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Abstract

The present paper is a survey aiming at characterizing all solutions of the discrete
phase retrieval problem. Restricting ourselves to complex signals with finite support,
we will give a full classification of all trivial and nontrivial ambiguities of the phase
retrieval problem. In our classification, trivial ambiguities are caused either by sig-
nal shifts in space, by multiplication with a rotation factor eiα, α ∈ [0, 2π), or by
conjugation and reflection of the signal. Furthermore, we show that all nontrivial am-
biguities of the finite discrete phase retrieval problem can be characterized by signal
convolutions.

In the second part of the paper, we examine the usually employed a priori condi-
tions regarding their ability to reduce the number of ambiguities of the phase retrieval
problem or even to ensure uniqueness indeed. For the corresponding proofs we can
employ our findings on the ambiguity classification. The considerations on the struc-
ture of ambiguities also show clearly the ill-posedness of the phase retrieval problem
even in cases where uniqueness is theoretically shown.
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1 Introduction

1.1 Ambiguities in one-dimensional discrete phase retrieval

In many fields of physics and engineering, one is faced with the problem to determine
a signal from the modulus of its Fourier transform, or equivalently, from its autocor-
relation function. This phase retrieval problem occurs in different applications, e.g.,
in crystallography [28, 23], astronomy [11] and laser optics [37].

The solution of the phase retrieval problem is generally challenging due to the fact
that it is not uniquely solvable. Therefore, it is of essential importance to employ
suitable additional conditions on the desired solution signal in order to ensure its
uniqueness.
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2 1 Introduction

Let us shortly survey the rich literature on the problem of ambiguities in phase
retrieval with main emphasis to the one-dimensional case.

In the one-dimensional continuous setting, the phase retrieval problem can be
stated as follows. Find a function f : R → C from

∣∣∣ f̂
∣∣∣ where f̂ denotes the Fou-

rier transform of f . To solve this problem, we need to pose additional conditions
on f , e.g., f is real, has compact support and finite energy. But still, even with
these side conditions, the continuous one-dimensional phase retrieval problem can
have infinitely many solutions. Using the Laplace transform of the autocorrelation
function, all ambiguities have been characterized by using the Hadamard’s Factor-
ization Theorem for entire functions in [39, 19] and by logarithmic Hilbert transform
in [5], respectively. Assuming that the unknown function is symmetric or monotone
on the support one can enforce uniqueness of the phase retrieval problem [25]. Also
additional constraints being given by the specific experiment can reduce the set of
ambiguities. For example, under the assumption that a lens has a finite aperture, the
corresponding phase retrieval problem can be solved uniquely [32, 39].

Another approach to avoid ambiguities in the continuous case is to extend the set
of given data. Further intensity measurements [40, 20] or a specially constructed ref-
erence signal [5] can be used to determine the unknown function without ambiguities.
In [38], it has been shown that a band-limited real function f can be uniquely recov-
ered from the modulus of its function values being sampled at twice its sampling rate.
Generalizing this idea to the complex case, [33] applies a combination of oversam-
pling and modulations with complex exponentials to recover complex signals with
compact support from intensity measurements in Fourier domain.

For numerical purposes one needs to restrict to a discrete space model for the
signal. Therefore, we will consider only finitely supported signals (x[n])n∈Z with
x[n] = 0 for n < 0 and n ≥ N for some N ∈ N. In this case, the (nontrivial)
ambiguities of the phase retrieval problem can be described by zeros or poles of the
z-transform of the autocorrelation signal, see [7, 31].

In the past, there have been several approaches to reduce the set of nontrivial am-
biguities to a unique solution. For example, restricting the solution sets of zeros and
poles of the z-transform of the autocorrelation signal suitably, uniqueness can be en-
sured [17], see also Subsection 4.2. Unfortunately, this additional condition can only
be applied if all zeros of the z-transform are known, and we are not aware of a special
physical meaning of this zero restriction.

In [16], the phase retrieval problem with signed phase information has been stud-
ied. Fixing the finite support of a real signal x and knowing whether the phase of
the Fourier transform x̂ (ω) is in

[
−π2 ,

π
2

]
or in

[
−π,−π2

)
∪
(
π
2 , π
)
, uniqueness of the

solution can be shown.
Other approaches use some additional knowledge about signal values, especially

the endpoint of the finite length signal [41, 36, 42, 43], see also Subsection 4.3. In
[37, 26, 27] the case of complex finite signals has been considered with the additional
condition that also the magnitudes of the signal in space domain are available. This
approach is investigated in Subsection 4.4.

A further idea is to replace the Fourier transform by the so-called short-time Fou-
rier transform, where the unknown signal is overlapped with a small analysis window
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at different positions. Under some additional assumptions it is possible to recover
the unknown signal only from the magnitudes of the short-time Fourier transform
[29, 30].

Being interested in additional measurement conditions for the phase retrieval prob-
lem that are physically feasible, the idea of measuring intensities of interferences has
been extensively considered. We study this approach in Section 5. For example, the
interference with a known [21, 22] or unknown [24] reference signal can be used. In
[34, 35] this idea is generalized to the reconstruction of complex signals. A special
case of interference signals is considered in [8], where the two reference signals are
shifts of the desired signal x in Fourier space.

The Fourier transform of a signal vector x can be interpreted as scalar products
of a vector with the rows ek of the Fourier matrix, and the phase retrieval problem
can be stated as the problem to reconstruct x ∈ C from the magnitudes |〈x, ek〉|,
k = 0, . . . ,N − 1. Generalizing this orthonormal basis {ek : k = 0, . . . ,N − 1} to a
frame, one may ask the question, how the frame vectors have to be constructed in
order to uniquely recover x from the magnitudes of its frame coefficients, and how
many frame vectors are needed to ensure uniqueness. This problem has been exten-
sively studied within the last years, see, e.g., [3, 2, 1, 4, 6] and references therein.
Unfortunately, one cannot construct a suitable frame just by adding further vectors
of the form (e−iωn)N−1

n=0 with some ω ∈ [0, 2π) to the Fourier basis since the autocor-
relation function of the finite vector x is already completely determined by |〈x, ek〉|,
k = 0, . . . ,N − 1.

Finally we want to mention that the higher-dimensional phase retrieval problem,
however, has a completely different behavior. The reason is that the multidimensional
polynomials usually cannot be factorized in linear factors corresponding to the zeros
and poles. Instead we can only obtain a factorization of the z-transform of the signal
into a product of irreducible polynomials with normalized support [15]. Since the
reducible polynomials form a set of measure zero [18] in the space of all polyno-
mials (up to a certain degree), almost all multidimensional signals can be recovered
uniquely. Nevertheless, in some applications, such as in the crystallography [28], the
factorization into reducible polynomials of small degree is the usual case.

To ensure global irreducibility of the z-transform of the autocorrelation polynomial
it is enough to place a single reference point outside the unknown object [13, 10].
Other approaches work with random illuminations [12] or random masks [14]. Here
the reconstruction is unique with high probability.

1.2 Our contribution and outline

In Section 2, we shall give a complete mathematical classification of solutions of the
discrete phase retrieval problem for compactly supported complex signals. Using the
zero set of the autocorrelation function, we show that each nontrivial solution of the
discrete phase retrieval problem can be constructed by convolution. For that purpose,
we have to determine all complex trigonometric polynomials B(ω) being a root of the
nonnegative autocorrelation polynomial A(ω) of the solution signal x, i.e., satisfying
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|B(ω)|2 = A(ω). The properties of the autocorrelation polynomial, particularly its
factorization into linear factors and the consequences for the solutions of the discrete
phase retrieval problem are investigated in Section 3. We will observe that the number
of nontrivial ambiguities depends on the zero set of an algebraic polynomial that is
closely related to A(ω). In contrast to statements in earlier literature, we show that the
number of nontrivial ambiguities of the discrete phase retrieval problems is bounded
by 2N−2 (where N denotes the signal length), but can be also considerably smaller
depending on the data. We will illustrate our findings with suitable examples.

Using the obtained classification of ambiguities, we reconsider additional a priori
conditions that have been proposed in earlier literature (often with the restriction to
real signals) to ensure uniqueness of the phase retrieval solutions in Sections 4 and 5.
In particular, the a priori assumption that the desired signal is real and positive, being
frequently applied in phase retrieval algorithms, does usually not lead to uniqueness
in the one-dimensional case. If beside the Fourier intensities one signal value is
known [41], or alternatively one or more magnitudes of the signal x in time domain
are known [37, 26, 27], then we show that the signal can be uniquely reconstructed
with high probability (up to multiplication with an unimodular constant). However,
we can also construct “counterexamples”, where the discrete phase retrieval problem
is not uniquely determined by these a priori conditions.

Finally, in Section 5, we especially consider the case when beside |x̂(ω)|2 also the
intensities of interference signals can be measured. Here we distinguish the cases,
where the reference signal itself is known or unknown. In the latter case, we give
a new proof for uniqueness based on our representations of solution ambiguities de-
rived in Section 2, see Theorem 5.4.

2 Trivial and nontrivial ambiguities

We consider the discrete one-dimensional phase retrieval problem where we want to
reconstruct the complex signal x = (x [n])n∈Z ∈ ℓ

2 from its Fourier intensities. In the
following we assume that the unknown signal x has finite support with support length
N ∈ N, i.e., there exists an n0 ∈ Z such that x(k) = 0 for k < n0 and k ≥ n0 + N.
Furthermore, we suppose that the squared magnitude of the discrete Fourier transform

x̂ (ω) ≔
∑

n∈Z

x [n] e−iωn, ω ∈ [−π, π)

is measured at 2N − 1 data points 2πk
N

, k = −N + 1, . . . ,N − 1, i.e., the vector

∣∣∣ x̂
∣∣∣2 ≔

(∣∣∣∣ x̂
(

2πk
N

) ∣∣∣∣
2)N−1

k=−N+1
(1)

is given.

We recall that knowing the Fourier intensity vector
∣∣∣ x̂
∣∣∣2 ∈ R2N+1

+
of (x [n])n∈Z is
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equivalent to knowing the autocorrelation signal a ≔ (a [n])n∈Z with

a [n] ≔
∑

ℓ∈Z

x [ℓ] x [ℓ + n] (n ∈ Z) . (2)

Indeed, for complex signals x the autocorrelation signal a is conjugate symmetric,
i.e., a [n] = a [−n], and we simply observe that

A (ω) ≔
∣∣∣ x̂ (ω)

∣∣∣2 =
∑

n∈Z

∑

k∈Z

x [n] x [k] e−iω(n−k)
=

∑

ℓ∈Z

a [ℓ] e−iωℓ
= â (ω) .

If the signal x has support length N, then the nonnegative autocorrelation function
A(ω) is a trigonometric polynomial of degree N − 1,

A (ω) =
N−1∑

ℓ=−N+1

a [ℓ] e−iωℓ

that is already determined uniquely by the given 2N − 1 data points

A
(

2πk
N

)
=

∣∣∣∣ x̂
(

2πk
N

) ∣∣∣∣
2

(k = −N + 1, . . . ,N − 1).

If x ∈ ℓ1 is a real signal with finite support, we have a [n] = a [−n], i.e., the
autocorrelation function A(ω) is a nonnegative even trigonometric polynomial with

A (ω) = a [0] + 2
∑

n∈Z

a [n] cos (ωn) .

The problem of phase retrieval for finitely supported signals x can now be stated
as follows. For a given intensity vector | x̂ |2 in (1) or equivalently, for its given
autocorrelation function A(ω), we want to reconstruct the signal x with support length
less than or equal to N.

It is well-known that this phase retrieval problem is not uniquely solvable. There
exist ambiguities being caused by translation, reflection and conjugation of the vector
x, or multiplication of x with an unimodular constant. These ambiguities are trivial
and cannot be avoided.

We will be especially interested in the complete characterization of the nontrivial
ambiguities of this phase reconstruction problem. However, let us first summarize all
trivial ambiguities.

Proposition 2.1. Let A (ω) be the autocorrelation function given by the squared mag-

nitude
∣∣∣ x̂ (ω)

∣∣∣2 of the finite complex signal x. Then we have:

(i) For each n0 ∈ Z the shifted signal (y [n]) ≔ (x [n − n0]) has the same autocor-

relation A (ω), i.e., ∣∣∣ x̂ (ω)
∣∣∣2 =
∣∣∣ ŷ (ω)

∣∣∣2

for all ω ∈ [−π, π).
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(ii) The reflected conjugated signal (y [k]) ≔
(
x [−k]

)
has the same autocorrelation

function A (ω).

(iii) The rotated signal (y [n]) ≔
(
eiαx [n]

)
, where α ∈ [−π, π), has the same auto-

correlation A (ω).

Proof. (i) Obviously, we have

ŷ (ω) =
∑

n∈Z

x [n − n0] e−iωn
=

∑

n∈Z

x [n] e−iω(n+n0)
= e−iωn0 x̂ (ω) ,

i.e., ŷ (ω) and x̂ (ω) only differ by a factor of modulus 1. Hence the autocor-
relation determines the length of the support of the signal x, but it is invariant
regarding support shifts.

(ii) From y [k] = x [−k] it follows

ŷ (ω) =
∑

k∈Z

x [−k] e−iωk
=

∑

k∈Z

x [k] e−iωk = x̂ (ω),

and
∣∣∣ ŷ (ω)

∣∣∣2 =
∣∣∣ x̂ (ω)

∣∣∣2 for all ω ∈ [−π, π).

(iii) Obviously, we have ŷ (ω) = eiα x̂ (ω). �

Remark 2.2. The trivial ambiguity caused by shifts of x in Proposition 2.1 (i) can be
avoided by normalizing the unknown finite support of x to {0, . . . ,N − 1}. Note that
for x with support {0, . . . ,N − 1} the reflected conjugated signal in Proposition 2.1 (ii)
has the support {−N + 1, . . . , 0}. Therefore, after support normalization the ambiguity
caused by reflection and conjugation is of the form (y[k]) := (x[N − k]). ◦

Beside these trivial ambiguities, there are also nontrivial ambiguities that we want
to classify in detail in this paper. In particular, the following main theorem shows
that each nontrivial ambiguity of the considered phase retrieval problem can be char-
acterized by a convolution.

Theorem 2.3. Let A (ω) be the autocorrelation function given from | x̂ |2 of the finite

complex signal x. Further, let x1 ≔ (x1 [n])n∈Z, x1 ≔ (x2 [n])n∈Z be two finite signals

with

x = x1 ∗ x2,

i.e.,

x [n] ≔
∑

k∈Z

x1 [k] x2 [n − k] .

Then y ≔ eiα
(
x1 [−·]

)
∗ (x2 [· − n0]) with α ∈ [−π, π), n0 ∈ Z has the same autocor-

relation function A (ω), i.e., ∣∣∣ x̂ (ω)
∣∣∣2 =
∣∣∣ ŷ (ω)

∣∣∣2

for all ω ∈ [−π, π).
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Moreover, for a signal y being a solution of the phase retrieval problem, i.e., pos-

sessing the autocorrelation function A (ω) of x, there exist finite signals x1, x2 with

x = x1 ∗ x2 and y ≔ eiα
(
x1 [−·]

)
∗ (x2 [· − n0]).

Proof. Let y ≔ eiα
(
x1 [−·]

)
∗ (x2 [· − n0]), then

ŷ (ω) = e−iωn0+iα x̂1 (ω) x̂2 (ω)

and hence ∣∣∣ ŷ (ω)
∣∣∣2 =
∣∣∣ x̂1 (ω)

∣∣∣2
∣∣∣ x̂2 (ω)

∣∣∣2 =
∣∣∣ x̂ (ω)

∣∣∣2 .

The proof that each solution of the phase retrieval problem can be represented in
this way is postponed to Section 3. �

3 Investigation of the autocorrelation function

In Fourier space, the considered phase retrieval problem for finitely supported com-
plex signals x can be reformulated as follows: For a given real nonnegative autocor-
relation polynomial

A (ω) =
N−1∑

n=−N+1

a [n] e−iωn,

of degree N − 1 with a[N − 1] , 0 find all finite trigonometric polynomials

x̂ (ω) =
∑

n∈Z

x [n] e−iωn

with x [n] ∈ C such that ∣∣∣ x̂ (ω)
∣∣∣2 = A (ω) .

Avoiding the trivial shift ambiguity, we assume that supp x ⊂ {0, . . . ,N − 1}, i.e.,

x̂ (ω) =
N−1∑

n=0

x[n] e−iωn

with x[0] , 0 and x[N − 1] , 0. We obtain the following theorem.

Theorem 3.1. Let A (ω) be a nonnegative trigonometric polynomial

A (ω) =
N−1∑

n=−N+1

a [n] e−iωn (3)

with a [n] ∈ C and a [−n] = a [n] for n = 0, . . . ,N − 1, and a[N − 1] , 0. Then each

B (ω) =
N−1∑

n=0

b [n] e−iωn
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with b [n] ∈ C satisfying |B (ω) |2 = A (ω) can be written in the form

B (ω) = eiα

|a [N − 1] | ·
N−1∏

j=1

∣∣∣β j

∣∣∣−1



1
2

·

N−1∏

j=1

(
e−iω − β j

)
(4)

where α ∈ [−π, π). Assuming that A (ω) = eiω(N−1)PA

(
e−iω
)

where PA (z) is an alge-

braic polynomial of degree 2N − 2 with complex coefficients and the factorization

PA (z) ≔ a [N − 1]
N−1∏

j=1

(
z − γ j

) (
z − γ−1

j

)
,

we have γ j , 0, and the parameters β j in (4) can be chosen as

β j ∈
{
γ j, γ

−1
j

}
.

Proof. We consider the complex algebraic polynomial

PA (z) ≔ a [0] zN−1
+

N−1∑

n=1

a [n] zN−1−n
+

N−1∑

n=1

a [n] zN−1+n

of degree 2N − 2 with the complex coefficients a[n] being given by the trigonometric
polynomial A(ω). By construction, PA is related to the trigonometric polynomial
A(ω) in (3) by

PA

(
e−iω
)
= e−iω(N−1)A (ω) .

Let γ j be a root of the polynomial PA, i.e.,

PA

(
γ j

)
= a [0] γN−1

j +

N−1∑

n=1

a [n] γN−1−n
j +

N−1∑

n=1

a [n] γN−1+n
j = 0.

As a consequence of a [N − 1] , 0, we have γ j , 0. For |γ j| , 1 it follows

γ 2N−2
j PA

(
γ−1

j

)
= γ 2N−2

j

a [0] γ−N+1
j +

N−1∑

n=1

a [n] γ −N+1+n
j +

N−1∑

n=1

a [n] γ−N+1−n
j



= a [0] γ N−1
j +

N−1∑

n=1

a [n]γ N−1+n
j +

N−1∑

n=1

a [n] γ N−1−n
j

= PA

(
γ j

)
= 0.

Therefore, all roots of PA lying not on the circle occur in pairs
(
γ j, γ

−1
j

)
. For |γ j| = 1

we can write γ j = eiφ j , where φ j is a physical real zero of A(ω). In order not to cause
any contradiction with A(ω) ≥ 0 for all ω, this zero must have even multiplicity.
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Hence, we find a factorization of PA in the form

PA (z) = a [N − 1]
N−1∏

j=1

(
z − γ j

) (
z − γ−1

j

)
. (5)

Observing that
∣∣∣∣
(
e−iω − γ j

) (
e−iω − γ −1

j

) ∣∣∣∣ =
∣∣∣e−iω − γ j

∣∣∣
∣∣∣γ−1

j

∣∣∣
∣∣∣γ j − eiω

∣∣∣ =
∣∣∣γ j

∣∣∣−1 ∣∣∣e−iω − γ j

∣∣∣2

and remembering that A (ω) is nonnegative, we have

A (ω) = |A (ω) | =
∣∣∣∣PA

(
e−iω
) ∣∣∣∣

= |a [N − 1] |
N−1∏

j=1

∣∣∣γ j

∣∣∣−1

∣∣∣∣∣∣∣∣

N−1∏

j=1

(e−iω − γ j)

∣∣∣∣∣∣∣∣

2

= |B (ω) |2

and the representation of B (ω) in (4) follows. �

Remark 3.2. For the case of a nonnegative polynomial A(ω) with real coefficients,
it has been shown in [9, Lemma 6.1.3.] that there always exists a real trigonometric
root polynomial B(ω) with A(ω) = |B(ω)|2. Restricting Theorem 3.1 to this real case,
where the coefficients of A(ω) satisfy a[n] ∈ R and a[n] = a[−n], the algebraic
polynomial PA(z) has only real coefficients. According to the proof of Theorem 3.1,
its real roots appear in pairs {

γ j, γ
−1
j

}
,

and its complex roots appear in quads
{
γ j, γ j, γ

−1
j , γ

−1
j

}
. ◦

We now consider the question, how many nontrivial ambiguities can occur depend-
ing on the zero set of PA (z).

Corollary 3.3. Let A be a nonnegative autocorrelation polynomial of degree N − 1,

and let a solution B of |B (ω) |2 = A (ω) be defined by (4) with α = 0 and the zero set

{
β j ∈ C : j = 1, . . . ,N − 1

}
.

Then considering all 2N−1 solutions of |B (ω) |2 = A (ω), which can be constructed

by choosing for each j = 1, . . . ,N − 1 one root of the root pair

β j ∈
{
γ j, γ

−1
j

}
,

of PA in Theorem 3.1, we obtain up to 2N−2 nontrivial ambiguities.

Proof. Since the support of the coefficient sequence of B (ω) is already fixed to be
{0, . . . ,N − 1}, and since the rotation factor eiα in (4) has been fixed as ei·0

= 1, there
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can only occur trivial ambiguities caused by reflection and conjugation as considered
in Proposition 2.1 (ii). We consider the polynomials B(ω) corresponding to the zero
set Λ,

B(ω) = BΛ (ω) = |a [N − 1] |
1
2

∏

β j∈Λ

∣∣∣β j

∣∣∣−
1
2
(
e−iω − β j

)
,

where Λ contains either β j = γ j or β j = γ
−1
j as the j-th entry.

First, we observe that the 2N−1 trigonometric polynomials BΛ, which are produced
by taking all choices of the set Λ, are pairwise different if all zeros {γ j, γ

−1
j , j =

1, . . . ,N − 1} of the polynomial PA in (5) are pairwise different. Further, if we fix a

set Λ = {β1, . . . , βN−1} and consider the “reflected” set Λ̃ =
{
β
−1
1 , . . . , β

−1
N−1

}
, then

B
Λ̃

(ω) = |a [N − 1] |
1
2

N−1∏

j=1

∣∣∣β j

∣∣∣
1
2

(
e−iω − β

−1
j

)

= |a [N − 1] |
1
2

N−1∏

j=1

e−i arg β j

∣∣∣β j

∣∣∣−
1
2
(
β je
−iω − 1

)

= (−1)N−1 e−i(N−1)ω |a [N − 1] |
1
2

N−1∏

j=1

e−i arg β j

∣∣∣β j

∣∣∣−
1
2
(
eiω − β j

)

= (−1)N−1 e−i(N−1)ω BΛ (ω)
N−1∏

j=1

e−i arg β j ,

i.e., the signal that corresponds to B
Λ̃

is a shift of the reflected, conjugated and per-
haps rotated signal corresponding to BΛ. Thus B

Λ̃
is a trivial ambiguity of BΛ.

Assuming that the products
∏N−1

j=1

∣∣∣β j

∣∣∣ for all choices of Λ are pairwise different,
this is the only trivial ambiguity that occurs because in this case the modulus of the
leading coefficients of all the trigonometric polynomials BΛ are pairwise different.
For example, this is the case if the absolute values of all roots β j are pairwise different
primes. Thus we can obtain up to 2N−2 nontrivial solutions of the considered phase
retrieval problem. �

Remark 3.4. Similarly as in the Proposition above we can also generate up to 2N−2

nontrivial solutions B (ω) of |B (ω) |2 = A (ω) when A(ω) is the autocorrelation poly-
nomial of a real signal, i.e., x [n] ∈ R. For each pair

{
γ j, γ

−1
j

}

of real roots of PA, we can choose β j = γ j or β j = γ
−1
j

. For each quad

{
γ j, γ j, γ

−1
j , γ

−1
j

}

of complex roots of PA in (5), we can only choose either γ j, γ j or γ−1
j
, γ −1

j to construct
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B(ω). Therefore, the upper bound of 2N−2 nontrivial solutions can only be attained if
all zeros of PA are real. If all zeros of PA are complex and appear in quads, we can
only have at most 2

N−1
2 −1 nontrivial solutions B (ω). ◦

Corollary 3.5. For the phase retrieval problem with a given real nonnegative auto-

correlation polynomial A (ω) the number of nontrivial solutions B (ω) of |B (ω) |2 =
A (ω) may vary from 1 up to 2N−2 depending on the zero set. In particular, the phase

problem is uniquely solvable up to trivial ambiguities if either PA(z) has only zeros

on the unit circle or if all zeros up to one pair
{
γ j, γ

−1
j

}
lie on the unit circle.

Proof. 1. As shown in Theorem 3.1, the phase retrieval problem |B(ω)|2 = A(ω) has
at least one solution B (ω). Further solutions being nontrivially different from B (ω)

may occur by switching between the zeros β j and β
−1
j .

A unique solution of the phase retrieval problem up to trivial ambiguities occurs if
all roots of the polynomial PA lie on the unit circle. In this case, the zero pair

{
γ j, γ

−1
j

}

reduces to one two-fold zero of the form eiα j for some α j ∈ [−π, π). Therefore, the
zeros β j for the construction of B (ω) are uniquely determined and all ambiguities
coincide. We also obtain a unique solution up to reflection and conjugation when all
roots lie on the unit circle up to one pair

{
γ j, γ

−1
j

}
with |γ j| , 1. As shown in the proof

of Corollary 3.3, we only obtain two solutions by switching from γ j to γ−1
j for this

one zero pair. But then one solution can be obtained by reflection and conjugation of
the other as shown in the proof of Corollary 3.3.

2. The number of nontrivial solutions depends on the number of different zero
pairs of PA lying not on the unit circle and their multiplicities. The largest number
2N−2 of nontrivial ambiguities has been constructed already in Corollary 3.3. �

Example 3.6. We want to give examples where exactly two, exactly three, or exactly
2N−2 nontrivial solutions of the phase retrieval problem occur.

(i) Two nontrivial solutions of A (ω) = |B (ω) |2 occur, for example, for a given
autocorrelation function of the form

A (ω) =
∣∣∣∣PA

(
e−iω
) ∣∣∣∣ = |a [N − 1] |

∣∣∣e−iω
+ eiα

∣∣∣2N−6
∣∣∣∣
(
e−iω − γ1

) (
e−iω − 1

γ1

) ∣∣∣∣

·

∣∣∣∣
(
e−iω − γ2

) (
e−iω − 1

γ2

)∣∣∣∣

with γ1, γ2 ∈ C; γ1 , γ2; |γ1 | , |γ2 | , 1; and α ∈ [−π, π), namely

B1 (ω) = |a [N − 1] |
1
2 |γ1γ2 |

− 1
2

(
e−iω
+ eiα
)N−3 (

e−iω − γ1

) (
e−iω − γ2

)

and

B2 (ω) = |a [N − 1] |
1
2

∣∣∣∣ γ1
γ2

∣∣∣∣
− 1

2
(
e−iω
+ eiα
)N−3 (

e−iω − γ1

) (
e−iω − 1

γ2

)
.

In Figure 1, a specific example is shown for the chosen zeros γ1 ≔ −0.6 + 0.2i,
γ2 ≔ −0.5 − 0.5i, α ≔ 0.3π, and the support length N ≔ 8. Figure 1 (b) shows
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Figure 1: Two nontrivial solutions of A (ω) = |B (ω) |2 as given in Example 3.6 (i)

for N = 8.

the signals b1 [n] and b2 [n], which are determined by the different solutions

B1 (ω) =
N−1∑

n=0

b1[n] e−iωn and B2 (ω) =
N−1∑

n=0

b2[n] e−iωn

respectively, being represented as polygonal chains in the complex plane. In
Figure 1 (c) and (d), the modulus and the phase of these chains are plotted.
Since modulus and phase are nonlinear, the graphs are not piecewise linear.

(ii) It is also possible to have an odd number of nontrivial solutions for a given
autocorrelation function. For example, we consider an autocorrelation function
of the form

A (ω) =
∣∣∣∣PA

(
e−iω
)∣∣∣∣ = |a [N − 1] |

∣∣∣e−iω
+ eiα

∣∣∣2N−10

·

∣∣∣∣
(
e−iω − γ1

) (
e−iω − 1

γ1

)∣∣∣∣
4

where γ1 ∈ C, |γ1 | , 1, and α ∈ [−π, π) with three nontrivial solutions, namely

B1 (ω) = |a [N − 1] |
1
2 |γ1 |

−2
(
e−iω
+ eiα
)N−5 (

e−iω − γ1

)4
,

B2 (ω) = |a [N − 1] |
1
2 |γ1 |

−1
(
e−iω
+ eiα
)N−5 (

e−iω − γ1

)3 (
e−iω − 1

γ1

)
,
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Figure 2: Three nontrivial solutions of A (ω) = |B (ω) |2 as in Example 3.6 (ii) for

N = 10.

and

B3 (ω) = |a [N − 1] |
1
2

(
e−iω
+ eiα
)N−5 (

e−iω − γ1

)2 (
e−iω − 1

γ1

)2
.

A specific example is given in Figure 2. Here, we have chosen γ1 ≔ −0.5,
α ≔ 0.1π, and N ≔ 10.

(iii) In Figure 3, we consider an autocorrelation polynomial A(ω) of degree N−1 = 9
where for all possible zero setsΛ =

{
β j : j = 1, . . . ,N − 1

}
determining B(ω) in

Theorem 3.1 the values |b [0] | = |
∏

β j∈Λ
β j| are pairwise different. Particularly,

we consider the signal x (marked in Figure 3) whose modulus and phase are
given by

(| x [n] |)N−1
n=0 = (1, 1.25, 2, 1.4, 1.2, 1, 1.3, 1.6, 0.9, 0.25)T

and
arg x [n] =

(
cos 4πn

9

)
− 1

respectively, and let A(ω) := |̂x(ω)|2. Here, the minimal difference of the co-
efficients |b [0] | for two different solutions B(ω) is 1.3233 · 10−4. Hence, the
complete solution set of the phase retrieval problem A (ω) = |B (ω) |2 contains
28
= 256 different nontrivial solutions. All these solutions are presented in

Figure 3. The example illustrates that the different solutions can possess very
different shapes. ◦
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Figure 3: 2N−2 nontrivial solutions of A (ω) = |B (ω) |2 as in Example 3.3 (iii) for

N = 10.

We are now ready to prove our main result stated in Theorem 2.3 that all nontrivial
ambiguities for the phase retrieval problem can be represented by convolutions.

Proof (Theorem 2.3). Let x1, x2 be two signals with support length greater than one
such that x = x1 ∗ x2 solves the phase retrieval problem, i.e., |̂x(ω)|2 = |B(ω)|2 =
A(ω), where A (ω) denotes the autocorrelation polynomial of x. Assuming that x has
support length N, A (ω) is a nonnegative trigonometric polynomial of order N − 1.
We consider the symbols

x̂ (ω) ≔
N−1∑

n=0

x [n] eiωn,

x̂1 (ω) ≔
N1−1∑

n=0

x1 [n] eiωn, x̂2 (ω) ≔
N2−1∑

n=0

x2 [n] eiωn,

where we have normalized the signals without loss of generality by Proposition 2.1
such that the support of each signal starts at zero. The Fourier transform of x is
x̂ (ω) = x̂1 (ω) x̂2 (ω) and is a trigonometric polynomial of the form (4) as given in
Theorem 3.1. Since x̂1 (ω), x̂2 (ω) are polynomials of degree greater than one, they
can be composed by products of factors (e−iω − β j) of x̂ (ω) in (4).

We show that all nontrivial ambiguities with normalized support of the phase re-
trieval problem can be given as a product of the form e−iω(N1−1) x̂1 (ω) x̂2 (ω). Let
x̂ (ω) and ̂̃x (ω) be two nontrivially different solutions of the phase retrieval problem,
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i.e., ∣∣∣ x̂ (ω)
∣∣∣2 =
∣∣∣∣̂̃x (ω)

∣∣∣∣
2
= A (ω) ,

where x̂ (ω) corresponds to the zero set
{
β j : j = 1 . . .N − 1

}

and ̂̃x (ω) to {
β
−1
j : j = 1, . . . , J

}
∪
{
β j : j = J + 1, . . . ,N − 1

}

for some J ∈ {1, . . . ,N − 2}. Then choose

x̂1 (ω) ≔
J∏

j=1

∣∣∣β j

∣∣∣−
1
2
(
e−iω − β j

)

such that x̂1(ω) is composed by the zero set
{
β j : j = 1, . . . , J

}
. It follows that

e−iωJ x̂1(ω) = e−iωJ
J∏

j=1

|β j|
− 1

2

(
eiω − β j

)
=

J∏

j=1

|β j|
− 1

2 β j

(
β
−1
j − e−iω

)
,

i.e., e−iωJ x̂1(ω) corresponds to the zero set
{
β
−1
j : j = 1, . . . , J

}
. Further, let

x̂2 (ω) ≔
x̂ (ω)
x̂1 (ω)

.

Hence, the second solution is up to an unimodular constant

̂̃x (ω) = e−iωJ x̂1 (ω) x̂2 (ω) ,

i.e., we have x̃ = e−iα
(
x1 [−·]

)
∗ (x2 [· − J]). �

In particular, the observations of Theorem 2.3 and Theorem 3.1 provide us with

the opportunity to construct all nontrivial solutions x̂ (ω) of
∣∣∣ x̂ (ω)

∣∣∣2 = A (ω) from
one known solution x̂ (ω) of the form (4).

4 Enforcing uniqueness of the one-dimensional phase retrieval problem

In order to evaluate a meaningful solution of the phase retrieval problem numerically,
one needs to pose appropriate a priori conditions that ensure unique solvability. In
the literature on one-dimensional phase retrieval, there have been many attempts to
incorporate further conditions on the signal in order to achieve this goal. However,
often there are no theoretical considerations, whether certain additional conditions
indeed ensure uniqueness. Using our new insights on the representation of trivial and
nontrivial ambiguities of the phase retrieval problem, we want to find out, to what
extent the usually applied a priori conditions are indeed sufficient to ensure a unique
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Figure 4: Full nonnegative solution set for A (ω) =
∣∣∣ x̂ (ω)

∣∣∣2

solution or to reduce the number of nontrivial ambiguities.
These considerations are also of essential importance in order to judge beforehand

whether a numerical procedure can be able to provide a meaningful solution in a
stable manner.

Observe that we have restricted ourselves already to the case of complex signals
with compact support {0, . . . ,N − 1}, thereby we avoid the trivial ambiguities caused
by signal shifts.

4.1 Nonnegativity of the real signal

Often, phase retrieval is considered with the a priori assumption that the signal x to be
recovered is compactly supported, real, and nonnegative. However, as already shown
in [7], this condition does not necessarily lead to a smaller number of ambiguities.
With x̂ (ω) of the form

x̂ (ω) = |a [N − 1] |
1
2

N−1∏

j=1

∣∣∣β j

∣∣∣−
1
2
(
e−iω − β j

)
(6)

where β j ∈ R and β j < 0 even the highest possible number of 2N−2 nontrivial ambi-
guities is still attained. Therefore, nonnegativity of a real x is generally not sufficient
to ensure unique solvability of the phase retrieval problem. On the other hand, in
rare cases, the restriction to nonnegative signals can lead to an inconsistence with the
given autocorrelation polynomial A(ω), such that no solution x̂ (ω) with nonnegative
coefficients exists.

Example 4.1. Figures 4–6 show some different cases which can occur under the re-
striction of nonnegativity. In Figure 4, every nontrivial ambiguity that can be con-
structed from |̂x(ω)|2, where x is the marked signal of length 6 being determined by
the zero set {

β j

}
≔

{
−3.65,−2.5,−1.8,−1.75,−1.2

}

via (6), is real and nonnegative, i.e., is a solution of the corresponding discrete phase
retrieval problem. Again, we have plotted the solution set without reflected, conju-
gated signals. Here, we have 24

= 16 different solutions, which by Corollary 3.3 is
the maximal number of nontrivial ambiguities.
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Figure 6: Empty nonnegative solution set for A (ω) =
∣∣∣ x̂ (ω)

∣∣∣2

In a different example, see Figure 5, the condition of nonnegativity is strong enough
to ensure uniqueness of the problem. Here, the marked nonnegative solution x corre-
sponds to the zero set

{
β j

}
≔

{
−1.5,−0.5 + 1.5i,−0.5 − 1.5i, 1 + 1i, 1 − 1i

}
.

Note that the problem has only four nontrivial ambiguities in this example because
in Theorem 3.1 the complex zeros must be chosen as complex conjugated pairs.

In the last example, Figure 6, the restriction of positivity is too strong. Here, every
solution of the phase retrieval problem possesses some negative coefficients, i.e., the
given phase retrieval problem cannot be solved by a real nonnegative signal. The blue
signal, in Figure 6 (b), corresponds to the zero set

{
β j

}
≔

{
0.5,−0.5 + 1.5i,−0.5 − 1.5i, 1 + 1i, 1 − 1i

}
. ◦

4.2 Restriction of the zero set

Based on the characterization of nontrivial solutions of the discrete phase retrieval
problem using the zero sets of PA(z) in Theorem 3.1, we may consider only the so-

lution x̂ (ω) of
∣∣∣ x̂ (ω)

∣∣∣2 = A (ω) where the zero set
{
β j : j = 1, . . . ,N − 1

}
is fixed in

a way such that
∣∣∣β j

∣∣∣ ≤ 1 for all j = 1, . . . ,N − 1. Then, the zero set of x̂ (ω) and
hence the solution x is uniquely determined up to trivial ambiguities by Theorem 3.1.
Alternatively, one may take the zero set, where

∣∣∣β j

∣∣∣ ≥ 1 for all j.
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Figure 7: Unique solution of A (ω) =
∣∣∣ x̂ (ω)

∣∣∣2 for real and nonnegative signals

with zeros inside and outside the unit circle

For the real case, this approach has been proposed already in [17, Theorem 8].
Unfortunately, we are not aware of any special physical feature of the phase retrieval
solution that is obtained choosing the zero sets in the one or the other way.

Remark 4.2. Note that fixing the zeros inside or outside the unit circle is not com-
patible with the restriction to nonnegativity for real-valued signals. For example, in
Figure 7, we consider a phase retrieval problem which has a unique solution under
the restriction of nonnegativity. However, this solution corresponds to the zero set

{
β j

}
≔

{
−1.25,−0.5, 0.75 + 1.25i, 0.75 − 1.25i

}
,

where some zeros are inside and some zeros outside the unit circle as shown in Fig-
ure 7 (c). ◦

4.3 Using additional endpoints of the signal

A different idea to enforce uniqueness of the phase retrieval problem is to use ad-
ditionally known values of the signal x with fixed support {0, . . . ,N − 1}. In [41],
it had been assumed that for the real phase retrieval problem besides the autocorre-
lation function also the last signal value x [N − 1] is given. We want to examine in
more detail, how far this additional condition leads towards a unique phase retrieval
solution, thereby extending the considerations to the complex case.
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Theorem 4.3. Let a nonnegative trigonometric autocorrelation polynomial A(ω) of

degree N − 1 and a constant C ∈ C be given. Further, let PA(z) be the corresponding

algebraic polynomial with the zero set

{
γ j, γ

−1
j : j = 1, . . . ,N − 1

}

as in (5).
The phase retrieval problem

A(ω) =
∣∣∣ x̂ (ω)

∣∣∣2 with endpoint x[N − 1] = C

has a unique solution x = (x[n])N−1
n=0 ∈ C

N if and only if there exists a zero set

{
β j : j = 1, . . . ,N − 1

}

where β j ∈
{
γ j, γ

−1
j

}
for j = 1, . . . ,N − 1 such that the consistency condition

|C|2 = |a[N − 1]| ·
N−1∏

j=1

∣∣∣β j

∣∣∣−1
(7)

and ∏

β j∈Λ

∣∣∣β j

∣∣∣2 , 1 (8)

for each nonempty proper subset Λ ⊂ {|β j| , 1 : j ∈ {1, . . . ,N − 1}} is fulfilled.

Proof. 1. Using Theorem 3.1 with

B(ω) = x̂(ω) =
N−1∑

n=0

x[n]e−iωn,

the endpoint of the signal x is of the form

x [N − 1] = eiα

|a [N − 1] |
N−1∏

j=1

∣∣∣β j

∣∣∣−1



1
2

, (9)

where we assume that x is constructed by the zero set {β j : j = 1, . . . ,N − 1} as
given above. Hence, the endpoint condition x[N − 1] = C can only be satisfied if
the consistency condition (7) is fulfilled. In this case, there always exists at least one
solution of the phase retrieval problem |̂x(ω)|2 = A(ω).

2. We consider uniqueness of the solution vector x. Suppose that we have a further
solution x̃ of the phase retrieval problem. Then the endpoint x̃ [N − 1] again satisfies

C = x̃ [N − 1] = eiα̃

|a [N − 1] |
N−1∏

j=1

∣∣∣ β̃ j

∣∣∣−1



1
2

,
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where β̃ j ∈
{
β j, β

−1
j

}
by Theorem 3.1. For simplifying the notation of the following,

let

β̃ j = β
−1
j ( j = 1, . . . , L) and β̃ j = β j ( j = L + 1, . . . ,N − 1)

for some L ∈ {1, . . . ,N − 1}.
Thus, comparison of the endpoints x [N − 1] = x̃ [N − 1] yields the identity

eiα
L∏

j=1

∣∣∣β j

∣∣∣−
1
2
= eiα̃

L∏

j=1

∣∣∣β j

∣∣∣
1
2 ,

i.e.,

ei(α−α̃)
=

L∏

j=1

∣∣∣β j

∣∣∣ .

Since the right hand side is real and positive, it follows that α = α̃ and hence

L∏

j=1

∣∣∣β j

∣∣∣ = 1. (10)

In this product, we can omit all zeros β with |β j| = 1. The remaining equality
contradicts condition (8). Therefore, there exists no further solution of the phase
retrieval problem.

Observe that also trivial ambiguities do not occur. Shift ambiguities are avoided
by fixing the support of x to {0, . . . ,N − 1}, the rotation angle α is determined by
eiα
=

C
|C|

using x[N − 1] = C in (9), and finally the ambiguity caused by conjugation
and reflection is already covered by the consideration above for L = N − 1, where all

zeros β j switch to β
−1
j . �

Assuming that A(ω) is the autocorrelation polynomial of the complex-valued sig-
nal x = (x[n])N−1

n=0 , it is very likely that the phase retrieval problem is uniquely solvable
if x[n − 1] is already known since the submanifold of all (β j)N−1

j=1 ∈ CN−1 satisfying

(??) has intrinsic (real) dimension smaller than 2N − 2, where CN−1 is considered to
be embedded into R2N−2. Therefore, we call all autocorrelation polynomials satisfy-
ing (??) generic.

Corollary 4.4. A signal x = (x[n])N−1
n=0 with a generic autocorrelation polynomial

A(ω) can be uniquely reconstructed from |̂x(ω)|2 = A(ω) and x[N − 1].

Remark 4.5. A similar result can be proved for real signals, that has been also con-
sidered in [41, Theorem 1]. In this case the zeros β j are real or occur in complex con-
jugated pairs. All steps of the proof of Theorem 4.3 can then be similarly obtained,
and the signal x can be recovered from its autocorrelation function and x[N − 1]
almost surely.

One may now ask the question, how many signal points are needed to know be-
forehand in order to solve the phase retrieval problem always uniquely? In [30, The-
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orem 2] it has been shown for real signals x = (x[n])N−1
n=0 that the solution is unique if

the
⌊

N
2

⌋
signal values x[n] for n =

⌈
N
2

⌉
, . . . ,N − 2,N − 1 are already given. Here,

⌊
N
2

⌋

denotes the largest integer less than or equal N
2 and

⌈
N
2

⌉
the smallest integer greater

than or equal to N
2 . Following the lines of that proof we can easily generalize the

result to complex signals.

For the given values x
[⌊

N
2

⌋]
, . . . , x [N − 1], the remaining coefficients are directly

encoded in the autocorrelation signal a in (2). They can be reconstructed by solving
the linear equation system



x [N − 1]
x [N − 2] x [N − 1]

...
...

. . .

x
[⌈

N
2

⌉]
x
[⌈

N
2

⌉
+ 1
]
· · · x [N − 1]





x [0]
x [1]
...

x
[⌊

N
2

⌋
− 1
]


=



a [N − 1]
a [N − 2]

...

a
[⌈

N
2

⌉]


.

Since the first matrix is a lower left triangle matrix and x [N − 1] , 0, this equation
system has a unique solution.

Remark 4.6. Similarly as shown in the next Subsection 4.4, it is sufficient to know
an arbitrary signal value x[n], n ∈ {0, . . . ,N−1} \ {N−1

2 } instead of x[N −1] in order to
ensure a unique solution of the discrete phase retrieval problem with high probability.

4.4 Using moduli of the unknown signal

Instead of considering a given endpoint of the unknown signal x = (x[n])N−1
n=0 , we now

assume that besides the moduli of the Fourier transform
∣∣∣ x̂ (ω)

∣∣∣ either all or at least
some of the magnitudes | x [n] |, n = 0, . . . ,N − 1 are given. Phase retrieval problems
of this kind have been considered for example in [37, 26, 27], where a multilevel
Gauss-Newton method has been proposed as a numerical approach. Again, we want
to investigate, whether these conditions on x lead to a reduction of ambiguities of the
phase retrieval problem.

Suppose that x and x̃ are two nontrivial solutions of a phase retrieval problem sat-
isfying |̂x(ω)|2 = |̂x̃(ω)|2 for all ω ∈ [0, 2π) and |x[n]| = |x̃[n]| for one or more indices
n ∈ {0, . . . ,N − 1}. We assume again that PA(z) determined by the autocorrelation
polynomial A(ω) = |̂x(ω)|2 has the zero set

{
γ j, γ j

−1 : j = 1, . . . ,N − 1
}
.

By Theorem 3.1, the solutions of the phase retrieval problem have a Fourier transform
of the form

x̂ (ω) = eiα

|a [N − 1] |
N−1∏

j=1

∣∣∣β j

∣∣∣−1



1
2

·

N−1∏

j=1

(
e−iω − β j

)
=

N−1∑

n=0

x[n] e−iωn
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and

̂̃x (ω) = eiα̃

|a [N − 1] |
N−1∏

j=1

∣∣∣ β̃ j

∣∣∣−1



1
2

·

N−1∏

j=1

(
e−iω − β̃ j

)
=

N−1∑

n=0

x̃ [n] e−iωn,

where β j ∈
{
γ j, γ

−1
j

}
, β̃ j ∈

{
γ j, γ

−1
j

}
=

{
β j, β

−1
j

}
, and α, α̃ ∈ [−π, π).

Now the additional conditions

| x [n] | = | x̃ [n] |

for n ∈ {0, . . . ,N − 2} imply by Vieta’s formulas

N−1∏

j=1

∣∣∣β j

∣∣∣−
1
2 ·

∣∣∣∣∣∣∣∣

∑

1≤k1<···<kn≤N−1

βk1 · · · βkn

∣∣∣∣∣∣∣∣

=

N−1∏

j=1

∣∣∣ β̃ j

∣∣∣−
1
2 ·

∣∣∣∣∣∣∣∣

∑

1≤k1<···<kn≤N−1

β̃k1 · · · β̃kn

∣∣∣∣∣∣∣∣
,

(11)

and particularly for the leading coefficient | x [N − 1] | = | x̃ [N − 1] | it follows that

N−1∏

j=1

∣∣∣β j

∣∣∣−
1
2
=

N−1∏

j=1

∣∣∣ β̃ j

∣∣∣−
1
2 . (12)

Again, let us assume that β̃ j = β
−1
j for j = 1, . . . , L and β̃ j = β j else. Then (12)

already leads to the condition
∏L

j=1

∣∣∣β j

∣∣∣ = 1 similarly as the endpoint condition in
the last subsection. Therefore, we get the following Corollary.

Corollary 4.7. Let a nonnegative trigonometric autocorrelation polynomial A(ω) of

degree N − 1 and a nonnegative constant C ∈ R be given. Let PA(z) be the corre-

sponding algebraic polynomial with the zero set

{
γ j, γ

−1
j : j = 1, . . . ,N − 1

}

as in (5).
The phase retrieval problem |̂x(ω)|2 = A(ω) with the additional condition |x[N −

1]| = C has a solution x = (x[n])N−1
n=0 ∈ C

N if and only if there exists a zero set

{
β j : j = 1, . . . ,N − 1

}
,

where β j ∈ {γ j, γ
−1
j } for j = 1, . . . ,N − 1 such that consistency condition

|C|2 = |a[N − 1]| ·
N−1∏

j=1

∣∣∣β j

∣∣∣−1
(13)
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is satisfied. Moreover, this signal x is uniquely determined up to trivial ambiguities

caused by multiplication with an unimodular constant if

∏

β j∈Λ

∣∣∣β j

∣∣∣ , 1 (14)

for each nonempty proper subset Λ ⊂ {|β j| , 1 : j ∈ {1, . . .N − 1} is fulfilled.

The conditions (11) are equivalent to
∣∣∣∣∣∣∣∣

∑

1≤k1<···<kn≤N−1

βk1 · · · βkn

∣∣∣∣∣∣∣∣
=

L∏

j=1

∣∣∣β j

∣∣∣ ·

∣∣∣∣∣∣∣∣

∑

1≤k1<···<kn≤N−1

β̃k1 · · · β̃kn

∣∣∣∣∣∣∣∣
. (15)

Each of these equations can be regarded as polynomial equation in the real and imag-
inary parts of the zeros β j.

Hence, for any additionally fixed modulus value |x[n]| being given for some n ∈

{0, . . . ,N − 1} and being consistent with the zero set corresponding to the autocorre-
lation polynomial A(ω) = |̂x(ω)|2, we only obtain multiple nontrivial solutions if the
zero set satisfies the polynomial equation (15) for this n. Thus we can equivalently
replace the condition (14) in Corollary 4.7 by the condition

∣∣∣∣∣∣∣∣

∑

1≤k1<···<kn≤N−1

βk1 · · · βkn

∣∣∣∣∣∣∣∣
,

∏

β j∈Λ

∣∣∣β j

∣∣∣ ·

∣∣∣∣∣∣∣∣

∑

1≤k1<···<kn≤N−1

β̃k1 · · · β̃kn

∣∣∣∣∣∣∣∣

for some n ∈ {1, . . . ,N − 1} and with Λ as before.
It can be shown that the polynomial equation (15) is nontrivial, except for the case

L = N − 1 and n = N−1
2 that leads to a trivial ambiguity caused by reflection and

conjugation. Therefore, similarly as in Corollary 4.4, it is almost sure that the phase
retrieval problem is uniquely solvable up to the trivial rotation ambiguity if besides
the autocorrelation polynomial also the modulus of one signal value x[n] is given.
In the case n = N−1

2 , the reconstruction is only unique up to rotated or reflected,
conjugated signals.

One may ask the question, whether it is possible to determine the phase retrieval
solution always uniquely (up to rotation), if more then one value |x[n]| or even all
values |x[n]| for n = 0, . . . ,N − 1 are given. As the next example shows, this is not
the case.

Example 4.8. Figure 8 shows a phase retrieval problem for a given A (ω) =
∣∣∣ x̂ (ω)

∣∣∣2
and additionally given moduli | x [n] | for n = 1, . . . ,N−1. The zero set corresponding
to the marked signal x of length 4 is given by

β1 ≔
1
2 + 5i, β2 ≔

e−i 2
3π

1
2 − 5i

, and β3 ≔
ei 2

3π

1
2 − 5i

.

In the specific example, the phase retrieval problem of dimension N = 4 has three
different nontrivial ambiguities. ◦
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Figure 8: Three nontrivial solutions of A (ω) =
∣∣∣ x̂ (ω)

∣∣∣2 with given moduli | x [n] |
for n = 0, . . . , 3 as in Example 4.8.

5 Enforcing uniqueness by interference measurements

In this section, we investigate signal reconstruction where besides Fourier intensity
measurements of the wanted signal also some intensity pattern resulting from interfer-
ence with a known or unknown reference signal is available, as in Fourier holography.
There have been different attempts to use interference with a known or unknown ref-
erence signal, and to exploit intensity measurements in order to achieve uniqueness
of the phase retrieval problem. Let us shortly examine some different cases.

5.1 Interference with a known Dirac signal

First, as in [22], we consider the interference with a known Dirac signal and general-
ize this idea to finite length complex signals.

Theorem 5.1. Let the autocorrelation polynomial A(ω) =
∣∣∣ x̂ (ω)

∣∣∣2 of the finitely sup-

ported signal x = (x[n])N−1
n=0 and the autocorrelation polynomial Ã(ω) =

∣∣∣ ŷ (ω)
∣∣∣2 be

given, where

y [n] = x [n] +Cδ [n − n0]

and C ∈ C \ {0}, n0 ∈ Z are known, i.e., y [n0] = x [n0] + C and y [n] = x [n]
for n ∈ Z \ {n0}. Then x can be uniquely reconstructed from the autocorrelation

polynomials A(ω) and Ã(ω), and the constants C and n0 up to one trivial ambiguity.
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Proof. We can follow the lines of the proof given in [22]. The Fourier transform
yields

ŷ (ω) = x̂ (ω) +Ce−iωn0

and ∣∣∣ ŷ (ω)
∣∣∣2 =
∣∣∣ x̂ (ω)

∣∣∣2 + 2 |C |
∣∣∣ x̂ (ω)

∣∣∣ cos (φ (ω) + n0ω − α) + |C |2 ,

where φ (ω) ∈ [0, 2π) denotes the phase of x̂ (ω), i.e., x̂ (ω) =
∣∣∣ x̂ (ω)

∣∣∣ eiφ(ω), and
α ∈ [0, 2π) the phase of C, i.e., C = |C | eiα. Here, the unknown phase φ(ω) is directly
encoded, and we find

cos (φ (ω) + n0ω − α) =

∣∣∣ ŷ (ω)
∣∣∣2 −
∣∣∣ x̂ (ω)

∣∣∣2 − |C |2

2 |C |
∣∣∣ x̂ (ω)

∣∣∣
for

∣∣∣ x̂ (ω)
∣∣∣ , 0.

Since x̂ (ω) is a nonvanishing trigonometric polynomial, we have x̂ (ω) , 0 almost
everywhere, and cos(φ(ω)+ n0ω−α) is also for ω̃ with x̂ (ω̃) = 0 well determined by
taking the limit value ω → ω̃ on the right hand side of the equation above. Hence,
we obtain for all ω ∈ [−π, π) the values

φ (ω) + n0ω − α = ± arccos



∣∣∣ ŷ (ω)
∣∣∣2 −
∣∣∣ x̂ (ω)

∣∣∣2 − |C |2

2 |C |
∣∣∣ x̂ (ω)

∣∣∣

 + 2πk, k ∈ Z. (16)

Let now x̃ be a second solution of the phase retrieval problem, i.e.,

∣∣∣ x̂(ω)
∣∣∣2 =
∣∣∣∣̂̃x(ω)

∣∣∣∣
2
,

∣∣∣ x̂(ω) + C e−in0ω
∣∣∣2 =
∣∣∣∣̂̃x(ω) +C e−in0ω

∣∣∣∣
2

With ̂̃x(ω) =
∣∣∣∣̂̃x(ω)

∣∣∣∣ eiφ̃, it hence follows from (16) that

φ(ω) = ±
[
φ̃(ω) + n0ω − α

]
− n0ω + α + 2πk

Since differences of phases by a multiple of 2π do not give different solutions and
because x̂ resp. ̂̃x are trigonometric polynomials and hence continuous, we need to
consider only two cases, namely either that φ(ω) = φ̃(ω) or φ(ω) = (−φ̃(ω) − 2n0ω +

2α). Thus, there is only one possible second solution of the form

̂̃x (ω) =
∣∣∣ x̂ (ω)

∣∣∣ e−iφ(ω)−2in0ω+2iα

resulting after support shift to {0, . . . ,N − 1} in the trivial ambiguity

(x̃ [n]) =
(
e2iα x [N − 1 − n]

)
.

This proves the assertion. �

Remark 5.2. (i) Assuming that n0 ∈ {0, . . . ,N − 1}, we need in the complex case
2N − 1 measurements to determine the autocorrelation polynomial A(ω) =∣∣∣ x̂ (ω)

∣∣∣2 and further 2N−1 measurements to determine the autocorrelation poly-
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nomial Ã(ω) =
∣∣∣ ŷ (ω)

∣∣∣2. In the real case, we need only N measurements for each
of the autocorrelation polynomials.

(ii) One may also take n0 ∈ Z \ {0, . . .N − 1} thereby enlarging the support of y

(compared to the support of x). In this case we need more than 2N − 1 mea-

surements to recover
∣∣∣ ŷ (ω)

∣∣∣2 depending on the support length of the signal y.
One exception remarked in [22] is the case n0 = 2N − 1, where 4N − 1, in the

real case 2N, measurements are needed to recover
∣∣∣ ŷ (ω)

∣∣∣2 but where
∣∣∣ x̂ (ω)

∣∣∣2

does not need to be measured. The autocorrelation polynomial
∣∣∣ x̂ (ω)

∣∣∣2 can be

directly recovered from
∣∣∣ ŷ (ω)

∣∣∣2 observing that

ŷ (ω) = x̂ (ω) +C eiω(2N−1)

and
∣∣∣ ŷ (ω)

∣∣∣2 =
∣∣∣ x̂ (ω)

∣∣∣2 + |C |2 + x̂ (ω) C e−iω(2N−1)
+ x̂ (ω) C eiω(2N−1),

where the coefficients of the three polynomials
∣∣∣ x̂ (ω)

∣∣∣2, x̂ (ω) C e−iω(2N−1) and

x̂ (ω) C eiω(2N−1) do not superpose. ◦

5.2 Interference with a known reference signal

Let us now consider the interference with a known reference signal h ≔ (h [n])n∈Z

with finite support thereby generalizing and simplifying the results in [22].

Theorem 5.3. Let the autocorrelation polynomial A(ω) =
∣∣∣ x̂ (ω)

∣∣∣2 of the finitely sup-

ported signal x = (x[n])N−1
n=0 and the autocorrelation polynomial Ã(ω) =

∣∣∣ ŷ (ω)
∣∣∣2 be

given, where

y [n] = x [n] + h [n]

for some known finitely supported reference signal h = (h [n])n∈Z. If the signal

h possesses a linear phase, then x can be uniquely reconstructed up to one trivial

ambiguity. If h does not have a linear phase, then we generally obtain two nontrivial

solutions.

Proof. Note that also y ≔ (y [n])n∈Z is a finite length signal. As before, we observe
that

∣∣∣ ŷ (ω)
∣∣∣2 =
(
x̂ (ω) + ĥ (ω)

) (
x̂ (ω) + ĥ (ω)

)

=

∣∣∣ x̂ (ω)
∣∣∣2 +
∣∣∣∣ ĥ (ω)

∣∣∣∣ + 2 Re
(
x̂ (ω) ĥ (ω)

)
.

With x̂ (ω) =
∣∣∣ x̂ (ω)

∣∣∣ eiφ(ω) and ĥ (ω) =
∣∣∣∣ ĥ (ω)

∣∣∣∣ eiψ(ω), where φ (ω) and ψ (ω) denote
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the phase functions of x̂ and ĥ, it follows that

∣∣∣ ŷ (ω)
∣∣∣2 =
∣∣∣ x̂ (ω)

∣∣∣2 +
∣∣∣∣ ĥ (ω)

∣∣∣∣
2
+ 2
∣∣∣ x̂ (ω)

∣∣∣
∣∣∣∣ ĥ (ω)

∣∣∣∣ cos (φ (ω) − ψ (ω))

such that

φ (ω) − ψ (ω) = ± arccos



∣∣∣ ŷ (ω)
∣∣∣2 −
∣∣∣ x̂ (ω)

∣∣∣2 −
∣∣∣∣ ĥ (ω)

∣∣∣∣
2

2
∣∣∣ x̂ (ω)

∣∣∣
∣∣∣∣ ĥ (ω)

∣∣∣∣


+ 2πk

for ω with x̂ (ω) ĥ (ω) , 0 and k ∈ Z.

Similarly as in the proof of Theorem 5.1, we can restrict our considerations to
k = 0. Again, we only find two different solutions since x̂ and ̂̃x are continuous. Both
solutions are related by

φ1 (ω) − ψ (ω) = −φ2 (ω) + ψ (ω) ,

i.e.,
φ2 (ω) = −φ1 (ω) + 2ψ (ω) .

Considering the corresponding signals

x̂1 (ω) =
∣∣∣ x̂ (ω)

∣∣∣ eiφ1(ω) and x̂2 (ω) =
∣∣∣ x̂ (ω)

∣∣∣ e−iφ1(ω)+2iψ(ω),

we want to examine if this second solution is a trivial ambiguity.

According to Proposition 2.1, the ambiguity is trivial if and only if ψ (ω) is of the
form

ψ (ω) = −n0ω + α or ψ (ω) = φ1 (ω) − n0ω + α

for some n0 ∈ R and α ∈ R. In the second case, x2 is obtained from x1 by a 2n0-
shift and rotation, and in the first case, beside shift and rotation also conjugation and
reflection of x1 are involved. For ψ(ω) = −n0ω + α the reference signal h possesses
a linear phase, i.e.,

ĥ (ω) =
∣∣∣∣ ĥ (ω)

∣∣∣∣ e−i(n0ω−α).

This is equivalent to

e−iα ein0ω ĥ (ω) =
∣∣∣∣ ĥ(ω)

∣∣∣∣ =
∣∣∣∣ ĥ(ω)

∣∣∣∣ = eiα e−in0ω ĥ (ω),

i.e.,
e−iαh [n + n0] = eiαh [n0 − n] .

Thus, when the known reference signal h has linear phase, the phase retrieval problem
is uniquely solvable up to one trivial ambiguity. If h does not have a linear phase,
we obtain up to two nontrivial solutions. Observe here that it is impossible to fulfill
ψ(ω) = φ(ω)−n0ω+α since the phase ψ(ω) is unknown and needs to be reconstructed.

�
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5.3 Interference with an unknown reference signal with known intensity

Let us finally consider the problem of phase reconstruction for two unknown finite
length signals x, h from the intensities

∣∣∣ x̂ (ω)
∣∣∣2 ,

∣∣∣∣ ĥ (ω)
∣∣∣∣
2
, and

∣∣∣∣ x̂ (ω) + ĥ (ω)
∣∣∣∣
2
.

In case of real signals, the idea goes back to [24]. For complex signals, we refer to
[34], where beside the three intensities given above, a forth intensity

∣∣∣∣ x̂ (ω) + i ĥ (ω)
∣∣∣∣
2

is used for reconstruction. Here, we state the result for complex signals x, h and give
a new complete proof based on our findings in Theorem 2.3.

Theorem 5.4. Let (x [n]) and (h [n]) be two complex finite support sequences, and

assume that the factorizations of their discrete Fourier transforms

x̂ (ω) = x [N1 − 1]
N1−1∏

j=1

(
e−iω − η j

)
,

ĥ (ω) = e−iωk1 h [N2 − 1]
N2−1∏

j=1

(
e−iω − γ j

)

with an integer shift k1 ∈ Z have no common roots, i.e., η j , γk for all j = 1, . . .N1 −

1, k = 1, . . .N2 − 1. Then

x [n] and h [n]

can be uniquely recovered from
∣∣∣ x̂ (ω)

∣∣∣2,

∣∣∣∣ ĥ (ω)
∣∣∣∣
2

and

∣∣∣∣ x̂ (ω) + ĥ (ω)
∣∣∣∣
2

up to trivial

ambiguities.

Proof. 1. Assume that the phase retrieval problem has two nontrivial solution pairs

x [n], h [n] and x̃ [n], h̃ [n] such that |̂x(ω)|2 = |̂x̃(ω)|2, |̂h(ω)|2 = |̂̃h(ω)|2 and |̂y(ω)|2 =
|̂̃y(ω)|2, where

ŷ (ω) = x̂ (ω) + ĥ (ω) , ̂̃y (ω) = ̂̃x (ω) + ̂̃h (ω) .

According to Theorem 2.3, there exist convolution representations, shifts, and rota-
tions such that

x̂ (ω) = x̂1 (ω) x̂2 (ω) and ̂̃x (ω) = eiα1 x̂1 (ω) x̂2 (ω), (17)

and

ĥ (ω) = e−ik1ω ĥ1 (ω) ĥ2 (ω) and ̂̃
h (ω) = eiα2 e−ik2ω ĥ1 (ω) ĥ2 (ω) (18)
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for some α1, α2 ∈ [−π, π) and shifts k1, k2 ∈ Z, where w.l.o.g. we consider shifts only

in ĥ and ̂̃h. Here, we assume that

supp x1 = {0, . . . ,m1}, supp x2 = {0, . . . ,N1 − m1 − 1},

supp h1 = {0, . . . ,m2}, supp h2 = {0, . . . ,N2 − m2 − 1},

i.e., x̂1 corresponds to m1 linear factors and ĥ1 to m2 factors. Now,

∣∣∣∣ x̂ (ω) + ĥ (ω)
∣∣∣∣
2
=

∣∣∣∣∣̂̃x (ω) + ̂̃h (ω)
∣∣∣∣∣
2

together with |̂x(ω)|2 = |̂x̃(ω)|2 and |̂h(ω)|2 = |̂̃h(ω)|2 implies

x̂ (ω) ĥ (ω) + x̂ (ω) ĥ (ω) = ̂̃x (ω) ̂̃h (ω) + ̂̃x (ω)̂̃h (ω) .

Incorporating (17) and (18) yields

eik1ω x̂1 (ω) x̂2 (ω) ĥ1 (ω) ĥ2 (ω) + e−ik1ω x̂1 (ω) x̂2 (ω) ĥ1 (ω) ĥ2 (ω)

= ei(α1−α2) eik2ω x̂1 (ω) x̂2 (ω) ĥ1 (ω) ĥ2 (ω)

+ e−i(α1−α2) e−ik2ω x̂1 (ω) x̂2 (ω) ĥ1 (ω) ĥ2 (ω),

i.e.,
[
eik1ω x̂1 (ω) ĥ1 (ω) − e−i(α1−α2) e−ik2ω x̂1 (ω) ĥ1 (ω)

]

·

[
x̂2 (ω) ĥ2 (ω) − ei(α1−α2) e−iω(k1−k2) x̂2 (ω) ĥ2 (ω)

]
= 0.

Hence, either

x̂1 (ω) ĥ1 (ω) = e−i(α1−α2) e−iω(k1+k2) x̂1 (ω) ĥ1 (ω) , (19)

or
x̂2 (ω) ĥ2 (ω) = ei(α1−α2) e−iω(k1−k2) x̂2 (ω) ĥ2 (ω) (20)

has to be fulfilled.

2. Suppose that (19) is true, i.e., x̂1 (ω) ĥ1 (ω) has linear phase. Considering the
factorizations

x̂1 (ω) = x1 [m1]
m1∏

j=1

(
e−iω − η j

)
,

ĥ1 (ω) = h1 [m2]
m2∏

ℓ=1

(
e−iω − γℓ

)
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(19) leads to

x1 [m1] h1 [m2]
m1∏

j=1

(
e−iω − η j

) m2∏

ℓ=1

(
eiω − γℓ

)

= e−i(α1−α2) e−iω(k1+k2) x1 [m1] h1 [m2]
m1∏

j=1

(
eiω − η j

) m2∏

ℓ=1

(
e−iω − γℓ

)
.

Hence, with C ≔ x1 [m1] h1 [m2],

C eiωm2

m2∏

ℓ=1

(
−γℓ
) m1∏

j=1

(
e−iω − η j

) m2∏

ℓ=1

(
e−iω − 1

γℓ

)

= C e−i(α1−α2) eiω(−k1−k2+m1)
m1∏

j=1

(
−η j

) m1∏

j=1

(
e−iω − 1

η j

) m2∏

ℓ=1

(
e−iω − γℓ

)
. (21)

As we have on both sides trigonometric polynomials of a fixed degree, it follows that

m2 + k2 + k1 = m1. (22)

If we interpret the left and right hand side of the above equation (21) as polynomials
in z ≔ e−iω, then we have on both sides the same zero set, i.e.,

{
η j : j = 1, . . . ,m1

}
∪
{
γ−1
ℓ : ℓ = 1, . . . ,m2

}

=

{
η−1

j : j = 1, . . . ,m1

}
∪
{
γℓ : ℓ = 1, . . . ,m2

}
.

Using the assumption of the theorem that η j , γℓ for all j and ℓ, we can conclude
that the roots on both sides of (21) lying not on the unit circle can only occur in pairs(
η j, η

−1
j

)
and
(
γℓ, γ

−1
ℓ

)
. Therefore we can assume that x̂1(ω) possesses the zeros η j,

η j
−1 for j = 1, . . . , L1 as well as possible zeros on the unit circle η j+2L1 = eiν j , j =

1, . . .m1 − 2L1, and similarly ĥ1(ω) possesses the zeros γ j, γ j
−1 for j = 1, . . . , L2 as

well as possible zeros on the unit circle γ j+2L2 = eiµ j , j = 1, . . .m2 − 2L2. Therewith,
we find for x̂ and ĥ representations of the form

x̂1 (ω) = x1 [m1]
L1∏

j=1

(
e−iω − η j

) (
e−iω − 1

η j

) m1−2L1∏

j=1

(
e−iω − e−iν j

)

and

ĥ1 (ω) = h1 [m2]
L2∏

ℓ=1

(
e−iω − γℓ

) (
e−iω − 1

γℓ

) m2−2L2∏

ℓ=1

(
e−iω − e−iµℓ

)
.

In particular, x1 and h1 are invariant under reflection, see Corollary 3.3, i.e.,

x̂1 (ω) = e−iωm1 x̂1 (ω) and ĥ1(ω) = e−iωm2 ĥ1 (ω).
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Together with (17) and (18), it follows that

x̂ (ω) = x̂1 (ω) x̂2 (ω) , ̂̃x (ω) = eiα1 e−iωm1 x̂1 (ω) x̂2 (ω)

ĥ (ω) = e−ik1ω ĥ1 (ω) ĥ2 (ω) , ̂̃
h (ω) = eiα2 e−iω(m2+k2) ĥ1 (ω) ĥ2 (ω)

and thus x̃ and h̃ are trivial ambiguities of x and h. We obtain by (22)

ŷ (ω) = x̂1 (ω) x̂2 (ω) + e−ik1ω ĥ1 (ω) ĥ2 (ω) ,

̂̃y (ω) =
(
eiα1 x̂1 (ω) x̂2 (ω) + eiα2 eik1ω ĥ1 (ω) ĥ2 (ω)

)
e−iωm1

=

(
e−iα1 x̂1 (ω) x̂2 (ω) + e−iα2 e−ik1ω ĥ1 (ω) ĥ2 (ω)

)
e−iωm1 .

For α1 = α2, the signal sums ỹ and y are also trivial ambiguities of each other.
3. If the condition (20) holds true then a similar procedure leads to the identities

̂̃x (ω) = eiα1 eiω(N1−m1−1) x̂ (ω) and ̂̃
h (ω) = eiα2 eiω(−k2+N2−m2−1) ĥ (ω) .

and to the condition S ≔ N2 − m2 − 1 − k2 + k1 = N1 − m1 − 1 such that

ŷ (ω) = x̂1 (ω) x̂2 (ω) + e−iωk1 ĥ1 (ω) ĥ2 (ω) ,

̂̃y (ω) =
(
eiα1 x̂1 (ω) x̂2 (ω) + eiα2 e−iωk1 ĥ1 (ω) ĥ2 (ω)

)
eiωS .

Hence, we can always recover x and h uniquely up to trivial ambiguities in both
cases. �

Remark 5.5. (i) If all signals are real, see [24], then the prefactor C is also real,
i.e., C = C. Further the real zeros of x̂1 and ĥ1 occur in pairs

(
η j, η

−1
j

)
and

(
γℓ, γ

−1
ℓ

)

but the complex zeros occur in quads
(
η j, η j, η

−1
j , η

−1
j

)
and

(
γℓ, γℓ, γ

−1
ℓ , γ−1

ℓ

)
.

That implies

N1−m1−1∏

j=1

(
−η j

)
= 1 and

N2−m2−1∏

ℓ=1

(
−γℓ
)
= 1

and therefore α1 = α2 ∈ {0, π}, i.e., ỹ and y always are trivial ambiguities of
each other. The same can be observed in the case when (20) holds true. Hence,
we can recover x, h and y uniquely up to trivial ambiguities from the given
autocorrelations functions.

(ii) Note that in the complex setting, the rotations α1 and α2 can be different. For
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example, if x̂ is a real function and ĥ is an imaginary function, then̂̃y = x̂+ eiπ ĥ

solve the given phase retrieval problem with α1 = 0 and α2 = π.

(iii) In [34], the same complex phase retrieval problem is considered, but here a
fourth autocorrelation function

∣∣∣∣ x̂ (ω) + i ĥ (ω)
∣∣∣∣
2

is employed to ensure the unique reconstruction up to trivial ambiguities. The
advantage of a fourth measurement set is that the signals x and h can be recov-
ered easily by using the complex polarization formula and comparing the roots
of the different polynomials.

(iv) In [8], beside the intensity |̂x (ω)|2 also the intensities of interferences of x̂ (ω)
with shifted versions of itself,

∣∣∣∣ x̂ (ω) + x̂
(
ω − 2πs

N

) ∣∣∣∣
2

and
∣∣∣∣ x̂ (ω) − i x̂

(
ω − 2πs

N

) ∣∣∣∣
2

are applied. With the notation x̂
(

2πk
N

)
=

∣∣∣∣ x̂
(

2πk
N

) ∣∣∣∣ eiφk a comparison of

∣∣∣∣ x̂ (ω) + x̂
(
ω − 2πs

N

) ∣∣∣∣
2

and
∣∣∣∣ x̂ (ω) − i x̂

(
ω − 2πs

N

) ∣∣∣∣
2

for ω = 2πk
N

, k = 0, . . . ,N − 1 then yields the values for the phase differences
φk−s − φk, k = 0, . . . ,N − 1. Therefore, if s ∈ N is prime with N, the signal
x can be uniquely reconstructed from these intensities up to the trivial rotation
ambiguity. ◦
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