the Nitsche-XFEM method. On
the other hand we have a mass conservation property across Γ w.r.t. a discrete flux, the
so-called numerical flux. For the conservation of global mass property we refer to [LR12,
Remark 5]. The conservation property across the interface Γ is briefly discussed here. To
this end we take the strong formulation (2.1.1a) and integrate over Ω1 (recall w · n = 0
on Γ):

d

dt

∫

Ω1

u1 dx = −
∫

Γ

−α1∇u1 · n︸ ︷︷ ︸
σn

ds +

∫

Ω1

f dx

which describes the balance of mass: The rate of change of the quantity u within Ω1 is
determined by the source term f in Ω1 and the flux σn through the interface. Testing
the discrete formulations (2.2.41) or (2.2.48) with v = β−1

1 we get

d

dt

∫

Ω1

u1 dx = −
∫

Γ

−{{α∇u · n}}+ λ
ᾱ

h
[[βu]]

︸ ︷︷ ︸
=:σ̂n

ds +

∫

Ω1

f dx.
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2 Mass transport through a stationary interface

Hence, a mass balance for the discrete formulation is only achieved with respect to the
numerical flux σ̂n.

A similar derivation can be done for Ω2 and yields the same flux reconstruction. Note that
σn in the continuous formulation as well as σ̂n in the discrete formulation are uni-valued.
A different way of deriving the conserved flux σ̂n is discussed in section 2.2.3.4, see
especially remark 2.2.4.
Remark 2.2.6 (Minimal stabilization variant). Note that also for the variant presented
in section 2.2.3.2 this result is true (with λ = 1) as a(·,L(β−1)) = 0.

2.3 Error analysis

In this section we present an error analysis of the Nitsche-XFEM discretization. This is
done in several steps. First we consider the stationary diffusion dominated problem and
derive a priori error estimates in section 2.3.1. In section 2.3.2 we consider the convection
dominated regime and the discretization with a Streamline Diffusion stabilization as
presented in section 2.2.5. The non-stationary problem with a stationary interface is
only briefly discussed in remark 2.3.2 and remark 2.3.4

2.3.1 A priori error analysis for Nitsche-XFEM (diffusion dominates)

In this section we consider the problem 2.1.2 and its discretization with (2.2.41). A
similar error analysis of the unsteady (diffusion dominated) case has been presented in
[RN09]. The a priori error analysis is divided into several sections. In section 2.3.1.2,
section 2.3.1.3, section 2.3.1.4 and section 2.3.1.5 we show consistency, coercivity and
continuity of Bh(·, ·) (on suitable spaces, in suitable norms) and interpolation bounds
for V Γ

h . Based on those properties we apply standard ideas to proof an error bound in a
natural mesh-dependent norm in section 2.3.1.6. With the help of duality arguments we
further proof error bounds in the norm ‖ · ‖0,Ω.

Note that the analysis in this section applies to (extended) finite elements of arbitrarily
order k, cf. remark 2.3.1.

2.3.1.1 Preliminaries

We recall the definition of the mean diffusion coefficient ᾱ := 1
2
(α1 +α2) and assume that

the ratio between α1 and α2 is moderate:
Assumption 2.3.1 (Moderate ratios). The ratio between α1 and α2 is bounded, i.e. for
i = 1, 2, we have ᾱ/αi ≤ cα with a moderate constant cα.

We also recall the definition of the Péclet number, the ratio between convection and diffu-
sion w.r.t. the local mesh size hT , P T

h := 1
2
|w|∞,ThT/ᾱ. We assume the following.
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2.3 Error analysis

Assumption 2.3.2 (Diffusion dominates). We assume that the mesh Péclet number
Ph := 1

2
|w|∞hmax/ᾱ is smaller than one, Ph ≤ 1, with hmax = maxT∈Th hT .

Note that in the diffusion dominated case the “convectice” and “diffusive” scaling
(introduced in section 2.2.5) coincide again. We thus have λ ≈ O(1). We especially set
λ > 1.

The constants denoted with c used in the results derived below are all independent of λ,
ᾱ, h, |w|∞, and of how the interface Γ intersects the triangulation Th (i.e. of the shape
regularity of Ti).

We define the space of smooth functions

Vreg := H1
0 (Ω1,2) ∩H2(Ω1,2) and Wreg := H1

0,β(Ω) ∩H2(Ω1,2) ⊂ Vreg

and recall the bilinear form

Bh(u, v) = a(u, v) +Nc(u, v) +Nc(v, u) +Ns(u, v) + c(u, v), u, v ∈ V Γ
h + Vreg.

We further summarize the bilinear forms for the interface integrals to

N(u, v) := Nc(u, v) +Nc(v, u) +Ns(u, v), u, v ∈ V Γ
h + Vreg.

The inner products (·, ·)0 and (·, ·)1,Ω1,2 (with corresponding norms ‖ · ‖0 and | · |1,Ω1,2)
have been defined above in section 2.1.2. The inner products depend on a weighting with
β, but this causes no problem since β is assumed to be of order one (see assumption 1.2.3
(moderate ratios of β)) .

For the error analysis we introduce two norms. One in which we show coercivity and
continuity w.r.t. the discrete space V Γ

h and a stronger norm which also allows to show
continuity for all functions in Vreg which specifically means that the norm is able to control
normal derivatives on Γ. The norms allow for continuity and coercivity estimates with
constants independent of ᾱ, h, λ, β, w and independent of how the interface cuts through
the elements. In the following error analysis the corresponding parameter dependencies,
which exist for the a priori error bounds, essentially only appear in the interpolation
error estimates in these norms. The approximation quality of V Γ

h for functions in Vreg

has to be analyzed in the second, stronger, norm. The norms are

‖u‖2
N := ᾱ|u|21,Ω1,2

+ ᾱ λ ‖[[βu]]‖2
1
2
,h,Γ

, u ∈ Vreg + V Γ
h (2.3.1)

|||u|||2N := ‖u‖2
N + ᾱ−1‖{{α∇u · n}}‖2

− 1
2
,h,Γ

u ∈ Vreg + V Γ
h (2.3.2)

with

‖u‖2
1
2
,h,Γ

:=
∑

i=1,2

∑

T∈T ih

h−1
T

∫

ΓT

u2 ds and ‖u‖2
− 1

2
,h,Γ

:=
∑

i=1,2

∑

T∈T ih

hT

∫

ΓT

u2 ds.

Note that both norms (‖ · ‖N and ||| · |||N) depend on β, ᾱ and λ.
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2 Mass transport through a stationary interface

2.3.1.2 Consistency

As motivated in the derivation of the Nitsche method we have that for a smooth solution
u of the continuous problem, problem 2.1.2, most parts of N(u, ·) vanish.

Let u be the solution of problem 2.1.2 with u ∈ Wreg. Then there holds

N(u, vh) = −
2∑

i=1

(αi∇ui · ni, βivh,i)Γ ∀ vh ∈ V Γ
h . (2.3.3)

Lemma 2.3.1 (Consistency of Nitsche bilinear form).

Proof. As u ∈ H1
0,β(Ω) we have [[βu]] = 0 and hence Nc(vh, u) = Ns(u, vh) = 0. This gives

N(u, vh) = Nc(u, vh) = −({{α∇u · n}}, [[βvh]])Γ = −(α∇u · n, [[βvh]])Γ

where we exploited that α∇u · n is well-defined and single valued on Γ. Separating the
jump term into the contributions from domain 1 and 2 gives the result.

Let uh ∈ V Γ
h be the solution of (2.2.41) and u be the solution of problem 2.1.2

with u ∈ Wreg. Then there holds

Bh(uh − u, vh) = 0 ∀ vh ∈ V Γ
h . (2.3.4)

Theorem 2.3.2 (Galerkin orthogonality).

Proof. For the purpose of showing consistency we consider the smooth solution u ∈ Wreg

of the problem and plug it into the bilinear form Bh(·, ·) and show Bh(u, vh) = f(vh).
Note that due to u ∈ H2(Ω1,2) there holds f ∈ L2(Ω). Plugging u into Bh(·, vh) gives
(using lemma 2.3.1, partial integration and the boundary conditions vh|∂Ω = 0):

Bh(u, vh) = a(u, vh) +N(u, vh) + c(u, vh) = a(u, vh) +Nc(u, vh) + c(u, vh)

= (αu, vh)1,Ω1,2 −
2∑

i=1

(αi∇ui · ni, βivh,i)Γ + (w · ∇u, vh)Ω1,2

= (−div(α∇u) + w · ∇u︸ ︷︷ ︸
=f

, vh)Ω1,2 = (f, vh)Ω1,2

By definition of uh we further have Bh(uh, vh) = f(vh). Subtracting both equations gives
the claim.

For an error estimate in the L2
β(Ω)-norm we later in section 2.3.1.6 apply the Aubin-

Nitsche trick. For this purpose we pose the homogeneous adjoint problem. For clarity we
denote the solution of the adjoint problem by w. The adjoint problem reads
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2.3 Error analysis

−w · ∇w − div(α∇w) = f in Ωi, i = 1, 2, (2.3.6a)

[[α∇w · n]]Γ = 0 on Γ, (2.3.6b)

[[βw]]Γ = 0 on Γ, (2.3.6c)

w = 0 on ∂Ω. (2.3.6d)

Problem 2.3.1.

There holds the following stability statement which has been formulated as an assumption
in (2.1.11).

Let |w|∞ <∞, Ω ⊂ R2 be a convex polygon and Γ be a C2-smooth interface. For
f ∈ L2

β(Ω) the solution w ∈ H2
β(Ω) of problem 2.3.1 fulfills

‖w‖2,Ω1,2 ≤ cadj‖f‖0 (2.3.7)

with a constant cadj depending on |w|∞.

Lemma 2.3.3 (H2-Regularity of adjoint problem).

Proof. See [CZ98].

Applying the adjoint of bilinear form Bh(·, ·) gives a consistent discretization of the
adjoint problem. This is shown in the next lemma.

Let w be the solution of problem 2.3.1 with f ∈ L2
β(Ω). Then there holds

Bh(v, w) = (f, v)0 ∀ v ∈ Vreg + V Γ
h (2.3.8)

Lemma 2.3.4 (Adjoint consistency).

Proof. First note that due to f ∈ L2
β(Ω) we have w ∈ Wreg. Applying partial integration

for c(·, ·) and using the homogeneous boundary conditions for vh as well as the interface
condition for the velocity w · n = 0 on Γ we get

c(v, w) = (−w · ∇w, v)Ω1,2

The bilinear forms a(·, ·) and N(·, ·) are symmetric and we thus arrive at

Bh(v, w) = a(v, w) +N(v, w) + c(v, w) = (−div(α∇w)−w · ∇w︸ ︷︷ ︸
f

, v)Ω1,2 = (f, v)Ω1,2 .

2.3.1.3 Stability

The crucial component in order to show stability of the Nitsche-XFEM formulation is
the control on the (weighted) normal derivative. In section 2.2.2.2 we briefly addressed
this point to motivate the hansbo-weighted averaging proposed in [HH02].
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2 Mass transport through a stationary interface

If piecewise linear functions (k = 1) are used and the weights κi in the averaging
{{·}} satisfy the estimate

κ2
i ≤ cκ

|Ti|
|T | (2.3.9)

for a fixed constant cκ, then there exists a constant ctr independent of α, β, h or
the cut position such that

ᾱ−
1
2‖{{α∇uh · n}}‖− 1

2
,h,Γ ≤

√
ctr |
√
αuh|1,Ω1,2 for all uh ∈ V Γ

h . (2.3.10)

Lemma 2.3.5.

Proof. The proof is based on lemma 4 in [HH02]. There exists a fixed number cΓ

independent on h or the cut position so that |ΓT |h ≤ cΓ|T |. As ∇uh = const we can
thus deduce

ᾱ−1‖{{α∇uh · n}}‖2
− 1

2
,h,Γ
≤ 2ᾱ−1

∑

T∈T Γ
h

∑

i=1,2

∫

ΓT

hα2
iκ

2
i ‖∇uh‖2

2 ds

≤ 4
∑

T∈T Γ
h

∑

i=1,2

cΓ|T |αiκ2
i

1

|ΓT |

∫

ΓT

‖∇uh‖2
2 ds

≤ 4
∑

T∈T Γ
h

∑

i=1,2

cΓαiκ
2
i

|T |
|Ti|

∫

Ti

‖∇uh‖2
2 dx

≤ 4cΓcκ
∑

i=1,2

αi|∇uh|21,Ωi .

The claim follows with ctr = 4cΓcκ.

The hansbo-weighting fulfills (2.3.9) with cκ = 1.
Remark 2.3.1 (Higher order discretizations). To generalize the statement in lemma 2.3.5
w.r.t. the polynomial degree k one has to either adjust the weighting κi or add additional
stabilization terms. In [Mas12] a choice for κi in two dimensions is derived which allows
for such a generalization. However, the proof of the result as well as the construction of
κi is very technical. A simpler choice is κi = 1 if |Ti| > 1

2
|T | and 0 otherwise. We expect

that in that case there holds for all polynomials p and |Ti| > 1
2
|T |

1

|ΓT |

∫

ΓT

p(s)2 ds ≤ max
s∈ΓT

p(s)2 ≤ max
x∈Ti

p(x)2 ≤ cp
1

|Ti|

∫

Ti

p(x)2 dx

with a constant cp only depending on the polynomial degree k. This estimate suffices to
generalize the result in lemma 2.3.5. For the two-dimensional case this claim also follows
directly from the analysis in [Mas12] (cf. lemma 3.5 and the prior discussion in that
paper). Another possibility is a higher order version of the ghost penalty stabilization (see
section 2.2.3.5) which allows to control the normal derivative at the interface independent
on the cut position. We did not investigate this further.
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2.3 Error analysis

In what follows we assume that κi is chosen such that (2.3.10) also holds for higher order
discretizations. This implies the following

On V Γ
h the norms ‖ · ‖N and ||| · |||N are equivalent, that means for every uh ∈ V Γ

h

there holds
‖uh‖N ≤ |||uh|||N ≤ ce‖uh‖N. (2.3.12)

with ce =
√

1 + ctr.

Lemma 2.3.6.

Proof. The left inequality is trivial. For the right inequality consider that the part of
the norm ||| · |||N that involves normal derivatives can be bounded with the ‖ · ‖1,Ω1,2 semi
norm using lemma 2.3.5.

We derive an ellipticity result for ah(·, ·):

For λ > cλ := max{4ctr, 1} there holds

ah(uh, uh) ≥ ga‖uh‖2
N for all uh ∈ V Γ

h .

with ga = αmin

2ᾱ
.

Lemma 2.3.7.

Proof. There holds

Nc(uh, uh) = −
∫

Γ

{{α∇ · n}}[[βu]] ds ≤ ᾱ−
1
2‖{{α∇u · n}}‖− 1

2
,h,Γ ᾱ

1
2‖[[βu]]‖ 1

2
,h,Γ

≤ ctr

2γ
|√αu|21,Ω1,2

+ ᾱ
γ

2
‖[[βu]]‖2

1
2
,h,Γ

for any γ > 0 where we used lemma 2.3.5. Now setting γ = 2ctr we get

2Nc(uh, uh) ≤
1

2
a(u, u) + 2ctrᾱ‖[[βv]]‖2

1
2
,h,Γ

(2.3.14)

Let cλ := max{4ctr, 1}. Then for λ ≥ cλ we have

2Nc(uh, uh) ≤
1

2
a(uh, uh) +

1

2
Ns(uh, uh).

It easily follows

ah(uh, uh) ≥ a(uh, uh)− 2Nc(uh, uh) +Ns(uh, uh)

≥ 1

2
(a(uh, uh) +Ns(uh, uh)) ≥

αmin

2ᾱ
‖uh‖2

N.
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2 Mass transport through a stationary interface

Under assumption 1.2.4 (compatible velocity) there holds

c(uh, uh) ≥ 0 for all uh ∈ V Γ
h .

Lemma 2.3.8.

Proof. Partial integration gives

(w · ∇uh, uh)0 =(uh,−w · ∇uh)0 − (div(w), u2
h)0

+ (w · n, βu2
h)∂Ω + (w · n, [[βu2

h]])Γ

Assumption 1.2.4 (compatible velocity) includes div(w) = 0 and w ·n = 0 on Γ. Together
with the boundary condition uh = 0 for every uh ∈ V Γ

h the claim follows.

Summing up the results from the from the previous lemmas yields

For λ > cλ = max{4ctr, 1} there holds

Bh(uh, uh) ≥ gB‖uh‖2
N, ∀ uh ∈ V Γ

h

with gB = gA = αmin

2ᾱ
.

Theorem 2.3.9.

Proof. Combine lemma 2.3.7 and lemma 2.3.8.

This implies that the discrete problem has a unique solution.

2.3.1.4 Boundedness

For λ > cλ = max{4ctr, 1}, there holds

ah(u, vh) ≤ Ga|||u|||N‖vh‖N for all u ∈ Vreg + V Γ
h , vh ∈ V Γ

h

for a constant Ga =
√

3.

Lemma 2.3.10.

Proof. Applying Cauchy-Schwarz for all bilinear forms one after another we get

a(u, v) ≤ αmax|u|1,Ω1,2|vh|1,Ω1,2

Nc(u, vh) ≤ ᾱ−
1
2‖{{α∇u · n}}‖− 1

2
,h,Γ ᾱ

1
2‖[[βvh]]‖ 1

2
,h,Γ

Nc(vh, u) ≤ ᾱ−
1
2‖{{α∇vh · n}}‖− 1

2
,h,Γ ᾱ

1
2‖[[βu]]‖ 1

2
,h,Γ

≤ √ctr|
√
αvh|1,Ω1,2 ᾱ

1
2‖[[βu]]‖ 1

2
,h,Γ

Ns(u, vh) ≤ λ
1
2 ᾱ

1
2‖[[βu]]‖ 1

2
,h,Γ λ

1
2 ᾱ

1
2‖[[βvh]]‖ 1

2
,h,Γ
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2.3 Error analysis

With λ > max{4ctr, 1} we get

ah(u, vh) ≤
√

3|||u|||N‖vh‖N

which implies the claim.

There holds

c(u, v) ≤ |w|∞√
ᾱ
‖u‖0‖v‖N for all u, v ∈ Vreg + V Γ

h .

Lemma 2.3.11.

Proof. As in lemma 2.3.8 we apply partial integration and make use of assumption 1.2.4
(compatible velocity) and boundary conditions. Then applying Cauchy-Schwarz inequality
gives the result.

There holds

Bh(u, vh) ≤ GB|||u|||N‖vh‖N +
|w|∞√
ᾱ
‖u‖0‖vh‖N ∀u ∈ Vreg + V Γ

h , vh ∈ V Γ
h (2.3.16)

with GB =
√

3.

Theorem 2.3.12.

Proof. Combine lemma 2.3.10 and lemma 2.3.11.

2.3.1.5 Interpolation error

In the analysis of the Nitsche-XFEM method an interpolation operator IΓ
h : Vreg → V Γ

h

plays an important role. We recall the extension operator Ei and the restriction operator
Ri introduced in section 2.2.1.1. Let Ih : H2(Ω) ∩H1

0 (Ω)→ Vh be the standard nodal
interpolation operator corresponding to the space Vh of continuous finite elements of
degree k. The XFEM interpolation operator is given by

IΓ
h = R1IhE1R1 +R2IhE2R2. (2.3.17)

For the interpolation operator IΓ
h optimal (local) interpolation error bounds can easily

be derived
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2 Mass transport through a stationary interface

Let u ∈ Vreg ∩Hm(Ω1,2), m ≥ 2 and IΓ
h be the interpolation operator into V Γ

h the
XFEM finite element space of (continuous) piecewise polynomials of degree k ≥ 1
as in (2.3.17). With eI := u − IΓ

hu, ũi = EiRiu, l := min{k,m − 1} and i = 1, 2
there hold the following local interpolation error bounds for T ∈ Th.

‖eI‖2
0,Ti
≤ch2l+2

T ‖ũi‖2
l+1,T (2.3.18a)

|eI |21,Ti≤ch2l
T ‖ũi‖2

l+1,T (2.3.18b)

‖RieI‖2
1
2
,h,ΓT
≤ch2l

T ‖ũi‖2
l+1,T (2.3.18c)

‖∇RieI ·n‖2
− 1

2
,h,ΓT
≤ch2l

T ‖ũi‖2
l+1,T (2.3.18d)

Lemma 2.3.13.

Proof. The results in (2.3.18a) and (2.3.18b) are known in the literature, see for in-
stance [HH02, Reu08]. The results in (2.3.18c), (2.3.18d), are derived in [HH02]. The
essential ingredient is the following result:

‖w‖2
L2(ΓT ) ≤ c

(
h−1
T ‖w‖2

L2(T ) + hT |w|21,T
)

for all w ∈ H1(T ),

which holds for all T ∈ T Γ
h and with a constant c that is independent of the shape

regularity of Ti, cf. [HH02, GR11]. We give the proof of (2.3.18c) and (2.3.18d):

‖RieI‖2
1
2
,h,ΓT

= h−1
T ‖EiRieI‖2

L2(ΓT ) ≤ c
(
h−2
T ‖EiRieI‖2

L2(T ) + |EiRieI |21,T
)

≤ ch2l
T ‖ũi‖2

2,T ⇒ (2.3.18c),

‖∇RieI ·n‖2
− 1

2
,h,ΓT
≤ hT‖∇EiRieI‖2

L2(ΓT ) ≤ c
(
‖∇EiRieI‖2

L2(T ) + h2
T |∇EiRieI |21,T

)

≤ ch2l
T ‖ũi‖2

2,T ⇒ (2.3.18d).

Let u ∈ Vreg ∩ Hm(Ω1,2) and IΓ
h as in lemma 2.3.13. Assume the family of

triangulations is quasi-uniform so that hT ≤ ch. With eI := u − IΓ
hu and

l := min{k,m− 1} there holds

‖eI‖0,Ω1,2≤chl+1‖u‖l+1,Ω1,2 (2.3.19a)

|eI |1,Ω1,2≤chl‖u‖l+1,Ω1,2 (2.3.19b)

‖RieI‖ 1
2
,h,Γ≤chl‖u‖l+1,Ωi (2.3.19c)

‖∇RieI ·n‖− 1
2
,h,Γ≤chl‖u‖l+1,Ωi (2.3.19d)

Lemma 2.3.14.

Proof. Using quasi-uniformity for the estimates in lemma 2.3.13 and in addition making
use of the continuity of the extension operator ‖EiRiu‖l+1,Ω ≤ c‖u‖l+1,Ωi directly gives
the estimates.

For the norms ‖ · ‖N and ||| · |||N we can directly conclude interpolation bounds using the
above estimates.
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2.3 Error analysis

For u ∈ Vreg ∩Hm(Ω1,2), m ≥ 2 and l := min{k,m− 1} the following interpolation
error bound holds on a quasi-uniform family of triangulations with mesh size h:

‖u− IΓ
hu‖N ≤ |||u− IΓ

hu|||N ≤ c
√
ᾱλhl‖u‖2,Ω1,2 (2.3.20)

Lemma 2.3.15.

2.3.1.6 A priori error estimates

Let uh ∈ V Γ
h be the solution of (2.2.41) with λ > cλ and u be the solution of

problem 2.1.2 with u ∈ Wreg. There holds, with gB, GB as in theorem 2.3.9,
theorem 2.3.12

‖u− uh‖N ≤ inf
vh∈V Γ

h

{
(1 +

GB

gB
)|||u− vh|||N +

1

gB
Ph

√
ᾱ

hmax

‖u− vh‖0

}
(2.3.21a)

and

|||u− uh|||N ≤ inf
vh∈V Γ

h

{
(1 +

GB

gB
ce)|||u− vh|||N +

ce
gB
Ph

√
ᾱ

hmax

‖u− vh‖0

}
. (2.3.21b)

Lemma 2.3.16 (Modified Cea’s lemma).

Proof. With the triangle inequality we split the error into two parts. We introduce a new
discrete function vh which is arbitrary at this point but will be the best approximation
to u in V Γ

h later. We define ea := u− vh what is going to represent the approximation
error and ed := vh − uh ∈ V Γ

h what is denoted as the discrete error:

‖u− uh‖2
N ≤ ‖ed‖2

N + ‖ea‖2
N, |||u− uh|||2N ≤ |||ed|||2N + |||ea|||2N,

For the discrete error we can apply (in order) lemma 2.3.6, theorem 2.3.9, lemma 2.3.1
and theorem 2.3.12 to bound the discrete error by the approximation error:

c−1
e |||ed|||N‖ed‖N ≤ ‖vh − uh‖2

N ≤
1

gB
Bh(vh − uh, vh − uh)

=
1

gB
Bh(vh − u, vh − uh)

≤ GB

gB
|||ea|||N‖ed‖N +

1

gB

|w|∞√
ᾱ
‖ea‖0‖ed‖N

⇒ ‖ed‖N ≤
GB

gB
|||ea|||N +

1

gB

|w|∞√
ᾱ
‖ea‖0,

|||ed|||N ≤
GB

gB
ce|||ea|||N +

ce
gB

|w|∞√
ᾱ
‖ea‖0

Putting all together concludes the proof.
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2 Mass transport through a stationary interface

Let uh ∈ V Γ
h be the solution of (2.2.41) and u be the solution of problem 2.1.2 with

u ∈ Wreg ∩Hm(Ω1,2). Define l := min{k,m− 1} and assume Th is quasi-uniform
with mesh size h. Then there holds

‖u− uh‖N ≤ |||u− uh|||N ≤ c(1 + Ph)
√
ᾱλhl‖u‖2,Ω1,2 . (2.3.23)

Lemma 2.3.17 (Error bound in ‖ · ‖N-norm).

Proof. Combine lemma 2.3.16 and the approximation results in lemma 2.3.15.

With Ph ≤ 1 this implies for sufficiently smooth functions u

|u− uh|1,Ω1,2 ≤ c
√
λhk‖u‖2,Ω1,2 , (2.3.24a)

‖[[βuh]]‖Γ ≤ c hk+ 1
2‖u‖2,Ω1,2 , (2.3.24b)

‖{{α∇u · n}}‖Γ ≤ c ᾱ
√
λhk−

1
2‖u‖2,Ω1,2 . (2.3.24c)

Duality arguments.

Let uh ∈ V Γ
h be the solution of (2.2.41) and u be the solution of problem 2.1.2

with u ∈ Vreg ∩Hm(Ω1,2). Assuming a quasi-uniform mesh with mesh size h and
Ph ≤ 1 there holds (with l := min{k,m− 1})

‖u− uh‖0 ≤ c
√
ᾱλh|||u− uh|||N (2.3.25)

≤ c ᾱ λ hl+1‖u‖2,Ω1,2 (2.3.26)

Lemma 2.3.18 (Error bound in ‖ · ‖0).

Proof. We consider the adjoint problem, problem 2.3.1, with data f = u− uh ∈ L2(Ω)
and denote the corresponding solution as w. We exploit adjoint consistency (lemma 2.3.4),
Galerkin orthogonality of the primal problem (lemma 2.3.1) and continuity (theo-
rem 2.3.12) to get (for any wh ∈ V Γ

h )

‖u− uh‖2
0 = (u− uh, u− uh)0 = Bh(u− uh, w) (2.3.27a)

= Bh(u− uh, w − wh) ≤ K|||u− uh|||N|||w − wh|||∗ (2.3.27b)

where in the last step we used

Bh(u, v) ≤ K|||u|||N|||v|||∗ ∀u, v ∈ Vreg + V Γ
h

which is a generalization of theorem 2.3.12 with

|||v|||∗ := |||v|||N +
|w|∞√
ᾱ
‖v‖0.
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Now choose wh = IΓ
hw and apply the previously used approximation results (with Ph ≤ 1)

to get

‖u− uh‖2
0 ≤ c

√
ᾱλhK|||u− uh|||N‖w‖2,Ω1,2 .

Applying the stability estimate of the adjoint problem (see lemma 2.3.3) to bound

‖w‖2,Ω1,2 ≤ cadj‖f‖0 = cadj‖u− uh‖0

finally yields

‖u− uh‖0 ≤ c cadj

√
ᾱλhK|||u− uh|||N.

Now plugging in the result in lemma 2.3.17 concludes the proof.

Remark 2.3.2 (Non-stationary problem). For the semi-discretization in (2.2.51) optimal
order error bounds are derived in [RN09] for polynomial degree k = 1. In the analysis in
that paper it is also assumed that the transport problem is diffusion-dominated. Further,
in that paper the full discretization (2.2.52) with θ = 1 is analyzed and error bounds are
derived.

2.3.2 A priori error analysis for Nitsche-XFEM with Streamline
Diffusion stabilization (convection dominates)

In this section we present an error analysis of the Nitsche-XFEM method with Streamline
Diffusion stabilization. The error analysis is based on the one in [LR12].

We are particularly interested in the convection-dominated case, and therefore allow
ᾱ = 1

2
(α1 + α2) ↓ 0. To emphasize that α is small we introduced the notation for the

diffusion coefficient with ε such that εi = αi and ε̄ = ᾱ.

We recall that in the convection dominated case the Nitsche stabilization parameter λ
can be chosen within a given range bounded by the limit cases that we called “diffusive”
and “convective” scaling. Further note that λ can be defined element-local which allows
it to differ on different elements T ∈ Th:

cλ = λd ≤ λT ≤ λcT := cλ max{P T
h , 1}

For ease of presentation we make the following assumption which can always be achieved
by rescaling.
Assumption 2.3.3 (|w|∞ ≤ O(1)). We assume that |w|∞ ≤ 1, s.t. the amount of
convection domination only depends on the size of the diffusion parameters εi, i = 1, 2.

We restrict to piecewise linear functions in this section. For k = 1 we have div(∇uh) = 0
for all uh ∈ V Γ

h . This is exploited in lemma 2.3.21. We comment on higher order
extensions in remark 2.3.3.
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2 Mass transport through a stationary interface

2.3.2.1 Preliminaries

We will need several norms related to the Nitsche stabilization (see previous section)
and the Streamline Diffusion stabilization. For the Streamline Diffusion stabilization we
recall the inner product

(u, v)0,h =
∑

T∈Th
γT (u, v)0,T

with corresponding norm denoted by ‖ · ‖0,h.

In the analysis we consider the solution of the following problem.

ξu+ w · ∇u− div(α∇u) = f in Ωi, i = 1, 2, (2.3.28a)

[[α∇u · n]]Γ = 0 on Γ, (2.3.28b)

[[βu]]Γ = 0 on Γ, (2.3.28c)

u = 0 on ∂Ω. (2.3.28d)

Problem 2.3.2.

Compared to the transport problem considered above (see problem 2.1.2) we introduced
an additional zero order term ξu, with a given constant ξ ≥ 0. This is standard in the
analysis of convection-dominated problems (cf. [RST08]), since only if this zero order
term is present (ξ > 0) one can derive uniform error bounds in the L2

β(Ω)2-norm.

To obtain estimates that are uniform with respect to the parameter ξ, we have to
generalize the choice of the stabilization parameter γT and choose

γT = min
{ 2hT
|w|∞,T

,
h2
T

ε̄
,
1

ξ

}
. (2.3.29)

This parameter choice is essentially the same as in [RST08] and allows for the following
estimates.

With γT as in (2.3.29) the following estimates can be derived:

γT ξ ≤ 1, (2.3.30a)

γT |w|∞,T ≤ 2hT , (2.3.30b)

γT ε̄
2 ≤ ε̄h2

T , (2.3.30c)

γ−1
T h2

T ≤ ξh2
T +

1

2
|w|∞,T hT + ε̄. (2.3.30d)

Lemma 2.3.19.

We derive an error bound for the discretization error cf. theorem 2.3.28 below. To this
end we investigate the bilinear form

Ch(u, v) := ah(u, v) + c(u, v) + b(u, v) + d(u, v), u, v ∈ Vreg + V Γ
h (2.3.31)

with d(u, v) := (−div(ε∇u) + ξu+ w · ∇u,w · ∇v)0,h

and b(u, v) := ξ(u, v)0
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and the linear form

f(v) := (f, v)0 + (f,w · ∇v)0,h, u, v ∈ Vreg + V Γ
h . (2.3.32)

The discrete problem is

Find uh ∈ V Γ
h , so that Ch(uh, vh) = f(vh) for all vh ∈ V Γ

h . (2.3.33)

As we will see below, we can derive an ellipticity and continuity result for the bilinear
form Ch(·, ·) with respect to suitable norms. As expected, these norms involve terms that
result from the Nitsche stabilization and from the Streamline Diffusion stabilization. To
simplify the presentation we split the bilinear form in two parts (corresponding to Nitsche
and Streamline Diffusion stabilization) and first consider these two parts separately where
we can recycle results from section 2.3.1. Afterwards the results for these two parts can
easily be glued together.

We use the splitting

Ch(u, v) := aNh (u, v) + aSD

h (u, v)

aNh (u, v) :=
1

2
a(u, v) +N(u, v)

aSD

h (u, v) :=
1

2
a(u, v) + c(u, v) + b(u, v) + d(u, v).

In the analysis of the method the following norms are used:

‖v‖2
N :=

1

2
ε̄|v|21,Ω1,2

+ λε̄‖[[βv]]‖2
1
2
,h,Γ

, (2.3.34a)

‖v‖2
SD :=

1

2
ε̄|v|21,Ω1,2

+ ξ‖v‖2
0 + ‖w · ∇v‖2

0,h, (2.3.34b)

‖v‖2
C := ‖v‖2

SD + ‖v‖2
N. (2.3.34c)

Further we use the stronger norms

|||v|||2N := ‖v‖2
N + ε̄−1‖{{ε∇u · n}}‖2

− 1
2
,h,Γ

, (2.3.35a)

|||v|||2SD := ‖v‖2
SD +

∑

T∈Th
γ−1
T ‖v‖2

0,T + ε̄2‖∆v‖2
0,h, (2.3.35b)

|||v|||2C := |||v|||2SD + |||v|||2N. (2.3.35c)

Note that the two terms ‖w · ∇v‖2
0,h and λε̄‖[[βv]]‖2

1
2
,h,Γ

originate from the stabilization

terms in the Streamline Diffusion and the Nitsche method, respectively.

Note also that the scaling of the (β-weighted) H1-semi-norm is different from the one in
the last section by a factor 1

2
.

The constants used in the results derived below are all independent of λ, ξ, ε̄, h, |w|∞,
and of how the interface Γ intersects the triangulation Th (i.e. of the shape regularity of
Ti).
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2 Mass transport through a stationary interface

2.3.2.2 Consistency

The discrete formulation (2.3.33) is consistent.

Let uh ∈ V Γ
h be the solution of (2.3.33) and u ∈ Wreg be the solution of prob-

lem 2.3.2, then there holds

Ch(u− uh, vh) = 0 for all vh ∈ V Γ
h .

Lemma 2.3.20.

Proof. Note that Ch(·, ·) = Bh(·, ·) + b(·, ·) + d(·, ·) and with the consistency result from
the previous section we have Bh(u, vh) + b(u, vh) = (f, vh)0. Further by construction we
have −div(ε∇u) + ξu −w · ∇u = f and thus d(u, vh) = (f,w · ∇vh)0,h. Together the
claim holds.

2.3.2.3 Stability

Recalling lemma 2.3.7 we already have

aNh (uh, uh) ≥
1

2
ga‖uh‖2

N for all uh ∈ V Γ
h .

We now show a similar statement for the Streamline Diffusion part aSD
h (·, ·) of the bilinear

form.

There holds
aSD

h (uh, uh) ≥ cα‖uh‖2
SD for all uh ∈ V Γ

h ,

with cα = εmin

2ε̄
= ga.

Lemma 2.3.21.

Proof. Using lemma 2.3.8 we have c(uh, uh) ≥ 0. Furthermore, using (2.3.30a) we get

ξ(uh,w · ∇uh)0,h = ξ
∑

T∈Th
γT (uh,w · ∇uh)0,T1,2

≤ 1

2

∑

T∈Th
ξ2γT‖uh‖2

0,T + γT‖w · ∇uh‖2
0,T1,2

≤ 1

2
ξ‖uh‖2

0 +
1

2
‖w · ∇uh‖2

0,h.

Hence,

aSD

h (uh, uh) ≥
1

2
εmin‖uh‖2

1,Ω1,2
+ ξ‖uh‖2

0 + ‖w · ∇uh‖2
0,h + ξ(uh,w · ∇uh)0,h

≥ εmin

ε̄

ε̄

2
‖uh‖2

1,Ω1,2
+

1

2
ξ‖uh‖2

0 +
1

2
‖w · ∇uh‖2

0,h.
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2.3 Error analysis

The result in the previous lemma only applies for piecewise linear functions (k = 1), cf.
remark 2.3.3.

For λ > 2cλ there holds

Ch(uh, uh) ≥ gC‖uh‖2
C for all uh ∈ V Γ

h .

with gC = ga

Lemma 2.3.22.

Proof. Note that the bilinear form aNh (·, ·) and the norm ‖ · ‖N is different from the one
used in lemma 2.3.7. To retain the result we adapt the Nitsche stabilization parameter
λ. To this end we restricted λ > 2cλ. Now in the proof of lemma 2.3.7 we can choose
γ = 4ctr and get the desired result with the same ellipticity constant ga. Together with
lemma 2.3.21 we get

Ch(uh, uh) = aSD

h (uh, uh) + aNh (uh, uh) ≥ ga‖uh‖2
SD + ga‖uh‖2

N = ga‖uh‖2
C

2.3.2.4 Boundedness

For every u ∈ Vreg + V Γ
h , vh ∈ V Γ

h there holds

aSD

h (u, vh) ≤ 2|||u|||SD‖vh‖SD.

Lemma 2.3.23.

Proof.

1

2
a(u, vh) ≤

≤ε̄︷ ︸︸ ︷
1

2
εmax |u|1,Ω1,2|vh|1,Ω1,2 (2.3.36a)

b(u, vh) ≤ ξ‖u‖0‖vh‖0 (2.3.36b)

d(u, vh) ≤
( ∑

T∈Th
γT (ξ2

︸ ︷︷ ︸
≤ξ

‖u‖2
0,T + ε̄2‖∆u‖2

0,T + ‖w · ∇u‖2
0,T )
) 1

2

· ‖w · ∇vh‖0,h

(2.3.36c)

For c(u, v) we apply partial integration

(w · ∇u, vh)0 = −(u,w · ∇vh)0 ≤
( ∑

T∈Th
γ−1
T ‖u‖2

0,T

) 1
2‖w · ∇vh‖0,h
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2 Mass transport through a stationary interface

Recalling lemma 2.3.10 we further have for u ∈ Vreg + V Γ
h , v ∈ V Γ

h

aNh (u, vh) ≤ Ga|||u|||N‖v‖N.

There exists a constant c such that for every u ∈ Vreg + V Γ
h , v ∈ V Γ

h

Ch(u, vh) ≤ GC |||u|||C‖vh‖C,

with GC = 4.

Lemma 2.3.24.

Proof. Combine lemma 2.3.10 and lemma 2.3.23.

2.3.2.5 Interpolation error

Similar to lemma 2.3.15 we have for u ∈ Vreg the following interpolation error bound

‖u− IΓ
hu‖N ≤ |||u− IΓ

hu|||N ≤ c
√
ε̄λh‖u‖2,Ω1,2 (2.3.37)

For the SD norm we get

Assume h ≤ chT (quasi-uniformity of the family of triangulations), then there
holds the following interpolation error bound for u ∈ Vreg

‖u− IΓ
hu‖SD ≤ |||u− IΓ

hu|||SD ≤ (
√
εh+

√
ξh2 +

√
|w|∞h

3
2 )‖u‖2,Ω1,2

Lemma 2.3.25.

Proof. We split the norm into its element contributions and apply the element local
interpolation estimates in (2.3.18a)-(2.3.18d) from the last section.

|||ea|||2SD =ε̄|ea|21,Ω1,2
+ ξ‖ea‖2

0 +
∑

T∈Th
γ−1
T ‖ea‖2

0,T + ‖w · ∇ea‖2
0,h + ε̄2‖∆ea‖2

0,h

≤
∑

T∈Th

(
ε̄|ea|21,T1,2

+ ξ‖ea‖2
0,T + γ−1

T ‖ea‖2
0,T + γT |w|2∞,T‖ea‖2

1,T1,2
+ γT ε̄

2‖∆u‖2
0,T1,2

)

≤
∑

T∈Th

(
ε̄h2

T + ξh4
T + (γ−1

T h2
T )h2

T + γT |w|2∞,Th2
T + ε̄2γT

)
· ‖u‖2

2,T1,2

Now, recalling γT |w|∞,T ≤ 2hT , ε̄2γT ≤ ε̄h2
T and γ−1

T h2
T ≤ ξh2

T + 1
2
|w|∞,ThT + ε̄ from

(2.3.30) concludes the proof.
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We conclude

Assume h ≤ chT (quasi-uniformity of the family of triangulations), then there
holds the following interpolation error bound for u ∈ Vreg

|||u− IΓ
hu|||C ≤ (

√
ε̄λh+

√
ξh2 +

√
|w|∞h

3
2 )‖u‖2,Ω1,2

Lemma 2.3.26.

Proof. Combine the recent lemma, (2.3.37) and recall λ > 1.

According to the last two estimates we reconsider the question on how to choose λ. While
in the diffusion dominated case the whole error bound (2.3.23) increased for increasing λ
we now have also other terms which can absorb the dependency on λ up to a certain
limit. We notice that as long as there holds

ε̄λT ≤ max{ξh2
T , |w|∞,ThT}

the dependency on λ can be absorbed by the other parameters. This justifies the extreme
cases “diffusive” and “convective” scaling presented in (2.2.50). Note that ξ has only
been introduced for theoretical purposes.

2.3.2.6 A priori error estimates

Let uh ∈ V Γ
h be the solution of (2.3.33) with λ > 2cλ and u ∈ Wreg be the solution

of problem 2.3.2, then there holds

‖u− uh‖C ≤
(

1 +
GC

gC

)
inf

vh∈V Γ
h

|||u− vh|||C (2.3.38)

Lemma 2.3.27.

Proof. Triangle inequality gives

‖u− uh‖C ≤ ‖u− vh︸ ︷︷ ︸
=:ea

‖C + ‖ vh − uh︸ ︷︷ ︸
=:ed

‖C ≤ |||ea|||C + ‖ed‖C

for any vh ∈ V Γ
h . Then we apply (in order) lemma 2.3.22, lemma 2.3.20, and lemma 2.3.24

to get

‖ed‖2
C ≤

1

gC
Ch(uh − vh, uh − vh)

=
1

gC
Ch(u− vh, uh − vh)

≤ GC

gC
|||ea|||C‖ed‖C
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2 Mass transport through a stationary interface

Let uh ∈ V Γ
h be the solution of (2.3.33) with λ > 2cλ and u ∈ Wreg be the solution

of problem 2.3.2. Furthermore assume h ≤ chT (quasi-uniformity of the family of
triangulations), then there holds

‖u− uh‖C ≤ c(
√
ε̄λh+

√
ξh2 +

√
|w|∞h

3
2 )‖u‖2,Ω1,2 (2.3.39)

Theorem 2.3.28.

Proof. Combine lemma 2.3.27 and lemma 2.3.26.

2.3.2.7 Discussion of results

We comment on the bound derived in (2.3.39) and simplify the discussion by again
assuming quasi-uniformity of the family of triangulations. The three error terms corre-
spond to the three physical effects: diffusion (

√
ε̄h), convection (

√
|w|∞h

3
2 ) and reaction

(
√
ξh2).

For the diffusion dominated case, i.e. ε̄ ≥ |w|∞h and ε̄ ≥ ξh2 we have γT =
h2
T

ε̄
and the

result essentially reduces to the one in section 2.3.1.

In the convection dominated case there holds |w|∞ ≥ ε̄/h and |w|∞ ≥ ξh and we thus
have γT ≥ 2h

|w|∞ . Let eh := u− uh. From (2.3.39) we obtain

‖w · ∇eh‖0 ≤ c|w|∞h‖u‖2,Ω1,2 .

Hence, as for the Streamline Diffusion finite element method with the standard linear
finite element space, we have an optimal error bound (uniformly in ε̄) for the derivative
of the error in streamline direction.

Finally, if we take ξ > 0 (not necessarily reaction-domination) we obtain an L2-norm
error bound that is the same as for the Streamline Diffusion finite element method with
the standard linear finite element space, namely

‖eh‖0 ≤
c√
ξ
h

3
2‖u‖2,Ω1,2 .

We now discuss bounds for the error in the interface condition. We only discuss the
convection-dominated case. The estimate (2.3.39) implies

λε̄‖[[βuh]]‖2
1
2
,h,Γ
≤ c|w|∞h3‖u‖2

2,Ω1,2
.

For the convective scaling we have λε̄ ∼ ch and thus obtain

‖[[βuh]]‖Γ ≤ c
√
|w|∞h1 1

2‖u‖2,Ω1,2
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2.4 Preconditioning of linear systems

uniformly in ε̄. For the diffusive scaling we have λ ∼ c and thus obtain the worse
bound

‖[[βuh]]‖Γ ≤ ch2ε̄−
1
2‖u‖2,Ω1,2 .

The convective scaling leads to error bounds for the streamline derivative and the jump
term on the interface which are uniform in ε̄.
Remark 2.3.3 (Extension to higher order discretizations). The SD-Nitsche-XFEM
method has a straightforward extension to finite elements of higher order. As soon
as higher order finite elements are considered the analysis changes due to the term
(div(ε∇uh),w · ∇vh)0,h which arises in the Streamline Diffusion stabilization. In the
analysis of the Streamline Diffusion method for a standard higher order finite element
space Vh one uses an inverse inequality of the form ‖∆vh‖0,T ≤ cinvh

−1
T |vh|1,T for all

vh ∈ Vh, cf. [RST08]. This is needed to prove lemma 2.3.21. The inverse inequality,
however, does not hold for the XFEM functions in V x

h as the the support Ti = T ∩ Ωi

can be very shape irregular. We only have ‖∆vh‖0,Ti ≤ c(Ti)h
−1
Ti
|vh|1,Ti with a factor c(Ti)

that depends on the shape regularity of Ti. To control this, instead of γT in (2.3.29), one
can choose a stabilization parameter γTi that is sufficiently small. This would yield a
stability result as in lemma 2.3.21. If, however, this parameter is “too small” it is not
likely that a result as in lemma 2.3.23, which uses the inequality (2.3.30d), still holds. A
cure for this problem could be the higher order version of the ghost penalty stabilization
(see section 2.2.3.5) which would allow for a control on ‖∆vh‖0,T1,2 independent of the
shape regularity of Ti. We did not investigate this further.
Remark 2.3.4 (Non-stationary case). In the error analysis in section 2.3.2 we only
studied the bilinear form for the quasi-stationary problem. Based on the techniques
presented in the recent paper [BS11] it may be possible to derive, for the case of a
stationary interface, error bounds for the semi-discrete problem (2.2.48). In view of
applications the case of a non-stationary interface Γ(t) is much more interesting than
that of a stationary one. A discretization based on a space-time approach including an
error analysis is presented and discussed in chapter 3.

2.4 Preconditioning of linear systems

In this section we propose and analyze appropriate preconditioners for the linear systems
arising from Nitsche-XFEM discretizations for unfitted interface problems. We restrict to
the elliptic problem with convection, problem problem 2.1.3. The results in this section
have also been published in [LR14].

Let A be the system matrix of the bilinear form ah(·, ·) in (2.2.13). As a first quantity of
interest we consider the spectral condition number κ(A) = λmax/λmin where λmax and
λmin are the largest and the smallest eigenvalues of the (symmetric positive definite)
system matrix. In [BZ12] it is shown that κ(A) depends on how the interface cuts an
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2 Mass transport through a stationary interface

element. In that paper an indicator ν for “small cut” situations is defined:

ν := min
i=1,2

min
V ∈V,

xV ∈ΩΓ\Ωi

|ωV | ∩ Ωi

|ωV |
. (2.4.1)

Here, V is the set of vertices V of the triangulation Th and xV is the corresponding
coordinate in Ω, ωV = {T ∈ T ,xV ∈ T} denotes the patch of elements around a vertex
V . For ν ↘ 0 we have κ(A)↗∞, s.t. the problem becomes (very) ill-conditioned.

A similar problem has already been observed for the mass matrix in [Reu08]. In that
paper a remedy to this problem is a simple diagonal preconditioner.

In general, due to the fact that the conditioning of the stiffness matrix is sensitive to the
position of the interface relative to the mesh, the efficient solution of the discrete problems
stemming from Nitsche-XFEM discretizations is a challenging task. This is a topic that
has hardly been addressed in the literature, so far. Recently, for stabilized versions of the
Nitsche-XFEM method condition number bounds of the form ch−2, with a constant c that
is independent of how the interface Γ intersects the triangulation, have been derived in
[BH12, HLZ14, ZWKB13]. In [HLZ14] an inconsistent stabilization is used to guarantee
LBB-stability for the pair of finite element spaces used for the Stokes interface problem.
This stabilization also improves the conditioning of the stiffness matrix, leading to a
ch−2 condition number bound. In [ZWKB13] a stabilized variant of the Nitsche-XFEM
discretization of problem 2.1.3 is considered. For this method an ch−2 condition number
bound is derived. We also mention the engineering paper [LMDM14], where the unstable
Nitsche-XFEM formulation with weighting κi = 0.5, i = 1, 2 is considered and a special
preconditioner is designed to obtain solvable system of equations.

In this section we consider the Nitsche-XFEM discretization (2.2.14) with piecewise
linear functions (k = 1) for the stationary and self-adjoint two-domain Poisson problem
(Problem (2.1.3)), without any additional stablization.

We propose an optimal preconditioner which is constructed from approximate subspace
corrections. Here, optimality means that the condition number of the preconditioned
matrix is independent of h and of how the interface Γ intersects the triangulation and
applications at the preconditioner have only O(N) complexity with N = dim(V Γ

h ). The
most important ingredient is the (uniform in h) stable decomposition of V Γ

h into the
subspaces Vh and V x

h . To emphasize that Vh is a subspace of V Γ
h we introduce the notation

V s
h = Vh. If in the subspace V s

h one applies a standard multigrid preconditioner and in the
subspace V x

h one applies a simple Jacobi diagonal scaling, the resulting additive subspace
preconditioner is optimal. The latter is the main result of this section. The analysis
uses the very general theory of subspace correction methods [Xu92, Yse93]. Our analysis
applies to the two-dimensional case (d = 2), but we expect that a very similar optimality
result holds for d = 3. This claim is supported by results of numerical experiments in
section 2.5.3.

The structure of this section is as follows. First, we motivate and apply a transformation
of the discrete problem in section 2.4.1 essentially reducing the problem to the case
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2.4 Preconditioning of linear systems

β1 = β2 = 1. In section 2.4.2 we introduce notation for block matrices and assumptions
which are needed in the proceeding sections. In section 2.4.3 we discuss a stable
decomposition of V Γ

h into three subspaces with respect to a norm which is natural for
the Nitsche-XFEM discretization. The decomposition result yields spectral equivalence
of the stiffness matrix and a block diagonal matrix with blocks corresponding to the
subspaces V s

h and V x
h . The use of approximations for the block matrices is discussed in

section 2.4.4. Here we propose an optimal preconditioner which consists of a multigrid
solver on V s

h and diagonal preconditioning within the XFEM subspace V x
h . The diagonal

preconditioning within the XFEM subspace is discussed in section 2.4.5. In section 2.4.6
we discuss extensions of the theoretical result. We remark on a Jacobi preconditioner for
the full space V Γ

h , discuss parameter dependencies of the theoretical results (w.r.t. α and
λ) and extensions to unsteady problems.

2.4.1 Basis transformation

While on the continuous level we avoid to apply a reformulation as presented in sec-
tion 1.2.3 , we consider a similar transformation on the discrete level. Note that for every
v ∈ V Γ

h there holds βv ∈ V Γ
h et vice versa. Let N = dim(V Γ

h ). If we replace the basis
U = {ϕj(x)}j=1,..,N with W = {β−1(x)ϕj(x)}j=1,..,N we neither change the test nor the
ansatz space und therefore the solution stays the same. However the representation of the
solution in terms of the coefficient vectors is different. Let u denote the coefficient vector
corresponding to the basis U and w the coefficient vector corresponding to the basis W
with (scalar) components uj and wj, respectively. Then we have for u ∈ V Γ

h

u(x) =
N∑

j=1

ujϕj(x) =
N∑

j=1

wjβ
−1(x)ϕj(x). (2.4.2)

Between U and W we define the (mixed) mass matrices MUU , MUW ∈ Rn×n and the
transformation matrix T ∈ Rn×n:

MUU
k,j :=

∫

Ω

ϕkϕj dx, MUW
k,j :=

∫

Ω

β−1ϕkϕj dx, T :=(MUU)−1MUW . (2.4.3)

Note that the transformation from one basis into another is not a local problem, it involves
the solution with a global mass matrix. The solution of a mass matrix problem, however,
can be obtained efficiently using a diagonally preconditioned CG, cf. [Reu08].

If we use the basis W to formulate our linear systems, the system matrix changes to

Ãk,j =(α̃∇ϕk,∇ϕj)L2(Ω1,2) − ({{α̃∇ϕk · n}}, [[ϕj]])L2(Γ)

− ({{α̃∇ϕj · n}}, [[ϕk]])L2(Γ) + (¯̃α
λ̃

h
[[ϕk]], [[ϕj]])L2(Γ), j, k = 1, .., N

with α̃ = α
β

and λ̃ = λᾱ/ ¯̃α. Between the formulation in basis U and W there holds the
relation

Ã = TTAT.
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2 Mass transport through a stationary interface

In the following we consider the linear systems according to the basis W . To this end
we transform the parameters α → α

β
, β → 1, λ → λᾱ/ ¯̃α which allows us to keep the

notation for the bilinear and linear forms from the preceding sections. For notational
convenience, in the remainder of this chapter we will denote the matrix corresponding to
the transformed basis by A. The system matrix without transformation is then denoted
by Â := T−TAT−1.

After transformation (β → 1), the (transformed) solution is continuous across the
interface and from a linear solvers point of view the problem setting is the same as in
[BH12, BZ12, HH02] (and many other publications).

The benefit of this transformation is twofold. First, for all u ∈ V s
h there holds [[u]] = 0 at

the interface and thus NH
s (u, v) = 0 which does not hold without the transformation.

This property is important to prove the stable decomposition result in section 2.4.3.
Further the robustness w.r.t. parameter changes in β seems to be significantly increased,
cf. the numerical experiments in section 2.5.3.

We note that in the transformed case β is transformed to 1 so that the β-weighted norms
and scalar products coincide with the standard L2 and H1 versions.

A comparison of the properties of the linear systems before and after the transformation
is presented (among other aspects) in section 2.5.3 based on numerical experiments.
Remark 2.4.1 (Preconditioner for the untransformed case). Assume C is a good pre-
conditioner for A in some sense. The question arises if a preconditioner Ĉ for Â can be
designed which has the same quality. Such a preconditioner can be obtained using the
basis transformation again. With Ĉ = T−TCT−1 there holds κ(CA) = κ(ĈÂ). Note
however, that in each application of the preconditioner Ĉ one has to solve two global
mass matrix problems. It is thus typically more efficient to transform the linear system
first before the application of an iterative solver.

2.4.2 Preliminaries

In this section we introduce additional assumptions and notation needed later to provide
a rigorous proof of condition number bounds for preconditioned system matrices. We
further recall a property of stable Nitsche-XFEM discretizations which results in an
important property of the system matrix A.

2.4.2.1 Assumptions

Assumption 2.4.1 (Small contrast problem). We assume that the coefficient αi, i =
1, 2 are moderate in the sense that there exists a moderate constant c > 1 such that
1
c
≤ αi ≤ c, i = 1, 2.

Assumption 2.4.2 (Separated vertices). We assume that on every cut element T ∈ T Γ
h

at least one vertex V is in Ω1 and at least one vertex V is in Ω2.
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2.4 Preconditioning of linear systems

Remark 2.4.2 (Element-wise planar interface approximation). One can ensure assump-
tion 2.4.2 by replacing the interface Γ by an element-wise planar approximation Γh of
the interface.
Assumption 2.4.3 (Resolution of the interface). Let xV be the location of a vertex V .
The vertex patch ωV = {T ∈ Th, xV ∈ T} arround each vertex V contains at least one
element which is not intersected by the interface T 6⊂ T Γ

h . Each vertex patch ωV contains
at most one connected interface. Further every connected part of the interface Γj with
Γ =

⋃
j Γj is at least of the size of h: |Γj| ≥ h.

For a smooth interface this assumption is always justified as long as the mesh size is
sufficiently small.
Assumption 2.4.4 (Shape regular two dimensional simplex mesh). We assume Ω ⊂ Rd

with d = 2 and Ω is decomposed into a triangulation Th of simplices T which is shape
regular.

We further restrict to the case of piecewise linear finite elements and only consider the
discretization in (2.2.14). We especially do not consider weightings in the averaging
different from {{·}} = {{·}}H and no additional stabilization techniques. We also restrict to
the case of homogeneous Dirichlet boundary conditions.

From a practical point of view the only real restrictions are assumption 2.4.1, the
assumption of a two dimensional domain (assumption 2.4.4) and the boundary conditions.
The restriction to two dimensional domains is only added for technical reasons in the proof.
We expect that the resulting estimates also hold in three dimensions. The assumption
on the boundary conditions is made for ease of presentation. In section 2.4.6 we discuss
the influence of violations to assumption 2.4.1.

2.4.2.2 Notation

In section 2.2.1.2 we introduced the XFEM characterization of V Γ
h as the direct sum of

the spaces V x
h and V s

h . Now we further divide V x
h into V x

h,1 and V x
h,2 with

V x
h,i := {v ∈ V x

h , supp(v) ⊂ Ωi}.

We recall the definition 2.2.4 of the Galerkin isomorphism G and denote by N , Ns

and Nx the number of degrees of freedom in V Γ
h , V s

h and V x
h respectively. Let A be

the system matrix of the bilinear form ah(·, ·) in (2.2.13) in the sense that there holds
vTAu = ah(Gu,Gv)∀u,v ∈ RN .

We introduce notation for the splitting of coefficient vectors u ∈ RN and finite element
functions u ∈ V Γ

h into its standard FEM and XFEM parts. Given a coefficient vector
u ∈ RN representing a discrete function u ∈ V Γ

h , s.t. Gu = u. We assume that the
degrees of freedom are sorted so that the first Ns degrees of freedom correspond to a
function in V s

h . Then we can define the restriction matrices Es = (IN , 0) ∈ RNs×N and
Ex = (0, INx) ∈ RNx×N where In denotes the identity matrix in Rn×n, n ∈ {N,Nx}.
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2 Mass transport through a stationary interface

The restriction matrices extract the coefficient vectors for the standard FEM or XFEM
function, respectively, such that we have G(Esu) ∈ V s

h and G(Exu) ∈ V x
h for every

u ∈ V Γ
h . Further for every matrix M ∈ RN×N we define block matrices corresponding to

standard FEM or XFEM functions as Ms := EsMET
s ∈ RNs×Ns and Mx := ExMET

x ∈
RNx×Nx .

For the norm induced by the bilinear form ah(·, ·) we use the notation

‖u‖h := ah(u, u)
1
2 , u ∈ V Γ

h .

We further introduce the triple-norm

|||u|||h := ((u, u)1,Ω1,2 + λ‖[[u]]‖2
1
2
,h,Γ

)
1
2 .

Note that both norms are uniformly equivalent for a sufficiently large λ.

For ease of presentation it is convenient to be able to hide generic constants in some
estimates. For this purpose we recall the definition 2.2.1 of the relations �, �, ', where
the constant c in that definition is independent on h and how the interface cuts through
the mesh. Note that especially dependencies on α and λ can be absorbed in this notation.
As long as assumption 2.4.1 is fulfilled the dependencies on α are only mild.

In what follows, whenever we discuss the condition number κ(M) of a symmetric positive
definite matrix M, we refer to the spectral condition number, the ratio between largest
and smallest eigenvalue of M.

2.4.3 Stable subspace splittings of V Γ
h

We will derive an optimal preconditioner for the bilinear form ah(·, ·) using the theory
of subspace correction methods. Two excellent overview papers on this topic are [Xu92,
Yse93]. The theory of subspace correction methods as described in these overview papers
is a very general one, with applications to multigrid and domain decomposition methods.
We apply it for a relatively very simple case with three disjoint spaces. We use the
notation and some main results from [Yse93]. The three subspaces of S := VΓ

h are denoted
by W0 := V s

h , Wi := V x
h,i, i = 1, 2. Thus we have the direct sum decomposition

S =W0 ⊕W1 ⊕W2. (2.4.4)

Below u = u0 + u1 + u2 ∈ S always denotes a decompositon with ul ∈ Wl, l = 0, 1, 2.
In theorem 2.4.3 below we show that the splitting in (2.4.4) is stable w.r.t. the norm
‖ · ‖h.

2.4.3.1 Stable subspace splitting of S into W0 and W1 ⊕W2

The result in the next theorem is the key point in this analysis. We show that the
splitting of S into W0 and the subspace spanned by the XFEM basis functions W1 ⊕W2
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2.4 Preconditioning of linear systems

is stable. For this we restrict to the two-dimensional case d = 2. We use a transformation
of certain patches to a reference patch on [0, 1]2. We first describe this transformation.
We construct a subdivision of T Γ

h into patches {ωk} as follows, cf. figure 2.4.1. We first
define a subset E of all edges that are intersected by Γ. Consider an edge E1 which is
intersected by Γ such that one vertex V1 is in Ω1 and the other, V ∗1 , is in Ω2. We define
this edge as the first element in E . Now fix one direction along the interface and going in
this direction along Γ we get an ordered list of all edges intersected by Γ. As last edge
in this list we include the starting edge E1. As the next edge E2 ∈ E we take the first
one after E1 (in the list) that has no common vertex with E1. As E3 ∈ E we take the
first one after E2 that has no common vertex with E2, etc.. To avoid technical details we
assume that the final edge ENE included in E coincides with E1. By construction we get
a numbering of certain vertices as in the left part of figure 2.4.1: edge Ej has vertices
Vj ∈ Ω1, V ∗j ∈ Ω2.

V1

V2

V3

V4

V ∗
1

V ∗
2

V ∗
3

V ∗
4

subdivision

V1

V2

V ∗
1

V ∗
2

V1 V2

V ∗
1 V ∗

2

Γ̂1

y = 1

y = 0

ωe
1

ω̂e
1

Φ1

V2
V3

V ∗
2

V ∗
3

V2 V3

V ∗
2 V ∗

3

Γ̂2

y = 1

y = 0

ωe
2

ω̂e
2

Φ2

V3

V4

V ∗
3

V ∗
4

V3 V4

V ∗
3 V ∗

4

Γ̂3

y = 1

y = 0

ωe
3

ω̂e
3

Φ3

Figure 2.4.1: Sketch of the partitioning of T Γ
h (and neighboring elements) into (extended)

patches ωek and their transformations to a reference configurations.

The elements between two edges Ek, Ek+1 ∈ E form the patch ωk. The patches
{ωk}1≤k≤Nω , with Nω = NE − 1, form a disjoint partitioning of T Γ

h . We define the
extended patch ωek by adding the neighboring elements which are not in T Γ

h , i.e.,
ωek := ωk ∪ {T ∈ Th \ T Γ

h | T has a common edge with a T ′ ∈ ωk}. The part of the
interface Γ contained in ωek is denoted by Γk. The triangulation (and corresponding
domain) formed by the union of the extended patches ωek is denoted by T Γ,e

h . Note that
every element T ∈ T Γ,e

h can appear in at most two patches ωek. Further note that the
number of elements within each extended patch ωek is uniformly bounded due to shape
regularity of Th. For each extended patch ωek there exists a piecewise affine transformation
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2 Mass transport through a stationary interface

Φk : ωek → R2 such that Φk(ωk) = [0, 1]2. Accordingly we denote a transformed patch by
ω̂ and ω̂e.

Take d = 2. There exists a constant C2, independent of h and of how the
triangulation is intersected by Γ, such that

‖u0‖2
h + ‖w‖2

h ≤ C2‖u0 + w‖2
h for all u0 ∈ W0, w ∈ W1 ⊕W2. (2.4.5)

Theorem 2.4.1.

Proof. Due to norm equivalence the result in (2.4.5) is equivalent to:

|||u0|||2h + |||w|||2h � |||u0 + w|||2h for all u0 ∈ W0, w ∈ W1 ⊕W2.

For w ∈ W1 ⊕W2 we have w = 0 on Ω \ T Γ,e
h , and T Γ,e

h is partitioned into patches ωek.
Hence, it suffices to prove

|||u0|||2h,ωek + |||w|||2h,ωek � |||u0 + w|||2h,ωek for all u0 ∈ W0, w ∈ W1 ⊕W2. (2.4.6)

We use the transformation to the reference patch ω̂e described above. On the reference
patch we have transformed spaces Ŵ0 (continuous, piecewise linear functions) and
Ŵ1 ⊕ Ŵ2. The functions in Ŵ1 (Ŵ2) are piecewise linear on the part of the patch below
(above) the interface Γ̂, zero on the line segment y = 0 (y = 1) and zero on the part
of the patch above (below) the interface Γ̂. The norm |||u|||h,ωek and the induced norm

|||û|||ω̂ek =
(
(∇û,∇û)L2(ω̂ek) + λ([[û]], [[û]])L2(Γ̂k)

) 1
2 , with û = u ◦ Φ−1

k on ω̂ek, are uniformly
equivalent, because the constants in this norm equivalence are determined only by the
condition number of the piecewise affine transformation between ωek and ω̂ek. Note that
neither the spaces Ŵl nor the norm ||| · |||ω̂ek depend on h (the h-dependence is implicit
in the piecewise affine transformation). The reference patches ω̂ek all have the same
geometric structure, cf. figure 2.4.1. These patches have (due to shape regularity of Th)
a uniformly bounded number of vertices on the line segment that connects the vertices
Vi, Vi+1 (or V ∗i , V ∗i+1). In the rest of the proof a generic reference patch and its extension
are denoted by ω̂ and ω̂e, respectively. The interface segment that is intersected by ω̂ is
denoted by Γ̂. We conclude that for (2.4.6) to hold it is sufficient to prove

|||u0|||2ω̂e + |||w|||2ω̂e ≤ K|||u0 + w|||2ω̂e for all u0 ∈ Ŵ0, w ∈ Ŵ1 ⊕ Ŵ2, (2.4.7)

with a constant K that is independent of how the patch ω̂ is intersected by the interface
Γ̂. Note that (∇u0,∇w)L2(ω̂e\ω̂) = ([[u0]], [[w]])L2(Γ̂) = 0 for u0 ∈ Ŵ0 and w ∈ Ŵ1 ⊕ Ŵ2.
Hence,

|||u0 + w|||2ω̂e = |||u0|||2ω̂e + |||w|||2ω̂e + 2(∇u0,∇w)L2(ω̂), u0 ∈ Ŵ0, w ∈ Ŵ1 ⊕ Ŵ2

holds. Thus it suffices to prove the strengthened Cauchy-Schwarz inequality

(∇u0,∇w)L2(ω̂) ≤ C∗|||u0|||ω̂e|||w|||ω̂e for all u0 ∈ Ŵ0, w ∈ Ŵ1 ⊕ Ŵ2, (2.4.8)
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2.4 Preconditioning of linear systems

with a uniform constant C∗ < 1. The proof of (2.4.8) is divided into three steps, namely
a strengthened Cauchy-Schwarz inequality related to the x-derivative, a suitable Cauchy-
Schwarz inequality related to the y-derivative and then combining these estimates.
Step 1. The following holds:

|(ux, wx)L2(ω̂)| ≤ c0‖ux‖L2(ω̂e)‖wx‖L2(ω̂) for all u ∈ W0, w ∈ Ŵ1 ⊕ Ŵ2, (2.4.9)

with a uniform constant c0 < 1. From the Cauchy-Schwarz inequality we get |(ux, wx)L2(ω̂)| ≤
‖ux‖L2(ω̂)‖wx‖L2(ω̂). Within the patch ω̂ = {Ti} the x-derivative ux is piecewise con-
stant and ux|Ti = ux|Ti,N for the neighboring triangle Ti,N ∈ ω̂e \ ω̂. This implies
‖ux‖L2(Ti) ≤ ĉ‖ux‖L2(Ti∪Ti,N ), with ĉ < 1 depending only on shape regularity. Thus we
obtain ‖ux‖L2(ω̂) ≤ c0‖ux‖L2(ω̂e), with a uniform constant c0 < 1, which yields (2.4.9).
Step 2. The following holds:

|(uy, wy)L2(ω̂)| ≤ min{c1‖ux‖L2(ω̂), ‖uy‖L2(ω̂)}‖wy‖L2(ω̂)

+ c2‖uy‖L2(ω̂)‖[[w]]‖L2(Γ̂) for all u ∈ W0, w ∈ Ŵ1 ⊕ Ŵ2,
(2.4.10)

with suitable uniform constants c1, c2.

Let {Ti} be the set of triangles that form ω̂ and let these be ordered such that meas1(Ti∩
Ti+1) > 0. We denote the interior edges by ei = Ti ∩ Ti+1. To show (2.4.10) we start
with partial integration

∣∣∣
∫

ω̂

uywy dx
∣∣∣ =

∣∣∣
∑

Ti

∫

∂Ti

nTi,y uyw ds+

∫

Γ̂Ti

nΓ,y uy[[w]] ds
∣∣∣

≤
∑

ei

∣∣∣[[uy]]ei
∣∣∣
∣∣∣
∫

ei

w ds
∣∣∣+ ‖uy‖L2(Γ̂)‖[[w]]‖L2(Γ̂)

(2.4.11)

where for the edges of ∂Ti that lie on ∂ω̂ = ∂[0, 1]2 we used w = 0 for y ∈ {0, 1} and
nTi,y = 0 for x ∈ {0, 1}. To proceed we need technical estimates to bound [[uy]]ei and∫
ei
w ds. For those estimates we exploit propertries of the geometry of ω̂. First consider

u ∈ Ŵ0 along an interior edge ei 6∈ ∂ω̂ and denote the unit tangential vector to ei by
t = (τx, τy). For τ we have |τy| ≥ 1/

√
2 ≥ |τx|. Due to continuity of u along ei there

holds [[∇u]]ei · t = 0, which implies

|[[uy]]ei | =
∣∣∣∣
τx
τy

∣∣∣∣ |[[ux]]ei | ≤
∣∣ux|Ti

∣∣+
∣∣ux|Ti+1

∣∣.

Thus we obtain

|[[uy]]ei | ≤ c min{‖uy‖L2(Ti∪Ti+1), ‖ux‖L2(Ti∪Ti+1) }. (2.4.12)

Next, we consider w = w1 + w2 ∈ Ŵ1 ⊕ Ŵ2 along the interior edge ei. Let Ti be
a triangle adjacent to ei. Without loss of generality we assume that two vertices of

63



2 Mass transport through a stationary interface

Ti are in Ω̂1 and we thus have (w1)x = 0 on Ti. We denote the vertices of ei by
xj = ei ∩ ∂ω̂ ∩ Ω̂j, j = 1, 2 and the intersection point by xΓ = ei ∩ Γ̂ and define the
distances dj = ‖xj − xΓ‖2, j = 1, 2. As w is piecewise linear along ei, zero at x1, and
(w1)x = 0 on Ti, we have w1(xΓ) = ±d1τy(w1)y. Furthermore:

∫

ei

w ds =
1

2
d1w1(xΓ) +

1

2
d2w2(xΓ) =

1

2
(d1 + d2)w1(xΓ)− 1

2
d2[[w]](xΓ).

We also have the geometrical information d1 ≤ d1 + d2 ≤
√

2, d1 ≤ c|Ti|
1
2 , |Γ̂Ti| ≤

√
2

and d2 ≤ c|Γ̂Ti |
1
2 . Because [[w]] is linear along Γ̂Ti there also holds |Γ̂Ti |

1
2 |[[w]](xΓ)| ≤

c‖[[w]]‖L2(Γ̂Ti )
. Using these results we get

∣∣∣
∫

ei

w ds
∣∣∣ ≤ c‖[[w]]‖L2(Γ̂Ti )

+ c‖wy‖L2(Ti). (2.4.13)

From (2.4.12) and (2.4.13) we obtain

∑

ei

∣∣∣[[uy]]ei
∣∣∣
∣∣∣
∫

ei

w ds
∣∣∣ ≤ c‖uy‖L2(ω̂)‖[[w]]‖L2(Γ̂) + c‖ux‖L2(ω̂)‖wy‖L2(ω̂). (2.4.14)

Combining (2.4.11), (2.4.14) and the Cauchy-Schwarz inequality
∣∣∣
∫
ω̂
uywy dx

∣∣∣ ≤ ‖uy‖L2(ω̂)‖wy‖L2(ω̂)

results in (2.4.10).
Step 3. The following holds:

|(∇u,∇w)L2(ω̂)| ≤ C∗
(
‖ux‖L2(ω̂e) + ‖uy‖L2(ω̂)

) 1
2
(
‖∇w‖2

L2(ω̂) + λ‖[[w]]‖2
L2(Γ̂)

) 1
2 (2.4.15)

for all u ∈ W0, w ∈ Ŵ1 ⊕ Ŵ2, with a uniform constant C∗ < 1.

The proof combines the preceding results. We define αx = ‖ux‖L2(ω̂e), βx = ‖wx‖L2(ω̂),
αy = ‖uy‖L2(ω̂), βy = ‖wy‖L2(ω̂), γ = ‖[[w]]‖L2(Γ̂). Then we have with (2.4.9), (2.4.10) and

θ = α2
x

α2
x+α2

y
, α = (α2

x + α2
y)

1
2 and β = (β2

x + β2
y + λγ2)

1
2

|(∇u,∇w)L2(ω̂)| ≤ c0αxβx + min{c1αx, αy}βy + c2αyγ

≤ (c2
0α

2
x + min{c2

1α
2
x, α

2
y}+ c2

2α
2
yλ
−1)

1
2 (β2

x + β2
y + λγ2)

1
2

≤ (c2
0θ + min{c2

1θ, 1− θ}+ c2
2(1− θ)λ−1)

1
2αβ.

One easily sees that c2
0θ+min{c2

1θ, 1−θ} ≤ c20+c21
1+c21

< 1. For sufficiently large λ (λ >
1+c21

c22(1−c20)
)

(2.4.15) follows for a suitable uniform constant C∗ < 1.

The result (2.4.15) directly implies (2.4.8) and thus the estimate (2.4.5) holds for λ
sufficiently large. For different values λ ≥ λ∗, with λ∗ the critical value for which the
norm equivalence ‖ · ‖h ' ||| · |||h holds, the norms ‖ · ‖h (depending on λ) are equivalent,
with equivalence constants depending only on λ. This implies that (2.4.5) holds for any
λ ≥ λ∗.
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2.4 Preconditioning of linear systems

Remark 2.4.3 (Block preconditioner). A direct conclusion of theorem 2.4.1 is

∑

l∈{s,x}
uTET

l AlElu ≤ C2u
TAu for all u ∈ RN . (2.4.16)

We also have

uTAu ≤ 2
∑

l∈{s,x}
uTET

l AlElu for all u ∈ RN (2.4.17)

and can thus deduce the following property of a block diagonal preconditioner

κ(B−1
A A) ≤ 2C2, with BA :=

(
As 0
0 Ax

)
.

In the next section a stable subspace splitting of W1 ⊕W2 is presented.

2.4.3.2 Stable subspace splitting of W1 ⊕W2 into W1 and W2

In the next lemma we derive the stable splitting property of W1 ⊕W2.

There exist constants cγ,Cγ,Cx, independent of h and of how the triangulation is
intersected by Γ, such that

cγ‖ul‖2
h ≤ |ul|21,Ωl ≤ Cγ‖ul‖2

h for all ul ∈ Wl and l = 1, 2, (2.4.18)

‖u1‖2
h + ‖u2‖2

h ≤ Cx‖u1 + u2‖2
h for all u1 + u2 ∈ W1 ⊕W2. (2.4.19)

Lemma 2.4.2.

Proof. Take l = 1. We have

‖u1‖2
h ' |||u1|||2h = |u1|21,Ω1

+ λ‖[[u1]]‖2
1
2
,h,Γ
' |u1|21,Ω1

+ h−1‖u1‖2
L2(Γ) (2.4.20)

This implies |u1|1,Ω1 � ‖u1‖h. Next we show

h−1‖u1‖2
L2(Γ) � |u1|21,Ω1

. (2.4.21)

For this purpose we represent Γ locally as the graph of a function ψ, with a local
coordinate system (ξ, η) as in figure 2.4.2. Then we can write

u1(ξ, ψ(ξ)) = u1(ξ, ψ(0))︸ ︷︷ ︸
=0

+

∫ ψ(ξ)

0

∂u1

∂η
(ξ, η) dη,
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2 Mass transport through a stationary interface

ξ

η

ψ(ξ) ≤ ch

Γ

supp(u1)

u1 = 0

Figure 2.4.2: Local representation of Γ as a graph.

and thus

u1(ξ, ψ(ξ))2 =
∣∣∣
∫ ψ(ξ)

0

∂u1

∂η
(ξ, η) dη

∣∣∣
2

≤ |ψ(ξ)|︸ ︷︷ ︸
≤ch

∫ ψ(ξ)

0

(
∂u1

∂η
(ξ, η))2 dη.

Integration over ξ yields (2.4.21). In combination with (2.4.20) this yields ‖u1‖2
h � |u1|1,Ω1 ,

which completes the proof of (2.4.18). We now consider the result in (2.4.19). Due to
‖ · ‖h ' ||| · |||h is suffices to prove

|||u1|||2h + |||u2|||2h � |||u1 + u2|||2h for all u1 + u2 ∈ W1 ⊕W2. (2.4.22)

The scalar product corresponding to ||| · |||h is denoted by (·, ·)∗, i.e. (u, v)∗ = (u, v)1,Ω1,2 +
λ([[u]], [[v]]) 1

2
,h,Γ. From (u1, u2)1,Ω1,2 = 0 it follows that

|(u1, u2)∗| = |λ([[u]], [[v]]) 1
2
,h,Γ| ≤ λh−1‖u1‖L2(Γ)‖u2‖L2(Γ).

Using the results in (2.4.21), (2.4.18) we get, with a suitable constant c and for arbitrary
δ ∈ (0, 1):

|(u1, u2)∗| ≤ (1− δ)λh−1‖u1‖L2(Γ)‖u2‖L2(Γ) + δcλ|u1|1,Ω1|u2|1,Ω2

≤ max{1− δ, δcλ}|||u1|||h|||u2|||h.

By choosing a suitable δ, we obtain the strengthened Cauchy-Schwarz inequality

|(u1, u2)∗| ≤ C∗|||u1|||h|||u2|||h for all u1 ∈ W1, u2 ∈ W2,

with a constant C∗ < 1, independent of h and of how the triangulation is intersected by
Γ. This result is equivalent to the one in (2.4.22).

2.4.3.3 Stable subspace splitting of S into W0, W1 and W2

As a direct consequence of the stable splitting properties derived above we obtain the
following main result.
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2.4 Preconditioning of linear systems

Take d = 2. There exists a constant C3, independent of h and of how the
triangulation is intersected by Γ, such that

‖u0‖2
h + ‖u1‖2

h + ‖u2‖2
h ≤ C3‖u0 + u1 + u2‖2

h for all u = u0 + u1 + u2 ∈ S.

Theorem 2.4.3.

Proof. Combine the result in (2.4.5) with the one in (2.4.19).

2.4.4 Optimal preconditioners based on approximate subspace
corrections

The stable decomposition in the preceding section implies that a block diagonal matrix
based on the subspaces V s

h and V x
h (or V s

h and V x
h,1 and V x

h,2) with exact inverses gives
O(1) spectral condition number bounds. However, In practice exact inverses are not
feasable. In this subsection we describe how appropriate preconditioning of the matrix
blocks results in suitable preconditioners for the full stiffness matrix.

For the subspaces V s
h and V x

h we consider symmetric positive definite preconditioners Cs,
Cx which provide the following bounds

γlu
T
l Clul ≤ uT

l Alul ≤ ρlu
T
l Clul for all ul ∈ RNl ∈ V l

h, l ∈ {s, x} (2.4.23)

with strictly positive constants γl, ρl, l ∈ {s, x}. The additive subspace preconditioner is
defined by

B−1 =
∑

l∈{s,x}
ET
l C−1

l El ∈ RN×N (2.4.24)

The theory presented in [Yse93] can be used to quantify the quality of the preconditioner
B.

Define γmin = minl γl, ρmax = maxl ρl. Let C2 be the constant of the stable splitting
in theorem 2.4.1. The spectrum σ(B−1A) is real and

σ(B−1A) ⊂
[γmin

C2

, 2ρmax

]

holds.

Theorem 2.4.4.

Proof. We recall a main result from [Yse93, Theorem 8.1] (in matrix notation). If there
are strictly positive constants K1, K2 such that

K−1
1

∑

l∈{s,x}
uTET

l ClElu ≤ uTAu ≤ K2

∑

l∈{s,x}
uTET

l ClElu ∀ u ∈ RN
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is satisfied, then σ(B−1A) ⊂ [K−1
1 , K2] holds. For the lower inequality we use theo-

rem 2.4.1 (in the form of (2.4.16)) and (2.4.23), which then results in

uTAu ≥ C−1
2

∑

l∈{s,x}
uTET

l AlElu ≥
γmin

C2

∑

l∈{s,x}
uTET

l ClElu ∀ u ∈ RN . (2.4.25)

For the upper bound we note

uTAu ≤ 2
∑

l∈{s,x}
uTET

l AlElu ≤ 2ρmax

∑

l∈{s,x}
uTET

l ClElu ∀ u ∈ RN . (2.4.26)

Now we apply the above-mentioned result with K1 = C2/γmin and K2 = 2ρmax.

The result in theorem 2.4.1 yields that the constant C2 is independent of h and of how
the triangulation intersects the interface Γ.
Remark 2.4.4 (Block preconditioner with three blocks). Instead of the splitting into the
two subspaces one could consider the splitting into three subspaces following theorem 2.4.3.
For an according block preconditioner B one would get σ(B−1A) ⊂

[
γmin

C3
, 3ρmax

]
with γl

and ρl the constants of according preconditioners for the corresponding blocks.

A special case of theorem 2.4.23 is the case where exact subspace corrections are used,
that means we set B = BA, the corresponding additive subspace preconditioner has a
condition number which is independent of h and the cut position (see remark 2.4.3). In
practice exact solvers on the subspaces are in general not feasable and therefore replaced
with suitable preconditioners Cl which provide appropriate (uniform) constants γmin and
ρmax.

We first consider the preconditioning of As. As is a matrix stemming from a standard finite
element discretization of a Poisson equation (with discontinuous diffusion coefficients). As
a preconditioner Cs for As we can use a standard symmetric multigrid method (which is
a multiplicative subspace correction method). From the literature [Hac03, Xu92, Yse93]
we know that for this choice of Cs we have spectral inequalities as in (2.4.23), with
ρs = 1 and a constant γs > 0 that is independent of h and of how Γ intersects the
triangulation.

It remains to find an appropriate preconditioner Cx of Ax. For this we propose the
simple Jacobi method, i.e., diagonal scaling as a preconditioner for Ax. This is discussed
next.
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2.4 Preconditioning of linear systems

2.4.5 Diagonal preconditioner on the XFEM subspace

We define the matrix Dx := diag(Ax).

For the Jacobi preconditioner Dx there are strictly positive constants γx, ρx,
independent of h and of how the triangulation is intersected by Γ such that

γxu
T
x Dxux ≤ uT

x Axux ≤ ρxu
T
x Dxux for all ux ∈ RNx (2.4.27)

holds.

Lemma 2.4.5.

Proof. We have uT
x Dxux =

∑
j∈JΓ

ux,jah(ϕ
Γ
j , ϕ

Γ
j ). We split the set JΓ into JΓ,i := {v ∈

JΓ, v 6∈ Ωi}, i = 1, 2. For each T ∈ T Γ
h we define Ti = T ∩ Ωi, and for each Ti we denote

by V (Ti) the set vertices of T that are not in Ωi. Note that V (Ti) 6= ∅ and V (Ti) does
not contain all vertices of T due to assumption 2.4.2. Using (2.4.18) and the construction
of the XFEM basis functions we get

uT
x Dxux =

∑

i=1,2

∑

j∈JΓ,i

u2
x,jah(ϕ

Γ
j , ϕ

Γ
j ) '

∑

i=1,2

∑

j∈JΓ,i

u2
x,j|ϕΓ

j |21,Ωi

=
∑

i=1,2

∑

T∈T Γ
h

∑

j∈V (Ti)

u2
x,j|ϕΓ

j |21,Ti =
∑

i=1,2

∑

T∈T Γ
h

∑

j∈V (Ti)

u2
x,j‖(∇ϕj)|Ti‖2

2|Ti|
(2.4.28)

with ‖ · ‖2 the Euclidean vector norm, where in the last step we used the fact that ∇ϕj
is a constant vector on each Ti. Using (2.4.18) and the fact that also ∇u is a constant
vector on each Ti we get (with u = Gu where G is the Galerkin isomorphism on V x

h )

uT
x Axux = ‖u‖2

h '
∑

i=1,2

∑

T∈T Γ
h

‖∇u‖2
L2(Ti)

=
∑

i=1,2

∑

T∈T Γ
h

|Ti|‖(∇u)|Ti‖2
2. (2.4.29)

Now note that (∇u)|Ti =
∑

j∈V (Ti)
ux,j(∇ϕΓ

j )|Ti =
∑

j∈V (Ti)
ux,j(∇ϕj)|T . Because V (Ti)

does not contain all vertices of T , the vectors in the set {(∇ϕj)|T | j ∈ V (Ti)} are linearly
independent and the angles between the vectors depend only on the geometry of the
triangulation Th. This implies that

‖(∇u)|Ti‖2
2 '

∑

j∈V (Ti)

u2
x,j‖(∇ϕj)|T‖2

2

Combining this with the results in (2.4.28) and (2.4.29) completes the proof.

We have thus found optimal preconditioners for As and Ax. We introduce the optimal
block preconditioner

BC :=

(
Cs 0
0 Dx

)
(2.4.30)

which, due to theorem 2.4.4, has the property κ(B−1
C A) ' 1.
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2 Mass transport through a stationary interface

2.4.6 Extension of results

We comment on several extensions of the previous results.

2.4.6.1 Jacobi preconditioner

Instead of an optimal multigrid preconditioner in the subspace W0 = V s
h , one can also

use a simpler (suboptimal) Jacobi preconditioner, i.e. Cs = diag(As). For this choice
the spectral constants in (2.4.23) are γs ' h2 and ρs ' 1. The two subspaces are disjoint
and thus if one applies a Jacobi preconditioner in the subspaces, the additive subspace
preconditioner C in (2.4.24) coincides with a Jacobi preconditioner DA := diag(A).
From theorem 2.4.4 we can conclude that κ(D−1

A A) ≤ ch−2 holds, with a constant c
independent on h and the cut position. Similar uniform O(h−2) condition number bounds
have recently been derived in the literature, cf. [ZWKB13] and [BZ12]. In these papers,
however, for obtaining such a bound an additional (inconsistent) stabilization term is
added to the bilinear form ah(·, ·). Our analysis shows that although the condition
number of the stiffness matrix corresponding to ah(·, ·) does not have a uniform (w.r.t.
the interface cut) bound ch−2, a simple diagonal scaling results in a matrix with a spectral
condition number that is bounded by ch−2, with a constant c that is independent of how Γ
is intersected by the triangulation. We note that adding a stabilization as treated [BZ12]
may have a positive effect not only on the condition number, but also on robustness of
the discretization with respect to large jumps in the diffusion coefficient.

2.4.6.2 Parameter dependency

We briefly discuss the dependency of the quality of the preconditioners on the parameters
αi, i = 1, 2 and λ. In this remark c is a generic constant independent of h, λ, αi, i = 1, 2
and the cut position. There are essentially three places where the parameter dependency
plays a role. First, we discuss the dependency of the splitting into non-overlapping
subspaces (matrix blocks). Second, we are interested in the spectral bounds for the
Jacobi preconditioner Cx for Ax in (2.4.27). Third, we need spectral bounds for the
multigrid preconditioner Cs for As in (2.4.23).

The first dependency is characterized by C2 in theorem 2.4.1. Note that throughout
this section we used assumption 2.4.1. In a more detailed analysis we have to replace
estimates of the form

‖u‖h ' |||u|||h
with √

αmin|||u|||h ≤ ‖u‖h ≤
√
αmax|||u|||h.

This yields C2 ≤ c αmax

αmin
. The spectral condition number bound for the block diagonal

with exact inverses is directly related (see remark 2.4.3) to that constant C2 and we get
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2.4 Preconditioning of linear systems

estimate κ(B−1
A A) ≤ c αmax

αmin
. Numerical experiments in section 2.5.3.6 indicate that this

estimate is sharp. Note, that C2 is bounded independent of λ.

A similar refinement of the analysis in lemma 2.4.5, especially w.r.t. to the parameter-
dependency of (2.4.18) reveals that we have ρx ' 1 and γx ' (αmax

αmin
λ)−1. To investigate

this numerically we introduce the preconditioner

BD :=

(
As 0
0 Dx

)
(2.4.31)

which thus has the condition number bound κ(B−1
D A) ≤ c (αmax

αmin
)2λ. In section 2.5.3.6 we

observe in numerical experiments that the linear dependency on λ seems to be sharp,
but the dependency on αmax

αmin
seems to be linear instead of quadratic.

For the multigrid preconditioner Cs we expect bounds of the form ρs = 1 and γs ≥
c(αmax

αmin
)−1 which results in the estimate κ(B−1

C A) ≤ c (αmax

αmin
)2λ for the optimal precondi-

tioner in (2.4.30). For the Jacobi preconditioner of the standard finite element part Ds

we expect ρs ≤ c and γs ≥ c(αmax

αmin
)−1h2 which then gives κ(DAA) ≤ c (αmax

αmin
)2λh−2.

Note that the dependency on λ appears only due to the Jacobi preconditioning of the
XFEM block. To get condition numbers independent of λ one could consider using exact
solves with Ax in the block preconditioner. This however can only be computational
feasible if the number of degrees of freedoms in V x

h is small.
Remark 2.4.5 (Iteration numbers of preconditioned CG method). The performance of
a preconditioned CG method is not only determined by the minimum and the maximum
eigenvalue. The distribution of the eigenvalues of the preconditioned matrix is important.
It can happen that only a few eigenvalues are close to the smallest (or largest) eigenvalue.
In that case the iteration number can be significantly smaller than a prediction based
only on the spectral condition number. In the numerical examples in section 2.5.3 we
observe such an effect where estimates for the iteration number based only on the condition
number are not sharp.

2.4.6.3 Time dependent problems

For simple time stepping schemes extensions of the analysis can be easily derived. Consider
e.g. the implicit Euler method as discussed in section 2.2.6.1 (with θ = 1). The system
matrix one has to solve for in every time step is S = M + ∆tA with M the mass matrix.
For the mass matrix problem we have M ' DM = diag(M) as has been shown in [Reu08].
Thus the estimates in theorem 2.4.1 and lemma 2.4.5 also extend to norms corresponding
to S and an optimal preconditioner is also obtained by a combination of multigrid (on
V s
h ) and Jacobi preconditioner (on V x

h ). We briefly discuss the case of a simple Jacobi
preconditioner. We have with DS = diag(S)

uTSu � uTDSu = uT(DM + ∆tDA)u � uT(M + ∆th−2A)u � (1 + ∆th−2)uTSu

which implies κ(D−1
S S) � 1 + ∆th−2.
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2 Mass transport through a stationary interface

2.5 Numerical examples

In this section we want to investigate the practical behavior of the Nitsche-XFEM and
the SD-Nitsche-XFEM method for a set of test problems. In section 2.5.1 we consider
a simple stationary two-dimensional configuration with a circular inner domain and
no convection (w = 0). We investigate the approximation quality of the introduced
extended finite element space and compare it to standard finite element spaces. We
further compare the discretization error obtained by the Nitsche-XFEM method and a
standard Galerkin method.

The experiments are followed by a geometrically more challenging example in section 2.5.2.
Here, the inner domain has the shape of a “starfish”. Furthermore in that example
slightly more general interface conditions are introduced. The convergence of errors in
all norm that are relevant for the error analysis are investigated.

The purpose of the numerical examples in section 2.5.3 is the investigation of the
conditioning of the linear systems arising from the Nitsche-XFEM discretization and
the performance of the preconditioners presented in section 2.4. The dependency of the
linear systems on h, λ, α, β and the interface position is investigated.

In all the three sections only the stationary case without convection is considered. In the
last two examples we consider the SD-Nitsche-XFEM method for convection-dominated
cases.

In section 2.5.4 the SD-Nitsche-XFEM method is considered for a two-dimensional
stationary problem with a straight interface and very high mesh Péclet numbers. Dis-
cretization errors for a problem with a smooth solution and a problem with sharp
(parabolic) boundary layers are investigated and compared to the unstabilized Nitsche-
XFEM method. Further the impact of different scalings for the Nitsche stabilization
parameter is considerd.

The last examples in section 2.5.5 concludes the numerical examples. The problem is
three-dimensional and non-stationary. A comparison between the stabilized and unstabi-
lized Nitsche-XFEM method with different scalings of the stabilization parameter λ is
carried out.

Remark 2.5.1 (Approximation of the domains). As noted in remark 2.2.1 we so far
assumed that we can integrate on Ti and ΓT exactly on every element T ∈ Th. This is
typically not true. We approximate the interface Γ by Γh a piecewise planar approximation
of the interface Γ. Details on the numerical integration are addressed in chapter 4. For
the numerical examples in this section errors due to numerical integration are negligibly
small if not addressed otherwise.
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2.5.1 Elliptic interface problem: The disk problem

As a first example we consider a rather simple geometrical configuration: a circle inside
a square. The problem that we consider is the simplest version of the mass transport
problem, we consider problem 2.1.1. In this example we want to investigate and compare
the discretization and approximation errors of standard finite element spaces and the
XFEM space introduced in section 2.2.1.

2.5.1.1 Problem description

The outer domain is Ω = [−1, 1]2 and the interface is given by

Γ := {(x, y) : x2 + y2 = R2} with R = 0.3.

Γ is the zero level of the level set function ϕ(x) =
√
x2 + y2 − R. The inner domain

is Ω1 := {x ∈ Ω, φ(x) < 0}. We prescribe the right hand side source term f and
the Dirichlet boundary conditions so that the solution is given similar to “Case 2” in
[Ngu09]:

u(x) =

{
α2U(r(x)) + β2, x ∈ Ω1

α1U(r(x)) + β1, x ∈ Ω2
with U(r) = r2 −R2 and r(x) =

√
x2 + y2

with (α1, α2) = (1, 5) and (β1, β2) = (2, 1). As we are primarily interested in the
approximation properties of finite element spaces we also consider the transformed
problem without a discontinuity:

βi → 1, αi →
αi
βi

with the transformed solution

ũ(x) =

{
α2β1U(r(x)) + β1β2, x ∈ Ω1

α1β2U(r(x)) + β1β2, x ∈ Ω2

which still has a kink at the interface. Note that approximating ũ in Vh ⊂ H1
0 (Ω) is

equivalent to approximating u in β−1Vh ⊂ H1
0,β(Ω).

2.5.1.2 Approximation Errors

We consider the best approximation to u and ũ in the norm ‖ · ‖0 for the standard finite
element space Vh on seven successively (uniformly) refined meshes. The coarsest mesh
(L1) is a triangular mesh obtained by dividing each square of a uniform 8× 8 mesh into
two triangles.

In table 2.5.1 we observe that the approximation of u (which has a discontinuity) with
the standard finite element space Vh leads to a very slow convergence with order ≈ 0.5.
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2 Mass transport through a stationary interface

Level infvh∈Vh ‖u− vh‖0 ( eoc ) infvh∈β−1Vh ‖u− vh‖0 ( eoc ) infvh∈V Γ
h
‖u− vh‖0 ( eoc )

L1 3.86× 10−1 ( - ) 6.72× 10−2 ( - ) 3.73× 10−2 ( - )
L2 2.33× 10−1 (0.73) 2.46× 10−2 (1.45) 1.02× 10−2 (1.88)
L3 1.74× 10−1 (0.42) 8.08× 10−3 (1.61) 2.51× 10−3 (2.02)
L4 1.17× 10−1 (0.58) 2.96× 10−3 (1.45) 6.43× 10−4 (1.97)
L5 8.84× 10−2 (0.40) 8.76× 10−4 (1.76) 1.62× 10−4 (1.99)
L6 6.03× 10−2 (0.55) 3.35× 10−4 (1.39) 4.06× 10−5 (2.00)
L7 4.37× 10−2 (0.47) 1.20× 10−4 (1.49) 1.02× 10−5 (2.00)

Table 2.5.1: Approximation errors for finite element spaces Vh, β−1Vh and V Γ
h under mesh

refinement.

For the approximation of u in β−1Vh (which is equivalent to approximating ũ in Vh) we
observe that the convergence is of order ≈ 1.5. If we check for the best approximation to
u in V Γ

h the convergence order is ≈ 2. The XFEM enrichment thus cures the problem of
the standard finite element space with respect to approximating discontinuities (across
an interface). The results are consistent with the considerations in section 2.2.1.

2.5.1.3 Discretization Errors

Instead of the approximation error we now want to consider the discretization error
and in addition to the ‖ · ‖0-norm we consider the | · |1,Ω1,2-semi-norm. We consider
the discretization with the standard and XFEM finite element space and introduce
the according Galerkin projections. In order to minimize the effect of discontinuous
parameters (and the corresponding impact on the approximation error) for the standard
finite element space we transform the continuous problem to a problem with a kink only,
discretize this problem using the standard Galerkin method and transform the discrete
solution back. The overall discrete solution is then in β−1Vh where β−1Vh ⊂ H1

0,β(Ω) but
β−1Vh 6⊂ Vh.

Gx : H1
0,β(Ω) ∩H2(Ω1,2)→ V Γ

h , s.t. ah(G
xu, vh) = ah(u, vh) ∀vh ∈ V Γ

h (2.5.1)

G : H1
0,β(Ω)→ β−1Vh, s.t. ã(G(βu), vh) = ã((βu), vh) ∀vh ∈ Vh (2.5.2)

with ã(u, v) := (α
β
∇u,∇v)L2(Ω1,2), u, v ∈ H1(Ω) where in ah(·, ·) we set λ = 20.

In table 2.5.2 the results are shown on seven subsequently (uniformly) refined meshes.
For the discretization with standard finite elements we observe an O(

√
h)-convergence

in the | · |1,Ω1,2-norm. For the ‖ · ‖0-norm we observe an O(h)-convergence which is half
an order suboptimal w.r.t. the best approximation in β−1Vh. For the discretization
with Nitsche-XFEM we observe optimal order convergence rates, i.e. a second order
convergence behavior in the norm ‖ · ‖0 and a first order convergence in the | · |1,Ω1,2-norm
which is agreement with the a priori error analysis in section 2.3.1.
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Level ‖u−Gu‖0 ( eoc ) |u−Gu|1,Ω1,2 ( eoc ) ‖u−Gxu‖0 ( eoc ) |u−Gxu|1,Ω1,2 ( eoc )

L1 1.85× 10−1 ( - ) 1.52× 100 ( - ) 7.46× 10−2 ( - ) 8.49× 10−1 ( - )
L2 1.13× 10−1 (0.71) 1.31× 100 (0.22) 1.95× 10−2 (1.94) 4.53× 10−1 (0.91)
L3 7.53× 10−2 (0.59) 1.09× 100 (0.25) 5.71× 10−3 (1.77) 2.35× 10−1 (0.94)
L4 3.49× 10−2 (1.11) 7.60× 10−1 (0.53) 1.33× 10−3 (2.10) 1.17× 10−1 (1.01)
L5 1.51× 10−2 (1.21) 4.93× 10−1 (0.63) 3.34× 10−4 (1.99) 5.89× 10−2 (0.99)
L6 8.05× 10−3 (0.91) 3.64× 10−1 (0.44) 9.07× 10−5 (1.88) 2.95× 10−2 (1.00)
L7 4.38× 10−3 (0.88) 2.69× 10−1 (0.44) 2.19× 10−5 (2.05) 1.47× 10−2 (1.00)

Table 2.5.2: Convergence of standard finite element and Nitsche-XFEM discretizations on
successively refined meshes for the example in section 2.5.1. Note that the Galerkin
projection G in (2.5.2) maps into β−1Vh.

2.5.1.4 Higher order discretization

We repeat the experiment for the higher order discretization with polynomial degree
k = 2 and k = 3. To this end, we change the setup and set U(r) = cos( πr

2

2R2 ) such that
the solution is not in V Γ

h . We discuss the Nitsche stabilization parameter λ and the
weights κi used in the averaging {{·}}, the interface approximation and linear systems in
this example.
Remark 2.5.2 (Weighting of the average (κ) and stabilization parameter (λ)). For
k = 2 and k = 3 we choose the weighting κi ∈ {0, 1} discussed in remark 2.3.1. The
stabilization parameter λ should scale with k2 with the polynomial order k due to the
inverse estimate in (2.3.10) (cf. also [Mas12, lemma 3.5]). We choose λ = 2k(k + 1)
such that we have λ = 12 for k = 2 and λ = 24 for k = 3. Further numerical experiments
showed that the averaging choice κ = κhansbo gives similar results for this example.
Remark 2.5.3 (Interface approximation). The piecewise planar approximation Γh of Γ
that we use (see chapter 4 for details) gives only a second order approximation. However
the geometrical approximation can be refined by additional adaptive refinements that are
applied for quadrature purposes only. In this example we apply 8 additional adaptive
refinements to drive the quadrature error negligibly small, i.e. the quadrature error is
≤ c · 2−16 · h2 for a constant C ∼ O(1) which is sufficiently small within the considered
range for h.
Remark 2.5.4 (Linear solver). While for the piecewise linear discretization precondi-
tioning is fairly well understood and does not pose a problem (see theory in section 2.4
and numerical experiments in section 2.5.3), for higher order polynomials conditioning
(even after diagonal scaling) without additional stabilization (e.g. ghost penalty) can get
arbitrarily bad. For the current example we used direct solvers. We did not investigate
the problem further.

In table 2.5.3 and table 2.5.4 we observe the results. The errors in the domains, i.e. in
the norms ‖ · ‖0 and ‖ · ‖1,Ω1,2 behave as predicted in the error analysis (section 2.3.1)
while the interface errors are one half order better than in the estimates.
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2 Mass transport through a stationary interface

Level |eh|1,Ω1,2 ( eoc ) ‖eh‖0 ( eoc ) ‖[[βuh]]‖Γ ( eoc ) ‖{{α∇eh·n}}‖Γ ( eoc )

L1 1.48× 101 ( - ) 6.27× 10−1 ( - ) 7.84× 10−2 ( - ) 3.85× 100 ( - )
L2 6.49× 100 (1.19) 1.25× 10−1 (2.33) 2.87× 10−2 (1.45) 4.25× 100 (-0.14)
L3 2.08× 100 (1.64) 1.17× 10−2 (3.42) 8.36× 10−3 (1.78) 1.97× 100 ( 1.11 )
L4 5.66× 10−1 (1.88) 9.20× 10−4 (3.66) 1.36× 10−3 (2.63) 5.52× 10−1 ( 1.84 )
L5 1.46× 10−1 (1.95) 7.74× 10−5 (3.57) 1.91× 10−4 (2.83) 1.44× 10−1 ( 1.93 )
L6 3.71× 10−2 (1.98) 6.77× 10−6 (3.51) 2.36× 10−5 (3.02) 3.60× 10−2 ( 2.00 )

Table 2.5.3: Convergence under successively uniform mesh refinement of different measures of
error eh := u− uh for the circle example (k = 2).

Level |eh|1,Ω1,2 ( eoc ) ‖eh‖0 ( eoc ) ‖[[βuh]]‖Γ ( eoc ) ‖{{α∇eh·n}}‖Γ ( eoc )

L1 8.26× 100 ( - ) 4.43× 10−1 ( - ) 3.53× 10−2 ( - ) 4.49× 100 ( - )
L2 1.52× 100 (2.45) 7.93× 10−2 (2.48) 1.14× 10−2 (1.63) 1.75× 100 (1.36)
L3 2.24× 10−1 (2.76) 5.08× 10−3 (3.97) 1.11× 10−3 (3.36) 3.16× 10−1 (2.46)
L4 2.55× 10−2 (3.13) 3.39× 10−4 (3.90) 7.02× 10−5 (3.99) 4.14× 10−2 (2.93)
L5 2.97× 10−3 (3.10) 2.15× 10−5 (3.98) 4.28× 10−6 (4.04) 5.20× 10−3 (2.99)
L6 3.59× 10−4 (3.05) 1.35× 10−6 (3.99) 2.40× 10−7 (4.16) 6.35× 10−4 (3.03)

Table 2.5.4: Convergence under successively uniform mesh refinement of different measures of
error eh := u− uh for the circle example (k = 3).

2.5.2 Elliptic interface problem: The starfish problem

This example is geometrically more challenging. The geometrical configuration of this
example is taken from [Li95]. Due to its shape we call it the “starfish” example. The
outer domain is Ω = [−1, 1]2 and the interface is given as

Γ := {(x, y) : x = R(θ) cos(θ), y = R(θ) sin(θ), θ ∈ [0, 2π]}

with
R(θ) = r0 + 0.2 sin(ωθ), r0 = 0.5, ω = 5.

Γ can also be defined as the zero level of the level set function φ(x) = r(x)−R(θ) with
r(x) =

√
x2 + y2 and θ(x) = arctan(x/y). The inner domain is Ω1 := {x ∈ Ω, φ(x) < 0}.

A sketch of the geometrical configuration is displayed in figure 2.5.1 (left).

We consider a generalization of problem 2.1.3 with respect to the interface conditions
which allows non-homogeneous right hand side terms for the flux and jump condition at
the interface.

− div(α∇u) = f in Ωi, i = 1, 2, (2.5.3a)

[[α∇u · n]]Γ = gα on Γ, (2.5.3b)

[[βu]]Γ = gβ on Γ, (2.5.3c)

u = gD on ∂Ω. (2.5.3d)

Problem 2.5.1.
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−1 1
−1

1

Γ

Ω

Figure 2.5.1: Sketch (left) of the setup of the numerical example from section 2.5.2 and elevation
of a discrete solution (right).

Due to the different interface conditions, the discretization is modified by a change in
the discrete linear form f . The bilinear form ah(·, ·) is unchanged.

f(v) = (f, v)0 + (gβ, {{α∇v · n}}+ ᾱ
λ

h
[[βv]])Γ + (gα, {{βv}})Γ, v ∈ V Γ

h

We prescribe f , gα, gβ and the Dirichlet data gD so that the solution is

u(x) =

{
C1 sin(ω θ(x) + π), x ∈ Ω1

C2 r
2(x), x ∈ Ω2

,

with C1 = 1 and C2 = 4. The parameters are set to (α1, α2) = (2, 1), (β1, β2) = (1, 3/2)
and λ = 4. Starting on a 8× 8 mesh we successively refine (uniformly) and measure the
errors w.r.t. different norm contributions.

Level |eh|1,Ω1,2 ( eoc ) ‖eh‖0 ( eoc ) ‖[[βeh]]‖Γ ( eoc ) ‖{{α∇eh·n}}‖Γ ( eoc )

L1 6.76× 100 ( - ) 6.75× 10−1 ( - ) 4.78× 10−1 ( - ) 5.64× 100 ( - )
L2 3.75× 100 (0.85) 1.90× 10−1 (1.83) 1.61× 10−1 (1.57) 4.63× 100 (0.28)
L3 2.06× 100 (0.86) 5.54× 10−2 (1.78) 4.10× 10−2 (1.98) 2.46× 100 (0.91)
L4 1.07× 100 (0.94) 1.63× 10−2 (1.77) 1.23× 10−2 (1.74) 1.49× 100 (0.72)
L5 5.45× 10−1 (0.98) 4.10× 10−3 (1.99) 3.05× 10−3 (2.01) 6.64× 10−1 (1.16)
L6 2.75× 10−1 (0.99) 1.03× 10−3 (1.99) 7.10× 10−4 (2.10) 3.39× 10−1 (0.97)
L7 1.38× 10−1 (1.00) 2.59× 10−4 (1.99) 1.86× 10−4 (1.93) 1.79× 10−1 (0.92)

Table 2.5.5: Convergence under successively uniform mesh refinement of different measures of
error eh := u− uh for the starfish example (k = 1).

In table 2.5.5 the results for piecewise linear functions (k = 1) are displayed. Further in
figure 2.5.1 (right) the elevation of the solution on mesh level L2 is shown.
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2 Mass transport through a stationary interface

We observe a similar behavior as in the example in section 2.5.1: We get optimal
convergence rates in the norms ‖·‖0 and ‖·‖1,Ω1,2 . The errors ‖[[βuh]]‖Γ and ‖{{α∇eh ·n}}‖Γ

with eh := u−uh converge half an order faster than predicted in the error estimates.

2.5.3 Elliptic interface problem: Conditioning

The aim of this example is to investigate the conditioning of linear systems arising
from the Nitsche-XFEM discretization and the performance of iterative solvers and
preconditioners for those systems especially with respect to the estimates in section 2.4.
This example has also been discussed in [LR14]. We recall that A denotes the system
matrix obtained after the basis transformation, cf. section 2.4.1 and the system matrix
without transformation is denoted by Â.

In section 2.5.3.1 we introduce the basic setup of this example. To examine the robustness
of linear solvers against different cut positions, we consider different positions for the
interface Γ and simple Jacobi preconditioning. In section 2.5.3.2 this is done for an
unstructured mesh by changing the position of the interface along the x-axis. In that
case it can only happen that a single or a small number of elements have “small cuts”.
A more challenging situation is constructed using a structured mesh in section 2.5.3.3
where almost all cut elements have “small cuts”. Based on this extreme case we also
examine the performance of the block-preconditioning (additive subspace preconditioning)
of the matrix A. The blocks are related to the finite element spaces Vh and V x

h . In
section 2.5.3.4, section 2.5.3.5 and section 2.5.3.6 parameter studies are presented to
check for the dependency of the conditioning on the mesh size h (section 2.5.3.4), the
Nitsche stabilization parameter λ (section 2.5.3.5), and the problem parameters α and β
(section 2.5.3.6). In section 2.5.3.7 the optimal preconditioner based on a multigrid solver
for the Vh-block for a three dimensional test case analogously to that in section 2.5.3.1 is
tested. A summary of the results is given in section 2.5.3.8.

2.5.3.1 Basic setup

We restrict to the symmetric problem and thus consider the stationary diffusion problem,
problem 2.1.3. The domain is the unit square Ω = [0, 1]2 with an interface Γ which is
a square with corners that are rounded off. A sketch including proper dimensioning
is displayed in figure 2.5.2. The rounded square is centered around x0 = (x0, y0), it is
denoted as Ω1. We set the dimensions to d = 0.2 and r = 0.05. To investigate conditioning
of the system, especially with respect to the dependency on the interface position, we
consider different positions for (x0, y0). The Henry and diffusion parameters are also
fixed to (α1, α2) = (3, 2) and (β1, β2) = (2, 1). The Nitsche stabilization parameter is set
to λ = 4. As a right hand side source term we choose f = 1 in Ω1 and f = 0 in Ω2. We
consider two different types of triangulations, an unstructured mesh and a structured
mesh, both with approximately the same number of elements. Further we consider four
levels of refinements for each triangulation denoted as L1,..,L4.
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Γ

d dr r

d

d

r

r

x0

Figure 2.5.2: Sketch of the setup of the numerical example from section 2.5.3

For the discretization we consider the method as in (2.2.14), where for the weighting
in the averaging {{·}} we consider two choices: the “naive” choice κi = 0.5, i = 1, 2 and
the hansbo weighting κ = κH . We consider the linear systems after the transformation
proposed in section 2.4.1 and the linear systems without transformation. As default we
consider the transformed case.

As quantities of interest we consider the condition number of the system matrix A (and
Â), the condition number of the preconditioned matrix and the number of iterations a
preconditioned CG solve takes to reduce the initial residual by a factor of 10−6.

2.5.3.2 Dependency on the cut position on an unstructured grid

By varying x0, the center of Ωi, in the range [0.46, 0.54] we want to examine how the
properties of the linear systems depend on the cut configuration. We keep y0 = 0.5 fixed.

0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54

100

102

104

106

108

1010

x0

κ(A) κ(D−1
A A)

40

80

CG its.

0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54
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108
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x0

κ(A) κ(D−1
A A)

40

80

CG its.

Figure 2.5.3: Condition of the linear systems arising for the test case in section 2.5.3.2 for
different interface positions x0 and different discretizations: using the “naive”
averaging κi = 1

2 (left) and using the hansbo averaging (right).
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2 Mass transport through a stationary interface

κ(D−1
A A) (its.) κ1/2 = 0.5

(transf.)

κ = κH
(transf.)

κ = κH
(untransf.)

Std. FEM
(transf.)

L1

max ’∞’( 44) 19.2( 23) 32.7( 30) 14.8( 19)
min 61.7( 23) 18.6( 20) 23.4( 25) 14.6( 17)

median 63.7( 26) 18.7( 22) 27.9( 28) 14.7( 19)
avg. ’∞’( 28.2) 18.8( 21.7) 27.8( 28) 14.7( 19)

L2

max ’∞’( 81) 76.5( 41) 107( 53) 62.3( 39)
min 78.1( 39) 72.6( 37) 87.8( 45) 61.9( 34)

median 107( 49) 73.0( 40) 94.0( 51) 62.0( 37)
avg. ’∞’( 49.5) 73.3( 40.2) 95.0( 50.3) 62.0( 37.4)

L3

max ’∞’( 257) 308( 84) 374( 96) 267( 81)
min 492( 89) 287( 74) 337( 82) 266( 71)

median 476736( 120) 295( 81) 349( 91) 266( 77)
avg. ’∞’( 127) 296( 80.3) 349( 91.4) 266( 76)

L4

max ( ) 1310( 174) 1390( 186) 1120( 168)
min ( ) 1210( 153) 1300( 160) 1120( 147)

median ( ) 1220( 165) 1320( 177) 1120( 158)
avg. ( ) 1220( 165) 1320( 178) 1120( 159)

Table 2.5.6: Dependency of conditioning on cut position and mesh size.

In figure 2.5.3 the main characteristics of the transformed linear systems are shown for
the unstructured grid on level L2 for x0 ∈ {0.46 + n · 2 · 10−5, n ∈ N0, n ≤ 8000}. The
results, discussed in the following, look very similar if one considers the untransformed
formulation instead of the transformed one. The mesh is shown on the left hand side of
figure 2.5.4. A similar test case to investigate the dependency of the condition number
of the system matrix on the interface position has also been considered in [FR14] for a
different finite element method approach.

For both discretizations, using the “naive” and the hansbo weighting, one observes
that the condition number of A has several blow-ups, although some blow-ups seem
to exist only for the “naive” weighting. The locations of the blow-ups correspond to
situations where ν (cf. (2.4.1)) tends to zero. While this behavior is qualitatively
the same for the Jacobi-preconditioned matrix D−1

A A when the “naive” weighting is
applied, the situation is completely different if the hansbo weighting is applied. Here
the condition number of the Jacobi-preconditioned matrix is essentially independent of
the cut configuration which is in agreement with the theoretical results of section 2.4.
This directly reflects in the number of CG iterations that are necessary to solve the
linear systems. While the iteration count depends significantly on the cut configuration
for the “naive” weighting, the iteration counts for the hansbo weighting are bounded
independent of the cut configuration. We considered the same procedure on one coarser
level (L1) and two finer levels (L3 and L4) to see how the quantities of interest depend
on the mesh size. In table 2.5.6 the minimum, maximum, median and average value for
the main characteristics are also given. We observe the same patterns. Furthermore,
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Γ0.5 Γ0.54

x0

Figure 2.5.4: Computational grids of examples in section 2.5.3.2(left) and section 2.5.3.3(right).
Γ0.5 and Γ0.54 are the interfaces corresponding to x0 = (0.5, 0.5) and x0 =
(0.54, 0.5), respectively. The shown interface for the “sliver cut case” is obtained
for k = 2 leading to x0 = (0.5, 0.5) + 2−7(1, 1).

on the finer level L3 even the best case configuration for the “naive” weighting is worse
than the worst case for the hansbo weighting, where the results do not significantly
depend on the interface position. We did not compute all values for κ1/2 = 0.5 on level
L4 in table 2.5.6 as the calculation of eigenvalues (to estimate the condition number)
for matrices with a high condition number is extremely costly. Further we observe that
the condition number scales with h−2 which is in agreement with the predictions in
section 2.4. The results for the untransformed linear systems are comparable with the
transformed linear systems up to a constant. As a reference, we also present numbers
for the Jacobi-preconditioned matrix As which is the block matrix corresponding to the
standard finite element space Vh after transformation.

2.5.3.3 Dependency on the cut position on a structured grid (sliver cut case)

Compared to section 2.5.3.2 we now consider a more extreme situation. We use the
uniform grid and set x0 = (0.5, 0.5) + ε(1, 1) with ε = εk = 2−6− k

2 , k ∈ {0, .., 52}. In this
configuration almost all cut elements have small cuts (cf. right sketch in figure 2.5.4). A
similar test case has been considered in [BH12] as “sliver cut case”. Furthermore this
setting allows to examine the behavior for ν → 0 in more detail. Again, we only consider
the transformed formulation. Note however that the results are very similar for the
untransformed formulation. In figure 2.5.5 the main characteristics are again shown, now
depending on ε.

One observes a severe dependency of the condition number on ε which scales like ε−2. For
the “naive” weighting the dependency of the preconditioned matrix is better (it scales
with ε−1) but still unbounded for ε→ 0. This is in contrast to the hansbo weighting
where the preconditioned matrix is well-conditioned independent of ε.
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Figure 2.5.5: Condition of linear systems for different values ε for “sliver cut case” in sec-
tion 2.5.3.3. For the left plot the weighting κ1/2 = 0.5 and for the right plot the

hansbo weighting κ = κH is applied.

2.5.3.4 Dependency on mesh size h

In remark 2.4.3 and section 2.4.6.2 we commented on estimates for the block diagonal
preconditioners BA and BD which are independent on h after transformation. In this
section we want to validate these predictions and investigate also the behavior for
the untransformed case numerically. For this purpose we reconsider the setup of the
preceding section 2.5.3.3, but fix ε = ε28 = 2−20 ≈ 10−6 so that the condition number is
large (≈ 1011). Further we also fix the discretization method to the hansbo weighting
variant. We examine the change in the condition number of the block-preconditioned
matrix under (consecutive) mesh refinements for the transformed and the untransformed
formulation. For the untransformed system matrix we consider the (block-)diagonal
preconditioners BÂ, BD̂ and DÂ to the system matrix Â which are defined analogously to
the preconditioners BA, BD and DA for the matrix A. Note that for the preconditioners
BD̂ and BÂ the theoretical results from section 2.4 do not apply. Note further, that we
do not consider transformed preconditioners as in remark 2.4.1.

In table 2.5.7 we observe for the untransformed formulation κ(B−1

Â
Â) ' h−1 while we

have κ(B−1
A A) ' 1 for the transformed formulation. The same behavior is observed

for preconditioning with BD (or BD̂). For the Jacobi preconditioner we observe that
the condition number of the transformed and the untransformed system behave similar,
κ(D−1

A A) ' h−2, κ(D−1

Â
Â) ' h−2. However, the iteration counts for the transformed

case are significantly better.

The constants with which the condition numbers are bounded depend on the parameters
λ, α and β which is discussed in the next subsection.
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L1 L2 L3 L4
u

n
tr

a
n

sf
.

κ(B−1

Â
Â) (its.) 2.19× 101 (21) 4.34× 101 (27) 8.61× 101 (41) 1.69× 102 ( 56)

κ(B−1

D̂
Â) (its.) 2.33× 101 (21) 4.62× 101 (29) 9.53× 102 (41) 1.89× 102 ( 57)

κ(D−1

Â
Â) (its.) 4.75× 101 (28) 1.47× 102 (49) 5.00× 102 (92) 1.84× 103 (179)

tr
an

sf
. κ(B−1

A A) (its.) 4.98× 100 (13) 4.95× 100 (13) 4.82× 100 (12) 4.82× 100 ( 11)

κ(B−1
D A) (its.) 5.12× 100 (13) 5.06× 100 (13) 4.94× 100 (12) 4.94× 100 ( 11)

κ(D−1
A A) (its.) 2.78× 101 (22) 1.11× 102 (40) 4.42× 102 (73) 1.77× 103 (127)

Table 2.5.7: Dependency on mesh size h for different preconditioners.

2.5.3.5 Dependency on stabilization parameter λ

In this section we want to briefly test the dependency of the iterative solvers combined
with suitable preconditioners with respect to changes in the stabilization parameter. Due
to the discussion in section 2.4.6.2 for the preconditioners DA and BD we expect a linear
growth in the condition number for an increasing λ. We consider the same setting as in
section 2.5.3.2. Now we vary the stabilization parameter λ. The results are shown in
table 2.5.8. We observe that the condition number for the preconditioners DA and BD

increase linearly with λ as has been predicted in the theoretical estimates. This behavior
seems to be less severe for the transformed formulation. Although the condition number
also increases linearly the iteration count seems to be affected only mildly.

λ 4×100 4×101 4×102 4×104 4×106

u
n
tr

an
sf

.

κ(B−1

Â
Â)(its.) 4.34×101(27) 4.73×102(42) 4.77×103( 50) 4.78×105( 66) 4.78×107( 92)

κ(B−1

D̂
Â)(its.) 4.62×101(29) 6.02×102(46) 6.31×103( 74) 6.46×105(169) 6.90×107(484)

κ(D−1

Â
Â)(its.) 1.47×102(49) 6.57×102(88) 6.64×103(145) 7.03×105(319) 7.10×107(804)

tr
an

sf
. κ(B−1

A A)(its.) 4.95×100(13) 2.50×100( 9) 2.29×100( 7) 2.27×100( 5) 2.27×100( 5)

κ(B−1
D A)(its.) 5.06×100(13) 2.14×101(13) 2.07×102( 14) 2.11×104( 19) 2.32×106( 35)

κ(D−1
A A)(its.) 1.11×102(40) 9.49×101(36) 2.07×102( 38) 2.11×104( 47) 2.15×106( 83)

Table 2.5.8: Dependency of conditioning on λ for different preconditioners.

The block diagonal preconditioner with exact inverses BA is only positively affected.
This is due to the fact that a large λ increases the angle between the subspaces Vh and
V x
h .

2.5.3.6 Dependency on problem parameters α, β

Similar to the brief discussion on the dependency on λ we consider the same example for
variations in α and β. First we vary β1/β2 by changing β1 and always keep βmin = β2 = 1
fixed and also fix (α1, α2) = (3, 2). For variations in β we only consider the untransformed
case as in the transformed case variations in β are equivalent to variations in α. Changes in
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α are considered by variations in the ratio α1/α2. For this, we set (β1, β2) = (2, 1), α2 = 2
and vary α1.

β1/β2 2× 100 2× 101 2× 102 2× 103

u
n
tr

a
n

sf
.

κ(B−1

Â
Â) (its.) 4.34×100 (27) 1.93×104 ( 74) 2.20×106 (111) 2.22×108 (114)

κ(B−1

D̂
Â) (its.) 4.62×100 (29) 2.13×104 ( 87) 2.43×106 (139) 2.45×108 ( 96)

κ(D−1

Â
Â) (its.) 1.47×102 (29) 2.22×104 (146) 2.76×106 (219) 2.85×108 (277)

Table 2.5.9: Dependency on β for the preconditioners for the untransformed linear system.

α1/α2 1.5× 10−4 1.5× 10−2 1.5× 100 1.5× 102 1.5× 104

u
n
tr

an
sf

.

κ(B−1

Â
Â) 2.14× 103 (36) 2.74× 101 (28) 4.34× 101 (27) 1.85× 103 (45) 1.82× 105 ( 63)

κ(B−1

D̂
Â) 2.84× 103 (38) 3.39× 101 (30) 4.62× 102 (29) 2.53× 103 (49) 2.51× 105 ( 71)

κ(D−1

Â
Â) 2.92× 103 (61) 6.71× 101 (44) 1.47× 102 (49) 9.07× 103 (90) 9.10× 105 (111)

tr
an

sf
. κ(B−1

A A) 5.00× 103 (29) 5.23× 101 (25) 4.95× 100 (13) 5.54× 101 (26) 5.19× 103 ( 27)

κ(B−1
D A) 6.77× 103 (30) 6.99× 101 (28) 5.06× 100 (13) 9.87× 101 (28) 9.74× 103 ( 31)

κ(D−1
A A) 8.39× 103 (68) 9.09× 101 (50) 1.11× 102 (40) 5.90× 103 (60) 5.92× 105 ( 86)

Table 2.5.10: Dependency of conditioning on α for different preconditioners.

Again we examine the conditioning of the different preconditioners in table 2.5.10 and
table 2.5.9. We first discuss the untransformed formulation. The condition number
of all preconditioned matrices and their iteration counts increase quadratically with
β1/β2. We observe a different behavior w.r.t. changes in α. The condition number
increases approximately linearly with changes in α. Moreover, the iteration counts show
a dependency that seems to be less strong.

Next, we discuss the results for the transformed formulation. As in the untransformed
case, changes in αmax/αmin result in a linear growth of the condition number for all
preconditioners. The constants, however, seem to be smaller than for the untransformed
case.

2.5.3.7 Three-dimensional test case

We consider a setup in three dimensions analogously to that in section 2.5.3.4. The
domain is the unit cube Ω = [0, 1]3 with a cube that is rounded off as the dividing
interface. The cube, denoted as Ω1, is centered around x0 = (0.5, 0.5, 0.5) + ε(1, 1, 1)
with a small “shift parameter” ε = 2−20. The dimensions of the cube are chosen as
in section 2.5.3.1 (d = 0.2, r = 0.05) and a uniform triangulation of Ω is used. We
use seven levels of uniform refinement denoted by L0,..,L6 where the coarsest level is a
2×2×2-grid.
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2.5 Numerical examples

The diffusion parameters are fixed to (α1/β1, α2/β2) = (1, 3) and consider only the
transformed problem. The Nitsche stabilization parameter is set to λ = 5. As a right
hand side source term we choose f = 1 in Ω1 and f = 0 in Ω2.

We investigate the performance of the CG method preconditioned with BC (cf. (2.4.30))
where a multigrid preconditioner for Cs and diagonal scaling Dx is used. The multigrid
solver carries out one complete V-cycle using a damped Jacobi (damping-factor 0.8) as
pre- and post-smoother and a Jacobi-preconditioned CG solver on the coarsest level (L1).
In table 2.5.11 the iteration counts that were necessary to reduce the initial residual by a
factor of 10−6 for the levels L2 to L6 are shown.

L2 L3 L4 L5 L6

CG iterations 22 25 27 29 32

Table 2.5.11: Iteration counts of multigrid-preconditioned CG method (λ = 5, α2/α1 = 3).

We observe that the iteration counts stay essentially bounded such that the effort for
solving the linear systems is O(N) with N the number of degrees of freedom, i.e. BC

is an optimal preconditioner. The mild increase in iteration numbers further decreases
if the Jacobi preconditioner Dx used in the subspace V x

h is replaced by a symmetric
Gauss-Seidel preconditioner. For this choice we obtain the numbers 21,23,23,25,27 for
the levels L2 to L6.

2.5.3.8 Summary of results

We summarize the results w.r.t. the choice of the averaging weights, the transformation
proposed in section 2.4.1 and the parameter dependencies of the preconditioners on
λ, α, β.

The results in section 2.5.3.2 and section 2.5.3.3 suggest that the choice of the averaging
weights is crucial. A restriction on the weights κi, i = 1, 2 as in (2.2.16) is thus not
only necessary to prove stability (see section 2.3.1.3) but also to obtain a method that is
practically useful in the case of “small cuts”.

The transformed formulation seems to be superior over the untransformed one. It is
significantly more robust w.r.t. changes in β and λ while it is comparable w.r.t. the
dependencies on α. Most importantly, it allows for a block diagonal preconditioning with
optimal bounds on the condition number. Only based on the transformed formulation
the optimal preconditioner BC with a multigrid preconditioner for Vh and a diagonal
scaling for V x

h could be constructed.

For the discussion of the parameter dependencies we restrict to the transformed case.
The dependency of the condition number on αmax

αmin
for all preconditioners seems to be

approximately linear. Linear is also the dependency on λ of the preconditioners that
involve diagonal preconditioning on the subspace V x

h , e.g. DA and BD.
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2 Mass transport through a stationary interface

2.5.4 Stationary, convection-dominated problem

In this example we consider a convection dominated problem and consider the discretiza-
tion with the SD-Nitsche-XFEM discretization. Furthermore in all the experiments we
use a slightly different stabilization parameter as in (2.2.45):

γT =

{
(1− 1

PTh
) hT

2‖w‖∞,T if P T
h > 1

0 if P T
h ≤ 1

(2.5.5)

This choice can also be found in [ESW05]. We investigate two examples in two space
dimensions with a known solution. Again we use the notation ε = α to emphasize that α
is small. This example can also be found in [LR12].

2.5.4.1 Problem with a smooth solution

We consider a two-dimensional stationary problem with a smooth solution. The interface
is Γ = {y = 0} and the domains are Ω1 = [−1, 1] × [−1, 0] and Ω2 = [−1, 1] × [0, 1].
The piecewise constant coefficients ε, β are chosen as ε = (ε1, ε2) = (2 · 10−7, 1 · 10−7),
β = (β1, β2) = (3, 2) and a stationary velocity field is given by w = (1, 0). We adapt the
right hand side f and the Dirichlet boundary conditions such that u defines the solution
to our problem, with

u(x, y) =

{
2
3

sin(π(x+ y)) for (x, y) ∈ Ω1,
sin(π(x+ 4

3
y)) for (x, y) ∈ Ω2.

The problem is solved on an unstructured mesh with 240 elements (on the coarsest level)
by the proposed stabilized method. The coarsest mesh (L1) is uniformly refined five
times. The norms used in the error analysis of section 2.3 for the error eh = u− uh are
listed in table 2.5.12 and table 2.5.13 for the “convective” and the “diffusive” scaling of
the Nitsche penalty parameter λ.

Level ‖w · ∇eh‖0 (eoc) ‖eh‖0 (eoc) ‖[[βeh]]‖Γ (eoc)

L1 1.58× 100 ( - ) 1.67× 10−1 ( - ) 1.25× 10−2 ( - )
L2 7.83× 10−1 (1.0) 4.41× 10−2 (1.9) 2.06× 10−3 (2.6)
L3 3.88× 10−1 (1.0) 9.58× 10−3 (2.2) 5.60× 10−4 (1.9)
L4 1.93× 10−1 (1.0) 2.04× 10−3 (2.2) 1.13× 10−4 (2.3)
L5 9.62× 10−2 (1.0) 4.57× 10−4 (2.2) 3.48× 10−5 (1.7)
L6 4.80× 10−2 (1.0) 1.07× 10−4 (2.1) 1.08× 10−5 (1.7)

Table 2.5.12: Convergence under successively uniform mesh refinement of different measures of
error eh := u− uh for the convection-diffusion example with a smooth solution
for the “convective” scaling.

We observe the expected linear convergence in the norm ‖w · ∇eh‖0. The (β-weighted)
L2-norm of the error ( ‖eh‖0) converges with O(h2) which is half an order better than in
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2.5 Numerical examples

Level ‖w · ∇eh‖0 (eoc) ‖eh‖0 (eoc) ‖[[βeh]]‖Γ (eoc)

L1 1.57× 100 ( - ) 1.75× 10−1 ( - ) 5.76× 10−1 ( - )
L2 7.83× 10−1 (1.0) 4.41× 10−2 (2.0) 1.14× 10−1 (2.3)
L3 3.88× 10−1 (1.0) 9.62× 10−3 (2.2) 2.76× 10−2 (2.1)
L4 1.93× 10−1 (1.0) 2.06× 10−3 (2.2) 6.03× 10−3 (2.2)
L5 9.62× 10−2 (1.0) 4.60× 10−4 (2.2) 1.76× 10−3 (1.8)
L6 4.80× 10−2 (1.0) 1.07× 10−4 (2.1) 5.40× 10−4 (1.7)

Table 2.5.13: Convergence under successively uniform mesh refinement of different measures of
error eh := u− uh for the convection-diffusion example with a smooth solution
for the “diffusive” scaling.

the a priori estimates. For the interface jump error the order of convergence appears to
be close to 2 which is better than expected for both scalings of the Nitsche stabilization.
The convective scaling leads to an interface error which is roughly 50 times smaller than
for the diffusive scaled Nitsche method.

2.5.4.2 Problem with a sharp layer

In this example a two-dimensional stationary problem with a parabolic layer at the
interface is considered. The interface is Γ = {y = 0} and the domains are Ω1 =
[0.25, 2]× [−1, 0] and Ω2 = [0.25, 2]× [0, 1]. The piecewise constant coefficients ε, β are
chosen as ε = (ε1, ε2) = (9 × 10−7, 4 × 10−7), β = (β1, β2) = (27, 11) and a stationary
velocity field is given by w = (1, 0). We adapt the right hand side f and the boundary

∂ΩD

Γ

w=(1,0)

Ω̃2

Ω̃1

−0.2 −0.1 0 0.1 0.2
0

0.2

0.4

0.6

0.8

1

Γ Ω̃1Ω̃2

y

u(0.25, y)

u(2.00, y)

Figure 2.5.6: Sketch of setup and solution at in- and outflow of example in section 2.5.4.2.

conditions such that the solution to our problem is given by

u(x, y) =

{
1− 16

27
exp(Cn√

x
y) for (x, y) ∈ Ω1,

exp(−Cp√
x
y) for (x, y) ∈ Ω2,
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2 Mass transport through a stationary interface

where the constants Cp and Cn are chosen s.t. the width of the layers at the outflow (x = 2)
is approximately 10% of the domain size ( Cn ≈ 23.0, Cp ≈ 30.7). The solution at the
inflow and outflow boundary close to the interface is displayed in figure 2.5.6. According
to the solution u we prescribe Dirichlet boundary conditions on ∂ΩD := {x = 0.25} and
Neumann boundary conditions g = ε∇u · n on ∂Ω \ ∂ΩD.

The problem is discretized on an unstructured triangular mesh with 400 elements on the
coarsest mesh which is uniformly refined five times. The errors within the domain are
measured in Ω̃ = {|y| > 0.1} away from the interface. In figure 2.5.7 and figure 2.5.8 the
convergence of the errors in the (β-weighted) L2-norm of the solution and the streamline
derivative as well as the interface jump and flux error are displayed.
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SD-NXFEM (diffusive)

SD-NXFEM (convective)
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Figure 2.5.7: Convergence plots for the volume error for example in section 2.5.4.2.
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Figure 2.5.8: Convergence plots for the interface errors for example in section 2.5.4.2.
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We observe that the error of the streamline derivative is drastically improved by the
stabilized methods. In contrast to the stabilized methods the error of the unstabilized
methods are not even monotonically decreasing. In the (β-weighted) L2-norm one also
observes a significant improvement due to the stabilization. Concerning the different
scalings of the Nitsche stabilization it is expected that the convective scaling leads to
a better resolution of the interface jump condition. This is confirmed by the results in
figure 2.5.8.

2.5.5 Transient convection-dominated problem

As a last and most realistic example we consider a three-dimensional time dependent con-
vection dominated problem with a stationary interface. This example and the numerical
results for the SD-Nitsche-XFEM method have also been published in [LR12].

2.5.5.1 Problem description

The domain Ω := [0, 2]× [0, 2]× [0, 1] is separated into a cylindrical domain Ω1 :=
{(x, y, z) ∈ R3 : (x− 1)2 + (y − 1)2 < R2}, with R = 0.25, and Ω2 := Ω \ Ω1 by the
stationary interface Γ := ∂Ω1 \ ∂Ω. The piecewise constant coefficients ε, β are chosen
as ε = (ε1, ε2) = (10−4, 2× 10−4), β = (β1, β2) = (3, 1) and a stationary velocity field is
given by

w|Ω1 = (0, 0, 0), w|Ω2 = (1 +R2(d2
y − d2

x)r
−4, −2R2(dxdy)r

−4, 0) (2.5.6)

where dx := x− 1, dy := y − 1 and r := (d2
x + d2

y)
1
2 . A sketch of the domains and of w in

term of field-lines is given in figure 2.5.9.

Ω1

Γ
∂ΩD

Ω2

Figure 2.5.9: Sketch of interface position and flow field (left) and mesh (right)

Assumption 1.2.4 (compatible velocity) on the velocity field is satisfied: div w = 0 in
both domains and w · n = 0 on Γ. We impose a Dirichlet boundary condition on the
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2 Mass transport through a stationary interface

inflow boundary ∂ΩD := {(x, y, z) ∈ Ω : x = 0}, s.t. u|∂ΩD = 0.05 and a homogeneous
Neumann boundary condition ε∇u · n = 0 on ∂Ω \ ∂ΩD. As initial condition we take
u = 0 on Ω1, u = 0.05 on Ω2. Note that this initial condition does not satisfy the Henry
interface condition (2.1.1c).

This time dependent convection-diffusion problem is strongly convection dominated with
a physical Péclet number PL := 2‖w‖

ε̄
≈ 2 · 104. Furthermore, due to the inconsistent

(w.r.t. condition (2.1.1c)) initial condition a parabolic boundary layer of thickness O(
√
εt)

at the interface will form directly after t = 0, independent of the velocity field. For
t→∞ the solution converges to the stationary piecewise constant function u = 0.05 β−1.
In figure 2.5.10 the solution along a line is displayed, where one observes the predicted
boundary layer behavior. In the experiments we consider t = 1.
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Figure 2.5.10: Concentration profile through line γx := {(x, y, z) ∈ Ω : y = 1, z = 0.5} for
several values of t in example in section 2.5.5.

2.5.5.2 Discretization

We use the mesh with 30000 elements displayed in figure 2.5.9 with an average mesh size
h = 0.05 and element Péclet numbers up to P T

h ≈ 250. Thus, the mesh resolution is too
low to resolve the boundary layer (for t ≤ 1).

We are primarily interested in the accuracy of the spatial discretization. Hence, in the
implicit Euler method ((2.2.55) with θ = 1) we choose a small time step size ∆t =
10−4, such that the total discretization error is dominated by the spatial discretization
error.

Again we consider the same four methods as in section 2.5.4.2. The solution is essentially
two-dimensional which allowed us to compute a reference solution on a very fine two-
dimensional mesh which is aligned to the interface and resolves the boundary layer for
t > 10−2. This reference solution is used to provide the profiles in figure 2.5.10 and the
reference profiles in figure 2.5.12 below.
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2.5 Numerical examples

2.5.5.3 Numerical results

‖[[βuh]]‖L2(Γh) = 4.5 · 10−2 ‖[[βuh]]‖L2(Γh) = 3.3 · 10−3

‖[[βuh]]‖L2(Γh) = 4.5 · 10−2 ‖[[βuh]]‖L2(Γh) = 2.3 · 10−3

Figure 2.5.11: Numerical solution in the plane z = 0.5 at t = 1 for Nitsche-XFEM (top) and
SD-Nitsche-XFEM (bottom), with diffusive scaling (left) and convective scaling
(right) of the Nitsche stabilization.

In figure 2.5.11 the numerical solution in the plane z = 0.5 at t = 1 (where the boundary
layer has a width of approximately 0.01 in Ω2) is shown for four different methods. Below
each picture we also give the L2 norm of the jump [[βuh]] on the approximate interface
Γh.

We observe several effects. The first one also occured in the numerical experiment treated
in section 2.5.4.2: if one considers the different scalings in the Nitsche method, i.e. the
left and the right columns in figure 2.5.11, then the convective scaling results in a better
approximation of the interface condition. But it also increases the effect of non-physical
oscillations. Comparing the first and the second row in figure 2.5.11, we see that the
Streamline Diffusion stabilization suppresses the oscillations whereas the quality of the
approximation of the interface condition is not negatively affected by this stabilization.

In figure 2.5.12 the numerical solutions of the same four methods as in figure 2.5.11
together with the reference solution, on the line z = 0.5, y = 1.0 in Ω2 at time t = 1
are shown. One can observe that the boundary layer which is represented well by the
reference solution is not resolved accurately by any of the four methods. Especially for
x > 1.25, i.e. downwind of Ω1 none of the methods yields a discrete solution that is close
to the reference solution. The solutions uh of the SD-Nitsche-XFEM methods are much
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Figure 2.5.12: Numerical solutions on the line z = 0.5, y = 1.0 at time t = 1 obtained with
Nitsche-XFEM, SD-Nitsche-XFEM, and the reference solution.

smoother than the solutions obtained without stabilization and upwind of Ω1, where the
solution is almost constant outside the boundary layer, it is very accurate.
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Figure 2.5.13: Numerical solutions on the line z = 0.5, y = 1.0 at time t = 1 obtained with
SD-Nitsche-XFEM applying the convective scaling (left) and the diffusive scaling
(right) on three consecutively refined meshes and the reference solution.

In figure 2.5.13 the results of the SD-Nitsche-XFEM methods on three successively
(uniformly) refined meshes are shown. The resolution of the boundary layer at t = 1
improves if the grid is refined, but on level 3 the discrete solution downwind of Ω1 is still
not in good agreement with the reference solution. This can be explained as follows. For
small times t the boundary layers are much smaller, namely O(

√
εt), cf. figure 2.5.10,
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and cannot be resolved. For small t we thus have (very) large spatial discretization errors.
If time evolves until t = 1 these large errors are transported in downwind direction
and are only mildly damped. This time dependent transport effect causes the large
errors downwind of Ω1 (x > 1.25) in figure 2.5.12 and figure 2.5.13. We also note that
we can not expect the Streamline Diffusion stabilization to enhance the resolution of
our discretization. But, and this effect becomes evident in this example, it suppresses
non-physical oscillations. We further observe that there is a qualitative difference of
the concentration profiles downwind of the cylinder for the diffusive and the convective
scaling. Nevertheless, we can not conclude that one of both is better than the other.
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CHAPTER 3

Mass transport through a moving interface

In the previous chapter, chapter 2, we discussed the special case of the problem in (1.2.1)
where the interface is stationary. The more general case, the case of a moving interface,
is more difficult. This concerns the theoretical analysis as well as the derivation and
implementation of a suitable discretization. In this chapter we discuss the discretization
of the mass transport problem in an Eulerian setting for a moving interface with an
implicit description.

Outline of this chapter

In section 3.1 the mathematical model is presented and a well-posed weak formulation
of this model is given. The arising numerical challenges for the discretization and
different solution strategies used in the literature are presented. In section 3.2 we
present an approach to solve the problem numerically using a combination of a space-
time formulation, the XFEM space and the Nitsche technique. Error analysis of this
discretization is challenging. In section 3.3 we present an error analysis which provides
a second order error bound in space and time. The analysis is essentially based on the
one presented in [LR13]. An important difference, however, is the weaker interpolation
operator used in this work. In section 3.4 interesting numerical examples show the
performance of the proposed discretization method for test problems. A challenging
aspect of the combination of space-time formulations and the XFEM space is the efficient
solution of linear systems arising from such discretizations. We conclude the chapter
with the discussion of first solution strategies in section 3.5.
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3 Mass transport through a moving interface

3.1 Problem description

We recall the problem under consideration. In this section we consider the following
problem with a moving interface.

∂tu+ w · ∇u− div(α∇u) = f in Ωi(t), i = 1, 2, t ∈ (0, T ], (3.1.1a)

[[α∇u · n]]Γ = 0 on Γ(t), t ∈ (0, T ], (3.1.1b)

[[βu]]Γ = 0 on Γ(t), t ∈ (0, T ], (3.1.1c)

u(·, 0) =u0 in Ωi(t), i = 1, 2, (3.1.1d)

u(·, t) = gD on ∂Ω, t ∈ (0, T ]. (3.1.1e)

Problem 3.1.1.

Note that due to assumption 1.2.4 (compatible velocity) we require w · n = V · n on Γ(t)
and div w = 0 in Ωi(t), i = 1, 2, ∀ t ∈ (0, T ]. Here, V · n is the velocity of the interface
motion in normal direction.

3.1.1 Weak formulation

In this section we discuss a weak formulation of the problem 3.1.1 for the case of a
time-dependent interface Γ = Γ(t) and a time-dependent velocity-field w = w(x, t). The
major difficulty of this setting arises from the fact that the space H1

0,β(Ω) in (2.1.6) is no
longer independent of the time t and thus a weak formulation as in section 2.1.2 can not
be applied. In [GR11, Chapter 10.3] a space-time weak formulation including a proper
analysis is presented. We briefly present the weak formulation and the most important
results. For details, we refer to [GR11, Chapter 10.3].

Anisotropic Sobolev spaces. We introduce notation for the space-time geometries and
suitable (anisotropic) Sobolev spaces on them. The space-time domain is denoted by
Q = Ω× I ∈ Rd+1 with I = (0, T ]. It is separated into the sub-domains Qi := {(x, t) ∈
Q : x ∈ Ωi(t), t ∈ I}, i = 1, 2 by the space-time interface Q1 ∩ Q2 = Γ∗ =

⋃
t∈(0,T ] Γ(t).

We need anisotropic Sobolev spaces (also called t-anisotropic Sobolev spaces) in which
spatial derivatives (Dx) and temporal derivatives (∂t) are treated differently. For i = 1, 2
we define

Hk,l(Qi) :={u
∣∣∂ptDα

xu ∈ L2(Qi), p, q ∈ N, q = |α|, q
k

+
p

l
≤ 1}. (3.1.2)

For this definition of the space it is clear that for u ∈ H2,2(Qi) we have ∇u ∈ H1,1(Qi).
Thus we retain the isotropic Sobolev space for k = l, Hk(Qi) = Hk,k(Qi). For the
cylindrical case (Ωi = const) the space H1(I;L2(Ωi)) ∩ L2(I;H2(Ωi)) which is very
similar to H2,1(Qi) has been introduced in [LSU68, LM72] for parabolic problems.
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3.1 Problem description

The space H1,0(Qi) is important as for functions in H1,0(Qi) and sufficiently smooth
Γ∗ the trace operation on the space-time interface Γ∗ and the boundary ∂Ω× (0, T ] is
well-defined. We denote the space of functions in Hk,l(Qi) with zero values at the spatial
boundary of the space-time cylinder ∂Ω× (0, T ] as Hk,l

0 (Qi). We further denote the dual
space of H1,0

0 (Q) (continuous across the interface) as H−1,0(Q).

Similar to the weak formulation for the stationary interface we introduce a space in which
all functions fulfill the interface condition [[βu]] = 0:

Vβ := {u ∈ L2(Qi), u ∈ H1,0
0 (Qi), i = 1, 2, [[βu]]Γ∗ = 0} (3.1.3)

Note that there holds v ∈ Vβ ⇔ βv ∈ H1,0
0 (Q). The solution to problem 3.1.1 should

be searched for in a space with additional regularity on the temporal derivative. We
introduce Wβ and Wβ,0, two of such spaces. For all functions in Wβ,0 homogeneous initial
values are imposed.

Wβ := {u ∈ Vβ, ∂tu ∈ H−1,0(Q)}, Wβ,0 := {u ∈ Wβ, u(·, 0) = 0 in Ω} (3.1.4)

The spaces Wβ and Wβ,0 equipped with the norm

‖ · ‖W := (‖ · ‖2
L2(Q) + ‖∇ · ‖2

L2(Q1∪Q2) + ‖∂t · ‖2
H−1,0(Q))

1
2

are Hilbert spaces. We further introduce the β-weighted scalar products (for Si ∈
{Qi,Ωi(t)}, t ∈ (0, T ])

(u, v)S1,2 = (u, v)0,S1,2 = (βu, v)L2(S1∪S2) =
∑

i=1,2

∫

Si

βiuv dxdt, (3.1.5)

(u, v)1,S1,2 = (β∇u,∇v)L2(S1∪S2) =
∑

i=1,2

∫

Si

βi∇u∇v dxdt. (3.1.6)

with the induced (semi-)norms ‖ ·‖S1,2 and | · |1,S1,2 . Note that in these scalar products and
seminorms there is a scaling with the piecewise constant function β and that opposite to
the isotropic norm | · |1 on H1(Q) there is no first derivative w.r.t. time in (3.1.6).

For sufficiently smooth functions we define a spatial scalar product for a fixed time t,
m ∈ {0, 1}

(u, v)m,t :=
∑

|α|≤m

∫

Ω

β(·, t)Dαu(·, t)Dαv(·, t) dx.

The induced norm is denoted by ‖ · ‖m,t. We further introduce the weaker norm for
u ∈ L2(Ω)

‖u‖−1,t := sup
v∈H1

0 (Ω1,2(t))

(u, v)Ω1,2(t)

‖v‖1,Ω1,2(t)

.
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3 Mass transport through a moving interface

The weak formulation reads as:
Determine u ∈ Wβ,0 such that

〈∂tu, v〉 −
∫

Q

uw·∇v dx dt+
∑

i=1,2

∫

Qi

αi∇ui∇v dx dt =

∫

Q

fvdx dt (3.1.7)

for all v ∈ H1,0
0 (Q) with 〈·, ·〉 = 〈·, ·〉H−1,0(Q)×H1,0

0 (Q). Important for the discretization is

the following characterization of this formulation. Note that βv ∈ H1,0
0 (Q) holds for all

v ∈ Vβ. Thus using the test space Vβ in (3.1.7) gives

〈∂tu, βv〉 − (u,w · ∇v)Q1,2 + (α∇u,∇v)Q1,2 = (f, v)Q1,2 (3.1.8)

For f ∈ L2(Q) a unique solution u ∈ Wβ,0 to (3.1.7) exists and ‖u‖W ≤ c‖f‖L2(Q) for a
c independent of f , cf. [GR11, Chapter 10.3].

3.1.2 Solution strategies

The discretization of problem 3.1.1 is very challenging due to the fact that the equations
in (3.1.1a) are defined on time-dependent domains and are coupled through an interface
condition which leads to discontinuities across the interface. Problems similar to prob-
lem 3.1.1 appear also in other fields, for instance in fluid-structure interaction problems
or combustion. Different approaches exist to tackle the problem. We give a brief overview
of methods which are suitable to deal with problems of the form of problem 3.1.1.

The balance laws in fluid dynamics are usually described in a fixed control volume, that
is, in an Eulerian frame of reference. Another possibility to state balance equations
is the use of an Lagrangian frame of reference, that means that the frame of reference
follows a certain particle. Based on this different ways of formulating the same physical
balance laws, different methods to discretize equations exist. We discuss four different
approaches to deal with time integration on time-dependent domains. An illustration of
the four approaches is given in figures 3.1.1-3.1.4.

Method of Lines. In chapter 2 we applied the method of lines to derive fully discrete
formulation of the Nitsche-XFEM method for an unsteady problem with a stationary
interface. In the method of lines a time derivative is at some place replaced with a finite
difference approximation, for instance

∂tu(x, t) ≈ δFDt (x, t) =
u(x, t+ ∆t)− u(x, t−∆t)

2∆t
.

This makes sense as long as u is sufficiently smooth in time, because then we have
δFDt u→ ∂tu for ∆t→ 0. However, this is in general not true for solutions of problem 3.1.1.
Assume x ∈ Γ(t) such that for sufficiently small ∆t we have x ∈ Ω1(t−∆t)∩Ω2(t+ ∆t),
then for ∆t→ 0 we have |δFDt | → ∞ as long as β1 6= β2. This is indicated in figure 3.1.1.
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x

t

∂u

∂t
6≈ un − un−1

∆t

Γ∗Γ∗

∂u

∂t
≈ un − un−1

∆t

Figure 3.1.1: Sketch of the method of lines for a two-phase problem.

For the case β1 = β2 the situation is better as the solution u is continuous in time.
Nevertheless higher order time derivatives are in general not continuous across the
space-time interface (as long as α1 6= α2). Thus, a method of lines approach will not
achieve higher order accuracy in time. In [FZ09] and [Zun13] a combination of a XFEM
discretization in space and the method of lines for problems with moving domains is
considered. In both cases a problem with only a weak discontinuity, i.e. β1 = β2, is
considered. In [Zun13] an implicit Euler method is analyzed and first order accuracy in
time is proven.

For the general case β1 6= β2 we can transform the problem to the form of problem 1.2.1
and apply the method of lines, cf. also the discussion in section 3.2.4.2. Note however
that we can not expect convergence of higher order due to the low regularity of ∂tũ,
where ũ is the transformed variable ũ = βu.

Arbitrary-Lagrangian-Eulerian formulations. A very popular approach for problems
involving moving boundaries or interfaces is the Arbitrary-Lagrangian-Eulerian (ALE)
formulation where the underlying computational mesh is deformed in a way such that
moving boundaries (or interfaces) stay fixed with respect to the reference configuration.
Let ξ be the coordinate of a boundary (or interface) point in the reference coordinates.
Then the evolution of a value at a grid point can be used to express the time derivative

x

t

Γ∗Γ∗

∂u

∂t
|ξ ≈

un(ξ)− un−1(ξ)

∆t

Figure 3.1.2: Sketch of the Arbitrary-Lagrangian-Eulerian (ALE) method.

(in the reference system) as the rate of change of that value (in the physical domain) and
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3 Mass transport through a moving interface

the gradient in advection direction:

∂tu|ξ = ∂tu+ wrel · ∇u

with wrel = ∂x
∂t
|ξ=const the mesh motion at the corresponding position. The solution is

smooth in time with respect to points with constant reference coordinates and thus a
standard method of lines approach can be applied to discretize ∂tu|ξ (cf. figure 3.1.2).
This approach is often used, for instance for fluid-structure interaction problems. The
ALE description is sometimes also combined with a space-time formulation for the time
discretization (see discussion below).

Depending on the application the successive deformation of the mesh can lead to very
large deformations. In those situations the computational domain has to be meshed
again after a few time steps. This remeshing is usually challenging and can be very
time-consuming. If the problem of remeshing does not appear (due to small deformations
only) or can be solved satisfactory the method works well. We refer the reader to
[DH03, Chapter 3.10] and [DHPRF04] and references therein for an overview on ALE
methods.

For us this approach is not an option as we do not want to fit our computational mesh
to the interface.

Semi-Lagrangian methods. Another approach is the use of the so called semi-Lagrangian
method or characteristic finite element method, where the material derivative u̇ =
∂tu + w · ∇u is approximated with a finite difference approximation along a (approx-
imated) space-time trajectory. That means one approximates (for an implicit Euler

x

t

Γ∗Γ∗

u̇ ≈ un(x)− un−1(Px)

∆t

Figure 3.1.3: Sketch of the semi-lagrangean method.

discretization)

u̇(x, tn) = ∂tu(x, tn) + w · ∇u(x, tn) ≈ u(x, tn)− u(P (x), tn−1)

∆t

where P (x) is the origin of the trajectory through x in the sense that P (x) = y(0) with y
the solution of ẏ = w(y(t), tn−1 + t), y(∆t) = x (cf. figure 3.1.3). This guarantees that
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3.1 Problem description

for every point x in domain i the corresponding origin point P (x) also lies in domain i.
Thus the approximation of the time derivative takes place along a line where the solution
is smooth, s.t. simple approximation ideas as in the method of lines can be applied.
Another advantage of the method is the fact that due to the Lagrangian handling of
the time derivative no convection term appears in the resulting equations for the new
unknown. One then arrives at a problem of the form

1

∆t
un(x)− div(α∇un(x)) = fn(x) +

1

∆t
un−1(P (x)) in Ωi, i = 1, 2,

[[α∇un · n]]Γ = 0 on Γ,

[[βun]]Γ = 0 on Γ,

un = gD on ∂Ω.

Problem 3.1.2.

The Nitsche-XFEM method discussed in chapter 2 is very well suited for the discretization
of this semi-discrete problem. However the approach comes with several disadvantages. In
a finite element setting the operator P (x) is non-local which makes it difficult to efficiently
implement the terms corresponding to the old time values especially on unstructured
meshes. Also, a suitable choice for P (x) is not obvious if x is close to a Neumann-
boundary condition. Furthermore a rigorous error analysis of this kind of methods seems
to be very hard. Methods based on the idea of characteristics (or a semi-Lagrangian
point of view) have been applied for convection-diffusion equations in [DR82, RT02], for
the Navier-Stokes equations in [CHCOB09, ME98], for surfactants equations in [HLZ13]
and in [HWGW14] a method combining the semi-Lagrangian point of view with a XFEM
discretization in space has been considered, however, without any analysis.

Space-Time formulations. The last approach that we want to mention is also the one
that we consider in the remainder of this chapter. The basic idea is to consider the
problem 3.1.1 directly as a stationary problem in d+ 1 dimension and to discretize it as
such. In order to keep the computational costs comparable to standard time discretization
strategies (for example the method of lines), the space-time domain is divided into time
slabs which correspond to the time intervals usually used in time stepping methods.
Then, a variational formulation is applied which decouples the time slabs such that the
computational structure is that of a time stepping scheme. We discuss the details in the
remaining part of this section.

Discretizations based on space-time formulations have been considered for fluid flow
in, for instance [TBML92, TLB92, Beh01, SvdVvD06, SBvdV06, KvdVvdV06, Beh08,
Neu13, Wel13]. In [Tho97] the space-time formulation for parabolic problems is dis-
cussed and extensively analyzed. In all these publications problems with matching
boundaries(interfaces) in space-time and smooth solutions are considered.
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3 Mass transport through a moving interface

x

t

Γ∗Γ∗

∂u
∂t

Figure 3.1.4: Sketch of a space-time method.

3.2 Discretization of the moving interface problem

In this section we present the Space-Time-DG Nitsche-XFEM discretization of prob-
lem 3.1.1. In the name of the method the “Space-Time-DG” corresponds to a space-time
Discontinuous Galerkin formulation, “XFEM” corresponds to the way the discrete finite
element space is constructed and “Nitsche” refers to the technique that is used to (weakly)
impose the interface condition. We introduce the components one after another. In
comparison to the discretization in chapter 2 the essential new aspect is the formulation
of the problem in a space-time setting. This needs some preparation. Accordingly,
in section 3.2.1 we introduce notation. In section 3.2.2 we introduce the space-time
DG formulation for a simple (one-domain) parabolic problem. Corresponding to the
space-time setting we have to generalize the realization of an appropriate XFEM space.
This is done in section 3.2.3. Afterwards, in section 3.2.4 we present the Space-Time-DG
Nitsche-XFEM discretization.

3.2.1 Space-time notation

We adopt and adapt the notation for triangulations, domains, etc. from chapter 2 and
introduce additional notation for space-time related geometries and quantities. Let d be
the spatial dimension of Ω, such that Ω ∈ Rd. Within each time slab Qn := Ω× In, In =
(tn−1, tn] we assume that the triangulation of the spatial domain Ω is a shape regular
decomposition into simplices Tn = {T}. The corresponding characteristic mesh size is
denoted by hn. Corresponding to a triangulation Tn we have a canonical triangulation of
Qn into d+ 1-dimensional prisms. This triangulation is denoted by Tn,∗ = {QT} where
for each prism we have QT = T × In for a corresponding d-dimensional simplex T .

Note, that for different time slabs the triangulation is allowed to change. Further, the
triangulation is not fitted to the interface Γ(t) (cf. figure 3.2.1).

The space-time interface Γ∗ :=
⋃
t∈(0,T ] Γ(t) separates the space-time domain into its

subdomains Qi :=
⋃
t∈(0,T ] Ωi(t), i = 1, 2. Within each time slab we define Γn∗ :=
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x

t

tn

tn−1

Γ∗
Γ∗

Qn
2

Qn−1
1

x

t
tn

tn−1

Γ∗Γ∗Qn
2 Qn

1

Figure 3.2.1: Sketch of the space-time domains Qni . Note that within each time slab the
triangulation has a tensor product structure Th × [tn−1, tn].

⋃
t∈In Γ(t) and the subdomains Qn

i :=
⋃
t∈In Ωi(t), i = 1, 2.

We introduce some notation for cut prism elements, i.e. elements QT with Γ∗ ∩QT 6= ∅.
For any prism QT ∈ Tn,∗ with QTi := QT ∩Qn

i we denote the part of QT in Qn
i and with

Γ∗T := QT ∩ Γ∗ the part of the interface that lies in QT . With T Γ
n,∗ we denote the set

of (prism) elements that are “close to the interface”, T Γ
n,∗ := {QT : QT ∩ Γ∗ 6= ∅}. The

corresponding domain is Qn,Γ = {x ∈ QT : QT ∈ T Γ
n,∗}. Further we define the set of

elements with nonzero support in one domain: T in,∗ := {QT : QT ∩Qi 6= ∅}, i = 1, 2, the

corresponding domain is denoted by Qn,+
i = {x ∈ QT : QT ∈ T in,∗}. We also define the

domain of uncut elements in domain i as Qn,−
i = Qn

i \Qn,Γ = Qn,+
i \Qn,Γ. We further

introduce the abbreviation Ωn
i = Ωi(tn).

3.2.2 Space-time DG formulation for a parabolic model problem

To introduce the space-time Discontinuous Galerkin formulation we consider the (much)
simpler one-domain problem

∂tu− div(α∇u) = f in Ω× (0, T ] (3.2.1a)

u = 0 on ∂Ω× (0, T ], (3.2.1b)

u =u0 on Ω× {0}. (3.2.1c)

Problem 3.2.1.

For ease of presentation we assume the use of an equidistant time discretization. A
partitioning of the time interval is given by 0 = t0 < t1 < ... < tN = T with a uniform
time step ∆t = T/N . We define the time interval In = (tn−1, tn] and assume a shape
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3 Mass transport through a moving interface

regular simplicial triangulation T nh of the spatial domain Ω. In general, the triangulation
is allowed to change with each time step n. Let Vh be a standard finite element space
corresponding to T nh . On the time slab Qn := Ω× In we introduce the tensor-product
finite element space

Wn := {v : Qn → R|v(x, t) =
k∑

m=0

tmϕm(x), ϕm ∈ Vh,m = 0, .., k}. (3.2.2)

Note that due to the tensor-product structure the order of the ansatz functions can
be chosen differently in space and time directions. We typically consider the case of
piecewise linear functions for Vh combined with linear functions in time (k = 1 in (3.2.2)).
The corresponding finite element space for the whole space-time domain is

W := {v : Q→ R|v|Qn ∈ Wn}. (3.2.3)

Note that there is no temporal continuity between the time slabs imposed on W.

The discretization is derived as follows. First we test (3.2.1a) with a test function v ∈ Wn

and integrate over one time slab Qn. As usual we do partial integration in space for the
second order term which yields (for a sufficiently smooth function u)

∫

Qn
∂tu v + α∇u∇v dx dt =

∫

Qn
f v dx dt (3.2.4)

To abbreviate notation later on, we introduce the (bi)linear forms

ans (u, v) :=

∫

Qn
α∇u∇v dx dt, dns (u, v) :=

∫

Qn
∂tu v dx dt, f

n
s (v) :=

∫

Qn
f v dx dt. (3.2.5)

We use the subscript s to indicate the correspondence to the simpler problem 3.2.1. To
include information from the past we apply a standard upwind technique. The time
derivative can be seen as an advection term in the space-time domain. In that sense
Ω× {tn−1} is the inflow boundary of Qn where inflow information has to be provided.
This is done by adding the upwind stabilization

bns (u, v) :=

∫

Ω

[[u]]n−1 vn−1
+ dx (3.2.6)

with the time jump and time trace operators

[[u]]n := un+ − un−, un− := u(·, tn), un+ := lim
ε↓0

u(·, tn + ε).

Adding the equations for each time slab n together we get the overall space-time DG
discretization of problem 3.2.1. u0

− in the upwind term is given initial data and moved
to the r.h.s. side of the variational formulation. For notational convenience we define
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3.2 Discretization with the Space-Time-DG Nitsche-XFEM method

[[u]]0 = u0
+, s.t. b1(u, v) = (u0

+, v
0
+). The discrete variational formulation reads as:

Find uh ∈ W such that

Bs(uh, vh) := ds(uh, vh) + as(uh, vh) + bs(uh, vh) = fs(vh) + c0
s(vh) ∀ vh ∈ W. (3.2.7)

with c0
s(vh) :=

∫
Ω
u0 v0

h,+ dx while the other (bi)linear forms are obtained by summing

the corresponding (bi)linear forms over all time slabs, for instance ds(·, ·) =
∑N

n=1 d
n
s (·, ·).

Note that the coupling in time has a direction in the sense that the time steps < k do
not depend on the solution at time step k. The discretization thus naturally divides into
time stepping problems which can be solved one after another. The problem for each
time slab n is obtained by testing (3.2.7) with v ∈ W ∩{v(x, t) = 0, t 6∈ In} and reads as:
Given un−1

− ∈ L2(Ω) and f ∈ L2(Qn), determine uh ∈ Wn such that for every vh ∈ Wn

there holds

Bn,∗
s (uh, vh) := dns (uh, vh) + ans (uh, vh) + bn,∗s (uh, vh) = fns (vh) + cn−1

s (vh)

with bn,∗s (u, v) :=
∫

Ω
un−1

+ vn−1
+ dx and cn−1

s (u, v) :=
∫

Ω
un−1
− vn−1

+ dx. Due to the discontinuous-
in-time finite element space W this time discretization is a Discontinuous Galerkin
(in time) method. In [Tho97] the method including a thorough error analysis is dis-
cussed.
Remark 3.2.1 (Petrov-Galerkin DG methods). In the presented method the test and
the solution space coincide. This is not necessary. A popular alternative is the use of a
Petrov-Galerkin method using continuous (in time) finite elements for the solution space
combined with discontinuous finite elements (in time) of a lower degree for the test space.
This reduces the number of unknowns, but still allows for a time stepping procedure. In
the context of an XFEM finite element space and a two-domain discretization with a
space-time finite element method the use of different spaces for solution and test space is
not straight-forward, cf. remark 3.2.6. In the following we thus restrict to the discussion
of Discontinuous Galerkin in time methods where test and ansatz spaces coincide.
Remark 3.2.2 (Energy-stability). Assume that there is no source term f = 0. A property
of the exact solution to the problem 3.2.1, is that the energy of the system can not increase
(as long as their are no sources due to f or boundary conditions). Here, the energy is
W (u) = 1

2
‖u‖2 and there holds ∂tW (u) ≤ 0. A nice property of the DG discretization is

that this property also holds on the discrete level, in the sense 1
2
‖un−‖2

Ω ≤ 1
2
‖un−1
− ‖2

Ω, cf.
[LR13, lemma 3.5].
Remark 3.2.3 (Stability of the DG time integration method). The discontinuous-in-time
Galerkin method as a time integration method is stable and has the optimal smoothing
property, but is not A-stable, cf. [GR11, Section 11.5.2].

3.2.3 Space-time extended finite elements

We present the XFEM space analogously to the presentation of the XFEM space for
the stationary problem in chapter 2. Again, we restrict to the case of piecewise bilinear
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3 Mass transport through a moving interface

functions (linear in space and linear in time) here. The XFEM space in a space-time
setting has previously been introduced in [GR11, Chapter 11.5.2], [LR13] and [Leh15].
The idea of a combination of space-time methods and XFEM has also been suggested in
[CB04, CB06] for a one dimensional hyperbolic problem without any error analysis.

The generalization of the XFEM space introduced in chapter 2 is obtained by the use of
a generalization of the restriction operators Ri. The space-time XFEM spaces are given
by

W Γ
n := Rn

1Wn ⊕Rn
2Wn

W Γ := { v : Q→ R | v|Qn ∈ W Γ
n } = R1W ⊕R2W.

(3.2.8)

with the corresponding canonical restrictions Rn
i on L2(Qn), Ri on L2(Q) given by

Rn
i v =

{
v|Qni on Qn

i

0 on Qn \Qn
i ,

Riv =

{
v|Qi on Qi

0 on Q \Qi.

We will also use the notation vi := Riv.

We again give a characterization corresponding to the name extended finite element
space (XFEM) for the case of piecewise linear functions in space and time. Let {qj}j∈J
be the nodal basis in the finite element space Vh. The vertex corresponding to qj is
denoted by xj. To each qj there correspond two space-time basis functions, namely
qj,0(x, t) := 1

∆t
(tn − t)qj(x) and qj,1(x, t) := 1

∆t
(t − tn−1)qj(x).The index set of basis

functions in the space-time finite element space Wn “close to the interface” is given
by

JΓn∗ := { (j, 0), (j, 1) | measd
(
Γn∗ ∩ supp (qj)

)
> 0}.

Let HΓn∗ be the characteristic function corresponding to Qn
2 , i.e. HΓn∗ (x, t) = 1 if

(x, t) ∈ Qn
2 and zero otherwise. For each space-time node index (j, `) ∈ JΓn∗ a so-called

enrichment function corresponding to the node (xj, tn−`) is given by

Φj,`(x, t) := |HΓn∗ (x, t)−HΓn∗ (xj, tn−`)|. (3.2.9)

New basis functions are defined as follows:

q
Γn∗
j,` := qj,`Φj,`, (j, `) ∈ JΓn∗ . (3.2.10)

An illustration for the spatially one-dimensional case is given in figure 3.2.2.

The term HΓn∗ (xj, tn−`) in the definition of Φj,` is constant and may be omitted (as it

doesn’t introduce new functions in the function space), but ensures that q
Γn∗
j,` (xj, tn−`) = 0

holds in all space-time grid points (xj, tn−`). The space-time XFEM space on the time
slab Qn = Ω× In is given by

W Γ
n = Wn ⊕W x

n , with W x
n := span

{
q

Γn∗
j,` | (j, `) ∈ JΓn∗

}
.
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xj−1 xj+1

tn

tn−1

Γ∗

xj−1 xj+1

tn

tn−1

Γ∗

Figure 3.2.2: Sketch of bilinear space-time XFEM functions in 1 + 1 dimensions. The top
row shows the basis function qj,1, the bottom row the XFEM function q

Γn∗
j,1 . The

functions are shown in the space-time domain (left) and as an elevation plot
(right).

This characterization shows that the extended finite element space W Γ
n is obtained by

adding to the standard space Wn new basis functions that are discontinuous across the
space-time interface Γn∗ , cf. (3.2.10). There holds the approximation property

inf
vh∈WΓ

‖v − vh‖m,Q ≤ c(∆t2−m + h2−m)‖v‖H2(Q1,2) ∀ v ∈ H2(Q1,2), m = 0, 1.

A proof of this is given in section 3.3.2.

3.2.4 Nitsche formulation for interface conditions in space-time

At this point we defined a finite element space which, by construction, gives good
approximation properties. However, the interface condition is not respected. In this
section we gerenalize the Nitsche technique presented in chapter 2, section 2.2.2 to the
space-time case.

3.2.4.1 Derivation of the method

We assume that the solution to problem 3.1.1 is smooth, multiply (3.1.1a) with an
arbitrary test function βv ∈ W Γ and integrate over the space-time domain. Afterwards,
on every time slab we apply partial integration in space for the diffusion operator which
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yields

N∑

n=1

{
(∂tu+ w · ∇u, v)Qn1,2 + (α∇u,∇v)Qn1,2

−
∫ tn

tn−1

∫

Γ(t)

[[α∇u · n βv]]ds dt
}

= (f, v)Q1,2

(3.2.11)

To transform the iterated integrals which appear in the Nitsche formulation to an integral
on the space-time interface we use the following transformation formula:

∫ tn

tn−1

∫

Γ(t)

f(s, t) ds dt =

∫

Γn∗

f(s)
(
1 + (w · n)2

)− 1
2 ds =:

∫

Γn∗

f(s)ν(s) ds,

with ν(s) =
(
1 + (w · n)2

)− 1
2 and w the (interface) velocity. Note that ds denotes both

the surface measure on Γ(t) as well as on Γ∗. Under the assumption that the space-time
interface is sufficiently smooth, there holds for a constant c0 > 0

c0 ≤ ν(s) ≤ 1 for all s ∈ Γ∗.

We define the scalar product on the space-time interface (on one time slab)

(u, v)Γn∗ :=

∫

Γn∗

u v ds.

We manipulate the normal flux term similar to what we did in chapter 2, section 2.2.2.1,
where we replaced [[α∇u · n βv]] with {{α∇u · n}}[[βv]] due to α∇u · n being uni-valued at
the interface. Similar to what we did in section 2.2.2.1, we define

Nn
c (u, v) := −({{α∇u · n}}, [[βv]])Γn∗ .

and, with additional symmetry and stabilization terms define

Nn(u, v) :=Nn
c (u, v) +Nn

c (v, u) +Nn
s (u, v), Nn

s (u, v) :=(ᾱλ h−1[[βu]], [[βv]])Γn∗ . (3.2.12)

We define N(·, ·), Nc(·, ·), Ns(·, ·) by summation over all time slabs, for instance N(·, ·) =∑N
n=1 N

n(·, ·). The weights in {{·}} are chosen as in the hansbo-choice for the case of
a stationary interface. Take t ∈ In, T ∈ Tn and let Ti(t) := T ∩ Ωi(t). We define the
weights

(κi(t))|T :=
|Ti(t)|
|T | . (3.2.13)

Note that those weights only depend on the spatial configuration at a given time t and
there holds κ1(t) + κ2(t) = 1. We define the weighted average

{{v}} := κ1(t)(R1v)|Γ(t) + κ2(t)(R2v)|Γ(t). (3.2.14)

Note that now κi depends on time.
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3.2 Discretization with the Space-Time-DG Nitsche-XFEM method

To finish the discretization we need to (weakly) add continuity in time. This is done with
an upwind stabilization term as in (3.2.6). We define the upwind bilinear form

b(u, v) =
N∑

n=1

bn(u, v) :=
N∑

n=1

([[u]]n−1, vn−1
+ )Ωn−1

1,2
=

N∑

n=1

∑

i=1,2

∫

Ωn−1
i

βi [[u]]n−1 vn−1
+ dx. (3.2.15)

Together, we obtain a discrete variational formulation:
Find uh ∈ W Γ such that

B(uh, vh) = f(vh) + c(u0, vh) ∀ vh ∈ W Γ

with B(uh, vh) := d(uh, vh) + a(uh, vh) + b(uh, vh) +N(uh, vh)
(3.2.16)

and the bilinear forms

a(u, v) =
N∑

n=1

an(u, v) := (α∇u,∇v)Q1,2 , (diffusion) (3.2.17a)

d(u, v) =
N∑

n=1

dn(u, v) :=
N∑

n=1

(∂tu+ w · ∇u, v)Qn1,2 , (space-time convection) (3.2.17b)

c(w, v) := (w, v0
+)Ωn−1

1,2
. (initial data) (3.2.17c)

and

f(v) =
N∑

n=1

fn(v) := (f, v)Qn1,2 . (source) (3.2.17d)

This weak formulation can be rewritten if we apply partial integration on d(·, ·) and make
use of homogeneous boundary conditions. For all u, v ∈ W Γ +H1(Q1,2) there holds

B(u, v) = B′(u, v) := d′(u, v) + a(u, v) + b′(u, v) +N(u, v) (3.2.18)

with

d′(u, v) := −
N∑

n=1

(u, ∂tv + w · ∇v)Qn1,2 , (3.2.19a)

b′(u, v) := −
N−1∑

n=1

(un−, [[v]]n)Ωn1,2
+ (uN− , v

N
− )ΩN1,2

. (3.2.19b)

The Space-Time-DG Nitsche-XFEM method defined in (3.2.16) allows for a solution
time step by time step. By testing with a test function which has only support within
one time slab, we get the time slab problem:
Find u ∈ W Γ, s.t.

Bn(u, v) = an(u, v) + b̂n(u, v) + dn(u, v) +Nn(u, v) = fn(v) + cn(un−1, v) (3.2.20)
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3 Mass transport through a moving interface

where the upwind coupling bi- and linear forms within one time step are

b̂n(u, v) =
∑

i=1,2

∫

Ωn−1
i

βiu
n−1
+ vn−1

+ dx (3.2.21)

and

cn(w, v) =
∑

i=1,2

∫

Ωn−1
i

βiwv
n−1
+ dx. (3.2.22)

Hence, the computational overhead of the method is determined by the costs for the
setup and the solution of the linear systems arising from (3.2.20). The efficient solution
of arising linear systems is discussed in section 3.5.
Remark 3.2.4 (Mass conservation). The Space-Time-DG Nitsche-XFEM discretization
is globally mass conserving w.r.t. the discrete time points t = tn. To see that test (3.2.16)
with v = β−1 ∈ W Γ and use the characterization (3.2.18) to get

∫

Ω

u−(·, tN) dx =

∫

Ω

u0 dx +

∫

Q

f dxdt.

The same mass balance holds for the true solution. For each time slab one gets a (time)
local version of this mass balance:

∫

Ω

u−(·, tn) dx =

∫

Ω

u−(·, tn−1) dx +

∫

Qn
f dxdt.

Remark 3.2.5 (Integration on space-time domains). An implementation of the dis-
cretization method defined in (3.2.16) or (3.2.20) needs to compute integrals on (possibly
cut) prisms. Especially for the spatially three dimensional case this is challenging and
non-standard. A solution strategy for the numerical integration on those prisms is pre-
sented and discussed in chapter 4. In the remainder of this chapter (except for the
numerical examples in section 3.4) we assume that space-time integrals can be computed
exactly.

x

t
tn

tn−1

Γ∗

Figure 3.2.3: Sketch of space-time slab and a space-time interface Γ∗

Remark 3.2.6 (Petrov-Galerkin DG formulations). In space-time formulations it is,
in general, not necessary to choose the same test as ansatz space, cf. remark 3.2.1. In
combination with XFEM it is however not clear how a well-posed Petrov-Galerkin version
of the presented XFEM discretization can be achieved. We explain the problem. Consider
a test space with piecewise constants in time W 0 and the ansatz space with piecewise
linears in time W 1. Both are enriched with the XFEM approach resulting in spaces W Γ,1
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3.2 Discretization with the Space-Time-DG Nitsche-XFEM method

and W Γ,1. In figure 3.2.3 the cut elements change between the time steps. The resulting
XFEM enrichment for W 1 and W 0 results in six additional degrees of freedoms in the
interface region for W Γ,1 and only three for W Γ,0. Hence, the total number of unknowns
of test and ansatz space do not match. A possible remedy could be an enrichment of W Γ,0

by discontinuous (in time) piecewise linear XFEM functions in the interface region. We
did not investigate this further.
Remark 3.2.7 (Weightings in the average). From a computational point of view the
suggested average in (3.2.14) is computationally inconvenient as in a space-time imple-
mentation of the cut elements (prisms) integration is done on space-time geometries.
The evaluation of κi(t), however, needs geometry information of a slice through a space-
time geometry. Within each cut element κi(t) has to be evaluated at several space-time
integration points. A more “natural” weighting adjusts the weights to the space-time
measures:

κi|QT :=
|QTi |
|QT | . (3.2.23)

Hence, κi is constant within each space-time element (prism). Note that the measures
|QTi | and |QT | have to be computed anyway, that means that this choice is computationally
cheap. This choice seems to be suitable in practice. Stability, however, is proven more
easily for the time-dependent weight.
Remark 3.2.8 (Non-symmetric Nitsche variants). Instead of the symmetric Nitsche
formulation N(u, v) = Nc(u, v) +Nc(v, u) +Ns(u, v) one can also use nonsymmetric or
incomplete formulations as Nns(u, v) = Nc(u, v) − Nc(v, u) + Ns(u, v) or Ninc(u, v) =
Nc(u, v)+Ns(u, v). For both modifications the stability analysis discussed later also applies.
For the nonsymmetric formulation the analysis is actually simpler as Nns(u, u) = Ns(u, u).
Note that the loss of symmetry also implies a lack of adjoint consistency. In the remainder
we thus only consider the symmetric formulation.

3.2.4.2 A first order space-time DG formulation

An implementation of the aforementioned discretization requires special solution strategies
for the numerical integration on intersected space-time prisms QTi and Γn∗ ∩ QT , cf.
chapter 4. A first order accurate version can be achieved in such a way that only
numerical integration in space on the time levels tn needs to be implemented. We discuss
this version based on the formulation (3.2.18).

We use (time slab-) piecewise constant finite elements in time (m = 0 in (3.2.2)) and
denote this space as W Γ,0. Then for v ∈ W Γ,0 we have d′(u, v) = −(u,w · ∇v)Qn1,2 as

∂tv = 0. Further we apply numerical quadrature in time with the θ-rule (θ ∈ (0, 1))

∑

i=1,2

∫ tn

tn−1

∫

Ωi(t)

f dx dt ≈ I(Ωn−1
1,2 ,Ω

n
1,2, θ; f)

:= θ∆t
∑

i=1,2

∫

Ωni

f(x, tn) dx + (1− θ)∆t
∑

i=1,2

∫

Ωn−1
i

f(x, tn−1) dx

(3.2.24)
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3 Mass transport through a moving interface

and use the notation (u, v)Ωθ1,2
:= I(Ωn−1

1,2 ,Ω
n
1,2, θ; βuv). This results in the scheme

(u, v)Ωn1,2
− (un−1, v)Ωn−1

1,2
− (u,w · ∇v)Ωθ1,2

+(α∇u,∇v)Ωθ1,2
+N θ(u, v) = (f, v)Ωθ1,2

(3.2.25)

withN θ(u, v) = θNn(u, v)+(1−θ)Nn−1(u, v) withN i(u, v) = Nc(u, v)+Nc(v, u)+Ns(u, v)
as in (2.2.14) for Γ = Γ(ti). A similar method has been derived and used for a simple
osmosis problem in the master thesis [Sch12]. Note that for the construction of W Γ,0

within one time slab the interface position not only at tn, but also at tn−1 is important,
independent on the choice of θ. Note further, that in order to get a regular system matrix
θ = 1 is not allowed. This is due to the fact that for θ = 1 it can happen that for some
extended ansatz functions the contribution to (3.2.25) vanishes.

As addressed during the discussion of the method of lines approach in section 3.1.2
the quantity βu is continuous in time (but does not have a higher regularity). For the
purpose of deriving a first order method one could also apply the method of lines on
ũ = βu in problem 1.2.1 resulting in (after the substitution u = β−1ũ and a restriction
to the implicit Euler discretization)

(
βnun − βn−1un−1

∆t
, v)L2(Ω) + (wn∇βnun, v)L2(Ωn1,2)

+(αn∇(βnun),∇v)L2(Ωn1,2) +Nn(u, v) = (βnfn, v)L2(Ω)

(3.2.26)

The most important difference between the formulations (3.2.25) and (3.2.26) is in the
coupling between un−1 and v. For the space-time method v in this coupling term is
evaluated at Ωn−1, for the method of lines v is evaluated at Ωn. Both methods are
supposed to be first order accurate. The difference between both methods becomes more
evident if we consider mass balance. Therefore we set v = β−1 in (3.2.25) and v = 1 in
(3.2.26). For simplicity we assume w is constant in time and f = 0. We get

∫

Ωn1,2

un =

∫

Ωn−1
1,2

un−1dx (3.2.27)

for the space time method and

∫

Ωn1,2

βnun −
∫

Ωn−1
1,2

βn−1un−1dx = −∆t

∫

Γn
w · n[[βu]] ds. (3.2.28)

for the method of lines. While (3.2.27) directly describes a mass balance property for u
independent of the discretization parameter ∆t, (3.2.27) describes only a discrete version
of the Reynolds transport theorem for the quantity βu. Hence, the method in (3.2.25)
gives a (globally) conservative formulation, but (3.2.26) does not. This is because for
the method in (3.2.25) the physical quantity u is conserved, whereas for the method in
(3.2.26) the artificial quantity ũ = βu fulfills an approximate balance laws only.
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3.2 Discretization with the Space-Time-DG Nitsche-XFEM method

3.2.4.3 Convection stabilization for the Space-Time-DG Nitsche-XFEM method

We briefly discuss how standard convection stabilization ideas can be included in the
Space-Time-DG Nitsche-XFEM method. For a one-phase problem a discontinuous-in-
time Galerkin approach stabilized with a Least-squares formulation has been considered
for a pure convection problem in [DH03, Chapter 3.10.2]. For a convection-diffusion
equation on time-dependent domains a space-time Galerkin/least-squares methods in
combination with a characteristic Galerkin method has been proposed in [Pir92]. The
approach presented in the following is based on similar ideas. Note that for the case of
piecewise linear functions (in space), discretizations using Least-squares or Streamline
Diffusion stabilizations coincide.

For the stabilization we introduce a locally weighted discrete variant of (·, ·)0:

(u, v)0,h :=
N∑

n=1

2∑

i=1

∑

QT∈Tn,∗

βiγT

∫

QTi
uv dxdt =

N∑

n=1

∑

QT∈Tn,∗

γT (u, v)0,QT (3.2.29)

We introduce the Space-Time-DG Nitsche-XFEM discretization method with SD stabi-
lization:
Find uh ∈ W Γ such that

B(uh, vh) + (∂tuh − div(ε∇uh) + w · ∇uh,∂tvh + w · ∇vh)0,h

= (f, vh)0 + (f,∂tvh + w · ∇vh)0,h for all vh ∈ V Γ
h .

(3.2.30)

In the case of linear-in-space approximations ∆uh = 0 and with the space-time velocity
w∗ = (1,w) and the space-time gradient ∇∗ = (∂t,∇), we can write

B(uh, vh) + sSD(uh, vh)

= (f, vh)0 + (f,w∗ · ∇∗vh)0,h for all vh ∈ V Γ
h

(3.2.31)

with

sSD(u, v) := (w∗ · ∇∗u, w∗ · ∇∗v)0,h. (3.2.32)

For the stabilization parameter γT we consider the multidimensional generalization of
the choice in [KA10]:

γT =

(( 2

∆t

)2

+
(2‖w‖∞,T

hT

)2

+ 9
( 4ε

h2
T

)2
)− 1

2

(3.2.33)

An alternative approach to stabilize convection dominated problems in a space-time
setting has also been considered in [AMTX11]. This topic is not investigated further
within this thesis.
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3 Mass transport through a moving interface

3.3 Error analysis of the Space-Time-DG Nitsche-XFEM
method

In this section we want to analyze the space-time method presented in the previous
section (without Streamline Diffusion stabilization). The major difficulty with the error
analysis is the fact that the regularity of the problem is anisotropic, that is the regularity
in time and space direction of a solution may be different. Hence, standard isotropic
approaches in the analysis as they are common for elliptic problems have their limitations.
However, useful estimates can still be derived from such approaches. In [Tho97] optimal
order estimates for Discontinuous Galerkin formulations in time are derived. A crucial
assumption in that book is that the finite element spaces do not change in time. This is
not true for our Space-Time-DG Nitsche-XFEM method and prevents that the ideas in
[Tho97] can be extended easily to the problems considered here.

In section 3.3.1 we summarize important assumptions used in the error analysis in this
section and recall regularity properties of the considered anisotropic Sobolev spaces.

The interpolation of space-time functions into the space-time finite element space W or the
extended space-time finite element space W Γ is not standard. For space dimension d = 3
there no longer holds H2(Q) ⊂ C0(Q) and thus point evaluations are not possible. Hence,
a standard nodal interpolation is not applicable anymore and interpolation operators
with weaker regularity requirements have to be used. In section 3.3.2 we introduce a
space-time interpolation operator based on the concatenation of standard spatial and
temporal (quasi-)interpolations.

A first error analysis of the Space-Time-DG Nitsche-XFEM method has been presented
in [LR13]. The most important results of that paper are presented in section 3.3.3. A
second order in space and time error bound in the weak −1-norm is shown.

3.3.1 Regularity statements and assumptions

We recall the definitions of the t-anisotropic Sobolev spaces introduced in section 3.1.1
and discuss a few important regularity properties for some of those spaces. Afterwards
we summarize assumptions used in the error analysis.

3.3.1.1 Regularity of t-anisotropic Sobolev spaces

Under (mild) regularity assumptions on the interface Γ∗ functions u ∈ H2,1
0 (Qn

1 ∪Qn
2 ) have

well-defined traces u|Γn∗ and (n ·∇u)|Γn∗ in L2(Γn∗ ), cf. [Lio57, WYW06]. The bilinear forms

of the Space-Time-DG Nitsche-XFEM discretization are well-defined on H2,1
0 (Qn

1,2).

In the analysis in the following sections we need space-time trace operators and a
space-time Poincare-Friedrichs inequality. Under mild smoothness conditions on Γ∗ the
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3.3 Error analysis of the Space-Time-DG Nitsche-XFEM method

existence of a bounded trace operator H1,0(Qi) → L2(Γ∗) follows from [Lio57]. In the
remainder we assume that there exists such a trace operator that is bounded:

‖ui‖0,Γ∗ ≤ c
(
|u|1,Q1,2 + ‖u‖0,Q

)
for all u ∈ H1,0

0 (Q1,2), i = 1, 2 (3.3.1)

with ui = u|Qi . Furthermore, from standard results it follows that there is a (time) trace
operator H0,1(Q1,2)→ L2(Ω) that is bounded:

‖u(·, tn)‖0,Ω ≤ c‖u‖H0,1(Qn1,2) for all u ∈ H0,1(Qn
1,2), n = 1, .., N. (3.3.2)

With respect to the Poincare-Friedrichs inequality we first consider a fixed t ∈ [0, T ].
From the Petree-Tartar theorem it follows, cf. [EG04, lemma B.63], that there exists a
constant c(t) such that for all t ∈ I there holds

‖u‖0,Ω ≤ c(t)
(
|u|1,Ω1∪Ω2 + ‖[[βu]]‖0,Γ(t)

)
for all u ∈ H1

0 (Ω1(t) ∪ Ω2(t)). (3.3.3)

In the remainder we assume that there exists a constant cP such that

‖u‖0,Q ≤ cP
(
|u|1,Q1,2 + ‖[[βu]]‖0,Γ∗

)
for all u ∈ H1,0

0 (Q1,2) (3.3.4)

holds. Note that this follows from the result in (3.3.3) if c(t) is uniformly bounded with
respect to t ∈ [0, T ]. We expect that such a uniform boundedness result holds if the
space-time interface Γ∗ is sufficiently smooth.

3.3.1.2 Assumptions

We summarize the main assumptions that are used in the analysis.

We restrict to the case of moderate jumps in the coefficients α, β and further only
consider problems with moderate convection.
Assumption 3.3.1 (Moderate coefficients). The coefficients αi, βi and w in the problem
should be such that we have a diffusion dominated problem and that there are no singular
perturbation effects caused by the Henry coefficient β. More precisely, we assume

0 < cL ≤ αi, βi and αi, βi, ‖w‖L∞(Ω) ≤ cU , i = 1, 2, (3.3.5)

with constants cL and cU that are of order one.

For simplicity, in the analysis, we restrict to quasi-uniform meshes and equidistant time
intervals.
Assumption 3.3.2 (Time step size and mesh size). We assume ∆t = tn − tn−1 is fixed.
Further, the shape regular triangulations Tn are assumed to be quasi-uniform and all
constants related to shape-regularity and quasi-uniformity are assumed to be uniformly
bounded both with respect to the spatial mesh size hn and with respect to ∆t (i.e., with
respect to N). For simplicity we further assume that the mesh size hn is uniformly
bounded with respect to the time step n, i.e. there exists h, s.t. h ' hn ' hT .
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3 Mass transport through a moving interface

We assume that the interface is smooth, resolved by the mesh and the following
holds.
Assumption 3.3.3 (Smooth interface and trace operations). The trace inequality (3.3.1)
and the Poincare-Friedrichs inequality (3.3.4) are assumed to hold. We assume further
that the space-time interface Γ∗ is a smooth d-manifold and the space-time triangulation
is sufficiently fine such that it can resolve Γ∗. More precisely, for each QT = T × In, with
T ∈ Tn and Γω := QT ∩ Γ∗ 6= ∅, we assume that there is a local orthogonal coordinate
system y = (z, θ), z ∈ Rd, θ ∈ R such that Γω is the graph of a smooth scalar function,
say g, i.e. Γω = { (z, g(z)) | z ∈ U ⊂ Rd }, with ‖∇g‖ uniformly bounded.
Assumption 3.3.4 (H2(Q1,2)-regularity). We assume that given initial data u0 ∈
H1(Ω1,2) the solution u to problem 3.1.1 is in H2(Q1,2) and there holds

‖u‖H2(Q1,2) ≤ c‖u‖H1(Ω1,2).

Remark 3.3.1. Assumption 3.3.4 is needed to apply duality arguments when proving error
estimates in the weak ‖ · ‖−1,T -norm. It is however not directly clear if assumption 3.3.4
can be justified in general.
Assumption 3.3.5. For the refinement in space and time we consider one constraint
on the ratio of temporal and spatial resolution within the refinement process. We assume
that there exists a constant c such that there holds h2 ≤ c∆t.

The constants denoted with c used in the results derived below are all independent of λ,
ᾱ, h, |w|∞, and of how the space-time interface Γ∗ intersects the triangulation Tn,∗ (i.e.
of the shape regularity of QTi ).

3.3.2 Interpolation in space-time

The interpolation of space-time functions into the space-time finite element space W or the
extended space-time finite element space W Γ is not standard. For space dimension d = 3
there no longer holds H2(Q) ⊂ C0(Q) and thus point evaluations are not possible. Hence,
a standard nodal interpolation is not applicable anymore and interpolation operators
with weaker regularity requirements have to be used.

We first discuss the interpolation on W in section 3.3.2.1 and extend it to W Γ in
section 3.3.2.2.

A nice property of the Space-Time-DG Nitsche-XFEM method is that it allows to use
non-matching simplicial triangulations Tn between the time slabs In, n = 1, . . . , N , i.e.
Tn 6= Tm for n 6= m. Note that the interpolation applied in this section also allows for
such a general setting.

3.3.2.1 Interpolation on W

We fix one time interval In and consider the interpolation of a function u ∈ H2(Qn) into
Wn. In the following we define and analyze an interpolation operator ΠW : H2(Qn)→
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3.3 Error analysis of the Space-Time-DG Nitsche-XFEM method

Wn as the combination of standard spatial and a temporal interpolation operators
Is : H1(Ω)→ Vh and I t : L2(In)→ Pk with Pk the space of polynomails up to degree k
on In. We have to generalize both operators to deal with the space-time domain and the
according function spaces.

This subsection is concerned with the space-time interpolation without an interface. We
thus consider β = 1, such that ‖ · ‖S = ‖ · ‖0,S = ‖ · ‖L2(S), S ∈ {Ω, Qn, Q}. As in the
previous section W is the finite element space of (continuous in space, discontinuous in
time) piecewise linear functions in space and time. For ease of presentation we restrict
to the discussion of the interpolation into that space, but note, that extensions to higher
order follow the same lines.

Semi-discrete spaces. For the temporal and spatial interpolation in the space-time
context we introduce special tensor-product spaces, which we define next. Let X be any
subspace of L2(Ω). We use the following notation for the tensor-product between the
space of linear functions in time and functions in X as

X ⊗ P1 := {v ∈ L2(Qn)|v(x, t) = v1(x) + tv2(x); v1, v2 ∈ X}. (3.3.6)

For the space-time generalization of the spatial interpolation we use another tensor-
product space. Let Y be a subspace of L2(In). We consider the space

Vh ⊗ Y := {v ∈ L2(Qn)|v(x, t) =
N∑

i=1

vi(t)ϕi(x), vi ∈ Y,N = dim(Vh)}. (3.3.7)

Note that for the special cases X = Vh in (3.3.6) and Y = P1 in (3.3.7) , we have
Vh ⊗ P1 = W .

Interpolation in time. For u ∈ L2(In;X) we define the temporal interpolation Πt(u)
as the L2(In;X)-projection of u into X ⊗ P1, so that Πt(u) solves

(Πt(u)− u, v)Qn = 0, for all v ∈ X ⊗ P1. (3.3.8)

In the following we consider the general case X = L2(Ω). One important tool in the
analysis of this projection operator is the following equivalence lemma.

117



3 Mass transport through a moving interface

Let E1 be a Banach space, E2,E3 normed spaces (with ‖ · ‖j denoting the norm of
Ej), and let A ∈ L(E1, E2), B ∈ L(E1, E3) such that one has:

(a) ‖u‖1 ' ‖Au‖2 + ‖Bu‖3

(b) B is compact.
Then one has the following properties:

(i) The kernel of A is finite dimensional.
(ii) The range of A is closed.

(iii) There exists a constant C0 such that if F is a normed space and L ∈ L(E1, F )
satisfies Lu = 0 whenever Au = 0, then one has ‖Lu‖F ≤ C0‖L‖‖Au‖2 for
all u ∈ E1.

(iv) If G is a normed space and M ∈ L(E1, G) satisfies Mu 6= 0 whenever Au = 0
and u 6= 0, then ‖u‖1 ' ‖Au‖2 + ‖Mu‖G.

Lemma 3.3.1 (equivalence lemma).

Proof. See [Tar07, chapter 11].

The L2(Qn)-projection on time-discrete spaces is stable.

For the L2-projection there hold the stability results

‖Πtu‖Qn ≤ ‖u‖Qn , ∀ u ∈ L2(Qn), (3.3.9)

‖∂tΠtu‖Qn ≤ c‖∂tu‖Qn , ∀ u ∈ H0,1(Qn). (3.3.10)

Lemma 3.3.2 (Stability of L2-projection in time).

Proof. The proof of (3.3.9) is standard:

0 ≤
∫

In

(Πtu− u,Πtu− u)Ωdt =

∫

In

(Πtu,Πtu)Ω + (u, u)Ωdt− 2

∫

In

(Πtu, u)Ωdt

︸ ︷︷ ︸
=
∫
In

(Πtu,Πtu)Ωdt

=

∫

In

−(Πtu,Πtu)Ω + (u, u)Ωdt ⇒ ‖Πtu‖Qn ≤ ‖u‖Qn

By scaling arguments it suffices to proof (3.3.10) on the reference interval. We transform
the time interval (tn−1, tn] to the unit interval Î = (0, 1] and consider the problem there.
The corresponding transformation is denoted by Φ : Q̂ → Qn with Q̂ := Ω × (0, 1]
and transformed functions and spaces by û = u ◦ Φ and Ŵ = W ◦ Φ. We further
define Π̂t = Φ−1 ◦Πt ◦ Φ. For the proof we divide the L2-projection into Π̂t = Π̂t

0 + Π̂t
1

with the L2-projection onto constant-in-time functions Π̂t
0 : L2(Q̂) → L2(Ω)⊗ P0 and

Π̂t
1 : L2(Q̂)→ L2(Ω)⊗ P0⊥ with P0⊥ the orthogonal complement of P0 in P1.

Then using the elementary estimate ‖∂t(a+ bt)‖L2((0,1]) ≤ c‖a+ bt‖L2((0,1]) we have

‖∂tΠ̂tû‖Q̂ = ‖∂tΠ̂t
1û‖Q̂ ≤ c‖Π̂t(û− Π̂t

0û)‖Q̂ ≤ c‖û− Π̂t
0û‖Q̂ ≤ c‖∂tû‖Q̂ (3.3.11)
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3.3 Error analysis of the Space-Time-DG Nitsche-XFEM method

where in the last step we used lemma 3.3.1 (property (iii)) with E1 = F = H0,1(Q̂),
E2 = E3 = L2(Q̂), A = ∂t, B = id, L = id− Π̂t

0. Note that continuity of L in H0,1(Q̂) is
obvious due to ∂tΠ̂

t
0û = 0, ∀û ∈ L2(Q̂). Transforming back to Qn gives (3.3.10).

Let Lt := id− Πt denote the temporal interpolation error. In preparation of estimating
the interpolation error of the operator Πt we give a special version of the well-known
Bramble-Hilbert lemma.

The operator Lt : Hk(In, L
2(Ω)) → L2(Qm) is continuous for k ≥ 0 and there

holds Ltq = 0 for q ∈ L2(Ω)⊗ P1. Further there holds

‖Ltu‖Qn ≤ c‖∂1
t u‖Qn ∀ u ∈ H0,1(Qn), (3.3.12)

‖Ltu‖Qn + ‖∂tLtu‖Qn ≤ c‖∂2
t u‖Qn ∀ u ∈ H0,2(Qn). (3.3.13)

Lemma 3.3.3 (Modified Bramble-Hilbert lemma).

Proof. Both estimates follow with lemma 3.3.1 (property (iii)). For (3.3.12) consider
E1 = H0,1(Qn), E2 = E3 = F = L2(Qn), A = ∂t, B = id, L = Lt. The continuity of Lt
follows with (3.3.10). Note further that ker(A) = L2(Ω) ⊗ P0 ⊂ L2(Ω) ⊗ P1. For the
second equation we use E1 = H0,2(Qn), E2 = L2(Qn), E3 = F = H1(In, L

2(Ω)), A = ∂2
t ,

B = id, L = Lt. Here, we have ker(A) = L2(Ω)⊗ P1 and continuity of Lt follows from
(3.3.9) and (3.3.10).

This results in the following lemma.

There holds

‖Ltu‖Qn ≤ c∆tl‖u‖H0,l(Qn), ∀ u ∈ H0,l(Qn), l = 1, 2, (3.3.14a)

‖∂tLtu‖Qn ≤ c∆t‖u‖H0,2(Qn), ∀ u ∈ H0,2(Qn). (3.3.14b)

Lemma 3.3.4 (Error estimates for temporal interpolation).

Proof. The claim follows from the preceding lemma and standard scaling arguments.
Consider the transformation as in the proof of lemma 3.3.2 and define L̂t = Φ−1 ◦ Lt ◦ Φ.
Then combining transformation rules and the results of lemma 3.3.3 we get

‖Ltu‖2
Qn ≤ ∆t‖L̂tû‖2

Q̂
≤ c∆t‖∂tû‖2

Q̂
≤ c∆t2‖∂tu‖2

Qn ,

‖Ltu‖2
Qn ≤ ∆t‖L̂tû‖2

Q̂
≤ c∆t‖∂2

t û‖2
Q̂
≤ c∆t4‖∂2

t u‖2
Qn ,

‖∂tLtu‖2
Qn ≤ ∆t−1‖∂tL̂tû‖2

Q̂
≤ c∆t−1‖∂2

t û‖2
Q̂
≤ c∆t2‖∂2

t u‖2
Qn .
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3 Mass transport through a moving interface

Interpolation in space. For the spatial interpolation operator different choices are
possible. In this work we again consider an L2(Ω)-projection. Possible other choices
are the Clément (quasi-)interpolation operator, cf. the original paper [Clé75] or similar
approaches [SZ90].

We define the projector Πs : L2(Qn)→ Vh ⊗ Y , so that for u ∈ L2(Qn)

(Πs(u)− u, v)Qn = 0, for all v ∈ Vh ⊗ Y (3.3.15)

In the following we consider the general case Y = L2(In). The introduced interpolation
operator is a generalization of the standard spatial L2(Ω) (quasi-) interpolation. For
sufficiently smooth functions a spatial L2(Ω) projection Is : L2(Ω)→ Vh for each t ∈ In
coincides with Πs.

Let Is : L2(Ω)→ Vh be the spatial L2(Ω) (quasi-) interpolation operator. Then
there holds for u ∈ L2(Ω)⊗ C0(In) = C0(In;L2(Ω))

Πsu = Isu in the L2(Qn)-sense. (3.3.16)

Further for u ∈ H0,1(Qn) there holds

Πs∂tu = ∂tΠ
su ∈ L2(Qn). (3.3.17)

Lemma 3.3.5.

Proof. We define Is : L2(Ω)→ Vh as the L2(Ω) projection

(Isu, vh)Ω = (u, vh)Ω ∀ vh ∈ Vh
Let {ϕi}1,..,N , N = dim(Vh) be a basis of Vh and let {ψi}1,..,N be the dual basis, s.t.
(φi, ψj)L2(Ω) = δij, i, j = 1, .., N . Then we have the following explicit description of the
interpolation operator:

Isu =
N∑

i=1

(u, ψi)ϕi ∈ Vh (3.3.18)

For sufficiently smooth u (s.t. u(·, t) ∈ L2(Ω), i.e. u ∈ L2(Ω) ⊗ C0(In)), for instance
u ∈ H0,1(Qn), we claim that (3.3.16) holds. To see this, note that every function vh in
Vh ⊗ L2(In) can be written as vh(x, t) =

∑N
i=1 ψi(x)ai(t), ai ∈ L2(In), i = 1, .., N and

thus we have

(Isu, vh)Qn =
N∑

i=1

∫

In

(Isu(·, t), ψi)Ω ai(t) dt=
N∑

i=1

∫

In

(u(·, t), ψi)Ω ai(t) dt=(u, vh)Qn .

Comparing this with (3.3.15) we conclude that (3.3.16) holds.

If further u ∈ L2(Ω) ⊗ C1(In), there follows with (3.3.18), Is∂tu = ∂tI
su and (3.3.16)

that (3.3.17) holds. Now, if u 6∈ L2(Ω)⊗C1(In), but u ∈ H0,1(Qn), we have by definition
of the weak derivative w = ∂tu ∈ L2(Qn) that there holds

(w, v)Qn = −(u, ∂tv)Qn ∀ v ∈ C∞0 (Qn).
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3.3 Error analysis of the Space-Time-DG Nitsche-XFEM method

With ŵ = ∂tΠ
su it follows

(ŵ, v)Qn = −(Πsu, ∂tv)Qn = −(u,Πs∂tv)Qn

= −(u, ∂tΠ
sv)Qn = (w,Πsv)Qn = (Πsw, v)Qn ∀ v ∈ C∞0 (Qn).

With the du Bois-Reymond lemma we conclude ŵ = Πsw a.e. in Qn and thus ∂tΠ
su =

Πs∂tu (in the L2(Qn)-sense).

The projection into the semi-discrete space is stable and has reasonable approximation
properties. With Ls := id− Πs we denote the spatial error operator corresponding to
the spatial interpolation error.

For the projector Πs : L2(Qn)→ Vh ⊗L2(Ω) there hold the following stability and
approximation results (l = 1, 2)

‖Πsu‖Qn ≤ ‖u‖Qn ∀ u ∈ L2(Qn), (3.3.19a)

‖∇Πsu‖Qn ≤ c‖∇u‖Qn ∀ u ∈ H1,0(Qn), (3.3.19b)

‖Lsu‖Qn ≤ chl‖u‖L2(In,Hl(Ω)) ∀ u ∈ H l,0(Qn), (3.3.19c)

‖∇Lsu‖Qn ≤ ch‖u‖L2(In,H2(Ω)) ∀ u ∈ H2,0(Qn). (3.3.19d)

Lemma 3.3.6.

Proof. The first estimate (3.3.19a) is a fundamental property of the L2-projection (cf.
proof of lemma 3.3.2). We show (3.3.19b). There exists a smooth approximation
uε ∈ C1(Qn) to u ∈ H1,0(Qn) such that ‖uε − u‖H1,0(Qn) → 0 for ε→ 0. Then we have

‖∇Πsu‖Qn ≤ ‖∇Πs(u− uε)‖Qn + ‖∇Πsuε‖Qn
≤ c

h
‖Πs(u− uε)‖Qn + ‖∇Πsuε‖Qn

≤ c

h
‖u− uε‖Qn︸ ︷︷ ︸

→0

+‖∇Πsuε‖Qn

As uε is sufficiently smooth we have uε(·, t) ∈ H1(Ω) for every t ∈ In. Thus with the
according stability estimate for the spatial interpolation Is (due to the smoothness of uε

we have Πsuε = Isuε, cf. lemma 3.3.5) we get

‖∇Πsuε‖2
Qn =

∫

In
‖∇Isuε(·, t)‖2

Ω dt

≤ c

∫

In
‖∇uε(·, t)‖2

Ω dt = c‖∇uε‖2
Qn

The stability result of the spatial operator Is can be found in the literature. For the
case of quasi-uniform meshes and linear finite elements a simple proof is given in [BD81,
appendix]. For the more general case (higher order and locally refined meshes) we refer to
[BPS01, BY14, Kar13] and references therein. Setting ε→ 0 gives ‖∇uε‖Qn → ‖∇u‖Qn
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3 Mass transport through a moving interface

and thus (3.3.19b) follows. The other estimates follow the same lines using corresponding
estimates for the spatial interpolator Is.

Remark 3.3.2 (Clément interpolation). The results in the last lemma essentially build
on stability results for the spatial interpolation operator. Similar estimates can also be
obtained for a space-time version of the Clément interpolation as the necessary stability
estimates have also been proven for the Clément interpolation operator, see for instance
[Clé75], [BF91] and [EG04].

Interpolation in space-time. We concatenate spatial and temporal interpolation to
define the space-time interpolation operator ΠW :

ΠW : L2(Qn)→ Wn, ΠW (v) := Πt(Πs(v)), ∀v ∈ L2(Qn) (3.3.20)

Note that as Πs and Πt are L2-projections, the overall interpolation operator ΠW is an
L2-projection on L2(Qn).

For a function u ∈ L2(Qn) with ∂tu ∈ L2(Qn), spatial interpolation and temporal
derivatives commute as shown in lemma 3.3.5. Analogously, one can show that if
u ∈ L2(Qn) and ∇u ∈ L2(Qn) temporal interpolation and spatial derivatives commute
and there holds ∇Πt(u) = Πt(∇u).

We now analyze the interpolation error of ΠW for which we also introduce the notation
LW := (id− ΠW ).

For the interpolation operator ΠW as in (3.3.20) there holds the following approxi-
mation error bound (l = 0, 1)

‖u− ΠWu‖l,Qn ≤ c(∆t2−l + h2−l)‖u‖H2(Qn), ∀ u ∈ H2(Qn) (3.3.21)

Theorem 3.3.7.

Proof. For a differential operator D ∈ {id,∇, ∂t} we have for u ∈ H2(Qn)

‖DLWu‖Qn = ‖D(u− ΠtΠsu)‖Qn
≤ ‖D(u− Πtu)‖Qn + ‖D(Πtu− ΠtΠsu)‖Qn
= ‖DLtu‖Qn + ‖DΠtLsu‖Qn
≤ ‖DLtu‖Qn + c‖DLsu‖Qn .

In the last step we used that for D ∈ {id,∇} we have D(Πtw) = Πt(Dw) for Dw ∈ L2(Qn)
and can apply (3.3.9). For D = ∂t we use (3.3.10). The remainder follows directly from
the preceding estimates.

Note that the proof displays the anisotropic structure of the interpolation. Assume for
instance we have u ∈ Hk,l(Qn). Then with the same technique we can easily show the
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3.3 Error analysis of the Space-Time-DG Nitsche-XFEM method

anisotropic result

‖u− ΠWu‖0,Qn ≤ c(hk + ∆tl)‖u‖Hk,l(Qn), ∀ u ∈ Hk,l(Qn), k, l ∈ {1, 2}. (3.3.22)

The previous estimates can also be used to bound the approximation error of the
interpolation operator ΠW at discrete time levels.

For u ∈ H2(Qn) there holds the estimate

‖(u− ΠWu)(·, tn)‖Ω ≤ c(h2∆t−
1
2 + ∆t

3
2 )‖u‖H2(Qn). (3.3.23)

Lemma 3.3.8 (Approximation error bounds at fixed time levels tn).

Proof. As in the proof of theorem 3.3.7 we consider the splitting LW = Lt + ΠtLs and
with the triangle inequality we get

‖LWu(·, tn)‖Ω ≤ ‖Ltu(·, tn)‖Ω + ‖ΠtLsu(·, tn)‖Ω.

The argument in the last term is linear in time, a simple inverse inequality thus gives

‖ΠtLsu(·, tn)‖Ω ≤ c∆t−
1
2‖Lsu(·, tn)‖Qn .

Together with the previous bounds for the interpolation with Πs we get

‖ΠtLsu(·, tn)‖Ω ≤ ch2∆t−
1
2‖u‖H2(Qn).

Next, we consider the term ‖Ltu(·, tn)‖Ω. Transform the time interval (tn−1, tn] to the
unit interval Î = (0, 1] and consider the problem there. The corresponding transformation
is denoted by Φ : Q̂→ Qn with Q̂ := Ω× (0, 1] and transformed functions and spaces by
û = u ◦ Φ and Ŵ = W ◦ Φ. We further define L̂t = Φ−1 ◦ Lt ◦ Φ. Then we have (using
the continuity of the (time) trace operator in H0,1(Q̂) and (3.3.13))

‖Ltu(·, tn)‖Ω = ‖L̂tû(·, 1)‖Ω ≤ ‖L̂tû‖H0,1(Q̂) ≤ c‖∂2
t û‖Q̂ ≤ c∆t

3
2‖u‖H2(Qn).

So far we did not make use of assumption 3.3.5. If we do this the estimate (3.3.23) reads
as

‖(u− ΠWu)(·, tn)‖Ω ≤ c(h+ ∆t
3
2 )‖u‖H2(Qn).

3.3.2.2 Interpolation on W Γ

Based on the interpolation on W we can introduce the space-time XFEM interpolation
into the space W Γ = R1W +R2W . This is done in the same way as in the analysis of
the spatial XFEM, cf. section 2.3.1.5 and [HH02, GR11]. We assume linear extension
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3 Mass transport through a moving interface

operators Ei : H2
0 (Qi)→ H2

0 (Q), i = 1, 2, that are bounded: ‖Eiu‖2,Q ≤ c‖u‖2,Qi for all
u ∈ H2

0 (Qi). The space-time XFEM interpolation operator IΓ : H2
0 (Q1,2)→ W Γ is given

by
IΓ := R1ΠWE1R1 +R2ΠWE2R2. (3.3.24)

Due to the linear extension operators the results from the previous section extend
naturally to the XFEM space:

For the interpolation operator IΓ as in (3.3.24) there holds the following approxi-
mation error bound (l = 0, 1)

‖u− IΓu‖Hl(Qn1,2)≤c(∆t2−l + h2−l)‖u‖H2(Qn1,2), ∀ u ∈ H2(Qn
1,2), (3.3.25)

‖(u− IΓu)(·, tn)‖Ω1,2≤c(h2∆t−
1
2 + ∆t

3
2 )‖u‖H2(Qn1,2), ∀ u ∈ H2(Qn

1,2). (3.3.26)

Theorem 3.3.9.

3.3.3 Error analysis for the mass transport problem with moving
interface

The error analysis in this section divides into the definition of norms (section 3.3.3.1), the
summary of important properties of the bilinear form B(·, ·) and interpolation bounds
(section 3.3.3.2) and a priori bounds in the discrete norms (section 3.3.3.3) and a weaker
norm (section 3.3.3.4). Most of the results are taken from [LR13]. The presentation
is however slightly different, due to the use of different discrete norms. Further, the
interpolation used and the assumption on the dual problem in section 3.3.3.4 are different.
At the end of the section we comment on a comparison of this error analysis with the
one in [Tho97] for a simpler problem.

3.3.3.1 Discrete norms

For the analysis of the discretization we define special norms. For the Nitsche bilinear
form we introduce space-time variants of the norms used for the stationary case in
chapter 2 (and [HH02]):

‖v‖2
± 1

2
,h,Γn∗

:=

∫

Γn∗

h∓1
T ν v2 ds, ‖v‖2

± 1
2
,h,Γ∗

:=
N∑

n=1

‖v‖2
± 1

2
,h,Γn∗

.

Note that due to assumption 3.3.2 we have hT ' hn ' h. Note further that
∫

Γn∗
νvw ds ≤

‖v‖ 1
2
,h,Γn∗
‖w‖− 1

2
,h,Γn∗

holds. We define the important contributions to the discrete norms
which are related to the Nitsche interface terms to

‖v‖2
N := ‖{{α∇v · n}}‖2

− 1
2
,h,Γ∗

+ ‖[[βv]]‖2
1
2
,h,Γ∗
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We further define the discrete norms for v ∈ W Γ +H2,1
0 (Q)

|||v|||2 := |√αv|21,Q1,2
+ ‖v‖2

N + [[[v]]]2,

with [[[v]]]2 :=
N−1∑

n=1

‖[[v]]n‖2
Ωn1,2

+ ‖v0
+‖2

Ω0
1,2

+ ‖vN− ‖2
ΩN1,2

,
(3.3.27)

|||v|||2∗ := ‖v‖2
1,Q1,2

+ ‖v‖2
N + [[[v]]]2∗ ,

with [[[v]]]2∗ :=
N−1∑

n=1

‖vn+‖2
Ωn1,2

+ ‖v0
+‖2

Ω0
1,2

+ ‖vN− ‖2
ΩN1,2

.
(3.3.28)

where ||| · ||| is tailored to proof stability and ||| · |||∗ to allow for continuity estimates. Note
that ‖ · ‖2

1,Q1,2
contains time derivatives ∂t·, but |√α · |1,Q1,2 does not.

Further note that for vh ∈ W Γ there holds (cf. the stability result in [LR13, Theorem
3.8])

|√αvh|21,Q1,2
+ ‖vh‖2

N ' |
√
αvh|21,Q1,2

+ ‖[[βvh]]‖2
1
2
,h,Γn∗

(3.3.29)

and

|||v||| ≤ c|||v|||∗ ∀ u ∈ W Γ +H2,1
0 (Q1,2). (3.3.30)

3.3.3.2 Consistency, stability, continuity and interpolation bounds

We quote (with adapted notation) the consistency, stability and boundedness results in
the norms |||·||| and |||·|||∗ from [LR13] and apply the interpolation bounds from section 3.3.2.

Let u be the solution of problem 3.1.1 and assume that u ∈ H2,1
0 (Q1,2). Then

B(u, vh) = f(vh) for all vh ∈ W Γ

holds, which implies for uh ∈ W Γ the solution of (3.2.16)

B(u− uh, vh) = 0 for all vh ∈ W Γ.

Lemma 3.3.10 (Consistency).

Proof. The consistency of the discretization has already been sketched in the derivation
of the method in section 3.2.4.1. For details see [LR13, Theorem 3.4].

125
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Define gB := 1
2

min{α1, α2, 1}. There exists a constant c∗ > 0 independent of
hn, ∆t and λ such that for all λ > c∗ the following holds:

B(vh, vh) ≥ gB|||vh|||2

for all vh ∈ W Γ.

Lemma 3.3.11 (Stability).

Proof. See [LR13, Theorem 3.8].

Remark 3.3.3 (Energy-stability). A consequence of the estimates in [LR13] is the
energy-stability in the sense that 1

2
‖un−‖2

Ωn1,2
≤ 1

2
‖un−1
− ‖2

Ωn−1
1,2

holds if there are no additional

sources due to bondary conditions or volume sources f , c.f. remark 3.2.2.

There exists a constant GB, depending only on ‖w‖∞,Q and αi, βi, i = 1, 2, such
that for all u, v ∈ W Γ +H2,1

0 (Q1,2) the following holds:

|B(u, v)| ≤ GB|||u|||∗|||v||| (3.3.31a) |B(v, u)| ≤ GB|||u|||∗|||v||| (3.3.31b)

Lemma 3.3.12 (Boundedness).

Proof. With only minor adaptations (3.3.31a) follows from [LR13, Theorem 3.12]. In
[LR13, Theorem 3.12] the time jump term in b(·, ·) is only treated for arguments which are
continuous in time. The slightly stronger norm ||| · |||∗ used in this work allows use a bound
of the form b(u, v) ≤ [[[u]]][[[v]]]∗ also for u, v discontinuous in time. The estimate (3.3.31b)
follows the same lines after rewriting B(·, ·) as a(·, ·) + d′(·, ·) + b′(·, ·) +N(·, ·).

For u ∈ H2
0 (Q1,2) and the interpolation operator IΓ, there holds

|||u− IΓu||| ≤ c(h+ ∆t)‖u‖2,Q1,2 for all u ∈ H2
0 (Q1,2) (3.3.32a)

|||u− IΓu|||∗ ≤ c(h+ ∆t)‖u‖2,Q1,2 for all u ∈ H2
0 (Q1,2) (3.3.32b)

Lemma 3.3.13 (Interpolation in ||| · ||| and ||| · |||∗).

Proof. The estimates within the space-time domain Q1,2 and on the time levels tn, n =
0, .., N follow directly from the results in section 3.3.2. The approximation problem
of the Nitsche interface terms can be reduced to approximation problems within the
space-time domains, cf. [LR13, Theorem 3.11]. Note that we use assumption 3.3.5 to

estimate h2∆t−
1
2 ≤ ch.

Remark 3.3.4. We comment on the optimality of the interpolation bounds in lemma 3.3.13.
The bound in (3.3.32b) is of optimal order w.r.t. h and ∆t as |||·|||∗ contains full derivatives
in space and time direction. This is not the case for the bound in (3.3.32a). As the time
derivative is not part of the norm ||| · ||| the bound (3.3.32a) can be improved for sufficiently
smooth functions.
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3.3 Error analysis of the Space-Time-DG Nitsche-XFEM method

3.3.3.3 Discretization error bounds in discrete norm

Putting the previous results together we get the following version of the famous Cea
lemma.

Let u be a solution of problem 3.1.1 and assume that u ∈ H2,1
0 (Q1,2). Further, let

uh ∈ W Γ be the solution of (3.2.16). There holds

|||u− uh||| ≤ (c+
GB

gB
) inf
vh∈WΓ

|||u− vh|||∗ (3.3.33)

Lemma 3.3.14.

Proof. We split the error u − uh into the approximation error ea = u − vh and the
discrete error ed = vh − uh ∈ W Γ for an arbitrary vh ∈ W Γ. For ed we use lemma 3.3.10,
lemma 3.3.11,and lemma 3.3.12 to get

|||ed|||2 ≤
1

gB
B(ed, ed) =

1

gB
B(ea, ed) ≤

GB

gB
|||ea|||∗ |||ed|||. (3.3.34)

Applying the triangle inequality for u−uh = ea+ed and using (3.3.30) gives the result.

Combining that result with the interpolation estimate in lemma 3.3.13 gives

Let u be a solution of (3.1.1a)-(3.1.1e) and assume that u ∈ H2
0 (Q1,2). Further, let

uh ∈ W Γ be the solution of (3.2.16). There holds for a constant c, independent of
h and ∆t

|||u− uh||| ≤ c(h+ ∆t)‖u‖2,Q1,2 . (3.3.35)

Theorem 3.3.15.

Proof. Combine lemma 3.3.14 and lemma 3.3.13.

Remark 3.3.5. We comment on the main differences with the error bounds in [LR13].
For the error bound in theorem 3.3.15 an interpolation operator different from that in
[LR13] is used. The interpolation operator is well-defined also for functions with low
regularity (L2(Qn

1,2)) and allows for the use of grids which are non-matching across different
time slabs. Further, in contrast to the estimate in [LR13], the bound is anisotropic in the
with respect to h and ∆t.

3.3.3.4 Duality arguments

In the following lemma we quote a result that will be used in a duality argument in
theorem 3.3.17. To this end we define the homogeneous backward problem
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3 Mass transport through a moving interface

−∂v̂
∂t
−w · ∇v̂ − div(α∇v̂) = 0 in Ωi(t), i = 1, 2, t ∈ [0, T ], (3.3.36a)

[[α∇v̂ · n]] = 0 on Γ(t), (3.3.36b)

[[βv̂]] = 0 on Γ(t), (3.3.36c)

v̂(·, T ) = v̂T in Ωi(T ), i = 1, 2, (3.3.36d)

u(·, t) = 0 on ∂Ω, t ∈ [0, T ]. (3.3.36e)

Problem 3.3.1.

Then the following adjoint consistency property holds.

Let v̂T ∈ H1
(
Ω1,2(T )

)
with (v̂T )|∂Ω = 0 be the given initial data to problem 3.3.1.

Assume that problem 3.3.1 has a solution v̂ ∈ H2,1
0 (Q1,2). This solution satisfies

B(w, v̂) = (wN , v̂T )0,T for all w ∈ W Γ +H2,1
0 (Q1,2). (3.3.37)

Lemma 3.3.16.

Proof. See [LR13, lemma 3.14].

We recall the definition of the negative norm for functions w ∈ L2(Ω1,2(T ))

‖w‖−1,T := sup
v̂∈H1

0 (Ω1,2(T ))

(w, v̂)0,T

‖v̂T‖1,T

.

This norm is weaker than ‖ · ‖0,T and allows to prove higher order convergence using
duality arguments.

Assume that (3.1.1a)-(3.1.1e) has a solution u ∈ H2,1
0 (Q1,2). Under assump-

tion 3.3.4 the homogeneous backward problem as in lemma 3.3.16 has a solution
v̂ ∈ H2

0 (Q1,2) that has the regularity property ‖v̂‖2,Q1,2 ≤ c‖v̂T‖1,T with a constant
c independent of the initial data v̂T ∈ H1(ΩT

1,2). For the discretization error u− uh
the following holds:

‖(u− uh)(·, T )‖−1,T ≤ c(h2 + ∆t2)‖u‖2,Q1,2 . (3.3.38)

Theorem 3.3.17.

Proof. We aim to derive a bound of the form

( (u− uh)(·, T ), v̂T )0,T ≤ c(h+ ∆t) |||u− uh||| ‖v̂T‖1,T

which holds true for every v̂T ∈ H1
0 (Ω1,2(T )). The error is denoted by e = u− uh and we

set v̂T = e(·, T ). The induced solution is denoted by v̂. In (3.3.37) we take w = e. This
yields, with ev̂ := v̂ − IΓv̂,

(e(·, T ), v̂T )0,T = B(e, v̂) = B(e, ev̂).
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3.3 Error analysis of the Space-Time-DG Nitsche-XFEM method

In the term B(e, ev̂) both arguments are in W Γ +H2,1
0 (Q1,2) and we can apply (3.3.31b).

Further we make use of lemma (3.3.13) and the discretization error bound in theo-
rem 3.3.15 to obtain

B(e, ev̂) ≤ c|||e||||||ev̂|||∗ ≤ c(h+ ∆t)|||e|||‖v̂‖2,Q1,2 ≤ c(h+ ∆t)|||e|||‖v̂T‖1,T

We thus have

‖(u− uh)(·, T )‖−1,T = sup
v̂T∈H1

0 (Ω1,2(T ))

( (u− uh)(·, T ), v̂T )0,T

‖v̂T‖1,T

≤ c(h+ ∆t)|||u− uh||| ≤ c(h2 + ∆t2)‖u‖2,Q1,2 .

In [LR13, Theorem 3.15] a second order bound is given in the ‖ · ‖0,T -norm. The assump-
tions in that theorem, however, is that ‖v̂‖2,Q1,2 ≤ c‖v̂T‖0,T which is not realistic.
Remark 3.3.6. We comment on the optimality of the error bounds presented in this
section. In the main Theorems, theorem 3.3.15 and theorem 3.3.17 we used the regularity
assumption that problem 3.1.1 has a solution u ∈ H2

0 (Q1,2). We consider this to be a
reasonable assumption but we do not know of any literature where this regularity issue
is studied. Furthermore, we note that the error bound derived in theorem 3.3.15 for the
Space-Time-DG Nitsche-XFEM discretization with piecewise linear functions (in space
and time) is of optimal order w.r.t. the space variable but suboptimal w.r.t. time, since
the norm ||| · ||| contains no derivatives w.r.t. t (cf. remark 3.3.4). In theorem 3.3.17
we derived a second order error bound. This result might be suboptimal, since for the
standard Space-Time-DG FEM (not XFEM!) better bounds are known in the literature (
in the stronger norm ‖ · ‖L2(Ω). In [Tho97, Theorem 12.7] for the Space-Time-DG FEM
method with piecewise linear functions in space and time applied to the standard heat
equation an error bound of the form

‖(u− uh)(·, T )‖0,T ≤ c
(
h2 + ∆t3

)
(3.3.39)

is derived, i.e., an error bound with third order convergence w.r.t. ∆t. For other
polynomial degrees, say ps and pt w.r.t. space and time, respectively, based on the analysis
in [Tho97] one expects that the bound in (3.3.39) can be generalized to c

(
hps+1 + ∆t2pt+1

)
.

The error analysis in [Tho97] is, however, very different from the one presented in this
section. An essential ingredient in the analysis in [Tho97] is the splitting

u− uh = (u−Rhũ) + (Rhũ− uh),
with Rh : H1

0 (Ω)→ Vh the Ritz projection corresponding to the stationary (i.e. elliptic)
problem and ũ(x, t) a suitable space-time interpolant of u. For this idea to work it is
essential that the space Vh (and the Ritz projection Rh) is independent of t. This is in
general not the case. We expect that the analysis in [Tho97] could be applied for the
Space-Time-DG Nitsche-XFEM method in case of a stationary interface. In that case,
however, simpler methods, for instance the method of lines, can be applied and analyzed.
The numerical experiments in section 3.4 indicate that the convergence behavior of the
Space-Time-DG Nitsche-XFEM method with respect to ∆t is much better than the error
analysis in this section suggests.
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3 Mass transport through a moving interface

3.4 Numerical examples

In this section we present results of numerical experiments. Different from the experiments
in [LR13], where only spatially one-dimensional situations have been considered, we
consider spatially three-dimensional cases to assess the convergence behavior of the
method. In this setting we restrict ourselves to piecewise linear (in time and space) finite
element approximations. The considered examples and results are also contained in
the publication [Leh15]. In all examples we consider the L2(Ω)-error for different space
and time resolutions. The time interval (0, T ] is divided into nt time slabs of equal size.
Accordingly the time step size is ∆t = T

nt
. The spatial domain is always a cuboid which

is either a cube or divided into a small number of cubes. The cubes are divided into (ns)
d

smaller cubes which are then divided into tetrahedra. The error behaviour is investigated
w.r.t. refinements, i.e. series of ns and nt.

For the computations we applied a strategy for the numerical integration on implicit
space-time domains which is explained in detail in chapter 4. We mention some important
properties of this strategy in advance as they will be part of the numerical investigations
in this section. First note that the integration is carried out on individual space-time
(prism) elements. The approximation of the space-time interface within each prism used
in the implementation is piecewise planar. To reduce the error of this approximation
further subdivisions of the prism can be applied in space and time. The parameter mt

for the subdivision in time describes that a prism element is divided into mt elements of
height ∆t/mt before the planar approximation is done. Accordingly, for the subdivision
in space the parameter ms is used. The underlying tetrahedra T of the prism element
QT = T × In is therefore divided into md

s tetrahedra.

We consider three examples. In the first example, discussed in section 3.4.1, the interface
is a (curved) plane which moves through the domain. In section 3.4.2 the second example
is presented where a moving sphere is considered. A more challenging example is the
third example where the interface exhibits large deformations, this example is covered in
section 3.4.3.

3.4.1 Moving plane

This case is the three-dimensional counterpart to the one-dimensional test case in [LR13].
The domain is the cube Ω = [0, 2]3. The “inner” phase is contained in the domain
Ω1(t) = {x ∈ Ω : |x1 − q(x2, x3) − r(t)| ≤ D/2}, where q : [0, 2]2 → [0, 2] is the graph
describing the shape of the domain Ω1 and r : (0, T ] → R the function describing
the time-dependent shift of the interface in x1-direction. D = 2

3
is the width of the

domain in x1-direction. The complementary domain is Ω2(t) = Ω \ Ω1(t). A sketch of
the domains is given in figure 3.4.1 for q(x2, x3) = const. The velocity field is given
as w = (∂r

∂t
(t), 0, 0). As boundary conditions we apply periodicity in all directions,

u(xi=0) = u(xi=2), i = 1, 2, 3. This renders the problem essentially one-dimensional if
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3.4 Numerical examples

w

x1

q

y

U1/U2

Γ Γ

Figure 3.4.1: Sketch of the setup in section 3.4.1, Ω1 is blue and Ω2 is green, (left) and the
time-independent part of the solution U1/U2 (right).

q(x2, x3) = const.
We prescribe the r.h.s. source term f , such that the solution is given by

u(x, t) = sin(kπt) · U i(x1 − q(x2, x3)− r(t)), x ∈ Ωi(t), i = 1, 2

with

U1(y) = ay + by3 and U2(y) = sin(πy) (3.4.1)

where a and b are chosen such that the interface conditions hold.

The diffusivities are (α1, α2) = (1, 2) and the Henry weights (β1, β2) = (1.5, 1), resulting
in a ≈ 1.02728 and b ≈ 6.34294. The problem is considered in the time interval (0, T ]
with T = 1.

3.4.1.1 Planar (in space and time) interface

We choose q(x2, x3) = 1 and r(t) = 0.25t. Hence the space-time interface is planar. Thus,
the approximation of the space-time interface is exact for every mt,ms ≥ 1, where mt

and ms are the number of subdivisions in time and each space direction, respectively,
cf. chapter 4. We choose ms = mt = 1. In table 3.4.1 and figure 3.4.2 we give the
resulting error ‖uh− u‖L2(Ω) for different mesh and time step sizes. Similar to the results
in [LR13] we observe a third order convergence w.r.t. the time step size ∆t and a second
order convergence w.r.t. the mesh size.
Remark 3.4.1. In [Tho97, Theorem 12.7] for the corresponding Space-Time-DG FEM
method applied to the standard heat equation an error bound with third order convergence
w.r.t. ∆t has been derived. Note however that the analysis does not carry over for the
case of the Space-Time-DG Nitsche-XFEM discretization, see also remark 3.3.6
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1 2 4 8 16 32 64
10−4

10−3

10−2

10−1

100

nt

nx = 8
nx = 16
nx = 32
nx = 64
nx = 128
order 1,2,3

8 16 32 64 128

10−3

10−2

10−1

nx

nt = 4
nt = 8
nt = 16
nt = 32
nt = 64
order 1,2

Figure 3.4.2: L2(Ω)-norm for refinements in time and space for test case in section 3.4.1.1.

nt \ ns 8 16 32 64 128 eoct
1 0.6826 0.7005 0.72760 0.73301 0.742317
2 0.2809 0.3138 0.32771 0.33260 0.334165 1.15
4 0.0624 0.0603 0.07139 0.07557 0.076649 2.12
8 0.0755 0.0165 0.00840 0.01132 0.012328 2.64

16 0.0831 0.0233 0.00524 0.00103 0.001585 2.96
32 0.0844 0.0247 0.00646 0.00147 0.000261 2.6

64 0.0846 0.0249 0.00667 0.00168 0.000403 -0.63

eocs 1.76 1.90 1.99 2.06

Table 3.4.1: ‖uh − u‖L2(Ω(T )) for different refinements in time and space for the test case in
section 3.4.1.1. The last column/row shows the estimated order of convergence
w.r.t. time (eoct) / space(eocs) using the finest spatial/temporal resolution.

3.4.1.2 Nonlinear moving interface

We consider q(x2, x3) = 7
8
+ 1

4
x2

2(2−x2)2 and r(t) = 1
4π

sin(2πt) which leads to a space-time
interface which is no longer planar. The geometrical approximation of the space-time
interface is piecewise planar, i.e. the maximum distance between Γ∗ and its approximation
Γ∗,h converges with second order w.r.t. increasing nt · mt, ns · ms. In table 3.4.2 the
error ‖uh − u‖L2(Ω) on a fixed (fine) spatial grid with resolution 64×64×64 for different
numbers of time steps is listed. In order to investigate the impact of the approximation
of Γ∗ we performed the computation with different numbers of subdivisions ms, mt. The
results, shown in table 3.4.2, indicate an error behaviour of the form

‖uh − u‖L2(Ω) ≤ C1∆t3 + C2 (∆t/mt)
2 + C3(h)

where C1 is independent of the approximation of Γ∗. C2 is directly related to the interface
approximation errors. If the interface approximation is exact (as in the last section) C2 is
zero. The function C3(h) describes the spatial error due to the method and the piecewise
linear interface approximation for the numerical integration. It is thereby the part of the
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3.4 Numerical examples

nt 1 2 4 8 16 32 64

ms = 1,mt = 1 2.50 2.89 0.547 0.137 0.0342 0.00879 0.00317
eoct -0.21 2.40 2.00 2.00 1.96 1.49

ms = 1,mt = 2 2.49 0.817 0.168 0.0374 0.00878 0.00301 0.00241
eoct 1.61 2.28 2.17 2.09 1.54 0.32

ms = 1,mt = 4 0.520 0.481 0.0985 0.0167 0.00284 0.00219 0.00236
eoct 0.11 2.29 2.56 2.56 0.37 -0.11

ms = 1,mt = 8 0.491 0.412 0.0910 0.0143 0.00189 0.00212 0.00236
eoct 0.25 2.18 2.67 2.92 -0.17 -0.15

ms = 4,mt = 8 0.491 0.412 0.0909 0.0142 0.00179 0.00207
eoct 0.25 2.18 2.68 2.99 -0.20

Table 3.4.2: Error ‖uh − u‖L2(Ω(T )) for different temporal refinements and quadrature subdivi-
sions on a regular 64×64×64 tetrahedral mesh for the test case in section 3.4.1.2.

error that can not be reduced by refinements in time. In this examples C3(h) ≈ 0.002.
Furthermore, we observe that in this example C3 is essentially independent of ms.

For mt sufficiently large, i.e. mt >
√
C2/(C1∆t) and h sufficiently small, the first term

dominates the error, such that one observes a third order in time convergence. This does
not hold if mt is too small. Especially for ms=mt=1, the error is converging with (only)
second order, due to a dominating interface approximation error.

x

t

Γ∗ standard d.o.f. XFEM d.o.f.

x

t

Γ∗ standard d.o.f. XFEM d.o.f.

x

t

Γ∗ standard d.o.f. XFEM d.o.f.

x

t

Γ∗ standard d.o.f. XFEM d.o.f.

Figure 3.4.3: Sketch of different spatial and temporal resolutions for a 1D problem.

Remark 3.4.2. In order to investigate the additional effort within one time step due
to additional XFEM unknowns, we consider the ratio between the maximum number of
extended (XFEM) unknowns and standard (space-time) finite element unknowns within
one time slab. In figure 3.4.3 a sketch of the corresponding situation is shown. If the
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3 Mass transport through a moving interface

Std. unkn. 1024 8192 65536 524288 4194304

nt \ ns 8 16 32 64 128

1 736 (72%) 3648 (45%) 19328 (30%) 119808 (23%) 813056(19%)
2 656 (64%) 3008 (37%) 14336 (22%) 78848 (15%) 479232(11%)
4 656 (64%) 3008 (37%) 14336 (22%) 78848 (15%) 479232(11%)
8 656 (64%) 2880 (35%) 13056 (20%) 67072 (13%) 383488 (9%)

16 640 (63%) 2624 (32%) 11136 (17%) 52992 (10%) 275456 (7%)
32 640 (63%) 2496 (30%) 10368 (16%) 45824 (9%) 198656 (5%)
64 640 (60%) 2496 (30%) 9856 (15%) 41472 (8%) 182784 (4%)

Table 3.4.3: Number of standard (space-time) unknowns (first row) and maximal number of
XFEM unknowns for one time slab In brackets the ratio between XFEM and
standard unknowns is added.

interface is well resolved, the number of unknowns close to the interface increases by
a factor of 2d−1 for one uniform (spatial) refinement whereas the overall number of
unknowns increases with 2d. Thus the ratio decreases linearly with the spatial resolution.
In table 3.4.3 the corresponding numbers for this test case are given which are in agreement
with the expected behaviour.
Remark 3.4.3. To decrease the (space-time) interface approximation error one can
either choose smaller time steps or a larger refinement factor mt for the construction
of Γ∗,h. The computation with a fixed ∆t = ∆t̃ and mt = m̃t > 1 is cheaper than a
computation with ∆t = ∆t̃/m̃t and mt = 1. In figure 3.4.4 a sketch of both strategies is
shown. Note that the approximation quality of the piecewise planar interface for both
cases is the same. For mt > 1 additional effort due to the decomposition strategy and
quadrature within one time step is required. However if the interface is resolved, this is
only required for a small number of elements (cf. remark 3.4.2). The number of time
steps and thereby the number of linear systems that have to be solved however is reduced
by a factor of m̃t. Note that the solution of linear systems is typically the most time
consuming part.

x

t

tn

tn−1

Γ∗ Γ∗,h

standard d.o.f. XFEM d.o.f.

subtriangulation for approximating Γ∗
x

t

tn

tn−1

Γ∗ Γ∗,h

standard d.o.f. XFEM d.o.f.

subtriangulation for approximating Γ∗

Figure 3.4.4: Sketch of geometry approximation and degrees of freedom for the case mt = 1
and ∆t = ∆t̃/4 (left) and for the case mt = 4 and ∆t = ∆t̃ (right).
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3.4 Numerical examples

3.4.2 Moving sphere

In this example we consider a rotational symmetric solution for a stationary sphere. The
sphere is then translated with a time-dependent velocity. The time interval is (0, T ] with
T = 0.5 and the domain is the cube Ω = [0, 2]3. One phase is contained in the domain

w

y

y

U1/U2

Γ Γ

Figure 3.4.5: Sketch of geometrical setup for test case in section 3.4.2, Ω1 is blue and Ω2 is green,
(left) and sketch of the time-independent part of the solution U1/U2 (right).

Ω1(t) = {x ∈ Ω : ‖x− (p0 + r(t) · e1)‖ ≤ R}, where p0 is the center of the initial sphere
and r(t) the motion of the interface in x1-direction, e1 is the corresponding unit vector.
R = 1

3
is the radius of the sphere. The complementary domain is Ω2(t) = Ω \ Ω1(t).

The velocity field w is given as w = (∂r
∂t

(t), 0, 0). As boundary conditions we apply
suitable Dirichlet boundary conditions everywhere.
We prescribe these boundary conditions and the r.h.s. source term f , such that the
solution is given by

u(x, t) = sin(kπt) · U i(‖x− (p0 + r(t) · e1)‖), x ∈ Ωi(t), i = 1, 2

with

U1(y) = a+ by2 and U2(y) = cos(πy), (3.4.2)

where a and b are chosen s.t. the interface conditions hold. The diffusivities are
(α1, α2) = (10, 20) and the Henry weights (β1, β2) = (2, 1) resulting in a ≈ 1.1569 and
b ≈ −8.1621. The problem is considered in the time interval (0, T ] with T = 0.5. We
choose p0 = (0.5, 1, 1)T and r(t) = 1

4π
sin(2πt). For the approximation of the space-time

interface we consider ms = mt = 1. We observe an error behaviour which is of (at least)
second order in time and space (O(h2 + ∆t2)) (see figure 3.4.6). For the finest spatial
resolution (ns = 64) we observe an order around 2.5 for the convergence in time. In
contrast to the previous test cases the spatial error dominates the overall error already
for coarse temporal resolutions. We expect that for finer spatial resolutions and better
geometry approximations (mt > 1,ms ≥ 1) one could retain the third order convergence
in time.

It is also relevant to study the accuracy of the method w.r.t. the interface condition.
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1 2 4 8 16 32 64

10−2

10−1

nt

nx = 8
nx = 16
nx = 32
nx = 64
order 1
order 2
order 3

nt\ns 8 16 32 64

1 0.185 0.1929 0.2202 0.22794
2 0.180 0.0520 0.0607 0.06760
4 0.201 0.0440 0.0113 0.01409
8 0.208 0.0509 0.0113 0.00268
16 0.209 0.0527 0.0131 0.00293
32 0.209 0.0530 0.0135 0.00332
64 0.209 0.0530 0.0136 0.00340

Figure 3.4.6: Convergence in L2(Ω)-norm w.r.t. refinements in time and space as a plot and as
tabulated values for test case in section 3.4.2.

Therefore, in table 3.4.4 we consider the error

‖ν 1
2 [[βuh]]‖L2(Γ∗,h) =

(∫ T

0

∫

Γh(t)

[[βuh]]
2 ds dt

) 1
2

under space and time refinement and also observe an O(h2 + ∆t2) behaviour.

nt \ ns 8 16 32 64 eoct
2 0.0495 0.00700 0.0198 0.0587
4 0.0430 0.00384 0.00567 0.0227 1.37
8 0.0417 0.00253 0.00164 0.00517 2.13

16 0.0414 0.00205 0.000716 0.00117 2.14
32 0.0413 0.00190 0.000523 0.000275 2.10

64 0.0413 0.00186 0.000477 0.000131 1.07

eocs 4.48 1.96 1.86

Table 3.4.4: Interface error ‖ν 1
2 [[βuh]]‖L2(Γ∗,h) for different refinements in time and space for

the test case in section 3.4.2. The last column/row shows the estimated order of
convergence w.r.t. time (eoct) / space (eocs) using the finest spatial/temporal
resolution.

3.4.3 Deforming bubble in a vortex

As a last example we consider a more complex configuration. We consider an ellipsoidal
bubble which is deforming under a vortex velocity field. The domain is Ω = [0, 2] ×
[0, 2]× [0, 1] and the velocity field is given as:

w(x, t) = w(x) = q(r(x)) · (x2 − c2, c1 − x1, 0)T (3.4.3)

where (c1, c2, x3) with c1 = c2 = 1 describes the rotation axes of the vortex and

r(x) :=
√

(x1 − c1)2 + (x2 − c2)2.
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3.4 Numerical examples

The angular velocity varies with a changing distance to the rotation axes. The dependency
is described by q(r) which is chosen as follows:

q(r) =
π

10
·





1 + 22 510

313 r
2(0.9− r)3 r≤ 0.9

104(x− 0.8)2(x− 1)2 0.9 <r< 1
0 1 ≤r

(3.4.4)

The time interval is (0, T ] with T = 20 which corresponds to one full rotation of the
bubble. Due to q(r) 6= const the bubble deforms during the process. In figure 3.4.7 the
interface at different time levels is shown.

t = 0 t = 5 t = 10 t = 15 t = 20

Figure 3.4.7: Interface position at several times for the test case in section 3.4.3, view from the
top.

Initially we set

Ω1(0) =
{

32(x1 − b0
1)2 + 62(x2 − b0

2)2 + 32(x3 − b0
3)2 ≤ 1

}

with (b0
1, b

0
2, b

0
3) = (0.5, 1, 0.5), the center of the initial bubble. The complementary initial

domain is Ω2(0) = Ω \ Ω1(0). The interface evolves along the characteristics given
by ẋ(t) = w(x, t) which can be calculated explicitely. The diffusivities are (α1, α2) =
(8 · 10−3, 4 · 10−3) and the Henry weights are (β1, β2) = (1, 1.75). As initial condition
we choose u1(x, 0) = 1 and u2(x, 0) = 0. Note that u(·, 0) does not fulfill the interface
condition (3.1.1c) which leads to a parabolic boundary layer of size O(

√
αt). For this

setup we do not know the exact solution. We therefore computed a reference solution
uref on a spatial fine mesh (96× 96× 48) with a characteristic mesh size of h = 1/96 and
a temporal resolution of 1024 timesteps for the whole time interval, i.e. ∆tref ≈ 2 · 10−2.
This solution is denoted by uref . We only investigate the temporal convergence by varying
the number of time steps nt. For the approximation of the space-time interface we
consider ms = 2, mt = 1. A contour plot of the solution and the convergence table is
given in figure 3.4.8. We observe a convergence order in time of nearly two. The range in
which we observe this order of convergence is limited by nt < 256. This is due to several
effects. At first the reference solution is different from the exact solution. Secondly due
to the dependence of the finite element space and the approximated space-time interface
on the time step size the impact of the spatial discretization errors can be different for
different time step sizes. Hence u− uref does contain spatial errors which do not vanish
for ∆t→ 0.
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3 Mass transport through a moving interface

nt ‖u− uref(·, T )‖L2(Ω) eoct

32 1.22569 · 10−3

64 3.32611 · 10−4 1.88
128 9.65349 · 10−5 1.78
256 4.08119 · 10−5 1.24

Figure 3.4.8: Numerical solution and convergence table of the test case in section 3.4.3. The
contour plot (left) shows the numerical solution (ns = 96, nt = 1024) of the test
case in section 3.4.3 at T = 20 in the cutting plane z = 0.5. The table shows the
convergence in time w.r.t. a reference solution.

3.5 Preconditioning of the Space-Time-DG
Nitsche-XFEM method

In this section we discuss the preconditioning of linear systems arising from Space-
Time-DG Nitsche-XFEM discretizations. Analysis of the linear systems and suitable
preconditioners in this case is much harder than for the elliptic case discussed in section 2.4.
This is due to the non-symmetric terms stemming from the convection as well as the
time derivative. We will thus only motivate a new preconditioner which we apply and
the performance of which we evaluate for one test case and variations of discretization
and material parameters.

Before we turn over to the discussion of more sophisticated preconditioners we investigate
the performance of simple diagonal preconditioners in section 3.5.2. Then we introduce
and discuss a new preconditioner in three steps. The preconditioner is based on two

Space-Time-DG
Nitsche-XFEM
(linear in time)

XFEM

Space-Time-
DG

(linear in time)
(no XFEM)

XFEM

coarse grid:
const in time

Space-Time
Two-Grid

XFEM

coarse grid:
const in time

Multigrid

Space-Time
Two-Grid

WΓ =W ⊕W x W 0 ⊂W . . . ⊂ V2h ⊂ Vh ∼W

Figure 3.5.1: Sketch of precondition strategy for Space-Time-DG Nitsche-XFEM .
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3.5 Preconditioning of the Space-Time-DG Nitsche-XFEM method

components. The first component is a block decomposition as in section 2.4 which
divides the problem into the preconditioning of the blocks corresponding to the XFEM
unknowns and the standard space-time finite element unknowns, this topic is covered
in section 3.5.3. For the XFEM block we apply a simple diagonal preconditioning, see
section 3.5.4. For the preconditioning of the larger block corresponding to the standard
degrees of freedoms we propose a two-grid method based on a coarse grid space which
consists of the functions which are constant in time. This is discussed in section 3.5.5.
The efficient solution of the coarse grid problem is crucial for the performance of the
two-grid method. Here, a geometrical multigrid method in space seems to be applicable.
We comment on this in remark 3.5.1. In section 3.5.6 we put the components together
and investigate the performance of the resulting preconditioner for the Space-Time-DG
Nitsche-XFEM method. In figure 3.5.1 the structure of the preconditioning concept is
illustrated. We comment on a similar strategy in remark 3.5.2.

3.5.1 Preliminaries

We recall the discrete problem and the resulting linear systems for the formulation of
one time slab problem. For ease of presentation we will skip the super- and subscripts
n indicating the time step in the following. We make use of the fact that there holds
uh ∈ W Γ ⇔ β−1uh ∈ W Γ such that the problem in (3.2.20) can be reformulated in
terms of the unknown ũh = βuh. This reformulation has been essential for the elliptic
problems in section 2.4 for the theoretical analysis as well as for the performance of the
iterative solvers. In numerical experiments we observed that the reformulation of the
Space-Time-DG Nitsche-XFEM discretization is also beneficial for the solution of linear
systems, especially if the ratios of the Henry weights increases. Let α̃ = α/β. Then, the
reformulated problem reads as follows.
Find ũh ∈ W Γ such that

B(ũh, vh) = a(ũh, vh) + b(ũh, vh) + d(ũh, vh) +N(ũh, vh)

= f(vh) + c(ũn−1, vh) ∀ vh ∈ W Γ
(3.5.1)

with the following bilinear forms (u, v ∈ W Γ)

a(u, v) = (α̃∇u,∇v)L2(Qn1,2)

b(u, v) = (β−1(∂tu+ w · ∇u), v)L2(Qn1,2)

d(u, v) = (β−1un−1
+ , vn−1

+ )L2(Ωn1,2)

N(u, v) = −({{α̃∇u · n}}, [[v]])Γ∗ − ([[u]], {{α̃∇v · n}})Γ∗ + ᾱλh−1
T ([[u]], [[v]])Γ∗

The linear forms are defined accordingly. Note that instead of the scalar product (·, ·)Qn1,2
the standard L2 scalar product (without weighting) has been used.
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3 Mass transport through a moving interface

Matrix/vector representation and block decomposition

The matrix/vector representation to the linear and bilinear forms are Ai,j = B(ϕi, ϕj)
and bj = f(ϕj) + c(ũn−1, ϕj) with basis functions ϕi, ϕj ∈ W Γ, i, j = 1, .., n and n the
dimension of W Γ. The discrete solution ũ is represented by u ∈ Rn, such that there
holds ũ =

∑n
i=1 uiϕi. By construction the space W Γ has a decomposition into standard

finite element functions in W and enrichment functions in W x. Let n1 be the number of
degrees of freedom in the W and nx be the number of degrees of freedom in W x, such
that n = n1 + nx. We use the following notation for the splitting of a vector v ∈ Rn and
a matrix M ∈ Rn×n into blocks corresponding to a decomposition of the basis functions
into standard and enrichment functions:

v =

(
vs
vx

)
, vs ∈ Rs,Vx ∈ Rx,

M =

(
Ms Msx

Mxs Mx

)
, Ms ∈ Rn1×n1 ,Msx ∈ Rnx×n1 ,Mxs ∈ Rn1×nx ,Mxx ∈ Rnx×nx .

Further we define the diagonal matrices to A and its diagonal blocks, D = diag(A) ∈
Rn×n, Dx = diag(Ax) ∈ Rnx×nx , Ds = diag(As) ∈ Rn1×n1 .

Test problem

To evaluate the quality of the following preconditioning concepts we consider the problem
in section 3.4.3. This problem is demanding due to the complex evolution of the
interface. By varying the problem parameters h, ∆t, α, β and λ, we can further check
the sensitivity of the preconditioning concepts. We set ∆t = 20

nt
, h = 2

ns
and the default

discretization parameters to nt = 20, ns = 16. The default parameters for β and α are
β = (1, 7/4) and α = (8, 4) · 10−3 which gives the (transformed) problem parameters
α̃ = (56/7000, 16/7000). The default parameter for λ is set to λ = 100. For the spatially
three-dimensional test problem we consider different resolutions in space and time and
vary ns ∈ {16, 32, 64} and nt ∈ {20, 40, 80, 160}. In the following investigations we
consider the solution of the linear systems Au = b for all time steps within the time
interval (0, 20].

3.5.2 Diagonal preconditioning

The simplest choice for a preconditioner - except for not preconditioning at all - is the
diagonal preconditioner. In connection with XFEM one important question is if the
conditioning of the preconditioned matrix depends on the cut position. Especially if the
support of XFEM functions gets very small this is of particular interest. For stationary
elliptic problems and the Nitsche-XFEM method we observed and proved that a diagonal
preconditioning is already sufficient to get condition number bounds independent of the
cut position. We investigate the same for the non-stationary case and the Space-Time-DG
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3.5 Preconditioning of the Space-Time-DG Nitsche-XFEM method

Nitsche-XFEM method. Note that within the evolution of the interface through the
mesh in the test problem in section 3.4.3 the cut configurations are essentially arbitrary
that means that XFEM functions with only very small support can appear at several
time steps. Note further, that the system matrix in our problem is not symmetric due
to the advection term and the time derivative which also acts as an advection term in
space-time.

We consider a GMRES method which is preconditioned with a simple Gauss-Seidel
method and investigate how many iterations are necessary to reduce the initial residual
by a factor of 10−6.

α = (8, 4) · 10−3, β = (1, 7/4), λ = 100 α = (8, 4) · 10−2, β = (1, 7/4), λ = 100

ns\nt 20 40 80 160

16 41/ 52 37/ 47 37/ 49 35/49
32 108/132 61/ 82 49/ 61 43/53
64 318/378 163/216 84/108 59/74

ns\nt 20 40 80 160

16 52/ 61 42/ 52 43/ 57 39/ 55
32 116/143 86/101 63/ 71 58/ 71
64 301/329 194/215 139/158 99/112

α = (8, 4) · 10−3, β = (1, 7/4), λ = 20 α = (8, 4) · 10−3, β = (1, 7/4), λ = 1000

ns\nt 20 40 80 160

16 33/ 38 27/ 31 24/28 23/27
32 75/ 82 43/ 49 31/36 27/31
64 185/212 109/127 57/67 38/44

ns\nt 20 40 80 160

16 48/ 71 48/ 68 52/ 78 52/ 92
32 174/ 256 114/177 84/132 77/103
64 763/1433 400/762 209/367 136/218

α = (8, 4) · 10−3, β = (1,3.5), λ = 100 α = (8, 4) · 10−3, β = (1,7), λ = 100

ns\nt 20 40 80 160

16 44/ 55 38/ 50 38/ 51 36/51
32 114/150 68/ 92 54/ 67 48/58
64 366/435 204/257 96/125 66/82

ns\nt 20 40 80 160

16 46/ 58 41/ 53 40/ 55 37/53
32 132/179 79/103 59/ 74 53/66
64 444/521 252/322 112/148 73/93

Table 3.5.1: Iteration numbers (min/max) for Gauss-Seidel preconditioned GMRES of the
Space-Time-DG Nitsche-XFEM method using different discretization and material
parameters

In table 3.5.1 the iteration counts for different discretization parameters and material
parameters have been collected. The minimal and maximal number of iterations within
all time steps are shown. We discuss the results. We observe that the ratio of minimal
and maximal iteration numbers stays within reasonable bounds such that we conclude
that we do not observe a severe dependency of the performance of iterative solvers on
the cut position. We, however, observe a dependency on discretization and material
parameters.

While for decreasing h the iteration numbers increase, a decreasing ∆t leads to a decrease
in the iteration numbers. Discretizations with the same quotient n2

s/nt have a similar
number of iterations. This behavior is similar to that of linear systems arising from method
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3 Mass transport through a moving interface

of lines discretizations for simpler parabolic problems, cf. section 2.4.6.3. The amount of
Nitsche stabilization in terms of the stabilization parameter λ plays an important role
for the conditioning, too. A stabilization parameter which is chosen too large, increases
the number of iterations and thereby the computational costs significantly.

An increase in the diffusion parameter also leads to a slight increase in iterations. The
same holds for increasing ratios of β.

α = (8, 4) · 10−3, β = (1, 7/4) α = (8, 4) · 10−2, β = (1, 7/4)

ns\nt 20 40 80 160

16 24/ 26 18/19 15/16 14/15
32 56/ 60 33/37 22/24 17/18
64 155/161 85/94 51/57 31/34

ns\nt 20 40 80 160

16 47/ 51 32/ 35 23/ 25 18/ 19
32 105/115 80/ 86 52/ 57 38/ 41
64 286/301 189/206 129/155 93/104

α = (8, 4) · 10−3, β = (1,3.5) α = (8, 4) · 10−3, β = (1,7)

ns\nt 20 40 80 160

16 24/ 26 18/20 15/16 14/15
32 58/ 61 34/39 22/25 17/18
64 166/174 88/99 51/59 31/35

ns\nt 20 40 80 160

16 24/ 27 18/ 20 15/17 14/15
32 61/ 64 35/ 40 22/25 17/18
64 171/181 91/102 52/59 31/35

Table 3.5.2: Iteration numbers (min/max) for Gauss-Seidel preconditioned GMRES method of
the standard FEM block.

In table 3.5.2 we consider the discretization of the same problems as in table 3.5.1 but
without the XFEM enrichment. Note that the matrix corresponding to this discretization
also coincides with the block matrix As corresponding to the standard degrees of freedom
in the matrix of the Space-Time-DG Nitsche-XFEM discretization. The purpose of
this comparison is that we can observe which effects are stemming from the XFEM
functions and which not. We observe that the behavior of the iteration numbers is similar,
especially for small λ. However, we observe that the iteration numbers for the matrix
with XFEM are roughly two times higher. We also mention that the fact that the cut
positions can be almost arbitrary has no significant impact on the conditioning as long
as (at least) a diagonal preconditioner is used.

3.5.3 Block preconditioning

In section 2.4 we showed that the decomposition of the function in an XFEM-enriched
finite element space into XFEM functions and standard functions is stable in a norm
suitable for scalar elliptic problems and a Nitsche-XFEM discretization. This result
implies that for the Nitsche-XFEM discretization a block preconditioner which uses
exact inverses for the standard functions and the XFEM functions leads to a condition
number which is bounded independent of the position of Γ and the mesh size h. We
want to investigate if this is also true for the Space-Time-DG Nitsche-XFEM method.
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3.5 Preconditioning of the Space-Time-DG Nitsche-XFEM method

For this purpose we use a block preconditioner with exact inverses and consider the same
parameter variations as in the previous section. The preconditioner is

CB =

(
As 0
0 Ax

)
.

α = (8, 4) · 10−3, β = (1, 7/4), λ = 100 α = (8, 4) · 10−2, β = (1, 7/4), λ = 100

ns\nt 20 40 80 160

16 11/15 10/12 11/13 13/16
32 15/18 11/13 10/12 11/12
64 22/27 15/19 11/14 10/11

ns\nt 20 40 80 160

16 10/13 9/10 8/10 9/11
32 13/17 11/14 10/12 9/11
64 20/27 14/21 11/16 10/12

α = (8, 4) · 10−3, β = (1, 7/4), λ = 20 α = (8, 4) · 10−3, β = (1, 7/4), λ = 1000

ns\nt 20 40 80 160

16 17/22 14/17 14/17 15/19
32 22/27 16/20 14/17 14/16
64 31/40 22/30 16/22 14/17

ns\nt 20 40 80 160

16 7/ 8 6/ 7 8/ 9 9/11
32 8/10 7/ 8 7/ 8 8/ 8
64 14/17 10/11 8/10 8/ 8

α = (8, 4) · 10−3, β = (1,3.5), λ = 100 α = (8, 4) · 10−3, β = (1,7), λ = 100

ns\nt 20 40 80 160

16 11/13 10/12 12/13 13/17
32 15/19 12/14 11/12 12/13
64 24/30 16/20 13/15 12/13

ns\nt 20 40 80 160

16 11/13 11/13 12/15 15/18
32 16/21 13/15 12/14 13/15
64 28/35 18/22 15/17 13/15

Table 3.5.3: Iteration numbers (min/max) for block-preconditioned GMRES method.

In table 3.5.3 we observe that the number of iterations needed for the block preconditioned
matrix is small, but not independent of the discretization parameters h and ∆t. In
contrast to the simpler case of an elliptic interface problem the iteration counts of the
block preconditioned solver are no longer independent of h but increase with decreasing
h/
√

∆t. The increase, however, is only mild. The dependency on the diffusion parameter
seems to be very mild while the results for varying λ show a behavior which is similar to
what has been observed in section 2.4. For a larger stabilization parameter λ the angle
between the space of enrichment functions and the standard space increases which is in
favor of the block preconditioning and lowers the iteration counts.

As long as the ratios of the diffusion and Henry parameters are moderate the block
preconditioning seems to be effective. The efficiency of this decomposition depends on
the efficiency of the solvers for the individual blocks. In the following we discuss the
preconditioning of the blocks corresponding to the XFEM unknowns and the standard
unknowns.
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3 Mass transport through a moving interface

3.5.4 Diagonal preconditioning for XFEM block

Similar to what we did for the stationary case we try to manage the solution of the
XFEM block with a Jacobi-preconditioner. To characterize the quality of the diagonal
preconditioning we consider the solution of the XFEM block up to a relative accuracy of
10−6.

α = (8, 4) · 10−3, β = (1, 7/4), λ = 100 α = (8, 4) · 10−2, β = (1, 7/4), λ = 100

ns\nt 20 40 80 160

16 42/ 54 40/ 51 43/54 41/52
32 76/ 95 60/ 75 53/66 56/67
64 116/143 89/112 70/90 62/77

ns\nt 20 40 80 160

16 41/ 54 42/ 54 49/62 53/66
32 74/ 94 60/ 78 57/71 63/76
64 111/144 88/115 70/91 64/82

α = (8, 4) · 10−3, β = (1, 7/4), λ = 20 α = (8, 4) · 10−3, β = (1, 7/4), λ = 1000

ns\nt 20 40 80 160

16 28/33 26/32 25/30 23/27
32 42/52 33/39 31/37 29/34
64 61/75 44/55 35/43 35/42

ns\nt 20 40 80 160

16 50/ 70 52/ 72 61/ 79 64/ 91
32 116/ 174 100/ 138 98/124 99/125
64 >1K/>1K 215/>1K 168/221 149/179

α = (8, 4) · 10−3, β = (1,3.5), λ = 100 α = (8, 4) · 10−3, β = (1,7), λ = 100

ns\nt 20 40 80 160

16 42/ 54 42/ 53 44/55 42/53
32 78/ 96 62/ 77 55/67 56/68
64 122/152 91/116 72/91 63/78

ns\nt 20 40 80 160

16 45/ 55 42/ 54 45/56 43/54
32 80/ 99 61/ 79 55/68 56/70
64 126/171 95/118 73/92 65/80

Table 3.5.4: Iteration numbers (min/max) for Gauss-Seidel preconditioned GMRES of the
XFEM block of the Space-Time-DG Nitsche-XFEM method using different dis-
cretization and material parameters. Entries with “>1K” indicate that the solver
did not converge within 1000 steps.

In table 3.5.4 the results are shown. We observe that the iteration numbers behave
similar for the XFEM block as the diagonal preconditioning for the whole system with
respect to the material parameters and h and ∆t. With respect to λ we observe a similar
behavior as for the stationary case: for a small λ the diagonal preconditioning performs
reasonably, but for a large λ iteration numbers increase dramatically. Note however that
the number of XFEM degrees of freedom are always the smaller portion of unknowns
such that a non-optimal behavior of the XFEM block preconditioning is not as important
as a good preconditioning for the block of standard (space-time) FEM unknowns. This
is what we consider next.

3.5.5 Preconditioning for space-time finite element block

The preconditioning of the space-time finite element block with extended finite elements
is a challenging task. This topic is only rarely discussed in the literature and if, it is
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3.5 Preconditioning of the Space-Time-DG Nitsche-XFEM method

discussed for the case of constant coefficients, i.e. for equal diffusion parameters α and
equal Henry coefficients β. For instance, interesting preconditioning ideas for parabolic
problems with time-independent coefficients are discussed in [WB14]. Note however that
in our case the (transformed) diffusion coefficients are not equal and vary in time due to
the interface motion.

A very simple preconditioner is the diagonal preconditioner. Together with a diagonal
preconditioning of the XFEM block this results in a simple diagonal preconditioner of
the whole system which we discussed before. Instead we consider a space-time version of
a two-grid approach which we present and discuss next.

Space-Time Two-Grid strategy

The block As corresponding to the standard space-time finite element space W represents
a (discontinuous) space-time discretization of the problem with a standard (space-time)
finite element space. Note that due to the reformulation (u↔ βu) the Nitsche bilinear
form is zero for every standard basis function, N(v, w) = 0 if v ∈ W and w ∈ W .

Instead of the preconditioning technique presented in [WB14] we consider a somewhat
simpler approach. The basis for the space-time finite element space W is constructed
by taking one basis element φj(x) ∈ Vh multiplied with a basis element ψ(t) of P1(In).
In our construction of the finite element space we used a standard nodal basis with the
basis functions ψ0(t) = tn−t

∆t
, ψ1(t) = t−tn−1

∆t
.

A natural coarse grid space in this setting is the subspace of functions which are
constant in time at the current time slab W 0 = {u, u(x, t) = v(x) for a v ∈ Vh} ⊂ W .
Let n0 be the dimension of W 0 such that n1 = 2n0. We define the restriction and
prolongation operations R : W → W 0 and P : W 0 → W with matrix representations
R ∈ Rn0×n1 and Pn1×n0 where we have R = PT . The coarse grid matrix is defined as
Ac = RAsP ∈ Rn0×n0 . This matrix corresponds to a discretization with constant-in-time
functions as in section 3.2.4.2 (without quadrature in time). Note that the terms including
the time derivative ∂tu vanish for u ∈ W 0 and the structure of the corresponding bilinear
form is very similar to that of a backward Euler discretization.

The two-grid space-time preconditioner consists of the following steps:

1. Pre-smoothing: u← u + Msm(b−Asu)

2. Restriction of defect: dc ← R(b−Asu)

3. Solution of “coarse grid” problem: Accc = dc

4. Prolongation and application of correction: u← u + Pcc

5. Post-smoothing: u← u + Msm(b−Asu)

Note that u,b ∈ Rn1 and dc, cc ∈ Rn0 . For the smoother Msm we use one step of a
Jacobi-smoother.
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3 Mass transport through a moving interface

We apply this preconditioner to the space-time finite element discretization (without
XFEM and without Nitsche) and consider the same test case and parameter variations
as before.

α = (8, 4) · 10−3, β = (1, 7/4), λ = 100 α = (8, 4) · 10−2, β = (1, 7/4), λ = 100

ns\nt 20 40 80 160

16 10/11 10/12 11/12 9/11
32 13/15 10/11 10/11 9/11
64 27/31 15/18 10/11 9/10

ns\nt 20 40 80 160

16 11/14 9/10 8/ 9 8/ 9
32 21/27 15/20 12/15 9/11
64 45/55 29/40 21/29 16/21

α = (8, 4) · 10−3, β = (1,3.5), λ = 100 α = (8, 4) · 10−3, β = (1,7), λ = 100

ns\nt 20 40 80 160

16 11/12 11/12 11/11 9/11
32 14/15 11/11 10/11 9/10
64 28/31 15/18 11/11 10/10

ns\nt 20 40 80 160

16 11/12 11/12 11/11 9/11
32 14/16 11/11 10/11 9/10
64 27/31 16/17 11/11 10/10

Table 3.5.5: Iteration numbers of GMRES preconditioned with two-grid preconditioner for the
standard finite element block.

In table 3.5.5 one can observe the in general good performance of this preconditioner
for the block of standard space-time unknowns. Similar to the results of the block
preconditioner before, the results are not independent of the mesh size h and the
diffusion parameter α, but the dependencies seem to be less severe than for the diagonal
preconditioner in table 3.5.2. One would expect that the number of maximal iterations of
the two-grid preconditioner is essentially independent of the mesh size h. This however
does not seem to be true. At this point, we do not have a good explanation for this.

3.5.6 A new preconditioner for the Space-Time-DG Nitsche-XFEM
method

At last, we combine the block preconditioning of standard and XFEM functions and
the two-grid strategy for the standard FEM block. We use a GMRES method with
a block preconditioning corresponding to the standard and the XFEM blocks. The
exact solution of the diagonal blocks is replaced by approximate solutions obtained with
preconditioned iterative solvers. The solution of the XFEM block is obtained using
a diagonally preconditioned GMRES method until the initial residual is reduced by a
factor of 0.1 which typically takes only a small number of iterations. The solution of the
standard block is replaced by a GMRES method preconditioned with the space-time
two-grid strategy explained before. Also here the GMRES methods is used until the
initial residual is reduced by a factor of 0.1.

In table 3.5.6 the number of outer iterations are shown corresponding to the block
decomposition. Furthermore the maximum number of inner iterations for the GMRES
method of the two-grid preconditioned standard block and the diagonally preconditioned
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α = (8, 4) · 10−3, β = (1, 7/4), λ = 100 α = (8, 4) · 10−2, β = (1, 7/4), λ = 100

ns\nt 20 40 80 160

16 15(2/11) 12(3/11) 14(3/12) 17(6/12)
32 19(3/20) 14(3/14) 12(2/12) 13(2/14)
64 28(6/31) 20(4/21) 15(3/17) 12(3/15)

ns\nt 20 40 80 160

16 14( 3/12) 11(3/12) 11(3/13) 11(2/15)
32 18( 6/19) 15(4/17) 13(4/14) 12(3/16)
64 29(11/27) 22(9/22) 17(7/19) 13(5/15)

α = (8, 4) · 10−3, β = (1, 7/4), λ = 20 α = (8, 4) · 10−3, β = (1, 7/4), λ = 1000

ns\nt 20 40 80 160

16 22(2/ 7) 18(3/ 7) 17(3/7) 20(6/6)
32 28(3/10) 21(2/ 8) 17(2/7) 16(2/7)
64 42(6/16) 31(3/11) 22(3/9) 17(2/7)

ns\nt 20 40 80 160

16 9(2/18) 8(3/18) 10(3/20) 12(6/24)
32 12(3/38) 10(3/31) 9(3/28) 9(2/29)
64 20(6/74) 14(4/55) 11(3/43) 10(3/36)

α = (8, 4) · 10−3, β = (1,3.5), λ = 100 α = (8, 4) · 10−3, β = (1,7), λ = 100

ns\nt 20 40 80 160

16 14(3/12) 13(2/11) 14(3/13) 17(6/12)
32 20(3/21) 15(3/16) 13(2/13) 14(2/15)
64 33(6/31) 22(4/22) 16(3/18) 13(2/14)

ns\nt 20 40 80 160

16 14(3/13) 13(3/12) 15(3/14) 18(4/13)
32 22(3/22) 17(2/17) 15(3/13) 15(2/15)
64 37(6/37) 25(4/22) 19(3/18) 16(2/14)

Table 3.5.6: Maximum outer iteration numbers (block solver) and maximum iteration numbers
for the two-grid preconditioned solve for the standard block.

XFEM block is shown in the brackets. We observe that the number of iterations is
similar to the exact block preconditioning discussed before, although the numbers are
slightly higher. The number of inner iterations stay within very reasonable bounds except
for the case λ = 1000 where the diagonal scaling for the XFEM block require many
additional iterations. The results indicate that this overall preconditioner is suitable for
the considered test case and the considered parameter range. In the next section we
summarize and discuss the results for this and the diagonal preconditioner.

3.5.7 Discussion of results

We briefly summarize and discuss the results of the numerical study carried out in
this section. We performed tests for simple and more sophisticated preconditioning
strategies for the Space-Time-DG Nitsche-XFEM method. In the previous investigations
we observed the following behavior:

• As soon as we apply a diagonal preconditioning the results appear to be essentially
independent on the cut position. Furthermore, for λ not too large the results are
comparable to a discretization without XFEM function. We conclude that all
preconditioners discussed here are robust w.r.t. the interface position.

• For the simple diagonal preconditioner we observe that the conditioning of the
problem depends on the ratio h2/∆t. This behavior has also been observed
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3 Mass transport through a moving interface

for method of lines discretizations of other parabolic problem, see for instance
section 2.4.6.3. Also the more sophisticated preconditioners display a dependency
on the ratio of h and ∆t.

• The block decomposition into XFEM and standard space-time finite element space
gives good results. In contrast to the elliptic case in section 2.4, however, the
results are not robust w.r.t. the mesh size.

• The same statement essentially also holds for the two-grid space-time precondi-
tioning. This preconditioning strategy shows some significant improvement over
diagonal preconditioning. Nevertheless, the results are also not completely robust
w.r.t. the mesh size.

Remark 3.5.1. We briefly comment on the computational efficiency of the combined
method in section 3.5.6. The performance of the proposed preconditioning strategy
essentially depends on the efficiency of the solver for the coarse grid problem (related
to the matrix Ac). As mentioned before, this matrix block corresponding to standard
unknowns is similar to a system matrix of a backward Euler method and thus should
allow for an efficient use of a spatial multigrid preconditioner (at least in the diffusion
dominated case). We expect that the inner most iterations which correspond to the
solution of the lowest order standard block can be replaced by one (or a small number) of
multigrid steps. This would essentially render the costs for the coarse grid solution linear
in the number unknowns.

Space-Time-DG
Nitsche-XFEM
(linear in time)

Space-Time-DG
Nitsche-XFEM
(const in time)

Two-Grid

XFEM

Space-Time
(const in time)
(no XFEM)

Two-Grid

XFEM

Space-Time
(const in time)
(no XFEM)

Multigrid

Two-Grid

WΓ,0 ⊂WΓ WΓ,0 =W 0 ⊕W x,0 . . . ⊂ V2h ⊂ Vh ∼W

Figure 3.5.2: Sketch of an alternative precondition strategy for Space-Time-DG Nitsche-XFEM

Remark 3.5.2 (Open problems). As depicted in figure 3.5.1 the main idea of the
presented preconditioner is based on a decomposition of W Γ into W and W x. Then, the
tensor product structure of the space-time basis functions is used to construct a two-grid
preconditioner. One could also change the order of these preconditioning concepts as
is depicted in figure 3.5.2. Here, the two-grid preconditioner is used on the outer level.
Then, the inner system of the coarse grid block is similar to a backward Euler method
with a Nitsche-XFEM discretization. One could thus try a block preconditioning of this
problem using the decomposition of W Γ,0 into W 0 and W x,0. Finally on the space W 0,
which can be identified with Vh, a geometrical multigrid can be applied.
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CHAPTER 4

Numerical integration on implicitly defined
domains

Throughout the previous chapters we assumed that integration on the subdomains Ωi (or
Qi) and on the interface Γ (or Γ∗) can be done exactly. This, however, is typically not
true. In many applications the interface is described implicitly via some phase indicator
function. The indicator can be a volume fraction (e.g. used in the Volume-of-Fluid (VoF)
method) or an artificial function for the description of the interface location (e.g. used
in level set method, cf. section 5.1.2). In the following we assume that the zero level
of such a level set function defines the interface Γ. As an exact integration on Γ or the
subdomains Ωi is practically not feasible we have to apply suitable numerical integration
strategies.

In this section we consider a strategy which approximates the implicit interface in
a way which allows for an explicit representation of the approximated interface and
subdomains. The approximation then allows to apply suitable (standard) quadrature
rules. As standard quadrature rules can be applied, positive weights can be ensured
which circumvents stability issues stemming from the geometry approximation of the
interface. The complexity of this task very much depends on the dimension of the interface.
While conceptionally, the strategy of how to approximate the interface is very similar
in two and three dimensions and for the stationary and the space-time interfaces, the
details of the construction of an approximation can be of varying complexity. Especially
the construction of an approximated space-time interface Γ∗,h for the spatially three
dimensional case is involved.

For the case of a stationary interface and spatial dimension d ≤ 3 the same or very similar
strategies have been presented in [MKOW12, Mül14] and [GR11, Section 7.3]. In this
chapter we present numerical strategies for the numerical integration in the spatially two-
and three-dimensional case in space and space-time. The essential new aspect in this work
with respect to the literature is the space-time setting for the spatially three-dimensional
case.
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4 Numerical integration on implicitly defined domains

A drawback of the considered approach is that typically only piecewise planar approxi-
mations are constructed and thus only second order accurate numerical integration is
obtained. An alternative strategy which tries to overcome this problem has been proposed
in [MKO13]. We briefly comment on this approach. The idea is to devise a strategy which
automatically generates quadrature rules for implicitly given domains (and interfaces) by
means of fitting sufficiently many moments for which the exact evaluation of the integrals
can be constructed. These approaches are supposed to achieve arbitrarily high order
accuracy for (piecewise) sufficiently smooth functions. The integration rules resulting
from such a strategy in [MKO13] have the disadvantage that they can not guarantee
positiveness which can lead to mass matrices with negative eigenvalues and similar
effects. Further no theoretical analysis exists for this method and an extension into the
four-dimensional (space-time) case has not been investigated in the literature.

Outline of this chapter

First, in section 4.1 we present the basic strategy of how we construct approximations of
the interface and the subdomains. This is done for the stationary case and the space-time
case. Next, in section 4.2 we briefly summarize which integral types are necessary to
implement the Nitsche-XFEM method (or the Space-Time-DG Nitsche-XFEM method)
in order to collect the requirements that the numerical integration strategy has to meet.
The final step within this strategy is the decomposition of a simplex (stationary case)
or a prism (space-time case) intersected by a (hyper-)plane into simplices. This step
is specifically discussed in section 4.3 and section 4.4. While in section 4.3 the total
dimension dtot = d(+1) is assumed to be smaller or equal to three, section 4.4 discusses the
more involved four dimensional situation (dtot = 3+1 = 4). At the end the approximation
strategy provides a decomposition into one, two, three or four dimensional simplices
which are either completely on the interface or not intersected by the interface. On
those simplices quadrature has to be applied to evaluate integrals. For one, two and
three dimensional simplices the problem of quadrature is standard. The quadrature
on four dimensional simplices (pentatopes), however, is less common. We comment on
quadrature rules on pentatopes (4D simplices) and technical details for the handling of
the weighting factor (measure ratio) ν(s), s ∈ Γ∗ ⊂ R4 in section 4.5.

4.1 Approximation of implicitly defined domains

For the numerical integration on the (space-time) interface and the (space-time) sub-
domains we first need to construct a suitable approximation of the (space-time) in-
terface. This is done on each element T (or QT ) separately. In the following we
assume that a smooth scalar function φ, denoted as the level set function (cf. sec-
tion 5.1.2) is given on each element T (or QT ) such that Γ = {x ∈ T, φ(x) = 0} (or
Γ∗ = {(x, t) ∈ QT , φ(x, t) = 0}).
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4.1 Approximation of implicitly defined domains

We first discuss the approximation of the interface needed for the treatment of the
stationary case in section 4.1.1. For the space-time case an according strategy to
construct a suitable approximation is presented in section 4.1.2. In section 4.1.3 we
comment on properties and possible enhancements of the presented approach. In the
subsequent sections the resulting approximation of the (space-time) interface will be
denoted as Γh (Γ∗,h) and the (space-time) domains as Ωi,h (Qi,h).

4.1.1 Approximation of implicit space domains

For the case of a stationary interface a solution strategy for the approximation of implicit
domains has been discussed in [GR11, Chapter 7.3]. We briefly recall the idea.

We consider an element with characteristic length h and apply regular subdivisions
dividing every edge into m sub-edges which results in a decomposition into md sub-
simplices. On each sub-simplex the level set function is evaluated linearly (e.g. by
interpolation on the vertices) resulting in a planar zero-level on that sub-simplex. The
sub-simplex is then divided into the corresponding two (convex) polygons. Hence, a
continuous piecewise planar approximation of the interface is constructed. To apply
quadrature on the approximated sub-domains we divide the polygons further into simplices
on which standard quadrature formulas can then be applied. The decomposition is
explained in section 4.3.

4.1.2 Approximation of implicit space-time domains

We discuss the construction of an approximation of the space-time interface. This is
done similarly to the ideas presented in the previous section.

We consider the prism QT with a characteristic spatial length h of T (for instance the
diameter) and the time step size ∆t = tn − tn−1. We apply regular subdivisions in time
and space. Each edge of T is divided into ms parts of equal length and the time interval
is divided into mt parts (see figure 4.1.1). We get mt · md

s smaller prisms {Qk} with
spatial resolution h/ms and temporal resolution ∆t/mt.

Each (smaller) prism Qk is subdivided into d+ 1 (d+1)-simplices {Pl} (For details we
refer to section 4.3.3 for d = 2 and section 4.4 for d = 3). On Pl the level-set function is
interpolated as a linear function in space-time (by simply evaluating the vertex values
only). As the level-set function is now represented as a linear function on each simplex,
the according approximation of the zero-level of the level-set function is piecewise planar
(and continuous within QT ).

IfQT is intersected some simplices Pj within the decompositionQT = {Pj} are intersected
by a planar approximation of the interface. Using the simplex and the (hyper-) plane one

can find a decomposition of Pj into simplices {P(m)
j } which are no longer intersected and
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4 Numerical integration on implicitly defined domains

→ →

mt = 1, ms = 1 mt = 2, ms = 1 mt = 2, ms = 2

Figure 4.1.1: An intersected prism in d+ 1 dimensions, with d = 2. The original prism (left),
the prisms after uniform subdivision in time (middle) and after subdivision in
space and time (right).

form a decomposition of Pj, Pj =
⋃
mP

(m)
j (cf. section 4.3.3 for d = 2 and section 4.4.4

for d = 3). Furthermore the plane intersecting one simplex Pj can also be decomposed
into uncut d-dimensional simplices. As these decompositions are neither obvious nor
standard for the case d = 3 a solution strategy is presented in detail in section 4.4. With
this strategy one obtains an explicit decomposition of QTi into uncut (d+1)-dimensional
simplices and of Γ∗,h into d-dimensional simplices.

4.1.3 Remarks on piecewise planar approximation of implicitly
defined domains

We comment on properties and possible modifications of the strategy.
Remark 4.1.1 (Approximation quality). For smooth (space-time) interfaces both, the
piecewise planar approximations in space and space-time, result in an approximation of
the interface which is second order accurate in h/ms and ∆t/mt.
Remark 4.1.2 (Adaptive strategy). Instead of a uniform subdivision one can easily
devise a strategy to perform the piecewise planar approximation in an adaptive manner.
We explain this for the stationary case. The extension to the space-time setting is
straight-forward. We divide the simplex into 2d sub-simplices first and check on each of
those if the level set function has a zero level inside it. If this is the case we refine the
sub-simplex further, otherwise not. This is repeated until the edge length of the smallest
sub-simplices reaches a desired size. For the same final edge length the adaptive and the
uniform refinement strategy give the same approximate interface. However the number of
simplices for the subdomains can be significantly reduced with the adaptive strategy. In
figure 4.1.2 the adaptive strategy for the starfish example in section 2.5.2 is shown for
one, two and three levels of adaptive refinements. Note that in this figure the subdivision
of the (convex) polygons into simplices (cf. section 4.3) is already performed.
Remark 4.1.3 (Subdivision into simplices). The strategy to decompose every upcoming
(uncut) geometry into simplices simplifies the handling of the resulting structure. Only
on simplices quadrature rules are applied. This approach is, however, not necessary.
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4.2 Integral types

Figure 4.1.2: Construction of an approximate interface for the starfish problem in section 4.3
using the adaptive strategy in remark 4.1.2 for three levels of refinements (on each
element).

Quadrature rules could also be defined on the convex polygons arising from the intersection
which would typically result in less quadrature points. This is, however, more technical,
especially for the spatially three dimensional space-time case.
Remark 4.1.4 (Small angles). The resulting simplices in the decompositions can have
arbitrary small angles. Note that this does not lead to stability problems as we are using
the decomposition only for the purpose of numerical integration.

4.2 Integral types

As we need to calculate (approximations of) integrals of different kinds, we categorize
these integrals before we discuss their numerical treatment in section 4.3 and section 4.4.
We distinguish those integrals in terms of the sets S we are integrating on. The cases
are denoted as case (m,n,o) where m is the dimension of S, n is the co-dimension of S
and o ∈ {c, n} describes if the set S is cut by the approximate (space-time) interface Γh
(Γ∗,h) (o=c) or not (o=n).

4.2.1 Stationary interface

In this part we list all integral types that are needed to implement the Nitsche-XFEM
discretization in (2.2.41). We recall the notation Ti = T ∩ Ωi,h.

4.2.1.1 d-dimensional measure, co-dimension 0

Integrals appearing on each element for a(·, ·), b(·, ·), sSD(·, ·) and f(·) are integrals on
d-dimensional objects like ∫

Ti

f dx
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4 Numerical integration on implicitly defined domains

We distinguish two different situations: The simplex T is not intersected by the (approxi-
mated) interface. We consider this as case (d,0,n). If on the other hand the simplex is
intersected by the (approximated) interface, the handling of geometry Ti is more involved.
This is denoted by case (d,0,c).

4.2.1.2 d−1-dimensional measure, co-dimension 1

For the space-time integrals stemming from the Nitsche stabilization bilinear form N(·, ·)
on each element we get terms like ∫

ΓT

f ds.

where ΓT = Γh ∩ T . Some terms (in Nc(·, ·)) also depend on the normal direction nΓ.
These integrals only appear on elements that are intersected. The measure is d − 1-
dimensional on the manifold Γh with co-dimension 1. This case is denoted as case

(d-1,1,c).

4.2.2 Space-time interface

In this part we list all integral types that are need to implement the Space-Time-DG
Nitsche-XFEM discretization in its form of a time-slab problem in (3.2.20). We use the
notation for a prism QT = T × In . Accordingly we define QTi = QT ∩Qi,h.

4.2.2.1 d+1-dimensional measure, co-dimension 0

Integrals appearing on each (prism) element for an(·, ·), dn(·, ·) and f(·) in (3.2.20) or
sSD(·, ·) in (3.2.32) are integrals on d+ 1-dimensional objects like

∫

QTi
f dx =

∫ tn

tn−1

∫

Ti(t)

f dx dt , with Ti(t) = T ∩ Ωi,h(t)

We distinguish two different situations: The prism QTi is not intersected by the (ap-
proximated) interface, i.e. the prism is completely in one phase and thus the volume to
integrate on is the prism itself. We consider this as case (d+1,0,n) where numerical
integration can exploit the tensor product structure. If on the other hand the prism QTi
is intersected by the (approximated) interface, the geometry QTi is much more difficult
to handle. In that case d+1-dimensional quadrature on subsimplices has to be applied.
This is denoted by case (d+1,0,c).
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4.2 Integral types

4.2.2.2 d-dimensional measure, co-dimension 0

The integrals in the element contributions of b̂n(·, ·) and cn(ū; ·) in (3.2.20) have the
form ∫

Ti(tn−1)

f dx

and thus are d-dimensional measures. Also here, we distinguish the case of a one phase
element (i.e. an element which is not intersected), denoted by case (d,0,n) and the
case of an intersected element, case (d,0,c). The problem is essentially the same as
for the stationary problem in section 4.2.1.1.

4.2.2.3 d-dimensional measure, co-dimension 1

For the space-time integrals stemming from the Nitsche stabilization bilinear form Nn(·, ·)
on each element we get terms like

∫

ΓT∗

ν(s) · ds.

where ΓT∗ = Γ∗,h ∩ QT . Some terms also depend on the normal direction n. These
integrals only appear on elements that are intersected. The measure is d-dimensional on
the manifold Γ∗,h with co-dimension 1. This case is denoted as case (d,1,c).

4.2.3 Summary of cases

In table 4.2.1 all relevant cases for the Nitsche-XFEM and the Space-Time-DG Nitsche-
XFEM method are summarized and references to subsequent sections where the corre-
sponding numerical treatments are discussed are given.

case 2D 3D ST2D ST3D num. treatment

case(2,0,n) 7 – 7∗ – standard rules
case(2,0,c) 7 – 7∗ – see section 4.3.1
case(3,0,n) – 7 7 7∗ standard rules
case(3,0,c) – 7 7 7∗ see section 4.3.2 (+ section 4.3.3)
case(4,0,n) – – – 7 standard rules
case(4,0,c) – – – 7 see section 4.4.2-4.4.4
case(1,1,c) 7 – – – see section 4.3.1
case(2,1,c) – 7 7 – see section 4.3.2 (+ section 4.3.3)
case(3,1,c) – – – 7 see section 4.4.2-4.4.4

Table 4.2.1: Overview on integral types appearing in the Nitsche-XFEM method (2D / 3D)
and the Space-Time-DG Nitsche-XFEM method (ST2D / ST3D). Marks with an
asterisk label terms stemming from the DG coupling of the space-time method.
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4 Numerical integration on implicitly defined domains

4.3 A strategy to decompose intersected 3-simplices or
3-prisms into simplices

We briefly explain how the subdivision of the (convex) polygons into simplices generated
in the strategy introduced in section 4.1.1 and section 4.1.2 can be done for the case that
dtot ≤ 3, i.e. for a stationary problem with d = 2, 3 or a space-time problem with d = 2.
The much simpler case d = 1 is not discussed.

4.3.1 2D stationary case

For the two-dimensional case the simplex T is a triangle K = T . The approximated
interface is a straight line inside this triangle. We denote the coordinates of the vertices
of the current element as x1,x2,x3, such that K = conv(x1,x2,x3). There exists
c1, c2 ∈ ∂K such that there holds Γh = conv(c1, c2). Without loss of generality
we assume c1 ∈ conv(x1,x3), c2 ∈ conv(x2,x3) and x1,x2 ∈ Ω1,h. Then we have

Kc

Kb

Ka

x3

x2

x1

c1

c2

Figure 4.3.1: Sketch of a cut triangle.

K1 = Ω1,h ∩ K = Ka ∪ Kb with Ka = conv(x1,x2, c1) and Kb = conv(x2, c1, c2).
Accordingly we have K2 = Ω2,h ∩K = Kc = conv(c1, c2,x3). The situation is sketched
in figure 4.3.1. Note that for the cases where one vertex is intersected or an edge coincides
with Γh some of the resulting simplices can have measure zero which is, however, not a
problem.

4.3.2 3D stationary case

In three dimensions the simplex is a tetrahedron T and the approximated interface
is a plane inside this tetrahedron. Let x1,x2,x3,x4 be the vertices of T such that
T = conv(x1,x2,x3,x4). The approximated interface Γh can either be a triangle or a
quadrilateral. We distinguish both cases.
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4.3 A strategy to decompose intersected 3-simplices or 3-prisms into simplices

Case 1: Interface Γh is a triangle. We consider the case where we can characterize
the approximate interface as Γh = conv(c1, c2, c3) with ci ∈ conv(xi,x4), i = 1, 2, 3
and assume (w.l.o.g.) x4 ∈ Ω2,h. Then we have T ∩ Ω1,h = conv(x1, x2, x3, c1,
c2, c3) (a deformed prism) and T ∩ Ω2,h = conv(c1, c2, c3,x4) (a tetrahedron Td =
conv(c1, c2, c3,x4)). We decompose the prism into three tetrahedra T∩Ω1,h = Ta∪Tb∪Tc

x1
x2

x3

x4

c1
c2

c3

x1
x2

x3

c3

x1
x2

c2

c3

x1

c1
c2

c3
x4

c1
c2

c3

T1 = Ta ∪ Tb ∪ Tc
T2 = Td

Figure 4.3.2: Sketch of decomposition of tetrahedron cut by a triangle.

with

Ta = conv(x1,x2,x3, c3),

Tb = conv(x1,x2, c2, c3),

Tc = conv(x1, c1, c2, c3).

The decomposition is sketched in figure 4.3.2.

Case 2: Interface Γh is a quadrilateral. We consider the case where the approximate
interface is a quadrilateral. The vertices are labeled such that x1 and x2 are in a different
domain as x3 and x4. For ease of presentation we introduce the notation y1 = x3 and y2 =
x4. Then, we can characterize the approximate interface as Γh = conv(z11, z12, z21, z22)
with zij ∈ conv(xi,yj), i, j = 1, 2. We assume (w.l.o.g.) y1,y2 ∈ Ω2,h. Both domains
T1 = conv(x1, z11, z12,x2, z21, z22) and T2 = conv(y1, z11, z12,y2, z21, z22) are deformed
prisms and similar to the decomposition of the deformed prism in case 1 we can devise a
decomposition into simplices. We get a subdivision T1 = T xa ∪ T xb ∪ T xc with

T xa = conv(x1, z11, z12, z22),

T xb = conv(x1, z11, z21, z22),

T xc = conv(x1,x2, z21, z22),

and T2 = T ya ∪ T yb ∪ T yc with

T ya = conv(y1, z11, z12, z22),

T yb = conv(y1, z11, z21, z22),

T yc = conv(y1,y2, z21, z22),
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T ∩ Ω1 = Txa ∪ Txb ∪ Txc
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z11

z21
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z21

z22

T ∩ Ω2 = T ya ∪ T
y
b ∪ T yc

Figure 4.3.3: Sketch of decomposition of tetrahedron cut by a quadrilateral.

cf. figure 4.3.3. The decomposition of the interface into simplices is achieved with the
triangles conv(z11, z12, z22) and conv(z11, z21, z22).

Note that for the cases where one vertex or a complete edge is intersected or a face
coincides with Γh some of the resulting simplices can also have measure zero, which is
not a problem.

4.3.3 (2+1)D space-time case

If the space-time method is applied for a spatially two-dimensional problem one has to
deal with the decomposition of a prism element intersected by an approximate interface
which is represented by the vertex values of the level set function. Therefore we divide the
prism QT = K×(tn−1, tn] into three tetrahedra and proceed as in section 4.3.2. The prism
can be represented as QT = conv(x1,x2,x3,y1,y2,y3) with (xi)3 = tn−1 and (yi)3 = tn,
i = 1, 2, 3 and thus we can use the decomposition into K1 = conv(x1,x2,x3,y3),
K2 = conv(x1,x2,y2,y3) and K3 = conv(x1,y1,y2,y3) such that QT = K1 ∪K2 ∪K3.
On those tetrahedra we interpolate the level set function resulting in a linear level set
function and thus a planar approximate interface. Each tetrahedron (if intersected) is
then subdivided into tetrahedra according to the rules in section 4.3.2.
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4.4 A strategy to decompose intersected 4-prisms into pentatopes

4.4 A strategy to decompose intersected 4-prisms into
pentatopes

In this section we introduce a decomposition strategy that allows for a decomposition of
four dimensional prisms into pentatopes as needed for the cases (d+1,0,c) and (d,1,c)

in the Space-Time-DG Nitsche-XFEM method. This approach is new and has been
published in [Leh15].

Firstly, we introduce the definitions of relevant four dimensional geometries in section 4.4.1.
The decomposition of a 4-prism into four pentatopes is presented in section 4.4.2. Note
that this decomposition is already needed to construct (via interpolation of the level-set
function) the piecewise planar space-time interface as described in section 4.1.

In section 4.4.4 a strategy is presented that allows us to decompose a pentatope which is
intersected by a hyperplane (representing an approximation of the space-time interface)
into pentatopes which are not intersected. Figure 4.4.1 sketches the algorithmic structure
of the decomposition strategy. In this algorithm we need a particular geometrical object,
that we call hypertriangle, which can be decomposed into six pentatopes following the
decomposition rule in section 4.4.3.

one cut
4-prism

four
pentatopes

cut
pentatope
(s. 4.4.4)

uncut
pentatope

case 1
(s. 4.4.4.1)

case 2
(s. 4.4.4.2)

one uncut
pentatope

one
4-prism

four uncut
pentatopes

one hyper-
triangle

six uncut
pentatopes

(s. 4.4.2)

(s. 4.4.2)

(s. 4.4.3)

cut geometries uncut geometries uncut pentatopes

Figure 4.4.1: Algorithmic structure of the decomposition strategy proposed in section 4.4.
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4 Numerical integration on implicitly defined domains

4.4.1 Definition of simple geometries in four dimensions

By ei ∈ Rn we denote the i-th unit vector with (ei)j = δi,j for i = 1, .., n and e0 := 0.
Definition 4.4.1 (4-simplex / pentatope). Let xi ∈ R4 for i = 1, .., 5 and di,j := xi−xj.
Iff the vectors di,1 for i = 2, .., 5 are linearly independent, we call the convex hull
P = conv({xi}i=1,..,5) the 4-simplex or pentatope.
Remark 4.4.1 (reference pentatope). Every pentatope P can be represented as an
affine transformation applied to the reference pentatope P̂ = conv({ei}i=0,..4). The
transformation has the form

Φ : P̂ → P , (x̂1, x̂2, x̂3, x̂4)→
5∑

i=1

λ̂i(x̂1, x̂2, x̂3, x̂4)xi,

where λ̂i(x̂1, x̂2, x̂3, x̂4) is the barycentric coordinate of P̂ with respect to the vertex ei−1.
Definition 4.4.2 (4-prism). Let xi ∈ R4 for i = 1, .., 4 and y ∈ R4. Iff {xi}i=1,..,4

defines a 3-simplex (tetrahedron) T = conv({xi}i=1,..,4) and y is linearly independent of
{di,1}i=2,..,4, with di,j := xi − xj, the set

Q = conv({xi}i=1,..,4, {xi + y}i=1,..,4) = {x + αy,x ∈ conv({xi}i=1,..,4), α ∈ [0, 1]}

is called 4-prism.
Remark 4.4.2 (reference 4-prism). Every 4-prism can be represented as an affine linear
transformation applied to the reference 4-prism Q̂ = conv({ei}i=0,..,3}, {ei + e4}i=0,..,3}).
The transformation has the form

Φ : Q̂ → Q, (x̂1, x̂2, x̂3, x̂4)→
4∑

i=1

µ̂i(x̂1, x̂2, x̂3)xi + x̂4y,

where µ̂i(x̂1, x̂2, x̂3) are the barycentric coordinates of the reference tetrahedron T̂ =
conv({ei}i=0,..3).

The next geometry is a little bit more complex. It later occurs as one part of a pentatope
cut by a hyperplane.
Definition 4.4.3 (hypertriangle). We define the reference hypertriangle as

Ĥ := {(x1, x2, x3, x4) ∈ R4
+, x1 + x2 ≤ 1, x3 + x4 ≤ 1}

= conv({x̂i,j}i=1,..,3,j=1,..,3) = K̂ × K̂

where K̂ ⊂ R2 denotes the reference triangle K̂ = conv({χ1, χ2, χ3}) ⊂ R2 with χi =
ei−1 ∈ R2, i = 1, 2, 3 and x̂i,j = (χi, χj) ∈ R4, i, j = 1, 2, 3. Now, let xi,j ∈ R4, i, j =
1, 2, 3. The convex hull H = conv({xi,j}i,j=1,2,3) is called a hypertriangle iff there exists
a transformation

Φ : Ĥ → R4, (x̂1, x̂2, x̂3, x̂4)→
3∑

i=1

3∑

j=1

ρ̂i(x̂1, x̂2)ρ̂j(x̂3, x̂4)xi,j,
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x1

x3

x2

x4

x1

x3

x2

x4

x1

x3

x2

x4

Figure 4.4.2: Sketch of reference geometries. Reference 4-prism Q̂ (left), reference pentatope P̂
(center) and reference hypertriangle Ĥ (right). The dotted line in the left picture
are parallel to the x4-axes and connect the tetrahedra at x4 = 0 and x4 = 1.

where ρ̂i(x̂1, x̂2) is the barycentric coordinate of the reference triangle K̂ corresponding to
the vertex χi. There holds Φ(Ĥ) = H.
Remark 4.4.3 (Sketches). The sketches in figure 4.4.2, figure 4.4.3 and figure 4.4.4
in this section show two dimensional parallel projections of four dimensional objects.
Straight lines in the sketch represent a line (in four dimensions) between two vertices.
Note that the preimage of a point in the two dimensional sketch of the parallel projection
is a two-dimensional set.

4.4.2 Decomposition of a 4-prism into four pentatopes

We consider an arbitrary prism element QT = T × In with a tetrahedral element T and
a time interval In. For each QT there exists a linear transformation Φ mapping from the
reference 4-prism Q̂ to QT which is of the form Φ(x̂, t̂) = (Φx(x̂),Φt(t̂))

T with the time
transformation Φt(t̂) = t̂ · tn + (1− t̂) · tn−1 and the space transformation Φx(x̂) mapping
from the reference tetrahedron T̂ to T .

It is sufficient to consider the decomposition of the reference 4-prism Q̂ into four pen-
tatopes as applying Φ to each pentatope of this decomposition results in a valid decom-
position of Q into four pentatopes. With xi := ei−1 and yi := ei−1 + e4 for i = 1, .., 4 for
the reference 4-prism there holds Q̂ = conv({xi}i=1,..,4, {yi}i=1,..,4). We decompose Q̂
into four pentatopes P̂1, P̂2, P̂3, P̂4, which are defined as follows:

P̂1 := conv({x1,x2,x3,x4,y4}), P̂2 := conv({x1,x2,x3,y3,y4})
P̂3 := conv({x1,x2,y2,y3,y4}), P̂4 := conv({x1,y1,y2,y3,y4})

A sketch of those can be found in figure 4.4.3. To see that this is a suitable decomposition,
we give the following characterization of the pentatopes P̂i in terms of constrained sets

161



4 Numerical integration on implicitly defined domains

and their partial sums B̂i =
⋃i
j=1 P̂j:

P̂1 = {x ∈ Q̂, x3 ≥ x4},
P̂2 = {x ∈ Q̂, x3 ≤ x4, x3 + x2 ≥ x4}, B̂2 = {x ∈ Q̂, x3 + x2 ≥ x4},
P̂3 = {x ∈ Q̂, x1 + x2 + x3 ≥ x4, x3 + x2 ≤ x4}, B̂3 = {x ∈ Q̂, x1 + x2 + x3 ≥ x4},
P̂4 = {x ∈ Q̂, x1 + x2 + x3 ≤ x4}, B̂4 = {x ∈ Q̂}.

One can easily show that the pentatopes are disjoint (except for a part with measure

pentatope P̂1:

x2

x3

x1

x4

pentatope P̂2:

x2

x3

x1

x4

pentatope P̂3:

x2

x3

x1

x4

pentatope P̂4:

x2

x3

x1

x4

Figure 4.4.3: Sketch of pentatopes P̂1, P̂2, P̂3, P̂4 which form a valid decomposition of the
reference 4-prism Q̂.

zero) and sum up to the reference prism:
⋃ P̂i = Q̂. Note further that the measure of all

pentatopes is the same, i.e. meas4(Pi) = 1/24.

4.4.3 Decomposing the reference hypertriangle

Let ui = x̂1,i, vi = x̂2,i, wi = x̂3,i, i = 1, .., 3 with x̂i,j as in definition 4.4.3. We
decompose Ĥ into six pentatopes which are defined as follows:

D̂u= conv({u1,u2,u3,v2,w3}), D̂v = conv({u1,v1,v2,v3,w3}),
D̂w= conv({u1,v2,w1,w2,w3}), D̂1 = conv({u1,v1,v2,w1,w3}),
D̂2 = conv({u1,u2,v2,w2,w3}), D̂3 = conv({u1,u3,v2,v3,w3}).

Note that there is a simple structure behind this decomposition. We define the “diagonal
triangle” as K̂diag = conv(u1,v2,w3) = conv(x̂1,1, x̂2,2, x̂3,3). To the three vertices of

K̂diag we add the missing vertices (underlined) of one of the following six triangles and

form the convex hull.

K̂u = conv({u1,u2,u3}), K̂v = conv({v1,v2,v3}), K̂w = conv({w1,w2,w3}),
K̂1 = conv({u1,v1,w1}), K̂2 = conv({u2,v2,w2}), K̂3 = conv({u3,v3,w3}).
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pentatope D̂u:

x2

x3

x1

x4

pentatope D̂v:

x2

x3

x1

x4

pentatope D̂w:

x2

x3

x1

x4

pentatope D̂1:

x2

x3

x1

x4

pentatope D̂2:

x2

x3

x1

x4

pentatope D̂3:

x2

x3

x1

x4

Figure 4.4.4: Sketch of pentatopes D̂u, D̂v, D̂w, D̂1, D̂2, D̂3 which form a valid decomposition of
the reference hypertriangle Ĥ. The edges of K̂diag are highlighted in red, whereas

the triangles K̂u, K̂v, K̂w, K̂1, K̂2, K̂3 are filled with the corresponding color. The
triangle corresponding to each pentatope is highlighted.

A sketch of those pentatopes is given in figure 4.4.4. Also here, one can show that the
pentatopes are disjoint (except for a part with measure zero), and sum up to Ĥ. To this
end we divide the hypertriangle according to three binary decisions and define

Ĥi,j,k := Ĥ ∩ {(−1)ix2 ≤ (−1)ix4} ∩ {(−1)jx1 ≤ (−1)jx3}
∩ {(−1)k(x1 + x2) ≤ (−1)k(x3 + x4)}, i, j, k = 0, 1

Note that Ĥ1,1,0 and Ĥ0,0,1 are sets with measure zero. All other sets can be identified
with a pentatope from the decomposition:

Ĥ1,1,1 = D̂u, Ĥ1,0,0 = D̂v, Ĥ0,1,0 = D̂w, Ĥ0,0,0 = D̂1, Ĥ0,1,1 = D̂2, Ĥ1,0,1 = D̂3.
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4 Numerical integration on implicitly defined domains

4.4.4 Decomposition of a pentatope intersected by the space-time
interface into uncut pentatopes

We assume that the space-time interface is approximated in a piecewise planar fashion,
s.t. within each pentatope the space-time interface is a (hyper-)plane. This plane divides
a pentatope into two parts. Note that due to the pentatope being a convex set each of the
two parts will still be convex. We now consider a pentatope P which is cut by the plane
G = {x ∈ R4 : x · nG = c} which represents the local approximation of the space-time
interface. Each vertex v is marked corresponding to one of the two half spaces. Vertices
with v · nG < c are marked with a plus (+), all others with a minus (-). Note that this
classification includes the cases where the space-time interface hits vertices (v · nG = c).
We thus can only have two non-trivial situations:

• case 1: One vertex has a sign that is different from all the others or

• case 2: Two vertices have a sign that is different from the other three vertices.

In the following we will consider these cases separately and construct a decomposition of
the parts into pentatopes. Without loss of generality we assume that the vertices in the
smaller group of vertices are those marked with a plus (+).

4.4.4.1 Case 1: Decomposition into one pentatope and one 4-prism

We consider the case where one vertex of a pentatope, say x5, is marked with a
plus (+). All other vertices (x1,x2,x3,x4) are marked with a minus (-). The cut-
ting points of the hyperplane G with the edges are b1 := x1x5 ∩ G,b2 := x2x5 ∩
G,b3 := x3x5 ∩ G,b4 := x4x5 ∩ G. The geometry containing the separated ver-
tex is the pentatope P+ := conv({b1,b2,b3,b4,x5}) while the remainder is Q− :=
conv({x1,x2,x3,x4,b1,b2,b3,b4}). Consider the mapping

Φ : Q̂ → Q−, (x̂1, x̂2, x̂3, x̂4)→
4∑

i=1

µi(x̂1, x̂2, x̂3)(x̂4b
i + (1− x̂4)xi)

with µ̂(x̂1, x̂2, x̂3) the barycentric coordinates of the reference tetrahedron T̂ . The
decomposition of the reference 4-prism Q̂ into the four pentatopes P̂i, i = 1, .., 4 as
described in section 4.4.2 can be used as a triangulation of Q̂. Let Φh be the (pentatope-)
piecewise linear interpolation of Φ at the vertices of this triangulation. Then Φh is an
isomorphism between Q̂ and Q−. This is due to the fact that with the linearity of Φh

on each pentatope P̂i the mapping Φh is an isomorphism between P̂i and its image
Φh(P̂i) which is again a pentatope. As the pentatopes P̂i or Φh(P̂i), respectively, are
non-overlapping it follows that Φh is an isomorphism. Thus the decomposition rule for
the reference 4-prism can also be applied here and we get a valid decomposition by taking
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the four pentatopes

P1 =Φh(P̂1) = conv({x1,x2,x3,x4,b4}),
P2 =Φh(P̂2) = conv({x1,x2,x3,b3,b4}),
P3 =Φh(P̂3) = conv({x1,x2,b2,b3,b4}),
P4 =Φh(P̂4) = conv({x1,b1,b2,b3,b4}).

Decomposition of the space-time interface into tetrahedra for case 1. The trian-
gulation of the interface is trivially obtained with the tetrahedron

P ∩ G = I = conv({b1,b2,b3,b4}).

4.4.4.2 Case 2: Decomposition into one 4-prism and one hypertriangle

Let us consider the case where two vertices of a pentatope are marked with a plus (+),
these are (w.l.o.g.) vertices x4 and x5. All other vertices (x1,x2,x3) are marked with a
minus (-). The cutting points of the hyperplane G with the edges are c1 := x1x4 ∩ G,
c2 := x2x4 ∩ G, c3 := x3x4 ∩ G, d1 := x1x5 ∩ G, d2 := x2x5 ∩ G, d3 := x3x5 ∩ G. Thus
we have to decompose the two parts H− and Q+ into pentatopes with

H− := conv({x1,x2,x3, c1, c2, c3,d1,d2,d3}),
Q+ := conv({c1, c2, c3,d1,d2,d3,x4,x5}).

Let us start with the decomposition of H−. Consider the mapping

Φ : Ĥ → H−, (x̂1, x̂2, x̂3, x̂4)→
3∑

i=1

3∑

j=1

ρi(x̂1, x̂2)ρj(x̂3, x̂4)qi,j

with qi,1 = xi, qi,2 = ci and qi,3 = di where ρi(x̂1, x̂2) are the barycentric coordinates
of the reference triangle K̂ ⊂ R2. Following section 4.4.3, we have a triangulation of
Ĥ into pentatopes {D̂i}. With the same arguments as in case 1 one can show that the
(pentatope-) piecewise linear interpolation Φh of Φ is an isomorphism between Ĥ and H−
and each image Φh(D̂i) is again a pentatope. Therefore we can apply the decomposition
of the reference hypertriangle Ĥ into pentatopes to get the six pentatopes

Du = Φh(D̂u) = conv({x1,x2,x3, c2,d3}),
Dv = Φh(D̂v) = conv({x1, c1, c2, c3,d3}),
Dw = Φh(D̂w) = conv({x1, c2,d1,d2,d3}),
D1 = Φh(D̂1) = conv({x1, c1, c2,d1,d3}),
D2 = Φh(D̂2) = conv({x1,x2, c2,d2,d3}),
D3 = Φh(D̂3) = conv({x1,x3, c2, c3,d3}.
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We now turn over to Q+. For notational convenience define c4 := x4 and d4 := x5. Thus
Q+ = conv({c1, c2, c3, c4,d1,d2,d3,d4}). Now the structure is similar to the situation
for Q− in Case 1 and we can apply the same procedure and get a valid decomposition⋃Pi = Q+ with

P1 =ΦQh (P̂1) = conv({c1, c2, c3,x4,x5}),
P2 =ΦQh (P̂2) = conv({c1, c2, c3,d3,x5}),
P3 =ΦQh (P̂3) = conv({c1, c2,d2,d3,x5}),
P4 =ΦQh (P̂4) = conv({c1,d1,d2,d3,x5}),

with ΦQh the corresponding piecewise linear transformation for the 4-prism.

Decomposition of the space-time interface into tetrahedra for case 2. With similar
techniques as done for the four dimensional volume, we can proceed with the triangulation
of the interface which is isomorph to a 3-prism resulting in tetrahedra Ii, i =, 1, 2, 3:

I1 =conv({c1, c2, c3,d3}), I2 =conv({c1, c2,d2,d3}), I3 =conv({c1,d1,d2,d3})

4.5 Details of the numerical integration for the
Space-Time-DG Nitsche-XFEM method

We briefly address the problem of quadrature on four dimensional simplices (pentatopes)
and the computation of the weighting factor (measure ratio) ν(s), s ∈ Γ∗,h ⊂ R4 needed
for the implementation of the Space-Time-DG Nitsche-XFEM method.

4.5.1 Quadrature on 4D simplices (pentatopes)

Quadrature rules of high order for simplices can be found in standard references (see
e.g. [Str73]) if the dimension ds of a simplex is smaller than three. For ds = 4, i.e. the
simplex is four-dimensional (a pentatope) this is no longer standard. In the literature
only a few integration rules can be found (see eg. [Beh08] and [Str73]). We briefly review
lower order quadrature rules on pentatopes and discuss how to achieve higher order rules
using tetrahedron rules, Duffy transformation and 1D Gauss-Jacobi integration rules.
Integration rules are given for the reference pentatope P̂ .
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4.5.1.1 First order rule

There holds
∫
P̂ 1 dx̂ = 1/24 and

∫
P̂ q(x̂) dx̂ = 1/120 for q(x̂) ∈ {x̂1, x̂2, x̂3, x̂4}, s.t. the

following rule is obviously exact for all polynomials up to degree one:

I1(f) = 1/120
4∑

i=0

f(ei)

4.5.1.2 Third order rule

A third order rule, taken from [Beh08], is as follows:

I3(f) = 1/120
5∑

i=1

f(xi) with λ̂j(x
i) = α for i 6= j and λ̂j(x

i) = β for i = j

where λ̂j is the barycentric coordinate of vertex j in the reference pentatope and the
coefficients are α = 0.118350341907227374 and β = 0.526598632371090503.

4.5.1.3 Higher order rules using the Duffy transformation

A more general approach to derive integration rules for pentatopes is based on the Duffy
transformation [Duf82]. Let ŷ = (ŷ1, ŷ2, ŷ3) ∈ R3, and x̂ = (ŷ, t) ∈ R4. The problem
to compute

∫
P̂ f(x̂) dx̂ =

∫
P̂ f(ŷ, t) d(ŷ, t) can be transformed using the transformation

(ŷ, t)→ (1/(1− t)ŷ, t) = (ỹ, t) (see also figure 4.5.1 for a sketch):

∫

P̂
f(ŷ, t) d(ŷ, t) =

∫ 1

0

∫ 1−t

0

∫ 1−t−ŷ1

0

∫ 1−t−ŷ1−ŷ2

0

f(ŷ, t) dŷ3 dŷ2 dŷ1 dt

[ỹ = 1/(1− t)ŷ]

=

∫ 1

0

(1− t)3

∫ 1

0

∫ 1−ỹ1

0

∫ 1−ỹ1−ỹ2

0

f((1− t)ỹ, t) dỹ3 dỹ2 dỹ1 dt

=

∫ 1

0

(1− t)3

∫

T̂

f̃(ỹ, t) dỹ dt =

∫ 1

0

(1− t)3g̃(t) dt

with f̃(ỹ, t) = f((1 − t)ỹ, t) and g̃(t) =
∫
T̂
f̃(ỹ, t) dỹ . In this form one can apply a

one-dimensional integration rule of the form

∫ 1

0

(1− t)3g̃(t) dt ≈
N∑

k=0

ωig̃(ti)

where ωi and ti are weights and points of the corresponding quadrature rule. In order to
approximate g̃(ti) at every (time) integration point ti a standard 3D quadrature rule can
be applied. Assume this 3D quadrature rule has order q accuracy. The highest order
for the pentatope rule at lowest costs is achieved if a Gauss-Jacobi rule (corresponding
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to the weight (1 − t)3) of order q is used for the numerical integration w.r.t. t. The
resulting quadrature rule has positive weights, but is not symmetric. In principle also the
quadrature rule for the tetrahedron can be derived from lower dimensional quadrature
rules applying the idea recursively. This generic procedure generates quadrature rules
which have slightly more points than symmetric Gauss rules on the simplex. For that
reason, a combination of known symmetric Gauss rules for the tetrahedron and the
Gauss-Jacobi rule gives a good compromise between simplicity of the rule and efficiency
in terms of integration points.

y

t

1

1

0 ≤ t ≤ 1, 0 ≤ y ≤ 1− t

t̃= t,
ỹ= 1

1−ty

t= t̃,
y=(1− t̃)ỹ

ỹ

t̃

1

1

0 ≤ t̃ ≤ 1, 0 ≤ ỹ ≤ 1

Figure 4.5.1: Sketch of the Duffy transformation for d = 1

4.5.2 Computation of ν

We comment on the computation of the weighting factor ν(s), s ∈ Γ∗. The weighting
factor ν(s) in the Nitsche XFEM-DG method can be computed using the space-time
normal n∗ of the space-time interface. One can show that there holds

ν(s) = (1 + (w · n)2)−
1
2 = ‖(n1, .., nd)

T‖, s ∈ Γ∗

with n∗ = (n1, .., nd+1)T the space-time normal at the interface.

As we use a piecewise planar approximation of the space-time interface consisting of
d-simplices in d + 1 dimensions we have to compute a normal to the d-simplex. It is
known that for d = 2 one can use the standard cross-product to compute the normal.
In the next section we quote a generalized cross-product which allows to do the same if
d = 3.

Computing normals to tetrahedra in 4 dimensions

In [Hol91] a generalization of the cross-product is given. Given three vectors u1,u2,u3 ∈
R4 one can compute the cross-product v = X(u1,u2,u3), s.t.

• X(u1,u2,u3) = 0 iff u1,u2,u3 are linear dependent.

• Iff u1,u2,u3 are linear independent then for v = X(u1,u2,u3), there holds: v ⊥ ui,
i = 1, .., 3.
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• αX(u1,u2,u3) = X(αu1,u2,u3) = X(u1, αu2,u3) = X(u1,u2, αu3), α ∈ R

• X(u1,u2,u3) = sign(π)X(uπ(1),uπ(2),uπ(3)), where π is a permutation, i.e. chang-
ing the order of the arguments switches the sign.

This cross-product can be used to compute normals to tetrahedra. The computation is
given below:

Given u,v,w ∈ R4. Compute z = X(u,v,w) ∈ R4 as follows:

a1,2= u1 · v2 − u2 · v1,
a1,3= u1 · v3 − u3 · v1,
a1,4= u1 · v4 − u4 · v1,
a2,3= u2 · v3 − u3 · v2,
a2,4= u2 · v4 − u4 · v2,
a3,4= u3 · v4 − u4 · v3,

z1= w2 · a3,4 − w3 · a2,4 + w4 · a2,3,
z2= −w1 · a3,4 + w3 · a1,4 − w4 · a1,3,
z3= w1 · a2,4 − w2 · a1,4 + w4 · a1,2,
z4= −w1 · a2,3 + w2 · a1,3 − w3 · a1,2.
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CHAPTER 5

Two-phase flow simulations with mass trans-
port

In the last decades different methods for the solution of flow problems involving two
fluid phases have been developed, including the level set [OS88, SSO94, Set99], Volume
of Fluid [NW76, HN81], Arbitrary Lagrangian-Eulerian [Beh01, DHPRF04] and diffuse
interface methods [AMW98, Jac99]. In this chapter we couple the methods for the mass
transport problem presented and analyzed in the previous chapters with a solver for the
fluid dynamics.

Outline of this chapter

In section 5.1 we introduce a very common sharp interface model for the fluid dynamics
of two-phase flows. In recent years, at the Chair for Numerical Mathematics, RWTH
Aachen, numerical methods have been developed to solve this model numerically, cf. the
internet homepage of the two-phase flow solver DROPS [DRO14]. We discuss the most
important features and properties of these methods in section 5.2. The methods are
implemented in the software package DROPS, which has also been developed at the Chair
for Numerical Mathematics. The discussion is held very brief. For a more extensive
overview we refer the interested reader to [GR11]. The methods for the simulation of the
fluid dynamics of a two-phase flow have been tested and compared to experiments and
other numerical codes between scientific groups participating in the Priority Program SPP
1506 “Transport Processes at Fluidic Interfaces” (cf. the internet homepage [SPP14]).
In section 5.3 we present recent results for a benchmark problem which reveal a good
agreement of the numerical prediction and experiments with respect to integral and
local quantities. We conclude the chapter with results of the simulation of a complex
and challenging (one-way) coupled two-phase flow problem involving mass transport in
section 5.4.
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5 Two-phase flow simulations with mass transport

5.1 Model for fluid dynamics in two-phase flows

The fluid dynamics of a two-phase flow problem with a moving interface can be decom-
posed into two simpler problems and their coupling. First, assuming the interface motion
is known, a Navier-Stokes equation on deforming domains is considered in section 5.1.1.
Second, a suitable formulation of the problem where the fluid velocity is assumed to
be known and the interface motion has to be determined is described in section 5.1.2.
The coupling of boths models results in a suitable model for the fluid dynamics in a
two-phase flow problem which is summarized in section 5.1.3.

5.1.1 Two-phase Navier-Stokes model

We briefly introduce a standard sharp interface model which describes the behavior
of two-phase flows. Within the (time-dependent) domains Ωi, i = 1, 2 we consider a
standard model for a viscous incompressible Newtonian fluid and then add suitable
conditions at the interface. We restrict to isothermal conditions and assume that there is
no change of phase. As the phases are viscous the velocity is continuous at the interface,
such that

[[w]] = 0 on Γ(t). (5.1.1)

The second condition, related to the momentum balance at the interfaces is more complex.
We consider a standard model from the literature [Scr60, BKZ92, GR11]. The jump in
the normal stress σ ·n along the interface Γ(t) is proportional to the local mean curvature
κ(x, t)

[[σ · n]] = τκn, x ∈ Γ(t), (5.1.2)

where the mean curvature is defined as

κ(x, t) = − div(n(x)), x ∈ Γ(t). (5.1.3)

The proportionality constant τ is called the surface tension coefficient. In the definition
of the curvature the orientation can be different in other literature, in our definition
a convex interior of Γ results in a negative κ. The stress tensor takes the form of a
Newtonian fluid:

σ = 2µD(w)− pI (5.1.4)

with D(w) := 1
2
∇w + 1

2
(∇w)T , I the identity matrix, µ the dynamic viscosity and p the

pressure.
Remark 5.1.1 (Variable surface tension coefficient). Besides on the geometrical con-
figuration (mean curvature), the surface tension force can also depend on local species
concentrations at the interface or the local temperature. This can be modeled by changing
from a constant τ in (5.1.2) to a function τ = τ(c, cΓ, T ), where c is the concentration
of a certain species dissolved in the fluid phase at the interface, cΓ the concentration of
surfactants (surface active agents) on the interface and T the temperature. In many
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5.1 Model for fluid dynamics in two-phase flows

applications the value of τ(c, cΓ, T ) is significantly lower than the corresponding “clean
interface” value τ , which can lead to so-called Marangoni instabilities. In this work we
do not consider these effects and consider a constant surface tension coefficient τ .

For now, we assume the interface motion is known. This gives the following standard
model.

Given suitable boundary conditions and initial values for w, find w(x, t) and
p(x, t), s.t.

ρi(∂tw + (w · ∇)w)− div(2µiD(w)) +∇p = ρig in Ωi(t), i = 1, 2

div(w) = 0 in Ωi(t), i = 1, 2,

[[σ · n]] = τκn, [[w]] = 0, on Γ(t).

Problem 5.1.1.

Note that densities and viscosities depend on the position of the interface.

5.1.2 Model for the evolution of the interface

There are two popular techniques to represent the motion of a sharp interface. Most
methods for sharp interface models of two-phase flows fall into one of those two classes:
interface tracking or interface capturing methods.

In interface tracking methods, points on the interface (grid points or artificial marker
points) are transported explicitly with the flow field. This method has the advantage
that an explicit description of the interface can be preserved. The major drawback of this
method is that the distribution of control points (grid points or marker points) at the
interface will typically deviate significantly from a uniform distribution and redistribution
gets necessary. If grid points of a mesh are used as control points, this means that
an automated remeshing procedure has to take place after several time steps which
is typically challenging and computationally expensive. Especially difficult to handle
are situations where the topology of the domains changes, for instance collisions of
droplets.

Interface capturing methods such as the Volume of Fluid (VoF) and the level set method
were developed to circumvent problems with topology changes and frequent remeshing.
These methods use an implicit description of the interface, typically in an Eulerian
framework. For that an auxiliary indicator field is introduced. The transport of this field
is described by a linear hyperbolic PDE. For an overview of methods we refer to [Loc13,
Chapter 2]. In DROPS the level set method is used. We discuss the main idea and the
most important properties in the following.
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5 Two-phase flow simulations with mass transport

The level set equation

We introduce the scalar level set function φ = φ(x, t). This scalar function characterizes
the position of the interface and the domains Ωi in the following way. There holds

φ(x, t)





< 0, x ∈ Ω1(t),
> 0, x ∈ Ω2(t),
= 0, x ∈ Γ(t).

(5.1.6)

Thus, given a sufficiently smooth level set function φ, the interface is determined implicitly
by the zero-level of that level set function.

Ω1

Ω1 Ω2

Figure 5.1.1: Sketch of domains Ω1 and Ω2 (left) and elevation plot of a corresponding level set
function satisfying the signed distance property (right).

Another desirable property of the level set function is the signed-distance property,
which means that the scalar value of φ at a point x does not only indicate the domain
in which x lies but further the absolute value of φ defines the (approximate) distance
of that point to the interface Γ(t). φ is called a signed distance function to Γ iff
|φ(x, t)| = |dist(x,Γ(t))| and (5.1.6) holds. If φ only approximately fulfills this property,
i.e. |φ(x, t)| ≈ |dist(x,Γ(t))| the level set function φ is called an approximate signed
distance function. In figure 5.1.1 a level set function which fulfills the signed distance
property exactly is shown for a simple two-dimensional configuration.

We assume that the interface motion is completely determined by the velocity field w of
the flow problem. In that case the interface motion can be described by the following
linear hyperbolic level set problem.
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5.1 Model for fluid dynamics in two-phase flows

Given suitable initial values φ0 and boundary conditions φD on the inflow part of
the boundary ∂Ω−(t) := {x ∈ ∂Ω,w(x, t) · n < 0}, find φ(x, t) such that

∂tφ+ w · ∇φ = 0 in Ω, φ(x, 0) = φ0 in Ω, φ = φD on ∂Ω−(t). (5.1.7)

Problem 5.1.2.

Let φ be the exact solution of problem 5.1.2. Problem 5.1.2 advects the initial values
φ(·, 0) = φ0 with the velocity w. Especially the zero-level (the interface Γ) thus follows
the flow w. Note, that the signed distance property of an initial level set function φ0 is
typically not preserved by the solution of problem 5.1.2.

5.1.3 Two-phase flows model

Note that in problem 5.1.1 it is assumed that Γ(t) is known in order to determine the
velocity w (and the pressure). In problem 5.1.2 the opposite is the case, we assume
w is known in order to determine the level set function φ and thereby Γ. A problem
formulation for the two-phase flow problem with a moving interface can be obtained by
a combination of the level set problem, problem 5.1.2, and the two-phase Navier-Stokes
equations in problem 5.1.1. Note that the resulting coupling between problem 5.1.2
and problem 5.1.1 is highly non-linear. This combination has also been considered in
[CHMO96, SAB+99, PS01, TE00, GR11] and reads as

Given suitable initial and boundary conditions for w and φ, find
w(x, t), φ(x, t), p(x, t) such that

ρ(φ)(∂tw + (w · ∇)w)− div(2µ(φ)D(w)) +∇p = ρ(φ)g in Ωi, i = 1, 2,

div(w) = 0 in Ωi, i = 1, 2,

∂tφ+ w · ∇φ = 0 in Ω,

[[σ · n]] = −τκ · n, [[w]] = 0, on Γ(t).

Problem 5.1.3.

which is complemented by suitable initial and boundary conditions for the velociy w and
the level set function φ. Note that here ρ(φ) and µ(φ) are step functions:

ρ(φ) =

{
ρ1, φ > 0,
ρ2, φ ≤ 0,

, µ(φ) =

{
µ1, φ > 0,
µ2, φ ≤ 0.

A weak formulation of problem 5.1.3 is discussed in [GR11, Chapter 6.3].
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5 Two-phase flow simulations with mass transport

5.2 Numerical methods for solving two-phase flow
problems implemented in DROPS

We briefly summarize the methods used for solving two-phase flow problems in the form
of problem 5.1.3. In section 5.2.1 we explain how the interface motion is discretized
based on a known velocity field, while in section 5.2.2 we explain the discretization of the
two-phase Navier-Stokes equations under the assumption of a known interface motion.
The most important features of the methods implemented in software package DROPS

are discussed in section 5.2.2. The coupling of the equations in the discretization of
problem 5.1.3 is highly non-linear. Usually an iterative decoupling strategy is used to
solve for v, p and φ. This is discussed in detail in [GR11, Chapter 9.1].

In this section we only present the main ideas. For details we refer to [GRR06, GR07b,
GR07a, Gro08] and for an elaborate overview to [GR11].

5.2.1 Discretization of the level set equation

To discretize linear hyperbolic transport equations many established methods exist. In the
framework of finite element methods the Streamline Diffusion (SD) or Streamline-Upwind-
Petrov-Galerkin (SUPG) method is very natural. We thus consider a discretization of
the level set equation problem 5.1.2 using continuous finite elements and a Streamline
Diffusion stabilization as in cf. [Loc13], [GR11, Chapter 7.2] and [RST08]. In [Loc13] a
comparison between this discretization and a discretization based on a Discontinuous
Galerkin method with discontinuous piecewise quadratic finite elements and an upwind
formulation is carried out.

We briefly explain the Streamline Diffusion discretization where the level set field φ is
discretized with the space of continuous piecewise quadratic functions P2 and consider
the semi-discretization in space:
Find φh ∈ P2, such that

(∂tφh, vh)Ω + (w · ∇φh, vh)Ω + (∂tφh + w · ∇φh,w · ∇vh)0,h = 0, ∀ vh ∈ P2 (5.2.1)

where (·, ·)Ω is the standard L2(Ω) scalar product and (·, ·)0,h is defined as (u, v)0,h =∑
T∈Th γT (u, v)T with the stabilization parameter γT = h

‖w‖∞,T . This can be combined

with a method of lines discretization in time.

For an elaborate discussion of the discretization in space and time we refer to [GR11,
Chapter 7.22] and [Loc13].

In practice, besides the space and time discretizations of the level set function there
often is a need for further (numerical) corrections. We briefly comment on two important
ones
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5.2 Numerical methods for solving two-phase flow problems (DROPS)

Remark 5.2.1 (Volume correction). If the velocity field is incompressible then the
volume of the domain Ω1 is preserved exactly for the true solution φ of problem 5.1.2.
Discretization errors will in general lead to a violation of volume conservation. This
is independent of the discretization method as the volume is not a “conserved quantity”
in problem 5.1.2. However, this effect decreases for decreasing mesh sizes. To avoid
nonphysical shrinkage or growth of the domain Ω1 a volume correction is usually applied.
For instance with a proper (global) shift of the level set function φ the volume balance
can be corrected, cf. [GR11, Chapter 7.4.2].
Remark 5.2.2 (Re-Initialization). Another issue is related to the (approximate) signed
distance property. The exact solution φ to problem 5.1.2 does not preserve the (approxi-
mate) signed distance property which can lead to large and small gradients close to the
interface. This again influences the stability and accuracy of the zero-level. It is thus
often necessary to restore the (signed) distance property approximately whenever gradients
get too large or too small. To restore the (approximate) signed distance property different
methods exist. We do not discuss this topic, but refer to [GR11, Chapter 7.4] where the
problem of re-initialization is discussed.

5.2.2 XFEM discretization for the solution of the two-phase
Navier-Stokes equations

We briefly present the methods used in DROPS to discretize the two-phase Navier-Stokes
problem. Spatial discretizations in DROPS are based on a multilevel hierarchy of nested
simplicial grids. The multilevel hierarchy allows for adaptive refinements and coarsenings.
On these grids the standard Hood-Taylor P2-P1 stable velocity-pressure pair is used for
the discretization of the flow variables, i.e. the velocity is discretized with continuous
piecewise quadratics and the pressure with continuous piecewise linear functions.

For the discretization of two-phase problems DROPS has essentially two special components.
Due to the interface condition the pressure will in general be discontinuous across the
interface and the velocity has kinks across the interface. To account for the jump in the
pressure, a discretization using the XFEM for the pressure field is used. To this end the
pressure space of continuous piecewise linear functions is enriched with discontinuous
functions as presented in section 2.2.1. A discontinuity in the viscosities can further lead
to a discontinuity in the normal derivative of the velocity. A stable XFEM enrichment
to capture those kinks in the velocity is the topic of ongoing research. In the version of
DROPS used in this work no special treatment for potential kinks in the velocity field is
used. An appropriate numerical evaluation of the curvature κ for a given level set field φ is
important for obtaining an accurate resolution of surface tension forces. The discretization
of the surface tension force uses a modified Laplace-Beltrami characterization of the mean
curvature which has been presented and analyzed in [GR07b], see also [GR11, Chapter
7.6].

In the context of two-phase flows the topic of time discretization for the fluid dynamics and
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5 Two-phase flow simulations with mass transport

Algorithmic structure in DROPS
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Figure 5.2.1: Algorithmic structure (left) and some important components of DROPS.
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5.3 Benchmark problem with complex two-phase fluid dynamics

the development of robust and efficient iterative solvers for the arising linear systems is
very difficult. Solution strategies for these problems have been developed and implemented
in DROPS. In figure 5.2.1 some of the most important ingredients that are used in DROPS

to simulate two-phase flows (including surfactant and mass transport) are illustrated.
The left column in this figure shows the algorithmic structure of the time stepping
within DROPS. The coupling of the equations in the discretization of problem 5.1.3 is
highly non-linear. Usually an iterative decoupling strategy is used to solve for w, p
and φ. This is discussed in detail in [GR11, Chapter 9.1]. It is worth noting that the
coupling of the different equations leads to nested loops to resolve the non-linearities. The
elements in the second column represent the essential tasks, for instance the discretization
of the Navier-Stokes equations or the solution of linear systems. In the last column
some of the methods used to solve the tasks are listed. The dashed lines in the figure
represent the corresponding connections between the algorithmic components, the tasks
and the methods. Details on all the aspects illustrated in figure 5.2.1 can be found in
[GR11].

5.3 Benchmark problem with complex two-phase fluid
dynamics

The comparison of experiments and numerical simulations or the comparison between
numerical codes to assess the quality of models, numerical methods and numerical codes
for complex interfacial two-phase flows is a very challenging task.

For the purpose of validating and comparing different numerical codes, benchmarks based
on simplified problems with artificial parameters and configurations have been considered.
Two popular examples are the benchmark problems in [HTK+09] and [Zal79]. For DROPS
a code-to-code comparison similar to that in [HTK+09] has also been considered in
[AEG+14]. A comparison between DROPS and experimental results based on the rise
velocity of rising droplets in liquid-liquid systems has been carried out in [BGG+10].

Within the Priority Program SPP 1506 “Transport Processes at Fluidic Interfaces” by the
German Research Foundation DFG (cf. the internet homepage [SPP14]) Taylor bubble
flows have been considered as a suitable and demanding gas-liquid two-phase flow system
to compare local quantities between experiments and numerical simulations using different
models, numerical methods and numerical codes. In [ABH+13] and [MBL+14] benchmark
problems for 2D and 3D Taylor flows have been defined and different numerical codes have
been compared to high-resolution experimental data based on X-ray data of the bubble
shape. A summary of the results in [ABH+13] and [MBL+14] is given in [ALM+13].
In these papers different numerical approaches, interface capturing (Volume of Fluid,
level set) and interface tracking (ALE method), and different models (sharp interface
models and diffuse interface models) have been used and compared. The benchmark
problems allow for the validation of 2D and 3D codes. We briefly discuss the relevance
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5 Two-phase flow simulations with mass transport

and the physics of Taylor flows in section 5.3.1 and describe the concrete physical setting
of the case in [MBL+14] in section 5.3.2. In section 5.3.3 we comment on the different
numerical codes. The discussion of the case setup and the simulation parameters is
given in section 5.3.4. The results of the comparison in [MBL+14] are summarized in
section 5.3.5. These results demonstrate the quality of the numerical methods applied in
DROPS for the simulation of the fluid dynamics in two-phase flows.

5.3.1 Physics of Taylor flows

In Taylor flows the flow of elongated gas bubbles in capillary channels is considered. The
gas bubbles typically exhibit bullet shape (cf. figure 5.3.1). One distinguishes between
Taylor bubbles which are single gaseous bubbles in a narrow channel and Taylor flow
(also: bubble train flow) where several subsequent bubbles are separated by a liquid slug.
Although the bubbles fill the channel almost completely the walls of the channel are not
wetted (cf. figure 5.3.1).

Figure 5.3.1: X-ray projections of a Taylor bubble in a square capillary. The image is taken
from [MBL+14].

Taylor flows appear in many chemical applications in the field of micro-fluidics, for instance
as multiphase monolith microreactors [KKMH05], heat-exchanger reactors [RLGC11] or
fuel cells [BS09].

In view of those applications important features of Taylor flows are the high ratio between
interface area and volume (the specific exchange area), the small liquid film between
gaseous phase and wall and the high mixing rate due to recirculations between bubbles.
In [AG08, GFH10] recent reviews on Taylor flow can be found. Viscous and surface
tension effects are typically the dominating forces in Taylor flows.

5.3.2 Description of the benchmark problem

In [ABH+13] and [MBL+14] cases have been considered where surface tension effects are
predominant. To characterize the ratio between viscous and surface tension forces the
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5.3 Benchmark problem with complex two-phase fluid dynamics

liquid phase (Ω2 = ΩL) disperse phase (Ω1 = ΩB)

density ρ [kg/m3] 1195.6 1.3
dynamic viscosity µ [Pas] 28.54× 10−3 20× 10−6

surface tension τ [N/m] 66.69× 10−3

bubble volume VB [m3] 17.5× 10−9

channel width D [m] 1.979× 10−3

bubble velocity UB[m/s] 0.20557
gravity g[m/s2] 9.81

Table 5.3.1: Parameters for Taylor Bubble setting in [MBL+14]

dimensionless Capillary number is used:

Ca = µLUB/τ.

Here µL = µ2 is the dynamic viscosity of the bulk fluid, UB is the (average) bubble
velocity and τ the surface tension coefficient. The setting in [MBL+14] considers an
upward-rising pressure-driven flow, where gravity effects do not play an important role.
As the substance system is water-glycerol and air the ratios in the densities and viscosities
are in the order of 1000. The applied pressure difference is adjusted such that the resulting
flow is laminar, which means that viscous forces play an important role. To quantify
this, the ratio between inertia and viscous forces is introduced, which is described by the
Reynolds number

Re = ρLUBD/µL,

where ρL = ρ2 is the density of the bulk fluid and D is the hydraulic diameter of the
channel. The fact that the flow is laminar results in a quasi-stationary rise configuration
which significantly facilitates the comparison between simulations and experiments.

The substance system in [MBL+14] consists of 76.9% (volume) glycerol (Sigma Aldrich
49770) and 23.1% (volume) deionized water for the liquid phase at a temperature of
27.9◦C and air as gaseous phase. This results in the material parameters summarized in
table 5.3.1 and the dimensionless numbers Ca ≈ 0.088 and Re ≈ 17.

5.3.3 Methods compared in the benchmark problem

In [MBL+14] a comparison between four numerical codes and experimental data has
been carried out. We give a short overview on the experiments and numerical codes that
have been used to obtain the results.

Experiments. The experiments have been carried out in the Institute of Fluid Dy-
namics, Helmholtz-Zentrum Dresden-Rossendorf. In the experiments Taylor bubbles
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are repeatedly injected into a square borosilicate glass capillary of length 90D ≈ 18cm.
The experimental setup allows for a continuous operation where one Taylor bubble after
another is rising. The distance between the bubbles, however, is sufficiently large, such
that there are no interactions between the bubbles. The visualization experiments have
been carried out at the synchrotron radiation source ANKA (Karlsruhe Institute of
Technology). Using a high speed camera with 36000 frames per second radiographic
images were taken. The images were taken after a distance of 70D ≈ 14cm which ensured
that the quasi-stationary rise configuration of the Taylor flow had developed. The camera
was slowly rotated to obtain images from different angles. The three-dimensional bubble
shape has then been reconstructed by superposition of (many) images of different angles
and different bubbles. Details on the experimental setup and the data processing can be
found in [BdSRBH14].

FS3D. The in-house code FS3D is a two-phase flow solver which applies a Volume of
Fluid method for interface capturing and is being developed at the Institute of Aerospace
Thermodynamics (ITLR), University Stuttgart and the Center of Smart Interfaces, TU
Darmstadt, see also the FS3D homepage [FS314]. The solver is based on a Finite Volume
discretization on Cartesian staggered grids for the Navier-Stokes equations and the
volume fraction which is the indicator field used to describe the interface position in
the VoF method. The sharp interface is constructed using a Piecewise Linear Interface
Calculation (PLIC) method. Details on the PLIC method can be found for instance
in [PP04]. FS3D is parallelized using MPI and OpenMP. For further details we refer to
[Rie04] and the corresponding references in [MBL+14].

TURBIT-VoF is another in-house code which is developed at the “Institut für Katal-
yseforschung und -technologie”, at the Karlsruhe Institute of Technology (KIT), see
also the TURBIT-VoF homepage [TUR14]. Similar to FS3D it uses a Finite Volume dis-
cretization with a Volume of Fluid method for interface capturing. The interface is also
computed using the PLIC method with an algorithm different from the one applied
in FS3D. The numerical treatment of surface tension forces is also different from the
one in FS3D, see the discussion in [MBL+14, Section 3.2]. For details on the numerical
methods used in TURBIT-VoF we refer the interested reader to [Sab00] and the references
in [MBL+14].

OpenFOAM/interTrackFoam. OpenFOAM (Open Field Operation And Manipulation)
is an open source library for computational continuum mechanics with a variety of
solvers, see also the OpenFOAM homepage [Ope14]. The solver used in [MBL+14] is the
interface tracking method interTrackFoam which uses a Finite Volume discretization
on a polygonal mesh which is aligned to the interface. We will abbreviate the solver as
OF/iTF. For the details we refer to [MBL+14], the references therein and [TJ12].

The four numerical codes considered for this benchmark problem, FS3D, TURBIT-VoF,
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Figure 5.3.2: Rear view on the Taylor bubble in [MBL+14] for simulations with DROPS(left),
FS3D(center) and OF/iTF(right). The graphic is taken from [MBL+14].

OF/iTF and DROPS, are very different in many aspects. However, they are all based on the
same sharp interface formulation (cf. problem 5.1.3) of the problem. We briefly highlight
important differences between the codes. The discretization of the bulk equations is
already different. Here DROPS uses a finite element method whereas all other codes use
some version of a Finite Volume discretization. The interface representation is also of
different structure. While the OF/iTF discretization has an explicit representation of the
interface in terms of cell faces, DROPS, FS3D and TURBIT-VoF use an indicator field to
represent the interface implicitly. DROPS uses a level set method for this representation
whereas FS3D and TURBIT-VoF use the volume fraction of the VoF method for that. In
figure 5.3.2 this difference is depicted by showing the representation of the interface
for the methods DROPS, FS3D and OF/iTF. Note that a representation of the interface
obtained with TURBIT-VoF would be very similar to that of FS3D.

5.3.4 Case setup in DROPS

For the simulation of the Taylor bubble benchmark problem with DROPS a periodic
unit cell of length 6D is introduced. With this unit cell configuration the distance
between two bubbles is sufficiently large such that we can assume that the interaction
between the bubbles is negligible. This assumption has been justified by a comparison
with simulation results on a unit cell with length 10D. As boundary conditions no-slip
boundary conditions have been applied at the channel walls. On the top and bottom of
the channel periodicity conditions have been applied. In order to render the periodicity
physically meaningful the pressure is decomposed into a linearly decreasing part in
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5 Two-phase flow simulations with mass transport

the vertical direction z, −p̄z, where p̄ is a constant, and a periodic part p̃, which is
the unknown pressure field in the simulation, such that p = p̃ − p̄z. Thus there holds
∇p = ∇p̃−∇(p̄z) where the latter contribution is shifted to the r.h.s. of problem 5.1.3
and acts as a volume force (0, 0, p̄) in the Navier-Stokes equations. The constant p̄ is used
to control the bubble rise velocity. We adjust p̄ such that the experimentally determined
bubble velocity UB is matched sufficiently accurate in our simulation.

As initial conditions for the interface geometry we used a cylinder combined with two
half spheres of the same radius where the radius has been determined such that the
bubble volume determined in the experiments is matched. The initial condition for the
velocity was obtained by solving a stationary two-phase Stokes problem on this geometry.
The unsteady simulation was continued until bubble length, minimal film thickness and
the bubble rise velocity were stationary within a certain tolerance.

Simulation parameters

For the simulation in DROPS we used a uniform mesh of size 5× 5× 30 on the coarsest
level with two additional adaptive refinements towards the interface. The average number
of velocity/pressure unknowns was around 321000/26000. For the time discretization
we used a version of the backward Euler method with time step size ∆t = 8 × 10−5.
Figure 5.3.3 illustrates the mesh and the magnitude of the relative velocity of the
numerical solution obtained with DROPS. It is important to note that in DROPS and
TURBIT-VoF the pressure difference (which corresponds to the linear decreasing pressure
part p̄) is used to match the bubble rise velocity. FS3D and OF/iTF do not use a periodic
pressure in the simulation setup. The setup is different such that there the average fluid
velocity in the slug (region between two bubbles) has to be prescribed. This is adjusted
such that the experimental bubble rise velocity is matched. More details about this can
be found in [MBL+14, Section 4.1].

Figure 5.3.3: Simulation results for DROPS. Mesh and interface at a lateral cut. Coloring indicates
the relative velocity v − (0, 0, 1)TUB. In the visualization each triangle has been
divided into four triangles.
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5.3 Benchmark problem with complex two-phase fluid dynamics

DROPS exp. TURBIT FS3D OF/iTF

press. difference ∆p[Pa] 267.4 - 275.57 - -
av. liquid vel. UL[m/s] - - - 0.1382 0.1261

bubble rise vel. UB[mm/s] 206.92 205.57 207.8 197.46 205.77
bubble length lB[mm] 7.23 7.20 7.11 7.197 7.202

vert. min. film thickn. tv[mm] 0.049 0.0505 0.028 0.0477 0.059
diag. min. film thickn. td[mm] 0.4392 0.4331 0.442 0.4362 0.4392

max. mean curv. κ[m−1] 4083.4 4055.0 4306.4 4045.0 4020.9

Table 5.3.2: Simulation results of the benchmark problem in [MBL+14]

5.3.5 Simulation results

Several global quantities have been compared such as the obtained bubble rise velocity,
the bubble length, the vertical minimal film thickness and the diagonal minimal film
thickness and the maximum mean curvature. The numbers are shown in table 5.3.2.
The results are in good agreement. Note that the minimal film thickness in the lateral
cut tv ≈ 5 × 10−2mm is smaller than the smallest edge length in DROPS which is
h = 9.895× 10−2mm.
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Figure 5.3.4: Comparison of interface positions between experiments and numerical simulations
based on a lateral cut. Graphic taken from [MBL+14].

In figure 5.3.4 the interface in a lateral cut is compared between the codes and the
experiment. To this end, the bubble tip of all the methods is fixed at the same location.
One observes that the shape of the interface is hardly distinguishable except for small
deviations at the bubble rear. Those are essentially stemming from different bubble
lengths. In [MBL+14] further diagrams and a more detailed discussion can be found. We
conclude that all codes give reliable results for the considered case. This is particularly
interesting for the results obtained with DROPS as the viscosity ratio in this case is very high
(≈ 1000) which leads to kinks in the velocities. These kinks are not specifically accounted
for in the discretization with DROPS, yet. Even though small spurious oscillations close to
the rear of the bubble have been observed, the results are in very good agreement with
experiments and the other numerical codes.
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5 Two-phase flow simulations with mass transport

Remark 5.3.1 (Comparison of velocity fields). The presented benchmark problem com-
pared bubble shapes that have been measured in the experiments. Currently, within the
SPP 1506 (see [SPP14]) the comparison and validation of velocity profiles between the
same numerical codes and experiments is the topic of a research collaboration. Exper-
iments are carried out at the Institute of Multiphase Flows, Hamburg University of
Technology. The results indicate that the setup considered within this collaboration is
more demanding compared to the one discussed here. Preliminary results, however, look
promising. In the publication [MHS14] which is mainly about the experimental setup for
this new comparison study some preliminary results obtained with DROPS can be found.

5.4 Two-phase flow problem with mass transport

In the last section we presented a benchmark problem which demonstrated that the
numerical methods used in DROPS are suitable for the simulation of complex two-phase
flow problems. The setting in that section did not consider mass transport. In this
section we consider the simulation of two-phase flows taking mass transport of a soluble
species into account. For the simulation of the mass transport we use the Space-Time-DG
Nitsche-XFEM method. To this end we consider the one-way coupling of the fluid
dynamics problem, problem 5.1.3, and the problem of mass transport, problem 3.1.1. This
one-way coupling means that we only consider the influence of the flow field on the mass
transport but no back-coupling of the concentration field on the fluid dynamics. Such a
back-coupling could be of importance if effects of variable surface tension coefficient are
significant, see also remark 5.1.1.

We validated the Space-Time-DG Nitsche-XFEM method in section 3.4 for artificial
academic problems with deforming interfaces revealing a high accuracy of the method.
In this section we consider a more realistic problem.

In the literature several simplifications are typically made for the validation of methods
concerning the simulation of mass transport. One typical simplification is the restriction
to a stationary interface, e.g. by considering a rising bubble in (hydrodynamically)
stationary state with respect to a frame of reference following the bubble. Such a setting
is less interesting for us as after a restriction to stationary interfaces the space-time finite
element approach considered in this work would no longer be necessary. The feature of
a deforming interface is one of the most challenging aspects of the considered problem
class.

In [HT11] challenging scenarios have been considered for two-dimensional direct numerical
simulation. In that paper mass transport coefficients are compared to relations known
from the engineering literature. Concerning the complexity of the problem an interesting
configuration has also been considered in [Bäu14] and [BB13] where rotational symmetry
is exploited to apply two-dimensional simulations for a real liquid-liquid system. The
numerical results in these publications have been validated with experimental data from
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5.4 Two-phase flow problem with mass transport

[Weg09]. The parameters in both cases lead to boundary layers which are extremely
thin. In [HT11], [Bäu14] and [BB13] those could be resolved using two-dimensional
simulations. DROPS is a pure three-dimensional code such that both cases are not feasible
for a simulation with DROPS.

In the following we consider a setting as in [KBW03] and [BKW04], where the dissolution
of oxygen from a rising (and deforming) 4mm air bubble into a water-glycerol solution is
investigated.

The structure of this section is as follows. We discuss the physical setting of the problem in
section 5.4.1 and the setup of the simulation with DROPS in section 5.4.2. In section 5.4.3
we conclude the section with the discussion of the simulation results.

5.4.1 Physical setting

We explain the setting of the example considered in [KBW03], [BKW04], [Koe04, Chapter
9.8.3] and [One07, Chapter 4.3.2]. A sufficiently large container filled with a water-glycerol
mixture is considered and close to the bottom a 4mm air bubble with a spherical shape
is placed. The concentration of oxygen inside the fluid is assumed to be zero at the
initial state and constant (u0) in the gas. The bubble rises up due to buoyancy forces
and during this process the bubble is deforming until it reaches a quasi-stationary state
with an ellipsoidal shape. During this evolution oxygen dissolves into the fluid and a
wake of oxygen concentration follows the path of the bubble (see figure 5.4.1).

In [KBW03, BKW04, Koe04, One07] the physically correct material parameters concern-
ing the fluid dynamics have been considered. However, for the diffusion in the liquid
phase an artificial parameter has been used to prescribe different Schmidt numbers (Sc)
in the liquid. The Schmidt number describes the ratio between the kinematic viscosity
ν = µ/ρ and the diffusion coefficient α in a fluid,

Sc =
µ

ρ α
.

The Schmidt number can also be characterized as the ratio between the Péclet number
Pe and the Reynolds number Re, Sc = Pe/Re. Typical values for the Schmidt number
are Sc = 1000 in liquids and Sc = 1 in gas.

The mass transport at the interface is essentially determined by the interplay of two
processes: convection and diffusion. First, there is the diffusion through the interface
which acts in normal direction to the interface. Second, species are transported away from
the interface by convection. Note, that the velocity field at the interface is tangentially
aligned to the interface. This leads to boundary layers the thickness of which is determined
by the ratio between diffusion and convection.
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0u0 0.0265u0

t = 0.00s t = 0.05s t = 0.10s t = 0.15s t = 0.20s

Figure 5.4.1: Concentration contours in the fluid phase at several time for the dissolution
process of oxygen from a rising air bubble in a water-glycerol mixture for Schmidt
number Sc = 10.

5.4.1.1 Fluid dynamics

The substance system under consideration consists of a water-glycerol mixture as the
liquid phase and air as the gas phase. The material parameters for this substance system
are listed in table 5.4.1. Here, the mixture for water and glycerol consists of 18% (volume)
water and 82% (volume) glycerol. The parameters are taken from [KBW03, Koe04]
and [RR00]. In [RR00] experimental results for the fluid dynamics are given. Starting
from a system at rest the initially spherical bubble rises and reaches a quasi-stationary
rise configuration with rise velocity UB after short time. In this rise configuration the
bubble has an approximately ellipsoidal shape. To characterize the shape of the bubble
the aspect ratio ω between the shortest diameter (vertical) and the longest diameter
(horizontal) is used.

The quasi-stationary rise velocity UB and the aspect ratio ω have been determined
experimentally to UB = 0.135m/s (cf. [RR00, Fig.9, filled circles]) and ω = 0.86 (cf.
[RR00, Fig.11, filled circles]).

The direct numerical simulation of the fluid dynamics for this system has been consid-
ered in [KBW03, BKW04, Koe04] and [One07, Chapter 4.3.2] with FS3D and TURBIT-VoF

where the rise velocity has been determined to 0.12m/s (FS3D) and 0.1136m/s (TURBIT-VoF),
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5.4 Two-phase flow problem with mass transport

liquid phase (Ω2 = ΩL) disperse phase (Ω1 = ΩB)

density ρ [kg/m3] 1205 1.122
dynamic viscosity µ [Pas] 0.075 1.824× 10−5

Henry weight β [1] 1 33
diffusion coeff. α [m2/s] 6.224× 10−5 · Sc−1 1.916× 10−5

surface tension τ [N/m] 0.063
init. bubble diameter d [m] 0.004

gravity g [m/s2] 9.81

Table 5.4.1: Material parameters for the considered setting. The setting is the same as in
[KBW03, BKW04, Koe04].

respectively and the aspect ratio has been determined to 0.86 (FS3D) and 0.87 (TURBIT-VoF).
Further, the distance covered by the barycenter of the bubble has been determined as
20.5mm (FS3D) and 21.28mm(TURBIT-VoF).

The dimensionless numbers corresponding to the quasi-stationary rise configuration are
Re ≈ 7.6 and Ca ≈ 0.14, that means that surface tension plays an important role and
that the flow is laminar.

5.4.1.2 Mass transport

We consider the diffusion coefficient αB of air. The value is taken from the literature. For
the diffusion coefficient in the liquid we use an artificial value depending on the Schmidt
number αL = µL/Sc. In [KBW03, BKW04, Koe04] different Schmidt numbers have been
considered for this setting(Sc = 1, 2, 5, 10, 20, 50, 100). Here, we only consider the case
Sc = 10 where convection dominates but the thickness of boundary layers is not too
large. This case is part of the studies in [KBW03, BKW04, Koe04]. Similar studies have
also been considered in the recent paper [BF13].

The diffusion coefficient of air is larger than in the liquid for Sc > 1. For Sc = 10 the
diffusion inside the bubble is considerably faster than in the liquid such that the smallest
boundary layers are in the liquid phase.

The Henry weights have a ratio of 33, which implies that the concentration at the interface
from inside the bubble is 33 times higher than outside. Note that the ratio of 33 in the
Henry weight is not “small” in the sense of assumption 1.2.3 (moderate ratios of β). The
ratio of diffusivities (for Sc = 10) is of the same order (≈ 33) whereas the ratio of scaled
diffusivities α/β is of order one.

As initial conditions we consider a constant (non-zero) oxygen concentration u0 inside
the air bubble and no concentration in the liquid. Note that this is not in agreement
with the Henry interface condition (1.2.1c) which for t > 0 leads to a parabolic boundary
layer, cf. section 2.5.5, especially figure 2.5.10, where the same effect has been discussed
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5 Two-phase flow simulations with mass transport

for a transient problem with a stationary interface and an artificial flow field.

The ratio between convection and diffusion can be characterized using the dimensionless
Péclet number Pe = d UB/α. For the gaseous phase we have the Péclet number PeB ≈ 25
and for the liquid phase we have PeL ≈ 7.6 · Sc = 76. Hence, the problem is convection
dominated.

5.4.2 Case setup in DROPS

We explain how the problem described before is simulated in DROPS. As wall effects are
assumed to be negligible the initial configuration of the physical setting is essentially
rotational symmetric. Thus, the setting allows for a two-dimensional simulation exploiting
rotational symmetry.

DROPS is a pure three-dimensional code, that means that a two-dimensional (rotational
symmetric) setup is not possible with DROPS. Nevertheless we can exploit the symmetry
to some extent. To this end, we consider the problem on the cylindrical domain with
radius 8mm and height 40mm. The initial radius of the air bubble is 2mm such that
we can assume that the boundary conditions at the wall have negligible effect on the
rise behavior and allow for standard no-slip boundary conditions on the whole boundary.
Now we consider a 30◦-wedge of the cylinder and impose symmetry boundary condition
on the rectangular faces of the wedge, see also figure 5.4.2. The corresponding mesh has
been generated using the NETGEN mesh generator [NET14, Sch97].

n
o-

sl
ip

symm. b.c.

symm. b.c.

Figure 5.4.2: Exploiting rotational symmetry to reduce computational overhead. Problem on
cylindrical domain is reduced to a problem an a 30◦-wedge.

The symmetry boundary conditions are

v · n = 0 on ∂Ωsymm and Pτ (σ · n) = 0 on ∂Ωsymm,

where Pτ = I − nnT is the tangential projection on ∂Ωsymm. To impose these boundary
conditions a slightly adapted version of DROPS is used where a Nitsche-type technique has
been applied to implement these boundary conditions. Note that this Nitsche technique

190



5.4 Two-phase flow problem with mass transport

is non-standard as it also has to account for surface tension forces stemming from the
fact that the interface touches the symmetry boundary ∂Ωsymm.1

Figure 5.4.3: Final mesh and streamlines of the flow field at time T = 0.2.

For the discretization in space we consider the initial grid as shown in figure 5.4.2(right)
with three additional levels of adaptive refinements where we refine towards the concen-
tration wake and even more towards the bubble interface (cf. figure 5.4.3). The smallest
mesh size is h ≈ 0.15mm which corresponds to a resolution of the bubble diameter with
around 25 cells which is comparable to the resolution used in [KBW03, BKW04, Koe04]
where the bubble diameter is resolved with 32 cells. The resolution in DROPS corresponds
to approximately 100000 velocity unknowns and approximately 11000 (space-time) con-
centration unknowns. Note that the grid is adapting in time depending on the bubble
position. Further note, that convection is dominating especially in the liquid phase. Here,

the maximum mesh Péclet number is P T
h =

|v|∞,T h
2αL

≈ 15.5. However, no stabilization
w.r.t. the dominating convection is applied.

For the discretization in time we consider a fixed step size of ∆t = 0.0025, such that
800 time steps are needed to reach the final time T = 0.2. For the fluid dynamics
we use a backward Euler discretization. Due to the non-linearity of the Navier-Stokes
equations and the coupling with the level set equation the solution of the fluid dynamics
problem is by far more expensive than the solution of the mass transport problem with

1At this point, the author would like to thank Liang Zhang for providing his implementation of these
boundary conditions in DROPS.
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the Space-Time-DG Nitsche-XFEM method. The linear systems for the fluid dynamics
are solved using direct solvers. This is due to the fact that the iterative linear solvers in
DROPS are not robust for problems with high ratios in the density and the viscosity such
that direct solvers turned out to be faster in this case.

The Nitsche stabilization in the Space-Time-DG Nitsche-XFEM method is chosen as
λ = 20 and a diagonally preconditioned GMRES method has been applied to solve the
arising linear systems.

5.4.3 Simulation results

We present the results obtained with DROPS. The final velocity field obtained with DROPS

is displayed in terms of streamlines in figure 5.4.3. For the rise velocity and the distance
covered by the barycenter of the bubble we get values of 0.112m/s (cf. figure 5.4.4)
and 21.44mm, respectively. Both measures are in very good agreement with the results
in [One07] and in acceptable agreement with the results in [KBW03, BKW04, RR00].
The final aspect ratio ω of the bubble shape is 0.88 and thus close to the values in
[One07, KBW03, BKW04, RR00]. We conclude that the flow field obtained with DROPS

is sufficiently accurate to serve as reliable input for the simulation of mass transport.
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Figure 5.4.4: Bubble rise velocity for physical correct materical parameters and increased
viscosity for the air bubble, cf. remark 5.4.1.

In figure 5.4.1 the evolution of concentration isolines in the liquid for the simulation
with the DROPS setup as describe in section 5.4.2 at different time stages is shown. The
corresponding concentration fields inside the bubble at different times and the streamlines
corresponding to the velocity (relative to the bubble rise velocity) at T = 0.2 are shown
in figure 5.4.5.

The simulation captures the physics of the problem very well. We discuss the main effects.
The concentration that diffuses into the liquid phase is directed towards the wake of
the bubble by the convective flow field. As a consequence boundary layers form and we
observe very steep gradients close to the interface. The gradients are steepest at the tip
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Figure 5.4.5: Concentration distribution inside the gaseous bubble.

of the bubble. This is due to the fact that the tip always sees “fresh” liquid arriving from
above while at all other locations at the interface the fluid already traveled some distance
along the interface such that diffusion could take place. Accordingly the concentration
gradient is lowest at the rear of the bubble. This again leads to the fact that inside the
bubble the concentration at the interface is highest at the rear and is pushed towards the
tip of the bubble due to the vortex that has formed inside the bubble. Due to the fact
that convection dominates in the liquid phase the concentration at the tip is very small.
Due to the Henry’s law this also results in a small concentration at the tip inside the
bubble. The combination of the fast transfer of concentration away from the tip inside
the fluid and the vortex pushing the liquid with high concentration (at the rear of the
bubble) towards the tip inside the bubble results in boundary layers inside the bubble.
Those can be observed very well in figure 5.4.5. The boundary layers, however, are large
compared to the ones outside the bubble due to a larger diffusion inside the gas.

Next, in figure 5.4.6 we consider the concentration along straight lines which are crossing
the center of the bubble. We consider the line through the tip of the bubble (0◦), a line
through the equator (90◦) and one line at a 135◦ angle from the tip. On those lines
we plotted the concentration. Due to the Henry interface condition the concentration
has jumps across the interface such that the concentration inside the bubble is 33 times
larger than outside. We adapted the scaling for the concentration inside and outside the
bubble. The scaling is chosen such that a continuous line in the plot corresponds to a
concentration field fulfilling the Henry interface condition. We observe in the plot that
this condition is fulfilled very accurately. We considered the data given in [Koe04, Figure
9.35] for a comparison. In [Koe04] the initial concentration u0 is not given explicitly.
From the data given in that work we fitted the initial concentration resulting in an
assumption of an initial concentration of u0 = 25× 10−6mmol

l
. The results are in good

agreement. In the regions where the boundary layer is thin the resolution is probably
not high enough for both codes to resolve the boundary layer accurately. The agreement
is better for the 135◦ degree angle where the boundary layer is much thicker and thus
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Figure 5.4.6: Concentration along lines for angles 0◦, 90◦ and 135◦ computed with DROPS (lines)
and comparison data from [Koe04] (triangles).

the resolution is higher.

Finally, in figure 5.4.7 the concentration wake obtained with DROPS is compared with the
one in [Koe04]. The overall agreement between both simulations is very good. However,
the thickness of the wake is slightly different. We assume that this is due to the fact
that the resolution in DROPS inside the wake is lower than close to the interface (see
figure 5.4.3) and also lower than in FS3D. Further, one observes in figure 5.4.7 that the
structure of the contour lines in the liquid phase in a small region behind the rear of
the bubble is different for [Koe04] and the results obtained with DROPS. It is not clear
where this difference comes from. It might however result from different concentration
solutions inside the bubble where we have no reference data for.

We conclude that the obtained results are very reasonable and catch the important
features very well. The overall agreement in terms of the flow field and the mass
transport with data from the literature is good. However, there is still the need for
further investigations to validate the mass transport simulations.

Within the SPP 1506 it is planned to compare results for mass transport problem for
Taylor bubbles in counter-current flow between experimental and numerical groups.
Finding a suitable setting which allows for reliable measurements and computations
at the same time is difficult. It is expected that the collaboration will result in a
benchmark problem for mass transport problems which is demanding for direct numerical
simulation but at the same time offers sufficiently many data to serve as a foundation for
the validation of mass transport simulations. This is the topic of an ongoing research
collaboration.
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Figure 5.4.7: Comparison between concentration contour lines with FS3D taken from [Koe04]
(left) and with DROPS (right).

Remark 5.4.1. The flow in the considered example is predominantly determined by the
densities in both fluids and the viscosity in the liquid. A change in the viscosity of the
gas does only have a small effect on the flow behavior. For the solvers (the non-linear
solver for the coupling of level set equation and the Navier-Stokes equations and the linear
solvers for the Navier-Stokes problems at each linearization) and the discretization in
DROPS a change in the gas viscosity can have a significant influence on the performance.
An increased gas viscosity implies a smaller viscosity ratio and a smaller Reynolds number
inside the bubble which is both beneficial for the performance of DROPS. Even though we
used the physically correct parameters in this setting, we also ran the same simulation
with a 10 times larger viscosity in the gas phase. This reduced the computation time
by approximately one third. In figure 5.4.4 the rise velocity for the case of physically
correct and the increased viscosity is shown. We also compared the concentration profiles
obtained with both settings and observed that this simplification has only a very small
impact on the system behavior.

195





CHAPTER 6

Summary and Outlook

We presented a new numerical method for the solution of mass transport problems
in two-phase incompressible flows. The considered model for this problem involves
moving interfaces which are not fitted by the computational mesh and across which
a jump condition (Henry condition) is imposed. The method is a combination of an
extended finite element (XFEM) space, the Nitsche method for the imposition of interface
conditions and a discrete variational formulation in space-time. We summarize the most
important achievements of this thesis and discuss open problems.

6.1 Summary

Stationary interface

The methods presented in this thesis for the stationary interface case are based on similar
methods from the literature. Instead of problems with a jump discontinuity, problems
where the solutions are continuous but have kinks across the interface are often considered.
For the case of a stationary interface we use a method introduced in [RN09, Ngu09] which
is based on the Nitsche-XFEM method originally introduced in [HH02]. The results in
this work extend the existing methods and their analysis with respect to the following
aspects.

Parameter-free Nitsche-XFEM. The Nitsche method is sometimes criticized for the
existence of the stabilization parameter λ which has to be chosen “sufficiently large”.
We introduced a new parameter-free variant of the Nitsche-XFEM method which guar-
antees stability independent of a condition on the stabilization parameter, cf. sec-
tion 2.2.3.2.
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Nitsche-XFEM with convection stabilization. For the convection-dominated case a
combination of the Nitsche-XFEM method with the Streamline Diffusion method seems
natural. We introduced a proper combination of both methods in section 2.2.5 and
discussed their interplay. One important finding is the fact that it is necessary to
adapt the scaling of the Nitsche penalty term in order to get results which are robust
with respect to vanishing diffusion coefficients. We derived a priori error estimates in
section 2.3.2 which are robust with respect to the diffusion parameter and applied the
methods on numerical test cases.

Optimal preconditioners for Nitsche-XFEM discretizations. The topic of precondi-
tioning of linear systems arising from XFEM discretizations, especially for the Nitsche-
XFEM method, is only rarely discussed in the literature. We analyzed properties of the
linear systems arising from a Nitsche-XFEM discretization of elliptic interface problems
and discovered that the splitting of the enriched finite element space into the standard
finite element space and the space of enrichment functions is stable. This inspired the
design of a new preconditioner for which we could prove that the condition number
is bounded independent of the mesh size h and the position of the interface. Due to
the linear costs associated to the application of the preconditioner this is an optimal
preconditioner.

Moving interface

For the mass transport problem with a moving interface there are, to the best of our
knowledge, no methods which provide an error analysis with second order bounds for
the discretization error in space and time. The major contribution of this thesis is
the presentation and analysis of the Space-Time-DG Nitsche-XFEM method and the
discussion of implementational aspects.

Introduction of the Space-Time-DG Nitsche-XFEM method. In section 3.2 we
introduced the Space-Time-DG Nitsche-XFEM method which combines a space-time
formulation with an extended finite element (XFEM) space. The space-time domain is
divided into time slabs and a Discontinuous Galerkin formulation is used to couple the
time slabs. The subdivision into time slabs allows for a computational structure of a
time stepping scheme. Within each time slab a space-time finite element space with a
tensor-product structure is defined and enriched with the extended finite element method.
To enforce the interface condition a space-time version of the Nitsche formulation is
applied. This method is new. We analyzed the method and discussed implementational
aspects. Both, an implementation in spatially three dimensions as well as the error
analysis of such a method has not been done before.
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6.1 Summary

Error analysis of the Space-Time-DG Nitsche-XFEM method. We presented an
error analysis for the Space-Time-DG Nitsche-XFEM discretization in section 3.3. The
core ingredients of this analysis have also been published in [LR12]. The analysis in
this thesis extends the analysis in [LR12] with respect to the considered interpolation
operator. In contrast to the interpolation operator considered in [LR12], we considered
an L2 projection on each time slab, cf. section 3.3.2. This interpolation operator requires
less regularity of the solution and allows for anisotropic estimates in the analysis of the
interpolation operator. While in [LR12] the simplification h ' ∆t has been considered,
the analysis in this thesis does not need such a requirements on the ratio between temporal
and spatial resolution. Another benefit of taking the L2 projection as the interpolation
operator is that the error analysis allows for changing grids which has not been the case
for the error analysis in [LR12].

Numerical integration on four-dimensional cut geometries. An implementation of
the Space-Time-DG Nitsche-XFEM method requires the computation of integrals on
space-time geometries which are intersected by the interface. This is involved as the
space-time interface is only implicitly defined. While solution strategies for cases where
the total dimension of the (space-time) domain is less or equal to three are known in the
literature, this is no longer true in the spatially three-dimensional case. We presented a
robust and second order accurate strategy to construct integration rules on implicitly
defined domains (and interfaces) up to spatial dimension three in chapter 4.

Application of the Space-Time-DG Nitsche-XFEM method to realistic problems.
The presented Space-Time-DG Nitsche-XFEM method is new. Besides the derivation,
error analysis and discussion of implementational aspects (for instance numerical in-
tegration in chapter 4 and preconditioning in section 3.5) we applied the method to
test problems. In section 3.4 we considered mathematical test problems with reference
solutions to investigate the accuracy of the method. In section 5.4 we applied the method
to a complex two-phase flow problem with coupled mass transport. The examples
demonstrate the accuracy and robustness of the method.
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6.2 Open problems and outlook

We outline a few open problems related to the discretizations considered in this thesis
for mass transport problems with stationary and moving interfaces that we think are
interesting topics for future research.

Stationary interface

Large contrast problems. In this thesis we assumed that the Henry coefficients β and
the diffusion parameters α have a small contrast. This assumption is violated in some
applications, for instance in many liquid-gas systems. For large contrast problems the
discretization method should be modified, especially the averaging operator in the Nitsche
stabilization, see the discussion in [BZ12]. This modification in the averaging however
may contradict with the stability condition for the Nitsche stabilization. A remedy
to this issue is to apply an additional stabilization, for instance the “ghost penalty”,
cf. section 2.2.3.5. This stabilization provides stability independent of the averaging
operator. This stabilization also guarantees a spectral condition number of the system
matrix, κ(A) ≤ ch−2. However, the presented theory for the preconditioner in section 2.4
is based on a stable subspace splitting. This splitting is no longer robust with respect to
h if a “ghost penalty” stabilization is added. According modifications in the stabilization
or the preconditioning would need to be found.

Higher order methods. Higher order methods are desirable to get highly accurate
results efficiently. In many applications the solution is very smooth in the sub-domains
which is in favor of higher order methods. In this work we essentially focused on linear
finite elements. The methods (and to a great extent also the analysis) in this work have
a natural extension to higher order, see for instance remark 2.3.1. There are, however,
open problems which need to be considered carefully before higher order Nitsche-XFEM
methods are of practical use.

• The approximations of the domains and the interface used in this thesis are
piecewise planar and thereby only of second order accuracy. Although the error of
the numerical integration can be reduced by subdivisions, the asymptotic behavior
of a method using a piecewise planar approximation is limited to second order.
To achieve higher order methods robust methods which allow for higher order
numerical integration on implicit domains is indispensable.

• In the analysis of the Streamline Diffusion stabilization a term involving div(ε∇uh)
arises if a higher order finite element space is used. It is not clear if this term can
be controlled for the extended finite element space, cf. remark 2.3.3.
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• The preconditioning strategies considered in section 2.4 rely on the fact that the
finite element functions are piecewise linear. For a Nitsche-XFEM discretization
with higher order finite elements the analysis can not be applied any more. Numer-
ical experiments further indicated that diagonal preconditioning no longer leads to
robustness with respect to the interface position if the polynomial degree of the
underlying finite element space is greater than one. A higher order version of the
“ghost penalty” stabilization, cf. section 2.2.3.5, could be a possible tool to solve
this problem.

Moving interface

Error analysis of the Space-Time-DG Nitsche-XFEM method. The error analysis of
the space-time method in section 3.3 seems sub-optimal. For simpler parabolic problems
without discontinuous solutions (and without XFEM) a third order convergence in time
has been proven in the literature, see for instance [Tho97]. The numerical results in
section 3.4 indicate the same, a third order of convergence in time. It is not clear if error
bounds of third order in time can be obtained.

In the analysis in section 3.3 we assumed that a regularity statement of the form
‖u‖2,Q1,2 ≤ c‖u0‖1,Ω holds for a solution of the mass transport problem. This assumption
is crucial to obtain the second order bounds. It is however not clear if this assumption
can be rigorously justified.

Further, the second order bound derived with the duality arguments is only shown in
the weak −1-norm. To improve the error analysis with respect to the considered norms
and the regularity assumptions that are used a better understanding of the regularity of
solutions and the relation to the considered anisotropic Sobolev spaces is necessary.

Convection stabilization of the Space-Time-DG Nitsche-XFEM method. In sec-
tion 3.2.4.3 we briefly proposed a combination of the Space-Time-DG Nitsche-XFEM
method with a Streamline Diffusion stabilization in space-time. This method has not
been investigated further, yet.

Preconditioning of the Space-Time-DG Nitsche-XFEM method. The efficient pre-
conditioning of the Space-Time-DG Nitsche-XFEM method is important for the practi-
cability of the method. In section 3.5 we observed that a simple diagonal preconditioner
already results in robustness w.r.t. the interface position. Further, we motivated and
tested a new preconditioner. This new preconditioner uses a decomposition into standard
and XFEM unknowns and a two-grid preconditioner in time. The results of this new
preconditioner look promising. However, there exists the need for further investigations,
cf. remark 3.5.2.
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6 Summary and Outlook

Further investigations for realistic two-phase flow problems with mass transport.
In section 5.3 we presented a validation of the two-phase hydrodynamics in DROPS
based on bubble shapes. The evaluation of a similar comparison based on velocities is
topic of an ongoing collaboration with the SPP 1506. Further in section 5.4 a validation
based on a comparison of mass transport solutions for different numerical codes is carried
out. It would be interesting to compare simulation results to measurement data. It is
planned to find a suitable benchmark configuration, similar to the one in section 5.3,
which involves mass transport and allows for such a comparison.
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[Pit80] J. Pitkäranta. Local stability conditions for the Babuska mehod of La-
grangian multipliers. Numer. Comput., 35:1113–1129, 1980. 27
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