ROPI
A Robust Optimization Programming Interface
Version 0.1.0

Marc Goerigk
Institute for Numerical and Applied Mathematics
University of Gottingen, Germany
m.goerigk@math.uni-goettingen.de

June 19, 2012

Introduction

ROPI is a freely available C++ library that facilitates the applicability of robust
optimization models. It can be downloaded from

http://num.math.uni-goettingen.de/ m.goerigk /ropi

Structure
ROPI is a C++ library providing two main features:

e A user-friendly MIP class that allows automatic transformation to solver-
specific MIP classes. Using this feature, MIPs can be generically written,
and solved with whatever solver is currently available. ROPI currently
supports transformation to Cplex-, Gurobi-, and Xpress-MIPs. Support for
further solvers can be easily added.

e An automatic transformation from a given nominal MIP to a robust MIP.
Currently implemented is Strict Robustness, Light Robustness, RecFeas
and RecOpt.

In Figure 1, the general structure of ROPI is presented.

1

- mm mm mm Em = oy

returns solution

returns robust LP

Gurobi-

Solver

Xpress-

-manually
-mps

-type
-uncertainty

— Strict
—
 E—
— Light
—
 EEEEE—

—| RecFeas

Figure 1: Structure of ROPI

ROPI
Interface

hidden
classes

Visible to the library user are three classes: ”Solver”, ”LP”, and " Robustness”.
Each hides its implementation and specified type within hidden classes, using the
opaque pointer technique (also known as pointer to implementation idiom). This
creates the possibility for the user to specify which type of solver or robustness
he would like to use during runtime.

The currently implemented type of uncertainty is a finite set of scenarios
U’ = {&, ... "}, with further types coming in the next library version. For
RecOpt and RecFeas, types of distance measures are the [; distance Y | |z; — vil,
and the [, distance max?_; |x; — y;|, while the recovery objective can either be
the median or the center.

Robustness Transformations
We assume an uncertain optimization problem of the form

P(A,b) min 'z
s.t. Alx S b1

Aoz = by
Asx > bg
[<z<u
reX
with
Ay b
A=A]|, b=|b
Az bs

to be given, with a nominal scenario (A% 8°). Let the uncertainty set be U/ =
{(AY Y, ... (AN b))} C R™* " xR™. We now show the different robust problem
counterparts ROPI can produce. The original MIP size is n variables, and m
constraints (plus variables bounds). We denote by Feas(z, A, b) the constraints
Az < by, Asx = by, and Azx > bs.

Strict Robustness The concept of strict robustness has been introduced in
[BTN98]. The uncertain optimization problem (P(A4,b),(A,b) € U’) is trans-
formed to

min 'z
s.t. Feas(x, AV, W) Vj=0,...,N
[<z <u

reX

The resulting MIP still consists of n variables, but with N(m + 1) constraints.

Light Robustness The concept of light robustness has been introduced in
[FMO09]. In a preprocessing step, the

Solve P(fl, B), and let c'z* be the resulting optimal objective. Transform the
uncertain optimization problem (P(£),& € UY) to

min Z Yi
i=1
s.t. dz < (1+p)z*

Feas(x, A°,1°)

Alx <bi+~'Vi=1,...,N

A <by+~*Vi=1,...,N

Ay > b —~4*Vi=1,...,N

Al > b, —4*Vi=1,...,N

[<x<u

reX
where v = (74,+5,44). The presolving step thus consists of solving a MIP with
n variables and m constraints, and the resulting robust counterpart has n +m

and (N + 1)m + k constraints, where k is the number of equality constraints in
the uncertain optimiation problem.

RecOpt, Simple Version The concept of recovery to optimality has been
introduced in [GS11]. Solve P(A%b") for all i = 0,..., N. Let z* be an optimal
solution to problem P(£%). Depending on the recovery distance and the recovery
objective, return the problem

ll loo

N n N
min Z Z Yij min Z Yj
j=1

j=1i=1

median | 8t~y <@i—) <y st —y<ai—al <y
Vi=1,....n, j=0,....,N Vi=1,...,m, j=0,....,N
Feas(x, A,) Feas(x, A,)
I<z<u I<z<u
xEX,yEIR%N zeX,yelRY,

min z min z
° s.t z>y;
SONEED ML ¥j=1,...,N
center i=1 ;
Vi=1,...,N -y <@ —x; <Y
_yijgxi—xggyij Vi = ,...,n,j:O,...,N
0 10
Vi=1,...,n, j=0,...,N Feas(x,A",b")
Feas(z, A%, 1°) I<z<u
I<z<u zeX,yeRY,zeR

reX,ye RGN, zeR

The presolving step thus consists of (N + 1) problems with n variables and m
constraints each. Concerning the resulting MIP size, we have

#variables #constraints
median, I; | n(N + 1) nN +m
median, [, | n+ N nN +m

center, [n(N+1)+1 Nn+1)+m
center, loo |n+N+1 Nn+1)+m

The constraints Feas(x, A%, b°) ensuring feasibility in the nominal scenario can
be left out if not desired, as does x € X and the variable bounds | < x < u,
especially for combinable problems.

RecOpt, Extended Version In the extended version, we do not precompute
the optimal solutions to each of the scenarios, as they might be ambiguous. In-
stead, we only use the respective optimal objective value to find a recovery robust
solution that can be recovered to any optimal solution for every scenario.

Solve P(A",b") for all i = 0,..., N, where i = 0 denotes the nominal problem
again, and let f*(A’ b’) be the optimal objective value of problem P(A?).
Depending on the recovery distance and objective, return the problem

l1 loo
N n N
min Zzym min Zyj
j=1i=1 j=1
median | St —yij < i —] <y s.t —yj < x—] <y
Vi=1,...,n, j=0,...,N Vi=1,...,n, j=1,...,N
Feas(z, A%, 1°) Feas(z, A%, 1°)
Feas(z?, A7, ¥)V¥j=0,...,N Feas(z?, A7, ¥)V¥j=0,...,N
dad = (AT W)V =0,...,N dad = fF(ATW)Vj=0,...,N
reX,ye RN zeX,yeRY
e XVj=0,...,N P eXVj=1,...,N
Iy loo
min z min z
n s.t. z >y
s.t. ZZZyij Vj=1,....N
center =1 ;
Vj=1,...,N Y S X —x; S Y
—yijéwi—xféyij Vz:l,..(.],no,jzl,...,N
Vi=1,...,n, j=1,...,N FeaS(wv'A b)
Feas(ax?, A7, W) Vj=0,...,N

Feas(z, A°,1°)
Feas(z/, A7, ¥)Vj=0,...,N
dal = (AT Y)Vj=0,...,N
reX,ye RN e R
eXxVj=1,...,N

dad = fF(ATW)Vj=0,...,N

xeX,yEIRN,zelR
P eXVj=1,...,N

Presolve: N problems with n variables and m constraints. New MIP size:
depending on whether median or center and on [, we have

#variables #constraints
median, l; | n(2N + 1) Nn+m+1)+m
median, lo, | n+ N +nN Nn+m+1)+m
center, Iy n(2N +1)+1 Nn+m+2)+m
center, lo |[n+N+nN+1 Nn+m+2)+m

RecFeas

The concept of recovery to feasibility has been introduced in [CGKS11].
Return the problem

I loo
N n N
win 3" Y g win 3"
j=1i=1 j=1
median | St —yij < i —x) <y s.t —yj < m -] <y
Vi=1,...,n, j=1,...,N Vi=1,...,n, j=1,...,.N
Feas(z/, A7 ¥)V¥j=0,...,N Feas(z, A%, 1°)
Vj=1,...,N Feas(z/, A7 ¥')Vj=0,...,N
reX,ye RN zeX,yeRY
Y eXVj=1,...,N exvj=1,...,N
I loo
min z min z
n s.t. z2 2y
st Zzizwj Vji=1,...,N
center =1

Vji=1,...,N
— Yij Swz‘—xg < Yij
Vi=1,...,n, j=1,...,N
Feas(x, A°,b°)

Feas(z/, A7 ¥)Vj=0,...,N

reX,yecRVY e R
eXVj=1,...,N

—y; <mi—al <y;
Vi=1,....n, j=1,...,N
Feas(x,AO,bO)
Feas(z/,A7,¥)Vj=0,...,N
xEX,yEIRN,zEIR

Y exVvj=1,....N

No presolve necessary. New MIP size: depending on whether median or center
and on [, we have

#variables #constraints
median, l; | n(2N + 1) N(n+m)+m
median, I, | n+ N +nN N(n+m)+m

center, Iy n(2N +1)+1

center, I, |n+N+nN+1

Nn+m+1)+m
Nn+m+1)+m

As it is the case for RecOpt, the user can choose whether to include nominal
feasibility and variable constraints, or not.

7

Example Applications

In this section we present some basic ROPI functionalities on an example problem.
Consider the following linear program given in fixed MPS format (taken from
http://lpsolve.sourceforge.net /5.0 /mps-format.htm):

NAME TESTPROB

ROWS

N COST

L LIM1

G LIM2

E MYEQN

COLUMNS
X COST 1 LIM1 1
X LIM2 1
Y COST 4 LIM1 1
Y MYEQN -1
Z COST 9 LIM2 1
Z MYEQN 1

RHS
RHS1 LIM1 5 LIM2 10
RHS1 MYEQN 7

BOUNDS

UP BND1 X 4

LO BND1 Y -1

UP BND1 Y 1

ENDATA

In ROPI, it is possible to read in both the fixed and free MPS format. We can
read it in using simply

LP 1p;
lp.read_mpsfile("file.mps");

to get the following LP:

min xr + 4y + 9z
s.t. z+y <95
r +z2>10
—y+z2=7
0<r<4
-1<y<l1

8

0<z
‘/'E’y7Z€R

Now let us assume that some of the constraints are uncertain. We build an
uncertainty set U consisting of two scenarios that randomly disturb the right-hand
side of one constraint each. In ROPI, this can be achieved using

FiniteUncertainty unc;

list<Con>* lpcons = lp.get_cons();

for (int i=0; i<2; ++i)

{
list<Con>::iterator it = lpcons->begin();
advance(it,rand ()% (lpcons->size()));
FiniteScenario scen;
scen.rhs[*it] = (it->rhs) * (1 + (rand()%100)/400.0 - 1.0/8);
unc.scenarios.push_back(scen);

3

The object unc now consists of two scenarios that modify the right-hand side of
a constraint by up to 25%. Assume now that we thus generate a scenario set
U = {(5,10,8),(5,12,7)}. The optimal objective value for the nominal case is
then 54, while it is 62 and 80 in scenario 1 and 2, respectively.

We would like to solve the resulting uncertain optimization problem using the
extended RecOpt counterpart with /; norm and center objective function. To do
so, we create a robustness object that generates the required LP.

Robustness rob(&lp,ROB_RECOPT) ;
rob.set_uncertainty(unc) ;
RobustnessOptions opt;

opt.recobj = REC_CENTER;

opt.norm = NORM_L1;
opt.recopt_model = RECOPT_EXTENDED;
opt.solvertype = SOL_GUROBI;
rob.set_options(opt);

LP rc = rob.generate_robust();

Using only these couple of lines, we get the following robust counterpart for i/:

min ¢
1’0 _ yO S 5
s.t. Nominal case { 20+ 20>10
-+ =7

xl_ylgr(')

Objective constraints

0<a2%at 2% r, <4
-1 S y07y17y27'ry S 1
0 <90 24 22,
oy, 2 € RVi€{0,1,2}
Tz Ty, T2 € R
al,al.a’ € RVie{0,1,2}

x? Y

Variable bounds

Scenario 1 { b+ 21 > 10
—yt+2t=38
P22 <5

Scenario 2 { 2+ 22> 12

—yP 422 =7
20+ 4y° + 929 = 54
Optimality { ol + 4yt + 921 =62
r? 4+ 4y? + 922 =80

Ty —Ty <D

Nominal feasibility { ry + 1, > 10

—Ty+r. =7
—al <r,—2°<d®
Distance to nominal solution { —a) <7, -y’ <al
—ad <r,—2"<d
—al <r,—z2'<dal
Distance to scenario 1 solution { —a; <r, — y! < a;
—al <r,—2z'<al
—ai<r,—2*<d?
Distance to scenario 2 solution { —a; <r,—y*<a,
—a?<r,—2*<a?

In a preprocessing step, all scenarios are solved to optimality - in this case, using
Gurobi (determined by the solvertype option). The resulting robust counterpart
is handed back to the user, who can then proceed to solve it using a solver object:

Solver sol;
sol.init(&rc, SOL_CPLEX);

10

sol.solve();
if (sol.get_statios() == SOL_OPTIMAL)
sol.write_solition(cout,-1);

These lines generate a solver object, hand it the robust counterpart, and solve
it using Cplex. If the problem is solved to optimality, the solution is printed to
the standard output. In this example, the recovery robust solution turns out to
be (4,0, 7) with a recovery distance of 2 to the three scenario solutions (4, —1,6),
(3,—1,7), and (4, 1,8), while the optimal nominal solution would be (4, —1,6).

References

[BTNOS]

[CGKS11]

[FMO9]

[GS11]

A. Ben-Tal and A. Nemirovski. Robust convex optimization. Mathe-
matics of Operations Research, 23(4):769-805, 1998.

E. Carrizosa, M. Goerigk, M.-C. Koérner, and A. Schobel. Recovery to
feasibility in robust optimization. Technical report, Preprint-Reihe,
Institut fr Numerische und Angewandte Mathematik, Georg-August
Universitt Gttingen, 2011. submitted.

M. Fischetti and M. Monaci. Light robustness. In R. K. Ahuja,
R.H. Méhring, and C.D. Zaroliagis, editors, Robust and online large-

scale optimization, volume 5868 of Lecture Note on Computer Science,
pages 61-84. Springer, 2009.

Marc Goerigk and Anita Schobel. A scenario-based approach for ro-
bust linear optimization. In Proceedings of the First international
ICST conference on Theory and practice of algorithms in (com-
puter) systems, TAPAS’11, pages 139-150, Berlin, Heidelberg, 2011.
Springer-Verlag.

11

